├── LICENSE
├── README.md
├── data
├── Pascal_voc
│ └── put voc dataset in here.txt
├── data_set
│ ├── Images
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── 000003.jpg
│ ├── Labels
│ │ ├── 000001.xml
│ │ ├── 000002.xml
│ │ └── 000003.xml
│ ├── test.txt
│ └── train.txt
└── output
│ └── put weights file in here.txt
├── pascal_voc.py
├── preprocess.py
├── test
├── 01.jpg
├── 02.jpg
├── 03.jpg
└── yolo v2 demo.gif
├── test_val.py
├── train_val.py
└── yolo
├── __init__.py
├── config.py
├── darknet19.py
└── yolo_v2.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # YOLO_v2
2 |
3 | This is implementation of [YOLO v2](https://arxiv.org/pdf/1612.08242.pdf) with TensorFlow.
4 |
5 | ## Demo
6 | 
7 |
8 | ## Installation
9 | 1. Clone YOLO_v2 repository
10 | ```Shell
11 | $ git clone https://github.com/leeyoshinari/YOLO_v2.git
12 | $ cd YOLO_v2
13 | ```
14 |
15 | 2. Download Pascal VOC2007 dataset, and put the dataset into `data/Pascal_voc`.
16 |
17 | If you download other dataset, you also need to modify file paths.
18 |
19 | 3. Download weights file [yolo_weights](https://drive.google.com/drive/folders/13TWYuNY-XcX9EyoU87dH9XsBKuWcPHHw?usp=sharing) for COCO, and put weight file into `data/output`.
20 |
21 | Or you can also download my training weights file [YOLO_v2](https://drive.google.com/drive/folders/14w9JL74VZivk0iD00I3eQYL67bvNyq0N?usp=sharing) for VOC.
22 |
23 | 4. Modify configuration into `yolo/config.py`.
24 |
25 | 5. Training
26 | ```Shell
27 | $ python train_val.py
28 | ```
29 |
30 | 6. Test
31 | ```Shell
32 | $ python test_val.py
33 | ```
34 | 7. For more information to [wiki](https://github.com/leeyoshinari/YOLO_v2/wiki/YOLO_v2).
35 |
36 | ## Darknet-19
37 | Darknet-19 has 19 convolutional layers, it's faster than yolo_v2. If you use darknet-19, you need some modifications. It's easy to modify.
38 |
39 | Please download Darknet-19 weights file for VOC from [darknet-19](https://drive.google.com/open?id=1XWWecDpekQ1t2DjhizF-virWyQCTSUeF).
40 |
41 | ## Training on Your Own Dataset
42 | To train the model on your own dataset, you should need to modify:
43 |
44 | 1. Put all the images into the `Images` folder, put all the labels into the `Labels` folder. Select a part of the image for training, write this part of the image filenames into `train.txt`, the remaining part of the image filenames written in `test.txt`. Then put the `Images`, `Labels`, `train.txt` and `test.txt` into `data/dataset`. Put weight file in `data/output`.
45 |
46 | 2. `config.py:` modify the CLASSES.
47 |
48 | 3. `train.py:` replace`from pascal_voc import Pascal_voc` with `from preprocess import Data_preprocess`, and replace `pre_data = Pascal_voc()` with `pre_data = Data_preprocess()`.
49 |
50 | ## Requirements
51 | 1. Tensorflow
52 | 2. OpenCV
53 |
--------------------------------------------------------------------------------
/data/Pascal_voc/put voc dataset in here.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/data/Pascal_voc/put voc dataset in here.txt
--------------------------------------------------------------------------------
/data/data_set/Images/000001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/data/data_set/Images/000001.jpg
--------------------------------------------------------------------------------
/data/data_set/Images/000002.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/data/data_set/Images/000002.jpg
--------------------------------------------------------------------------------
/data/data_set/Images/000003.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/data/data_set/Images/000003.jpg
--------------------------------------------------------------------------------
/data/data_set/Labels/000001.xml:
--------------------------------------------------------------------------------
1 |
2 | VOC2007
3 | 000001.jpg
4 |
5 | The VOC2007 Database
6 | PASCAL VOC2007
7 | flickr
8 | 341012865
9 |
10 |
11 | Fried Camels
12 | Jinky the Fruit Bat
13 |
14 |
15 | 353
16 | 500
17 | 3
18 |
19 | 0
20 |
32 |
44 |
45 |
--------------------------------------------------------------------------------
/data/data_set/Labels/000002.xml:
--------------------------------------------------------------------------------
1 |
2 | VOC2007
3 | 000002.jpg
4 |
5 | The VOC2007 Database
6 | PASCAL VOC2007
7 | flickr
8 | 329145082
9 |
10 |
11 | hiromori2
12 | Hiroyuki Mori
13 |
14 |
15 | 335
16 | 500
17 | 3
18 |
19 | 0
20 |
32 |
33 |
--------------------------------------------------------------------------------
/data/data_set/Labels/000003.xml:
--------------------------------------------------------------------------------
1 |
2 | VOC2007
3 | 000003.jpg
4 |
5 | The VOC2007 Database
6 | PASCAL VOC2007
7 | flickr
8 | 138563409
9 |
10 |
11 | RandomEvent101
12 | ?
