├── packages.txt
├── data
├── sample.mp3
├── kgptalkie.png
├── sample-video.mp4
├── edited_data.csv
├── auto.csv
└── weather_data.csv
├── images
├── cat.jpg
└── dog.jpg
├── requirements.txt
├── Streamlit_Crash_Course
├── sample.mp3
├── kgptalkie.png
├── sample-video.mp4
├── app.py
└── auto.csv
├── 02_working_with_text_inputes.py
├── 05_working_with_data_objects.py
├── 08_working_with_sidebar_and_navigation_bars.py
├── 10_working_with_caching.py
├── 03_working_with_interactive_widgets.py
├── 04_status_and_progress_indicators.py
├── 01_working_with_text_display.py
├── 06_working_with_media_files.py
├── 09_working_with_layouts_and_page_configuration.py
├── app.py
├── 11_model_deployement.py
├── 07_working_with_plotting_libraries.py
└── README.md
/packages.txt:
--------------------------------------------------------------------------------
1 | libgl1
--------------------------------------------------------------------------------
/data/sample.mp3:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/data/sample.mp3
--------------------------------------------------------------------------------
/images/cat.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/images/cat.jpg
--------------------------------------------------------------------------------
/images/dog.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/images/dog.jpg
--------------------------------------------------------------------------------
/data/kgptalkie.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/data/kgptalkie.png
--------------------------------------------------------------------------------
/data/sample-video.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/data/sample-video.mp4
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | cartooner
2 | rembg
3 | Pillow
4 | streamlit
5 | numba
6 | numpy
7 | opencv-python-headless
--------------------------------------------------------------------------------
/Streamlit_Crash_Course/sample.mp3:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/Streamlit_Crash_Course/sample.mp3
--------------------------------------------------------------------------------
/Streamlit_Crash_Course/kgptalkie.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/Streamlit_Crash_Course/kgptalkie.png
--------------------------------------------------------------------------------
/Streamlit_Crash_Course/sample-video.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/laxmimerit/streamlit-tutorials/HEAD/Streamlit_Crash_Course/sample-video.mp4
--------------------------------------------------------------------------------
/data/edited_data.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,year,origin,name
2 | 18.0,8,307.0,130,3504,12.0,70,1,chevrolet chevelle malibu
3 | 15.0,8,350.0,165,3693,11.5,70,1,buick skylark 320
4 | 18.0,8,318.0,150,3436,11.0,70,1,plymouth satellite
5 | 16.0,8,304.0,150,3433,12.0,70,1,amc rebel sst
6 | 17.0,8,302.0,140,3449,10.5,70,1,ford torino
7 |
--------------------------------------------------------------------------------
/02_working_with_text_inputes.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 |
3 | # Title
4 | st.title("Streamlit Text Input Examples")
5 |
6 | # Text Input
7 | name = st.text_input("Enter your name:", "")
8 |
9 | # Text Area
10 | feedback = st.text_area("Enter your feedback:", "")
11 |
12 | # Number Input
13 | age = st.number_input("Enter your age:", min_value=0, max_value=120, step=1)
14 |
15 | # Date Input
16 | date = st.date_input("Select a date:")
17 |
18 | # Time Input
19 | time = st.time_input("Select a time:")
20 |
21 | # Color Picker
22 | color = st.color_picker("Pick a color")
23 |
24 | # Display inputs
25 | st.write("Name:", name)
26 | st.write("Feedback:", feedback)
27 | st.write("Age:", age)
28 | st.write("Date:", date)
29 | st.write("Time:", time)
30 | st.write("Color:", color)
31 |
32 | # print color based on color values
33 |
34 | # HTML
35 | html_code = """
36 |
This is a blue heading
37 | This is a green paragraph
38 | """.format(color)
39 | st.markdown(html_code, unsafe_allow_html=True)
--------------------------------------------------------------------------------
/05_working_with_data_objects.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | import pandas as pd
3 |
4 | # Title
5 | st.title("Streamlit Data Objects Example")
6 |
7 | # Display JSON data
8 | st.subheader("JSON Data")
9 |
10 | # Sample JSON data
11 | json_data = {
12 | "name": "KGP Talkie",
13 | "age": 30,
14 | "city": "Mumbai"
15 | }
16 | st.json(json_data)
17 |
18 | # Sample DataFrame
19 | # Display DataFrame
20 | st.subheader("DataFrame")
21 |
22 | import pandas as pd
23 | df = pd.read_csv("data/auto.csv")
24 | st.dataframe(df.head())
25 |
26 | # Display DataFrame as table
27 | st.subheader("DataFrame as Table")
28 | st.table(df.head())
29 |
30 | # Sample code
31 | st.subheader("Sample Code")
32 |
33 | sample_code = '''
34 | def greet(name):
35 | return "Hello, " + name + "!"
36 |
37 | print(greet("KGP Talkie"))
38 | '''
39 | st.code(sample_code, language='python')
40 |
41 | # Sample metric
42 | st.subheader("Sample Metric")
43 | st.metric("Accuracy", value=0.85, delta=+0.05)
44 |
45 | # Sample data editor
46 | st.subheader("Data Editor")
47 | edited_data = st.data_editor(df.head())
48 |
49 | st.write("Edited DataFrame:")
50 | st.write(edited_data)
51 |
52 | edited_data.to_csv("data/edited_data.csv", index=False)
53 |
--------------------------------------------------------------------------------
/08_working_with_sidebar_and_navigation_bars.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 |
3 | st.title("Streamlit Playlist Series")
4 |
5 | # Sidebar
6 | st.sidebar.title("Navigation")
7 | page = st.sidebar.radio("Go to", ["Home", "About", "Contact"])
8 | # page = st.sidebar.selectbox("Go to", ["Home", "About", "Contact"])
9 |
10 | if page == "Home":
11 | st.write("Welcome to the homepage!")
12 | st.write("Here, you can explore various features of Streamlit.")
13 |
14 | # Expander
15 | with st.expander("Click to learn more about Streamlit"):
16 | st.write("Streamlit is an open-source Python library that makes it easy to create and share beautiful, custom web apps for machine learning and data science.")
17 |
18 | # Popover
19 | with st.popover("Open popover"):
20 | st.markdown("Hello World 👋")
21 | name = st.text_input("What's your name?")
22 |
23 | st.write("Your name:", name)
24 |
25 | elif page == "About":
26 | st.write("This is the About page.")
27 | st.write("Here, you can find information about Streamlit and its features.")
28 |
29 | elif page == "Contact":
30 | st.write("Feel free to contact us!")
31 | st.write("You can reach out to us via email or social media.")
32 |
--------------------------------------------------------------------------------
/10_working_with_caching.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | import pandas as pd
3 | from transformers import pipeline
4 |
5 | # Function to simulate an expensive computation
6 | # @st.cache_data
7 | def read_data():
8 | df = pd.read_csv("https://github.com/laxmimerit/All-CSV-ML-Data-Files-Download/raw/master/IMDB-Dataset.csv")
9 | return df.head()
10 |
11 | # Function to store and retrieve data in session state
12 | def update_session_state():
13 | if 'counter' not in st.session_state:
14 | st.session_state.counter = 0
15 |
16 | st.write("Counter:", st.session_state.counter)
17 | st.session_state.counter += 1
18 |
19 | # Title
20 | st.title("Working with Caching and Session State")
21 |
22 | # Example of caching
23 | st.button("Increment counter")
24 | result = read_data()
25 | st.write("Result of expensive computation:", result)
26 |
27 | # update session state
28 | update_session_state()
29 |
30 | # Load NLP model from Hugging Face using caching. It will not reload model again
31 | @st.cache_resource
32 | def load_model():
33 | model = pipeline("sentiment-analysis")
34 | st.success("Loaded NLP model from Hugging Face!")
35 | return model
36 |
37 | model = load_model()
38 | st.success("Got model successfully!")
--------------------------------------------------------------------------------
/03_working_with_interactive_widgets.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 |
3 | # Title
4 | st.title("Streamlit Interactive Widget Examples")
5 |
6 | # Button
7 | if st.button("Click Me"):
8 | st.write("Button clicked!")
9 |
10 | # Checkbox
11 | checkbox_state = st.checkbox("Check me to enable something")
12 | if checkbox_state:
13 | st.write("Checkbox is checked!")
14 |
15 | # Radio button
16 | radio_selection = st.radio("Choose an option:", ["NLP", "CV", "DL", "ML"])
17 | st.write("You selected:", radio_selection)
18 |
19 | # Selectbox
20 | selectbox_selection = st.selectbox("Choose an item:", ["NLP", "CV", "DL", "ML"])
21 | st.write("You selected:", selectbox_selection)
22 |
23 | # Multiselect
24 | multiselect_selection = st.multiselect("Choose multiple items:", ["NLP", "CV", "DL", "ML"])
25 | st.write("You selected:", multiselect_selection)
26 |
27 | # Slider
28 | slider_value = st.slider("Select a value:", min_value=0, max_value=10, value=5, step=1)
29 | st.write("Slider value:", slider_value)
30 |
31 | # Select slider
32 | # select_slider_value = st.select_slider("Select a value:", options=range(10))
33 | select_slider_value = st.select_slider("Select a value:", options=[1, 4, 5, 6, 3, 2, 'NLP'])
34 |
35 | st.write("Selected slider value:", select_slider_value)
36 |
--------------------------------------------------------------------------------
/04_status_and_progress_indicators.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | import time
3 |
4 | # Title
5 | st.title("Streamlit Status and Progress Indicator Examples")
6 |
7 | # Empty
8 | st.subheader("Empty Element")
9 | empty_elem = st.empty()
10 | empty_elem.text("This text will be replaced after 3 seconds...")
11 | time.sleep(3)
12 | empty_elem.text("Replaced!")
13 |
14 | # Progress
15 | st.subheader("Progress Bar")
16 | progress_bar = st.progress(0)
17 | status_text = st.empty()
18 | for i in range(101):
19 | time.sleep(0.05)
20 | progress_bar.progress(i)
21 | status_text.text(f"Progress: {i}%")
22 | status_text.text("Progress: Done!")
23 |
24 | # Spinner
25 | st.subheader("Spinner")
26 | with st.spinner("Waiting..."):
27 | time.sleep(5)
28 | st.success("Process completed!")
29 |
30 | # Status
31 | st.subheader("Status")
32 | st.status("This is a status message")
33 |
34 | # Toast
35 | st.subheader("Toast")
36 | st.warning("This is a warning message")
37 | st.error("This is an error message")
38 | st.success("This is a success message")
39 | st.info("This is an info message")
40 |
41 | # Snow
42 | st.subheader("Snow")
43 | st.snow()
44 |
45 | # Balloons
46 | st.subheader("Balloons")
47 | st.balloons()
48 |
49 | # Success, error, warning, info
50 | st.subheader("Different Alert Types")
51 | st.success("Success alert message")
52 | st.error("Error alert message")
53 | st.warning("Warning alert message")
54 | st.info("Info alert message")
55 |
--------------------------------------------------------------------------------
/01_working_with_text_display.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 |
3 | # Title
4 | st.title("Streamlit Text Display Example")
5 |
6 | # Header
7 | st.header("This is a Header")
8 |
9 | # Subheader
10 | st.subheader("This is a Subheader")
11 |
12 | # Text
13 | st.text("This is a simple text")
14 |
15 | # Write
16 | st.write("This is written using st.write()")
17 |
18 | # Markdown
19 | st.markdown("# This is a Markdown heading")
20 | st.markdown("[Markdown Cheat Sheet](https://www.markdownguide.org/cheat-sheet/)")
21 | st.markdown("This is a Markdown paragraph with **bold** and *italic* text")
22 | st.markdown("""
23 | 1. step 1
24 | 2. step 2
25 |
26 | - unordered step 1
27 | - step 2
28 | - substep 2.1
29 | """)
30 |
31 | # Emojis
32 | st.markdown("### Emojis")
33 | st.markdown("[Emojis](https://share.streamlit.io/streamlit/emoji-shortcodes)")
34 | st.markdown("Here are some emojis:")
35 | st.markdown(":thumbsup: :heart: :rocket: :smile:")
36 |
37 | # HTML
38 | st.markdown("### HTML")
39 | html_code = """
40 | This is a blue heading
41 | This is a green paragraph
42 | """
43 | st.markdown(html_code, unsafe_allow_html=True)
44 |
45 | # Divider
46 | st.markdown("""---""")
47 | st.divider()
48 |
49 | # LaTeX
50 | st.latex(r"e^{i\pi} + 1 = 0")
51 | st.latex(r"f(x) = x^2 + 2x + 1")
52 | st.latex(r"g(x) = \frac{1}{x}")
53 | st.latex(r"h(x) = \sqrt{x}")
54 | st.latex(r"y = mx + c")
55 | st.latex(r"a^2 + b^2 = c^2")
56 |
--------------------------------------------------------------------------------
/06_working_with_media_files.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 |
3 | # streamlit run app.py --server.enableXsrfProtection false
4 |
5 | # Title
6 | st.title("Streamlit Media and File Examples")
7 |
8 |
9 | # Image
10 | st.subheader("Image")
11 | image = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
12 | if image is not None:
13 | st.image(image, caption="Uploaded Image", width=100)
14 |
15 | # use link to display image
16 | st.image("https://kgptalkie.com/wp-content/uploads/2019/03/cropped-iPad-Pro-Copy@2x-1.png", caption="KGP Talkie Logo", width=100)
17 |
18 | # Audio
19 | st.subheader("Audio")
20 | audio = st.file_uploader("Upload an audio file:", type=["mp3", "wav"])
21 | if audio is not None:
22 | st.audio(audio, format="audio/mp3")
23 |
24 | # Video
25 | st.subheader("Video")
26 | video = st.file_uploader("Upload a video file:", type=["mp4"])
27 | st.write(video)
28 | if video is not None:
29 | st.video(video, format="video/mp4")
30 |
31 | # Use link to display video
32 | st.video("https://www.youtube.com/watch?v=LjZTXKaPz2M", format="video/mp4")
33 |
34 |
35 | # File Uploader
36 | st.subheader("File Uploader")
37 | uploaded_files = st.file_uploader("Choose files", accept_multiple_files=True)
38 | for uploaded_file in uploaded_files:
39 | bytes_data = uploaded_file.read()
40 | st.write("filename:", uploaded_file.name)
41 | # st.write(bytes_data)
42 | st.write("type:", uploaded_file.type)
43 | st.write("\n")
44 |
45 | # Download Button
46 | st.subheader("Download Button")
47 | download_data = "Hello, Streamlit!"
48 | st.download_button(label="Download Example Text", data=download_data, file_name="example.txt")
49 |
--------------------------------------------------------------------------------
/09_working_with_layouts_and_page_configuration.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | import time
3 |
4 | st.set_page_config(
5 | page_title="Cool App",
6 | page_icon="🧊",
7 | layout="wide", # centered
8 | initial_sidebar_state="expanded", # ("auto", "expanded", or "collapsed")
9 | menu_items={
10 | 'Get Help': 'https://www.site.com/help',
11 | 'Report a bug': "https://www.site.com/bug",
12 | 'About': "# This is a header. This is an *extremely* cool app!"
13 | }
14 | )
15 |
16 | # Sidebar Configuration
17 | st.sidebar.title("Page Configuration")# Page Content
18 | st.title("Working with Layouts and Page Configuration")
19 | st.sidebar.title("Working with sidebar")
20 |
21 |
22 | # # Columns
23 | st.write("## Columns")
24 | col1, col2 = st.columns(2)
25 | col1.write("This is column 1.")
26 | col2.write("This is column 2.")
27 |
28 | ## use columns ratio
29 | col1, col2 = st.columns([3,1])
30 | col1.write("This is column 1.")
31 | col2.write("This is column 2.")
32 |
33 | col1.button("Click Me")
34 | col2.button("Click Me Too")
35 |
36 | # Container
37 | st.write("## Container")
38 | container = st.container(border=True, height=200)
39 | container.write("This content is inside a container.")
40 | st.write("This content is outside the container.")
41 | container.write("Containers are useful for grouping content together.")
42 |
43 |
44 | # Form
45 | st.write("## Form")
46 | with st.form("my_form"):
47 | name = st.text_input("Enter your name")
48 | submit_button = st.form_submit_button("Submit")
49 | if submit_button:
50 | st.write("Hello,", name, "!")
51 |
52 | # Tabs
53 | st.write("## Tabs")
54 | tab1, tab2, tab3 = st.tabs(["Cat", "Dog", "Owl"])
55 |
56 | with tab1:
57 | st.header("A cat")
58 | st.image("https://static.streamlit.io/examples/cat.jpg", width=200)
59 |
60 | with tab2:
61 | st.header("A dog")
62 | st.image("https://static.streamlit.io/examples/dog.jpg", width=200)
63 |
64 | with tab3:
65 | st.header("An owl")
66 | st.image("https://static.streamlit.io/examples/owl.jpg", width=200)
67 |
--------------------------------------------------------------------------------
/app.py:
--------------------------------------------------------------------------------
1 | ## pip install streamlit #use it on Python 3.8
2 | import streamlit as st
3 | from io import BytesIO
4 | from PIL import Image
5 | from rembg import remove
6 | from cartooner import cartoonize
7 | import cv2
8 |
9 | st.set_page_config(layout="wide", page_title="Image Background Remover")
10 |
11 | st.write("## Remove background from your image")
12 | st.write(
13 | ":dog: Try uploading an image to watch the background magically removed."
14 | )
15 | st.sidebar.write("## Upload and download :gear:")
16 |
17 | # Create the file uploader
18 | my_upload = st.sidebar.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
19 |
20 | alpha_matting = st.sidebar.checkbox("Use Alpha Matting", value=True)
21 | threshold = st.sidebar.slider("Background Threshold", 0, 255, value=50, step=5)
22 |
23 |
24 | # Download the fixed image
25 | def convert_image(img):
26 | buf = BytesIO()
27 | img.save(buf, format="PNG")
28 | byte_im = buf.getvalue()
29 | return byte_im
30 |
31 | # Package the transform into a function
32 | def remove_bg(upload, threshold, alpha_matting):
33 | image = Image.open(upload)
34 |
35 | # Create the columns
36 | col1, col2 = st.columns(2)
37 | col1.write("Original Image :camera:")
38 | col1.image(image)
39 |
40 | st.write("## Cartoonized Image")
41 | cartoon = cartoonize(image)
42 | img = Image.fromarray(cartoon)
43 | st.image(img)
44 |
45 | fixed = remove(image, alpha_matting=alpha_matting, alpha_matting_foreground_threshold=threshold)
46 |
47 | col2.write("Fixed Image :wrench:")
48 | col2.image(fixed)
49 | st.sidebar.markdown("---")
50 |
51 |
52 | st.sidebar.download_button(
53 | "Download fixed image", convert_image(fixed), "fixed.png", "image/png"
54 | )
55 |
56 | st.sidebar.download_button(
57 | "Download cartoonized image", convert_image(img), "cartoon.png", "image/png"
58 | )
59 |
60 | # Fix the image!
61 | if my_upload is not None:
62 | remove_bg(upload=my_upload, threshold=threshold, alpha_matting=alpha_matting)
63 | else:
64 | remove_bg("./images/cat.jpg", threshold=threshold, alpha_matting=alpha_matting)
--------------------------------------------------------------------------------
/11_model_deployement.py:
--------------------------------------------------------------------------------
1 | ## pip install streamlit #use it on Python 3.8
2 | import streamlit as st
3 | from io import BytesIO
4 | from PIL import Image
5 | from rembg import remove
6 | from cartooner import cartoonize
7 | import cv2
8 |
9 | st.set_page_config(layout="wide", page_title="Image Background Remover")
10 |
11 | st.write("## Remove background from your image")
12 | st.write(
13 | ":dog: Try uploading an image to watch the background magically removed."
14 | )
15 | st.sidebar.write("## Upload and download :gear:")
16 |
17 | # Create the file uploader
18 | my_upload = st.sidebar.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
19 |
20 | alpha_matting = st.sidebar.checkbox("Use Alpha Matting", value=True)
21 | threshold = st.sidebar.slider("Background Threshold", 0, 255, value=50, step=5)
22 |
23 |
24 | # Download the fixed image
25 | def convert_image(img):
26 | buf = BytesIO()
27 | img.save(buf, format="PNG")
28 | byte_im = buf.getvalue()
29 | return byte_im
30 |
31 | # Package the transform into a function
32 | def remove_bg(upload, threshold, alpha_matting):
33 | image = Image.open(upload)
34 |
35 | # Create the columns
36 | col1, col2 = st.columns(2)
37 | col1.write("Original Image :camera:")
38 | col1.image(image)
39 |
40 | st.write("## Cartoonized Image")
41 | cartoon = cartoonize(image)
42 | img = Image.fromarray(cartoon)
43 | st.image(img)
44 |
45 | fixed = remove(image, alpha_matting=alpha_matting, alpha_matting_foreground_threshold=threshold)
46 |
47 | col2.write("Fixed Image :wrench:")
48 | col2.image(fixed)
49 | st.sidebar.markdown("---")
50 |
51 |
52 | st.sidebar.download_button(
53 | "Download fixed image", convert_image(fixed), "fixed.png", "image/png"
54 | )
55 |
56 | st.sidebar.download_button(
57 | "Download cartoonized image", convert_image(img), "cartoon.png", "image/png"
58 | )
59 |
60 | # Fix the image!
