├── .gitignore ├── README.md ├── Scopus2Histcite.py └── scopus.ris /.gitignore: -------------------------------------------------------------------------------- 1 | *.pyc 2 | *test* 3 | *tmp* 4 | *txt 5 | *.ris 6 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Scopus2HistCite 2 | 3 | 非常欣喜地发现这个小脚本在他诞生后的数年后仍然有人在使用,甚至在得到公众号`科研利器`王老师的推荐。 4 | ![enter description here](https://leoatchina-notes-1253974443.cos.ap-shanghai.myqcloud.com/Notes/2019/1/7/1546838896763.png) 5 | 6 | 最初的脚本是windows下面写的,使用的是python2。以现在的眼光看来,写的很`丑陋` 7 | 虽然我现在早已转到用`OSX`作为我的主力使用系统,但是`HISTCITE`毕竟只有`WINDOWS`版本. 8 | 准备抽空改进一下, 谢谢给我鼓励的人们. 9 | 10 | # 原来的介绍 11 | 个人工作中,经常会有这样的情况:从一篇或者几篇文章出发,找出此`领域`中被`引用`比较多,`开山祖师`级别的文献,作文献二次检索是比较容易想到的思路。 12 | 13 | 二次检索可以用scopus网站,不过怎么找出`二次检索`之后,哪些文献比较重要呢?很容易想到有类似功能的Histocite,感谢[罗昭锋的博客](http://blog.sciencenet.cn/?304685)等老师的大力推广,我在多年前就已经使用过这个软件进行文献检索。 14 | 15 | 经过观察 scopus的导出格式和 histcite的导入格式,发现其实histcite所需要的信息在scopus里都有,但是要经过一系列的加工,把无用的信息给去除,还要进行一系列的关键字代替。 16 | 17 | 代替过程:逐行读入原来的ris文件,并作相应处理 18 | 1. 第一行,写入`FN Thomson Reuters Web of Knowledge™`。第二行 写入`VR 1.0` 19 | 2. 原来ris文件,每篇文献记录间用单行隔开 20 | 3. 每篇文献由数行组成,每行开头两个字符有相应的意义,转成相应的histcite标记 21 | ``` 22 | 'TI', # title 23 | 'T2', # jounal 24 | 'AU', # author,这个代替最麻烦 25 | 'VL', # volumn 26 | 'IS', # issue 27 | 'SP', # start page 28 | 'EP', # end page 29 | 'PY', # public year 30 | 'DO' # doi ?这个不重要 31 | ``` 32 | 4. 具体代替思路可见下图,其实读源代码更清楚 33 | ![enter description here](https://leoatchina-notes-1253974443.cos.ap-shanghai.myqcloud.com/Notes/2019/1/7/1546839456058.png) 34 | 35 | 36 | # 重构完毕, 改进点 37 | - 用python3代替了python2 38 | - 代码写的更加清楚点,不像原来那么"丑" 39 | - 基本思路和原来一样,搞清楚不同的`mark`是什么意思,搞清楚一条文章记录的"起转承接",作相应的代替 40 | 41 | # 使用方法 42 | - 推荐使用[文献引文分析利器 HistCite 详细使用教程暨 HistCite Pro 首发页面](https://zhuanlan.zhihu.com/p/20902898), 43 | - git clone我的repo或者直接下载 python脚本 44 | - 从scopus网站导出文献记录,有两个注意点 45 | 1. 要换成英文版scopus 46 | ![enter description here](https://leoatchina-notes-1253974443.cos.ap-shanghai.myqcloud.com/Notes/2019/1/7/1546839507355.png) 47 | 2. 导出时,要选择ris格式,要注意把References选上。 48 | ![enter description here](https://leoatchina-notes-1253974443.cos.ap-shanghai.myqcloud.com/Notes/2019/1/7/1546839518150.png) 49 | - 导出的文献名是**scopus.ris**,放在和`Scopus2Histcite.py`同一个目录下, 运行这个脚本 `python3 Scopus2Histcite.py` 50 | - 或者放到任意位置, `python3 Scopus2Histcite.py \path\to\your\risfile` 51 | - 会在当前目录下生成`savedres.txt`,用前面修改版的HistCite Pro导入。 52 | -------------------------------------------------------------------------------- /Scopus2Histcite.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # -*- coding: utf-8 -*- 3 | # File : Scopus2Histcite.py 4 | # Author : leoatchina 5 | # Date : 2019.01.01 6 | # Last Modified Date: 2020.07.29 7 | # Last Modified By : leoatchina 8 | # coding:utf-8 9 | 10 | import os 11 | import sys 12 | import re 13 | 14 | 15 | def Scopus2HistCite(): 16 | try: 17 | wrt_lines = [] 18 | if len(sys.argv) >= 2 and os.path.isfile(sys.argv[1]): 19 | print("You are going to convert {}".format(sys.argv[1])) 20 | Scopus_file = sys.argv[1] 21 | elif os.path.isfile("./Scopus.ris"): 22 | print("You are going to convert ./Scopus.ris") 23 | Scopus_file = './Scopus.ris' 24 | else: 25 | raise Exception("No file spcified") 26 | auth_started = False 27 | ref_started = False 28 | LT = [ 29 | 'TI', # title 30 | 'T2', # jounal 31 | 'AU', # author 32 | 'VL', # volumn 33 | 'IS', # issue 34 | 'SP', # start page 35 | 'EP', # end page 36 | 'PY', # public year 37 | 'DO', # maybe doi? not important 38 | ] 39 | wrt_lines.append('FN Thomson Reuters Web of Knowledge™') 40 | wrt_lines.append('VR 1.0') 41 | with open(Scopus_file, 'rb') as Scopus: 42 | for each in Scopus.readlines(): 43 | line = each.strip() 44 | line = line.decode().replace(' - ', ' ') 45 | mark = line[:2] 46 | if ref_started: 47 | if mark == 'ER': 48 | wrt_lines.append('ER') 49 | wrt_lines.append('') 50 | auth_started = False 51 | ref_started = False 52 | else: 53 | wrt_lines.append(line) 54 | elif re.search("^N1[\s\-]+References:", line): 55 | ref_started = True 56 | # line = line.replace(line[:14], 'CR') 57 | line = re.sub("^N1[\s\-]+References:", 'CR', line) 58 | wrt_lines.append(line) 59 | elif mark in LT: 60 | if mark == 'TI': 61 | wrt_lines.append('PT J') 62 | else: 63 | line = line.replace('T2 ', 'SO ').replace('SP ', 'BP ') 64 | if not auth_started and mark == 'AU': 65 | auth_started = True 66 | else: 67 | line = line.replace('AU ', '') 68 | wrt_lines.append(line) 69 | with open("./savedres.txt", "w", encoding = "utf-8") as f: 70 | for line in wrt_lines: 71 | print(line) 72 | f.write(line) 73 | f.write("\n") 74 | except Exception as e: 75 | raise e 76 | 77 | 78 | if __name__ == '__main__': 79 | Scopus2HistCite() 80 | -------------------------------------------------------------------------------- /scopus.ris: -------------------------------------------------------------------------------- 1 | TI - Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) 2 | T2 - Journal of the American Medical Association 3 | VL - 285 4 | IS - 19 5 | SP - 2486 6 | EP - 2497 7 | PY - 2001 8 | AU - Cleeman J.I. 9 | N1 - Export Date: 3 January 2016 10 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-0035897696&partnerID=40&md5=cf5b8dd2606377aad2a8b7a9be81f971 11 | ER - 12 | 13 | TI - PLINK: A tool set for whole-genome association and population-based linkage analyses 14 | T2 - American Journal of Human Genetics 15 | VL - 81 16 | IS - 3 17 | SP - 559 18 | EP - 575 19 | PY - 2007 20 | AU - Purcell S. 21 | AU - Neale B. 22 | AU - Todd-Brown K. 23 | AU - Thomas L. 24 | AU - Ferreira M.A.R. 25 | AU - Bender D. 26 | AU - Maller J. 27 | AU - Sklar P. 28 | AU - De Bakker P.I.W. 29 | AU - Daly M.J. 30 | AU - Sham P.C. 31 | N1 - Export Date: 3 January 2016 32 | N1 - References: Haploview, , http://www.broad.mit.edu/mpg/haploview; 33 | HapMap, , http://www.hapmap.org; 34 | PLINK and gPLINK, , http://pngu.mgh.harvard.edu/purcell/plink; 35 | Queue portal, , https://queue.coriell.org/q, at the Coriell Institute; 36 | Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037-2048 (erratum 266:353)Risch N., Merikangas K., The future of genetic studies of complex human diseases (1996) Science, 273, pp. 1516-1517; 37 | Hirschhorn J.N., Lohmueller K., Byrne E., Hirschhorn K., A comprehensive review of genetic association studies (2002) Genet Med, 4, pp. 45-61; 38 | Ioannidis J.P., Trikalinos T.A., Khoury M.J., Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases (2006) Am J Epidemiol, 164, pp. 609-614; 39 | Reich D.E., Lander E.S., On the allelic spectrum of human disease (2001) Trends Genet, 17, pp. 502-510; 40 | Freedman M.L., Reich D., Penney K.L., McDonald G.J., Mignault A.A., Patterson N., Gabriel S.B., Pato C.N., Assessing the impact of population stratification on genetic association studies (2004) Nat Genet, 36, pp. 388-393; 41 | Devlin B., Roeder K., Genomic control for association studies (1999) Biometrics, 55, pp. 997-1004; 42 | Pritchard J.K., Stephens M., Donnelly P.J., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959; 43 | Purcell S., Sham P.C., Properties of structured association approaches to detecting population stratification (2004) Hum Hered, 58, pp. 93-107; 44 | Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A., Reich D., Principal components analysis corrects for stratification in genome-wide association studies (2006) Nat Genet, 38, pp. 904-909; 45 | Clayton D.G., Walker N.M., Smyth D.J., Pask R., Cooper J.D., Maier L.M., Smink L.J., Stevens H.E., Population structure, differential bias and genomic control in a large-scale, case-control association study (2005) Nat Genet, 37, pp. 1243-1246; 46 | Hirschhorn J.N., Daly M.J., Genome-wide association studies for common diseases and complex traits (2005) Nat Rev Genet, 6, pp. 95-108; 47 | Pritchard J.K., Are rare variants responsible for susceptibility to complex diseases? (2001) Am J Hum Genet, 69, pp. 124-137; 48 | Houwen R.H., Baharloo S., Blankenship K., Raeymaekers P., Juyn J., Sandkuijl L.A., Freimer N.B., Genome screening by searching for shared segments: Mapping a gene for benign recurrent intrahepatic cholestasis (1994) Nat Genet, 8, pp. 380-386; 49 | te Meerman G.J., van der Meulen M.A., Sandkuijl L.A., Perspectives of identity by descent (IBD) mapping in founder populations (1995) Clin Exp Allergy, 25, pp. 97-102; 50 | Wigginton J.E., Cutler D.J., Abecasis G.R., A note on exact tests of Hardy-Weinberg equilibrium (2005) Am J Hum Genet, 76, pp. 887-893; 51 | Lee W.C., Detecting population stratification using a panel of SNPs (2003) Int J Epidemiol, 32, p. 1120; 52 | Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes for BioMedical Research (2007) Genome-wide association analysis identifies novel loci for type 2 diabetes and triglyceride levels. Science 316:1331-1336Agresti A., (1990) Categorical data analysis, pp. 100-102. , John Wiley, New York, pp; 53 | Fleiss J.L., (1981) Statistical methods for rates and proportions, , 2nd ed. Wiley, New York; 54 | Ewens W.J., Spielman R.S., The transmission/disequilibrium test: History, subdivision, and admixture (1995) Am J Hum Genet, 57, pp. 455-465; 55 | Spielman R.S., Ewens W.J., A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test (1998) Am J Hum Genet, 62, pp. 450-458; 56 | Fulker D.W., Cherny S.S., Sham P.C., Hewitt J.K., Combined linkage and association sib-pair analysis for quantitative traits (1999) Am J Hum Genet, 64, pp. 259-267; 57 | Abecasis G.R., Cardon L.R., Cookson W.O., A general test of association for quantitative traits in nuclear families (2000) Am J Hum Genet, 66, pp. 279-292; 58 | Purcell S., Sham P.C., Daly M.J., Parental phenotypes in family-based association analysis (2005) Am J Hum Genet, 76, pp. 249-259; 59 | Ferreira M.A.R., Sham P.C., Daly M.J., Purcell S., Ascertainment through family history of disease often decreases the power of family-based association studies (2007) Behav Genet, 37, pp. 631-636 60 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34548292504&partnerID=40&md5=144c434ad3c0e91e814a9cf4d73e0c43 61 | ER - 62 | 63 | TI - The metabolic syndrome - A new worldwide definition 64 | T2 - Lancet 65 | VL - 366 66 | IS - 9491 67 | SP - 1059 68 | EP - 1062 69 | PY - 2005 70 | AU - Alberti K.G.M.M. 71 | AU - Zimmet P. 72 | AU - Shaw J. 73 | N1 - Export Date: 3 January 2016 74 | N1 - References: Eckel R.H., Grundy S.M., Zimmet P.Z., The metabolic syndrome (2005) Lancet, 365, pp. 1415-1428; 75 | Kylin E., Studien ueber das Hypertonie-Hyperglyka "mie-Hyperurika" miesyndrom (1923) Zentralblatt fuer Innere Medizin, 44, pp. 105-127; 76 | Reaven G., Role of insulin resistance in human disease (1988) Diabetes, 37, pp. 1595-1607; 77 | Lemieux I., Pascot A., Couillard C., Hypertriglyceridemic waist: A marker of the atherogenic metabolic triad (hyperinsulinemia; Hyperapolipoprotein B; Small, dense LDL) in men? (2000) Circulation, 102, pp. 179-184; 78 | Alberti K., Zimmet P., Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation (1998) Diabet Med, 15, pp. 539-553; 79 | Balkau B., Charles M.A., Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR) (1999) Diabet Med, 16, pp. 442-443; 80 | Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-2497; 81 | Cameron A.J., Shaw J.E., Zimmet P.Z., The metabolic syndrome: Prevalence in worldwide populations (2004) Endocrinol Metab Clin North Am, 33, pp. 351-376; 82 | Stern M.P., Williams K., Gonzalez-Villalpando C., Hunt K.J., Haffner S.M., Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? (2004) Diabetes Care, 27, pp. 2676-2681; 83 | Lakka H.M., Laaksonen D.E., Lakka T.A., The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men (2002) JAMA, 288, pp. 2709-2716; 84 | WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies (2004) Lancet, 363, pp. 157-163; 85 | Tan C.E., Ma S., Wai D., Chew S.K., Tai E.S., Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? (2004) Diabetes Care, 27, pp. 1182-1186; 86 | Diabetes Federation I., (2005) The IDF Consensus Worldwide Definition of the Metabolic Syndrome, , http://www.idf.org/webdata/docs/Metac_syndrome_def.pdf; 87 | Snehalatha C., Viswanathan V., Ramachandran A., Cutoff values for normal anthropometric variables in asian Indian adults (2003) Diabetes Care, 26, pp. 1380-1384; 88 | New criteria for 'obesity disease' in Japan (2002) Circ J, 66, pp. 987-992; 89 | Genuth S., Alberti K.G., Bennett P., Follow-up report on the diagnosis of diabetes mellitus (2003) Diabetes Care, 26, pp. 3160-3167; 90 | Lindstrom J., Louheranta A., Mannelin M., The Finnish Diabetes Prevention Study Group F., The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity (2003) Diabetes Care, 26, pp. 3230-3236; 91 | Van Gaal L.F., Rissanen A.M., Scheen A.J., Rio-Europe Study Group T., Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study (2005) Lancet, 365, pp. 1389-1397; 92 | Kahn R., Buse J., Ferrannini E., Stern M., The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes (2005) Diabetes Care, 28, pp. 2289-2304. , [AlsoDiabetologia2005;publishedonlineAug4.DOI:10.1007/s00125-005-1876-2]; 93 | Zimmet P., Shaw J., Alberti K.G., Preventing type 2 diabetes and the dysmetabolic syndrome in the real world: A realistic view (2003) Diabet Med, 20, pp. 693-702; 94 | Gale E.A.M., Editorial: The myth of the metabolic syndrome (2005) Diabetologia, 10, pp. 1873-1875 95 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-25144459980&partnerID=40&md5=38bd96cc472397a827dba6d43ecb22f8 96 | ER - 97 | 98 | TI - A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity 99 | T2 - Science 100 | VL - 316 101 | IS - 5826 102 | SP - 889 103 | EP - 894 104 | PY - 2007 105 | AU - Frayling T.M. 106 | AU - Timpson N.J. 107 | AU - Weedon M.N. 108 | AU - Zeggini E. 109 | AU - Freathy R.M. 110 | AU - Lindgren C.M. 111 | AU - Perry J.R.B. 112 | AU - Elliott K.S. 113 | AU - Lango H. 114 | AU - Rayner N.W. 115 | AU - Shields B. 116 | AU - Harries L.W. 117 | AU - Barrett J.C. 118 | AU - Ellard S. 119 | AU - Groves C.J. 120 | AU - Knight B. 121 | AU - Patch A.-M. 122 | AU - Ness A.R. 123 | AU - Ebrahim S. 124 | AU - Lawlor D.A. 125 | AU - Ring S.M. 126 | AU - Ben-Shlomo Y. 127 | AU - Jarvelin M.-R. 128 | AU - Sovio U. 129 | AU - Bennett A.J. 130 | AU - Melzer D. 131 | AU - Ferrucci L. 132 | AU - Loos R.J.F. 133 | AU - Barroso I. 134 | AU - Wareham N.J. 135 | AU - Karpe F. 136 | AU - Owen K.R. 137 | AU - Cardon L.R. 138 | AU - Walker M. 139 | AU - Hitman G.A. 140 | AU - Palmer C.N.A. 141 | AU - Doney A.S.F. 142 | AU - Morris A.D. 143 | AU - Smith G.D. 144 | AU - Hattersley A.T. 145 | AU - McCarthy M.I. 146 | N1 - Export Date: 3 January 2016 147 | N1 - References: Ogden C.L., et. al., (2006) JAMA, 295, p. 1549; 148 | Maes H.H.M., Neale M.C., Eaves L.J., (1997) Behav. Genet, 27, p. 325; 149 | I. S. Farooqi, S. O'Rahilly, Endocr. Rev. 10.1210/er.2006-0040 (2006)Boutin P., (2003) PLoS Biol, 1, p. 361; 150 | Meyre D., (2005) Nat. Genet, 37, p. 863; 151 | Swarbrick M.M., (2005) PLoS Biol, 3, p. 1662; 152 | Groves C.J., (2006) Diabetes, 55, p. 1884; 153 | Weedon M.N., (2006) Diabetes, 55, p. 3175; 154 | Herbert A., (2006) Science, 312, p. 279; 155 | Loos R.J.F., Barroso I., O'Rahilly S., Wareham N.J., (2007) Science, 315, pp. 179c; 156 | Rosskopf D., (2007) Science, 315, pp. 179d; 157 | Dina C., (2007) Science, 315, pp. 179b; 158 | Materials and methods are available as supporting material on Science OnlineHiggins J.P., Thompson S.G., Deeks J.J., Altman D.G., (2003) BMJ, 327, p. 557; 159 | Lobstein T., Baur L., Uauy R., (2004) Obes. Rev, 5, p. 4; 160 | Zhang S., Zhu X., Zhao H., (2003) Genet. Epidemiol, 24, p. 44; 161 | Price A.L., (2006) Nat. Genet, 38, p. 904; 162 | Peters T., Ausmeier K., Dildrop R., Rüther U., (2002) Mamm. Genome, 13, p. 186; 163 | van der Hoeven F., (1994) Development, 120, p. 2601; 164 | Collection of the type 2 diabetes cases was supported by Diabetes UK, British Diabetic Association Research, and the UK Medical Research Council (Biomedical Collections Strategic Grant G0000649, The UK Type 2 Diabetes Genetics Consortium collection was supported by the Wellcome Trust (Biomedical Collections Grant GR072960, The ALSPAC study was supported by the UK Medical Research Council (MRC, the Wellcome Trust, and the University of Bristol. The British Women's Heart and Health Study was funded by the Department of Health and the British Heart Foundation. The Caerphilly study was funded by MRC and the British Heart Foundation. The Caerphilly study was undertaken by the former MRC Epidemiology Unit (South Wales) and was funded by the MRC. The data archive is maintained by the Department of Social Medicine, University of Bristol. The Exeter Family Study of Childhood Health was supported by NHS Research and Development and the Wellcome Trust. The work on the Northern Finland birth coUR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34248594090&partnerID=40&md5=d4fa0b32e7e761c68e5ecf809c576c65 165 | ER - 166 | 167 | TI - A genome-wide association study identifies novel risk loci for type 2 diabetes 168 | T2 - Nature 169 | VL - 445 170 | IS - 7130 171 | SP - 881 172 | EP - 885 173 | PY - 2007 174 | AU - Sladek R. 175 | AU - Rocheleau G. 176 | AU - Rung J. 177 | AU - Dina C. 178 | AU - Shen L. 179 | AU - Serre D. 180 | AU - Boutin P. 181 | AU - Vincent D. 182 | AU - Belisle A. 183 | AU - Hadjadj S. 184 | AU - Balkau B. 185 | AU - Heude B. 186 | AU - Charpentier G. 187 | AU - Hudson T.J. 188 | AU - Montpetit A. 189 | AU - Pshezhetsky A.V. 190 | AU - Prentki M. 191 | AU - Posner B.I. 192 | AU - Balding D.J. 193 | AU - Meyre D. 194 | AU - Polychronakos C. 195 | AU - Froguel P. 196 | N1 - Export Date: 3 January 2016 197 | N1 - References: Permutt M.A., Wasson J., Cox N., Genetic epidemiology of diabetes (2005) J. Clin. Invest, 115, pp. 1431-1439; 198 | Horikawa Y., Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus (2000) Nature Genet, 26, pp. 163-175; 199 | Meyre D., Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes (2005) Nature Genet, 37, pp. 863-867; 200 | Love-Gregory L.D., A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4α gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an ashkenazi jewish population (2004) Diabetes, 53, pp. 1134-1140; 201 | Silander K., Genetic variation near the hepatocyte nuclear factor-4α gene predicts susceptibility to type 2 diabetes (2004) Diabetes, 53, pp. 1141-1149; 202 | Vasseur F., Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians (2002) Hum. Mol. Genet, 11, pp. 2607-2614; 203 | Altshuler D., The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes (2000) Nature Genet, 26, pp. 76-80; 204 | Gloyn A.L., Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes (2003) Diabetes, 52, pp. 568-572; 205 | Grant S.F., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes (2006) Nature Genet, 38, pp. 320-323; 206 | Zhang C., Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men (2006) Diabetes, 55, pp. 2645-2648; 207 | Damcott C.M., Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: Replication and evidence for a role in both insulin secretion and insulin resistance (2006) Diabetes, 55, pp. 2654-2659; 208 | Scott L.J., Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample (2006) Diabetes, 55, pp. 2649-2653; 209 | Groves C.J., Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk (2006) Diabetes, 55, pp. 2640-2644; 210 | Cauchi S., TCF7L2 variation predicts hyperglycemia incidence in a French general population: The data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study (2006) Diabetes, 55, pp. 3189-3192; 211 | Chandak G.R., Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population (2007) Diabetologia, 50, pp. 63-67; 212 | Florez J.C., TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program (2006) N. Engl. J. Med, 355, pp. 241-250; 213 | Humphries S.E., Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European whites, Indian Asians and Afro-Caribbean men and women (2006) J. Mol. Med, 84, pp. 1-10; 214 | Parton L.E., Limited role for SREBP-1c in defective glucose-induced insulin secretion from Zucker diabetic fatty rat islets: A functional and gene profiling analysis (2006) Am. J. Physiol. Endocrinol. Metab, 291, pp. E982-E994; 215 | Saxena R., Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals (2006) Diabetes, 55, pp. 2890-2895; 216 | Weedon M.N., Combining information from common type 2 diabetes risk polymorphisms improves disease prediction (2006) PLoS Med, 3, pp. e374; 217 | Fingerlin T.E., Boehnke M., Abecasis G.R., Increasing the power and efficiency of disease-marker case-control association studies through use of allele-sharing information (2004) Am. J. Hum. Genet, 74, pp. 432-443; 218 | Balkau B., An epidemiologic survey from a network of French Health Examination Centres, (D.E.S.I.R.): Epidemiologic data on the insulin resistance syndrome (1996) Rev. Epidemiol. Sante Publique, 44, pp. 373-375; 219 | A haplotype map of the human genome (2005) Nature, 437, pp. 1299-1320. , International HapMap Consortium; 220 | Campbell C.D., Demonstrating stratification in a European American population (2005) Nature Genet, 37, pp. 868-872; 221 | Chimienti F., In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion (2006) J. Cell Sci, 119, pp. 4199-4206; 222 | Duggirala R., Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans (1999) Am. J. Hum. Genet, 64, pp. 1127-1140; 223 | Ghosh S., The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes (2000) Am. J. Hum. Genet, 67, pp. 1174-1185; 224 | Meigs, J. B., Panhuysen, C. I., Myers, R. H., Wilson, P. W. & Cupples, L. A. A genome-wide scan for loci linked to plasma levels of glucose and HbA(1c) in a community-based sample of Caucasian pedigrees: The Framingham Offspring Study. Diabetes 51, 833-840 (2002)Wiltshire S., A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): Analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q (2001) Am. J. Hum. Genet, 69, pp. 553-569; 225 | Bort R., Martinez-Barbera J.P., Beddington R.S., Zaret K.S., Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas (2004) Development, 131, pp. 797-806; 226 | Bort R., Signore M., Tremblay K., Martinez Barbera J.P., Zaret K.S., Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development (2006) Dev. Biol, 290, pp. 44-56; 227 | Foley A.C., Mercola M., Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex (2005) Genes Dev, 19, pp. 387-396; 228 | Bennett R.G., Hamel F.G., Duckworth W.C., An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures (2003) Diabetes, 52, pp. 2315-2320; 229 | Farris W., Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo (2003) Proc. Natl Acad. Sci. USA, 100, pp. 4162-4167; 230 | Groves C.J., Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for type 2 diabetes susceptibility (2003) Diabetes, 52, pp. 1300-1305; 231 | Karamohamed S., Polymorphisms in the insulin-degrading enzyme gene are associated with type 2 diabetes in men from the NHLBI Framingham Heart Study (2003) Diabetes, 52, pp. 1562-1567; 232 | Florez J.C., High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people (2006) Diabetes, 55, pp. 128-135; 233 | Apelqvist A., Ahlgren U., Edlund H., Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas (1997) Curr. Biol, 7, pp. 801-804; 234 | Thomas M.K., Rastalsky N., Lee J.H., Habener J.F., Hedgehog signaling regulation of insulin production by pancreatic β-cells (2000) Diabetes, 49, pp. 2039-2047; 235 | Boras-Granic K., Grosschedl R., Hamel P.A., Genetic interaction between Lef1 and Alx4 is required for early embryonic development (2006) Int. J. Dev. Biol, 50, pp. 601-610; 236 | Di Rienzo A., Hudson R.R., An evolutionary framework for common diseases: The ancestral-susceptibility model (2005) Trends Genet, 21, pp. 596-601; 237 | Pritchard J.K., Are rare variants responsible for susceptibility to complex diseases? (2001) Am. J. Hum. Genet, 69, pp. 124-137; 238 | Hallaq H., A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels (2004) Development, 131, pp. 5197-5209; 239 | Stickens D., The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes (1996) Nature Genet, 14, pp. 25-32; 240 | Pritchard J.K., Stephens M., Donnelly P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959; 241 | Sasieni P.D., From genotypes to genes: Doubling the sample size (1997) Biometrics, 53, pp. 1253-1261; 242 | Clayton D.G., Population structure, differential bias and genomic control in a large-scale, case-control association study (2005) Nature Genet, 37, pp. 1243-1246; 243 | Devlin B., Roeder K., Genomic control for association studies (1999) Biometrics, 55, pp. 997-1004; 244 | Reich D.E., Goldstein D.B., Detecting association in a case-control study while correcting for population stratification (2001) Genet. Epidemiol, 20, pp. 4-16; 245 | Kohler K., Bickeboller H., Case-control association tests correcting for population stratification (2006) Ann. Hum. Genet, 70, pp. 98-115 246 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-33847176604&partnerID=40&md5=9d8966d58a568fe77986e393ba1973ab 247 | ER - 248 | 249 | TI - Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels 250 | T2 - Science 251 | VL - 316 252 | IS - 5829 253 | SP - 1331 254 | EP - 1336 255 | PY - 2007 256 | AU - Saxena R. 257 | AU - Voight B.F. 258 | AU - Lyssenko V. 259 | AU - Burtt N.P. 260 | AU - De Bakker P.I.W. 261 | AU - Chen H. 262 | AU - Roix J.J. 263 | AU - Kathiresan S. 264 | AU - Hirschhorn J.N. 265 | AU - Daly M.J. 266 | AU - Hughes T.E. 267 | AU - Groop L. 268 | AU - Altshuler D. 269 | N1 - Export Date: 3 January 2016 270 | N1 - References: Fisher R.A., (1918) Trans. R. Soc. Edinb, 52, p. 399; 271 | Kimura M., Ota T., (1973) Genetics, 75, p. 199; 272 | (2005) Nature, 437, p. 1299. , The International Haplotype Map Consortium; 273 | Materials and methods are available as supporting material on Science OnlinePe'er I., (2006) Nat. Genet, 38, p. 663; 274 | de Bakker P.-I.W., (2005) Nat. Genet, 37, p. 1217; 275 | Campbell C.D., (2005) Nat. Genet, 37, p. 868; 276 | Clayton D.G., (2005) Nat. Genet, 37, p. 1243; 277 | Price A.L., (2006) Nat. Genet, 38, p. 904; 278 | Nature, , The Wellcome Trust Case Control Consortium, in press; 279 | Scott L.J., (2007) Science, 316, p. 1341; 280 | Zeggini E., (2007) Science, 316, p. 1336; 281 | Krishnamurthy J., (2006) Nature, 443, p. 453; 282 | Nielsen F.C., Nielsen J., Christiansen J., (2001) Scand. J. Clin. Lab. Invest. Suppl, 234, p. 93; 283 | Spagnoli F.M., Brivanlou A.H., (2006) Dev. Biol, 292, p. 442; 284 | Wagner M., (2003) Gastroenterology, 124, p. 1901; 285 | Ubeda M., Rukstalis J.M., Habener J.F., (2006) J. Biol. Chem, 281, p. 28858; 286 | Grant S.F., (2006) Nat. Genet, 38, p. 320; 287 | Sladek R., (2007) Nature, 445, p. 881; 288 | Hani E.H., (1998) Diabetologia, 41, p. 1511; 289 | Deeb S.S., (1998) Nat. Genet, 20, p. 284; 290 | Slosberg E.D., (2001) Diabetes, 50, p. 1813; 291 | O'Doherty R.M., Lehman D.L., Telemaque-Potts S., Newgard C.B., (1999) Diabetes, 48, p. 2022; 292 | Ferre T., Riu E., Bosch F., Valera A., (1996) FASEB J, 10, p. 1213; 293 | Graham R.R., (2007) Proc. Natl. Acad. Sci. U.S.A, 104, p. 6758; 294 | Maller J., (2006) Nat. Genet, 38, p. 1055; 295 | Li M., (2006) Nat. Genet, 38, p. 1049; 296 | Duerr R.H., (2006) Science, 314, p. 1461; 297 | Hugot J.P., (2001) Nature, 411, p. 599; 298 | Halman C.A., (2007) Nat. Genet, 39, p. 638; 299 | Kotowski I.K., (2006) Am. J. Hum. Genet, 78, p. 410; 300 | We are indebted to all participants in the studies for their support and contributions. This work was supported by Novartis Institutes for BioMedical Research (D.A, with additional support from The Richard and Susan Smith Family Foundation/American Diabetes Association Pinnacle Program Project Award (D.A, J.N.H, M.J.D, We thank our colleagues from the UKT2D study and the FUSION study for sharing data before publication and for close and enjoyable collaboration. We thank P. Donnelly for sharing results before publication on behalf of the WTCCC. The following are supported by NIH Research Career Awards: J.C.F, K23 DK65978-04, H.N.L, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) K23 DK067288, NIH Research Service Award (R.S, and a NIH Training grant award (E.K.S, G.L. is supported by March of Dimes research grant (6-FY04-61, S.K.'s work is supported by grants from the Doris Duke Charitable Foundation, the Fannie E. Rippel Foundation, and NIH granUR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34249888775&partnerID=40&md5=f11025802b7a97277582dede63f179d9 301 | ER - 302 | 303 | TI - A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants 304 | T2 - Science 305 | VL - 316 306 | IS - 5829 307 | SP - 1341 308 | EP - 1345 309 | PY - 2007 310 | AU - Scott L.J. 311 | AU - Mohlke K.L. 312 | AU - Bonnycastle L.L. 313 | AU - Willer C.J. 314 | AU - Li Y. 315 | AU - Duren W.L. 316 | AU - Erdos M.R. 317 | AU - Stringham H.M. 318 | AU - Chines P.S. 319 | AU - Jackson A.U. 320 | AU - Prokunina-Olsson L. 321 | AU - Ding C.-J. 322 | AU - Swift A.J. 323 | AU - Narisu 324 | AU - Hu T. 325 | AU - Pruim R. 326 | AU - Xiao R. 327 | AU - Li X.-Y. 328 | AU - Conneely K.N. 329 | AU - Riebow N.L. 330 | AU - Sprau A.G. 331 | AU - Tong M. 332 | AU - White P.P. 333 | AU - Hetrick K.N. 334 | AU - Barnhart M.W. 335 | AU - Bark C.W. 336 | AU - Goldstein J.L. 337 | AU - Watkins L. 338 | AU - Xiang F. 339 | AU - Saramies J. 340 | AU - Buchanan T.A. 341 | AU - Watanabe R.M. 342 | AU - Valle T.T. 343 | AU - Kinnunen L. 344 | AU - Abecasis G.R. 345 | AU - Pugh E.W. 346 | AU - Doheny K.F. 347 | AU - Bergman R.N. 348 | AU - Tuomilehto J. 349 | AU - Collins F.S. 350 | AU - Boehnke M. 351 | N1 - Export Date: 3 January 2016 352 | N1 - References: Wild S., Roglic G., Green A., Sicree R., King H., (2004) Diabetes Care, 27, p. 1047; 353 | Rich S.S., (1990) Diabetes, 39, p. 1315; 354 | Kaprio J., (1992) Diabetologia, 35, p. 1060; 355 | Diabetes Genetics Initiative, Science 316, 1331 (2007); published online 26 April 2007 (10.1126/science.1142358)E. Zeggini et al., Science 316, 1336 (2007); published online 26 April 2007 (10.1126/science.1142364)Nature, , The Wellcome Trust Case Control Consortium, in press; 356 | Sladek R., (2007) Nature, 445, p. 881; 357 | Materials and methods are available as supporting material on Science OnlineValle T., (1998) Diabetes Care, 21, p. 949; 358 | Silander K., (2004) Diabetes, 53, p. 821; 359 | Saaristo T., Diabetes Vasc. Dis. Res (2005), 2, p. 67Devlin B., Roeder K., (1999) Biometrics, 55, p. 997; 360 | Y. Li, P. Scheet, J. Ding, G. R. Abecasis, submitted for publication; manuscript available from G.R.A. (e-mail: goncalo@umich.edu)(2005) Nature, 437, p. 1299. , International HapMap Consortium; 361 | Grant S.F., (2006) Nat. Genet, 38, p. 320; 362 | Deeb S.S., (1998) Nat. Genet, 20, p. 284; 363 | Altshuler D., (2000) Nat. Genet, 26, p. 76; 364 | Gloyn A.L., (2003) Diabetes, 52, p. 568; 365 | Nielsen J., (1999) Mol. Cell. Biol, 19, p. 1262; 366 | Chimienti F., Devergnas S., Favier A., Seve M., (2004) Diabetes, 53, p. 2330; 367 | Chimienti F., (2006) J. Cell Sci, 119, p. 4199; 368 | Dunn M.F., (2005) Biometals, 18, p. 295; 369 | Ching Y.P., Pang A.S., Lam W.H., Qi R.Z., Wang J.H., (2002) J. Biol. Chem, 277, p. 15237; 370 | Ubeda M., Kemp D.M., Habener J.F., (2004) Endocrinology, 145, p. 3023; 371 | Wei F.Y., (2005) Nat. Med, 11, p. 1104; 372 | Ubeda M., Rukstalis J.M., Habener J.F., (2006) J. Biol. Chem, 281, p. 28858; 373 | Rane S.G., (1999) Nat. Genet, 22, p. 44; 374 | Tsutsui T., (1999) Mol. Cell. Biol, 19, p. 7011; 375 | Kim W.Y., Sharpless N.E., (2006) Cell, 127, p. 265; 376 | Bort R., Martinez-Barbera J.P., Beddington R.S., Zaret K.S., (2004) Development, 131, p. 797; 377 | T. M. Frayling et al., Science 316, 889 (2007); published online 12 April 2007 (10.1126/science.1141634)Neel J.V., (1976) The Genetics of Diabetes Mellitus, pp. 1-11. , W. Creutzfeldt, J. Köbberling, J. V. Neel, Eds, Springer, Berlin; 378 | We thank the Finnish citizens who generously participated in this study; our colleagues from the DGI, WTCCC, and UKT2D for sharing prepublication data from their studies; S. Enloe of FUSION and E. Kwasnik, J. Gearhart, J. Romm, M. Zilka, C. Ongaco, A. Robinson, R. King, B. Craig, and E. Hsu of CIDR for expert technical work; and D. Leja of NHGRI for expert assistance with a figure. Support for this research was provided by NIH grants DK062370 (M.B, DK072193 (K.L.M, HL084729 (G.R.A, HG002651 (G.R.A, and U54 DA021519; National Human Genome Research Institute Intramural project number 1 Z01 HG000024 (F.S.C, a postdoctoral fellowship award from the American Diabetes Association (C.J.W, a Wenner-Gren Fellowship (L.P.O, and a Calvin Research Fellowship (R.P, Genome-wide genotyping was performed by the Johns Hopkins University Genetic Resources Core Facility (GRCF) SNP Center at CIDR with support from CIDR NIH (contract N01-HG-65403) and the GRCF SNP CenterUR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34249885875&partnerID=40&md5=5258eca84c5e594411f46fe605d5e936 379 | ER - 380 | 381 | TI - Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes 382 | T2 - Nature Genetics 383 | VL - 40 384 | IS - 5 385 | SP - 638 386 | EP - 645 387 | PY - 2008 388 | AU - Zeggini E. 389 | AU - Scott L.J. 390 | AU - Saxena R. 391 | AU - Voight B.F. 392 | N1 - Export Date: 3 January 2016 393 | N1 - References: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels (2007) Science, 316, pp. 1331-1336. , Diabetes Genetics Initiative; 394 | Scott L.J., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2007) Science, 316, pp. 1341-1345; 395 | Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007) Nature, 447, pp. 661-678. , Wellcome Trust Case Control Consortium; 396 | Zeggini E., Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes (2007) Science, 316, pp. 1336-1341; 397 | Steinthorsdottir V., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes (2007) Nat. Genet, 39, pp. 770-775; 398 | Sladek R., A genome-wide association study identifies novel risk loci for type 2 diabetes (2007) Nature, 445, pp. 881-885; 399 | Florez J.C., A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: Replication and integration with other genome-wide datasets (2007) Diabetes, 56, pp. 3063-3074; 400 | Rampersaud E., Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: Evidence for replication from diabetes-related quantitative traits and from independent populations (2007) Diabetes, 56, pp. 3053-3062; 401 | Hanson R.L., A search for variants associated with young-onset type 2 diabetes in American Indians in a 100K genotyping array (2007) Diabetes, 56, pp. 3045-3052; 402 | Hayes M.G., Identification of type 2 diabetes genes in Mexican Americans through genome-wide association studies (2007) Diabetes, 56, pp. 3033-3044; 403 | Salonen J., Type 2 diabetes whole-genome association study in four populations: The DiaGen consortium (2007) Am. J. Hum. Genet, 81, pp. 338-345; 404 | McCarthy M.I., Zeggini E., Genome-wide association scans for Type 2 diabetes: New insights into biology and therapy (2007) Trends Pharmacol. Sci, 28, pp. 598-601; 405 | A second generation human haplotype map of over 3.1 million SNPs (2007) Nature, 449, pp. 851-861. , International HapMap Consortium; 406 | Marchini J., Howie B., Myers S., McVean G., Donnelly P., A new multipoint method for genome-wide association studies by imputation of genotypes (2007) Nat. Genet, 39, pp. 906-913; 407 | Freedman M.L., Assessing the impact of population stratification on genetic association studies (2004) Nat. Genet, 36, pp. 388-393; 408 | Nakajima T., Fujino S., Nakanishi G., Kim Y.S., Jetten A.M., TIP27: A novel repressor of the nuclear orphan receptor TAK1/TR4 (2004) Nucleic Acids Res, 32, pp. 4194-4204; 409 | Collins L.L., Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4 (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 15058-15063; 410 | Thomas G., Multiple loci identified in a genome-wide association study of prostate cancer (2008) Nat. Genet, 40, pp. 310-315; 411 | Gudmundsson J., Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes (2007) Nat. Genet, 39, pp. 977-983; 412 | Winckler W., Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes (2007) Diabetes, 56, pp. 685-693; 413 | Bieganowski P., Shilinski K., Tsichlis P.N., Brenner C., Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2γ abundance (2004) J. Biol. Chem, 273, pp. 44656-44666; 414 | Drieschner N., Evidence for a 3p25 breakpoint hot spot region in thyroid tumors of follicular origin (2006) Thyroid, 16, pp. 1091-1096; 415 | Drieschner N., A domain of the thyroid adenoma associated gene (THADA) conserved in vertebrates becomes destroyed by chromosomal rearrangements observed in thyroid adenomas (2007) Gene, 403, pp. 110-117; 416 | Lammert E., Brown J., Melton D.A., Notch gene expression during pancreatic organogenesis (2000) Mech. Dev, 94, pp. 199-203; 417 | Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G., Measuring inconsistency in meta-analyses (2003) Br. Med. J, 327, pp. 557-560; 418 | Risch N., Merikangas K., The future of genetic studies of complex human diseases (1996) Science, 273, pp. 1516-1517; 419 | Lin S., Chakravarti A., Cutler D.J., Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies (2004) Nat. Genet, 36, pp. 1181-1188 420 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-42349106044&partnerID=40&md5=4a3d1501b51249b5d63b9f79a766a747 421 | ER - 422 | 423 | TI - Newly identified loci that influence lipid concentrations and risk of coronary artery disease 424 | T2 - Nature Genetics 425 | VL - 40 426 | IS - 2 427 | SP - 161 428 | EP - 169 429 | PY - 2008 430 | AU - Willer C.J. 431 | AU - Sanna S. 432 | AU - Jackson A.U. 433 | AU - Scuteri A. 434 | AU - Bonnycastle L.L. 435 | AU - Clarke R. 436 | AU - Heath S.C. 437 | AU - Timpson N.J. 438 | AU - Najjar S.S. 439 | AU - Stringham H.M. 440 | AU - Strait J. 441 | AU - Duren W.L. 442 | AU - Maschio A. 443 | AU - Busonero F. 444 | AU - Mulas A. 445 | AU - Albai G. 446 | AU - Swift A.J. 447 | AU - Morken M.A. 448 | AU - Narisu N. 449 | AU - Bennett D. 450 | AU - Parish S. 451 | AU - Shen H. 452 | AU - Galan P. 453 | AU - Meneton P. 454 | AU - Hercberg S. 455 | AU - Zelenika D. 456 | AU - Chen W.