13 |
14 |
15 | 500
16 | 375
17 | 3
18 |
19 | 0
20 |
32 |
44 |
45 |
--------------------------------------------------------------------------------
/data/data_set/test.txt:
--------------------------------------------------------------------------------
1 | 000002
--------------------------------------------------------------------------------
/data/data_set/train.txt:
--------------------------------------------------------------------------------
1 | 000001
2 | 000003
--------------------------------------------------------------------------------
/data/output/put weights file in here.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/data/output/put weights file in here.txt
--------------------------------------------------------------------------------
/pascal_voc.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 | #------------------------------------------------------------------------------------
5 | import os
6 | import cv2
7 | import numpy as np
8 | import yolo.config as cfg
9 | import xml.etree.ElementTree as ET
10 |
11 | class Pascal_voc(object):
12 | def __init__(self):
13 | self.pascal_voc = os.path.join(cfg.DATA_DIR, 'Pascal_voc')
14 | self.image_size = cfg.IMAGE_SIZE
15 | self.batch_size = cfg.BATCH_SIZE
16 | self.cell_size = cfg.CELL_SIZE
17 | self.classes = cfg.CLASSES
18 | self.num_classes = len(self.classes)
19 | self.box_per_cell = cfg.BOX_PRE_CELL
20 | self.class_to_ind = dict(zip(self.classes, range(self.num_classes)))
21 |
22 | self.count = 0
23 | self.epoch = 1
24 | self.count_t = 0
25 |
26 | def load_labels(self, model):
27 | if model == 'train':
28 | self.devkil_path = os.path.join(self.pascal_voc, 'VOCdevkit')
29 | self.data_path = os.path.join(self.devkil_path, 'VOC2007')
30 | txtname = os.path.join(self.data_path, 'ImageSets', 'Main', 'trainval.txt')
31 | if model == 'test':
32 | self.devkil_path = os.path.join(self.pascal_voc, 'VOCdevkit-test')
33 | self.data_path = os.path.join(self.devkil_path, 'VOC2007')
34 | txtname = os.path.join(self.data_path, 'ImageSets', 'Main', 'test.txt')
35 |
36 | with open(txtname, 'r') as f:
37 | image_ind = [x.strip() for x in f.readlines()]
38 |
39 | labels = []
40 | for ind in image_ind:
41 | label, num = self.load_data(ind)
42 | if num == 0:
43 | continue
44 | imagename = os.path.join(self.data_path, 'JPEGImages', ind + '.jpg')
45 | labels.append({'imagename': imagename, 'labels': label})
46 | np.random.shuffle(labels)
47 | return labels
48 |
49 |
50 | def load_data(self, index):
51 | label = np.zeros([self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
52 | filename = os.path.join(self.data_path, 'Annotations', index + '.xml')
53 | tree = ET.parse(filename)
54 | image_size = tree.find('size')
55 | image_width = float(image_size.find('width').text)
56 | image_height = float(image_size.find('height').text)
57 | h_ratio = 1.0 * self.image_size / image_height
58 | w_ratio = 1.0 * self.image_size / image_width
59 |
60 | objects = tree.findall('object')
61 | for obj in objects:
62 | box = obj.find('bndbox')
63 | x1 = max(min((float(box.find('xmin').text)) * w_ratio, self.image_size), 0)
64 | y1 = max(min((float(box.find('ymin').text)) * h_ratio, self.image_size), 0)
65 | x2 = max(min((float(box.find('xmax').text)) * w_ratio, self.image_size), 0)
66 | y2 = max(min((float(box.find('ymax').text)) * h_ratio, self.image_size), 0)
67 | class_ind = self.class_to_ind[obj.find('name').text.lower().strip()]
68 | boxes = [0.5 * (x1 + x2) / self.image_size, 0.5 * (y1 + y2) / self.image_size, np.sqrt((x2 - x1) / self.image_size), np.sqrt((y2 - y1) / self.image_size)]
69 | cx = 1.0 * boxes[0] * self.cell_size
70 | cy = 1.0 * boxes[1] * self.cell_size
71 | xind = int(np.floor(cx))
72 | yind = int(np.floor(cy))
73 |
74 | label[yind, xind, :, 0] = 1
75 | label[yind, xind, :, 1:5] = boxes
76 | label[yind, xind, :, 5 + class_ind] = 1
77 |
78 | return label, len(objects)
79 |
80 |
81 | def next_batches(self, label):
82 | images = np.zeros([self.batch_size, self.image_size, self.image_size, 3])
83 | labels = np.zeros([self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
84 | num = 0
85 | while num < self.batch_size:
86 | imagename = label[self.count]['imagename']
87 | images[num, :, :, :] = self.image_read(imagename)
88 | labels[num, :, :, :, :] = label[self.count]['labels']
89 | num += 1
90 | self.count += 1
91 | if self.count >= len(label):
92 | np.random.shuffle(label)
93 | self.count = 0
94 | self.epoch += 1
95 | return images, labels
96 |
97 |
98 | def next_batches_test(self, label):
99 | images = np.zeros([self.batch_size, self.image_size, self.image_size, 3])
100 | labels = np.zeros([self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
101 | num = 0
102 | while num < self.batch_size:
103 | imagename = label[self.count_t]['imagename']
104 | images[num, :, :, :] = self.image_read(imagename)
105 | labels[num, :, :, :, :] = label[self.count_t]['labels']
106 | num += 1
107 | self.count_t += 1
108 | if self.count_t >= len(label):
109 | self.count_t = 0
110 | return images, labels
111 |
112 |
113 | def image_read(self, imagename):
114 | image = cv2.imread(imagename)
115 | image = cv2.resize(image, (self.image_size, self.image_size))
116 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
117 | image = image / 255.0 * 2.0 - 1.0
118 | return image
119 |
--------------------------------------------------------------------------------
/preprocess.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 | #------------------------------------------------------------------------------------
5 | import os
6 | import cv2
7 | import numpy as np
8 | import yolo.config as cfg
9 | import xml.etree.ElementTree as ET
10 |
11 | class Data_preprocess(object):
12 | def __init__(self):
13 | self.data_path = os.path.join(cfg.DATA_DIR, cfg.DATA_SET)
14 | self.image_size = cfg.IMAGE_SIZE
15 | self.batch_size = cfg.BATCH_SIZE
16 | self.cell_size = cfg.CELL_SIZE
17 | self.classes = cfg.CLASSES
18 | self.num_classes = len(self.classes)