61 | if my_upload is not None:
62 | remove_bg(upload=my_upload, threshold=threshold, alpha_matting=alpha_matting)
63 | else:
64 | remove_bg("./images/cat.jpg", threshold=threshold, alpha_matting=alpha_matting)
--------------------------------------------------------------------------------
/07_working_with_plotting_libraries.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | import numpy as np
3 | import pandas as pd
4 | import matplotlib.pyplot as plt
5 | import altair as alt
6 | import plotly.express as px
7 | import seaborn as sns
8 |
9 | # Title
10 | st.title("Streamlit Plotting Libraries Examples")
11 |
12 | df = pd.read_csv("./2 Tutorials/data/auto.csv")
13 | st.dataframe(df.head())
14 | columns = ["mpg","cylinders","displacement","horsepower","weight",
15 | "acceleration","year","origin","name"
16 | ]
17 |
18 | # Area Chart
19 | st.subheader("Area Chart")
20 | st.area_chart(df[['mpg', 'cylinders']])
21 |
22 | # Bar Chart
23 | st.subheader("Bar Chart")
24 | st.bar_chart(df[['mpg', 'cylinders']].head(20))
25 |
26 | # Line Chart
27 | st.subheader("Line Chart")
28 | st.line_chart(df[['mpg', 'cylinders']].head(100))
29 |
30 | # Seaborn Plot
31 | st.subheader("Pyplot / Seaborn Plot")
32 | fig, ax = plt.subplots()
33 | corr_plot = sns.heatmap(df[['mpg', "cylinders", "displacement", "horsepower"]].corr(), annot=True)
34 | st.pyplot(fig)
35 |
36 | # line plot
37 | fig, ax = plt.subplots()
38 | ax.plot(df['mpg'])
39 | ax.set_xlabel('Index')
40 | ax.set_ylabel('mpg')
41 | ax.set_title('Line plot of mpg')
42 | st.pyplot(fig)
43 |
44 | #scatter plot
45 | fig, ax = plt.subplots()
46 | ax.scatter(df['mpg'], df['horsepower'])
47 | ax.set_xlabel('mpg')
48 | ax.set_ylabel('horsepower')
49 | ax.set_title('Scatter plot of mpg and horsepower')
50 | st.pyplot(fig)
51 |
52 |
53 | # Plotly Chart
54 | st.subheader("Plotly Chart")
55 | fig = px.scatter(df, x='mpg', y='horsepower', color='origin', hover_name='name')
56 | st.plotly_chart(fig)
57 |
58 |
59 | # Map
60 | st.subheader("Map")
61 | temp = pd.read_csv("./2 Tutorials/data/weather_data.csv")
62 | st.write(temp)
63 | st.map(temp, latitude='lat', longitude='lon', size='temp')
64 |
65 | # Altair Chart
66 | st.subheader("Altair Chart")
67 | columns = ["mpg","cylinders","displacement","horsepower","weight",
68 | "acceleration","year","origin","name"
69 | ]
70 | alt_chart = alt.Chart(df).mark_circle().encode(
71 | x='mpg',
72 | y='horsepower',
73 | color='origin',
74 | tooltip=['name', 'year']
75 | ).interactive()
76 | st.write(alt_chart)
77 |
78 |
79 |
--------------------------------------------------------------------------------
/Streamlit_Crash_Course/app.py:
--------------------------------------------------------------------------------
1 | ## Streamlit Application Basics
2 | # Reference Book: https://packt.link/17kvV
3 | # Code Repository: https://github.com/laxmimerit/streamlit-tutorials
4 | # streamlit run app.py
5 |
6 | import streamlit as st
7 |
8 | st.title("Streamlit Basics: This is Title")
9 |
10 | st.header("This is header")
11 |
12 | st.subheader("This is subheader")
13 |
14 | st.text("This is a simple text")
15 |
16 | st.write("This is a write method")
17 |
18 | st.header("Markdown and HTML")
19 | st.markdown("`This is markdown`")
20 |
21 | st.markdown("```import streamlit as st```")
22 |
23 | st.markdown("[KGP Talkie](https://youtube.com/kgptalkie)")
24 |
25 | st.markdown("#### this heading")
26 |
27 | html_page = """
28 |
29 |
30 |
31 |
32 | My First Heading
33 | My first paragraph.
34 |
35 | A Blue Heading
36 |
37 | A red paragraph.
38 |
39 |
40 |
41 | """
42 |
43 | st.markdown(html_page, unsafe_allow_html=True)
44 |
45 | st.header("Buttons")
46 |
47 | button = st.button("Submit This")
48 | if button:
49 | st.success("Button is clicked!!!")
50 |
51 | st.info("This is general info")
52 |
53 | st.warning("This is warning")
54 |
55 | st.error("This is an error")
56 |
57 | st.markdown("---")
58 |
59 | st.header("Audio, Video & Image")
60 | from PIL import Image
61 |
62 | #image
63 | img = Image.open("kgptalkie.png")
64 | st.image(image=img, width=100, caption="KGP Talkie Logo")
65 |
66 | #video
67 | video_file = open("sample-video.mp4", "rb")
68 | video_bytes = video_file.read()
69 | st.video(video_bytes)
70 |
71 | st.video("https://youtu.be/X_Ts7VhHgEU?si=I19jtg3G9ooxR7je")
72 |
73 | # audio
74 | audio_file = open("sample.mp3", "rb")
75 | audio_bytes = audio_file.read()
76 | st.audio(audio_bytes)
77 |
78 | st.markdown("---")
79 | st.header("Widgets")
80 |
81 | #button
82 | submit = st.button("Submit")
83 | if submit:
84 | st.text("button is clicked")
85 |
86 | #checkbox
87 | if st.checkbox("Checkboc"):
88 | st.write("Checkbox is selected")
89 |
90 | # Radio Button
91 | radio_button = st.radio("Which Topic You Want to See", ["DL", "NLP", "Graph", "ML"])
92 | st.write("You have selected: ", radio_button)
93 |
94 | #selectbox
95 | topics = st.selectbox("Your Interest", ["DL", "NLP", "Graph", "ML"])
96 |
97 | #multi select
98 | topics = st.multiselect("Your Interest", ["DL", "NLP", "Graph", "ML"])
99 | st.write(topics)
100 |
101 |
102 | # text input
103 | name = st.text_input("Your Name", "Write something")
104 | st.write("Your name is: ", name)
105 |
106 |
107 | st.text_input("Your Email")
108 | st.text_input("Your Mobile")
109 | st.number_input("What is item price")
110 | st.text_area("Write your feedback")
111 |
112 |
113 | # slider
114 | st.slider("Your happiness score", 10, 100, step=10)
115 |
116 | if st.button("balloons"):
117 | st.balloons()
118 |
119 | st.markdown("---")
120 | st.header("Dataframes and Tables")
121 |
122 | import pandas as pd
123 | df = pd.read_csv("auto.csv")
124 | st.dataframe(df.head())
125 |
126 | # st.table(df.head())
127 |
128 | # Plotting
129 | st.area_chart(df[['mpg', "cylinders"]])
130 | st.bar_chart(df[['mpg', 'cylinders']].head(20))
131 | st.line_chart(df[['mpg', 'cylinders']].head(100))
132 |
133 | # Seaborn and Matplotlib
134 | import matplotlib.pyplot as plt
135 | import seaborn as sns
136 |
137 |
138 | fig, ax = plt.subplots()
139 | corr_plot = sns.heatmap(df[['mpg', "cylinders", "displacement", "horsepower"]].corr(), annot=True)
140 | st.pyplot(fig)
141 |
142 | st.markdown("---")
143 | st.header("Date and Time")
144 |
145 | import datetime, time
146 | input_date = st.date_input("Select Your Date:")
147 | st.write("you have selected date: ", input_date)
148 |
149 | input_time = st.time_input("Select your time")
150 | st.write("you have selected time", input_time)
151 |
152 | st.markdown("---")
153 | st.header("Extra")
154 | data = {"name":"laxmi kant tiwari", "youtube": "https://kgptalkie.com"}
155 | st.markdown("`{}`".format(data))
156 | st.json(data)
157 |
158 | st.markdown("""```import pandas as pd```""")
159 |
160 | st.code("""
161 | import pandas as pd
162 | import numpy as np
163 | """, language='python')
164 |
165 | st.markdown("---")
166 | st.header("Progress bar and Spinner")
167 |
168 | import time
169 |
170 | st.button("Run")
171 | mybar = st.progress(0)
172 | for value in range(100):
173 | time.sleep(0.01)
174 | mybar.progress(value)
175 |
176 | with st.spinner("Please wait..."):
177 | time.sleep(10)
178 |
179 | st.success("Done!!!")
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
--------------------------------------------------------------------------------
/data/auto.csv:
--------------------------------------------------------------------------------
1 | "mpg","cylinders","displacement","horsepower","weight","acceleration","year","origin","name"
2 | 18,8,307,130,3504,12,70,1,"chevrolet chevelle malibu"
3 | 15,8,350,165,3693,11.5,70,1,"buick skylark 320"
4 | 18,8,318,150,3436,11,70,1,"plymouth satellite"
5 | 16,8,304,150,3433,12,70,1,"amc rebel sst"
6 | 17,8,302,140,3449,10.5,70,1,"ford torino"
7 | 15,8,429,198,4341,10,70,1,"ford galaxie 500"
8 | 14,8,454,220,4354,9,70,1,"chevrolet impala"
9 | 14,8,440,215,4312,8.5,70,1,"plymouth fury iii"
10 | 14,8,455,225,4425,10,70,1,"pontiac catalina"
11 | 15,8,390,190,3850,8.5,70,1,"amc ambassador dpl"
12 | 15,8,383,170,3563,10,70,1,"dodge challenger se"
13 | 14,8,340,160,3609,8,70,1,"plymouth 'cuda 340"
14 | 15,8,400,150,3761,9.5,70,1,"chevrolet monte carlo"
15 | 14,8,455,225,3086,10,70,1,"buick estate wagon (sw)"
16 | 24,4,113,95,2372,15,70,3,"toyota corona mark ii"
17 | 22,6,198,95,2833,15.5,70,1,"plymouth duster"
18 | 18,6,199,97,2774,15.5,70,1,"amc hornet"
19 | 21,6,200,85,2587,16,70,1,"ford maverick"
20 | 27,4,97,88,2130,14.5,70,3,"datsun pl510"
21 | 26,4,97,46,1835,20.5,70,2,"volkswagen 1131 deluxe sedan"
22 | 25,4,110,87,2672,17.5,70,2,"peugeot 504"
23 | 24,4,107,90,2430,14.5,70,2,"audi 100 ls"
24 | 25,4,104,95,2375,17.5,70,2,"saab 99e"
25 | 26,4,121,113,2234,12.5,70,2,"bmw 2002"
26 | 21,6,199,90,2648,15,70,1,"amc gremlin"
27 | 10,8,360,215,4615,14,70,1,"ford f250"
28 | 10,8,307,200,4376,15,70,1,"chevy c20"
29 | 11,8,318,210,4382,13.5,70,1,"dodge d200"
30 | 9,8,304,193,4732,18.5,70,1,"hi 1200d"
31 | 27,4,97,88,2130,14.5,71,3,"datsun pl510"
32 | 28,4,140,90,2264,15.5,71,1,"chevrolet vega 2300"
33 | 25,4,113,95,2228,14,71,3,"toyota corona"
34 | 19,6,232,100,2634,13,71,1,"amc gremlin"
35 | 16,6,225,105,3439,15.5,71,1,"plymouth satellite custom"
36 | 17,6,250,100,3329,15.5,71,1,"chevrolet chevelle malibu"
37 | 19,6,250,88,3302,15.5,71,1,"ford torino 500"
38 | 18,6,232,100,3288,15.5,71,1,"amc matador"
39 | 14,8,350,165,4209,12,71,1,"chevrolet impala"
40 | 14,8,400,175,4464,11.5,71,1,"pontiac catalina brougham"
41 | 14,8,351,153,4154,13.5,71,1,"ford galaxie 500"
42 | 14,8,318,150,4096,13,71,1,"plymouth fury iii"
43 | 12,8,383,180,4955,11.5,71,1,"dodge monaco (sw)"
44 | 13,8,400,170,4746,12,71,1,"ford country squire (sw)"
45 | 13,8,400,175,5140,12,71,1,"pontiac safari (sw)"
46 | 18,6,258,110,2962,13.5,71,1,"amc hornet sportabout (sw)"
47 | 22,4,140,72,2408,19,71,1,"chevrolet vega (sw)"
48 | 19,6,250,100,3282,15,71,1,"pontiac firebird"
49 | 18,6,250,88,3139,14.5,71,1,"ford mustang"
50 | 23,4,122,86,2220,14,71,1,"mercury capri 2000"
51 | 28,4,116,90,2123,14,71,2,"opel 1900"
52 | 30,4,79,70,2074,19.5,71,2,"peugeot 304"
53 | 30,4,88,76,2065,14.5,71,2,"fiat 124b"
54 | 31,4,71,65,1773,19,71,3,"toyota corolla 1200"
55 | 35,4,72,69,1613,18,71,3,"datsun 1200"
56 | 27,4,97,60,1834,19,71,2,"volkswagen model 111"
57 | 26,4,91,70,1955,20.5,71,1,"plymouth cricket"
58 | 24,4,113,95,2278,15.5,72,3,"toyota corona hardtop"
59 | 25,4,97.5,80,2126,17,72,1,"dodge colt hardtop"
60 | 23,4,97,54,2254,23.5,72,2,"volkswagen type 3"
61 | 20,4,140,90,2408,19.5,72,1,"chevrolet vega"
62 | 21,4,122,86,2226,16.5,72,1,"ford pinto runabout"
63 | 13,8,350,165,4274,12,72,1,"chevrolet impala"
64 | 14,8,400,175,4385,12,72,1,"pontiac catalina"
65 | 15,8,318,150,4135,13.5,72,1,"plymouth fury iii"
66 | 14,8,351,153,4129,13,72,1,"ford galaxie 500"
67 | 17,8,304,150,3672,11.5,72,1,"amc ambassador sst"
68 | 11,8,429,208,4633,11,72,1,"mercury marquis"
69 | 13,8,350,155,4502,13.5,72,1,"buick lesabre custom"
70 | 12,8,350,160,4456,13.5,72,1,"oldsmobile delta 88 royale"
71 | 13,8,400,190,4422,12.5,72,1,"chrysler newport royal"
72 | 19,3,70,97,2330,13.5,72,3,"mazda rx2 coupe"
73 | 15,8,304,150,3892,12.5,72,1,"amc matador (sw)"
74 | 13,8,307,130,4098,14,72,1,"chevrolet chevelle concours (sw)"
75 | 13,8,302,140,4294,16,72,1,"ford gran torino (sw)"
76 | 14,8,318,150,4077,14,72,1,"plymouth satellite custom (sw)"
77 | 18,4,121,112,2933,14.5,72,2,"volvo 145e (sw)"
78 | 22,4,121,76,2511,18,72,2,"volkswagen 411 (sw)"
79 | 21,4,120,87,2979,19.5,72,2,"peugeot 504 (sw)"
80 | 26,4,96,69,2189,18,72,2,"renault 12 (sw)"
81 | 22,4,122,86,2395,16,72,1,"ford pinto (sw)"
82 | 28,4,97,92,2288,17,72,3,"datsun 510 (sw)"
83 | 23,4,120,97,2506,14.5,72,3,"toyouta corona mark ii (sw)"
84 | 28,4,98,80,2164,15,72,1,"dodge colt (sw)"
85 | 27,4,97,88,2100,16.5,72,3,"toyota corolla 1600 (sw)"
86 | 13,8,350,175,4100,13,73,1,"buick century 350"
87 | 14,8,304,150,3672,11.5,73,1,"amc matador"
88 | 13,8,350,145,3988,13,73,1,"chevrolet malibu"
89 | 14,8,302,137,4042,14.5,73,1,"ford gran torino"
90 | 15,8,318,150,3777,12.5,73,1,"dodge coronet custom"
91 | 12,8,429,198,4952,11.5,73,1,"mercury marquis brougham"
92 | 13,8,400,150,4464,12,73,1,"chevrolet caprice classic"
93 | 13,8,351,158,4363,13,73,1,"ford ltd"
94 | 14,8,318,150,4237,14.5,73,1,"plymouth fury gran sedan"
95 | 13,8,440,215,4735,11,73,1,"chrysler new yorker brougham"
96 | 12,8,455,225,4951,11,73,1,"buick electra 225 custom"
97 | 13,8,360,175,3821,11,73,1,"amc ambassador brougham"
98 | 18,6,225,105,3121,16.5,73,1,"plymouth valiant"
99 | 16,6,250,100,3278,18,73,1,"chevrolet nova custom"
100 | 18,6,232,100,2945,16,73,1,"amc hornet"
101 | 18,6,250,88,3021,16.5,73,1,"ford maverick"
102 | 23,6,198,95,2904,16,73,1,"plymouth duster"
103 | 26,4,97,46,1950,21,73,2,"volkswagen super beetle"
104 | 11,8,400,150,4997,14,73,1,"chevrolet impala"
105 | 12,8,400,167,4906,12.5,73,1,"ford country"
106 | 13,8,360,170,4654,13,73,1,"plymouth custom suburb"
107 | 12,8,350,180,4499,12.5,73,1,"oldsmobile vista cruiser"
108 | 18,6,232,100,2789,15,73,1,"amc gremlin"
109 | 20,4,97,88,2279,19,73,3,"toyota carina"
110 | 21,4,140,72,2401,19.5,73,1,"chevrolet vega"
111 | 22,4,108,94,2379,16.5,73,3,"datsun 610"
112 | 18,3,70,90,2124,13.5,73,3,"maxda rx3"
113 | 19,4,122,85,2310,18.5,73,1,"ford pinto"
114 | 21,6,155,107,2472,14,73,1,"mercury capri v6"
115 | 26,4,98,90,2265,15.5,73,2,"fiat 124 sport coupe"
116 | 15,8,350,145,4082,13,73,1,"chevrolet monte carlo s"
117 | 16,8,400,230,4278,9.5,73,1,"pontiac grand prix"
118 | 29,4,68,49,1867,19.5,73,2,"fiat 128"
119 | 24,4,116,75,2158,15.5,73,2,"opel manta"
120 | 20,4,114,91,2582,14,73,2,"audi 100ls"
121 | 19,4,121,112,2868,15.5,73,2,"volvo 144ea"
122 | 15,8,318,150,3399,11,73,1,"dodge dart custom"
123 | 24,4,121,110,2660,14,73,2,"saab 99le"
124 | 20,6,156,122,2807,13.5,73,3,"toyota mark ii"
125 | 11,8,350,180,3664,11,73,1,"oldsmobile omega"
126 | 20,6,198,95,3102,16.5,74,1,"plymouth duster"
127 | 19,6,232,100,2901,16,74,1,"amc hornet"
128 | 15,6,250,100,3336,17,74,1,"chevrolet nova"
129 | 31,4,79,67,1950,19,74,3,"datsun b210"
130 | 26,4,122,80,2451,16.5,74,1,"ford pinto"
131 | 32,4,71,65,1836,21,74,3,"toyota corolla 1200"
132 | 25,4,140,75,2542,17,74,1,"chevrolet vega"
133 | 16,6,250,100,3781,17,74,1,"chevrolet chevelle malibu classic"
134 | 16,6,258,110,3632,18,74,1,"amc matador"
135 | 18,6,225,105,3613,16.5,74,1,"plymouth satellite sebring"
136 | 16,8,302,140,4141,14,74,1,"ford gran torino"
137 | 13,8,350,150,4699,14.5,74,1,"buick century luxus (sw)"
138 | 14,8,318,150,4457,13.5,74,1,"dodge coronet custom (sw)"
139 | 14,8,302,140,4638,16,74,1,"ford gran torino (sw)"
140 | 14,8,304,150,4257,15.5,74,1,"amc matador (sw)"
141 | 29,4,98,83,2219,16.5,74,2,"audi fox"
142 | 26,4,79,67,1963,15.5,74,2,"volkswagen dasher"
143 | 26,4,97,78,2300,14.5,74,2,"opel manta"
144 | 31,4,76,52,1649,16.5,74,3,"toyota corona"
145 | 32,4,83,61,2003,19,74,3,"datsun 710"
146 | 28,4,90,75,2125,14.5,74,1,"dodge colt"
147 | 24,4,90,75,2108,15.5,74,2,"fiat 128"
148 | 26,4,116,75,2246,14,74,2,"fiat 124 tc"
149 | 24,4,120,97,2489,15,74,3,"honda civic"
150 | 26,4,108,93,2391,15.5,74,3,"subaru"
151 | 31,4,79,67,2000,16,74,2,"fiat x1.9"
152 | 19,6,225,95,3264,16,75,1,"plymouth valiant custom"
153 | 18,6,250,105,3459,16,75,1,"chevrolet nova"
154 | 15,6,250,72,3432,21,75,1,"mercury monarch"
155 | 15,6,250,72,3158,19.5,75,1,"ford maverick"
156 | 16,8,400,170,4668,11.5,75,1,"pontiac catalina"
157 | 15,8,350,145,4440,14,75,1,"chevrolet bel air"
158 | 16,8,318,150,4498,14.5,75,1,"plymouth grand fury"
159 | 14,8,351,148,4657,13.5,75,1,"ford ltd"
160 | 17,6,231,110,3907,21,75,1,"buick century"
161 | 16,6,250,105,3897,18.5,75,1,"chevroelt chevelle malibu"
162 | 15,6,258,110,3730,19,75,1,"amc matador"
163 | 18,6,225,95,3785,19,75,1,"plymouth fury"
164 | 21,6,231,110,3039,15,75,1,"buick skyhawk"
165 | 20,8,262,110,3221,13.5,75,1,"chevrolet monza 2+2"
166 | 13,8,302,129,3169,12,75,1,"ford mustang ii"
167 | 29,4,97,75,2171,16,75,3,"toyota corolla"
168 | 23,4,140,83,2639,17,75,1,"ford pinto"
169 | 20,6,232,100,2914,16,75,1,"amc gremlin"
170 | 23,4,140,78,2592,18.5,75,1,"pontiac astro"
171 | 24,4,134,96,2702,13.5,75,3,"toyota corona"
172 | 25,4,90,71,2223,16.5,75,2,"volkswagen dasher"
173 | 24,4,119,97,2545,17,75,3,"datsun 710"
174 | 18,6,171,97,2984,14.5,75,1,"ford pinto"
175 | 29,4,90,70,1937,14,75,2,"volkswagen rabbit"
176 | 19,6,232,90,3211,17,75,1,"amc pacer"
177 | 23,4,115,95,2694,15,75,2,"audi 100ls"
178 | 23,4,120,88,2957,17,75,2,"peugeot 504"
179 | 22,4,121,98,2945,14.5,75,2,"volvo 244dl"
180 | 25,4,121,115,2671,13.5,75,2,"saab 99le"
181 | 33,4,91,53,1795,17.5,75,3,"honda civic cvcc"
182 | 28,4,107,86,2464,15.5,76,2,"fiat 131"
183 | 25,4,116,81,2220,16.9,76,2,"opel 1900"
184 | 25,4,140,92,2572,14.9,76,1,"capri ii"
185 | 26,4,98,79,2255,17.7,76,1,"dodge colt"
186 | 27,4,101,83,2202,15.3,76,2,"renault 12tl"
187 | 17.5,8,305,140,4215,13,76,1,"chevrolet chevelle malibu classic"
188 | 16,8,318,150,4190,13,76,1,"dodge coronet brougham"
189 | 15.5,8,304,120,3962,13.9,76,1,"amc matador"
190 | 14.5,8,351,152,4215,12.8,76,1,"ford gran torino"
191 | 22,6,225,100,3233,15.4,76,1,"plymouth valiant"
192 | 22,6,250,105,3353,14.5,76,1,"chevrolet nova"
193 | 24,6,200,81,3012,17.6,76,1,"ford maverick"
194 | 22.5,6,232,90,3085,17.6,76,1,"amc hornet"
195 | 29,4,85,52,2035,22.2,76,1,"chevrolet chevette"
196 | 24.5,4,98,60,2164,22.1,76,1,"chevrolet woody"
197 | 29,4,90,70,1937,14.2,76,2,"vw rabbit"
198 | 33,4,91,53,1795,17.4,76,3,"honda civic"
199 | 20,6,225,100,3651,17.7,76,1,"dodge aspen se"
200 | 18,6,250,78,3574,21,76,1,"ford granada ghia"
201 | 18.5,6,250,110,3645,16.2,76,1,"pontiac ventura sj"
202 | 17.5,6,258,95,3193,17.8,76,1,"amc pacer d/l"
203 | 29.5,4,97,71,1825,12.2,76,2,"volkswagen rabbit"
204 | 32,4,85,70,1990,17,76,3,"datsun b-210"
205 | 28,4,97,75,2155,16.4,76,3,"toyota corolla"
206 | 26.5,4,140,72,2565,13.6,76,1,"ford pinto"
207 | 20,4,130,102,3150,15.7,76,2,"volvo 245"
208 | 13,8,318,150,3940,13.2,76,1,"plymouth volare premier v8"
209 | 19,4,120,88,3270,21.9,76,2,"peugeot 504"
210 | 19,6,156,108,2930,15.5,76,3,"toyota mark ii"
211 | 16.5,6,168,120,3820,16.7,76,2,"mercedes-benz 280s"
212 | 16.5,8,350,180,4380,12.1,76,1,"cadillac seville"
213 | 13,8,350,145,4055,12,76,1,"chevy c10"