-M. 457 | AU - Li Y. 458 | AU - Scott L.J. 459 | AU - Scheet P.A. 460 | AU - Sundvall J. 461 | AU - Watanabe R.M. 462 | AU - Nagaraja R. 463 | AU - Ebrahim S. 464 | AU - Lawlor D.A. 465 | AU - Ben-Shlomo Y. 466 | AU - Davey-Smith G. 467 | AU - Shuldiner A.R. 468 | AU - Collins R. 469 | AU - Bergman R.N. 470 | AU - Uda M. 471 | AU - Tuomilehto J. 472 | AU - Cao A. 473 | AU - Collins F.S. 474 | AU - Lakatta E. 475 | AU - Lathrop G.M. 476 | AU - Boehnke M. 477 | AU - Schlessinger D. 478 | AU - Mohlke K.L. 479 | AU - Abecasis G.R. 480 | N1 - Export Date: 3 January 2016 481 | N1 - References: Mackay J., Mensah G.A., (2004) The Atlas of Heart Disease and Stroke, , World Health Organization, Geneva; 482 | Law M.R., Wald N.J., Rudnicka A.R., Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: Systematic review and meta-analysis (2003) Br. Med. J, 326, p. 1423; 483 | Kuulasmaa K., Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations (2000) Lancet, 355, pp. 675-687; 484 | Clarke R., Cholesterol fractions and apolipoproteins as risk factors for heart disease mortality in older men (2007) Arch. Intern. Med, 167, pp. 1373-1378; 485 | Grundy S.M., Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines (2004) Circulation, 110, pp. 227-239; 486 | Gotto Jr. A.M., Brinton E.A., Assessing low levels of high-density lipoprotein cholesterol as a risk factor in coronary heart disease: A working group report and update (2004) J. Am. Coll. Cardiol, 43, pp. 717-724; 487 | Blood cholesterol and vascular mortality by age, sex and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths (2007) Lancet, 370, pp. 1829-1839. , Prospective Studies Collaboration; 488 | Bansal S., Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women (2007) J. Am. Med. Assoc, 298, pp. 309-316; 489 | Nordestgaard B.G., Benn M., Schnohr P., Tybjaerg-Hansen A., Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women (2007) J. Am. Med. Assoc, 298, pp. 299-308; 490 | Pilia G., Heritability of cardiovascular and personality traits in 6,148 Sardinians (2006) PLoS Genet, 2, pp. e132; 491 | Pollin T.I., A genome-wide scan of serum lipid levels in the Old Order Amish (2004) Atherosclerosis, 173, pp. 89-96; 492 | Breslow J.L., Genetics of lipoprotein abnormalities associated with coronary artery disease susceptibility (2000) Annu. Rev. Genet, 34, pp. 233-254; 493 | Scott L.J., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2007) Science, 316, pp. 1341-1345; 494 | Scuteri A., Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity related traits (2007) PLoS Genet, 3, pp. e115; 495 | Saxena R., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels (2007) Science, 316, pp. 1331-1336; 496 | Kathiresan S., (2008) Nat. Genet, , Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans, advance online publication 13 January, doi:10.1038/ng.75; 497 | Chen W.M., Abecasis G.R., Family-based association tests for genome-wide association scans (2007) Am. J. Hum. Genet, 81, pp. 913-926; 498 | Burdick J.T., Chen W.M., Abecasis G.R., Cheung V.G., In silico method for inferring genotypes in pedigrees (2006) Nat. Genet, 38, pp. 1002-1004; 499 | The International HapMap Project (2005) Nature, 437, pp. 1299-1320. , The International HapMap Consortium; 500 | George V.T., Elston R.C., Testing of association between polymorphic markers and quantitative traits in pedigrees (1987) Genet. Epidemiol, 4, pp. 193-201; 501 | Abecasis G.R., Cardon L.R., Cookson W.O.C., A general test of association for quantitative traits in nuclear families (2000) Am. J. Hum. Genet, 66, pp. 279-292; 502 | Devlin B., Roeder K., Genomic control for association studies (1999) Biometrics, 55, pp. 997-1004; 503 | ISIS-3 Collaborative Group. ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. Lancet 339, 753-770 (1992)Keavney B., Lipid-related genes and myocardial infarction in 4685 cases and 3460 controls: Discrepancies between genotype, blood lipid concentrations, and coronary disease risk (2004) Int. J. Epidemiol, 33, pp. 1002-1013; 504 | Post W., Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish (2007) Hum. Hered, 64, pp. 214-219; 505 | Post W., Determinants of coronary artery and aortic calcification in the Old Order Amish (2007) Circulation, 115, pp. 717-724; 506 | Hercberg S., The SU.VI.MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals (2004) Arch. Intern. Med, 164, pp. 2335-2342; 507 | Hercberg S., A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: The SU.VI.MAX study-design, methods, and participant characteristics. SUpplementation en VItamines et Mineraux AntioXydants (1998) Control. Clin. Trials, 19, pp. 336-351; 508 | Caerphilly and Speedwell collaborative heart disease studies (1984) J. Epidemiol. Community Health, 38, pp. 259-262. , The Caerphilly and Speedwell Collaborative Group; 509 | Bainton D., Plasma triglyceride and high density lipoprotein cholesterol as predictors of ischaemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies (1992) Br. Heart J, 68, pp. 60-66; 510 | Lawlor D.A., Bedford C., Taylor M., Ebrahim S., Geographical variation in cardiovascular disease, risk factors, and their control in older women: British Women's Heart and Health Study (2003) J. Epidemiol. Community Health, 57, pp. 134-140; 511 | Nielsen M.S., Jacobsen C., Olivecrona G., Gliemann J., Petersen C.M., Sortilin/ neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase (1999) J. Biol. Chem, 274, pp. 8832-8836; 512 | Samani N.J., Genomewide association analysis of coronary artery disease (2007) N. Engl. J. Med, 357, pp. 443-453; 513 | Koishi R., Angptl3 regulates lipid metabolism in mice (2002) Nat. Genet, 30, pp. 151-157; 514 | Romeo S., Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL (2007) Nat. Genet, 39, pp. 513-516; 515 | Murphy C., Murray A.M., Meaney S., Gafvels M., Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism (2007) Biochem. Biophys. Res. Commun, 355, pp. 359-364; 516 | Kiss-Toth E., Human tribbles, a protein family controlling mitogen-activated protein kinase cascades (2004) J. Biol. Chem, 279, pp. 42703-42708; 517 | Rauch U., Feng K., Zhou X.H., Neurocan: A brain chondroitin sulfate proteoglycan (2001) Cell. Mol. Life Sci, 58, pp. 1842-1856; 518 | Kuivenhoven J.A., The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes (1997) J. Lipid Res, 38, pp. 191-205; 519 | Pare G., Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between endothelin-1 and high-density lipoprotein cholesterol (2007) Am. J. Hum. Genet, 80, pp. 673-682; 520 | Magrane J., Casaroli-Marano R.P., Reina M., Gafvels M., Vilaro S., The role of O-linked sugars in determining the very low density lipoprotein receptor stability or release from the cell (1999) FEBS Lett, 451, pp. 56-62; 521 | Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007) Nature, 447, pp. 661-678. , The Welcome Trust Case Control Consortium; 522 | Helgadottir A., A common variant on chromosome 9p21 affects the risk of myocardial infarction (2007) Science, 316, pp. 1491-1493; 523 | McPherson R., A common allele on chromosome 9 associated with coronary heart disease (2007) Science, 316, pp. 1488-1491; 524 | Barzilai N., Unique lipoprotein phenotype and genotype associated with exceptional longevity (2003) J. Am. Med. Assoc, 290, pp. 2030-2040; 525 | Baigent C., Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins (2005) Lancet, 366, pp. 1267-1278; 526 | Cohen J.C., Multiple rare alleles contribute to low plasma levels of HDL cholesterol (2004) Science, 305, pp. 869-872; 527 | Naoumova R.P., Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: Long-term follow-up and treatment response (2005) Arterioscler. Thromb. Vasc. Biol, 25, pp. 2654-2660; 528 | Lind S., Autosomal recessive hypercholesterolaemia: Normalization of plasma LDL cholesterol by ezetimibe in combination with statin treatment (2004) J. Intern. Med, 256, pp. 406-412 529 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-38649125868&partnerID=40&md5=9e0dce72eed6e5266e9fe8cd17df756b 530 | ER - 531 | 532 | TI - Common variants at 30 loci contribute to polygenic dyslipidemia 533 | T2 - Nature Genetics 534 | VL - 41 535 | IS - 1 536 | SP - 56 537 | EP - 65 538 | PY - 2009 539 | AU - Kathiresan S. 540 | AU - Willer C.J. 541 | AU - Peloso G.M. 542 | AU - Demissie S. 543 | AU - Musunuru K. 544 | AU - Schadt E.E. 545 | AU - Kaplan L. 546 | AU - Bennett D. 547 | AU - Li Y. 548 | AU - Tanaka T. 549 | AU - Voight B.F. 550 | AU - Bonnycastle L.L. 551 | AU - Jackson A.U. 552 | AU - Crawford G. 553 | AU - Surti A. 554 | AU - Guiducci C. 555 | AU - Burtt N.P. 556 | AU - Parish S. 557 | AU - Clarke R. 558 | AU - Zelenika D. 559 | AU - Kubalanza K.A. 560 | AU - Morken M.A. 561 | AU - Scott L.J. 562 | AU - Stringham H.M. 563 | AU - Galan P. 564 | AU - Swift A.J. 565 | AU - Kuusisto J. 566 | AU - Bergman R.N. 567 | AU - Sundvall J. 568 | AU - Laakso M. 569 | AU - Ferrucci L. 570 | AU - Scheet P. 571 | AU - Sanna S. 572 | AU - Uda M. 573 | AU - Yang Q. 574 | AU - Lunetta K.L. 575 | AU - Dupuis J. 576 | AU - De Bakker P.I.W. 577 | AU - O'Donnell C.J. 578 | AU - Chambers J.C. 579 | AU - Kooner J.S. 580 | AU - Hercberg S. 581 | AU - Meneton P. 582 | AU - Lakatta E.G. 583 | AU - Scuteri A. 584 | AU - Schlessinger D. 585 | AU - Tuomilehto J. 586 | AU - Collins F.S. 587 | AU - Groop L. 588 | AU - Altshuler D. 589 | AU - Collins R. 590 | AU - Lathrop G.M. 591 | AU - Melander O. 592 | AU - Salomaa V. 593 | AU - Peltonen L. 594 | AU - Orho-Melander M. 595 | AU - Ordovas J.M. 596 | AU - Boehnke M. 597 | AU - Abecasis G.R. 598 | AU - Mohlke K.L. 599 | AU - Cupples L.A. 600 | N1 - Export Date: 3 January 2016 601 | N1 - References: Manolio T.A., Brooks L.D., Collins F.S.A., HapMap harvest of insights into the genetics of common disease (2008) J. Clin. Invest, 118, pp. 1590-1605; 602 | Lund University, and Novartis Institutes. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels (2007) Science, 316, pp. 1331-1336. , Diabetes Genetics Initiative of Broad Institute of Harvard and MIT; 603 | Kathiresan S., Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans (2008) Nat. Genet, 40, pp. 189-197; 604 | Willer C.J., Newly identified loci that influence lipid concentrations and risk of coronary artery disease (2008) Nat. Genet, 40, pp. 161-169; 605 | Wallace C., Genome-wide association study identifies genes for biomarkers of cardiovascular disease: Serum urate and dyslipidemia (2008) Am. J. Hum. Genet, 82, pp. 139-149; 606 | Sandhu M.S., LDL-cholesterol concentrations: A genome-wide association study (2008) Lancet, 371, pp. 483-491; 607 | Kannel W.B., Dawber T.R., Kagan A., Revotskie N., Stokes III J., Factors of risk in the development of coronary heart disease-six year follow-up experience. The Framingham Study (1961) Ann. Intern. Med, 55, pp. 33-50; 608 | Kannel W.B., Feinleib M., McNamara P.M., Garrison R.J., Castelli W.P., An investigation of coronary heart disease in families. The Framingham offspring study (1979) Am. J. Epidemiol, 110, pp. 281-290; 609 | Splansky G.L., The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: Design, recruitment, and initial examination (2007) Am. J. Epidemiol, 165, pp. 1328-1335; 610 | Pe'er I., Yelensky R., Altshuler D., Daly M.J., Estimation of the multiple testing burden for genomewide association studies of nearly all common variants (2008) Genet. Epidemiol, 32, pp. 381-385; 611 | Berglund G., Elmstahl S., Janzon L., Larsson S.A., The Malmo Diet and Cancer Study. Design and feasibility (1993) J. Intern. Med, 233, pp. 45-51; 612 | Vartiainen E., Cardiovascular risk factor changes in Finland, 1972-1997 (2000) Int. J. Epidemiol, 29, pp. 49-56; 613 | Scott L.J., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2007) Science, 316, pp. 1341-1345; 614 | ISIS-3. a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group.. Lancet 339, 753-770 (1992)Kajinami K., Brousseau M.E., Nartsupha C., Ordovas J.M., Schaefer E.J., ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin (2004) J. Lipid Res, 45, pp. 653-656; 615 | Romeo S., Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL (2007) Nat. Genet, 39, pp. 513-516; 616 | Schaeffer L., Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids (2006) Hum. Mol. Genet, 15, pp. 1745-1756; 617 | Ek J., The functional Thr130Ile and Val255Met polymorphisms of the hepatocyte nuclear factor-4alpha (HNF4A): Gene associations with type 2 diabetes or altered beta-cell function among Danes (2005) J. Clin. Endocrinol. Metab, 90, pp. 3054-3059; 618 | Pare G., Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between endothelin-1 and high-density lipoprotein cholesterol (2007) Am. J. Hum. Genet, 80, pp. 673-682; 619 | Spirin V., Common single-nucleotide polymorphisms act in concert to affect plasma levels of high-density lipoprotein cholesterol (2007) Am. J. Hum. Genet, 81, pp. 1298-1303; 620 | Hegele R.A., The private hepatocyte nuclear factor-1alpha G319S variant is associated with plasma lipoprotein variation in Canadian Oji-Cree (2000) Arterioscler. Thromb. Vasc. Biol, 20, pp. 217-222; 621 | Schadt E.E., Mapping the genetic architecture of gene expression in human liver (2008) PLoS Biol, 6, pp. e107; 622 | Jiang X., Increased prebeta-high density lipoprotein, apolipoprotein AI, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein AI transgenes (1996) J. Clin. Invest, 98, pp. 2373-2380; 623 | Jiang X.C., Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels (1999) J. Clin. Invest, 103, pp. 907-914; 624 | Isaacs A., Sayed-Tabatabaei F.A., Njajou O.T., Witteman J.C., van Duijn C.M., The - 514 C->T hepatic lipase promoter region polymorphism and plasma lipids: A meta-analysis (2004) J. Clin. Endocrinol. Metab, 89, pp. 3858-3863; 625 | Phillipson B.E., Rothrock D.W., Connor W.E., Harris W.S., Illingworth D.R., Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oils in patients with hypertriglyceridemia (1985) N. Engl. J. Med, 312, pp. 1210-1216; 626 | Blatch G.L., Lassle M., The tetratricopeptide repeat: A structural motif mediating protein-protein interactions (1999) Bioessays, 21, pp. 932-939; 627 | Berge K.E., Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters (2000) Science, 290, pp. 1771-1775; 628 | Funke H., A molecular defect causing fish eye disease: An amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 4855-4859; 629 | Buch S., A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease (2007) Nat. Genet, 39, pp. 995-999; 630 | Odom D.T., Control of pancreas and liver gene expression by HNF transcription factors (2004) Science, 303, pp. 1378-1381; 631 | Hayhurst G.P., Lee Y.H., Lambert G., Ward J.M., Gonzalez F.J., Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis (2001) Mol. Cell. Biol, 21, pp. 1393-1403; 632 | Shih D.Q., Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism (2001) Nat. Genet, 27, pp. 375-382; 633 | Yoshida K., Shimizugawa T., Ono M., Furukawa H., Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase (2002) J. Lipid Res, 43, pp. 1770-1772; 634 | Toomey R.E., Wakil S.J., Studies on the mechanism of fatty acid synthesis. XVI. Preparation and general properties of acyl-malonyl acyl carrier protein-condensing enzyme from Escherichia coli (1966) J. Biol. Chem, 241, pp. 1159-1165; 635 | Miyanishi M., Identification of Tim4 as a phosphatidylserine receptor (2007) Nature, 450, pp. 435-439; 636 | Petersen H.H., Low-density lipoprotein receptor-related protein interacts with MafB, a regulator of hindbrain development (2004) FEBS Lett, 565, pp. 23-27; 637 | Aalto-Setala K., Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles (1992) J. Clin. Invest, 90, pp. 1889-1900; 638 | Luke M.M., A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease (2007) Arterioscler. Thromb. Vasc. Biol, 27, pp. 2030-2036; 639 | Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-2497. , Executive summary of the third report of the National Cholesterol Education Program NCEP; 640 | Cohen J., Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 (2005) Nat. Genet, 37, pp. 161-165; 641 | Abifadel M., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia (2003) Nat. Genet, 34, pp. 154-156; 642 | Kotowski I.K., A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol (2006) Am. J. Hum. Genet, 78, pp. 410-422; 643 | Maxwell K.N., Fisher E.A., Breslow J.L., Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 2069-2074; 644 | Park S.W., Moon Y.A., Horton J.D., Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver (2004) J. Biol. Chem, 279, pp. 50630-50638; 645 | Benjannet S., NARC-1/PCSK9 and its natural mutants: Zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol (2004) J. Biol. Chem, 279, pp. 48865-48875; 646 | Cohen J.C., Boerwinkle E., Mosley Jr T.H., Hobbs H.H., Sequence variations in PCSK9, low LDL, and protection against coronary heart disease (2006) N. Engl. J. Med, 354, pp. 1264-1272; 647 | Kathiresan S., Polymorphisms associated with cholesterol and risk of cardiovascular events (2008) N. Engl. J. Med, 358, pp. 1240-1249; 648 | Kathiresan S., A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study (2007) BMC Med. Genet, 8 (SUPPL. 