19 | self.box_per_cell = cfg.BOX_PRE_CELL
20 | self.class_to_ind = dict(zip(self.classes, range(self.num_classes)))
21 |
22 | self.count = 0
23 | self.epoch = 1
24 | self.count_t = 0
25 |
26 | def load_labels(self, model):
27 | if model == 'train':
28 | txtname = os.path.join(self.data_path, 'train.txt')
29 | if model == 'test':
30 | txtname = os.path.join(self.data_path, 'test.txt')
31 |
32 | with open(txtname, 'r') as f:
33 | image_ind = [x.strip() for x in f.readlines()]
34 |
35 | labels = []
36 | for ind in image_ind:
37 | label, num = self.load_data(ind)
38 | if num == 0:
39 | continue
40 | imagename = os.path.join(self.data_path, 'Images', ind + '.jpg')
41 | labels.append({'imagename': imagename, 'labels': label})
42 | np.random.shuffle(labels)
43 | return labels
44 |
45 |
46 | def load_data(self, index):
47 | label = np.zeros([self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
48 | filename = os.path.join(self.data_path, 'Annotations', index + '.xml')
49 | tree = ET.parse(filename)
50 | image_size = tree.find('size')
51 | image_width = float(image_size.find('width').text)
52 | image_height = float(image_size.find('height').text)
53 | h_ratio = 1.0 * self.image_size / image_height
54 | w_ratio = 1.0 * self.image_size / image_width
55 |
56 | objects = tree.findall('object')
57 | for obj in objects:
58 | box = obj.find('bndbox')
59 | x1 = max(min((float(box.find('xmin').text)) * w_ratio, self.image_size), 0)
60 | y1 = max(min((float(box.find('ymin').text)) * h_ratio, self.image_size), 0)
61 | x2 = max(min((float(box.find('xmax').text)) * w_ratio, self.image_size), 0)
62 | y2 = max(min((float(box.find('ymax').text)) * h_ratio, self.image_size), 0)
63 | class_ind = self.class_to_ind[obj.find('name').text.lower().strip()]
64 | boxes = [0.5 * (x1 + x2) / self.image_size, 0.5 * (y1 + y2) / self.image_size, np.sqrt((x2 - x1) / self.image_size), np.sqrt((y2 - y1) / self.image_size)]
65 | cx = 1.0 * boxes[0] * self.cell_size
66 | cy = 1.0 * boxes[1] * self.cell_size
67 | xind = int(np.floor(cx))
68 | yind = int(np.floor(cy))
69 |
70 | label[yind, xind, :, 0] = 1
71 | label[yind, xind, :, 1:5] = boxes
72 | label[yind, xind, :, 5 + class_ind] = 1
73 |
74 | return label, len(objects)
75 |
76 |
77 | def next_batches(self, label):
78 | images = np.zeros([self.batch_size, self.image_size, self.image_size, 3])
79 | labels = np.zeros([self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
80 | num = 0
81 | while num < self.batch_size:
82 | imagename = label[self.count]['imagename']
83 | images[num, :, :, :] = self.image_read(imagename)
84 | labels[num, :, :, :, :] = label[self.count]['labels']
85 | num += 1
86 | self.count += 1
87 | if self.count >= len(label):
88 | np.random.shuffle(label)
89 | self.count = 0
90 | self.epoch += 1
91 | return images, labels
92 |
93 |
94 | def next_batches_test(self, label):
95 | images = np.zeros([self.batch_size, self.image_size, self.image_size, 3])
96 | labels = np.zeros([self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
97 | num = 0
98 | while num < self.batch_size:
99 | imagename = label[self.count_t]['imagename']
100 | images[num, :, :, :] = self.image_read(imagename)
101 | labels[num, :, :, :, :] = label[self.count_t]['labels']
102 | num += 1
103 | self.count_t += 1
104 | if self.count_t >= len(label):
105 | self.count_t = 0
106 | return images, labels
107 |
108 |
109 | def image_read(self, imagename):
110 | image = cv2.imread(imagename)
111 | image = cv2.resize(image, (self.image_size, self.image_size))
112 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
113 | image = image / 255.0 * 2.0 - 1.0
114 | return image
115 |
--------------------------------------------------------------------------------
/test/01.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/test/01.jpg
--------------------------------------------------------------------------------
/test/02.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/test/02.jpg
--------------------------------------------------------------------------------
/test/03.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/test/03.jpg
--------------------------------------------------------------------------------
/test/yolo v2 demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/test/yolo v2 demo.gif
--------------------------------------------------------------------------------
/test_val.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 | #-----------------------------------------------------------------------------------
5 | import tensorflow as tf
6 | import numpy as np
7 | import argparse
8 | import colorsys
9 | import cv2
10 | import os
11 |
12 | import yolo.config as cfg
13 | from yolo.yolo_v2 import yolo_v2
14 | # from yolo.darknet19 import Darknet19
15 |
16 | class Detector(object):
17 | def __init__(self, yolo, weights_file):
18 | self.yolo = yolo
19 | self.classes = cfg.CLASSES
20 | self.num_classes = len(self.classes)
21 | self.image_size = cfg.IMAGE_SIZE
22 | self.cell_size = cfg.CELL_SIZE
23 | self.batch_size = cfg.BATCH_SIZE
24 | self.box_per_cell = cfg.BOX_PRE_CELL
25 | self.threshold = cfg.THRESHOLD
26 | self.anchor = cfg.ANCHOR
27 |
28 | self.sess = tf.Session()
29 | self.sess.run(tf.global_variables_initializer())
30 |
31 | print('Restore weights from: ' + weights_file)
32 | self.saver = tf.train.Saver()
33 | self.saver.restore(self.sess, weights_file)
34 |
35 | def detect(self, image):
36 | image_h, image_w, _ = image.shape
37 | image = cv2.resize(image, (self.image_size, self.image_size))
38 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
39 | image = image / 255.0 * 2.0 - 1.0
40 | image = np.reshape(image, [1, self.image_size, self.image_size, 3])
41 |
42 | output = self.sess.run(self.yolo.logits, feed_dict = {self.yolo.images: image})
43 |
44 | results = self.calc_output(output)
45 |
46 | for i in range(len(results)):
47 | results[i][1] *= (1.0 * image_w / self.image_size)
48 | results[i][2] *= (1.0 * image_h / self.image_size)
49 | results[i][3] *= (1.0 * image_w / self.image_size)