214 | 13,8,302,130,3870,15,76,1,"ford f108"
215 | 13,8,318,150,3755,14,76,1,"dodge d100"
216 | 31.5,4,98,68,2045,18.5,77,3,"honda accord cvcc"
217 | 30,4,111,80,2155,14.8,77,1,"buick opel isuzu deluxe"
218 | 36,4,79,58,1825,18.6,77,2,"renault 5 gtl"
219 | 25.5,4,122,96,2300,15.5,77,1,"plymouth arrow gs"
220 | 33.5,4,85,70,1945,16.8,77,3,"datsun f-10 hatchback"
221 | 17.5,8,305,145,3880,12.5,77,1,"chevrolet caprice classic"
222 | 17,8,260,110,4060,19,77,1,"oldsmobile cutlass supreme"
223 | 15.5,8,318,145,4140,13.7,77,1,"dodge monaco brougham"
224 | 15,8,302,130,4295,14.9,77,1,"mercury cougar brougham"
225 | 17.5,6,250,110,3520,16.4,77,1,"chevrolet concours"
226 | 20.5,6,231,105,3425,16.9,77,1,"buick skylark"
227 | 19,6,225,100,3630,17.7,77,1,"plymouth volare custom"
228 | 18.5,6,250,98,3525,19,77,1,"ford granada"
229 | 16,8,400,180,4220,11.1,77,1,"pontiac grand prix lj"
230 | 15.5,8,350,170,4165,11.4,77,1,"chevrolet monte carlo landau"
231 | 15.5,8,400,190,4325,12.2,77,1,"chrysler cordoba"
232 | 16,8,351,149,4335,14.5,77,1,"ford thunderbird"
233 | 29,4,97,78,1940,14.5,77,2,"volkswagen rabbit custom"
234 | 24.5,4,151,88,2740,16,77,1,"pontiac sunbird coupe"
235 | 26,4,97,75,2265,18.2,77,3,"toyota corolla liftback"
236 | 25.5,4,140,89,2755,15.8,77,1,"ford mustang ii 2+2"
237 | 30.5,4,98,63,2051,17,77,1,"chevrolet chevette"
238 | 33.5,4,98,83,2075,15.9,77,1,"dodge colt m/m"
239 | 30,4,97,67,1985,16.4,77,3,"subaru dl"
240 | 30.5,4,97,78,2190,14.1,77,2,"volkswagen dasher"
241 | 22,6,146,97,2815,14.5,77,3,"datsun 810"
242 | 21.5,4,121,110,2600,12.8,77,2,"bmw 320i"
243 | 21.5,3,80,110,2720,13.5,77,3,"mazda rx-4"
244 | 43.1,4,90,48,1985,21.5,78,2,"volkswagen rabbit custom diesel"
245 | 36.1,4,98,66,1800,14.4,78,1,"ford fiesta"
246 | 32.8,4,78,52,1985,19.4,78,3,"mazda glc deluxe"
247 | 39.4,4,85,70,2070,18.6,78,3,"datsun b210 gx"
248 | 36.1,4,91,60,1800,16.4,78,3,"honda civic cvcc"
249 | 19.9,8,260,110,3365,15.5,78,1,"oldsmobile cutlass salon brougham"
250 | 19.4,8,318,140,3735,13.2,78,1,"dodge diplomat"
251 | 20.2,8,302,139,3570,12.8,78,1,"mercury monarch ghia"
252 | 19.2,6,231,105,3535,19.2,78,1,"pontiac phoenix lj"
253 | 20.5,6,200,95,3155,18.2,78,1,"chevrolet malibu"
254 | 20.2,6,200,85,2965,15.8,78,1,"ford fairmont (auto)"
255 | 25.1,4,140,88,2720,15.4,78,1,"ford fairmont (man)"
256 | 20.5,6,225,100,3430,17.2,78,1,"plymouth volare"
257 | 19.4,6,232,90,3210,17.2,78,1,"amc concord"
258 | 20.6,6,231,105,3380,15.8,78,1,"buick century special"
259 | 20.8,6,200,85,3070,16.7,78,1,"mercury zephyr"
260 | 18.6,6,225,110,3620,18.7,78,1,"dodge aspen"
261 | 18.1,6,258,120,3410,15.1,78,1,"amc concord d/l"
262 | 19.2,8,305,145,3425,13.2,78,1,"chevrolet monte carlo landau"
263 | 17.7,6,231,165,3445,13.4,78,1,"buick regal sport coupe (turbo)"
264 | 18.1,8,302,139,3205,11.2,78,1,"ford futura"
265 | 17.5,8,318,140,4080,13.7,78,1,"dodge magnum xe"
266 | 30,4,98,68,2155,16.5,78,1,"chevrolet chevette"
267 | 27.5,4,134,95,2560,14.2,78,3,"toyota corona"
268 | 27.2,4,119,97,2300,14.7,78,3,"datsun 510"
269 | 30.9,4,105,75,2230,14.5,78,1,"dodge omni"
270 | 21.1,4,134,95,2515,14.8,78,3,"toyota celica gt liftback"
271 | 23.2,4,156,105,2745,16.7,78,1,"plymouth sapporo"
272 | 23.8,4,151,85,2855,17.6,78,1,"oldsmobile starfire sx"
273 | 23.9,4,119,97,2405,14.9,78,3,"datsun 200-sx"
274 | 20.3,5,131,103,2830,15.9,78,2,"audi 5000"
275 | 17,6,163,125,3140,13.6,78,2,"volvo 264gl"
276 | 21.6,4,121,115,2795,15.7,78,2,"saab 99gle"
277 | 16.2,6,163,133,3410,15.8,78,2,"peugeot 604sl"
278 | 31.5,4,89,71,1990,14.9,78,2,"volkswagen scirocco"
279 | 29.5,4,98,68,2135,16.6,78,3,"honda accord lx"
280 | 21.5,6,231,115,3245,15.4,79,1,"pontiac lemans v6"
281 | 19.8,6,200,85,2990,18.2,79,1,"mercury zephyr 6"
282 | 22.3,4,140,88,2890,17.3,79,1,"ford fairmont 4"
283 | 20.2,6,232,90,3265,18.2,79,1,"amc concord dl 6"
284 | 20.6,6,225,110,3360,16.6,79,1,"dodge aspen 6"
285 | 17,8,305,130,3840,15.4,79,1,"chevrolet caprice classic"
286 | 17.6,8,302,129,3725,13.4,79,1,"ford ltd landau"
287 | 16.5,8,351,138,3955,13.2,79,1,"mercury grand marquis"
288 | 18.2,8,318,135,3830,15.2,79,1,"dodge st. regis"
289 | 16.9,8,350,155,4360,14.9,79,1,"buick estate wagon (sw)"
290 | 15.5,8,351,142,4054,14.3,79,1,"ford country squire (sw)"
291 | 19.2,8,267,125,3605,15,79,1,"chevrolet malibu classic (sw)"
292 | 18.5,8,360,150,3940,13,79,1,"chrysler lebaron town @ country (sw)"
293 | 31.9,4,89,71,1925,14,79,2,"vw rabbit custom"
294 | 34.1,4,86,65,1975,15.2,79,3,"maxda glc deluxe"
295 | 35.7,4,98,80,1915,14.4,79,1,"dodge colt hatchback custom"
296 | 27.4,4,121,80,2670,15,79,1,"amc spirit dl"
297 | 25.4,5,183,77,3530,20.1,79,2,"mercedes benz 300d"
298 | 23,8,350,125,3900,17.4,79,1,"cadillac eldorado"
299 | 27.2,4,141,71,3190,24.8,79,2,"peugeot 504"
300 | 23.9,8,260,90,3420,22.2,79,1,"oldsmobile cutlass salon brougham"
301 | 34.2,4,105,70,2200,13.2,79,1,"plymouth horizon"
302 | 34.5,4,105,70,2150,14.9,79,1,"plymouth horizon tc3"
303 | 31.8,4,85,65,2020,19.2,79,3,"datsun 210"
304 | 37.3,4,91,69,2130,14.7,79,2,"fiat strada custom"
305 | 28.4,4,151,90,2670,16,79,1,"buick skylark limited"
306 | 28.8,6,173,115,2595,11.3,79,1,"chevrolet citation"
307 | 26.8,6,173,115,2700,12.9,79,1,"oldsmobile omega brougham"
308 | 33.5,4,151,90,2556,13.2,79,1,"pontiac phoenix"
309 | 41.5,4,98,76,2144,14.7,80,2,"vw rabbit"
310 | 38.1,4,89,60,1968,18.8,80,3,"toyota corolla tercel"
311 | 32.1,4,98,70,2120,15.5,80,1,"chevrolet chevette"
312 | 37.2,4,86,65,2019,16.4,80,3,"datsun 310"
313 | 28,4,151,90,2678,16.5,80,1,"chevrolet citation"
314 | 26.4,4,140,88,2870,18.1,80,1,"ford fairmont"
315 | 24.3,4,151,90,3003,20.1,80,1,"amc concord"
316 | 19.1,6,225,90,3381,18.7,80,1,"dodge aspen"
317 | 34.3,4,97,78,2188,15.8,80,2,"audi 4000"
318 | 29.8,4,134,90,2711,15.5,80,3,"toyota corona liftback"
319 | 31.3,4,120,75,2542,17.5,80,3,"mazda 626"
320 | 37,4,119,92,2434,15,80,3,"datsun 510 hatchback"
321 | 32.2,4,108,75,2265,15.2,80,3,"toyota corolla"
322 | 46.6,4,86,65,2110,17.9,80,3,"mazda glc"
323 | 27.9,4,156,105,2800,14.4,80,1,"dodge colt"
324 | 40.8,4,85,65,2110,19.2,80,3,"datsun 210"
325 | 44.3,4,90,48,2085,21.7,80,2,"vw rabbit c (diesel)"
326 | 43.4,4,90,48,2335,23.7,80,2,"vw dasher (diesel)"
327 | 36.4,5,121,67,2950,19.9,80,2,"audi 5000s (diesel)"
328 | 30,4,146,67,3250,21.8,80,2,"mercedes-benz 240d"
329 | 44.6,4,91,67,1850,13.8,80,3,"honda civic 1500 gl"
330 | 33.8,4,97,67,2145,18,80,3,"subaru dl"
331 | 29.8,4,89,62,1845,15.3,80,2,"vokswagen rabbit"
332 | 32.7,6,168,132,2910,11.4,80,3,"datsun 280-zx"
333 | 23.7,3,70,100,2420,12.5,80,3,"mazda rx-7 gs"
334 | 35,4,122,88,2500,15.1,80,2,"triumph tr7 coupe"
335 | 32.4,4,107,72,2290,17,80,3,"honda accord"
336 | 27.2,4,135,84,2490,15.7,81,1,"plymouth reliant"
337 | 26.6,4,151,84,2635,16.4,81,1,"buick skylark"
338 | 25.8,4,156,92,2620,14.4,81,1,"dodge aries wagon (sw)"
339 | 23.5,6,173,110,2725,12.6,81,1,"chevrolet citation"
340 | 30,4,135,84,2385,12.9,81,1,"plymouth reliant"
341 | 39.1,4,79,58,1755,16.9,81,3,"toyota starlet"
342 | 39,4,86,64,1875,16.4,81,1,"plymouth champ"
343 | 35.1,4,81,60,1760,16.1,81,3,"honda civic 1300"
344 | 32.3,4,97,67,2065,17.8,81,3,"subaru"
345 | 37,4,85,65,1975,19.4,81,3,"datsun 210 mpg"
346 | 37.7,4,89,62,2050,17.3,81,3,"toyota tercel"
347 | 34.1,4,91,68,1985,16,81,3,"mazda glc 4"
348 | 34.7,4,105,63,2215,14.9,81,1,"plymouth horizon 4"
349 | 34.4,4,98,65,2045,16.2,81,1,"ford escort 4w"
350 | 29.9,4,98,65,2380,20.7,81,1,"ford escort 2h"
351 | 33,4,105,74,2190,14.2,81,2,"volkswagen jetta"
352 | 33.7,4,107,75,2210,14.4,81,3,"honda prelude"
353 | 32.4,4,108,75,2350,16.8,81,3,"toyota corolla"
354 | 32.9,4,119,100,2615,14.8,81,3,"datsun 200sx"
355 | 31.6,4,120,74,2635,18.3,81,3,"mazda 626"
356 | 28.1,4,141,80,3230,20.4,81,2,"peugeot 505s turbo diesel"
357 | 30.7,6,145,76,3160,19.6,81,2,"volvo diesel"
358 | 25.4,6,168,116,2900,12.6,81,3,"toyota cressida"
359 | 24.2,6,146,120,2930,13.8,81,3,"datsun 810 maxima"
360 | 22.4,6,231,110,3415,15.8,81,1,"buick century"
361 | 26.6,8,350,105,3725,19,81,1,"oldsmobile cutlass ls"
362 | 20.2,6,200,88,3060,17.1,81,1,"ford granada gl"
363 | 17.6,6,225,85,3465,16.6,81,1,"chrysler lebaron salon"
364 | 28,4,112,88,2605,19.6,82,1,"chevrolet cavalier"
365 | 27,4,112,88,2640,18.6,82,1,"chevrolet cavalier wagon"
366 | 34,4,112,88,2395,18,82,1,"chevrolet cavalier 2-door"
367 | 31,4,112,85,2575,16.2,82,1,"pontiac j2000 se hatchback"
368 | 29,4,135,84,2525,16,82,1,"dodge aries se"
369 | 27,4,151,90,2735,18,82,1,"pontiac phoenix"
370 | 24,4,140,92,2865,16.4,82,1,"ford fairmont futura"
371 | 36,4,105,74,1980,15.3,82,2,"volkswagen rabbit l"
372 | 37,4,91,68,2025,18.2,82,3,"mazda glc custom l"
373 | 31,4,91,68,1970,17.6,82,3,"mazda glc custom"
374 | 38,4,105,63,2125,14.7,82,1,"plymouth horizon miser"
375 | 36,4,98,70,2125,17.3,82,1,"mercury lynx l"
376 | 36,4,120,88,2160,14.5,82,3,"nissan stanza xe"
377 | 36,4,107,75,2205,14.5,82,3,"honda accord"
378 | 34,4,108,70,2245,16.9,82,3,"toyota corolla"
379 | 38,4,91,67,1965,15,82,3,"honda civic"
380 | 32,4,91,67,1965,15.7,82,3,"honda civic (auto)"
381 | 38,4,91,67,1995,16.2,82,3,"datsun 310 gx"
382 | 25,6,181,110,2945,16.4,82,1,"buick century limited"
383 | 38,6,262,85,3015,17,82,1,"oldsmobile cutlass ciera (diesel)"
384 | 26,4,156,92,2585,14.5,82,1,"chrysler lebaron medallion"
385 | 22,6,232,112,2835,14.7,82,1,"ford granada l"
386 | 32,4,144,96,2665,13.9,82,3,"toyota celica gt"
387 | 36,4,135,84,2370,13,82,1,"dodge charger 2.2"
388 | 27,4,151,90,2950,17.3,82,1,"chevrolet camaro"
389 | 27,4,140,86,2790,15.6,82,1,"ford mustang gl"
390 | 44,4,97,52,2130,24.6,82,2,"vw pickup"
391 | 32,4,135,84,2295,11.6,82,1,"dodge rampage"
392 | 28,4,120,79,2625,18.6,82,1,"ford ranger"
393 | 31,4,119,82,2720,19.4,82,1,"chevy s-10"
394 |
--------------------------------------------------------------------------------
/Streamlit_Crash_Course/auto.csv:
--------------------------------------------------------------------------------
1 | "mpg","cylinders","displacement","horsepower","weight","acceleration","year","origin","name"
2 | 18,8,307,130,3504,12,70,1,"chevrolet chevelle malibu"
3 | 15,8,350,165,3693,11.5,70,1,"buick skylark 320"
4 | 18,8,318,150,3436,11,70,1,"plymouth satellite"
5 | 16,8,304,150,3433,12,70,1,"amc rebel sst"
6 | 17,8,302,140,3449,10.5,70,1,"ford torino"
7 | 15,8,429,198,4341,10,70,1,"ford galaxie 500"
8 | 14,8,454,220,4354,9,70,1,"chevrolet impala"
9 | 14,8,440,215,4312,8.5,70,1,"plymouth fury iii"
10 | 14,8,455,225,4425,10,70,1,"pontiac catalina"
11 | 15,8,390,190,3850,8.5,70,1,"amc ambassador dpl"
12 | 15,8,383,170,3563,10,70,1,"dodge challenger se"
13 | 14,8,340,160,3609,8,70,1,"plymouth 'cuda 340"
14 | 15,8,400,150,3761,9.5,70,1,"chevrolet monte carlo"
15 | 14,8,455,225,3086,10,70,1,"buick estate wagon (sw)"
16 | 24,4,113,95,2372,15,70,3,"toyota corona mark ii"
17 | 22,6,198,95,2833,15.5,70,1,"plymouth duster"
18 | 18,6,199,97,2774,15.5,70,1,"amc hornet"
19 | 21,6,200,85,2587,16,70,1,"ford maverick"
20 | 27,4,97,88,2130,14.5,70,3,"datsun pl510"
21 | 26,4,97,46,1835,20.5,70,2,"volkswagen 1131 deluxe sedan"
22 | 25,4,110,87,2672,17.5,70,2,"peugeot 504"
23 | 24,4,107,90,2430,14.5,70,2,"audi 100 ls"
24 | 25,4,104,95,2375,17.5,70,2,"saab 99e"
25 | 26,4,121,113,2234,12.5,70,2,"bmw 2002"
26 | 21,6,199,90,2648,15,70,1,"amc gremlin"
27 | 10,8,360,215,4615,14,70,1,"ford f250"
28 | 10,8,307,200,4376,15,70,1,"chevy c20"
29 | 11,8,318,210,4382,13.5,70,1,"dodge d200"
30 | 9,8,304,193,4732,18.5,70,1,"hi 1200d"
31 | 27,4,97,88,2130,14.5,71,3,"datsun pl510"
32 | 28,4,140,90,2264,15.5,71,1,"chevrolet vega 2300"
33 | 25,4,113,95,2228,14,71,3,"toyota corona"
34 | 19,6,232,100,2634,13,71,1,"amc gremlin"
35 | 16,6,225,105,3439,15.5,71,1,"plymouth satellite custom"
36 | 17,6,250,100,3329,15.5,71,1,"chevrolet chevelle malibu"
37 | 19,6,250,88,3302,15.5,71,1,"ford torino 500"
38 | 18,6,232,100,3288,15.5,71,1,"amc matador"
39 | 14,8,350,165,4209,12,71,1,"chevrolet impala"
40 | 14,8,400,175,4464,11.5,71,1,"pontiac catalina brougham"
41 | 14,8,351,153,4154,13.5,71,1,"ford galaxie 500"
42 | 14,8,318,150,4096,13,71,1,"plymouth fury iii"
43 | 12,8,383,180,4955,11.5,71,1,"dodge monaco (sw)"
44 | 13,8,400,170,4746,12,71,1,"ford country squire (sw)"
45 | 13,8,400,175,5140,12,71,1,"pontiac safari (sw)"
46 | 18,6,258,110,2962,13.5,71,1,"amc hornet sportabout (sw)"
47 | 22,4,140,72,2408,19,71,1,"chevrolet vega (sw)"
48 | 19,6,250,100,3282,15,71,1,"pontiac firebird"
49 | 18,6,250,88,3139,14.5,71,1,"ford mustang"
50 | 23,4,122,86,2220,14,71,1,"mercury capri 2000"
51 | 28,4,116,90,2123,14,71,2,"opel 1900"
52 | 30,4,79,70,2074,19.5,71,2,"peugeot 304"
53 | 30,4,88,76,2065,14.5,71,2,"fiat 124b"
54 | 31,4,71,65,1773,19,71,3,"toyota corolla 1200"
55 | 35,4,72,69,1613,18,71,3,"datsun 1200"
56 | 27,4,97,60,1834,19,71,2,"volkswagen model 111"
57 | 26,4,91,70,1955,20.5,71,1,"plymouth cricket"
58 | 24,4,113,95,2278,15.5,72,3,"toyota corona hardtop"
59 | 25,4,97.5,80,2126,17,72,1,"dodge colt hardtop"
60 | 23,4,97,54,2254,23.5,72,2,"volkswagen type 3"
61 | 20,4,140,90,2408,19.5,72,1,"chevrolet vega"
62 | 21,4,122,86,2226,16.5,72,1,"ford pinto runabout"
63 | 13,8,350,165,4274,12,72,1,"chevrolet impala"
64 | 14,8,400,175,4385,12,72,1,"pontiac catalina"
65 | 15,8,318,150,4135,13.5,72,1,"plymouth fury iii"
66 | 14,8,351,153,4129,13,72,1,"ford galaxie 500"
67 | 17,8,304,150,3672,11.5,72,1,"amc ambassador sst"
68 | 11,8,429,208,4633,11,72,1,"mercury marquis"
69 | 13,8,350,155,4502,13.5,72,1,"buick lesabre custom"
70 | 12,8,350,160,4456,13.5,72,1,"oldsmobile delta 88 royale"
71 | 13,8,400,190,4422,12.5,72,1,"chrysler newport royal"
72 | 19,3,70,97,2330,13.5,72,3,"mazda rx2 coupe"
73 | 15,8,304,150,3892,12.5,72,1,"amc matador (sw)"
74 | 13,8,307,130,4098,14,72,1,"chevrolet chevelle concours (sw)"
75 | 13,8,302,140,4294,16,72,1,"ford gran torino (sw)"
76 | 14,8,318,150,4077,14,72,1,"plymouth satellite custom (sw)"
77 | 18,4,121,112,2933,14.5,72,2,"volvo 145e (sw)"
78 | 22,4,121,76,2511,18,72,2,"volkswagen 411 (sw)"
79 | 21,4,120,87,2979,19.5,72,2,"peugeot 504 (sw)"
80 | 26,4,96,69,2189,18,72,2,"renault 12 (sw)"
81 | 22,4,122,86,2395,16,72,1,"ford pinto (sw)"
82 | 28,4,97,92,2288,17,72,3,"datsun 510 (sw)"
83 | 23,4,120,97,2506,14.5,72,3,"toyouta corona mark ii (sw)"
84 | 28,4,98,80,2164,15,72,1,"dodge colt (sw)"
85 | 27,4,97,88,2100,16.5,72,3,"toyota corolla 1600 (sw)"
86 | 13,8,350,175,4100,13,73,1,"buick century 350"
87 | 14,8,304,150,3672,11.5,73,1,"amc matador"
88 | 13,8,350,145,3988,13,73,1,"chevrolet malibu"
89 | 14,8,302,137,4042,14.5,73,1,"ford gran torino"
90 | 15,8,318,150,3777,12.5,73,1,"dodge coronet custom"
91 | 12,8,429,198,4952,11.5,73,1,"mercury marquis brougham"
92 | 13,8,400,150,4464,12,73,1,"chevrolet caprice classic"
93 | 13,8,351,158,4363,13,73,1,"ford ltd"
94 | 14,8,318,150,4237,14.5,73,1,"plymouth fury gran sedan"
95 | 13,8,440,215,4735,11,73,1,"chrysler new yorker brougham"
96 | 12,8,455,225,4951,11,73,1,"buick electra 225 custom"
97 | 13,8,360,175,3821,11,73,1,"amc ambassador brougham"
98 | 18,6,225,105,3121,16.5,73,1,"plymouth valiant"
99 | 16,6,250,100,3278,18,73,1,"chevrolet nova custom"
100 | 18,6,232,100,2945,16,73,1,"amc hornet"
101 | 18,6,250,88,3021,16.5,73,1,"ford maverick"
102 | 23,6,198,95,2904,16,73,1,"plymouth duster"
103 | 26,4,97,46,1950,21,73,2,"volkswagen super beetle"
104 | 11,8,400,150,4997,14,73,1,"chevrolet impala"
105 | 12,8,400,167,4906,12.5,73,1,"ford country"
106 | 13,8,360,170,4654,13,73,1,"plymouth custom suburb"
107 | 12,8,350,180,4499,12.5,73,1,"oldsmobile vista cruiser"
108 | 18,6,232,100,2789,15,73,1,"amc gremlin"
109 | 20,4,97,88,2279,19,73,3,"toyota carina"
110 | 21,4,140,72,2401,19.5,73,1,"chevrolet vega"
111 | 22,4,108,94,2379,16.5,73,3,"datsun 610"
112 | 18,3,70,90,2124,13.5,73,3,"maxda rx3"
113 | 19,4,122,85,2310,18.5,73,1,"ford pinto"
114 | 21,6,155,107,2472,14,73,1,"mercury capri v6"
115 | 26,4,98,90,2265,15.5,73,2,"fiat 124 sport coupe"
116 | 15,8,350,145,4082,13,73,1,"chevrolet monte carlo s"
117 | 16,8,400,230,4278,9.5,73,1,"pontiac grand prix"
118 | 29,4,68,49,1867,19.5,73,2,"fiat 128"
119 | 24,4,116,75,2158,15.5,73,2,"opel manta"
120 | 20,4,114,91,2582,14,73,2,"audi 100ls"
121 | 19,4,121,112,2868,15.5,73,2,"volvo 144ea"
122 | 15,8,318,150,3399,11,73,1,"dodge dart custom"
123 | 24,4,121,110,2660,14,73,2,"saab 99le"
124 | 20,6,156,122,2807,13.5,73,3,"toyota mark ii"
125 | 11,8,350,180,3664,11,73,1,"oldsmobile omega"
126 | 20,6,198,95,3102,16.5,74,1,"plymouth duster"
127 | 19,6,232,100,2901,16,74,1,"amc hornet"
128 | 15,6,250,100,3336,17,74,1,"chevrolet nova"
129 | 31,4,79,67,1950,19,74,3,"datsun b210"
130 | 26,4,122,80,2451,16.5,74,1,"ford pinto"
131 | 32,4,71,65,1836,21,74,3,"toyota corolla 1200"
132 | 25,4,140,75,2542,17,74,1,"chevrolet vega"
133 | 16,6,250,100,3781,17,74,1,"chevrolet chevelle malibu classic"
134 | 16,6,258,110,3632,18,74,1,"amc matador"
135 | 18,6,225,105,3613,16.5,74,1,"plymouth satellite sebring"
136 | 16,8,302,140,4141,14,74,1,"ford gran torino"
137 | 13,8,350,150,4699,14.5,74,1,"buick century luxus (sw)"
138 | 14,8,318,150,4457,13.5,74,1,"dodge coronet custom (sw)"
139 | 14,8,302,140,4638,16,74,1,"ford gran torino (sw)"
140 | 14,8,304,150,4257,15.5,74,1,"amc matador (sw)"
141 | 29,4,98,83,2219,16.5,74,2,"audi fox"
142 | 26,4,79,67,1963,15.5,74,2,"volkswagen dasher"
143 | 26,4,97,78,2300,14.5,74,2,"opel manta"
144 | 31,4,76,52,1649,16.5,74,3,"toyota corona"
145 | 32,4,83,61,2003,19,74,3,"datsun 710"
146 | 28,4,90,75,2125,14.5,74,1,"dodge colt"
147 | 24,4,90,75,2108,15.5,74,2,"fiat 128"
148 | 26,4,116,75,2246,14,74,2,"fiat 124 tc"
149 | 24,4,120,97,2489,15,74,3,"honda civic"
150 | 26,4,108,93,2391,15.5,74,3,"subaru"
151 | 31,4,79,67,2000,16,74,2,"fiat x1.9"
152 | 19,6,225,95,3264,16,75,1,"plymouth valiant custom"
153 | 18,6,250,105,3459,16,75,1,"chevrolet nova"
154 | 15,6,250,72,3432,21,75,1,"mercury monarch"
155 | 15,6,250,72,3158,19.5,75,1,"ford maverick"
156 | 16,8,400,170,4668,11.5,75,1,"pontiac catalina"
157 | 15,8,350,145,4440,14,75,1,"chevrolet bel air"
158 | 16,8,318,150,4498,14.5,75,1,"plymouth grand fury"
159 | 14,8,351,148,4657,13.5,75,1,"ford ltd"
160 | 17,6,231,110,3907,21,75,1,"buick century"
161 | 16,6,250,105,3897,18.5,75,1,"chevroelt chevelle malibu"
162 | 15,6,258,110,3730,19,75,1,"amc matador"