1), p. 17. , S; 649 | Lange K., Boehnke M., Extensions to pedigree analysis. IV. Covariance components models for multivariate traits (1983) Am. J. Med. Genet, 14, pp. 513-524 650 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-58149163149&partnerID=40&md5=f9fe8cfea9a9b6d017fb8bbb7f3fb292 651 | ER - 652 | 653 | TI - A variant in CDKAL1 influences insulin response and risk of type 2 diabetes 654 | T2 - Nature Genetics 655 | VL - 39 656 | IS - 6 657 | SP - 770 658 | EP - 775 659 | PY - 2007 660 | AU - Steinthorsdottir V. 661 | AU - Thorleifsson G. 662 | AU - Reynisdottir I. 663 | AU - Benediktsson R. 664 | AU - Jonsdottir T. 665 | AU - Walters G.B. 666 | AU - Styrkarsdottir U. 667 | AU - Gretarsdottir S. 668 | AU - Emilsson V. 669 | AU - Ghosh S. 670 | AU - Baker A. 671 | AU - Snorradottir S. 672 | AU - Bjarnason H. 673 | AU - Ng M.C.Y. 674 | AU - Hansen T. 675 | AU - Bagger Y. 676 | AU - Wilensky R.L. 677 | AU - Reilly M.P. 678 | AU - Adeyemo A. 679 | AU - Chen Y. 680 | AU - Zhou J. 681 | AU - Gudnason V. 682 | AU - Chen G. 683 | AU - Huang H. 684 | AU - Lashley K. 685 | AU - Doumatey A. 686 | AU - So W.-Y. 687 | AU - Ma R.C.Y. 688 | AU - Andersen G. 689 | AU - Borch-Johnsen K. 690 | AU - Jorgensen T. 691 | AU - Van Vliet-Ostaptchouk J.V. 692 | AU - Hofker M.H. 693 | AU - Wijmenga C. 694 | AU - Christiansen C. 695 | AU - Rader D.J. 696 | AU - Rotimi C. 697 | AU - Gurney M. 698 | AU - Chan J.C.N. 699 | AU - Pedersen O. 700 | AU - Sigurdsson G. 701 | AU - Gulcher J.R. 702 | AU - Thorsteinsdottir U. 703 | AU - Kong A. 704 | AU - Stefansson K. 705 | N1 - Export Date: 3 January 2016 706 | N1 - References: Sladek R., A genome-wide association study identifies novel risk loci for type 2 diabetes (2007) Nature, 445, pp. 881-885; 707 | Grant S.F., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes (2006) Nat. Genet, 38, pp. 320-323; 708 | Helgason A., Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution (2007) Nat. Genet, 39, pp. 218-225; 709 | Pe'er I., Evaluating and improving power in whole-genome association studies using fixed marker sets (2006) Nat. Genet, 38, pp. 663-667; 710 | Devlin B., Roeder K., Genomic control for association studies (1999) Biometrics, 55, pp. 997-1004; 711 | Skol A.D., Scott L.J., Abecasis G.R., Boehnke M., Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies (2006) Nat. Genet, 38, pp. 209-213; 712 | Chimienti F., Devergnas S., Favier A., Seve M., Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules (2004) Diabetes, 53, pp. 2330-2337; 713 | Ching Y.P., Pang A.S., Lam W.H., Qi R.Z., Wang J.H., Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor (2002) J. Biol. Chem, 277, pp. 15237-15240; 714 | Wei F.Y., Cdk5-dependent regulation of glucose-stimulated insulin secretion (2005) Nat. Med, 11, pp. 1104-1108; 715 | Ubeda M., Rukstalis J.M., Habener J.F., Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity (2006) J. Biol. Chem, 281, pp. 28858-28864; 716 | Reynisdottir I., Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2 (2003) Am. J. Hum. Genet, 73, pp. 323-335; 717 | Tanko L.B., Bagger Y.Z., Nielsen S.B., Christiansen C., Does serum cholesterol contribute to vertebral bone loss in postmenopausal women? (2003) Bone, 32, pp. 8-14; 718 | Jorgensen T., A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: Baseline results Inter99 (2003) Eur. J. Cardiovasc. Prev. Rehabil, 10, pp. 377-386; 719 | Helgadottir A., A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction (2006) Nat. Genet, 38, pp. 68-74; 720 | Yang X., Development and validation of stroke risk equation for Hong Kong Chinese patients with type 2 diabetes: The Hong Kong Diabetes Registry (2007) Diabetes Care, 30, pp. 65-70; 721 | Rotimi C.N., In search of susceptibility genes for type 2 diabetes in West Africa: The design and results of the first phase of the AADM study (2001) Ann. Epidemiol, 11, pp. 51-58; 722 | Kutyavin I.V., A novel endonuclease IV post-PCR genotyping system (2006) Nucleic Acids Res, 34, pp. e128; 723 | Gretarsdottir S., The gene encoding phosphodiesterase 4D confers risk of ischemic stroke (2003) Nat. Genet, 35, pp. 131-138; 724 | Rice J.A., (1995) Mathematical Statistics and Data Analysis, , Wadsworth, Belmont, California; 725 | Mantel N., Haenszel W., Statistical aspects of the analysis of data from retrospective studies of disease (1959) J. Natl. Cancer Inst, 22, pp. 719-748; 726 | Stefansson H., A common inversion under selection in Europeans (2005) Nat. Genet, 37, pp. 129-137; 727 | Helgason A., Yngvadottir B., Hrafnkelsson B., Gulcher J., Stefansson K., An Icelandic example of the impact of population structure on association studies (2005) Nat. Genet, 37, pp. 90-95; 728 | Sluiter W.J., Erkelens D.W., Reitsma W.D., Doorenbos H., Glucose tolerance and insulin release, a mathematical approach I. Assay of the beta-cell response after oral glucose loading (1976) Diabetes, 25, pp. 241-244; 729 | Hanson R.L., Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies (2000) Am. J. Epidemiol, 151, pp. 190-198; 730 | Matthews D.R., Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man (1985) Diabetologia, 28, pp. 412-419; 731 | A haplotype map of the human genome (2005) Nature, 437, pp. 1299-1320. , The International HapMap Consortium 732 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34249828965&partnerID=40&md5=ffe22a6df77f2e7cf766c6f3823d7847 733 | ER - 734 | 735 | TI - Genome-wide association study identifies eight loci associated with blood pressure 736 | T2 - Nature Genetics 737 | VL - 41 738 | IS - 6 739 | SP - 666 740 | EP - 676 741 | PY - 2009 742 | AU - Newton-Cheh C. 743 | AU - Johnson T. 744 | AU - Gateva V. 745 | AU - Tobin M.D. 746 | AU - Bochud M. 747 | AU - Coin L. 748 | AU - Najjar S.S. 749 | AU - Zhao J.H. 750 | AU - Heath S.C. 751 | AU - Eyheramendy S. 752 | AU - Papadakis K. 753 | AU - Voight B.F. 754 | AU - Scott L.J. 755 | AU - Zhang F. 756 | AU - Farrall M. 757 | AU - Tanaka T. 758 | AU - Wallace C. 759 | AU - Chambers J.C. 760 | AU - Khaw K.-T. 761 | AU - Nilsson P. 762 | AU - Van Der Harst P. 763 | AU - Polidoro S. 764 | AU - Grobbee D.E. 765 | AU - Onland-Moret N.C. 766 | AU - Bots M.L. 767 | AU - Wain L.V. 768 | AU - Elliott K.S. 769 | AU - Teumer A. 770 | AU - Luan J. 771 | AU - Lucas G. 772 | AU - Kuusisto J. 773 | AU - Burton P.R. 774 | AU - Hadley D. 775 | AU - McArdle W.L. 776 | AU - Brown M. 777 | AU - Dominiczak A. 778 | AU - Newhouse S.J. 779 | AU - Samani N.J. 780 | AU - Webster J. 781 | AU - Zeggini E. 782 | AU - Beckmann J.S. 783 | AU - Bergmann S. 784 | AU - Lim N. 785 | AU - Song K. 786 | AU - Vollenweider P. 787 | AU - Waeber G. 788 | AU - Waterworth D.M. 789 | AU - Yuan X. 790 | AU - Groop L. 791 | AU - Orho-Melander M. 792 | AU - Allione A. 793 | AU - Di Gregorio A. 794 | AU - Guarrera S. 795 | AU - Panico S. 796 | AU - Ricceri F. 797 | AU - Romanazzi V. 798 | AU - Sacerdote C. 799 | AU - Vineis P. 800 | AU - Barroso I. 801 | AU - Sandhu M.S. 802 | AU - Luben R.N. 803 | AU - Crawford G.J. 804 | AU - Jousilahti P. 805 | AU - Perola M. 806 | AU - Boehnke M. 807 | AU - Bonnycastle L.L. 808 | AU - Collins F.S. 809 | AU - Jackson A.U. 810 | AU - Mohlke K.L. 811 | AU - Stringham H.M. 812 | AU - Valle T.T. 813 | AU - Willer C.J. 814 | AU - Bergman R.N. 815 | AU - Morken M.A. 816 | AU - Döring A. 817 | AU - Gieger C. 818 | AU - Illig T. 819 | AU - Meitinger T. 820 | AU - Org E. 821 | AU - Pfeufer A. 822 | AU - Wichmann H.E. 823 | AU - Kathiresan S. 824 | AU - Marrugat J. 825 | AU - O'Donnell C.J. 826 | AU - Schwartz S.M. 827 | AU - Siscovick D.S. 828 | AU - Subirana I. 829 | AU - Freimer N.B. 830 | AU - Hartikainen A.-L. 831 | AU - McCarthy M.I. 832 | AU - O'Reilly P.F. 833 | AU - Peltonen L. 834 | AU - Pouta A. 835 | AU - De Jong P.E. 836 | AU - Snieder H. 837 | AU - Van Gilst W.H. 838 | AU - Clarke R. 839 | AU - Goel A. 840 | AU - Hamsten A. 841 | AU - Altshuler D. 842 | AU - Jarvelin M-R 843 | AU - Elliott P. 844 | AU - Lakatta E. G. 845 | AU - Forouhi N. 846 | AU - Wareham N. J. 847 | AU - Loos R. J. F. 848 | AU - Deloukas P. 849 | AU - Bingham S. A. 850 | AU - Zelenika D 851 | AU - Strachan D. P. 852 | AU - Soranzo N. 853 | AU - Williams F. M. 854 | AU - Zhai G. 855 | AU - Spector T. D. 856 | AU - Peden J. F. 857 | AU - Watkins H. 858 | AU - Ferrucci L. 859 | AU - Caulfield M. 860 | AU - Munroe P. B. 861 | AU - Berglund G. 862 | AU - Melander O. 863 | AU - Matullo G. 864 | AU - Uiterwaal C. S. 865 | AU - van der Schouw Y. T. 866 | AU - Numans M. E. 867 | AU - Ernst F. 868 | AU - Homuth G. 869 | AU - Völker U. 870 | AU - Eluosa R. 871 | AU - Laakso M. 872 | AU - Connell J. M. 873 | AU - Mooser V. 874 | AU - Salomaa V. 875 | AU - Tuomilehto J. 876 | AU - Laan M. 877 | AU - Navis G. 878 | AU - Seedorf U. 879 | AU - Syvänen A-C 880 | AU - Tognoni G. 881 | AU - Sanna S. 882 | AU - Uda M. 883 | AU - Scheet P. 884 | AU - Schlessinger D. 885 | AU - Scuteri A. 886 | AU - Dörr M. 887 | AU - Felix S. B. 888 | AU - Reffelmann T. 889 | AU - Lorbeer R. 890 | AU - Völzke H. 891 | AU - Rettig R. 892 | AU - Galan P. 893 | AU - Hercberg S. 894 | AU - Bingham S.A. 895 | AU - Kooner J. S. 896 | AU - Bandinelli S. 897 | AU - Meneton P. 898 | AU - Abecasis G. 899 | AU - Thompson J. R. 900 | AU - Braga Marcano C. A. 901 | AU - Barke B. 902 | AU - Dobson R. 903 | AU - Gungadoo J. 904 | AU - Lee K. L. 905 | AU - Onipinla A. 906 | AU - Wallace I. 907 | AU - Xue M. 908 | AU - Clayton D. G. 909 | AU - Leung H-T 910 | AU - Nutland S. 911 | AU - Walker N. M. 912 | AU - Todd J. A. 913 | AU - Stevens H. E. 914 | AU - Dunger D. B. 915 | AU - Widmer B. 916 | AU - Downes K. 917 | AU - Cardon L. R. 918 | AU - Kwiatkowski D. P. 919 | AU - Barrett J. C. 920 | AU - Evans D. 921 | AU - Morris A. P. 922 | AU - Lindgren C. M. 923 | AU - Rayner N. W. 924 | AU - Timpson N. 925 | AU - Lyons E. 926 | AU - Vannberg F. 927 | AU - Hill A. V. S. 928 | AU - Teo Y. Y. 929 | AU - Rockett K. A. 930 | AU - Craddock N. 931 | AU - Attwood A. P. 932 | AU - Bryan C. 933 | AU - Bumpstead S. J. 934 | AU - Chaney A. 935 | AU - Ghori J. 936 | AU - William R. G. 937 | AU - Hunt S. E. 938 | AU - Inouye M. 939 | AU - Keniry E. 940 | AU - King E. 941 | AU - McGinnis R. 942 | AU - Potter S. 943 | AU - Ravindrarajan R. 944 | AU - Whittaker P. 945 | AU - Withers D. 946 | AU - Bentley D. 947 | AU - Groves C. J. 948 | AU - Duncanson A. 949 | AU - Ouwehand W. H. 950 | AU - Boorman J. P. 951 | AU - Cant B. 952 | AU - Jolley J. D. 953 | AU - Knight A. S. 954 | AU - Koch K. 955 | AU - Taylor N. C. 956 | AU - Watkins N. A. 957 | AU - Winzer T. 958 | AU - Braund P. S. 959 | AU - Dixon R. J. 960 | AU - Mangino M. 961 | AU - Stevens S. 962 | AU - Donnely P. 963 | AU - Davidson D. 964 | AU - Marchini J. L. 965 | AU - Spencer I. C. A. 966 | AU - Cardin N. J. 967 | AU - Ferreira T. 968 | AU - Pereira-Gale J. 969 | AU - Hallgrimsdottir I. B. 970 | AU - Howie B. N. 971 | AU - Su Z. 972 | AU - Vukcevic D. 973 | AU - Easton D. 974 | AU - Everson U. 975 | AU - Hussey J. M. 976 | AU - Meech E. 977 | AU - Prowse C. V. 978 | AU - Walters G. R. 979 | AU - Jones R. W. 980 | AU - Ring S. M. 981 | AU - Prembey M. 982 | AU - Breen G. 983 | AU - St. Clair D. 984 | AU - Ceasar S. 985 | AU - Gordon-Smith K. 986 | AU - Jones L. 987 | AU - Green E. K. 988 | AU - Grozeva D. 989 | AU - Hamshere M. L. 990 | AU - Holmans P. A. 991 | AU - Jones I. R. 992 | AU - Kirov G. 993 | AU - Moskovina V. 994 | AU - Nikolov I. 995 | AU - O'Donovan M. C. 996 | AU - Owen M. J. 997 | AU - Craddock N. 998 | AU - Collier D. A. 999 | AU - Elkin A. 1000 | AU - Farmer A. 1001 | AU - Williamson R. 1002 | AU - McGruffin P. 1003 | AU - Young A. H. 1004 | AU - Ferrier I. N. 1005 | AU - Ball S. G. 1006 | AU - Balmforth A. J. 1007 | AU - Barrett J. H. 1008 | AU - Bishop D. T. 1009 | AU - Iles M. M. 1010 | AU - Maqbool A. 1011 | AU - Yuldasheva N. 1012 | AU - Hall A. S. 1013 | AU - Bredin F. 1014 | AU - Tremelling M. 1015 | AU - Parkes M. 1016 | AU - Drummond H. 1017 | AU - Lees C. W. 1018 | AU - Nimmo E. R. 1019 | AU - Satsangi J. 1020 | AU - Fisher S. A. 1021 | AU - Lewis C. M. 1022 | AU - Onnie C. M. 1023 | AU - Prescott N. J. 1024 | AU - Mathew C. G. 1025 | AU - Forbes A. 1026 | AU - Sanderson J. 1027 | AU - Mathew C. 1028 | AU - Barbour J. 1029 | AU - Mohiuddin M. K. 1030 | AU - Todhunter C. E. 1031 | AU - Mansfield J. C. 1032 | AU - Ahmad T. 1033 | AU - Cummings F.R. 1034 | AU - Jewell D.P. 1035 | AU - Barton A. 1036 | AU - Bruce I. N. 1037 | AU - Donovan H. 1038 | AU - Eyre S. 1039 | AU - Gilbert P. D. 1040 | AU - Hider S. L. 1041 | AU - Hinks A. M. 1042 | AU - John S. L. 1043 | AU - Potter C. 1044 | AU - Silman A. J. 1045 | AU - Symmons D. P. M. 1046 | AU - Thomson W. 1047 | AU - Worthington J. 1048 | AU - Frayling T. M. 1049 | AU - Freathy R. M. 1050 | AU - Lango H. 1051 | AU - Perry J. R. B. 1052 | AU - Weedon M. N. 1053 | AU - Hattersley A. T. 1054 | AU - Shields B. M. 1055 | AU - Hitman G. A. 1056 | AU - Walker M. 1057 | AU - Newport M. 1058 | AU - Sirugo G. 1059 | AU - Conway D. 1060 | AU - Jallow M. 1061 | AU - Bradbury L. A. 1062 | AU - Pointon J. L. 1063 | AU - Brown M. A. 1064 | AU - Farrar C. 1065 | AU - Wordsworth P. 1066 | AU - Franklyn J. A. 1067 | AU - Heward J. M. 1068 | AU - Simmonds M. J. 1069 | AU - Cough S. C. L. 1070 | AU - Seal S. 1071 | AU - Stratton M. R. 1072 | AU - Rahman N. 1073 | AU - Goris A. 1074 | AU - Sawcer S. J. 1075 | AU - Compston A. 1076 | N1 - Export Date: 3 January 2016 1077 | N1 - References: Ezzati M., Lopez A.D., Rodgers A., Vander Hoorn S., Murray C.J., Selected major risk factors and global and regional burden of disease (2002) Lancet, 360, pp. 1347-1360; 1078 | Lewington S., Clarke R., Qizilbash N., Peto R., Collins R., Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies (2002) Lancet, 360, pp. 1903-1913; 1079 | (2002) The World Health Report 2002-Reducing Risks, Promoting Healthy Life, , The World Health Organization, World Health Organization; 1080 | Whelton P.K., Primary prevention of hypertension: Clinical and public health advisory from The National High Blood Pressure Education Program (2002) J. Am. Med. Assoc, 288, pp. 1882-1888; 1081 | Havlik R.J., Blood pressure aggregation in families (1979) Am. J. Epidemiol, 110, pp. 304-312; 1082 | Lifton R.P., Gharavi A.G., Geller D.S., Molecular mechanisms of human hypertension (2001) Cell, 104, pp. 545-556; 1083 | Ji W., Rare independent mutations in renal salt handling genes contribute to blood pressure variation (2008) Nat. Genet, 40, pp. 592-599; 1084 | Newhouse S.J., Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British Genetics of Hypertension study (2005) Hum. Mol. Genet, 14, pp. 1805-1814; 1085 | Tobin M.D., Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population (2005) Circulation, 112, pp. 3423-3429; 1086 | Tobin M.D., Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population (2008) Hypertension, 51, pp. 1658-1664; 1087 | Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007) Nature, 447, pp. 661-678. , The Wellcome Trust Case Control Consortium; 1088 | Levy D., Framingham Heart Study 100K Project: Genome-wide associations for blood pressure and arterial stiffness (2007) BMC Med.Genet, 8 (SUPPL. 1), p. 3. , S; 1089 | Tobin M.D., Sheehan N.A., Scurrah K.J., Burton P.R., Adjusting for treatment effects in studies of quantitative traits: Antihypertensive therapy and systolic blood pressure (2005) Stat. Med, 24, pp. 2911-2935; 1090 | Devlin B., Roeder K., Genomic control for association studies (1999) Biometrics, 55, pp. 997-1004; 1091 | Pe'er I., Yelensky R., Altshuler D., Daly M.J., Estimation of the multiple testing burden for genomewide association studies of nearly all common variants (2008) Genet. Epidemiol, 32, pp. 381-385; 1092 | Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. advance online publication, doi:10.1038/ng.384 (10 May 2009)Martin R.M., P450c17 deficiency in Brazilian patients: Biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping (2003) J. Clin. Endocrinol. Metab, 88, pp. 5739-5746; 1093 | Geller D.H., Auchus R.J., Mendonca B.B., Miller W.L., The genetic and functional basis of isolated 17,20-lyase deficiency (1997) Nat. Genet, 17, pp. 201-205; 1094 | Kluijtmans L.A., Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease (1996) Am. J. Hum. Genet, 58, pp. 35-41; 1095 | Sohda S., Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia (1997) J. Med. Genet, 34, pp. 525-526; 1096 | Qian X., Lu Z., Tan M., Liu H., Lu D., A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension (2007) Eur. J. Hum. Genet, 15, pp. 1239-1245; 1097 | John S.W., Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension (1995) Science, 267, pp. 679-681; 1098 | Newton-Cheh C., Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure (2009) Nat. Genet, 41, pp. 348-353; 1099 | Simon D.B., Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK (1996) Nat. Genet, 14, pp. 152-156; 1100 | Simon D.B., Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter (1996) Nat. Genet, 12, pp. 24-30; 1101 | Daviet L., Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor (1999) J. Biol. Chem, 274, pp. 17058-17062; 1102 | Suh P.G., Multiple roles of phosphoinositide-specific phospholipase C isozymes (2008) BMB Rep, 41. , 415-434; 1103 | Nebert D.W., Dalton T.P., The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis (2006) Nat. Rev. Cancer, 6, pp. 947-960; 1104 | Sachse C., Brockmoller J., Bauer S., Roots I., Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine (1999) Br. J. Clin. Pharmacol, 27, pp. 445-449; 1105 | Takebe A., Microarray analysis of PDGFR alpha+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells (2006) Dev. Biol, 293, pp. 25-37; 1106 | Vatner S.F., FGF induces hypertrophy and angiogenesis in hibernating myocardium (2005) Circ. Res, 96, pp. 705-707; 1107 | Todd J.A., Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes (2007) Nat. Genet, 39, pp. 857-864; 1108 | Hunt K.A., Newly identified genetic risk variants for celiac disease related to the immune response (2008) Nat. Genet, 40, pp. 395-402; 1109 | Gudbjartsson D.F., Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction (2009) Nat. Genet, 41, pp. 342-347; 1110 | Fitau J., Boulday G., Coulon F., Quillard T., Charreau B., The adaptor molecule Lnk negatively regulates tumor necrosis factor-alpha-dependent VCAM-1 expression in endothelial cells through inhibition of the ERK1 and -2 pathways (2006) J. Biol. Chem, 281, pp. 20148-20159; 1111 | Velazquez L., Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice (2002) J. Exp. Med, 195, pp. 1599-1611; 1112 | Voight B.F., Kudaravalli S., Wen X., Pritchard J.K., A map of recent positive selection in the human genome (2006) PLoS Biol, 4, pp. e72; 1113 | Du Y.H., Guan Y.Y., Alp N.J., Channon K.M., Chen A.F., Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension (2008) Circulation, 117, pp. 1045-1054; 1114 | Zheng J.S., Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension (2003) Circulation, 108, pp. 1238-1245; 1115 | Watanabe M., Regulation of smooth muscle cell differentiation by AT-rich interaction domain transcription factors Mrf2alpha and Mrf2beta (2002) Circ. Res, 91, pp. 382-389; 1116 | Stamler J., INTERSALT study findings. Public health and medical care implications (1989) Hypertension, 14, pp. 570-577; 1117 | Dyer A.R., Shipley M., Elliott P., Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT Study. I. Estimates of reliability. The INTERSALT Cooperative Research Group (1994) Am. J. Epidemiol, 139, pp. 927-939; 1118 | Variability of blood pressure and the results of screening in the hypertension detection and follow-up program (1978) J. Chronic Dis, 31, pp. 651-667. , Hypertension Detection and Follow-up Program Cooperative Group; 1119 | Loos R.J., Common variants near MC4R are associated with fat mass, weight and risk of obesity (2008) Nat. Genet, 40, pp. 768-775; 1120 | Willer C.J., Six new loci associated with body mass index highlight a neuronal influence on body weight regulation (2009) Nat. Genet, 41, pp. 25-34; 1121 | Kathiresan S., Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans (2008) Nat. Genet, 40, pp. 189-197; 1122 | Li, Y. & Abecasis, G.R. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. S79, 2290 (2006)Marchini J., Howie B., Myers S., McVean G., Donnelly P., A new multipoint method for genome-wide association studies by imputation of genotypes (2007) Nat. Genet, 39, pp. 906-913; 1123 | Myers S., Bottolo L., Freeman C., McVean G., Donnelly P., A fine-scale map of recombination rates and hotspots across the human genome (2005) Science, 310, pp. 321-324 1124 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-67349085063&partnerID=40&md5=602377db656c3070ff1808f23689aefd 1125 | ER - 1126 | 1127 | TI - Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts 1128 | T2 - Nature Genetics 1129 | VL - 41 1130 | IS - 1 1131 | SP - 47 1132 | EP - 55 1133 | PY - 2009 1134 | AU - Aulchenko Y.S. 1135 | AU - Ripatti S. 1136 | AU - Lindqvist I. 1137 | AU - Boomsma D. 1138 | AU - Heid I.M. 1139 | AU - Pramstaller P.P. 1140 | AU - Penninx B.W.J.H. 1141 | AU - Janssens A.C.J.W. 1142 | AU - Wilson J.F. 1143 | AU - Spector T. 1144 | AU - Martin N.G. 1145 | AU - Pedersen N.L. 1146 | AU - Kyvik K.O. 1147 | AU - Kaprio J. 1148 | AU - Hofman A. 1149 | AU - Freimer N.B. 1150 | AU - Jarvelin M.-R. 1151 | AU - Gyllensten U. 1152 | AU - Campbell H. 1153 | AU - Rudan I. 1154 | AU - Johansson Å. 1155 | AU - Marroni F. 1156 | AU - Hayward C. 1157 | AU - Vitart V. 1158 | AU - Jonasson I. 1159 | AU - Pattaro C. 1160 | AU - Wright A. 1161 | AU - Hastie N. 1162 | AU - Pichler I. 1163 | AU - Hicks A.A. 1164 | AU - Falchi M. 1165 | AU - Willemsen G. 1166 | AU - Hottenga J.-J. 1167 | AU - De Geus E.J.C. 1168 | AU - Montgomery G.W. 1169 | AU - Whitfield J. 1170 | AU - Magnusson P. 1171 | AU - Saharinen J. 1172 | AU - Perola M. 1173 | AU - Silander K. 1174 | AU - Isaacs A. 1175 | AU - Sijbrands E.J.G. 1176 | AU - Uitterlinden A.G. 1177 | AU - Witteman J.C.M. 1178 | AU - Oostra B.A. 1179 | AU - Elliott P. 1180 | AU - Ruokonen A. 1181 | AU - Sabatti C. 1182 | AU - Gieger C. 1183 | AU - Meitinger T. 1184 | AU - Kronenberg F. 1185 | AU - Döring A. 1186 | AU - Wichmann H.-E. 1187 | AU - Smit J.H. 1188 | AU - McCarthy M.I. 1189 | AU - Van Duijn C.M. 1190 | AU - Peltonen L. 1191 | N1 - Export Date: 3 January 2016 1192 | N1 - References: Pilia G., Heritability of cardiovascular and personality traits in 6,148 Sardinians (2006) PLoS Genet, 2, pp. e132; 1193 | Kannel W.B.D.T., Kagan A., Revotskie N., Stokes J.I., Factors of risk in the development of coronary heart disease-six year follow-up experience. The Framingham Study (1961) Ann. Intern. Med, 55, pp. 33-50; 1194 | Miller N.E., Letter M.G., High-density lipoprotein and atherosclerosis (1975) Lancet, 1, p. 1033; 1195 | Friedlander Y.A.A., Newman B., Edwards K., Mayer-Davis E.J., King M.-C., Heritability of longitudinal changes in coronary-heart-disease risk factors in women twins (1997) Am. J. Hum. Genet, 60, pp. 1502-1512; 1196 | Kathiresan S., Musunuru K., Orho-Melander M., Defining the spectrum of alleles that contribute to blood lipid concentrations in humans (2008) Curr. Opin. Lipidol, 19, pp. 122-127; 1197 | Kooner J., Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides (2008) Nat. Genet, 40, pp. 149-151; 1198 | Kathiresan S., Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans (2008) Nat. Genet, 40, pp. 189-197; 1199 | Willer C.J., Newly identified loci that influence lipid concentrations and risk of coronary artery disease (2008) Nat. Genet, 40, pp. 161-169; 1200 | Wallace C., Genome-wide association study identifies genes for biomarkers of cardiovascular disease: Serum urate and dyslipidemia (2008) Am. J. Hum. Genet, 82, pp. 139-149; 1201 | Sandhu M., Waterworth D., Debenham S., Wheeler W., Papadakis K., LDL-cholesterol concentrations: A genome-wide association study (2008) Lancet, 371, pp. 483-491; 1202 | Heid I., A genome-wide association analysis of HDL cholesterol in the populationbased KORA Study sheds new light on intergenic regions (2008) Circulation. Cardiovas.-Genet, 1, pp. 10-20; 1203 | Sing C., Davignon J., Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation (1985) Am. J. Hum. Genet, 37, pp. 268-285; 1204 | Law S., The molecular biology of human apoA-I, apoA-II, apoC-II and apoB (1986) Adv. Exp. Med. Biol, 201, pp. 151-162; 1205 | Kathiresan S., Polymorphisms associated with cholesterol and risk of cardiovascular events (2008) N. Engl. J. Med, 358, pp. 1240-1249; 1206 | Wang K., Li M., Bucan M., Pathway-based approaches for analysis of genome-wide association studies (2007) Am. J. Hum. Genet, 81, pp. 1278-1283; 1207 | Rudkowska I., Jones P., Polymorphisms in ABCG5/G8 transporters linked to hypercholesterolemia and gallstone disease (2008) Nutr. Rev, 66, pp. 343-348; 1208 | Sabatti C., (2008) Nat. Genet, , Genome-wide association analysis of metabolic phenotypes in a birth cohort from a founder population, advance online publication, doi:10.1038/ng.271 7 December; 1209 | Weiss L., Pan L., Abney M., Ober C., The sex-specific genetic architecture of quantitative traits in humans (2006) Nat. Genet, 38, pp. 218-222; 1210 | Tunstall-Pedoe, H. et al. MONICA Monograph and Multimedia Sourcebook (World Health Organization, Geneva, 2003)Endo A., The discovery and development of HMG-CoA reductase inhibitors (1992) J. Lipid Res, 33, pp. 1569-1582; 1211 | Kasper D., (2005) Harrison's Principles of Internal Medicine, , McGraw-Hill, New York; 1212 | Chasman D., Pharmacogenetic study of statin therapy and cholesterol reduction (2004) J. Am. Med. Assoc, 291, pp. 2821-2827; 1213 | Howard B., Ruotolo G., Robbins D., Obesity and dyslipidemia (2003) Endocrinol. Metab. Clin. North Am, 32, pp. 855-867; 1214 | Janssens A., van Duijn C., Genome-based prediction of common diseases: Advances and prospects (2008) Hum. Mol. Genet, 17, pp. 166-173; 1215 | Anderson K., Odell P., Wilson P., Kannel W., Cardiovascular disease risk profiles (1991) Am. Heart J, 121, pp. 293-298; 1216 | Hippisley-Cox J., Coupland C., Vinogradova Y., Robson J., Brindle P., Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: A validation study (2008) Heart, 94, pp. 34-39; 1217 | Peltonen, L. GenomEUtwin: a strategy to identify genetic influences on health and disease. Twin Res. 6, 354-360 (2003)Rantakallio P., Groups at risk in low birth weight infants and perinatal mortality (1969) Acta Paediatr. Scand, 193, p. 1; 1218 | Hofman A., The Rotterdam Study: Objectives and design update (2007) Eur. J. Epidemiol, 22, pp. 819-829; 1219 | Friedewald W.T., Levy R.I., Fredrickson D.S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge (1972) Clin. Chem, 18, pp. 499-502; 1220 | Pardo L.M., MacKay I., Oostra B., van Duijn C.M., Aulchenko Y.S., The effect of genetic drift in a young genetically isolated population (2005) Ann. Hum. Genet, 69, pp. 288-295; 1221 | Pattaro C., The genetic study of three population microisolates in South Tyrol (MICROS): Study design and epidemiological perspectives (2007) BMC Med. Genet, 8, p. 29; 1222 | Rudan I., Campbell H., Rudan P., Genetic epidemiological studies of eastern Adriatic Island isolates, Croatia: Objective and strategies (1999) Coll. Antropol, 23, pp. 531-546; 1223 | Boomsma D., Genome-wide association of major depression: Description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects (2008) Eur. J. Hum. Genet, 16, pp. 335-342; 1224 | Wichmann H., Gieger C., Illig T., KORA-gen-resource for population genetics, controls and a broad spectrum of disease phenotypes (2005) Gesundheitswesen, 67, pp. S26-S30; 1225 | Steemers F., Whole-genome genotyping with the single-base extension assay (2006) Nat. Methods, 3, pp. 31-33; 1226 | Purcell S., PLINK: A tool set for whole-genome association and population-based linkage analysis (2007) Am. J. Hum. Genet, 81, pp. 559-575; 1227 | Aulchenko Y.S., Ripke S., Isaacs A., van Duijn C.M., GenABEL: An R library for genome-wide association analysis (2007) Bioinformatics, 23, pp. 1294-1296; 1228 | Price A.L., Principal components analysis corrects for stratification in genomewide association studies (2006) Nat. Genet, 38, pp. 904-909; 1229 | Bacanu S.A., Devlin B., Roeder K., The power of genomic control (2000) Am. J. Hum. Genet, 66, pp. 1933-1944; 1230 | Scott L., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2007) Science, 316, pp. 1341-1345 1231 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-58149161560&partnerID=40&md5=d6e5e098f2ea9c3e3dca7f16ffb01171 1232 | ER - 1233 | 1234 | TI - Genome-wide association analysis of metabolic traits in a birth cohort from a founder population 1235 | T2 - Nature Genetics 1236 | VL - 41 1237 | IS - 1 1238 | SP - 35 1239 | EP - 46 1240 | PY - 2009 1241 | AU - Sabatti C. 1242 | AU - Service S.K. 1243 | AU - Hartikainen A.-L. 1244 | AU - Pouta A. 1245 | AU - Ripatti S. 1246 | AU - Brodsky J. 1247 | AU - Jones C.G. 1248 | AU - Zaitlen N.A. 1249 | AU - Varilo T. 1250 | AU - Kaakinen M. 1251 | AU - Sovio U. 1252 | AU - Ruokonen A. 1253 | AU - Laitinen J. 1254 | AU - Jakkula E. 1255 | AU - Coin L. 1256 | AU - Hoggart C. 1257 | AU - Collins A. 1258 | AU - Turunen H. 1259 | AU - Gabriel S. 1260 | AU - Elliot P. 1261 | AU - McCarthy M.I. 1262 | AU - Daly M.J. 1263 | AU - Järvelin M.-R. 1264 | AU - Freimer N.B. 1265 | AU - Peltonen L. 1266 | N1 - Export Date: 3 January 2016 1267 | N1 - References: Rantakallio P., Groups at risk in low birth weight infants and perinatal mortality (1969) Acta Paediatr. Scand. Suppl, 193, p. 43; 1268 | Jarvelin M.R., Early life factors and blood pressure at age 31 years in the 1966 northern Finland birth cohort (2004) Hypertension, 44, pp. 838-846; 1269 | Varilo T., Peltonen L., Isolates and their potential use in complex gene mapping efforts (2004) Curr. Opin. Genet. Dev, 14, pp. 316-323; 1270 | Service, S. et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat. Genet. 38, 556-560 (2006)Manolio T.A., Bailey-Wilson J.E., Collins F.S., Genes, environment and the value of prospective cohort studies (2006) Nat. Rev. Genet, 7, pp. 812-820; 1271 | Laitinen J., Pietilainen K., Wadsworth M., Sovio U., Jarvelin M.R., Predictors of abdominal obesity among 31-y-old men and women born in Northern Finland in 1966 (2004) Eur. J. Clin. Nutr, 58, pp. 180-190; 1272 | Pouta A., Manifestations of metabolic syndrome after hypertensive pregnancy (2004) Hypertension, 43, pp. 825-831; 1273 | Taponen S., Metabolic cardiovascular disease risk factors in women with self-reported symptoms of oligomenorrhea and/or hirsutism: Northern Finland Birth Cohort 1966 Study (2004) J. Clin. Endocrinol. Metab, 89, pp. 2114-2118; 1274 | Saari K.M., A 4-fold risk of metabolic syndrome in patients with schizophrenia: The Northern Finland 1966 Birth Cohort study (2005) J. Clin. Psychiatry, 66, pp. 559-563; 1275 | Heller D.A., de Faire U., Pedersen N.L., Dahlen G., McClearn G.E., Genetic and environmental influences on serum lipid levels in twins (1993) N. Engl. J. Med, 328, pp. 1150-1156; 1276 | Souren N.Y., Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: Heritabilities (2007) Diabetologia, 50, pp. 2107-2116; 1277 | Korkeila M., Kaprio J., Rissanen A., Koskenvuo M., Effects of gender and age on the heritability of body mass index (1991) Int. J. Obes, 15, pp. 647-654; 1278 | Wessel J., C-reactive protein, an 'intermediate phenotype' for inflammation: Human twin studies reveal heritability, association with blood pressure and the metabolic syndrome, and the influence of common polymorphism at catecholaminergic/beta-adrenergic pathway loci (2007) J. Hypertens, 25, pp. 329-343; 1279 | Alberti K.G., Zimmet P., Shaw J., Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation (2006) Diabet. Med, 23, pp. 469-480; 1280 | Haffner S.M., Relationship of metabolic risk factors and development of cardiovascular disease and diabetes (2006) Obesity (Silver Spring), 14 (SUPPL. 3), pp. 121S-127S; 1281 | Frayling T.M., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity (2007) Science, 316, pp. 889-894; 1282 | Kathiresan S., Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans (2008) Nat. Genet, 40, pp. 189-197; 1283 | Loos R.J., Common variants near MC4R are associated with fat mass, weight and risk of obesity (2008) Nat. Genet, 40, pp. 768-775; 1284 | Ridker P.M., Loci related to metabolic-syndrome pathways including LEPR,HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: The Women's Genome Health Study (2008) Am. J. Hum. Genet, 82, pp. 1185-1192; 1285 | Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007) Nature, 447, pp. 661-678. , Wellcome Trust Case Control Consortium; 1286 | Willer C.J., Newly identified loci that influence lipid concentrations and risk of coronary artery disease (2008) Nat. Genet, 40, pp. 161-169; 1287 | Kathiresan S., Musunuru K., Orho-Melander M., Defining the spectrum of alleles that contribute to blood lipid concentrations in humans (2008) Curr. Opin. Lipidol, 19, pp. 122-127; 1288 | Morin-Papunen, L. et al. Comparison of metabolic and inflammatory outcomes in women who used oral contraceptives and the levonorgestrel-releasing intrauterine device in a general population. Am. J. Obstet. Gynecol. 199, 529.e1-529.e10 (2008)Barker D.J., Osmond C., Forsen T.J., Kajantie E., Eriksson J.G., Trajectories of growth among children who have coronary events as adults (2005) N. Engl. J. Med, 353, pp. 1802-1809; 1289 | Tzoulaki I., Size at birth, weight gain over the life course, and low-grade inflammation in young adulthood: Northern Finland 1966 Birth Cohort study (2008) Eur. Heart J, 29, pp. 1049-1056; 1290 | Kajantie E., Barker D.J., Osmond C., Forsen T., Eriksson J.G., Growth before 2 years of age and serum lipids 60 years later: The Helsinki Birth Cohort study (2008) Int. J. Epidemiol, 37, pp. 280-289; 1291 | Helgason A., Yngvadottir B., Hrafnkelsson B., Gulcher J., Stefansson K., An Icelandic example of the impact of population structure on association studies (2005) Nat. Genet, 37, pp. 90-95; 1292 | Bacanu S.A., Devlin B., Roeder K., Association studies for quantitative traits in structured populations (2002) Genet. Epidemiol, 22, pp. 78-93; 1293 | Maniatis N., The first linkage disequilibrium (LD) maps: Delineation of hot and cold blocks by diplotype analysis (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 2228-2233; 1294 | Aulchenko Y.S., (2008) Nat. Genet, , Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts, advance online publication, doi:10.1038/ng.269 7 December; 1295 | Cohen J.C., Multiple rare alleles contribute to low plasma levels of HDL cholesterol (2004) Science, 305, pp. 869-872; 1296 | Zelcer N., Tontonoz P., Liver X receptors as integrators of metabolic and inflammatory signaling (2006) J. Clin. Invest, 116, pp. 607-614; 1297 | Wu F.C., von Eckardstein A., Androgens and coronary artery disease (2003) Endocr. Rev, 24, pp. 183-217; 1298 | Schaeffer L., Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids (2006) Hum. Mol. Genet, 15, pp. 1745-1756; 1299 | Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. advance online publication, doi:10.1038/ng.290 (7 December 2008)Ramaswamy G., Karim M.A., Murti K.G., Jackowski S., PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression (2004) J. Lipid Res, 45, pp. 17-31; 1300 | Zhang Y.M., Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis (2007) Chem. Biol, 14, pp. 291-302; 1301 | Replicating genotype-phenotype associations (2007) Nature, 447, pp. 655-660. , NCI-NHGRI Working Group on Replication in Association Studies; 1302 | Lasky-Su J., On the replication of genetic associations: Timing can be everything! (2008) Am. J. Hum. Genet, 82, pp. 849-858; 1303 | Klei L., Luca D., Devlin B., Roeder K., Pleiotropy and principal components of heritability combine to increase power for association analysis (2008) Genet. Epidemiol, 32, pp. 9-19; 1304 | Katoh S., Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins (2005) J. Clin. Endocrinol. Metab, 90, pp. 2642-2647; 1305 | Hottenga J.J., Whitfield J.B., de Geus E.J., Boomsma D.I., Martin N.G., Heritability and stability of resting blood pressure in Australian twins (2006) Twin Res. Hum. Genet, 9, pp. 205-209; 1306 | Bodmer W., Bonilla C., Common and rare variants in multifactorial susceptibility to common diseases (2008) Nat. Genet, 40, pp. 695-701; 1307 | Tobin M.D., Sheehan N.A., Scurrah K.J., Burton P.R., Adjusting for treatment effects in studies of quantitative traits: Antihypertensive therapy and systolic blood pressure (2005) Stat. Med, 24, pp. 2911-2935; 1308 | Purcell S., PLINK: A tool set for whole-genome association and population-based linkage analyses (2007) Am. J. Hum. Genet, 81, pp. 559-575; 1309 | Zaitlen N., Kang H.M., Eskin E., Halperin E., Leveraging the HapMap correlation structure in association studies (2007) Am. J. Hum. Genet, 80, pp. 683-691; 1310 | Browning S.R., Browning B.L., Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering (2007) Am. J. Hum. Genet, 81, pp. 1084-1097; 1311 | Benjamini Y., Hochberg Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing (1995) J. R. Stat. Soc. Ser. A, 57, pp. 289-300; 1312 | Donoho D., Jin J., Higher criticism for detecting sparse heterogeneous mixtures (2004) Ann. Statist, 32, pp. 962-994; 1313 | Bouatia-Naji N., A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels (2008) Science, 320, pp. 1085-1088 1314 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-58149159573&partnerID=40&md5=5452b744db76c990be8275133d49500d 1315 | ER - 1316 | 1317 | TI - TGF-β receptor function in the endothelium 1318 | T2 - Cardiovascular Research 1319 | VL - 65 1320 | IS - 3 1321 | SP - 599 1322 | EP - 608 1323 | PY - 2005 1324 | AU - Lebrin F. 1325 | AU - Deckers M. 1326 | AU - Bertolino P. 1327 | AU - Ten Dijke P. 1328 | N1 - Export Date: 3 January 2016 1329 | N1 - References: Roberts A.B., Sporn M.B., Physiological actions and clinical applications of transforming growth factor-β (TGF-β) (1993) Growth Factors, 8, pp. 1-9; 1330 | Ten Dijke P., Hill C.S., New insights into TGF-β-Smad signalling (2004) Trends Biochem. Sci., 29, pp. 265-273; 1331 | Derynck R., Zhang Y.E., Smad-dependent and Smad-independent pathways in TGF-β family signalling (2003) Nature, 425, pp. 577-584; 1332 | Goumans M.