50 | results[i][4] *= (1.0 * image_h / self.image_size)
51 |
52 | return results
53 |
54 |
55 | def calc_output(self, output):
56 | output = np.reshape(output, [self.cell_size, self.cell_size, self.box_per_cell, 5 + self.num_classes])
57 | boxes = np.reshape(output[:, :, :, :4], [self.cell_size, self.cell_size, self.box_per_cell, 4]) #boxes coordinate
58 | boxes = self.get_boxes(boxes) * self.image_size
59 |
60 | confidence = np.reshape(output[:, :, :, 4], [self.cell_size, self.cell_size, self.box_per_cell]) #the confidence of the each anchor boxes
61 | confidence = 1.0 / (1.0 + np.exp(-1.0 * confidence))
62 | confidence = np.tile(np.expand_dims(confidence, 3), (1, 1, 1, self.num_classes))
63 |
64 | classes = np.reshape(output[:, :, :, 5:], [self.cell_size, self.cell_size, self.box_per_cell, self.num_classes]) #classes
65 | classes = np.exp(classes) / np.tile(np.expand_dims(np.sum(np.exp(classes), axis=3), axis=3), (1, 1, 1, self.num_classes))
66 |
67 | probs = classes * confidence
68 |
69 | filter_probs = np.array(probs >= self.threshold, dtype = 'bool')
70 | filter_index = np.nonzero(filter_probs)
71 | box_filter = boxes[filter_index[0], filter_index[1], filter_index[2]]
72 | probs_filter = probs[filter_probs]
73 | classes_num = np.argmax(filter_probs, axis = 3)[filter_index[0], filter_index[1], filter_index[2]]
74 |
75 | sort_num = np.array(np.argsort(probs_filter))[::-1]
76 | box_filter = box_filter[sort_num]
77 | probs_filter = probs_filter[sort_num]
78 | classes_num = classes_num[sort_num]
79 |
80 | for i in range(len(probs_filter)):
81 | if probs_filter[i] == 0:
82 | continue
83 | for j in range(i+1, len(probs_filter)):
84 | if self.calc_iou(box_filter[i], box_filter[j]) > 0.5:
85 | probs_filter[j] = 0.0
86 |
87 | filter_probs = np.array(probs_filter > 0, dtype = 'bool')
88 | probs_filter = probs_filter[filter_probs]
89 | box_filter = box_filter[filter_probs]
90 | classes_num = classes_num[filter_probs]
91 |
92 | results = []
93 | for i in range(len(probs_filter)):
94 | results.append([self.classes[classes_num[i]], box_filter[i][0], box_filter[i][1],
95 | box_filter[i][2], box_filter[i][3], probs_filter[i]])
96 |
97 | return results
98 |
99 | def get_boxes(self, boxes):
100 | offset = np.transpose(np.reshape(np.array([np.arange(self.cell_size)] * self.cell_size * self.box_per_cell),
101 | [self.box_per_cell, self.cell_size, self.cell_size]), (1, 2, 0))
102 | boxes1 = np.stack([(1.0 / (1.0 + np.exp(-1.0 * boxes[:, :, :, 0])) + offset) / self.cell_size,
103 | (1.0 / (1.0 + np.exp(-1.0 * boxes[:, :, :, 1])) + np.transpose(offset, (1, 0, 2))) / self.cell_size,
104 | np.exp(boxes[:, :, :, 2]) * np.reshape(self.anchor[:5], [1, 1, 5]) / self.cell_size,
105 | np.exp(boxes[:, :, :, 3]) * np.reshape(self.anchor[5:], [1, 1, 5]) / self.cell_size])
106 |
107 | return np.transpose(boxes1, (1, 2, 3, 0))
108 |
109 |
110 | def calc_iou(self, box1, box2):
111 | width = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2])
112 | height = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3])
113 |
114 | if width <= 0 or height <= 0:
115 | intersection = 0
116 | else:
117 | intersection = width * height
118 |
119 | return intersection / (box1[2] * box1[3] + box2[2] * box2[3] - intersection)
120 |
121 | def random_colors(self, N, bright=True):
122 | brightness = 1.0 if bright else 0.7
123 | hsv = [(i / N, 1, brightness) for i in range(N)]
124 | colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
125 | np.random.shuffle(colors)
126 | return colors
127 |
128 |
129 | def draw(self, image, result):
130 | image_h, image_w, _ = image.shape
131 | colors = self.random_colors(len(result))
132 | for i in range(len(result)):
133 | xmin = max(int(result[i][1] - 0.5 * result[i][3]), 0)
134 | ymin = max(int(result[i][2] - 0.5 * result[i][4]), 0)
135 | xmax = min(int(result[i][1] + 0.5 * result[i][3]), image_w)
136 | ymax = min(int(result[i][2] + 0.5 * result[i][4]), image_h)
137 | color = tuple([rgb * 255 for rgb in colors[i]])
138 | cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 1)
139 | cv2.putText(image, result[i][0] + ':%.2f' % result[i][5], (xmin + 1, ymin + 8), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.5, color, 1)
140 | print(result[i][0], ':%.2f%%' % (result[i][5] * 100 ))
141 |
142 |
143 | def image_detect(self, imagename):
144 | image = cv2.imread(imagename)
145 | result = self.detect(image)
146 | self.draw(image, result)
147 | cv2.imshow('Image', image)
148 | cv2.waitKey(0)
149 |
150 |
151 | def video_detect(self, cap):
152 | while(1):
153 | ret, image = cap.read()
154 | if not ret:
155 | print('Cannot capture images from device')
156 | break
157 |
158 | result = self.detect(image)
159 | self.draw(image, result)
160 | cv2.imshow('Image', image)
161 |
162 | if cv2.waitKey(10) & 0xFF == ord('q'):
163 | break
164 | cap.release()
165 | cv2.destroyAllWindows()
166 |
167 |
168 | def main():
169 | parser = argparse.ArgumentParser()
170 | parser.add_argument('--weights', default = 'yolo_v2.ckpt', type = str) # darknet-19.ckpt
171 | parser.add_argument('--weight_dir', default = 'output', type = str)
172 | parser.add_argument('--data_dir', default = 'data', type = str)
173 | parser.add_argument('--gpu', default = '', type = str) # which gpu to be selected
174 | args = parser.parse_args()
175 |
176 | os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu # configure gpu
177 | weights_file = os.path.join(args.data_dir, args.weight_dir, args.weights)
178 | yolo = yolo_v2(False) # 'False' mean 'test'
179 | # yolo = Darknet19(False)
180 |
181 | detector = Detector(yolo, weights_file)
182 |
183 | #detect the video
184 | #cap = cv2.VideoCapture('asd.mp4')
185 | #cap = cv2.VideoCapture(0)
186 | #detector.video_detect(cap)
187 |
188 | #detect the image
189 | imagename = './test/01.jpg'
190 | detector.image_detect(imagename)
191 |
192 | if __name__ == '__main__':
193 | main()
194 |
--------------------------------------------------------------------------------