163 | 18,6,225,95,3785,19,75,1,"plymouth fury"
164 | 21,6,231,110,3039,15,75,1,"buick skyhawk"
165 | 20,8,262,110,3221,13.5,75,1,"chevrolet monza 2+2"
166 | 13,8,302,129,3169,12,75,1,"ford mustang ii"
167 | 29,4,97,75,2171,16,75,3,"toyota corolla"
168 | 23,4,140,83,2639,17,75,1,"ford pinto"
169 | 20,6,232,100,2914,16,75,1,"amc gremlin"
170 | 23,4,140,78,2592,18.5,75,1,"pontiac astro"
171 | 24,4,134,96,2702,13.5,75,3,"toyota corona"
172 | 25,4,90,71,2223,16.5,75,2,"volkswagen dasher"
173 | 24,4,119,97,2545,17,75,3,"datsun 710"
174 | 18,6,171,97,2984,14.5,75,1,"ford pinto"
175 | 29,4,90,70,1937,14,75,2,"volkswagen rabbit"
176 | 19,6,232,90,3211,17,75,1,"amc pacer"
177 | 23,4,115,95,2694,15,75,2,"audi 100ls"
178 | 23,4,120,88,2957,17,75,2,"peugeot 504"
179 | 22,4,121,98,2945,14.5,75,2,"volvo 244dl"
180 | 25,4,121,115,2671,13.5,75,2,"saab 99le"
181 | 33,4,91,53,1795,17.5,75,3,"honda civic cvcc"
182 | 28,4,107,86,2464,15.5,76,2,"fiat 131"
183 | 25,4,116,81,2220,16.9,76,2,"opel 1900"
184 | 25,4,140,92,2572,14.9,76,1,"capri ii"
185 | 26,4,98,79,2255,17.7,76,1,"dodge colt"
186 | 27,4,101,83,2202,15.3,76,2,"renault 12tl"
187 | 17.5,8,305,140,4215,13,76,1,"chevrolet chevelle malibu classic"
188 | 16,8,318,150,4190,13,76,1,"dodge coronet brougham"
189 | 15.5,8,304,120,3962,13.9,76,1,"amc matador"
190 | 14.5,8,351,152,4215,12.8,76,1,"ford gran torino"
191 | 22,6,225,100,3233,15.4,76,1,"plymouth valiant"
192 | 22,6,250,105,3353,14.5,76,1,"chevrolet nova"
193 | 24,6,200,81,3012,17.6,76,1,"ford maverick"
194 | 22.5,6,232,90,3085,17.6,76,1,"amc hornet"
195 | 29,4,85,52,2035,22.2,76,1,"chevrolet chevette"
196 | 24.5,4,98,60,2164,22.1,76,1,"chevrolet woody"
197 | 29,4,90,70,1937,14.2,76,2,"vw rabbit"
198 | 33,4,91,53,1795,17.4,76,3,"honda civic"
199 | 20,6,225,100,3651,17.7,76,1,"dodge aspen se"
200 | 18,6,250,78,3574,21,76,1,"ford granada ghia"
201 | 18.5,6,250,110,3645,16.2,76,1,"pontiac ventura sj"
202 | 17.5,6,258,95,3193,17.8,76,1,"amc pacer d/l"
203 | 29.5,4,97,71,1825,12.2,76,2,"volkswagen rabbit"
204 | 32,4,85,70,1990,17,76,3,"datsun b-210"
205 | 28,4,97,75,2155,16.4,76,3,"toyota corolla"
206 | 26.5,4,140,72,2565,13.6,76,1,"ford pinto"
207 | 20,4,130,102,3150,15.7,76,2,"volvo 245"
208 | 13,8,318,150,3940,13.2,76,1,"plymouth volare premier v8"
209 | 19,4,120,88,3270,21.9,76,2,"peugeot 504"
210 | 19,6,156,108,2930,15.5,76,3,"toyota mark ii"
211 | 16.5,6,168,120,3820,16.7,76,2,"mercedes-benz 280s"
212 | 16.5,8,350,180,4380,12.1,76,1,"cadillac seville"
213 | 13,8,350,145,4055,12,76,1,"chevy c10"
214 | 13,8,302,130,3870,15,76,1,"ford f108"
215 | 13,8,318,150,3755,14,76,1,"dodge d100"
216 | 31.5,4,98,68,2045,18.5,77,3,"honda accord cvcc"
217 | 30,4,111,80,2155,14.8,77,1,"buick opel isuzu deluxe"
218 | 36,4,79,58,1825,18.6,77,2,"renault 5 gtl"
219 | 25.5,4,122,96,2300,15.5,77,1,"plymouth arrow gs"
220 | 33.5,4,85,70,1945,16.8,77,3,"datsun f-10 hatchback"
221 | 17.5,8,305,145,3880,12.5,77,1,"chevrolet caprice classic"
222 | 17,8,260,110,4060,19,77,1,"oldsmobile cutlass supreme"
223 | 15.5,8,318,145,4140,13.7,77,1,"dodge monaco brougham"
224 | 15,8,302,130,4295,14.9,77,1,"mercury cougar brougham"
225 | 17.5,6,250,110,3520,16.4,77,1,"chevrolet concours"
226 | 20.5,6,231,105,3425,16.9,77,1,"buick skylark"
227 | 19,6,225,100,3630,17.7,77,1,"plymouth volare custom"
228 | 18.5,6,250,98,3525,19,77,1,"ford granada"
229 | 16,8,400,180,4220,11.1,77,1,"pontiac grand prix lj"
230 | 15.5,8,350,170,4165,11.4,77,1,"chevrolet monte carlo landau"
231 | 15.5,8,400,190,4325,12.2,77,1,"chrysler cordoba"
232 | 16,8,351,149,4335,14.5,77,1,"ford thunderbird"
233 | 29,4,97,78,1940,14.5,77,2,"volkswagen rabbit custom"
234 | 24.5,4,151,88,2740,16,77,1,"pontiac sunbird coupe"
235 | 26,4,97,75,2265,18.2,77,3,"toyota corolla liftback"
236 | 25.5,4,140,89,2755,15.8,77,1,"ford mustang ii 2+2"
237 | 30.5,4,98,63,2051,17,77,1,"chevrolet chevette"
238 | 33.5,4,98,83,2075,15.9,77,1,"dodge colt m/m"
239 | 30,4,97,67,1985,16.4,77,3,"subaru dl"
240 | 30.5,4,97,78,2190,14.1,77,2,"volkswagen dasher"
241 | 22,6,146,97,2815,14.5,77,3,"datsun 810"
242 | 21.5,4,121,110,2600,12.8,77,2,"bmw 320i"
243 | 21.5,3,80,110,2720,13.5,77,3,"mazda rx-4"
244 | 43.1,4,90,48,1985,21.5,78,2,"volkswagen rabbit custom diesel"
245 | 36.1,4,98,66,1800,14.4,78,1,"ford fiesta"
246 | 32.8,4,78,52,1985,19.4,78,3,"mazda glc deluxe"
247 | 39.4,4,85,70,2070,18.6,78,3,"datsun b210 gx"
248 | 36.1,4,91,60,1800,16.4,78,3,"honda civic cvcc"
249 | 19.9,8,260,110,3365,15.5,78,1,"oldsmobile cutlass salon brougham"
250 | 19.4,8,318,140,3735,13.2,78,1,"dodge diplomat"
251 | 20.2,8,302,139,3570,12.8,78,1,"mercury monarch ghia"
252 | 19.2,6,231,105,3535,19.2,78,1,"pontiac phoenix lj"
253 | 20.5,6,200,95,3155,18.2,78,1,"chevrolet malibu"
254 | 20.2,6,200,85,2965,15.8,78,1,"ford fairmont (auto)"
255 | 25.1,4,140,88,2720,15.4,78,1,"ford fairmont (man)"
256 | 20.5,6,225,100,3430,17.2,78,1,"plymouth volare"
257 | 19.4,6,232,90,3210,17.2,78,1,"amc concord"
258 | 20.6,6,231,105,3380,15.8,78,1,"buick century special"
259 | 20.8,6,200,85,3070,16.7,78,1,"mercury zephyr"
260 | 18.6,6,225,110,3620,18.7,78,1,"dodge aspen"
261 | 18.1,6,258,120,3410,15.1,78,1,"amc concord d/l"
262 | 19.2,8,305,145,3425,13.2,78,1,"chevrolet monte carlo landau"
263 | 17.7,6,231,165,3445,13.4,78,1,"buick regal sport coupe (turbo)"
264 | 18.1,8,302,139,3205,11.2,78,1,"ford futura"
265 | 17.5,8,318,140,4080,13.7,78,1,"dodge magnum xe"
266 | 30,4,98,68,2155,16.5,78,1,"chevrolet chevette"
267 | 27.5,4,134,95,2560,14.2,78,3,"toyota corona"
268 | 27.2,4,119,97,2300,14.7,78,3,"datsun 510"
269 | 30.9,4,105,75,2230,14.5,78,1,"dodge omni"
270 | 21.1,4,134,95,2515,14.8,78,3,"toyota celica gt liftback"
271 | 23.2,4,156,105,2745,16.7,78,1,"plymouth sapporo"
272 | 23.8,4,151,85,2855,17.6,78,1,"oldsmobile starfire sx"
273 | 23.9,4,119,97,2405,14.9,78,3,"datsun 200-sx"
274 | 20.3,5,131,103,2830,15.9,78,2,"audi 5000"
275 | 17,6,163,125,3140,13.6,78,2,"volvo 264gl"
276 | 21.6,4,121,115,2795,15.7,78,2,"saab 99gle"
277 | 16.2,6,163,133,3410,15.8,78,2,"peugeot 604sl"
278 | 31.5,4,89,71,1990,14.9,78,2,"volkswagen scirocco"
279 | 29.5,4,98,68,2135,16.6,78,3,"honda accord lx"
280 | 21.5,6,231,115,3245,15.4,79,1,"pontiac lemans v6"
281 | 19.8,6,200,85,2990,18.2,79,1,"mercury zephyr 6"
282 | 22.3,4,140,88,2890,17.3,79,1,"ford fairmont 4"
283 | 20.2,6,232,90,3265,18.2,79,1,"amc concord dl 6"
284 | 20.6,6,225,110,3360,16.6,79,1,"dodge aspen 6"
285 | 17,8,305,130,3840,15.4,79,1,"chevrolet caprice classic"
286 | 17.6,8,302,129,3725,13.4,79,1,"ford ltd landau"
287 | 16.5,8,351,138,3955,13.2,79,1,"mercury grand marquis"
288 | 18.2,8,318,135,3830,15.2,79,1,"dodge st. regis"
289 | 16.9,8,350,155,4360,14.9,79,1,"buick estate wagon (sw)"
290 | 15.5,8,351,142,4054,14.3,79,1,"ford country squire (sw)"
291 | 19.2,8,267,125,3605,15,79,1,"chevrolet malibu classic (sw)"
292 | 18.5,8,360,150,3940,13,79,1,"chrysler lebaron town @ country (sw)"
293 | 31.9,4,89,71,1925,14,79,2,"vw rabbit custom"
294 | 34.1,4,86,65,1975,15.2,79,3,"maxda glc deluxe"
295 | 35.7,4,98,80,1915,14.4,79,1,"dodge colt hatchback custom"
296 | 27.4,4,121,80,2670,15,79,1,"amc spirit dl"
297 | 25.4,5,183,77,3530,20.1,79,2,"mercedes benz 300d"
298 | 23,8,350,125,3900,17.4,79,1,"cadillac eldorado"
299 | 27.2,4,141,71,3190,24.8,79,2,"peugeot 504"
300 | 23.9,8,260,90,3420,22.2,79,1,"oldsmobile cutlass salon brougham"
301 | 34.2,4,105,70,2200,13.2,79,1,"plymouth horizon"
302 | 34.5,4,105,70,2150,14.9,79,1,"plymouth horizon tc3"
303 | 31.8,4,85,65,2020,19.2,79,3,"datsun 210"
304 | 37.3,4,91,69,2130,14.7,79,2,"fiat strada custom"
305 | 28.4,4,151,90,2670,16,79,1,"buick skylark limited"
306 | 28.8,6,173,115,2595,11.3,79,1,"chevrolet citation"
307 | 26.8,6,173,115,2700,12.9,79,1,"oldsmobile omega brougham"
308 | 33.5,4,151,90,2556,13.2,79,1,"pontiac phoenix"
309 | 41.5,4,98,76,2144,14.7,80,2,"vw rabbit"
310 | 38.1,4,89,60,1968,18.8,80,3,"toyota corolla tercel"
311 | 32.1,4,98,70,2120,15.5,80,1,"chevrolet chevette"
312 | 37.2,4,86,65,2019,16.4,80,3,"datsun 310"
313 | 28,4,151,90,2678,16.5,80,1,"chevrolet citation"
314 | 26.4,4,140,88,2870,18.1,80,1,"ford fairmont"
315 | 24.3,4,151,90,3003,20.1,80,1,"amc concord"
316 | 19.1,6,225,90,3381,18.7,80,1,"dodge aspen"
317 | 34.3,4,97,78,2188,15.8,80,2,"audi 4000"
318 | 29.8,4,134,90,2711,15.5,80,3,"toyota corona liftback"
319 | 31.3,4,120,75,2542,17.5,80,3,"mazda 626"
320 | 37,4,119,92,2434,15,80,3,"datsun 510 hatchback"
321 | 32.2,4,108,75,2265,15.2,80,3,"toyota corolla"
322 | 46.6,4,86,65,2110,17.9,80,3,"mazda glc"
323 | 27.9,4,156,105,2800,14.4,80,1,"dodge colt"
324 | 40.8,4,85,65,2110,19.2,80,3,"datsun 210"
325 | 44.3,4,90,48,2085,21.7,80,2,"vw rabbit c (diesel)"
326 | 43.4,4,90,48,2335,23.7,80,2,"vw dasher (diesel)"
327 | 36.4,5,121,67,2950,19.9,80,2,"audi 5000s (diesel)"
328 | 30,4,146,67,3250,21.8,80,2,"mercedes-benz 240d"
329 | 44.6,4,91,67,1850,13.8,80,3,"honda civic 1500 gl"
330 | 33.8,4,97,67,2145,18,80,3,"subaru dl"
331 | 29.8,4,89,62,1845,15.3,80,2,"vokswagen rabbit"
332 | 32.7,6,168,132,2910,11.4,80,3,"datsun 280-zx"
333 | 23.7,3,70,100,2420,12.5,80,3,"mazda rx-7 gs"
334 | 35,4,122,88,2500,15.1,80,2,"triumph tr7 coupe"
335 | 32.4,4,107,72,2290,17,80,3,"honda accord"
336 | 27.2,4,135,84,2490,15.7,81,1,"plymouth reliant"
337 | 26.6,4,151,84,2635,16.4,81,1,"buick skylark"
338 | 25.8,4,156,92,2620,14.4,81,1,"dodge aries wagon (sw)"
339 | 23.5,6,173,110,2725,12.6,81,1,"chevrolet citation"
340 | 30,4,135,84,2385,12.9,81,1,"plymouth reliant"
341 | 39.1,4,79,58,1755,16.9,81,3,"toyota starlet"
342 | 39,4,86,64,1875,16.4,81,1,"plymouth champ"
343 | 35.1,4,81,60,1760,16.1,81,3,"honda civic 1300"
344 | 32.3,4,97,67,2065,17.8,81,3,"subaru"
345 | 37,4,85,65,1975,19.4,81,3,"datsun 210 mpg"
346 | 37.7,4,89,62,2050,17.3,81,3,"toyota tercel"
347 | 34.1,4,91,68,1985,16,81,3,"mazda glc 4"
348 | 34.7,4,105,63,2215,14.9,81,1,"plymouth horizon 4"
349 | 34.4,4,98,65,2045,16.2,81,1,"ford escort 4w"
350 | 29.9,4,98,65,2380,20.7,81,1,"ford escort 2h"
351 | 33,4,105,74,2190,14.2,81,2,"volkswagen jetta"
352 | 33.7,4,107,75,2210,14.4,81,3,"honda prelude"
353 | 32.4,4,108,75,2350,16.8,81,3,"toyota corolla"
354 | 32.9,4,119,100,2615,14.8,81,3,"datsun 200sx"
355 | 31.6,4,120,74,2635,18.3,81,3,"mazda 626"
356 | 28.1,4,141,80,3230,20.4,81,2,"peugeot 505s turbo diesel"
357 | 30.7,6,145,76,3160,19.6,81,2,"volvo diesel"
358 | 25.4,6,168,116,2900,12.6,81,3,"toyota cressida"
359 | 24.2,6,146,120,2930,13.8,81,3,"datsun 810 maxima"
360 | 22.4,6,231,110,3415,15.8,81,1,"buick century"
361 | 26.6,8,350,105,3725,19,81,1,"oldsmobile cutlass ls"
362 | 20.2,6,200,88,3060,17.1,81,1,"ford granada gl"
363 | 17.6,6,225,85,3465,16.6,81,1,"chrysler lebaron salon"
364 | 28,4,112,88,2605,19.6,82,1,"chevrolet cavalier"
365 | 27,4,112,88,2640,18.6,82,1,"chevrolet cavalier wagon"
366 | 34,4,112,88,2395,18,82,1,"chevrolet cavalier 2-door"
367 | 31,4,112,85,2575,16.2,82,1,"pontiac j2000 se hatchback"
368 | 29,4,135,84,2525,16,82,1,"dodge aries se"
369 | 27,4,151,90,2735,18,82,1,"pontiac phoenix"
370 | 24,4,140,92,2865,16.4,82,1,"ford fairmont futura"
371 | 36,4,105,74,1980,15.3,82,2,"volkswagen rabbit l"
372 | 37,4,91,68,2025,18.2,82,3,"mazda glc custom l"
373 | 31,4,91,68,1970,17.6,82,3,"mazda glc custom"
374 | 38,4,105,63,2125,14.7,82,1,"plymouth horizon miser"
375 | 36,4,98,70,2125,17.3,82,1,"mercury lynx l"
376 | 36,4,120,88,2160,14.5,82,3,"nissan stanza xe"
377 | 36,4,107,75,2205,14.5,82,3,"honda accord"
378 | 34,4,108,70,2245,16.9,82,3,"toyota corolla"
379 | 38,4,91,67,1965,15,82,3,"honda civic"
380 | 32,4,91,67,1965,15.7,82,3,"honda civic (auto)"
381 | 38,4,91,67,1995,16.2,82,3,"datsun 310 gx"
382 | 25,6,181,110,2945,16.4,82,1,"buick century limited"
383 | 38,6,262,85,3015,17,82,1,"oldsmobile cutlass ciera (diesel)"
384 | 26,4,156,92,2585,14.5,82,1,"chrysler lebaron medallion"
385 | 22,6,232,112,2835,14.7,82,1,"ford granada l"
386 | 32,4,144,96,2665,13.9,82,3,"toyota celica gt"
387 | 36,4,135,84,2370,13,82,1,"dodge charger 2.2"
388 | 27,4,151,90,2950,17.3,82,1,"chevrolet camaro"
389 | 27,4,140,86,2790,15.6,82,1,"ford mustang gl"
390 | 44,4,97,52,2130,24.6,82,2,"vw pickup"
391 | 32,4,135,84,2295,11.6,82,1,"dodge rampage"
392 | 28,4,120,79,2625,18.6,82,1,"ford ranger"
393 | 31,4,119,82,2720,19.4,82,1,"chevy s-10"
394 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 🚀 Complete AI & Machine Learning Course Collection
2 |
3 |
4 |
5 | 
6 |
7 | [](https://www.udemy.com/course/master-openai-agent-builder-low-code-ai-projects-workflow/?referralCode=B0B67D18B1013E488FB7)
8 | [](https://www.udemy.com/course/agentic-rag-with-langchain-and-langgraph/?referralCode=C0BCC208F53AF2C98AC5)
9 | [](https://www.udemy.com/course/python-for-machine-learning-and-data-science-projects/?referralCode=C2A381E2EC08C84FFBFE)
10 | [](https://www.udemy.com/user/laxmi-kant-tiwari/)
11 |
12 | **Master AI Development • Build Production Applications • Deploy at Scale**
13 |
14 | [🤖 LLM Development](#-llm-and-ai-agent-development) • [📊 Machine Learning](#-machine-learning-and-data-science) • [🚀 Production](#-production-and-deployment)
15 |
16 |
17 |
18 | ---
19 |
20 | ## 🤖 LLM and AI Agent Development
21 |
22 |
23 | 🎯 Master OpenAI Agent Builder - Low-Code AI Projects Workflow
24 |
25 | > **🎯 Build and deploy AI agents visually using OpenAI Agent Builder, ChatKit, RAG, Chatbot, AI Assistant with MCP, AWS, RDS MySQL**
26 |
27 | **What You'll Master:**
28 | - ✅ **Visual AI Development:** Build AI agents without complex coding using OpenAI Agent Builder
29 | - ✅ **Real-World Integration:** Connect AI workflows with MySQL, AWS, and MCP connectors
30 | - ✅ **Production Deployment:** Deploy AI agents with ChatKit and Guardrails for safety
31 | - ✅ **Complete Projects:** Weather Agent, RAG Document Q&A Chatbot, E-Commerce AI Assistant
32 | - ✅ **Database Integration:** AWS RDS MySQL connection and management
33 | - ✅ **Cloud Deployment:** AWS Lambda and API Gateway for production use
34 |
35 |
36 |
37 | **🎯 Technologies:** OpenAI Agent Builder • ChatKit • AWS • RDS MySQL • MCP • Lambda • API Gateway
38 |
39 |
40 |
41 |
46 |
47 |
48 |
49 |
50 | 🔥 MCP Mastery: Build AI Apps with Claude, LangChain and Ollama
51 |
52 | > **🎯 Build MCP servers & clients with Python, Streamlit, ChromaDB, LangChain, LangGraph agents, and Ollama integrations**
53 |
54 | **What You'll Master:**
55 | - ✅ **MCP Architecture:** Client, server, and transport layers
56 | - ✅ **Claude Desktop Integration:** Direct MCP server connections
57 | - ✅ **Real-World Applications:** Data analysis servers for Excel, PowerPoint, SQLite
58 | - ✅ **RAG Implementation:** Vector databases with LangChain integration
59 | - ✅ **Production Deployment:** Testing, security, and cloud deployment
60 |
61 |
62 |
63 | **🎯 Technologies:** Python • Streamlit • ChromaDB • LangChain • LangGraph • Ollama
64 |
65 |
66 |
67 |
72 |
73 |
74 |
75 |
76 | 📊 Agentic RAG with LangChain and LangGraph - Ollama
77 |
78 | > **🎯 Step-by-Step Guide to RAG with LangChain, LangGraph, and Ollama | DeepSeek R1, QWEN, LLAMA, FAISS**
79 |
80 | **Advanced RAG Techniques:**
81 | - 🧠 **Agentic RAG:** Intelligent, adaptive systems that act like smart assistants
82 | - 🔄 **Corrective RAG:** Self-improving and error-correcting mechanisms
83 | - 📊 **Document Processing:** Doclings integration for seamless document loading
84 | - 🚀 **Production Ready:** Streamlit apps and AWS EC2 deployment
85 |
86 |
87 |
88 | **Technologies:** LangChain • LangGraph • Ollama • DeepSeek R1 • QWEN • LLAMA • FAISS
89 |
90 |
91 |
92 |
97 |
98 |
99 |
100 |
101 | 🔧 Master LangGraph and LangChain with Ollama
102 |
103 | > **🎯 Agentic RAG and Chatbot, AI Agent, DeepSeek, LLAMA 3.2 Agent, FAISS Vector Database**
104 |
105 | **Build Production Chatbots:**
106 | - 💬 **Memory-Enabled Chatbots:** Dynamic conversations with persistent memory
107 | - 🗄️ **Database Integration:** Seamless MySQL query execution with LLMs
108 | - 📈 **State Management:** LangGraph workflows with advanced state machines
109 | - 🎯 **Private Data RAG:** Custom embeddings and vector database integration
110 |
111 |
112 |
113 | **Technologies:** LangGraph • LangChain • Ollama • DeepSeek • LLAMA 3.2 • MySQL • FAISS
114 |
115 |
116 |
117 |
122 |
123 |
124 |
125 |
126 | ⚡ Master Langchain and Ollama - Chatbot, RAG and Agents
127 |
128 | > **🎯 Master Langchain v0.3, Local LLM Projects, Ollama, DeepSeek, LLAMA 3.2, Complete Integration Guide**
129 |
130 | **Complete LangChain Journey:**
131 | - 🛠️ **Setup & Integration:** Professional Ollama and Langchain configuration
132 | - 💬 **Custom Chatbots:** Memory, history, and advanced features with Streamlit
133 | - ⛓️ **Prompt Engineering:** Templates, chains (Sequential, Parallel, Router)
134 | - 🤖 **Agent Development:** Custom tools and step-by-step instruction execution
135 | - 🚀 **AWS Deployment:** Production-ready applications on AWS EC2
136 |
137 |
138 |
139 | **Technologies:** Langchain v0.3 • Ollama • DeepSeek • LLAMA 3.2 • Streamlit • AWS EC2
140 |
141 |
142 |
143 |
148 |
149 |
150 |
151 |
152 | 🔬 Fine Tuning LLM with Hugging Face Transformers for NLP
153 |
154 | > **🎯 Learn transformer architecture fundamentals and fine-tune LLMs with custom datasets**
155 |
156 | **Advanced LLM Customization:**
157 | - 🧠 **Transformer Deep Dive:** Architecture fundamentals and mathematical foundations
158 | - 📊 **Custom Dataset Preparation:** Data preprocessing and formatting techniques
159 | - ⚡ **Fine-tuning Mastery:** Advanced optimization and training strategies
160 | - 🎯 **Model Optimization:** Performance tuning and evaluation methodologies
161 |
162 |
163 |
164 | **Technologies:** Hugging Face Transformers • PyTorch • Custom Datasets • Advanced NLP
165 |
166 |
167 |
168 |
173 |
174 |
175 |
176 | ---
177 |
178 | ## 📊 Machine Learning and Data Science
179 |
180 |
181 | 🧠 Deep Learning for Beginners with Python
182 |
183 | > **🎯 Neural Networks, TensorFlow, ANN, CNN, RNN, LSTM, Transfer Learning and Much More**
184 |
185 | **Complete Neural Network Mastery:**
186 | - 🔗 **Artificial Neural Networks (ANN):** Build from mathematical foundations
187 | - 👁️ **Convolutional Neural Networks (CNN):** Image processing and computer vision
188 | - 🔄 **Recurrent Neural Networks (RNN):** Sequential data and time series analysis