-J., Valdimarsdottir G., Itoh S., Rosendahl A., Sideras P., Ten Dijke P., Balancing the activation state of the endothelium via two distinct TGF-β type I receptors (2002) EMBO J., 21, pp. 1743-1753; 1333 | Goumans M.-J., Mummery C., Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice (2000) Int. J. Dev. Biol., 44, pp. 253-265; 1334 | Pepper M.S., Transforming growth factor-β: Vasculogenesis, angiogenesis, and vessel wall integrity (1997) Cytokine Growth Factor Rev., 8, pp. 21-43; 1335 | Goumans M.-J., Lebrin F., Valdimarsdottir G., Controlling the angiogenic switch: A balance between two distinct TGF-β receptor signaling pathways (2003) Trends Cardiovasc. Med., 13, pp. 301-307; 1336 | Massagué J., Blain S.W., Lo R.S., TGFβ signaling in growth control, cancer, and heritable disorders (2000) Cell, 103, pp. 295-309; 1337 | Blobe G.C., Schiemann W.P., Lodish H.F., Role of transforming growth factor β in human disease (2000) N. Engl. J. Med., 342, pp. 1350-1358; 1338 | Derynck R., Akhurst R.J., Balmain A., TGF-β signaling in tumor suppression and cancer progression (2001) Nat. Genet., 29, pp. 117-129; 1339 | Roberts A.B., Wakefield L.M., The two faces of transforming growth factor β in carcinogenesis (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 8621-8623; 1340 | Johnson D.W., Berg J.N., Baldwin M.A., Gallione C.J., Marondel I., Yoon S.J., Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2 (1996) Nat. Genet., 13, pp. 189-195; 1341 | McAllister K.A., Grogg K.M., Johnson D.W., Gallione C.J., Baldwin M.A., Jackson C.E., Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1 (1994) Nat. Genet., 8, pp. 345-351; 1342 | Wrana J.L., Attisano L., Wieser R., Ventura F., Massagué J., Mechanism of activation of the TGF-β receptor (1994) Nature, 370, pp. 341-347; 1343 | Wieser R., Wrana J.L., Massagué J., GS domain mutations that constitutively activate T βr-I, the downstream signaling component in the TGF-β receptor complex (1995) EMBO J., 14, pp. 2199-2208; 1344 | Luo K., Lodish H.F., Signaling by chimeric erythropoietin-TGF-β receptors: Homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction (1996) EMBO J., 15, pp. 4485-4496; 1345 | Weis-Garcia F., Massagué J., Complementation between kinase-defective and activation-defective TGF-β receptors reveals a novel form of receptor cooperativity essential for signaling (1996) EMBO J., 15, pp. 276-289; 1346 | Yamashita H., Ten Dijke P., Franzén P., Miyazono K., Heldin C.-H., Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β (1994) J. Biol. Chem., 269, pp. 20172-20178; 1347 | Abdollah S., MacIas-Silva M., Tsukazaki T., Hayashi H., Attisano L., Wrana J.L., TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling (1997) J. Biol. Chem., 272, pp. 27678-27685; 1348 | Nakao A., Imamura T., Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E., TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4 (1997) EMBO J., 16, pp. 5353-5362; 1349 | Lagna G., Hata A., Hemmati-Brivanlou A., Massagué J., Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways (1996) Nature, 383, pp. 832-836; 1350 | Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Smad6 inhibits signalling by the TGF-β superfamily (1997) Nature, 389, pp. 622-626; 1351 | Nakao A., Afrakhte M., Morén A., Nakayama T., Christian J.L., Heuchel R., Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling (1997) Nature, 389, pp. 631-635; 1352 | Kavsak P., Rasmussen R.K., Causing C.G., Bonni S., Zhu H., Thomsen G.H., Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation (2000) Mol. Cell, 6, pp. 1365-1375; 1353 | Suzuki C., Murakami G., Fukuchi M., Shimanuki T., Shikauchi Y., Imamura T., Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane (2002) J. Biol. Chem., 277, pp. 39919-39925; 1354 | Shi W., Sun C., He B., Xiong W., Shi X., Yao D., GADD34-PP1c recruited by Smad7 dephosphorylates TGFβ type I receptor (2004) J. Cell Biol., 164, pp. 291-300; 1355 | Topper J.N., Cai J., Qiu Y., Anderson K.R., Xu Y.Y., Deeds J.D., Vascular MADs: Two novel MAD-related genes selectively inducible by flow in human vascular endothelium (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 9314-9319; 1356 | Hanahan D., Folkman J., Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis (1996) Cell, 86, pp. 353-364; 1357 | Hirschi K.K., Rohovsky S.A., D'Amore P.A., PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate (1998) J. Cell Biol., 141, pp. 805-814; 1358 | Darland D.C., Massingham L.J., Smith S.R., Piek E., Saint-Geniez M., D'Amore P.A., Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival (2003) Dev. Biol., 264, pp. 275-288; 1359 | Dickson M.C., Martin J.S., Cousins F.M., Kulkarni A.B., Karlsson S., Akhurst R.J., Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice (1995) Development, 121, pp. 1845-1854; 1360 | Bartram U., Molin D.G., Wisse L.J., Mohamad A., Sanford L.P., Doetschman T., Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-β2-knockout mice (2001) Circulation, 103, pp. 2745-2752; 1361 | Sanford L.P., Ormsby I., Gittenberger-De Groot A.C., Sariola H., Friedman R., Boivin G.P., TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes (1997) Development, 124, pp. 2659-2670; 1362 | Oshima M., Oshima H., Taketo M.M., TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis (1996) Dev. Biol., 179, pp. 297-302; 1363 | Larsson J., Goumans M.-J., Sjostrand L.J., Van Rooijen M.A., Ward D., Leveen P., Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice (2001) EMBO J., 20, pp. 1663-1673; 1364 | Oh S.P., Seki T., Goss K.A., Imamura T., Yi Y., Donahoe P.K., Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 2626-2631; 1365 | Tremblay K.D., Dunn N.R., Robertson E.J., Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation (2001) Development, 128, pp. 3609-3621; 1366 | Lechleider R.J., Ryan J.L., Garrett L., Eng C., Deng C., Wynshaw-Boris A., Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion (2001) Dev. Biol., 240, pp. 157-167; 1367 | Chang H., Huylebroeck D., Verschueren K., Guo Q., Matzuk M.M., Zwijsen A., Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects (1999) Development, 126, pp. 1631-1642; 1368 | Yang X., Castilla L.H., Xu X., Li C., Gotay J., Weinstein M., Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5 (1999) Development, 126, pp. 1571-1580; 1369 | Li D.Y., Sorensen L.K., Brooke B.S., Urness L.D., Davis E.C., Taylor D.G., Defective angiogenesis in mice lacking endoglin (1999) Science, 284, pp. 1534-1537; 1370 | Arthur H.M., Ure J., Smith A.J., Renforth G., Wilson D.I., Torsney E., Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development (2000) Dev. Biol., 217, pp. 42-53; 1371 | Bourdeau A., Dumont D.J., Letarte M., A murine model of hereditary hemorrhagic telangiectasia (1999) J. Clin. Invest., 104, pp. 1343-1351; 1372 | Stenvers K.L., Tursky M.L., Harder K.W., Kountouri N., Amatayakul-Chantler S., Grail D., Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos (2003) Mol. Cell. Biol., 23, pp. 4371-4385; 1373 | Ota T., Fujii M., Sugizaki T., Ishii M., Miyazawa K., Aburatani H., Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-β in human umbilical vein endothelial cells (2002) J. Cell. Physiol., 193, pp. 299-318; 1374 | Stefansson S., Lawrence D.A., The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin (1996) Nature, 383, pp. 441-443; 1375 | Stefansson S., Petitclerc E., Wong M.K., McMahon G.A., Brooks P.C., Lawrence D.A., Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1 (2001) J. Biol. Chem., 276, pp. 8135-8141; 1376 | Watabe T., Nishihara A., Mishima K., Yamashita J., Shimizu K., Miyazawa K., TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells (2003) J. Cell Biol., 163, pp. 1303-1311; 1377 | Lamouille S., Mallet C., Feige J.J., Bailly S., Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis (2002) Blood, 100, pp. 4495-4501; 1378 | Roman B.L., Pham V.N., Lawson N.D., Kulik M., Childs S., Lekven A.C., Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels (2002) Development, 129, pp. 3009-3019; 1379 | Goumans M.J., Valdimarsdottir G., Itoh S., Lebrin F., Larsson J., Mummery C., Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling (2003) Mol. Cell, 12, pp. 817-828; 1380 | Mucsi I., Skorecki K.L., Goldberg H.J., Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β1 on gene expression (1996) J. Biol. Chem., 271, pp. 16567-16572; 1381 | Edlund S., Landstrom M., Heldin C.-H., Aspenstrom P., Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA (2002) Mol. Biol. Cell, 13, pp. 902-914; 1382 | Goldberg P.L., MacNaughton D.E., Clements R.T., Minnear F.L., Vincent P.A., P38 MAPK activation by TGF-β1 increases MLC phosphorylation and endothelial monolayer permeability (2002) Am. J. Physiol. Lung Cell. Mol. Physiol., 282, pp. 146-L154; 1383 | Vinals F., Pouyssegur J., Transforming growth factor β1 (TGF-β1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling (2001) Mol. Cell. Biol., 21, pp. 7218-7230; 1384 | Merwin J.R., Newman W., Beall L.D., Tucker A., Madri J., Vascular cells respond differentially to transforming growth factors β1 and β2 in vitro (1991) Am. J. Pathol., 138, pp. 37-51; 1385 | Sankar S., Mahooti-Brooks N., Centrella M., McCarthy T.L., Madri J.A., Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor β2 (1995) J. Biol. Chem., 270, pp. 13567-13572; 1386 | Cheifetz S., Hernandez H., Laiho M., Ten Dijke P., Iwata K.K., Massagué J., Distinct transforming growth factor-β (TGF-β) receptor subsets as determinants of cellular responsiveness to three TGF-β isoforms (1990) J. Biol. Chem., 265, pp. 20533-20538; 1387 | Chen W., Kirkbride K.C., How T., Nelson C.D., Mo J., Frederick J.P., β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling (2003) Science, 301, pp. 1394-1397; 1388 | Cheifetz S., Bellon T., Cales C., Vera S., Bernabeu C., Massagué J., Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells (1992) J. Biol. Chem., 267, pp. 19027-19030; 1389 | Barbara N.P., Wrana J.L., Letarte M., Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily (1999) J. Biol. Chem., 274, pp. 584-594; 1390 | Letamendia A., Lastres P., Botella L.M., Raab U., Langa C., Velasco B., Role of endoglin in cellular responses to transforming growth factor-β. A comparative study with betaglycan (1998) J. Biol. Chem., 273, pp. 33011-33019; 1391 | Guerrero-Esteo M., Sanchez-Elsner T., Letamendia A., Bernabeu C., Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-β receptors I and II (2002) J. Biol. Chem., 277, pp. 29197-29209; 1392 | Lastres P., Letamendia A., Zhang H., Rius C., Almendro N., Raab U., Endoglin modulates cellular responses to TGF-β1 (1996) J. Cell Biol., 133, pp. 1109-1121; 1393 | Obreo J., Diez-Marques L., Lamas S., Duwell A., Eleno N., Bernabeu C., Endoglin expression regulates basal and TGF-β1-induced extracellular matrix synthesis in cultured L(6)E(9) myoblasts (2004) Cell. Physiol. Biochem., 14, pp. 301-310; 1394 | Quintanilla M., Ramirez J.R., Perez-Gomez E., Romero D., Velasco B., Letarte M., Expression of the TGF-β coreceptor endoglin in epidermal keratinocytes and its dual role in multistage mouse skin carcinogenesis (2003) Oncogene, 22, pp. 5976-5985; 1395 | Li C., Hampson I.N., Hampson L., Kumar P., Bernabeu C., Kumar S., CD105 antagonizes the inhibitory signaling of transforming growth factor β1 on human vascular endothelial cells (2000) FASEB J., 14, pp. 55-64; 1396 | She X., Matsuno F., Harada N., Tsai H., Seon B.K., Synergy between anti-endoglin (CD105) monoclonal antibodies and TGF-β in suppression of growth of human endothelial cells (2004) Int. J. Cancer, 108, pp. 251-257; 1397 | Guo B., Slevin M., Li C., Parameshwar S., Liu D., Kumar P., CD105 inhibits transforming growth factor-β-Smad3 signalling (2004) Anticancer Res., 24, pp. 1337-1345; 1398 | Gougos A., Letarte M., Biochemical characterization of the 44G4 antigen from the HOON pre-B leukemic cell line (1988) J. Immunol., 141, pp. 1934-1940; 1399 | Duff S.E., Li C., Garland J.M., Kumar S., CD105 is important for angiogenesis: Evidence and potential applications (2003) FASEB J., 17, pp. 984-992; 1400 | Chen C.Z., Li M., De Graaf D., Monti S., Gottgens B., Sanchez M.J., Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 15468-15473; 1401 | Sanchez-Elsner T., Botella L.M., Velasco B., Langa C., Bernabeu C., Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-β pathways (2002) J. Biol. Chem., 277, pp. 43799-43808; 1402 | Miller D.W., Graulich W., Karges B., Stahl S., Ernst M., Ramaswamy A., Elevated expression of endoglin, a component of the TGF-β-receptor complex, correlates with proliferation of tumor endothelial cells (1999) Int. J. Cancer, 81, pp. 568-572; 1403 | Fonsatti E., Altomonte M., Nicotra M.R., Natali P.G., Maio M., Endoglin (CD105): A powerful therapeutic target on tumor-associated angiogenetic blood vessels (2003) Oncogene, 22, pp. 6557-6563; 1404 | Li C., Guo B., Ding S., Rius C., Langa C., Kumar P., TNFα down-regulates CD105 expression in vascular endothelial cells: A comparative study with TGFβ1 (2003) Anticancer Res., 23, pp. 1189-1196; 1405 | Lebrin F., Goumans M.-J., Jonker L., Carvalho R.L.C., Valdimarsdottir G., Thorikay M., Endoglin promotes endothelial cell proliferation and TGFβ/ALK1 signal transduction (2004) EMBO J., 23, pp. 4018-4028; 1406 | Paquet M.E., Pece-Barbara N., Vera S., Cymerman U., Karabegovic A., Shovlin C., Analysis of several endoglin mutants reveals no endogenous mature or secreted protein capable of interfering with normal endoglin function (2001) Hum. Mol. Genet., 10, pp. 1347-1357; 1407 | Pece-Barbara N., Cymerman U., Vera S., Marchuk D.A., Letarte M., Expression analysis of four endoglin missense mutations suggests that haploinsufficiency is the predominant mechanism for hereditary hemorrhagic telangiectasia type 1 (1999) Hum. Mol. Genet., 8, pp. 2171-2181; 1408 | Pece N., Vera S., Cymerman U., White Jr. R.I., Wrana J.L., Letarte M., Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative (1997) J. Clin. Invest., 100, pp. 2568-2579; 1409 | Berg J.N., Gallione C.J., Stenzel T.T., Johnson D.W., Allen W.P., Schwartz C.E., The activin receptor-like kinase 1 gene: Genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2 (1997) Am. J. Hum. Genet., 61, pp. 60-67; 1410 | Abdalla S.A., Pece-Barbara N., Vera S., Tapia E., Paez E., Bernabeu C., Analysis of ALK-1 and endoglin in newborns from families with hereditary hemorrhagic telangiectasia type 2 (2000) Hum. Mol. Genet., 9, pp. 1227-1237; 1411 | Shovlin C.L., Supermodels and disease: Insights from the HHT mice (1999) J. Clin. Invest., 104, pp. 1335-1336; 1412 | Sanz-Rodriguez F., Fernandez-Lopez A., Zarrabeitia R., Perez-Molino A., Ramirez J.R., Coto E., Mutation analysis in spanish patients with hereditary hemorrhagic telangiectasia: Deficient endoglin up-regulation in activated monocytes (2004) Clin. Chem., 50, pp. 2003-2011; 1413 | Bourdeau A., Faughnan M.E., Letarte M., Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia (2000) Trends Cardiovasc. Med., 10, pp. 279-285; 1414 | Torsney E., Charlton R., Diamond A.G., Burn J., Soames J.V., Arthur H.M., Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality (2003) Circulation, 107, pp. 1653-1657; 1415 | Wallace G.M., Shovlin C.L., A hereditary haemorrhagic telangiectasia family with pulmonary involvement is unlinked to the known HHT genes, endoglin and ALK-1 (2000) Thorax, 55, pp. 685-690; 1416 | Piantanida M., Buscarini E., Dellavecchia C., Minelli A., Rossi A., Buscarini L., Hereditary haemorrhagic telangiectasia with extensive liver involvement is not caused by either HHT1 or HHT2 (1996) J. Med. Genet., 33, pp. 441-443; 1417 | Buscarini E., Buscarini L., Danesino C., Piantanida M., Civardi G., Quaretti P., Hepatic vascular malformations in hereditary hemorrhagic telangiectasia: Doppler sonographic screening in a large family (1997) J. Hepatol., 26, pp. 111-118; 1418 | Gallione C.J., Repetto G.M., Legius E., Rustgi A.K., Schelley S.L., Tejpar S., A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4) (2004) Lancet, 363, pp. 852-859; 1419 | Xu B., Wu Y.Q., Huey M., Arthur H.M., Marchuk D.A., Hashimoto T., Vascular endothelial growth factor induces abnormal microvasculature in the endoglin heterozygous mouse brain (2004) J. Cereb. Blood Flow Metab., 24, pp. 237-244; 1420 | Li C., Issa R., Kumar P., Hampson I.N., Lopez-Novoa J.M., Bernabeu C., CD105 prevents apoptosis in hypoxic endothelial cells (2003) J. Cell Sci., 116, pp. 2677-2685; 1421 | Conley B.A., Koleva R., Smith J.D., Kacer D., Zhang D., Bernabeu C., Endoglin controls cell migration and composition of focal adhesions: Function of the cytosolic domain (2004) J. Biol. Chem., 279, pp. 27440-27449; 1422 | Sanz-Rodriguez F., Guerrero-Esteo M., Botella L.M., Banville D., Vary C.P., Bernabeu C., Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins (2004) J. Biol. Chem., 279, pp. 32858-32868; 1423 | Jerkic M., Rivas-Elena J.V., Prieto M., Carron R., Sanz-Rodriguez F., Perez-Barriocanal F., Endoglin regulates nitric oxide-dependent vasodilatation (2004) FASEB J., 18, pp. 609-611; 1424 | Carvalho R.L.C., Jonker L., Goumans M.-J., Larsson J., Bouwman P., Karlsson S., Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: A paradigm for Hereditary Hemorrhagic Telangiectasia (2004) Development; 1425 | Seki T., Hong K.H., Yun J., Kim S.J., Oh S.P., Isolation of a regulatory region of activin receptor-like kinase 1 gene sufficient for arterial endothelium-specific expression (2004) Circ. Res., 94, pp. 72-e77; 1426 | Miyazono K., Ten Dijke P., Ichijo H., Heldin C.