/train_val.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 | #-----------------------------------------------------------------------------------
5 | import tensorflow as tf
6 | import numpy as np
7 | import argparse
8 | import datetime
9 | import time
10 | import os
11 | import yolo.config as cfg
12 |
13 | from pascal_voc import Pascal_voc
14 | from six.moves import xrange
15 | from yolo.yolo_v2 import yolo_v2
16 | # from yolo.darknet19 import Darknet19
17 |
18 | class Train(object):
19 | def __init__(self, yolo, data):
20 | self.yolo = yolo
21 | self.data = data
22 | self.num_class = len(cfg.CLASSES)
23 | self.max_step = cfg.MAX_ITER
24 | self.saver_iter = cfg.SAVER_ITER
25 | self.summary_iter = cfg.SUMMARY_ITER
26 | self.initial_learn_rate = cfg.LEARN_RATE
27 | self.output_dir = os.path.join(cfg.DATA_DIR, 'output')
28 | weight_file = os.path.join(self.output_dir, cfg.WEIGHTS_FILE)
29 |
30 | self.variable_to_restore = tf.global_variables()
31 | self.saver = tf.train.Saver(self.variable_to_restore)
32 | self.summary_op = tf.summary.merge_all()
33 | self.writer = tf.summary.FileWriter(self.output_dir)
34 |
35 | self.global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
36 | self.learn_rate = tf.train.exponential_decay(self.initial_learn_rate, self.global_step, 20000, 0.1, name='learn_rate')
37 | # self.global_step = tf.Variable(0, trainable = False)
38 | # self.learn_rate = tf.train.piecewise_constant(self.global_step, [100, 190, 10000, 15500], [1e-3, 5e-3, 1e-2, 1e-3, 1e-4])
39 | self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learn_rate).minimize(self.yolo.total_loss, global_step=self.global_step)
40 |
41 | self.average_op = tf.train.ExponentialMovingAverage(0.999).apply(tf.trainable_variables())
42 | with tf.control_dependencies([self.optimizer]):
43 | self.train_op = tf.group(self.average_op)
44 |
45 | config = tf.ConfigProto(gpu_options=tf.GPUOptions())
46 | self.sess = tf.Session(config=config)
47 | self.sess.run(tf.global_variables_initializer())
48 |
49 | print('Restore weights from:', weight_file)
50 | self.saver.restore(self.sess, weight_file)
51 | self.writer.add_graph(self.sess.graph)
52 |
53 | def train(self):
54 | labels_train = self.data.load_labels('train')
55 | labels_test = self.data.load_labels('test')
56 |
57 | num = 5
58 | initial_time = time.time()
59 |
60 | for step in xrange(0, self.max_step + 1):
61 | images, labels = self.data.next_batches(labels_train)
62 | feed_dict = {self.yolo.images: images, self.yolo.labels: labels}
63 |
64 | if step % self.summary_iter == 0:
65 | if step % 50 == 0:
66 | summary_, loss, _ = self.sess.run([self.summary_op, self.yolo.total_loss, self.train_op], feed_dict = feed_dict)
67 | sum_loss = 0
68 |
69 | for i in range(num):
70 | images_t, labels_t = self.data.next_batches_test(labels_test)
71 | feed_dict_t = {self.yolo.images: images_t, self.yolo.labels: labels_t}
72 | loss_t = self.sess.run(self.yolo.total_loss, feed_dict=feed_dict_t)
73 | sum_loss += loss_t
74 |
75 | log_str = ('{} Epoch: {}, Step: {}, train_Loss: {:.4f}, test_Loss: {:.4f}, Remain: {}').format(
76 | datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), self.data.epoch, int(step), loss, sum_loss/num, self.remain(step, initial_time))
77 | print(log_str)
78 |
79 | if loss < 1e4:
80 | pass
81 | else:
82 | print('loss > 1e04')
83 | break
84 |
85 | else:
86 | summary_, _ = self.sess.run([self.summary_op, self.train_op], feed_dict = feed_dict)
87 |
88 | self.writer.add_summary(summary_, step)
89 |
90 | else:
91 | self.sess.run(self.train_op, feed_dict = feed_dict)
92 |
93 | if step % self.saver_iter == 0:
94 | self.saver.save(self.sess, self.output_dir + '/yolo_v2.ckpt', global_step = step)
95 |
96 | def remain(self, i, start):
97 | if i == 0:
98 | remain_time = 0
99 | else:
100 | remain_time = (time.time() - start) * (self.max_step - i) / i
101 | return str(datetime.timedelta(seconds = int(remain_time)))
102 |
103 |
104 | def main():
105 | parser = argparse.ArgumentParser()
106 | parser.add_argument('--weights', default = 'yolo_v2.ckpt', type = str) # darknet-19.ckpt
107 | parser.add_argument('--gpu', default = '', type = str) # which gpu to be selected
108 | args = parser.parse_args()
109 |
110 | if args.gpu is not None:
111 | cfg.GPU = args.gpu
112 |
113 | if args.weights is not None:
114 | cfg.WEIGHTS_FILE = args.weights
115 |
116 | os.environ['CUDA_VISIBLE_DEVICES'] = cfg.GPU
117 | yolo = yolo_v2()
118 | # yolo = Darknet19()
119 | pre_data = Pascal_voc()
120 |
121 | train = Train(yolo, pre_data)
122 |
123 | print('start training ...')
124 | train.train()
125 | print('successful training.')
126 |
127 |
128 | if __name__ == '__main__':
129 | main()
130 |
--------------------------------------------------------------------------------
/yolo/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/leeyoshinari/YOLO_v2/aa9bf78ecf461a1a3924e466024f8417d23197aa/yolo/__init__.py
--------------------------------------------------------------------------------
/yolo/config.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 |
5 | DATA_DIR = 'data'
6 | DATA_SET = 'data_set'
7 | WEIGHTS_FILE = 'yolo_weights.ckpt'
8 |
9 | CLASSES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
10 | 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
11 | 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa',
12 | 'train', 'tvmonitor']
13 |
14 | #ANCHOR = [0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828]
15 | ANCHOR = [0.57273, 1.87446, 3.33843, 7.88282, 9.77052, 0.677385, 2.06253, 5.47434, 3.52778, 9.16828]
16 |
17 | GPU = ''
18 |
19 | IMAGE_SIZE = 416 #The size of the input images
20 |
21 | LEARN_RATE = 0.0001 #The learn_rate of training
22 | MAX_ITER = 20000 #The max step
23 | SUMMARY_ITER = 5 #Every 'summary_iter' step output a summary
24 | SAVER_ITER = 50 #Every 'saver_iter' step save a weights
25 |
26 | BOX_PRE_CELL = 5 #The number of BoundingBoxs predicted by each grid
27 | CELL_SIZE = 13 #The size of the last layer #(batch_size, 13, 13, ?)