189 | - 📝 **LSTM Networks:** Advanced sequence modeling and memory networks
190 | - 🔄 **Transfer Learning:** Leverage pre-trained models for custom applications
191 |
192 |
193 |
194 | **Technologies:** Python • TensorFlow • Keras • Neural Network Architectures • Computer Vision
195 |
196 |
197 |
198 |
203 |
204 |
205 |
206 |
207 | 🚀 Advanced Machine Learning and Deep Learning Projects
208 |
209 | > **🎯 Build advanced projects using transformer models like BERT, GPT-2, and XLNet**
210 |
211 | **Cutting-Edge Project Portfolio:**
212 | - 🤖 **BERT Implementation:** Natural language understanding and classification
213 | - 💭 **GPT-2 Applications:** Text generation and completion systems
214 | - ⚡ **XLNet Techniques:** Bidirectional language modeling
215 | - 🎯 **Multi-modal AI:** Combine text, image, and audio processing
216 | - 🔧 **Custom Architectures:** Design and implement specialized models
217 |
218 |
219 |
220 | **Technologies:** BERT • GPT-2 • XLNet • Advanced Transformers • Multi-modal AI
221 |
222 |
223 |
224 |
229 |
230 |
231 |
232 |
233 | 📈 Python for Linear Regression in Machine Learning
234 |
235 | > **🎯 Master statistical foundations and practical implementation of regression analysis**
236 |
237 | **Statistical Mastery:**
238 | - 📊 **Regression Theory:** Mathematical foundations and statistical principles
239 | - 📈 **Hypothesis Testing:** Statistical validation and significance testing
240 | - 🔢 **Feature Engineering:** Variable selection and transformation techniques
241 | - 🎯 **Model Evaluation:** R-squared, RMSE, and comprehensive diagnostics
242 | - 💼 **Business Applications:** Real-world predictive modeling scenarios
243 |
244 |
245 |
246 | **Technologies:** Python • Scikit-Learn • Statistical Analysis • Pandas • NumPy
247 |
248 |
249 |
250 |
255 |
256 |
257 |
258 |
259 | 🎯 Machine Learning & Data Science for Beginners in Python
260 |
261 | > **🎯 Complete foundation in ML and DL using Python, Scikit-Learn, Keras, and TensorFlow**
262 |
263 | **Complete Foundation:**
264 | - 🐍 **Python for Data Science:** From basics to advanced data manipulation
265 | - 📊 **Data Analysis Mastery:** Pandas, NumPy, and exploratory data analysis
266 | - 🤖 **Machine Learning:** Supervised and unsupervised learning algorithms
267 | - 🧠 **Deep Learning Introduction:** Neural networks with Keras and TensorFlow
268 | - 📈 **Data Visualization:** Professional charts and insights presentation
269 |
270 |
271 |
272 | **Technologies:** Python • Scikit-Learn • Pandas • NumPy • Matplotlib • TensorFlow
273 |
274 |
275 |
276 |
281 |
282 |
283 |
284 |
285 | 💬 Natural Language Processing in Python for Beginners
286 |
287 | > **🎯 Build NLP models using Python with Spacy, NLTK, and modern NLP techniques**
288 |
289 | **NLP Expertise:**
290 | - 🔤 **Text Processing:** Spacy and NLTK for production-ready NLP
291 | - 📊 **Sentiment Analysis:** Emotion detection and opinion mining
292 | - 🏷️ **Named Entity Recognition:** Extract people, places, organizations
293 | - 🔍 **Text Classification:** Document categorization and content analysis
294 | - 🎯 **Feature Engineering:** TF-IDF, word embeddings, and advanced features
295 |
296 |
297 |
298 | **Technologies:** Python • Spacy • NLTK • NLP Pipelines • Text Analytics
299 |
300 |
301 |
302 |
307 |
308 |
309 |
310 | ---
311 |
312 | ## 🚀 Production and Deployment
313 |
314 |
315 | 🌐 Deploy ML Model in Production with FastAPI and Docker
316 |
317 | > **🎯 Professional deployment strategies using FastAPI, Docker, and modern DevOps practices**
318 |
319 | **Production Deployment Mastery:**
320 | - 🌐 **FastAPI Development:** High-performance API creation for ML models
321 | - 🐳 **Docker Containerization:** Scalable and portable deployment solutions
322 | - ☁️ **Cloud Deployment:** AWS, GCP, and Azure deployment strategies
323 | - 🔒 **Security & Monitoring:** Authentication, logging, and performance monitoring
324 | - ⚡ **DevOps Integration:** CI/CD pipelines and automated deployment
325 |
326 |
327 |
328 | **Technologies:** FastAPI • Docker • Cloud Platforms • DevOps • Production Security
329 |
330 |
331 |
332 |
337 |
338 |
339 |
340 |
341 | 📊 Data Visualization in Python Masterclass for Beginners
342 |
343 | > **🎯 Professional visualization and dashboard development using modern Python libraries**
344 |
345 | **Visualization Excellence:**
346 | - 📈 **Matplotlib Mastery:** Static plots with professional customizations
347 | - 🎨 **Seaborn Styling:** Statistical visualizations and advanced aesthetics
348 | - ⚡ **Plotly Interactive:** Dynamic charts and real-time dashboards
349 | - 📊 **Dashboard Development:** Streamlit and Dash applications
350 | - 💼 **Business Intelligence:** Professional reporting and data storytelling
351 |
352 |
353 |
354 | **Technologies:** Matplotlib • Seaborn • Plotly • Streamlit • Dash • Business Analytics
355 |
356 |
357 |
358 |
363 |
364 |
365 |
366 | ---
367 |
368 | ## 🛠️ Technologies & Frameworks Covered
369 |
370 |
371 |
372 | ### **🔧 Complete Technology Stack**
373 |
374 | [](https://www.udemy.com/course/python-for-machine-learning-and-data-science-projects/?referralCode=C2A381E2EC08C84FFBFE)
375 | [](https://www.udemy.com/course/ollama-and-langchain/?referralCode=7F4C0C7B8CF223BA9327)
376 | [](https://www.udemy.com/course/python-for-deep-learning-and-artificial-intelligence/?referralCode=657DFC7FE7AF949837DA)
377 | [](https://www.udemy.com/course/fine-tuning-llm-with-hugging-face-transformers/?referralCode=6DEB3BE17C2644422D8E)
378 | [](https://www.udemy.com/course/nlp-with-bert-in-python/?referralCode=063516494616C76907CD)
379 |
380 |
381 |
382 | ### **🎯 Specialized Technologies**
383 |
384 |
385 |
386 | |
387 |
388 | **🤖 AI & LLM**
389 | - OpenAI Agent Builder
390 | - LangChain
391 | - LangGraph
392 | - Ollama
393 | - Hugging Face Transformers
394 | - OpenAI API
395 | - Claude API
396 |
397 | |
398 |
399 |
400 | **📊 ML & Data Science**
401 | - Scikit-Learn
402 | - TensorFlow & Keras
403 | - PyTorch
404 | - Pandas & NumPy
405 | - Matplotlib & Seaborn
406 | - Plotly
407 |
408 | |
409 |
410 |
411 | **🚀 Deployment & Production**
412 | - FastAPI
413 | - Streamlit
414 | - Docker
415 | - AWS EC2
416 | - AWS Lambda
417 | - API Gateway
418 | - Vector Databases (FAISS, ChromaDB)
419 | - MySQL Integration
420 |
421 | |
422 |
423 |
424 |
425 | ---
426 |
427 | ## 🎯 Learning Path Recommendations
428 |
429 | ### 🤖 **AI/LLM Developer Path**
430 | ```
431 | Master OpenAI Agent Builder - Low-Code AI Projects Workflow
432 | ↓
433 | Master Langchain and Ollama - Chatbot, RAG and Agents
434 | ↓
435 | Master LangGraph and LangChain with Ollama
436 | ↓
437 | Agentic RAG with LangChain and LangGraph - Ollama
438 | ↓
439 | MCP Mastery: Build AI Apps with Claude, LangChain and Ollama
440 | ↓
441 | Fine Tuning LLM with Hugging Face Transformers for NLP
442 | ```
443 |
444 | ### 📊 **Data Scientist Path**
445 | ```
446 | Python for Linear Regression in Machine Learning
447 | ↓
448 | Machine Learning & Data Science for Beginners in Python
449 | ↓
450 | Natural Language Processing in Python for Beginners
451 | ↓
452 | Deep Learning for Beginners with Python
453 | ↓
454 | Advanced Machine Learning and Deep Learning Projects
455 | ```
456 |
457 | ### 🚀 **Production Engineer Path**
458 | ```
459 | Machine Learning & Data Science for Beginners in Python
460 | ↓
461 | Deep Learning for Beginners with Python
462 | ↓
463 | Data Visualization in Python Masterclass for Beginners
464 | ↓
465 | Deploy ML Model in Production with FastAPI and Docker
466 | ```
467 |
468 | ### 🎓 **Complete Mastery Path**
469 | ```
470 | Machine Learning & Data Science for Beginners in Python
471 | ↓
472 | Deep Learning for Beginners with Python
473 | ↓
474 | Natural Language Processing in Python for Beginners
475 | ↓
476 | Master OpenAI Agent Builder - Low-Code AI Projects Workflow
477 | ↓
478 | Master Langchain and Ollama - Chatbot, RAG and Agents
479 | ↓
480 | Master LangGraph and LangChain with Ollama
481 | ↓
482 | Agentic RAG with LangChain and LangGraph - Ollama
483 | ↓
484 | MCP Mastery: Build AI Apps with Claude, LangChain and Ollama
485 | ↓
486 | Advanced Machine Learning and Deep Learning Projects
487 | ↓
488 | Data Visualization in Python Masterclass for Beginners
489 | ↓
490 | Deploy ML Model in Production with FastAPI and Docker
491 | ↓
492 | Fine Tuning LLM with Hugging Face Transformers for NLP
493 | ```
494 |
495 | ---
496 |
497 | ## 🏆 What Students Say
498 |
499 |
500 |
501 | ### **💬 Student Success Stories**
502 |
503 |
504 |
505 | > **"The MCP course is absolutely game-changing! I went from zero knowledge to building production-ready AI applications in just a week."**
506 |
507 | > **"Best LangChain course on the internet. Practical, up-to-date, and the projects are industry-relevant."**
508 |
509 | > **"Finally understood how to deploy ML models properly. The FastAPI + Docker approach saved my company thousands."**
510 |
511 | ---
512 |
513 | ## 📊 Course Statistics
514 |
515 |
516 |
517 | | 📈 **Metric** | 🎯 **Achievement** |
518 | |---------------|-------------------|
519 | | **Total Students** | 100,000+ Active Learners |
520 | | **Course Rating** | ⭐⭐⭐⭐⭐ (4.8/5.0) |
521 | | **Courses Available** | 11+ Comprehensive Programs |
522 | | **Hours of Content** | 100+ Hours of Learning |
523 | | **Projects Included** | 50+ Hands-on Projects |
524 | | **Technologies Covered** | 30+ Modern Frameworks |
525 |
526 |
527 |
528 | ---
529 |
530 |
531 |
532 | ## 🌐 Connect with Me
533 |
534 | [](https://kgptalkie.com)
535 | [](https://www.youtube.com/kgptalkie)
536 | [](https://linkedin.com/in/laxmimerit)
537 | [](https://twitter.com/laxmimerit)
538 | [](https://www.udemy.com/user/laxmi-kant-tiwari/)
539 | [](https://github.com/laxmimerit)
540 |
541 | **⭐ If this helped you, please give it a star! ⭐**
542 |
543 |
544 |
--------------------------------------------------------------------------------
/data/weather_data.csv:
--------------------------------------------------------------------------------
1 | lat,lon,temp
2 | 37.736234635638205,-122.41446453320438,38.7983110498837
3 | 37.77513434979088,-122.3643949735404,-37.76228233120321
4 | 37.74533225027401,-122.37048951747862,-185.49275880049223
5 | 37.788106487752685,-122.39433577191708,-49.949184690477814
6 | 37.75357743726398,-122.4036071199374,-58.764177313684854
7 | 37.72568464945334,-122.448545139509,-165.03987709315484
8 | 37.745498574979884,-122.38166744185084,-26.940728592979525
9 | 37.735860034521316,-122.44087288367437,95.41515374732245
10 | 37.78639050123653,-122.4254116060925,-140.59816114118436
11 | 37.764259623184515,-122.38853989010556,65.79795179072909
12 | 37.72338724546049,-122.36835329449686,80.08347559982724
13 | 37.76160215049814,-122.37900101663747,82.26274531063554
14 | 37.736004887358156,-122.40079850971085,-112.4681346748335
15 | 37.75240593651706,-122.3728477094753,-0.5636622248611655
16 | 37.757121861531985,-122.38989478062145,58.29159594551725
17 | 37.73248901808106,-122.40068987878627,-151.71155917587
18 | 37.7214083919021,-122.38496987494992,-24.39792842957833
19 | 37.7809950110289,-122.38137180400022,28.392115055879973
20 | 37.80210665768344,-122.42660557002768,-71.09612870754016
21 | 37.78639265740755,-122.40561301216297,-72.72608453935383
22 | 37.7592083677627,-122.36701071225151,129.07973685572816
23 | 37.785228053029115,-122.41389193188526,-246.0475285012043
24 | 37.759988090285695,-122.37010459583617,26.872417170726088
25 | 37.73457295496926,-122.3887777371455,-119.31895514301252
26 | 37.75679052040725,-122.39727804596254,11.791501704645029
27 | 37.768684708684376,-122.39734068421976,-21.578527545704343
28 | 37.73933382539842,-122.38714228267318,-26.567306370252474
29 | 37.80126644644134,-122.41737733560932,-88.84975303329685
30 | 37.78104315487447,-122.38934638300526,72.7541593080822
31 | 37.76765430938269,-122.3975577436078,22.835450707196433
32 | 37.77473245090639,-122.44034775767345,161.166621053729
33 | 37.76899221661304,-122.3959964143376,74.28886539300308
34 | 37.761880745269856,-122.40819875068624,-8.92703242430423
35 | 37.74449000937067,-122.41389559935071,-9.042564334667242
36 | 37.76215632518036,-122.40561749286263,-15.525960514623046
37 | 37.7447332002303,-122.40237625462787,47.878526056817286
38 | 37.76865938601676,-122.41124369941369,136.1363454000055
39 | 37.745622410947874,-122.39650297373916,17.48903610641207
40 | 37.773338575749214,-122.41243563944286,-163.70717444277878
41 | 37.78961247685055,-122.44600171921215,107.90226178606659
42 | 37.73414965423562,-122.37831878975436,-17.39098704686631
43 | 37.76784492421241,-122.41499322661394,-101.14746006548934
44 | 37.75678568501468,-122.43043904925689,145.60088310720425
45 | 37.7870808336922,-122.4356205634835,-198.59833249275258
46 | 37.75461220011517,-122.41790088488423,134.6028635480261
47 | 37.72284035808154,-122.40140639886289,15.268617962528616
48 | 37.76196579750747,-122.39350057968221,-43.67708863563437
49 | 37.77959031878724,-122.39110265586886,-45.82619787855743
50 | 37.75877340327928,-122.3988042010655,91.5295738179957
51 | 37.72829799743644,-122.40605654594337,274.6291429464627
52 | 37.803861267921704,-122.41687351303966,13.912527709812258
53 | 37.77633044407987,-122.41809314265345,75.04043285202293
54 | 37.73118000499262,-122.40653375034839,75.96225990449224
55 | 37.74315850448046,-122.39130591656186,55.96186934146954
56 | 37.777239961955424,-122.39210112925913,-5.834128991577011
57 | 37.7672411523628,-122.37605219060062,169.63244137418593
58 | 37.760523900158994,-122.42312044804517,-39.651500100274916
59 | 37.76373309725296,-122.4207962151794,18.699361120966387
60 | 37.796077291882376,-122.40139837695638,181.45554734131503
61 | 37.75551811019015,-122.42860348797622,-132.6941568571474
62 | 37.77418354059693,-122.4002931684534,-229.88478367374827
63 | 37.775742164738716,-122.37285969661508,-52.98419963181337
64 | 37.74634681110265,-122.43336203151166,-83.41918918815733
65 | 37.77708480932351,-122.37597764826565,-81.06333080972344
66 | 37.72366260880071,-122.42125831569595,-253.97062831633437
67 | 37.745742574270736,-122.40533554099935,-8.604940014542827
68 | 37.75892369288686,-122.36111166308149,45.064268317140794
69 | 37.76380998533156,-122.38258937117205,-129.43652849765465
70 | 37.785784799838176,-122.3973355803576,106.42453388760839
71 | 37.741186928162506,-122.45233887595418,93.67137018190695
72 | 37.72571575374735,-122.37445556009764,-12.695376916495709
73 | 37.75017277317356,-122.39193221313485,52.06781448766389
74 | 37.77290029810185,-122.41200023780817,-117.88055378515696
75 | 37.737747772632204,-122.4199868624808,-9.252113098684525
76 | 37.755422448238726,-122.42035565440717,104.76362025664226
77 | 37.75051120777785,-122.37319560198225,-123.35727718969882
78 | 37.732475796831864,-122.40801431304043,-29.224369711616387
79 | 37.770509669176036,-122.40238237114382,4.968728714571642
80 | 37.7494248852188,-122.39002213098483,-26.394593733920807
81 | 37.749474029971466,-122.3983717502832,38.452759935041215
82 | 37.757875026433354,-122.37300906007347,-15.387035667643833
83 | 37.74730388280933,-122.3940233096484,-11.69964667943835
84 | 37.7412684730391,-122.3884734710295,17.76241310362655
85 | 37.75700510114071,-122.40436758876523,65.94055189505069
86 | 37.756100465930125,-122.39002106208412,-56.36582676118401
87 | 37.76434596537849,-122.39386485864551,-95.61285424698947
88 | 37.75395454932123,-122.40533751234592,49.238697691220935
89 | 37.77609571734926,-122.39824408297262,24.097882974354256
90 | 37.78780623604694,-122.38982814863535,163.32099447428482
91 | 37.787767075432974,-122.37188999876257,191.69097924476745
92 | 37.745914865603794,-122.3877192335484,113.94318395629112
93 | 37.7577565610845,-122.39820634820009,-255.0141726131961
94 | 37.73308870733577,-122.37276558660353,-32.685218776736505
95 | 37.767740389916796,-122.4065342363098,94.5529108272889
96 | 37.758068098523516,-122.3873863464816,-207.10550028633384
97 | 37.779036824817766,-122.38621904350397,-12.092537884714984
98 | 37.75781651025666,-122.37640759716125,-94.49245218057058
99 | 37.73791364714906,-122.37960776396767,155.42948081626548
100 | 37.77255868851966,-122.41164454522342,-22.54855925120842
101 | 37.78825990472511,-122.42189873266265,56.07367841203421
102 | 37.77065185585113,-122.39955836907055,-49.8024731188554
103 | 37.726742024742556,-122.37817573912999,127.18555529777767
104 | 37.790210154835876,-122.38246088547837,-98.4330397979424
105 | 37.73512394222983,-122.38019992919034,-169.1751753625439
106 | 37.777166241284775,-122.38120559589369,36.316074998784096
107 | 37.76415700180258,-122.40198893334514,20.282813224115774
108 | 37.770874509295375,-122.36666035203415,5.997662980316916
109 | 37.78947034893661,-122.3709656468137,-5.865456042670694
110 | 37.764339388150496,-122.37357703731456,115.78779630999779
111 | 37.75702918993036,-122.39501725545833,-13.126806992480905
112 | 37.74573819253174,-122.39968951283264,-162.56290013026256
113 | 37.78844664807522,-122.41378706164123,-101.76999143397268
114 | 37.73848745839955,-122.40228035078856,-10.038231557180643
115 | 37.74151554361892,-122.4368332435995,-101.21793426719876
116 | 37.74411497041073,-122.40476249681105,-47.271447622587424
117 | 37.74654316279296,-122.38519763219989,-52.00366970790711
118 | 37.74654095341837,-122.39269031705182,-27.284196301667095
119 | 37.80624349657583,-122.39423566676221,-42.69649357024019
120 | 37.7585116701349,-122.4203357556204,78.75617315833045
121 | 37.75564023798804,-122.38505351103089,98.85934675162449
122 | 37.75026628329714,-122.40378375060365,-40.17859130583187
123 | 37.74355066470795,-122.38038267975587,-1.7329872726284306
124 | 37.78310229799844,-122.38152717146987,64.28719414422808
125 | 37.77591667464419,-122.38623751618101,48.34312793184488
126 | 37.752123537087826,-122.39889194900323,-25.877024303549767
127 | 37.76486339460506,-122.40114632435453,-118.48987918511563
128 | 37.72094035637074,-122.38861559345763,141.92327386575315
129 | 37.75569103404951,-122.38441412357167,10.494009880210614
130 | 37.75437288883373,-122.38771425569101,-37.38996335480193
131 | 37.76118488210506,-122.41257668418243,78.06690700747919
132 | 37.76413854537006,-122.39578302134314,-66.65983882472591
133 | 37.795303424532605,-122.40745576432212,2.9731873700171696
134 | 37.75370113745315,-122.40974742299201,106.43459549643816