-H., Receptors for transforming growth factor-β (1994) Advances in Immunology, 55, pp. 181-220. , F.J. Dixon 1427 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-12344273467&partnerID=40&md5=cef82985f66a695d7ee905c2d50a2a6c 1428 | ER - 1429 | 1430 | TI - Common genetic variation near MC4R is associated with waist circumference and insulin resistance 1431 | T2 - Nature Genetics 1432 | VL - 40 1433 | IS - 6 1434 | SP - 716 1435 | EP - 718 1436 | PY - 2008 1437 | AU - Chambers J.C. 1438 | AU - Elliott P. 1439 | AU - Zabaneh D. 1440 | AU - Zhang W. 1441 | AU - Li Y. 1442 | AU - Froguel P. 1443 | AU - Balding D. 1444 | AU - Scott J. 1445 | AU - Kooner J.S. 1446 | N1 - Export Date: 3 January 2016 1447 | N1 - References: Lopez A.D., Murray C.C., (1998) Nat. Med, 4, pp. 1241-1243; 1448 | McKeigue P.M., Shah B., Marmot M.G., (1991) Lancet, 337, pp. 382-386; 1449 | Kooner J.S., (1998) Arterioscler. Thromb. Vasc. Biol, 18, pp. 1021-1026; 1450 | Wallace T.M., Levy J.C., Matthews D.R., (2004) Diabetes Care, 27, pp. 1487-1495; 1451 | Eckel R.H., Grundy S.M., Zimmet P.Z., (2005) Lancet, 365, pp. 1415-1428; 1452 | Price A.L., (2006) Nat. Genet, 38, pp. 904-909; 1453 | Kooner J.S., (2008) Nat. Genet, 40, pp. 149-151; 1454 | Willer C.J., (2008) Nat. Genet, 40, pp. 161-169; 1455 | Farooqi I.S., (2003) N. Engl. J. Med, 348, pp. 1085-1095; 1456 | Trevaskis, J.L. et al. Obesity (Silver Spring) 15, 2664-2672 (2007)Balthasar N., (2005) Cell, 123, pp. 493-505; 1457 | Nogueiras R., (2007) J. Clin. Invest, 117, pp. 3475-3488; 1458 | Kleinjan D.A., van Heyningen V., (2005) Am. J. Hum. Genet, 76, pp. 8-32; 1459 | Schones D.E., Zhao K., (2008) Nat. Rev. Genet, 9, pp. 179-191; 1460 | Dixon A.L., (2007) Nat. Genet, 39, pp. 1202-1207 1461 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-44349166252&partnerID=40&md5=0523f25fdc6dae939f99c2efc9242899 1462 | ER - 1463 | 1464 | TI - Bayesian statistical methods for genetic association studies 1465 | T2 - Nature Reviews Genetics 1466 | VL - 10 1467 | IS - 10 1468 | SP - 681 1469 | EP - 690 1470 | PY - 2009 1471 | AU - Stephens M. 1472 | AU - Balding D.J. 1473 | N1 - Export Date: 3 January 2016 1474 | N1 - References: Sellke T., Bayarri M.J., Berger J.O., Calibration of p values for testing precise null hypotheses (2001) Am. Stat., 55, pp. 62-71; 1475 | Sterne J.A.C., Davey Smith G., Sifting the evidence - What's wrong with significance tests? (2001) BMJ, 322, pp. 226-231; 1476 | Ioannidis J.P.A., Effect of formal statistical significance on the credibility of observational associations (2008) Am. J. Epidem., 168, pp. 374-383; 1477 | Ayres K.L., Balding D.J., Measuring departures from Hardy-Weinberg: A Markov chain Monte Carlo method for estimating the inbreeding coefficient (1998) Heredity, 80, pp. 769-777; 1478 | Shoemaker J.S., Painter I.S., Weir B.S., Bayesian statistics in genetics - A guide for the uninitiated (1999) Trends Genet., 15, pp. 354-358; 1479 | Beaumont M.A., Rannala B., The Bayesian revolution in genetics (2004) Nature Rev. Genet., 5, pp. 251-261; 1480 | Marjoram P., Tavare S., Modern computational approaches for analysing molecular genetic variation data (2006) Nature Rev. Genet., 7, pp. 759-770; 1481 | O'Hara R.B., Cano J.M., Ovaskainen O., Teplitsky C., Alho J.S., Bayesian approaches in evolutionary quantitative genetics (2008) Journal of Evolutionary Biology, 21 (4), pp. 949-957. , DOI 10.1111/j.1420-9101.2008.01529.x; 1482 | Wakefield J., Bayesian methods for examining Hardy-Weinberg equilibrium (2009) Biometrics, , 13 May doi:10.1111/j.1541-0420.2009.01267.x; 1483 | Lunn D.J., Whittaker J.C., Best N., A Bayesian toolkit for genetic association studies (2006) Genet. Epidem., 30, pp. 231-247; 1484 | Marchini J., Howie B., Myers S., McVean G., Donnelly P., A new multipoint method for genomewide association studies by imputation of genotypes (2007) Nature Genet., 39, pp. 906-913; 1485 | Servin B., Stephens M., Imputation-based analysis of association studies: Candidate regions and quantitative traits (2007) PLoS Genet., 3, pp. e114; 1486 | The Wellcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007) Nature, 447, pp. 661-678; 1487 | Wakefield J., A Bayesian measure of the probability of false discovery in genetic epidemiology studies (2007) Am. J. Hum. Genet., 81, pp. 208-227; 1488 | Hosking F.J., Sterne J.A.C., Smith G.D., Green P.J., Inference from genome-wide association studies using a novel Markov model (2008) Genet. Epidem., 32, pp. 497-504; 1489 | Verzilli C., Bayesian meta-analysis of genetic association studies with different sets of markers (2008) Am. J. Hum. Genet., 82, pp. 859-872; 1490 | Fridley B.L., Bayesian variable and model selection methods for genetic association studies (2009) Genet. Epidem., 33, pp. 27-37; 1491 | Newcombe P.J., Multilocus Bayesian meta-analysis of gene-disease associations (2009) Am. J. Hum. Genet., 84, pp. 567-580; 1492 | Wakefield J., Reporting and interpretation in genome-wide association studies (2008) Intern. J. Epidem., 37, pp. 641-653; 1493 | Guan Y., Stephens M., Practical issues in imputation-based association mapping (2008) PLoS Genet., 4, pp. e1000279; 1494 | Balding D.J., A tutorial on statistical methods for population association studies (2006) Nature Rev. Genet., 7, pp. 781-791; 1495 | Jeffreys H., (1961) Theory of Probability, , (Oxford Univ. Press); 1496 | Good I.J., The Bayes/non-Bayes compromise: A brief review (1992) J. Am. Stat. Assoc., 87, pp. 597-606; 1497 | Seaman S.R., Richardson S., Equivalence of prospective and retrospective models in the Bayesian analysis of case-control studies (2004) Biometrika, 91, pp. 15-25; 1498 | Freidlin B., Zheng G., Li Z.H., Gastwirth J.L., Trend tests for case-control studies of genetic markers: Power, sample size and robustness (2002) Hum. Hered., 53, pp. 146-152; 1499 | SLCO1B1 variants and statin-induced myopathy - A genomewide study (2008) N. Engl. J. Med., 359, pp. 789-799. , The SEARCH Collaborative Group; 1500 | Scott L.J., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2009) Science, 316, pp. 1341-1345; 1501 | Tibshirani R., Regression shrinkage and selection via the lasso (1996) J. R. Stat. Soc. B, 58, pp. 267-288; 1502 | Hoggart C.J., Whittaker J.C., De Iorio M., Balding D.J., Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies (2008) PLoS Genet., 4, pp. e1000130; 1503 | Kavvoura F.K., Ioannidis J.P.A., Methods for meta-analysis in genetic association studies: A review of their potential and pitfalls (2008) Hum. Genet., 123, pp. 1-14; 1504 | Van Houwelingen H., Lebrec J.P., (2009) Meta-analysis and Combining Information in Genetics and Genomics, pp. 49-66. , (eds Guerra, R. et al.)(CRC Press); 1505 | Ioannidis J.P., Patsopoulos N.A., Evangelou E., Heterogeneity in meta-analyses of genome-wide association investigations (2007) PLoS ONE, 2, pp. e841; 1506 | Lunn D.J., Thomas A., Best N., Spiegelhalter D., WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility (2000) Stat. Comput., 10, pp. 325-337; 1507 | Thompson J.R., Minelli C., Abrams K.R., Thakkinstian A., Attia J., Combining information from related meta-analyses of genetic association studies (2008) J. R. Stat. Soc. C, 57, pp. 103-115; 1508 | Hoggart C.J., Clark T.G., De Iorio M., Whittaker J.C., Balding D.J., Genome-wide significance for dense SNP and resequencing data (2008) Genet. Epidem., 32, pp. 179-185; 1509 | Veyrieras J.-B., High-resolution mapping of expression-QTLs yields insight into human gene regulation (2008) PLoS Genet., 4, pp. e1000214; 1510 | Lee S.-I., Learning a prior on regulatory potential from eQTL data (2009) PLoS Genet., 5, pp. e1000358; 1511 | Chen R., FitSNPs: Highly differentially expressed genes are more likely to have variants associated with disease (2008) Genome Biol., 9, pp. R170; 1512 | Tachmazidou I., Andrew T., Verzilli C.J., Johnson M.R., De Iorio M., Bayesian survival analysis in genetic association studies (2008) Bioinformatics, 24, pp. 2030-2036; 1513 | Benjamini Y., Hochberg Y., Controlling the false discovery rate - A practical and powerful approach to multiple testing (1995) J. R. Stat. Soc. B, 57, pp. 289-300; 1514 | Storey J.D., A direct approach to false discovery rates (2002) J. R. Stat. Soc. B, 64, pp. 479-498; 1515 | Wakefield J., Bayes factors for genome-wide association studies: Comparison with P-values (2009) Genet. Epidem., 33, pp. 79-86; 1516 | Wang W.Y.S., Barratt B.J., Clayton D.G., Todd J.A., Genome-wide association studies: Theoretical and practical concerns (2005) Nature Rev. Genet., 6, pp. 109-118; 1517 | Gorlov I.P., Gorlova O.Y., Sunyaev S.R., Spitz M.R., Amos C.I., Shifting paradigm of association studies: Value of rare single-nucleotide polymorphisms. (2008) Am. J. Hum. Genet., 82, pp. 100-112; 1518 | Greenland S., Multiple comparisons and association selection in general epidemiology (2008) Intern. J. Epidem., 37, pp. 430-434; 1519 | Scheipl F., Kneib T., Locally adaptive Bayesian P-splines with a normal-exponential-gamma prior (2009) Comput. Stat. Data Anal., 53, pp. 3533-3552; 1520 | Reiner A.P., Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1? are associated with C-reactive protein (2008) Am. J. Hum. Genet., 82, pp. 1193-1201 1521 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-70349303959&partnerID=40&md5=bd40b3a6b974ce6926bece231ee7292f 1522 | ER - 1523 | 1524 | TI - Type 2 diabetes whole-genome association study in four populations: The DiaGen consortium 1525 | T2 - American Journal of Human Genetics 1526 | VL - 81 1527 | IS - 2 1528 | SP - 338 1529 | EP - 345 1530 | PY - 2007 1531 | AU - Salonen J.T. 1532 | AU - Uimari P. 1533 | AU - Aalto J.-M. 1534 | AU - Pirskanen M. 1535 | AU - Kaikkonen J. 1536 | AU - Todorova B. 1537 | AU - Hyppönen J. 1538 | AU - Korhonen V.-P. 1539 | AU - Asikainen J. 1540 | AU - Devine C. 1541 | AU - Tuomainen T.-P. 1542 | AU - Luedemann J. 1543 | AU - Nauck M. 1544 | AU - Kerner W. 1545 | AU - Stephens R.H. 1546 | AU - New J.P. 1547 | AU - Ollier W.E. 1548 | AU - Gibson J.M. 1549 | AU - Payton A. 1550 | AU - Horan M.A. 1551 | AU - Pendleton N. 1552 | AU - Mahoney W. 1553 | AU - Meyre D. 1554 | AU - Delplanque J. 1555 | AU - Froguel P. 1556 | AU - Luzzatto O. 1557 | AU - Yakir B. 1558 | AU - Darvasi A. 1559 | N1 - Export Date: 3 January 2016 1560 | N1 - References: Narayan K.M., Boyle J.P., Geiss L.S., Saaddine J.B., Thompson T.J., Impact of recent increase in incidence on future diabetes burden: U.S., 2005-2050 (2006) Diabetes Care, 29, pp. 2114-2116; 1561 | Permutt M.A., Wasson J., Cox N., Genetic epidemiology of diabetes (2005) J Clin Invest, 115, pp. 1431-1439; 1562 | Barroso I., Genetics of type 2 diabetes (2005) Diabet Med, 22, pp. 517-535; 1563 | Grant S.F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., Helgason A., Helgadottir A., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes (2006) Nat Genet, 38, pp. 320-232; 1564 | Saxena R., Gianniny L., Burtt N.P., Lyssenko V., Giuducci C., Sjogren M., Florez C., Orho-Melander M., Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals (2006) Diabetes, 55, pp. 2890-2895; 1565 | Altshuler D., Hirschhorn J.N., Klannemark M., Lindgren C.M., Vohl M.C., Nemesh J., Lane C.R., Brewer C., The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes (2000) Nat Genet, 26, pp. 76-80; 1566 | Gloyn A.L., Weedon M.N., Owen K.R., Turner M.J., Knight B.A., Hitman G., Walker M., Halford S., Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes (2003) Diabetes, 52, pp. 568-572; 1567 | Tsuchiya T., Schwarz P.E., Bosque-Plata L.D., Geoffrey Hayes M., Dina C., Froguel P., Wayne Towers G., Rietzsch H., Association of the calpain-10 gene with type 2 diabetes in Europeans: Results of pooled and meta-analyses (2006) Mol Genet Metab, 89, pp. 174-184; 1568 | Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Hadjadj S., A genome-wide association study identifies novel risk loci for type 2 diabetes (2007) Nature, 445, pp. 881-885; 1569 | Permutt M.A., Use of DNA polymorphisms for genetic analysis of non-insulin dependent diabetes mellitus (1991) Baillieres Clin Endocrinol Metab, 5, pp. 495-526; 1570 | Laird N.M., Lange C., Family-based designs in the age of large-scale gene-association studies (2006) Nat Rev Genet, 7, pp. 385-394; 1571 | McCarthy M.I., Growing evidence for diabetes susceptibility genes from genome scan data (2003) Curr Diab Rep, 3, pp. 159-167; 1572 | Hansen L., Pedersen O., Genetics of type 2 diabetes mellitus: Status and perspectives (2005) Diabetes Obes Metab, 7, pp. 122-135; 1573 | Balding D.J., A tutorial on statistical methods for population association studies (2006) Nat Rev Genet, 7, pp. 781-791; 1574 | Luedemann J., Schminke U., Berger K., Piek M., Willich S.N., Doring A., John U., Kessler C., The association between behavior dependent cardiovascular risk factors and asymptomatic carotid atherosclerosis in a general population (2002) Stroke, 33, pp. 2929-2935; 1575 | Rabbitt P.M.A., McInnes L., Diggle P., Holland F., Bent N., Abson V., Pendleton N., Horan M., The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age, 1983 through 2003. Neuropsychol Dev Cogn B (2004) Aging Neuropsychol Cogn, 11, pp. 245-279; 1576 | Kutyavin I.V., Milesi D., Belousov Y., Podyminogin M., Vorobiev A., Gorn V., Lukhtanov E.A., Mahoney W., A novel endonuclease IV post-PCR genotyping system (2006) Nucleic Acids Res, 34, pp. e128; 1577 | Eronen L., Geerts F., Toivonen H., A Markov chain approach to reconstruction of long haplotypes (2004) Pac Symp Biocomput, 9, pp. 104-115; 1578 | Eronen L., Geerts F., Toivonen H., HaploRec: Efficient and accurate large-scale reconstruction of haplotypes (2006) BMC Bioinformatics, 7, p. 542; 1579 | Toivonen H.T., Onkamo P., Vasko K., Ollikainen V., Sevon P., Mannila H., Herr M., Kere J., Data mining applied to linkage disequilibrium mapping (2000) Am J Hum Genet, 67, pp. 133-145; 1580 | Balkau B., An epidemiologic survey from a network of French Health Examination Centres, (D.E.S.I.R.): Epidemiologic data on the insulin resistance syndrome (1996) Rev Epidemiol Sante Publique, 44, pp. 373-375; 1581 | Xiang K., Wang Y., Zheng T., Jia W., Li J., Chen L., Shen K., Zhang G., Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: Significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24 (2004) Diabetes, 53, pp. 228-234; 1582 | Hanson L.R., Ehm M.G., Pettitt D.J., Prochazka M., Thompson D.B., Timberlake D., Foroud T., Burns D.K., An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians (1998) Am J Hum Genet, 63, pp. 1130-1138; 1583 | Dixon-Salazar T., Silhavy J.L., Marsh S.E., Louie C.M., Scott L.C., Gururaj A., Al-Gazali L., Sztriha L., Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria (2004) Am J Hum Genet, 75, pp. 979-987; 1584 | Louie C.M., Gleeson J.G., Genetic basis of Joubert syndrome and related disorders of cerebellar development (2005) Hum Mol Genet, 14, pp. R235-R242; 1585 | Li D., Roberts R., WD-repeat proteins: Structure characteristics, biological function, and their involvement in human diseases (2001) Cell Mol Life Sci, 58, pp. 2085-2097; 1586 | Mayer B.J., SH3 domains: Complexity in moderation (2001) J Cell Sci, 114, pp. 1253-1263; 1587 | Wang W.Y., Barratt B.J., Clayton D.G., Todd J.A., Genome-wide association studies: Theoretical and practical concerns (2005) Nat Rev Genet, 6, pp. 109-118 1588 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34547755055&partnerID=40&md5=d426c7304b2ef7cccee51ac7b399fae2 1589 | ER - 1590 | 1591 | TI - Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome? 1592 | T2 - Diabetologia 1593 | VL - 50 1594 | IS - 9 1595 | SP - 1880 1596 | EP - 1888 1597 | PY - 2007 1598 | AU - Benyamin B. 1599 | AU - Sørensen T.I.A. 1600 | AU - Schousboe K. 1601 | AU - Fenger M. 1602 | AU - Visscher P.M. 1603 | AU - Kyvik K.O. 1604 | N1 - Export Date: 3 January 2016 1605 | N1 - References: Eckel R.H., Grundy S.M., Zimmet P.Z., The metabolic syndrome (2005) Lancet, 365, pp. 1415-1428; 1606 | Roche H.M., Phillips C., Gibney M.J., The metabolic syndrome: The crossroads of diet and genetics (2005) Proc Nutr Soc, 64, pp. 371-377; 1607 | Shaw D.I., Hall W.L., Williams C.M., Metabolic syndrome: What is it and what are the implications? (2005) Proc Nutr Soc, 64, pp. 349-357; 1608 | Laaksonen D.E., Lakka H.M., Niskanen L.K., Kaplan G.A., Salonen J.T., Lakka T.A., Metabolic syndrome and development of diabetes mellitus: Application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study (2002) Am J Epidemiol, 156, pp. 1070-1077; 1609 | Girman C.J., Dekker J.M., Rhodes T., An exploratory analysis of criteria for the metabolic syndrome and its prediction of long-term cardiovascular outcomes: The Hoorn Study (2005) Am J Epidemiol, 162, pp. 438-447; 1610 | Sundstrom J., Riserus U., Byberg L., Zethelius B., Lithell H., Lind L., Clinical value of the metabolic syndrome for long term prediction of total and cardiovascular mortality: Prospective, population based cohort study (2006) BMJ, 332, pp. 878-882; 1611 | Cameron A.J., Shaw J.E., Zimmet P.Z., The metabolic syndrome: Prevalence in worldwide populations (2004) Endocrinol Metab Clin North Am, 33, pp. 351-375; 1612 | Ford E.S., Giles W.H., A comparison of the prevalence of the metabolic syndrome using two proposed definitions (2003) Diabetes Care, 26, pp. 575-581; 1613 | Freeman M.S., Mansfield M.W., Barrett J.H., Grant P.J., Heritability of features of insulin resistance syndrome in a community-based study of healthy families (2002) Diabet Med, 19, pp. 994-999; 1614 | Li J.K.Y., Ng M.C.Y., So W.Y., Phenotypic and genetic clustering of the metabolic syndrome in Chinese families with type 2 diabetes mellitus (2006) Diabetes Metab Res Rev, 22, pp. 46-52; 1615 | Lin H.