28 | BATCH_SIZE = 32 #The batch size of each training
29 | ALPHA = 0.1
30 |
31 | THRESHOLD = 0.3 #The threshold of the probability of the classes
32 |
--------------------------------------------------------------------------------
/yolo/darknet19.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 | #-----------------------------------------------------------------------------------
5 |
6 | import tensorflow as tf
7 | import numpy as np
8 | import yolo.config as cfg
9 |
10 | class Darknet19(object):
11 | def __init__(self, isTraining = True):
12 | self.classes = cfg.CLASSES
13 | self.num_class = len(self.classes)
14 |
15 | self.box_per_cell = cfg.BOX_PRE_CELL
16 | self.cell_size = cfg.CELL_SIZE
17 | self.batch_size = cfg.BATCH_SIZE
18 | self.image_size = cfg.IMAGE_SIZE
19 | self.anchor = cfg.ANCHOR
20 | self.alpha = cfg.ALPHA
21 |
22 | self.class_scale = 1.0
23 | self.object_scale = 5.0
24 | self.noobject_scale = 1.0
25 | self.coordinate_scale = 1.0
26 |
27 | self.offset = np.transpose(np.reshape(np.array([np.arange(self.cell_size)] * self.cell_size * self.box_per_cell),
28 | [self.box_per_cell, self.cell_size, self.cell_size]), (1, 2, 0))
29 | self.offset = tf.reshape(tf.constant(self.offset, dtype=tf.float32), [1, self.cell_size, self.cell_size, self.box_per_cell])
30 | self.offset = tf.tile(self.offset, (self.batch_size, 1, 1, 1))
31 |
32 | self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 3], name='images')
33 | self.logits = self.build_networks(self.images)
34 |
35 | if isTraining:
36 | self.labels = tf.placeholder(tf.float32, [None, self.cell_size, self.cell_size, self.box_per_cell, self.num_class + 5], name = 'labels')
37 | self.total_loss = self.loss_layer(self.logits, self.labels)
38 | tf.summary.scalar('total_loss', self.total_loss)
39 |
40 | def build_networks(self, inputs):
41 | net = self.conv_layer(inputs, [3, 3, 3, 32], name = '0_conv')
42 | net = self.pooling_layer(net, name = '1_pool')
43 |
44 | net = self.conv_layer(net, [3, 3, 32, 64], name = '2_conv')
45 | net = self.pooling_layer(net, name = '3_pool')
46 |
47 | net = self.conv_layer(net, [3, 3, 64, 128], name = '4_conv')
48 | net = self.conv_layer(net, [1, 1, 128, 64], name = '5_conv')
49 | net = self.conv_layer(net, [3, 3, 64, 128], name = '6_conv')
50 | net = self.pooling_layer(net, name = '7_pool')
51 |
52 | net = self.conv_layer(net, [3, 3, 128, 256], name = '8_conv')
53 | net = self.conv_layer(net, [1, 1, 256, 128], name = '9_conv')
54 | net = self.conv_layer(net, [3, 3, 128, 256], name = '10_conv')
55 | net = self.pooling_layer(net, name = '11_pool')
56 |
57 | net = self.conv_layer(net, [3, 3, 256, 512], name = '12_conv')
58 | net = self.conv_layer(net, [1, 1, 512, 256], name = '13_conv')
59 | net = self.conv_layer(net, [3, 3, 256, 512], name = '14_conv')
60 | net = self.conv_layer(net, [1, 1, 512, 256], name = '15_conv')
61 | net16 = self.conv_layer(net, [3, 3, 256, 512], name = '16_conv')
62 | net = self.pooling_layer(net16, name = '17_pool')
63 |
64 | net = self.conv_layer(net, [3, 3, 512, 1024], name = '18_conv')
65 | net = self.conv_layer(net, [1, 1, 1024, 512], name = '19_conv')
66 | net = self.conv_layer(net, [3, 3, 512, 1024], name = '20_conv')
67 | net = self.conv_layer(net, [1, 1, 1024, 512], name = '21_conv')
68 | net = self.conv_layer(net, [3, 3, 512, 1024], name = '22_conv')
69 |
70 | net = self.conv_layer(net, [1, 1, 1024, self.box_per_cell * (self.num_class + 5)], batch_norm=False, name = '23_conv')
71 |
72 | return net
73 |
74 |
75 | def conv_layer(self, inputs, shape, batch_norm = True, name = '0_conv'):
76 | weight = tf.Variable(tf.truncated_normal(shape, stddev=0.1), name='weight')
77 | biases = tf.Variable(tf.constant(0.1, shape=[shape[3]]), name='biases')
78 |
79 | conv = tf.nn.conv2d(inputs, weight, strides=[1, 1, 1, 1], padding='SAME', name=name)
80 |
81 | if batch_norm:
82 | depth = shape[3]
83 | scale = tf.Variable(tf.ones([depth, ], dtype='float32'), name='scale')
84 | shift = tf.Variable(tf.zeros([depth, ], dtype='float32'), name='shift')
85 | mean = tf.Variable(tf.ones([depth, ], dtype='float32'), name='rolling_mean')
86 | variance = tf.Variable(tf.ones([depth, ], dtype='float32'), name='rolling_variance')
87 |
88 | conv_bn = tf.nn.batch_normalization(conv, mean, variance, shift, scale, 1e-05)
89 | conv = tf.add(conv_bn, biases)
90 | conv = tf.maximum(self.alpha * conv, conv)
91 | else:
92 | conv = tf.add(conv, biases)
93 |
94 | return conv
95 |
96 |
97 | def pooling_layer(self, inputs, name = '1_pool'):
98 | pool = tf.nn.max_pool(inputs, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME', name = name)
99 | return pool
100 |
101 |
102 | def loss_layer(self, predict, label):
103 | predict = tf.reshape(predict, [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, self.num_class + 5])
104 | box_coordinate = tf.reshape(predict[:, :, :, :, :4], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 4])
105 | box_confidence = tf.reshape(predict[:, :, :, :, 4], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 1])
106 | box_classes = tf.reshape(predict[:, :, :, :, 5:], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, self.num_class])
107 |
108 | boxes1 = tf.stack([(1.0 / (1.0 + tf.exp(-1.0 * box_coordinate[:, :, :, :, 0])) + self.offset) / self.cell_size,
109 | (1.0 / (1.0 + tf.exp(-1.0 * box_coordinate[:, :, :, :, 1])) + tf.transpose(self.offset, (0, 2, 1, 3))) / self.cell_size,
110 | tf.sqrt(tf.exp(box_coordinate[:, :, :, :, 2]) * np.reshape(self.anchor[:5], [1, 1, 1, 5]) / self.cell_size),
111 | tf.sqrt(tf.exp(box_coordinate[:, :, :, :, 3]) * np.reshape(self.anchor[5:], [1, 1, 1, 5]) / self.cell_size)])
112 | box_coor_trans = tf.transpose(boxes1, (1, 2, 3, 4, 0))