135 | 37.783803670314825,-122.40764097177839,-35.37979857550009
136 | 37.77870041014081,-122.40734638508756,-130.78233495331426
137 | 37.80257269615516,-122.36891933541949,77.26968260420048
138 | 37.757986377844944,-122.39410580126938,218.66789683295
139 | 37.76165473566542,-122.43057138078143,-110.028617558587
140 | 37.74743942878242,-122.39239147982207,17.28644785573387
141 | 37.73558276331975,-122.44134343537065,-37.569334281866055
142 | 37.747039907592445,-122.39889965618588,-99.062572997188
143 | 37.74697240379139,-122.38293764893254,-86.70617889160606
144 | 37.78777669275251,-122.41203787311053,20.389796988388333
145 | 37.758980210322434,-122.41773077362862,-45.90037462297181
146 | 37.72859299321226,-122.41113748915556,-93.1731952459591
147 | 37.77143160085102,-122.42946667458153,15.393781803571082
148 | 37.77982610352326,-122.41656241721284,176.03360077316586
149 | 37.756222952119444,-122.39202470889026,-72.88731555251222
150 | 37.752677424785205,-122.42306219516344,-120.79353024199288
151 | 37.723670519247314,-122.40218552085764,-174.85420712144938
152 | 37.793078362079335,-122.41893532918544,-26.740831137856862
153 | 37.76541279341898,-122.41599474817956,-79.23512788208555
154 | 37.7134281946211,-122.39355920739672,86.7857669330923
155 | 37.74732161812856,-122.40718952620622,-81.61421453398229
156 | 37.78015639840209,-122.42360699869249,-55.95346101435415
157 | 37.75566512949454,-122.42778544626364,51.80754879481629
158 | 37.817427490687706,-122.36637697614648,-56.017619090422
159 | 37.738505323951024,-122.40541843845507,193.38699809483168
160 | 37.73910276505598,-122.42606858546957,-25.29518820512715
161 | 37.76945029984773,-122.42192499041055,-115.3658026274748
162 | 37.751644994503046,-122.3976144364142,82.40326633662004
163 | 37.78296551104213,-122.39363606176612,-29.389704717867083
164 | 37.77585141824011,-122.38714512460396,-103.93499484725281
165 | 37.79320299135183,-122.40941632570461,3.84243035729381
166 | 37.76038577471135,-122.4360950763174,-12.983821861760712
167 | 37.7658172705579,-122.40329290311357,63.17511876749761
168 | 37.76516537788886,-122.40540705540282,96.99697998913247
169 | 37.77556548009765,-122.38736354977185,-126.14362465933182
170 | 37.79829264719154,-122.40907311031812,-37.75847698356497
171 | 37.7748615615342,-122.39602130487087,-34.864905666338124
172 | 37.76140053475143,-122.38393487801729,26.978525821032772
173 | 37.76150101394597,-122.42635769539902,71.38586673295426
174 | 37.7433882736392,-122.38766738579224,10.240481366007351
175 | 37.766071789744345,-122.39430824360815,-222.21372003563496
176 | 37.76493063849758,-122.4197867598316,3.927851706293529
177 | 37.754425566602826,-122.37428342448328,53.228036892658395
178 | 37.77067691504449,-122.38508187039729,-34.20674899495201
179 | 37.746986900715555,-122.38165448953407,-34.62098986810051
180 | 37.77870177783779,-122.40830569835843,175.915977108757
181 | 37.75640475166727,-122.38774531105618,186.91898473375548
182 | 37.7751980248594,-122.40292909149052,-19.035230825045097
183 | 37.75343043795456,-122.39322616508406,-54.613033444844575
184 | 37.7431568533669,-122.4235984903364,-187.28995285383064
185 | 37.763832752567446,-122.38928270111724,-31.52549882810842
186 | 37.782582696544225,-122.36383257023898,-18.78576849220263
187 | 37.791992216446054,-122.41886093896976,-84.18832876537992
188 | 37.77732570305232,-122.3913278638363,43.03055873983854
189 | 37.75679581528382,-122.38364961245016,-6.549611303821619
190 | 37.797766719467866,-122.38709400059369,32.63684427887218
191 | 37.767149348956266,-122.38261775363401,52.23084270230013
192 | 37.764102014316634,-122.39511422492689,-140.9238358027403
193 | 37.791971261066344,-122.36381047854837,-271.4145417895502
194 | 37.77611147177429,-122.43350206693164,-65.95085521957165
195 | 37.77425471134072,-122.39864446685684,-68.16119413846468
196 | 37.75293300607479,-122.41985079496563,-36.9053367366249
197 | 37.73035267133743,-122.42174299229617,-32.585660048598854
198 | 37.71982121020398,-122.40487452704494,-65.90272714173044
199 | 37.7401215244277,-122.40843166229071,-133.74688393511045
200 | 37.74689805448228,-122.40398494933525,27.122884296846543
201 | 37.75947590207857,-122.42620954819455,-53.3549441146742
202 | 37.784330414135184,-122.42909551161448,33.59538369880389
203 | 37.762157868187536,-122.4233740348146,-56.24163528140229
204 | 37.73262058161845,-122.3924375874884,-177.54486838067865
205 | 37.76302615332029,-122.38904824207485,-134.97921342829983
206 | 37.75108659557215,-122.3802967642805,172.55155038986695
207 | 37.758891508774255,-122.39067402402304,208.91744995313482
208 | 37.77406034175449,-122.39272375965244,-11.471619149637817
209 | 37.734465254007766,-122.39521072802407,-48.25686256573209
210 | 37.7441824752693,-122.3807667413201,12.952976436289612
211 | 37.765784043734826,-122.40077595466401,30.11428793036426
212 | 37.73560692025331,-122.38118434062702,96.85909931433592
213 | 37.80164640602853,-122.39997698582854,-267.7509879796906
214 | 37.78081369376769,-122.36254700555354,209.35234313376995
215 | 37.75416763581289,-122.39609103874695,59.855614875095284
216 | 37.75335498139198,-122.39046193116937,-51.861953033197125
217 | 37.735185717743256,-122.42175152491967,114.94662796605009
218 | 37.75705256495635,-122.41519848704272,1.781370644995827
219 | 37.77119547190417,-122.41713264016629,-171.03467277486465
220 | 37.75346739378188,-122.43984441517567,6.957061735098834
221 | 37.77751659967967,-122.44562596965743,-48.38339591018884
222 | 37.73134261406652,-122.40594680327234,-69.10316781958983
223 | 37.78260416033912,-122.41138965047904,-38.91272610021386
224 | 37.77892801482669,-122.3986702321922,40.776889439882865
225 | 37.780277696007765,-122.3917650637854,11.037622585617642
226 | 37.79781592207885,-122.3766320782017,30.825321208343365
227 | 37.744834808694925,-122.46112456353393,168.755444017778
228 | 37.763453976420934,-122.36477404305099,-80.12143212173281
229 | 37.763470786012455,-122.36597354189414,-129.62436810283367
230 | 37.74880040178128,-122.39426068486792,-112.99370291989335
231 | 37.79641675073437,-122.3994886780601,82.36520747945332
232 | 37.74450699792222,-122.39369081359291,-21.05285188820362
233 | 37.746176322130594,-122.4051694645595,-3.505899102929185
234 | 37.76089080267207,-122.40322986040351,-11.539618058281985
235 | 37.784966705763814,-122.3527791717715,-127.68372586871747
236 | 37.744113553778384,-122.39025282045941,-42.85729813061639
237 | 37.76103815864298,-122.41025066395689,108.47261900953416
238 | 37.728302693550496,-122.40603036746582,74.16942778627617
239 | 37.77724374483216,-122.39264081202481,-35.30087087812303
240 | 37.78586036672612,-122.40725212750168,-312.8242908967588
241 | 37.81556978571294,-122.37812304806748,-94.69532408442235
242 | 37.766473973032845,-122.4509773528085,-68.99255034209347
243 | 37.78877657683831,-122.42636086838802,84.35842301861358
244 | 37.774516754630405,-122.37100112910699,-28.617210591229814
245 | 37.7439034455936,-122.3859810069205,-35.6298870046524
246 | 37.76560099023185,-122.40315260018934,23.56502530754684
247 | 37.75900078835332,-122.39190117861541,-57.223477955907335
248 | 37.78617915564174,-122.39644218084402,53.256307327247484
249 | 37.711739729589915,-122.37320798502898,21.62115598401593
250 | 37.75449351547249,-122.40441368689096,-27.87752286606552
251 | 37.7450420222534,-122.40457212802974,193.93185224094148
252 | 37.74622292449864,-122.3589892274603,23.874970542914348
253 | 37.74317077839214,-122.40954549986581,-102.31501346103575
254 | 37.74339627391949,-122.40125591897663,-18.334237514788647
255 | 37.737488214956294,-122.39949001908822,-131.5131888304709
256 | 37.73943560655877,-122.42719095391708,-117.83853936970705
257 | 37.770415114152556,-122.4263810521687,-88.59948671887852
258 | 37.76452348924278,-122.42139022924161,120.54790648991778
259 | 37.76694965302441,-122.41232270081079,-56.36701123429124
260 | 37.73928993858765,-122.37816071849018,43.86736010760264
261 | 37.80887962415305,-122.40664263591671,-61.96897559652953
262 | 37.742968806931096,-122.38547884401943,80.47269642090059
263 | 37.75723045626999,-122.37733515176637,13.948550117318836
264 | 37.739097587312266,-122.40500686098873,147.60225236838883
265 | 37.77371863031606,-122.37664502246425,-71.51355994052868
266 | 37.74021361827236,-122.38422618698819,-35.18398626684894
267 | 37.794687156561054,-122.3956717018507,-69.56925541036449
268 | 37.762696062499536,-122.384704603474,42.500439478815736
269 | 37.78213245680302,-122.42615229676377,15.875618145767955
270 | 37.73809309561985,-122.37678543367878,-80.85920549510679
271 | 37.756304898315506,-122.36372511654339,94.2935328415704
272 | 37.765629473037926,-122.3435802621727,-43.26693742260886
273 | 37.74780056391932,-122.42365924169931,89.53675281833488
274 | 37.79285423844018,-122.37441272648309,97.09054369076934
275 | 37.75694882954573,-122.40832226167541,-92.97704937778487
276 | 37.731197333255786,-122.37087850585797,-10.169629792826465
277 | 37.77123389975287,-122.41676444910958,-119.35923248996065
278 | 37.77407210971063,-122.4041291788844,-99.66936271396337
279 | 37.75232060778826,-122.40720211328266,26.102219324470997
280 | 37.760695804226955,-122.43856473689155,3.9128962008369865
281 | 37.78747844554781,-122.39410328900708,85.96969003980233
282 | 37.733138681036394,-122.38718988217211,-110.22954244562817
283 | 37.72805248531463,-122.41961216888733,-133.28871418957107
284 | 37.76627191251618,-122.39945005156225,-39.365856659681924
285 | 37.718711110098866,-122.40978690763788,33.79068593404742
286 | 37.748808755380416,-122.3453419341408,33.90775630673999
287 | 37.78427677770538,-122.37159111503512,189.1384962469909
288 | 37.75881895175276,-122.38619522632055,12.802149265027495
289 | 37.754691379496904,-122.4088767972053,-18.77435206128788
290 | 37.75953926965509,-122.38304915790442,73.14977711812209
291 | 37.80679688118592,-122.41648482794889,81.08587976889442
292 | 37.75077019822035,-122.40411251226982,21.184656097042623
293 | 37.784760304850614,-122.37523783610031,54.2937311506079
294 | 37.75440588081377,-122.36343222468695,20.95481563663562
295 | 37.789493777456116,-122.43567363149337,3.6729430042116804
296 | 37.764888180152155,-122.38512585488748,132.47372593559658
297 | 37.79530731887664,-122.4059635653157,111.30683367921507
298 | 37.75062450433073,-122.39138592645283,-117.76549808518264
299 | 37.75223799298351,-122.37510718254121,-18.99321555373996
300 | 37.753144773048454,-122.43134959994423,99.21732295710824
301 | 37.73769032229086,-122.36570768755008,193.4019529956283
302 | 37.741653336689005,-122.43876725769276,-74.74931912679962
303 | 37.734671563079324,-122.3931285463641,56.22502273968735
304 | 37.777750070222126,-122.43153121402426,25.653772789680062
305 | 37.7727043313013,-122.39899050784446,-50.58898654389571
306 | 37.736744192501654,-122.38376822349558,-118.01614596616207
307 | 37.74772104675795,-122.40694474001339,110.46266347592235
308 | 37.77079511149522,-122.42322403953298,-24.207157231981526
309 | 37.72331186653051,-122.39362732473222,102.96734600215562
310 | 37.754011397849496,-122.41212446521898,-43.9238497372045
311 | 37.76589099371315,-122.41517041729647,-123.90613068194394
312 | 37.75516213930651,-122.4112154682552,-64.52093124698524
313 | 37.72007270168368,-122.3895556709614,-37.23985695708969
314 | 37.76728160818761,-122.38441845009125,-2.732504895534543
315 | 37.75631059758188,-122.34782023810499,-86.67244390170778
316 | 37.74609872311366,-122.3867471409185,129.47559718286357
317 | 37.73028565827956,-122.4055962242608,66.97645459196681
318 | 37.78248553032316,-122.37763022937015,88.79159989415902
319 | 37.77417064045112,-122.40276297191457,19.5753495992221
320 | 37.76544604457704,-122.39820817538718,-19.884239214463236
321 | 37.72890797028708,-122.38452850485821,127.20395713709334
322 | 37.76390636225159,-122.42435153258111,27.59205433555085
323 | 37.728630678669,-122.4044747821107,174.92319703623966
324 | 37.747827029695685,-122.40205385185477,-29.434390010967665
325 | 37.732915398826414,-122.35916505278244,119.12611169829223
326 | 37.75144678536055,-122.38404948033342,-8.098233304552602
327 | 37.78955502280017,-122.36991624002847,3.5915979486621676
328 | 37.76198677254888,-122.37835434887135,-48.7367896411919
329 | 37.723720325616874,-122.38549264746091,292.7199721594333
330 | 37.745269778965586,-122.41790576951719,-117.86691129755486
331 | 37.77325965777856,-122.43697720243826,109.02715088159331
332 | 37.76482954527497,-122.39693880292118,-100.70717492359374
333 | 37.77008898103306,-122.4386292344897,-5.597104641841482
334 | 37.78128784518493,-122.43260087928658,55.036172432340535
335 | 37.75764826432482,-122.41632690461657,-27.085176371943437
336 | 37.76157763815995,-122.41029275279955,-144.6240787964906
337 | 37.78194486463401,-122.38843244528766,-2.4422646642564576
338 | 37.76496801558747,-122.3982002813466,-92.63723793734803
339 | 37.75977405357469,-122.40433178347631,36.95653919618728
340 | 37.77448343836736,-122.43064930088835,-107.58725625820031
341 | 37.72274765924638,-122.42686491125158,-105.43339824860539
342 | 37.76069480029505,-122.410550881463,108.08296337078316
343 | 37.76358651390697,-122.41331987954668,-139.66061756579018
344 | 37.742259087003504,-122.39879118617182,228.95794630107082
345 | 37.759361481678496,-122.42648287852336,184.00338540644378
346 | 37.77636246550985,-122.41843672434028,-57.002337551022606
347 | 37.77398776845413,-122.43985103026003,-108.36747728686049
348 | 37.78542990139963,-122.39509651977662,74.17201446210198
349 | 37.78987650728191,-122.40793460481008,-21.45137747295431
350 | 37.78551038120829,-122.39744709988119,53.79715940141092
351 | 37.74543857721953,-122.37553860878457,38.43903473989398
352 | 37.75989279331853,-122.39993865864695,3.4725615438959174
353 | 37.74677754929691,-122.40449574490032,36.8099794458663
354 | 37.78591630306767,-122.40126763266936,34.15450372448782
355 | 37.78225085266072,-122.37061608168,109.20809904340614
356 | 37.76100050671163,-122.38908340877016,104.13075164875158
357 | 37.7882549154208,-122.41161546508103,9.397906976890882
358 | 37.78418413961602,-122.38124045370645,72.6861688796093
359 | 37.74777208177103,-122.3931543899345,-119.50059296404949
360 | 37.771967125414555,-122.36984790085974,42.251386131302596
361 | 37.74410323397005,-122.38650784102951,72.81823746141987
362 | 37.75948806988031,-122.40258015111539,-222.34708340783266
363 | 37.77135252770122,-122.38987427741644,128.588337393513
364 | 37.75099250854291,-122.39740282280772,-92.4432761624106
365 | 37.77793680247842,-122.36230947695621,164.25835446467377
366 | 37.74852497926156,-122.38135196551964,-81.19661754368417
367 | 37.7434640167262,-122.42001663163522,339.1635652422491
368 | 37.79181915571627,-122.39704212846092,-23.94975433872738
369 | 37.728565984529624,-122.38975357086049,-129.16408541594896
370 | 37.78010688787307,-122.43085548595273,-124.3497812122089
371 | 37.75780773434122,-122.44234830458625,11.826420059453447
372 | 37.7682121235117,-122.39915585456754,-105.40637066138021
373 | 37.73793480462883,-122.40649617454376,108.78865904616262
374 | 37.758179200519415,-122.40824372701704,109.36306383292111
375 | 37.73568505677661,-122.43135712470244,274.519089046448
376 | 37.77986757513903,-122.4159285604471,-245.34093979073086
377 | 37.766475479953165,-122.38578975682485,8.422252650401964
378 | 37.762269242673845,-122.39425341171493,-78.82358300505629
379 | 37.75699268365521,-122.38696073709725,-26.103111946915696
380 | 37.785564668748364,-122.3892882948913,-14.057470841734673
381 | 37.744894538967145,-122.41217198657729,-122.780438156657
382 | 37.73553173032352,-122.37711890004718,46.70206129046417
383 | 37.71959274875649,-122.38057530300934,-154.80242506456005
384 | 37.781956012997064,-122.37330402105212,-103.67825998097449
385 | 37.77478841333315,-122.39566523163099,11.004539518537959
386 | 37.784638914934085,-122.42557805189603,-162.5707043560224
387 | 37.77146821551823,-122.3759533303834,-66.32278814584694
388 | 37.76894480555315,-122.40991946840481,164.80107904094112
389 | 37.721016854102174,-122.43649914754236,-38.575041780481
390 | 37.795765048940225,-122.39251223369928,132.63442185799533
391 | 37.77468255745856,-122.39858057454768,-78.13788669726063
392 | 37.752766928314784,-122.39413726533878,-26.30614771951291
393 | 37.77355607644522,-122.36626636584664,223.47497898439718
394 | 37.748808266583055,-122.39739821004433,6.686861799888246
395 | 37.737237490465844,-122.40317935582027,160.1150359691261
396 | 37.78923135479996,-122.38019516901277,-22.155246583289063
397 | 37.79248496877821,-122.3979010532435,253.48921452658692
398 | 37.749719374876996,-122.38758202714232,66.28156657365419
399 | 37.75471869402482,-122.43504055548875,67.86739753508027
400 | 37.75977490353779,-122.43200032615887,176.99765187805602
401 | 37.752220421594444,-122.41960463317633,-176.7534643841979
402 | 37.77213737884763,-122.399149496282,284.2964167720207
403 | 37.70345048817042,-122.35734842199867,174.60889224314207
404 | 37.759829109729814,-122.41912644480705,16.22756220368206
405 | 37.769809089712055,-122.40807806549161,-122.40581811853643
406 | 37.7632339547676,-122.41371942427416,97.90400593387683
407 | 37.78157851589603,-122.42288137195423,-47.23766445317278
408 | 37.75876287277541,-122.34230489951418,-125.2195582015939
409 | 37.795443075155895,-122.42915474999111,10.689156814008683
410 | 37.76777532833511,-122.43306720497861,24.673598467392313
411 | 37.77928751971905,-122.36912556396186,40.16210499674584
412 | 37.78924758936619,-122.43262095356495,-41.17667015855231
413 | 37.762129606921974,-122.40735233040468,-48.5236449112897
414 | 37.74238886374946,-122.41185661189634,-9.519112741804063
415 | 37.76584667911822,-122.37238495347914,68.27812442788242
416 | 37.7791198437874,-122.41100320661313,-26.90612778650243
417 | 37.76637586607895,-122.41043863876693,67.09222676852796
418 | 37.78101698400816,-122.401650397911,-43.53961538992915
419 | 37.754090151537206,-122.40622212563561,89.48027545795313
420 | 37.739188628655015,-122.41470530160383,-194.90351034524383
421 | 37.758803932087964,-122.37657394849114,-109.1488289974747
422 | 37.779207799712786,-122.40044257647814,-32.09503367774996
423 | 37.80210715167396,-122.3879063685894,-29.632067684034507