113 | box_confidence = 1.0 / (1.0 + tf.exp(-1.0 * box_confidence))
114 | box_classes = tf.nn.softmax(box_classes)
115 |
116 | response = tf.reshape(label[:, :, :, :, 0], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell])
117 | boxes = tf.reshape(label[:, :, :, :, 1:5], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 4])
118 | classes = tf.reshape(label[:, :, :, :, 5:], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, self.num_class])
119 |
120 | iou = self.calc_iou(box_coor_trans, boxes)
121 | best_box = tf.to_float(tf.equal(iou, tf.reduce_max(iou, axis=-1, keep_dims=True)))
122 | confs = tf.expand_dims(best_box * response, axis = 4)
123 |
124 | conid = self.noobject_scale * (1.0 - confs) + self.object_scale * confs
125 | cooid = self.coordinate_scale * confs
126 | proid = self.class_scale * confs
127 |
128 | coo_loss = cooid * tf.square(box_coor_trans - boxes)
129 | con_loss = conid * tf.square(box_confidence - confs)
130 | pro_loss = proid * tf.square(box_classes - classes)
131 |
132 | loss = tf.concat([coo_loss, con_loss, pro_loss], axis = 4)
133 | loss = tf.reduce_mean(tf.reduce_sum(loss, axis = [1, 2, 3, 4]), name = 'loss')
134 |
135 | return loss
136 |
137 |
138 | def calc_iou(self, boxes1, boxes2):
139 | boxx = tf.square(boxes1[:, :, :, :, 2:4])
140 | boxes1_square = boxx[:, :, :, :, 0] * boxx[:, :, :, :, 1]
141 | box = tf.stack([boxes1[:, :, :, :, 0] - boxx[:, :, :, :, 0] * 0.5,
142 | boxes1[:, :, :, :, 1] - boxx[:, :, :, :, 1] * 0.5,
143 | boxes1[:, :, :, :, 0] + boxx[:, :, :, :, 0] * 0.5,
144 | boxes1[:, :, :, :, 1] + boxx[:, :, :, :, 1] * 0.5])
145 | boxes1 = tf.transpose(box, (1, 2, 3, 4, 0))
146 |
147 | boxx = tf.square(boxes2[:, :, :, :, 2:4])
148 | boxes2_square = boxx[:, :, :, :, 0] * boxx[:, :, :, :, 1]
149 | box = tf.stack([boxes2[:, :, :, :, 0] - boxx[:, :, :, :, 0] * 0.5,
150 | boxes2[:, :, :, :, 1] - boxx[:, :, :, :, 1] * 0.5,
151 | boxes2[:, :, :, :, 0] + boxx[:, :, :, :, 0] * 0.5,
152 | boxes2[:, :, :, :, 1] + boxx[:, :, :, :, 1] * 0.5])
153 | boxes2 = tf.transpose(box, (1, 2, 3, 4, 0))
154 |
155 | left_up = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])
156 | right_down = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])
157 |
158 | intersection = tf.maximum(right_down - left_up, 0.0)
159 | inter_square = intersection[:, :, :, :, 0] * intersection[:, :, :, :, 1]
160 | union_square = boxes1_square + boxes2_square - inter_square
161 |
162 | return tf.clip_by_value(1.0 * inter_square / union_square, 0.0, 1.0)
163 |
--------------------------------------------------------------------------------
/yolo/yolo_v2.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding:utf-8 -*-
3 | # Author:leeyoshinari
4 | #-----------------------------------------------------------------------------------
5 |
6 | import tensorflow as tf
7 | import numpy as np
8 | import yolo.config as cfg
9 |
10 | class yolo_v2(object):
11 | def __init__(self, isTraining = True):
12 | self.classes = cfg.CLASSES
13 | self.num_class = len(self.classes)
14 |
15 | self.box_per_cell = cfg.BOX_PRE_CELL
16 | self.cell_size = cfg.CELL_SIZE
17 | self.batch_size = cfg.BATCH_SIZE
18 | self.image_size = cfg.IMAGE_SIZE
19 | self.anchor = cfg.ANCHOR
20 | self.alpha = cfg.ALPHA
21 |
22 | self.class_scale = 1.0
23 | self.object_scale = 5.0
24 | self.noobject_scale = 1.0
25 | self.coordinate_scale = 1.0
26 |
27 | self.offset = np.transpose(np.reshape(np.array([np.arange(self.cell_size)] * self.cell_size * self.box_per_cell),
28 | [self.box_per_cell, self.cell_size, self.cell_size]), (1, 2, 0))
29 | self.offset = tf.reshape(tf.constant(self.offset, dtype=tf.float32), [1, self.cell_size, self.cell_size, self.box_per_cell])
30 | self.offset = tf.tile(self.offset, (self.batch_size, 1, 1, 1))
31 |
32 | self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 3], name='images')
33 | self.logits = self.build_networks(self.images)
34 |
35 | if isTraining:
36 | self.labels = tf.placeholder(tf.float32, [None, self.cell_size, self.cell_size, self.box_per_cell, self.num_class + 5], name = 'labels')
37 | self.total_loss = self.loss_layer(self.logits, self.labels)
38 | tf.summary.scalar('total_loss', self.total_loss)
39 |
40 | def build_networks(self, inputs):
41 | net = self.conv_layer(inputs, [3, 3, 3, 32], name = '0_conv')
42 | net = self.pooling_layer(net, name = '1_pool')
43 |
44 | net = self.conv_layer(net, [3, 3, 32, 64], name = '2_conv')
45 | net = self.pooling_layer(net, name = '3_pool')
46 |
47 | net = self.conv_layer(net, [3, 3, 64, 128], name = '4_conv')
48 | net = self.conv_layer(net, [1, 1, 128, 64], name = '5_conv')
49 | net = self.conv_layer(net, [3, 3, 64, 128], name = '6_conv')
50 | net = self.pooling_layer(net, name = '7_pool')
51 |
52 | net = self.conv_layer(net, [3, 3, 128, 256], name = '8_conv')
53 | net = self.conv_layer(net, [1, 1, 256, 128], name = '9_conv')
54 | net = self.conv_layer(net, [3, 3, 128, 256], name = '10_conv')
55 | net = self.pooling_layer(net, name = '11_pool')
56 |
57 | net = self.conv_layer(net, [3, 3, 256, 512], name = '12_conv')
58 | net = self.conv_layer(net, [1, 1, 512, 256], name = '13_conv')
59 | net = self.conv_layer(net, [3, 3, 256, 512], name = '14_conv')
60 | net = self.conv_layer(net, [1, 1, 512, 256], name = '15_conv')
61 | net16 = self.conv_layer(net, [3, 3, 256, 512], name = '16_conv')
62 | net = self.pooling_layer(net16, name = '17_pool')
63 |
64 | net = self.conv_layer(net, [3, 3, 512, 1024], name = '18_conv')
65 | net = self.conv_layer(net, [1, 1, 1024, 512], name = '19_conv')
66 | net = self.conv_layer(net, [3, 3, 512, 1024], name = '20_conv')
67 | net = self.conv_layer(net, [1, 1, 1024, 512], name = '21_conv')
68 | net = self.conv_layer(net, [3, 3, 512, 1024], name = '22_conv')
69 |
70 | net = self.conv_layer(net, [3, 3, 1024, 1024], name = '23_conv')
71 | net24 = self.conv_layer(net, [3, 3, 1024, 1024], name = '24_conv')
72 |
73 | net = self.conv_layer(net16, [1, 1, 512, 64], name = '26_conv')
74 | net = self.reorg(net)
75 |
76 | net = tf.concat([net, net24], 3)
77 |
78 | net = self.conv_layer(net, [3, 3, int(net.get_shape()[3]), 1024], name = '29_conv')
79 | net = self.conv_layer(net, [1, 1, 1024, self.box_per_cell * (self.num_class + 5)], batch_norm=False, name = '30_conv')
80 |
81 | return net
82 |
83 |
84 | def conv_layer(self, inputs, shape, batch_norm = True, name = '0_conv'):
85 | weight = tf.Variable(tf.truncated_normal(shape, stddev=0.1), name='weight')
86 | biases = tf.Variable(tf.constant(0.1, shape=[shape[3]]), name='biases')
87 |
88 | conv = tf.nn.conv2d(inputs, weight, strides=[1, 1, 1, 1], padding='SAME', name=name)
89 |
90 | if batch_norm:
91 | depth = shape[3]
92 | scale = tf.Variable(tf.ones([depth, ], dtype='float32'), name='scale')
93 | shift = tf.Variable(tf.zeros([depth, ], dtype='float32'), name='shift')
94 | mean = tf.Variable(tf.ones([depth, ], dtype='float32'), name='rolling_mean')
95 | variance = tf.Variable(tf.ones([depth, ], dtype='float32'), name='rolling_variance')
96 |
97 | conv_bn = tf.nn.batch_normalization(conv, mean, variance, shift, scale, 1e-05)
98 | conv = tf.add(conv_bn, biases)
99 | conv = tf.maximum(self.alpha * conv, conv)
100 | else:
101 | conv = tf.add(conv, biases)
102 |
103 | return conv
104 |
105 |
106 | def pooling_layer(self, inputs, name = '1_pool'):
107 | pool = tf.nn.max_pool(inputs, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME', name = name)
108 | return pool
109 |
110 |
111 | def reorg(self, inputs):
112 | outputs_1 = inputs[:, ::2, ::2, :]
113 | outputs_2 = inputs[:, ::2, 1::2, :]
114 | outputs_3 = inputs[:, 1::2, ::2, :]
115 | outputs_4 = inputs[:, 1::2, 1::2, :]
116 | output = tf.concat([outputs_1, outputs_2, outputs_3, outputs_4], axis = 3)
117 | return output
118 |
119 |
120 | def loss_layer(self, predict, label):
121 | predict = tf.reshape(predict, [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, self.num_class + 5])
122 | box_coordinate = tf.reshape(predict[:, :, :, :, :4], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 4])
123 | box_confidence = tf.reshape(predict[:, :, :, :, 4], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 1])
124 | box_classes = tf.reshape(predict[:, :, :, :, 5:], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, self.num_class])
125 |
126 | boxes1 = tf.stack([(1.0 / (1.0 + tf.exp(-1.0 * box_coordinate[:, :, :, :, 0])) + self.offset) / self.cell_size,
127 | (1.0 / (1.0 + tf.exp(-1.0 * box_coordinate[:, :, :, :, 1])) + tf.transpose(self.offset, (0, 2, 1, 3))) / self.cell_size,
128 | tf.sqrt(tf.exp(box_coordinate[:, :, :, :, 2]) * np.reshape(self.anchor[:5], [1, 1, 1, 5]) / self.cell_size),
129 | tf.sqrt(tf.exp(box_coordinate[:, :, :, :, 3]) * np.reshape(self.anchor[5:], [1, 1, 1, 5]) / self.cell_size)])
130 | box_coor_trans = tf.transpose(boxes1, (1, 2, 3, 4, 0))
131 | box_confidence = 1.0 / (1.0 + tf.exp(-1.0 * box_confidence))
132 | box_classes = tf.nn.softmax(box_classes)
133 |
134 | response = tf.reshape(label[:, :, :, :, 0], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell])
135 | boxes = tf.reshape(label[:, :, :, :, 1:5], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, 4])
136 | classes = tf.reshape(label[:, :, :, :, 5:], [self.batch_size, self.cell_size, self.cell_size, self.box_per_cell, self.num_class])
137 |
138 | iou = self.calc_iou(box_coor_trans, boxes)
139 | best_box = tf.to_float(tf.equal(iou, tf.reduce_max(iou, axis=-1, keep_dims=True)))
140 | confs = tf.expand_dims(best_box * response, axis = 4)
141 |
142 | conid = self.noobject_scale * (1.0 - confs) + self.object_scale * confs
143 | cooid = self.coordinate_scale * confs
144 | proid = self.class_scale * confs
145 |
146 | coo_loss = cooid * tf.square(box_coor_trans - boxes)
147 | con_loss = conid * tf.square(box_confidence - confs)
148 | pro_loss = proid * tf.square(box_classes - classes)
149 |
150 | loss = tf.concat([coo_loss, con_loss, pro_loss], axis = 4)
151 | loss = tf.reduce_mean(tf.reduce_sum(loss, axis = [1, 2, 3, 4]), name = 'loss')
152 |
153 | return loss
154 |
155 |
156 | def calc_iou(self, boxes1, boxes2):
157 | boxx = tf.square(boxes1[:, :, :, :, 2:4])
158 | boxes1_square = boxx[:, :, :, :, 0] * boxx[:, :, :, :, 1]
159 | box = tf.stack([boxes1[:, :, :, :, 0] - boxx[:, :, :, :, 0] * 0.5,
160 | boxes1[:, :, :, :, 1] - boxx[:, :, :, :, 1] * 0.5,
161 | boxes1[:, :, :, :, 0] + boxx[:, :, :, :, 0] * 0.5,
162 | boxes1[:, :, :, :, 1] + boxx[:, :, :, :, 1] * 0.5])
163 | boxes1 = tf.transpose(box, (1, 2, 3, 4, 0))
164 |
165 | boxx = tf.square(boxes2[:, :, :, :, 2:4])
166 | boxes2_square = boxx[:, :, :, :, 0] * boxx[:, :, :, :, 1]
167 | box = tf.stack([boxes2[:, :, :, :, 0] - boxx[:, :, :, :, 0] * 0.5,
168 | boxes2[:, :, :, :, 1] - boxx[:, :, :, :, 1] * 0.5,
169 | boxes2[:, :, :, :, 0] + boxx[:, :, :, :, 0] * 0.5,
170 | boxes2[:, :, :, :, 1] + boxx[:, :, :, :, 1] * 0.5])
171 | boxes2 = tf.transpose(box, (1, 2, 3, 4, 0))
172 |
173 | left_up = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])
174 | right_down = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])
175 |
176 | intersection = tf.maximum(right_down - left_up, 0.0)
177 | inter_square = intersection[:, :, :, :, 0] * intersection[:, :, :, :, 1]
178 | union_square = boxes1_square + boxes2_square - inter_square
179 |
180 | return tf.clip_by_value(1.0 * inter_square / union_square, 0.0, 1.0)
181 |
--------------------------------------------------------------------------------