424 | 37.78615816005211,-122.39572940440739,43.39114250026173
425 | 37.78502504743069,-122.39710322915542,-226.9740547236626
426 | 37.74647132011123,-122.38148372248416,122.01591172254518
427 | 37.76809458265251,-122.38760105358745,-184.1384423392161
428 | 37.743321327409994,-122.38322868022873,-36.61860952411444
429 | 37.79703797997677,-122.35609003527496,72.19944048850883
430 | 37.778665111910584,-122.37110467841823,-95.03106330055367
431 | 37.77537726019713,-122.40574491850205,65.8648902015997
432 | 37.799028140362715,-122.39577148715661,9.803500280860247
433 | 37.75365643501189,-122.42192042372237,104.23717933149106
434 | 37.75064206016957,-122.41639505685433,-49.735318151009835
435 | 37.73888168813182,-122.40430429033546,-57.44463775622825
436 | 37.80177402314045,-122.40308061333307,-135.446632522287
437 | 37.72390032693419,-122.43277222350456,203.38106882506395
438 | 37.76086005644441,-122.4504667104533,6.177968009341645
439 | 37.76797630381257,-122.3746878900823,59.12122203009581
440 | 37.76900024599267,-122.38174025427693,-70.75412449109393
441 | 37.75485126612336,-122.41217132022963,4.601114434607222
442 | 37.752172418055174,-122.41323480863005,123.6179343851135
443 | 37.74775705013573,-122.38785136847223,172.5744033683747
444 | 37.78194442172056,-122.43935992762066,75.06306342364284
445 | 37.75881300751281,-122.38546747932403,52.772106827317224
446 | 37.76658264998941,-122.39457078625217,64.17139099064097
447 | 37.72402232270978,-122.39610571499374,38.05473704390937
448 | 37.73983322272941,-122.3896086354435,-93.11766532736819
449 | 37.72777496620412,-122.38377702836094,94.38768984178031
450 | 37.76234882534946,-122.39360458795048,-85.93149482250352
451 | 37.7531919882151,-122.44190109863594,-171.88238445373474
452 | 37.75054631488776,-122.38847548370079,-141.66682317377644
453 | 37.751017573728426,-122.41686302588063,77.7975895618189
454 | 37.73876912398233,-122.4256925595795,114.53681135863579
455 | 37.75578515873803,-122.38192989181046,26.59092622813604
456 | 37.752364528200616,-122.40737237848326,-72.71529273179658
457 | 37.76599177604949,-122.38364774683664,13.072343731032307
458 | 37.74103534080297,-122.38620310424584,70.76217897008425
459 | 37.75520142834063,-122.37539852054022,-63.376622161519826
460 | 37.730339841565694,-122.33490337205892,81.03998899986428
461 | 37.788102706360256,-122.3802039569412,-72.7910313345286
462 | 37.77644014917478,-122.41506425608883,27.17936517595335
463 | 37.780363417580816,-122.41809008015876,52.272026214915755
464 | 37.77541168362136,-122.38901888057292,-89.61472940910532
465 | 37.73182667725185,-122.38258853207944,-14.445213557412565
466 | 37.76212473192555,-122.38534248735361,-71.44158349676333
467 | 37.753563823297355,-122.41653192660516,-146.8411063253397
468 | 37.75814952473832,-122.43020216190004,-187.97703652352754
469 | 37.73875939062916,-122.39331944767035,141.93206334599353
470 | 37.79330556775602,-122.38923776651491,20.78864858386511
471 | 37.760117038924406,-122.38701613199781,79.92144796294998
472 | 37.78910351500951,-122.40290093376476,3.206008290018853
473 | 37.73112298792708,-122.36470837999315,86.56871118146579
474 | 37.76438507165934,-122.4156663802083,120.2186651954677
475 | 37.76667183933804,-122.41041274453235,-121.6771856409991
476 | 37.73435868556344,-122.4078101407099,83.29434383872744
477 | 37.785773788035215,-122.37783021182526,18.053131491651854
478 | 37.767904983013686,-122.38939513422575,37.32955188893207
479 | 37.78330684919899,-122.41538430792424,-64.65490643007222
480 | 37.73892493899459,-122.37461483008035,-94.15496705034565
481 | 37.75985152595791,-122.38023754266575,127.34313376224125
482 | 37.735374010424685,-122.410559121665,-81.72774695819666
483 | 37.769476482314886,-122.42144002531556,-92.49973352013703
484 | 37.76546251897876,-122.43360790103691,19.964833195155876
485 | 37.77493087318817,-122.43175529218364,43.177708215506556
486 | 37.74753247954074,-122.36179516040627,-107.99594551421595
487 | 37.75438914630802,-122.39357336152126,147.85776420454624
488 | 37.79022102262424,-122.43292976127856,-0.9615617785241818
489 | 37.782513066511356,-122.40322688039113,-82.70172771731897
490 | 37.73638679516077,-122.39345780729572,-103.79046178283741
491 | 37.73300932255737,-122.38871645344945,21.361656646440718
492 | 37.766708558906465,-122.40580267650702,113.922868200973
493 | 37.75721725135926,-122.41257231770194,127.5046117451367
494 | 37.74250955131464,-122.37926394985644,-82.41134908873448
495 | 37.72577470536061,-122.37161691020634,-21.341415526940896
496 | 37.73162934241486,-122.39358885126197,178.74548125653394
497 | 37.763375277374585,-122.38313423508538,126.97911010602634
498 | 37.7994341558152,-122.4090441635316,-72.15440625658023
499 | 37.78305948646084,-122.37758652883235,-122.00564287927871
500 | 37.77364578284302,-122.38028707611006,70.94538107156137
501 | 37.75008652685707,-122.4022070769577,28.63227296384477
502 | 37.761156095649575,-122.39242309686259,-2.104705737574324
503 | 37.74563269517862,-122.38349163134635,38.63923273346182
504 | 37.77110287417224,-122.41923079218058,-30.42067911197438
505 | 37.76694681715826,-122.43495369301951,103.7524940749931
506 | 37.76930735268821,-122.39300152668713,68.31885905278413
507 | 37.72331774828933,-122.41703507617267,-86.4484385068478
508 | 37.805529022878986,-122.38554429008543,-31.9808671922491
509 | 37.76895486328248,-122.38041736792954,48.23707580857094
510 | 37.74731166361217,-122.38454693757575,-22.659835200925492
511 | 37.77189659217842,-122.38617265480602,-47.02896390945004
512 | 37.79137899294976,-122.44079774927492,-59.638398272799066
513 | 37.757488950610345,-122.42614674804815,96.28387380290245
514 | 37.77879769704204,-122.36616288466168,-35.46466975911387
515 | 37.75059986099737,-122.41733461798538,-134.67926665960198
516 | 37.75941821721006,-122.42068441205554,101.88090057992652
517 | 37.779484757306754,-122.40738530682789,-83.63088494413476
518 | 37.74362614955509,-122.38951630840332,-9.536575803000126
519 | 37.768381948997806,-122.40882093242546,-137.66548121102622
520 | 37.72756763006029,-122.35638803956155,56.565863074469625
521 | 37.75322067277208,-122.38804986699121,-44.72826782957522
522 | 37.77017841739915,-122.41273378995483,-67.63988844917382
523 | 37.79060788344912,-122.42962338358521,93.49190934951679
524 | 37.76619784864978,-122.40789493829443,-82.83550441105596
525 | 37.7447618466861,-122.39782795374745,59.68904321967252
526 | 37.767175524895286,-122.39792526953975,-55.4484082194016
527 | 37.73381752987893,-122.41142131937958,-19.594934783788855
528 | 37.776340586101114,-122.37507437535906,3.3216253291029285
529 | 37.74602969541567,-122.375856760741,41.48295101387799
530 | 37.75633198315451,-122.41308692887638,3.754865575519342
531 | 37.75780458469507,-122.3924430213146,-105.77302879993414
532 | 37.781368050659914,-122.37126147602766,-93.84614050863081
533 | 37.78734657568627,-122.38263190339657,-206.67753071261305
534 | 37.76004902226787,-122.38154447920324,47.51505088734244
535 | 37.73901820706913,-122.36150317333194,104.87740386833464
536 | 37.699847730564535,-122.42120090355631,130.03198435727995
537 | 37.7890295689665,-122.3895141998122,32.28363493760406
538 | 37.78502286876073,-122.35012022364157,25.295306112631327
539 | 37.75827874600912,-122.42865883849132,-115.15925454538431
540 | 37.77024080248213,-122.38814426113098,-121.90105858373721
541 | 37.77249698868357,-122.400106390433,-94.56254499543539
542 | 37.72998787393671,-122.37136033644887,-118.80462614188889
543 | 37.7978993394467,-122.41335924931454,268.74439905464135
544 | 37.744023254239494,-122.39769140322659,-30.45670926973435
545 | 37.76131976268953,-122.37585931414421,-70.14102360698188
546 | 37.75511308727816,-122.39770441232639,159.9693145344695
547 | 37.749789187937374,-122.41343121116712,33.7981384647733
548 | 37.75410638749342,-122.39933062178193,94.07749910827643
549 | 37.7779918779443,-122.3668052387537,117.43144608202863
550 | 37.74656017201378,-122.41834076409037,98.14896195178319
551 | 37.74070894897783,-122.41010631582088,-33.01384986940011
552 | 37.76958756029622,-122.39794465950922,77.17459307643499
553 | 37.75373357828601,-122.37683662759895,-23.28396266797064
554 | 37.73137037016276,-122.41047533418474,92.03398169280497
555 | 37.740110454045485,-122.4088077009441,-101.66191216480223
556 | 37.731091666791755,-122.43299255898953,4.623316678638114
557 | 37.76134398630508,-122.38465391190091,1.5261753094580228
558 | 37.749509129949566,-122.37650385036078,-0.7005281011766258
559 | 37.7535037183336,-122.42967651574874,-66.47570589707014
560 | 37.75827452950285,-122.43317265852349,54.29480130094147
561 | 37.73426244043026,-122.4127991132376,-59.062643514056035
562 | 37.755860062590024,-122.41090292655603,-3.089123838837829
563 | 37.74316317624749,-122.3942187402071,108.8492250629542
564 | 37.74380245975556,-122.4068986503446,-0.4021764405507188
565 | 37.75950840476287,-122.38867603928196,-115.33928678186223
566 | 37.764577700975394,-122.40449418498322,-10.63377864486629
567 | 37.76977752241155,-122.4074086785468,-109.02687417669847
568 | 37.740902445288704,-122.39047590127748,-3.7152024723881247
569 | 37.78426893237921,-122.4110119355889,-181.8839411073194
570 | 37.79259403512172,-122.4072444514953,-79.05772085642815
571 | 37.78108159717471,-122.3834111177228,15.969946260711962
572 | 37.688449863170625,-122.42037609599667,112.26238935067158
573 | 37.74981415131419,-122.42642250128613,-68.13367611979886
574 | 37.79030454074771,-122.41047627299385,-17.515306222894285
575 | 37.78687856997667,-122.39856028378136,-9.79226344107316
576 | 37.73387154890095,-122.38837756966956,-88.10764056941055
577 | 37.770479146178864,-122.3728961685163,116.4834699085652
578 | 37.77274275424505,-122.38195453400064,134.13947041070102
579 | 37.74836857606688,-122.38330359004009,112.84626320873603
580 | 37.789411406020534,-122.3647973553063,51.282635199555095
581 | 37.76552303095645,-122.4240711344598,1.8741816399157163
582 | 37.714729691025646,-122.40322056970041,-206.66256616680369
583 | 37.77623999361829,-122.41397148240486,108.53357350341335
584 | 37.764165414130446,-122.41610164837076,101.45881362874762
585 | 37.753426564263485,-122.36767929807833,64.55498040513697
586 | 37.75445606977475,-122.40527062109004,32.09685581989882
587 | 37.80423756341494,-122.42446150873171,56.873198983158616
588 | 37.71652928217781,-122.39911459414976,106.41225246717228
589 | 37.76249870871446,-122.3710843159417,142.71905549701987
590 | 37.78807494859314,-122.40566377251899,-139.05672494470306
591 | 37.731001261969496,-122.4110444113709,-98.91104909790798
592 | 37.76600667586529,-122.36354850138808,0.20802424347064688
593 | 37.74939178910425,-122.38948706070933,231.30781945905193
594 | 37.72485231907519,-122.40018493184657,60.45076162891257
595 | 37.74628670932319,-122.42297998573869,-89.78734261510046
596 | 37.74817098559643,-122.38573213152937,-35.2369552687904
597 | 37.775276037265336,-122.38574810772965,-97.41426359870862
598 | 37.75464801588338,-122.39114328215167,31.25937788608537
599 | 37.73803954577074,-122.40498965123027,-13.614707632193939
600 | 37.751821263140975,-122.41642956945272,75.58745299471082
601 | 37.78244274583316,-122.4066973192692,-60.38464184368713
602 | 37.738230097771556,-122.36447161651886,221.38008930596595
603 | 37.74736163573655,-122.39290714311922,26.766729016179113
604 | 37.734900811101355,-122.3705987362388,48.94275357088178
605 | 37.774340875235175,-122.37891486282027,-16.46461077110633
606 | 37.76009014379557,-122.35690183953442,25.1443037872501
607 | 37.74728707352759,-122.43421862787383,-141.5152754505761
608 | 37.80682110163261,-122.40896562416019,-14.147955779939245
609 | 37.7774123085831,-122.44253755902756,38.380635896664494
610 | 37.771581730256706,-122.35867649276362,-88.08335397271408
611 | 37.74241457640031,-122.39679714340555,199.05423516661654
612 | 37.73745786445755,-122.42089898910191,-35.12460758176122
613 | 37.722035890752046,-122.42031259312387,-157.25286614668423
614 | 37.74710581156456,-122.386532724107,76.33091192253296
615 | 37.72978447250907,-122.38141967929455,0.0013140991649492246
616 | 37.72431828846538,-122.4208248878486,167.6139844814913
617 | 37.74813051462177,-122.39370199443613,-210.59547125246135
618 | 37.77394007538198,-122.38426309456567,-34.04865733511209
619 | 37.77626047445771,-122.38354476110273,-56.326960271192505
620 | 37.792150748895615,-122.39694756478828,-152.03379937723312
621 | 37.757900298885914,-122.40284358665485,-52.80867120790581
622 | 37.755478943218606,-122.38717414196469,-72.96812782970996
623 | 37.74359292604995,-122.3733560456397,68.7637952975959
624 | 37.75485855890859,-122.37419475212629,145.81366829098783
625 | 37.69912107418576,-122.39993687405543,-115.83835624815815
626 | 37.743365071227835,-122.42925058250444,64.05873640238067
627 | 37.7595573421831,-122.39438224574864,-106.95174603362263
628 | 37.74532242964693,-122.38869455293272,-13.913108390504583
629 | 37.73608975069654,-122.3778938287741,71.01903022474522
630 | 37.80455125129967,-122.42421891327425,-135.72121961652337
631 | 37.74769541381465,-122.40668977480443,14.330146706492188
632 | 37.78154121463295,-122.38096841719077,64.98459494821357
633 | 37.742689876958025,-122.419424593799,-23.960322819405388
634 | 37.78899523817889,-122.40979579708163,49.49466855718358
635 | 37.75583930241618,-122.38969227146838,-5.834422344712291
636 | 37.760931751436864,-122.41193944151216,135.97508456451567
637 | 37.747483556436805,-122.40417265829525,-116.036248687841
638 | 37.78229242710969,-122.37811071234452,97.05311393025357
639 | 37.750894515393846,-122.3966426078269,210.88654878569685
640 | 37.74875108669432,-122.36617958178222,-178.41472449578225
641 | 37.77683571527212,-122.43377178800836,-159.25490181632534
642 | 37.74971470949327,-122.38378495274247,47.65196578417864
643 | 37.75573962385834,-122.40297545546649,71.40438264325113
644 | 37.765697803591685,-122.38351787995214,-29.69127927453848
645 | 37.75184219446245,-122.3493985843326,-100.047024392201
646 | 37.78908785425565,-122.42223935064305,-144.87511219453165
647 | 37.77881266182471,-122.40111433252423,202.03588166127227
648 | 37.750265945235135,-122.4196607198474,-48.333101542160826
649 | 37.76153407209032,-122.40043716816716,-233.72316417728575
650 | 37.75467491325783,-122.37415067018902,-58.863053089791826
651 | 37.79168309117973,-122.43152106619542,169.9578835045262
652 | 37.759256342487184,-122.39419251339673,0.8349151041185866
653 | 37.75214415123683,-122.40072070159826,-105.6811297178455
654 | 37.7716726678488,-122.3976687514362,-16.81757016271348
655 | 37.77593267336379,-122.38951004924675,77.8242838303936
656 | 37.730185920845486,-122.40290526567696,65.813473667763
657 | 37.74594221672132,-122.414290964385,1.5144777160415173
658 | 37.74499006101305,-122.3804986429683,-165.57891422360848
659 | 37.74504257290228,-122.391625970653,80.3442621515362
660 | 37.7417434128609,-122.40329439988349,-106.29384617419622
661 | 37.78242856315607,-122.39834462275668,79.85153966357127
662 | 37.74129829007528,-122.34397712406782,218.45127447685022
663 | 37.75066160018355,-122.37618709699338,53.4785166353966
664 | 37.80783752034163,-122.3892037675255,168.42221772012735
665 | 37.75571546751812,-122.41202879762399,-65.36903154784497
666 | 37.79710595656293,-122.39192142483809,90.90066025708168
667 | 37.741072087422395,-122.39454474331126,-67.56686940256522
668 | 37.769658380665355,-122.37371415177051,191.71681272792532
669 | 37.7851641779268,-122.4119738215599,-6.574646812133701
670 | 37.76865662318809,-122.39248986793169,138.01714532549556
671 | 37.782584604239624,-122.39229896547086,-55.4151906607709
672 | 37.76761079489809,-122.38951863670663,23.586591332454308
673 | 37.785970288948455,-122.396981331813,-18.832837775386537
674 | 37.77369251525443,-122.40596484679234,106.01769091555488
675 | 37.793703874519075,-122.41938077802499,-25.88506543153623
676 | 37.79430791037349,-122.39703583407187,41.96306451171245
677 | 37.77653333389468,-122.41158834078315,-120.01607371537169
678 | 37.766533940794154,-122.37788293744639,58.03898434880046
679 | 37.7419303643592,-122.4133199413157,-141.60250436590357
680 | 37.720209419287414,-122.38950287232574,173.42478761768615
681 | 37.75687640962593,-122.38691089765658,-111.05753455311631
682 | 37.77583382714803,-122.40203200147835,7.196983619407897
683 | 37.784626371591166,-122.36596131760727,-0.9605464732922502
684 | 37.75826682633599,-122.39732867480959,-62.00602466746024
685 | 37.77733587258526,-122.40703268622393,16.900121329282577
686 | 37.740157421624616,-122.3857036135898,124.34684751165153
687 | 37.76519822325207,-122.37537001098097,144.27556734239468
688 | 37.749936025181356,-122.41851653477201,-10.93287386145818
689 | 37.76469193625385,-122.39927309572836,19.234219151127014
690 | 37.78213927330498,-122.42340686053886,183.0895037520105
691 | 37.74628217867125,-122.36597572555111,-69.6042001024941
692 | 37.77301862612661,-122.39472799953481,15.502036072476086
693 | 37.77702632239527,-122.34919173387961,106.92973569047739
694 | 37.70933065942366,-122.40060898745215,20.988536372972465
695 | 37.758437630890874,-122.39022012688704,-33.2413353469274
696 | 37.773062885546906,-122.38524724780083,-127.30193772362448
697 | 37.76440441671559,-122.4076624190473,60.15978932515779
698 | 37.783848605502946,-122.36488915634722,67.1219152032945
699 | 37.75988684297756,-122.39545291072947,28.057795775282173
700 | 37.77985035216013,-122.41698197329664,-59.345116215359695
701 | 37.76935422111486,-122.40365517394318,91.38394140175434
702 | 37.76894126347002,-122.41597959137073,3.8455225584159725
703 | 37.74589049879003,-122.41675832857321,-2.584878824654233
704 | 37.75205390787973,-122.44138841094197,-88.79203204597694
705 | 37.75134872845379,-122.41063291314141,108.67120758189361
706 | 37.746279973858805,-122.40492731316964,-25.584568241934225
707 | 37.78000346728386,-122.42726336898032,134.00003344486845
708 | 37.74103917591192,-122.41410317106869,86.16962613619492
709 | 37.74242012513683,-122.43227707902389,90.9172328142044
710 | 37.77330732823569,-122.37360316442921,37.650184082613016
711 | 37.74631335460463,-122.39259530840036,-5.447740126761639
712 | 37.7772667962985,-122.39849228294227,-115.9138974108604
713 | 37.74836588440224,-122.40026548073396,-19.42774915274159
714 | 37.747775891020034,-122.41990040777789,97.26711053676351
715 | 37.7768962124561,-122.38644971795117,-97.1410401280559
716 | 37.772298204518464,-122.43038547539425,134.34149465232204
717 | 37.72548258551712,-122.42386394074676,-113.38415911859305
718 | 37.75438523435602,-122.37903908499754,-78.91272664862221
719 | 37.756583821079595,-122.37894698049838,-198.06179367336384
720 | 37.791154210583514,-122.40502313533833,142.80046869806296
721 | 37.7347080309224,-122.4054166399136,-34.43213480542957
722 | 37.77952160847498,-122.41800119867663,120.54544518243297
723 | 37.77103386222912,-122.42146172116075,96.68977361299757
724 | 37.74806600033717,-122.41666483483843,-40.83234814106305
725 | 37.75229150873669,-122.38637151668064,-129.18647060270052
726 | 37.75652076821719,-122.42202444294321,-63.99744288534711
727 | 37.75958481724985,-122.41032348836181,-134.2603868670223
728 | 37.734767334378176,-122.43988805044364,-54.41907930240282
729 | 37.75198965728241,-122.38905214674745,-5.430232497524655
730 | 37.7664433475752,-122.39567596476448,11.157664389169861
731 | 37.754261165749554,-122.38776274866721,-49.730626220592825
732 | 37.78059106736243,-122.36605859984161,5.336911242840305
733 | 37.762589966681304,-122.38141983816352,-101.89345723559946
734 | 37.77389485420059,-122.4132609488695,4.900810971937456
735 | 37.78432281783228,-122.36075632414375,206.32190693201
736 | 37.77810668530282,-122.38616775119304,93.24282310040333
737 | 37.789357713916644,-122.41028649024314,145.23896480619936
738 | 37.77805878247083,-122.37306842655856,57.29588962054083
739 | 37.7719418434307,-122.40202854036869,-41.89784883287119
740 | 37.77588973560505,-122.36780386858264,-32.86801720966434
741 | 37.769596321274626,-122.40813048234818,-115.14206386737203
742 | 37.770396517894035,-122.39508727831291,-88.07796495499828
743 | 37.785625722962116,-122.42128802241456,29.384006015002722
744 | 37.73703821897194,-122.41364878261646,76.55924702223307
745 | 37.75823627296804,-122.38124723869664,213.66089240405378
746 | 37.755046099613814,-122.40994490006675,7.337864531595431
747 | 37.7694342574835,-122.42790831387032,-162.95682918504377
748 | 37.74754902699181,-122.41586356993734,17.756929156361746
749 | 37.76501089491765,-122.39227221696767,85.21859775952576
750 | 37.746599492685164,-122.41015528568627,48.96482077991172
751 | 37.788841146512304,-122.39766068287744,56.74388820016233
752 | 37.72607387482371,-122.44528738873436,23.757584104755296
753 | 37.74477651955319,-122.37403633630905,8.136881007463305
754 | 37.77323538823404,-122.40144509254952,-60.42775550395882
755 | 37.75982646970796,-122.37256287365614,-54.4058970908951
756 | 37.770516268723036,-122.41902352195699,-123.09296047336117
757 | 37.756756349558,-122.37673090432241,-149.50492255513163
758 | 37.74616267770551,-122.44815892021127,141.14690627406588
759 | 37.77556799360885,-122.40562240408175,48.80595171129676
760 | 37.76056213778762,-122.42949511757965,-190.63181613961447
761 | 37.756716437430406,-122.41592065728751,32.818454882159884
762 | 37.70966649662089,-122.36637329165147,-39.745497633285105
763 | 37.731873901319545,-122.39683995885693,26.18822106694815
764 | 37.7501510490356,-122.39018782213661,79.12273628181981
765 | 37.746080439476586,-122.41311593681675,-178.42062574561083
766 | 37.77834513745344,-122.39617189937091,149.89305350672035
767 | 37.74859882587599,-122.38360771709277,-23.912719760810266
768 | 37.720329178491724,-122.41115147202039,305.2889838759873
769 | 37.791583080155554,-122.4032558902741,34.99550177605483
770 | 37.75014975404675,-122.39480597118073,-143.47680024972573
771 | 37.759083099360964,-122.40975799597715,100.79483142470917
772 | 37.719254848219784,-122.43072866177812,42.06511897952715
773 | 37.74182423181164,-122.38215846857418,60.00564456896714
774 | 37.74673290319513,-122.39694721620218,12.015545213346854
775 | 37.74458815817033,-122.39467465095173,-58.460729842997104
776 | 37.75340124043691,-122.43769569226748,35.14090916554009
777 | 37.73877634574446,-122.39279243505581,-85.88540972707554
778 | 37.75651416468543,-122.42131623792261,-107.08264559305974
779 | 37.78051935305909,-122.3350876197036,196.90668884323117
780 | 37.783658418283245,-122.3949083691995,-0.6191237227501849
781 | 37.741177438324385,-122.40148097558279,-79.015872215938
782 | 37.739907352976196,-122.37882461443776,95.85414987353064
783 | 37.74409098927724,-122.39081091332531,196.39558247827344
784 | 37.750666625411405,-122.42428849236832,-42.90848655294828
785 | 37.75704649273712,-122.38295603813006,54.45072554396735
786 | 37.805751607116726,-122.39615826584145,121.6726295022823
787 | 37.75584063662551,-122.4139332274067,149.84652585533814
788 | 37.754247615872444,-122.38128669112778,-34.407004245166306
789 | 37.78402529667312,-122.37175314042265,38.50102112517612
790 | 37.77383765843674,-122.36193456582137,112.16851062938602
791 | 37.76172524263659,-122.42315150019253,62.68049084047763
792 | 37.74556265544624,-122.37552017565453,-235.10096724253575
793 | 37.75811820261953,-122.42704601984353,-135.39459435463402
794 | 37.797402339018255,-122.37264813455303,-4.250438464429421
795 | 37.758161905793585,-122.39994243200682,104.18293824215081
796 | 37.76890272943815,-122.40232943273344,-28.061757127638675
797 | 37.771570380912316,-122.39872745103631,44.25379783045842
798 | 37.780788561660636,-122.40252792916596,-134.77407302049264
799 | 37.768680169865696,-122.38699243693016,-94.27426708053153
800 | 37.772492910890264,-122.39186009982792,-1.015252894803379
801 | 37.7251137633706,-122.37912698122636,95.52149912871182
802 | 37.76141486035146,-122.42948612642371,28.44652616245546
803 | 37.75516422757762,-122.3972280090294,-2.533807506799079
804 | 37.77352316555434,-122.39642194536471,44.72802159180742
805 | 37.76438696242351,-122.3997752564081,-104.2078146705825
806 | 37.761304734351164,-122.39507870574418,182.55304558747042
807 | 37.76456277920539,-122.42202348867036,-18.582085687450597
808 | 37.75682002816235,-122.41060188699282,-99.19012298052621
809 | 37.75967681241284,-122.43223038359008,47.74014173638636
810 | 37.73703765164183,-122.4381237519699,-10.65087094575825
811 | 37.74294471939739,-122.4513098454841,52.375573478653315
812 | 37.72002556439049,-122.3990067139321,10.12536604384912
813 | 37.71567655386168,-122.37968585503869,43.7044310757873
814 | 37.73610598734021,-122.40464138436074,42.35878451727045
815 | 37.79729158640802,-122.40507416368614,61.20776518040918
816 | 37.74960821133267,-122.43967214881117,66.9170321520501
817 | 37.74530195360226,-122.42424540963802,100.26834257915245
818 | 37.76208638657533,-122.41700067896203,-31.160496057001374
819 | 37.744139236280844,-122.39666719488771,-2.13360681376305
820 | 37.748778553213,-122.41116117633375,182.5502783098931
821 | 37.77911979600035,-122.41411646341085,-44.554589887722415
822 | 37.75744191706217,-122.41269599101724,-4.592218175297305
823 | 37.759894605417664,-122.3959052739104,-70.12569635661005
824 | 37.75541574933894,-122.39543082629993,-18.52261530765709
825 | 37.74206816444354,-122.42259906345514,55.368519273841834
826 | 37.76336359411899,-122.3856527499196,214.49238660522045
827 | 37.7482036562404,-122.37765798573862,-18.961248243348265
828 | 37.75372764994198,-122.37845514768769,-33.05495632318532
829 | 37.76706558480931,-122.3996451324565,-105.2379617864808
830 | 37.74253099123838,-122.42590969401589,53.92750462402742
831 | 37.73340070887555,-122.41059901415136,78.31043072532181
832 | 37.74593301574588,-122.41149856224293,37.305787252717025
833 | 37.71699365540681,-122.38806722200971,-13.668921908656284
834 | 37.73456575770132,-122.34556055968962,-107.65298058933534
835 | 37.73822356267711,-122.38630155083376,-44.04587199851196
836 | 37.73270367515517,-122.38304081861166,99.15053997759775
837 | 37.75701783395253,-122.35987488597603,-5.620794008869452
838 | 37.770895945047535,-122.40172525104192,-254.73209047238998
839 | 37.724351122528795,-122.3810956764838,115.98277864823277
840 | 37.77256402051238,-122.38390953073292,-76.49890146766421
841 | 37.76318739908355,-122.40677603150186,120.11523933857042
842 | 37.7094756824699,-122.40485969253888,-6.0650993772978925
843 | 37.74536471120285,-122.38753310205608,-0.6328133306940171
844 | 37.77335418938332,-122.37570340579548,-74.50198387764613
845 | 37.755290966457984,-122.39687420486302,65.01030493269575
846 | 37.74487165039128,-122.40731229657091,24.709158661228056
847 | 37.75976540988779,-122.39779090209407,35.07081548785328
848 | 37.78700131609335,-122.38013561104317,-88.6254953380942
849 | 37.77202463586177,-122.38863114347788,-64.00193600135039
850 | 37.773442569116376,-122.41887564076832,88.2678190357007
851 | 37.76996065117262,-122.37815103227182,116.92307359627966
852 | 37.745993954903874,-122.43197982364055,175.53560090048254
853 | 37.77151205552947,-122.44080612885999,-106.07961207329141
854 | 37.749746126811075,-122.3821044557622,61.63919952593652
855 | 37.75885660178881,-122.39329063899102,25.05285767031655
856 | 37.74515368981145,-122.41766463838424,128.90933757057206
857 | 37.742037532851356,-122.41958793976,-50.36508715860565
858 | 37.76854592213339,-122.36634686608653,-54.45509759211507
859 | 37.75948426369261,-122.42020708698095,138.42187047182682
860 | 37.77760153743815,-122.42589741595471,36.680374290564856
861 | 37.74273173399465,-122.39879391909582,24.008221458874086
862 | 37.769172812972755,-122.40753622944767,46.61004535363855
863 | 37.73094858228295,-122.38787586717915,41.37141565891426
864 | 37.78005457920589,-122.3732054131061,-125.96692365122324
865 | 37.755272548744,-122.39098632871979,-86.30128948674863
866 | 37.77435043755849,-122.3913467558707,-25.96816857480918
867 | 37.74294033997931,-122.40906668962731,-131.17531762545664
868 | 37.75013488347437,-122.40794385339207,250.76625945345916
869 | 37.76290418632465,-122.41319020706139,82.16830488134511
870 | 37.76692931344833,-122.44991202702413,-83.08066337717096
871 | 37.74896398266745,-122.36499157971139,-24.025744388101803
872 | 37.7904312840518,-122.37297219971201,-39.23582702771261
873 | 37.75300211539494,-122.41216003416714,27.55875959579009
874 | 37.74344832087911,-122.42049809203482,-87.3424478974162
875 | 37.724976793296776,-122.40397613342381,7.436289297672668
876 | 37.74908547624623,-122.35721341833782,15.463109382706932
877 | 37.77764580745344,-122.43651289711858,-2.0890442587029536
878 | 37.76140775990033,-122.37420241649852,143.79118138861543
879 | 37.74007268097887,-122.41941434496104,122.19953688338263
880 | 37.785608724241634,-122.41261439303065,26.026601465383987
881 | 37.81395398570281,-122.40658586219257,109.76809209192604
882 | 37.76806647643662,-122.42670897689416,-7.906018168662758
883 | 37.77607638409737,-122.39376347924207,140.6040346003855
884 | 37.7856041140342,-122.37475162174198,-170.74382354942605
885 | 37.75482328287656,-122.4070504286258,19.892799076364128
886 | 37.736699202300564,-122.39898643766809,73.20793826360071
887 | 37.78341578509424,-122.3685198001122,104.5559492618666
888 | 37.7499057828344,-122.38166850684003,89.85303838674704
889 | 37.7381269773087,-122.40668507918019,57.94932592386974
890 | 37.77093947553679,-122.40524305986436,74.82882330538229
891 | 37.7605272641595,-122.42465911026659,101.81425331564584
892 | 37.781519530949296,-122.43090688605498,-219.34535933185137
893 | 37.739610800455004,-122.35600826638019,-11.950937360379884
894 | 37.75253094260218,-122.38796107440486,-55.27553108620988
895 | 37.72127176781013,-122.40797562121006,92.71039775488752
896 | 37.760449301416664,-122.3885842414054,3.8205679210784402
897 | 37.78092502364992,-122.40841977914639,130.07956636167378
898 | 37.76969551300271,-122.40009628401772,20.556860363398147
899 | 37.76380268177613,-122.40066564297415,174.23490567941496
900 | 37.78440127456795,-122.43152395557617,-7.857545452389411
901 | 37.7487833523072,-122.44247281905477,-0.4981533230549155
902 | 37.76104039137865,-122.39174362195266,-1.634161855952531
903 | 37.76108120018131,-122.42385089292212,-49.62151714256987
904 | 37.733733118734676,-122.39190665559292,10.031253077864411
905 | 37.767208027756105,-122.4078453802578,-87.50685453385275
906 | 37.803807117838936,-122.38174027665566,136.5773559884881
907 | 37.78539260502209,-122.42408565903955,-31.43217584170953
908 | 37.72509986845324,-122.45054192331592,14.869333914441645
909 | 37.789224926219106,-122.37707044433755,-61.11947381246456
910 | 37.78255425774022,-122.42081820433532,114.90167025575447
911 | 37.74077009180205,-122.40458913101216,-53.25988911932092
912 | 37.76318230466126,-122.40312819169004,7.783539775997481
913 | 37.7398774058475,-122.39580373768457,-82.0137478766924
914 | 37.753120882292706,-122.39115223399183,91.85136294222791
915 | 37.77171069630436,-122.38658357248833,32.81737700037798
916 | 37.730996524523036,-122.3999760586194,-202.9764723160202
917 | 37.79091775420863,-122.37232940528777,111.89615798495971
918 | 37.747431449688605,-122.44229375582701,103.6302062935624
919 | 37.79724643404796,-122.3916099463513,-28.977448583475518
920 | 37.75586302706134,-122.41194971872338,31.203756139252935
921 | 37.760708270963214,-122.4155788685346,74.30668448541901
922 | 37.76679136851128,-122.42367139820921,-13.518199790095617
923 | 37.765285546862906,-122.40896245588516,27.56820462457499
924 | 37.74535791507921,-122.4118523541395,28.337862345061517
925 | 37.74857272868265,-122.41120352945221,14.084639548261164
926 | 37.78178251920968,-122.40581217979133,-79.21109671272984
927 | 37.7671911060781,-122.40148051748064,165.92693540735988
928 | 37.73607815347961,-122.40960093606284,89.12046806010288
929 | 37.75299155411008,-122.42105497456218,-23.302781033625656
930 | 37.76999914665039,-122.41560152799714,-73.10743378755053
931 | 37.749803273867876,-122.39399942373514,-63.754014655607826
932 | 37.74311358398997,-122.40658174537465,78.88816200542202
933 | 37.753615413024086,-122.381774938166,-56.37577121361217
934 | 37.751340002722486,-122.39722114760887,158.78105423169742
935 | 37.73179496604505,-122.37766847118218,56.54777623538415
936 | 37.755228545890105,-122.36986371127442,-79.890028029131
937 | 37.78358025537879,-122.38934800858517,65.26470901899027
938 | 37.76495024963968,-122.39145119967826,-50.24884646050561
939 | 37.73986720537286,-122.37710105131598,-146.05481555875178
940 | 37.778136676910925,-122.38565250801139,67.15288266559905
941 | 37.74915369973973,-122.3753262183462,100.51063390573309
942 | 37.753668665540914,-122.38766240115342,-227.96262527253361
943 | 37.79393766019484,-122.41021015739123,-4.214584769790931
944 | 37.73776005121176,-122.40976799994134,55.15695018321226
945 | 37.76843291027186,-122.39477982830223,-162.18702066237728
946 | 37.74382500785306,-122.42778079149305,129.87296482000565
947 | 37.762441011827725,-122.40419530590029,17.986636929019596
948 | 37.76362255300673,-122.39628760510982,-52.12946575059749
949 | 37.765693422841416,-122.41721084535506,54.974879899304504
950 | 37.74036952390647,-122.40654620549037,-98.1727452747841
951 | 37.76162128691863,-122.39403445682963,-76.34006216556813
952 | 37.786145789925264,-122.40057769632013,-42.52837363892825
953 | 37.729892160472104,-122.41817285002908,-160.81527429451702
954 | 37.77764919544038,-122.39286545396389,-57.4919357026994
955 | 37.741150334108006,-122.41171392128521,-8.458243282089393
956 | 37.7709457103686,-122.38476010064201,31.799599848681954
957 | 37.76373279452155,-122.42398705925524,-81.1706037237248
958 | 37.75243428756712,-122.40874872206713,-126.07413283838251
959 | 37.74702143998787,-122.40174327463045,-174.1938358392951
960 | 37.7560798950222,-122.41674062810581,-84.77881301772511
961 | 37.744351458656666,-122.3943627894758,-77.36323009553404
962 | 37.78302967003489,-122.37370882916849,8.813784907462619
963 | 37.77894113465805,-122.42304590228498,206.52374019631588
964 | 37.77372583761452,-122.4032491498771,-67.72290981136348
965 | 37.76979698279884,-122.35106630006898,-25.556561190804704
966 | 37.75551881282194,-122.40426307818387,-14.566589714314738
967 | 37.749834107067386,-122.40728638061553,121.35969465608628
968 | 37.79049275245436,-122.37753680545008,63.331029560492034
969 | 37.74558983188662,-122.42993531914104,62.50419975033811
970 | 37.74549520187359,-122.42739297999445,-57.74395833959745
971 | 37.73586331932723,-122.34818781897418,28.79560505998636
972 | 37.77312424864579,-122.41700585642725,83.52848373857918
973 | 37.777451485390856,-122.40030870491488,43.50744901701428
974 | 37.73299093623122,-122.39858273581764,-34.848901600682844
975 | 37.765311738554175,-122.40178478542894,7.9589823674977564
976 | 37.73691345616346,-122.3802307289305,84.74707531520369
977 | 37.75284620003245,-122.4290056795243,-11.57193190207045
978 | 37.752736143094815,-122.36022291306216,46.332756650983455
979 | 37.76128888665548,-122.39909689991133,-34.155142182755064
980 | 37.78192082008656,-122.39594827357323,-69.89926063698096
981 | 37.735028910916206,-122.4060085917653,61.22351745221789
982 | 37.73229708058462,-122.40172992161277,-83.88198997701427
983 | 37.76928985630883,-122.39503393272696,-72.92807718071698
984 | 37.790237866483864,-122.40375906884385,-106.47550850984769
985 | 37.72634466340189,-122.4063551246457,49.56947291725902
986 | 37.75792451677035,-122.41145700517183,13.551706139496963
987 | 37.70354452878593,-122.42609754991693,120.68425396663416
988 | 37.75092360975429,-122.41135392164897,24.327463451145906
989 | 37.79790365419934,-122.3815562474658,-28.175098366880587
990 | 37.76589429619306,-122.3727959388722,22.91960090733855
991 | 37.75118565048481,-122.39489979489309,-202.35093669362266
992 | 37.7468943919567,-122.38978384894094,122.10216202286921
993 | 37.77767240912486,-122.38776310577899,114.53696005961773
994 | 37.74570867454006,-122.42508108008353,-130.78383677260373
995 | 37.765347567822126,-122.38437679636336,57.84826665843812
996 | 37.73989214165866,-122.39732431694782,-11.668324987079979
997 | 37.76043734165436,-122.41045419628126,45.18258935648397
998 | 37.73240740677226,-122.38799794541856,112.40379043625327
999 | 37.76701506801348,-122.41034358988361,-181.23457121633447
1000 | 37.7551148580342,-122.40888812306142,66.62941100701137
1001 | 37.738616764783494,-122.41811103427419,-96.11188288217048
1002 |
--------------------------------------------------------------------------------