-F., Boden-Albala B., Juo S.H., Park N., Rundek T., Sacco R.L., Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study (2005) Diabetologia, 48, pp. 2006-2012; 1616 | Martin L.J., North K.E., Dyer T., Blangero J., Comuzzie A.G., Williams J., Phenotypic, genetic, and genome-wide structure in the metabolic syndrome (2003) BMC Genet, 4, p. 95. , Suppl.1; 1617 | Poulsen P., Vaag A., Kyvik K., Beck-Nielsen H., Genetic versus environmental aetiology of the metabolic syndrome among male and female twins (2001) Diabetologia, 44, pp. 537-543; 1618 | Schousboe K., Visscher P.M., Henriksen J.E., Hopper J.L., Sørensen T.I., Kyvik K.O., Twin study of genetic and environmental influences on glucose tolerance and indices of insulin sensitivity and secretion (2003) Diabetologia, 46, pp. 1276-1283; 1619 | Henkin L., Bergman R.N., Bowden D.W., Genetic epidemiology of insulin resistance and visceral adiposity: The IRAS Family Study design and methods (2003) Ann Epidemiol, 13, pp. 211-217; 1620 | Samaras K., Nguyen T.V., Jenkins A.B., Clustering of insulin resistance, total and central abdominal fat: Same genes or same environment? (1999) Twin Res, 2, pp. 218-225; 1621 | Hong Y., Pedersen N.L., Brismar K., Faire U.D., Genetic and environmental architecture of the features of the insulin-resistance syndrome (1997) Am J Hum Genet, 60, pp. 143-152; 1622 | Nelson T.L., Vogler G.P., Pedersen N.L., Hong Y., Miles T.P., Genetic and environmental influences on body fat distribution, fasting insulin levels and CVD: Are the influences shared? (2000) Twin Res, 3, pp. 43-50; 1623 | Tregouet D.A., Herbeth B., Juhan-Vague I., Siest G., Ducimetiere P., Tiret L., Bivariate familial correlation analysis of quantitative traits by use of estimating equation: Application to a familial analysis of the insulin resistance syndrome (1999) Genet Epidemiol, 16, pp. 69-83; 1624 | Perusse L., Rice T., Despres J.P., Rao D.C., Bouchard C., Cross-trait familial resemblance for body fat and blood lipids: Familial correlations in the Quebec Family Study (1997) Arterioscler Thromb Vasc Biol, 17, pp. 3270-3277; 1625 | Rainwater D.L., Mitchell B.D., Mahaney M.C., Haffner S.M., Genetic relationship between measures of HDL phenotypes and insulin concentrations (1997) Arterioscler Thromb Vasc Biol, 17, pp. 3414-3419; 1626 | Kahn R., Buse J., Ferrannini E., Stern M., The metabolic syndrome: Time for a critical appraisal. Joint statement from the American Association and the European Association for the Study of Diabetes (2005) Diabetes Care, 28, pp. 2289-2304; 1627 | Schousboe K., Visscher P.M., Erbas B., Twin study of genetic and environmental influences on adult body size, shape and composition (2004) Int J Obes, 28, pp. 39-48; 1628 | Hansen T., Drivsholm T., Urhammer S.A., The BIGTT test: A novel test for simultaneous measurement of pancreatic beta-cell function, insulin sensitivity, and glucose tolerance (2007) Diabetes Care, 30, pp. 257-262; 1629 | Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C., Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man (1985) Diabetologia, 28, pp. 412-419; 1630 | HOMA Calculator, , http://www.dtu.ox.ac.uk, Available at accessed 16 June 2007; 1631 | Neale M.C., Boker S.M., Xie G., Maes H.H., (2002) Mx: Statistical Modelling, , http://www.vcu.edu/mx/documentation.html, Department of Psychiatry, Virginia Commonwealth University, Richmond. Available at accessed 16 June 2007; 1632 | Kendler K.S., Neale M.C., Kessler R.C., Heath A.C., Eaves L.J., A test of the equal-environment assumption in twin studies of psychiatric illness (1993) Behav Genet, 23, pp. 21-27; 1633 | Scarr S., Environmental bias in twin studies (1968) Eugen Q, 15, pp. 34-40; 1634 | Edwards K.L., Newman B., Mayer E., Selby J.V., Krauss R.M., Austin M.A., Heritability of factors of the insulin resistance syndrome in women twins (1997) Genet Epidemiol, 14, pp. 241-253; 1635 | Mitchell B.D., Kammerer C.M., Mahaney M.C., Pleiotropic effects of genes influencing insulin levels on lipoprotein and obesity measures (1996) Arterioscler Thromb Vasc Biol, 16, pp. 281-288; 1636 | An P., Freedman B.I., Hanis C.L., Genome-wide linkage scans for fasting glucose, insulin, and insulin resistance in the National Heart, Lung, and Blood Institute Family Blood Pressure Program (2005) Diabetes, 54, pp. 909-914; 1637 | Kissebah A.H., Sonnenberg G.E., Myklebust J., Quantitative trait loci on chromosome 3 and 17 influence phenotypes of the metabolic syndrome (2000) PNAS, 97, pp. 14478-14483; 1638 | Rich S.S., Bowden D.W., Haffner S.M., A genome scan for fasting insulin and fasting glucose identifies a quantitative trait locus on chromosome 17p: The Insulin Resistance Atherosclerosis Study (IRAS) Family Study (2005) Diabetes, 54, pp. 290-295; 1639 | Shearman A.M., Ordovas J.M., Cupples L.A., Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: A genome-wide scan in the Framingham Study (2000) Hum Mol Genet, 9, pp. 1315-1320; 1640 | Jowett J.B., Elliot K.S., Curran J.E., Genetic variation in BEACON influences quantitative variation in metabolic syndrome-related phenotypes (2004) Diabetes, 53, pp. 2467-2472; 1641 | Goldin L.R., Camp N.J., Keen K.J., Analysis of metabolic syndrome phenotypes in Framingham Heart Study families from genetic analysis workshop 13 (2003) Genet Epidemiol, 25, pp. 78-S89; 1642 | Loos R.J.F., Katzmarzyk P.T., Rao D.C., Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study (2003) J Clin Endocrinol Metab, 88, pp. 5935-5943; 1643 | McQueen M.B., Bertram L., Rimm E.B., Blacker D., Santangelo S.L., A QTL genome scan of the metabolic syndrome and its component traits (2003) BMC Genet, 4, p. 96. , Suppl.1; 1644 | Ng M.C.Y., So W.Y., Lam V.K.L., Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus in chromosome 1q21-q25 (2004) Diabetes, 53, pp. 2676-2683; 1645 | Tang W., Miller M.B., Rich S.S., Linkage analysis of a composite factor for the multiple metabolic syndrome (2003) Diabetes, 52, pp. 2840-2847 1646 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-34547675707&partnerID=40&md5=0ae96a91ab5d256ac2ac0fb5d1f4299b 1647 | ER - 1648 | 1649 | TI - Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data 1650 | T2 - Diabetes 1651 | VL - 58 1652 | IS - 2 1653 | SP - 505 1654 | EP - 510 1655 | PY - 2009 1656 | AU - Timpson N.J. 1657 | AU - Lindgren C.M. 1658 | AU - Weedon M.N. 1659 | AU - Randall J. 1660 | AU - Ouwehand W.H. 1661 | AU - Strachan D.P. 1662 | AU - Rayner N.W. 1663 | AU - Walker M. 1664 | AU - Hitman G.A. 1665 | AU - Doney A.S.F. 1666 | AU - Palmer C.N.A. 1667 | AU - Morris A.D. 1668 | AU - Hattersley A.T. 1669 | AU - Zeggini E. 1670 | AU - Frayling T.M. 1671 | AU - McCarthy M.I. 1672 | N1 - Export Date: 3 January 2016 1673 | N1 - References: Zeggini E., Weedon M.N., Lindgren C.M., Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes (2007) Science, 316, pp. 1336-1341; 1674 | Steinthorsdottir V., Thorleifsson G., Reynisdottir I., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes (2007) Nat Genet, 39, pp. 770-775; 1675 | Zeggini E., Scott L.J., Saxena R., Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes (2008) Nat Genet, 40, pp. 638-645; 1676 | Scott L.J., Mohlke K.L., Bonnycastle L.L., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2007) Science, 316, pp. 1341-1345; 1677 | Saxena R., Voight B.F., Lyssenko V., Geneome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels (2007) Science, 316, pp. 1331-1336; 1678 | Sladek R., Rocheleau G., Rung J., A genome-wide association study identifies novel risk loci for type 2 diabetes (2007) Nature, 445, pp. 881-885; 1679 | Genome-wide association study of 14,000 case subjects of seven common diseases and 3,000 shared control subjects (2007) Nature, 447, pp. 661-678. , The Wellcome Trust Case Control Consortium; 1680 | Frayling T.M., Timpson N.J., Weedon M.N., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity (2007) Science, 316, pp. 889-894; 1681 | Murphy R., Ellard S., Hattersley A.T., Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes (2008) Nat Clin Pract Endocrinol Metab, 4, pp. 200-213; 1682 | Loos R.J.F., Lindgren C.M., Li S., Common variants near MC4R are associated with fat mass, weight and risk ofobesity (2008) Nat Genet, 40, pp. 768-775; 1683 | Gloyn A.L., Siddiqui J., Ellard S., Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism (2006) Hum Mutat, 27, pp. 220-231; 1684 | Zatyka M., Ricketts C., da Silva Xavier G., Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress (2008) Hum Mol Genet, 17, pp. 190-200; 1685 | Franks P.W., Rolandsson O., Debenham S.L., Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations (2008) Diabetologia, 51, pp. 458-463; 1686 | Gudmundsson J., Sulem P., Steinthorsdottir V., Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes (2007) Nat Genet, 39, pp. 977-983; 1687 | Lyssenko V., Lupi R., Marchetti P., Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes (2007) J Clin Invest, 117, pp. 2155-2163; 1688 | Grant S.F.A., Thorleifsson G., Reynisdottir I., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes (2006) Nat Genet, 38, pp. 320-323; 1689 | Cauchi S., Meyre D., Dina C., Transcription factor TCF7L2 genetic study in the French population: Expression in human beta-cells and adipose tissue and strong association with type 2 diabetes (2006) Diabetes, 55, pp. 2903-2908; 1690 | Pascoe L., Tura A., Patel S.K., Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function (2007) Diabetes, 56, pp. 3101-3104; 1691 | Grarup N., Rose C.S., Andersson E.A., Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: Validation and extension of genome-wide association studies (2007) Diabetes, 56, pp. 3105-3111; 1692 | Staiger H., Machicao F., Stefan N., Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function (2007) PLoS ONE, 2, pp. e832; 1693 | Staiger H., Stancakova A., Zilinskaite J., A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: Results from the EUGENE2 study (2008) Diabetes, 57, pp. 514-517 1694 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-63249135474&partnerID=40&md5=3d84412627fc393eb008153b4692a845 1695 | ER - 1696 | 1697 | TI - The search for putative unifying genetic factors for components of the metabolic syndrome 1698 | T2 - Diabetologia 1699 | VL - 51 1700 | IS - 12 1701 | SP - 2242 1702 | EP - 2251 1703 | PY - 2008 1704 | AU - Sjögren M. 1705 | AU - Lyssenko V. 1706 | AU - Jonsson A. 1707 | AU - Berglund G. 1708 | AU - Nilsson P. 1709 | AU - Groop L. 1710 | AU - Orho-Melander M. 1711 | N1 - Export Date: 3 January 2016 1712 | N1 - References: Isomaa B., Almgren P., Tuomi T., Cardiovascular morbidity and mortality associated with the metabolic syndrome (2001) Diabetes Care, 24, pp. 683-689; 1713 | Bosy-Westphal A., Onur S., Geisler C., Common familial influences on clustering of metabolic syndrome traits with central obesity and insulin resistance: The Kiel obesity prevention study (2007) Int J Obes (Lond), 31, pp. 784-790; 1714 | Cameron A.J., Shaw J.E., Zimmet P.Z., The metabolic syndrome: Prevalence in worldwide populations (2004) Endocrinol Metab Clin North Am, 33, pp. 351-375; 1715 | Lin H.F., Boden-Albala B., Juo S.H., Park N., Rundek T., Sacco R.L., Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study (2005) Diabetologia, 48, pp. 2006-2012; 1716 | Freeman M.S., Mansfield M.W., Barrett J.H., Grant P.J., Heritability of features of the insulin resistance syndrome in a community-based study of healthy families (2002) Diabet Med, 19, pp. 994-999; 1717 | Poulsen P., Vaag A., Kyvik K., Beck-Nielsen H., Genetic versus environmental aetiology of the metabolic syndrome among male and female twins (2001) Diabetologia, 44, pp. 537-543; 1718 | Teran-Garcia M., Bouchard C., Genetics of the metabolic syndrome (2007) Appl Physiol Nutr Metab, 32, pp. 89-114; 1719 | Zeggini E., Scott L.J., Saxena R., Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes (2008) Nat Genet, 40, pp. 638-645; 1720 | Altshuler D., Hirschhorn J.N., Klannemark M., The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes (2000) Nat Genet, 26, pp. 76-80; 1721 | Frayling T.M., Timpson N.J., Weedon M.N., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity (2007) Science, 316, pp. 889-894; 1722 | Gloyn A.L., Weedon M.N., Owen K.R., Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes (2003) Diabetes, 52, pp. 568-572; 1723 | Grant S.F., Thorleifsson G., Reynisdottir I., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes (2006) Nat Genet, 38, pp. 320-323; 1724 | Sandhu M.S., Weedon M.N., Fawcett K.A., Common variants in WFS1 confer risk of type 2 diabetes (2007) Nat Genet, 39, pp. 951-953; 1725 | Saxena R., Voight B.F., Lyssenko V., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels (2007) Science, 316, pp. 1331-1336; 1726 | Scott L.J., Mohlke K.L., Bonnycastle L.L., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants (2007) Science, 316, pp. 1341-1345; 1727 | Sladek R., Rocheleau G., Rung J., A genome-wide association study identifies novel risk loci for type 2 diabetes (2007) Nature, 445, pp. 881-885; 1728 | Steinthorsdottir V., Thorleifsson G., Reynisdottir I., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes (2007) Nat Genet, 39, pp. 770-775; 1729 | Zeggini E., Weedon M.N., Lindgren C.M., Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes (2007) Science, 316, pp. 1336-1341; 1730 | Barroso I., Luan J., Sandhu M.S., Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes (2006) Diabetologia, 49, pp. 501-505; 1731 | Bengtsson K., Melander O., Orho-Melander M., Polymorphism in the beta(1)-adrenergic receptor gene and hypertension (2001) Circulation, 104, pp. 187-190; 1732 | Dionne I.J., Garant M.J., Nolan A.A., Association between obesity and a polymorphism in the beta(1)-adrenoceptor gene (Gly389Arg ADRB1) in Caucasian women (2002) Int J Obes Relat Metab Disord, 26, pp. 633-639; 1733 | Fujisawa T., Ikegami H., Kawaguchi Y., Ogihara T., Meta-analysis of the association of Trp64Arg polymorphism of beta 3-adrenergic receptor gene with body mass index (1998) J Clin Endocrinol Metab, 83, pp. 2441-2444; 1734 | Jellema A., Zeegers M.P., Feskens E.J., Dagnelie P.C., Mensink R.P., Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: A meta-analysis of 27 studies (2003) Diabetologia, 46, pp. 990-995; 1735 | Lange L.A., Norris J.M., Langefeld C.D., Association of adipose tissue deposition and beta-2 adrenergic receptor variants: The IRAS family study (2005) Int J Obes (Lond), 29, pp. 449-457; 1736 | McAteer J.B., Prudente S., Bacci S., The ENPP1 K121Q polymorphism is associated with type 2 diabetes in European populations: Evidence from an updated meta-analysis in 42,042 subjects (2008) Diabetes, 57, pp. 1125-1130; 1737 | Meyre D., Bouatia-Naji N., Tounian A., Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes (2005) Nat Genet, 37, pp. 863-867; 1738 | Olivier M., Hsiung C.A., Chuang L.M., Single nucleotide polymorphisms in protein tyrosine phosphatase 1beta (PTPN1) are associated with essential hypertension and obesity (2004) Hum Mol Genet, 13, pp. 1885-1892; 1739 | Pihlajamaki J., Salmenniemi U., Vanttinen M., Common polymorphisms of calpain-10 are associated with abdominal obesity in subjects at high risk of type 2 diabetes (2006) Diabetologia, 49, pp. 1560-1566; 1740 | Wang H., Chu W.S., Lu T., Hasstedt S.J., Kern P.A., Elbein S.C., Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion (2004) Am J Physiol Endocrinol Metab, 286, pp. 1-E7; 1741 | Weedon M.N., Schwarz P.E., Horikawa Y., Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility (2003) Am J Hum Genet, 73, pp. 1208-1212; 1742 | Vimaleswaran K.S., Luan J., Andersen G., The Gly482Ser genotype at the PPARGC1A gene and elevated blood pressure: A meta-analysis of 13,949 individuals (2008) J Appl Physiol, , doi: 10.1152/japplphysiol.90423.2008; 1743 | Widen E., Lehto M., Kanninen T., Walston J., Shuldiner A.R., Groop L.C., Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns (1995) N Engl J Med, 333, pp. 348-351; 1744 | Lyssenko V., Jonsson A., Pulizzi N., Clinical risk factors, DNA variants and the development of type 2 diabetes (2008) N Engl J Med, , (in press); 1745 | National Cholesterol Education Program: Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-2497. , National Heart, Lung, and Blood Institute; 1746 | (1999) Definition, Diagnosis, and Classification of Diabetes Mellitus and Its Complications. Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus, , World Health Organization Geneva: World Health Organization; 1747 | Alberti K.G., Zimmet P., Shaw J., The metabolic syndrome-a new worldwide definition (2005) Lancet, 366, pp. 1059-1062; 1748 | Orho-Melander M., Melander O., Guiducci C., A common missense variant in the glucokinase regulatory protein gene (GCKR) is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations (2008) Diabetes, , doi: 10.2337/db08-0516; 1749 | Sparso T., Andersen G., Nielsen T., The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes (2008) Diabetologia, 51, pp. 70-75; 1750 | Vaxillaire M., Cavalcanti-Proenca C., Dechaume A., The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population (2008) Diabetes, 57, pp. 2253-2257; 1751 | Salopuro T., Lindstrom J., Eriksson J.G., Common variants in beta2- and beta3-adrenergic receptor genes and uncoupling protein 1 as predictors of the risk for type 2 diabetes and body weight changes. the Finnish Diabetes Prevention Study (2004) Clin Genet, 66, pp. 365-367; 1752 | Clausen J.O., Hansen T., Bjorbaek C., Insulin resistance: Interactions between obesity and a common variant of insulin receptor substrate-1 (1995) Lancet, 346, pp. 397-402; 1753 | Lyssenko V., Sjogren M., Almgren P., Genetic prediction of the metabolic syndrome (2008) Diabetes Metab Syndr Clin Res Rev, , doi: 10.1016/j.dsx.2008.07.002; 1754 | Purcell S., Cherny S.S., Sham P.C., Genetic Power Calculator: Design of linkage and association genetic mapping studies of complex traits (2003) Bioinformatics, 19, pp. 149-150; 1755 | Benyamin B., Sorensen T.I., Schousboe K., Fenger M., Visscher P.M., Kyvik K.O., Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome? (2007) Diabetologia, 50, pp. 1880-1888; 1756 | Lyssenko V., Lupi R., Marchetti P., Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes (2007) J Clin Invest, 117, pp. 2155-2163; 1757 | Genuth S., Alberti K.G., Bennett P., Follow-up report on the diagnosis of diabetes mellitus (2003) Diabetes Care, 26, pp. 3160-3167; 1758 | Fredriksson R., Hagglund M., Olszewski P.K., The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain (2008) Endocrinology, 149, pp. 2062-2071; 1759 | Gerken T., Girard C.A., Tung Y.C., The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase (2007) Science, 318, pp. 1469-1472; 1760 | Lakka H.M., Laaksonen D.E., Lakka T.A., The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men (2002) JAMA, 288, pp. 2709-2716; 1761 | Chambers J.C., Elliott P., Zabaneh D., Common genetic variation near MC4R is associated with waist circumference and insulin resistance (2008) Nat Genet, 40, pp. 716-718; 1762 | Loos R.J., Lindgren C.M., Li S., Common variants near MC4R are associated with fat mass, weight and risk of obesity (2008) Nat Genet, 40, pp. 768-775; 1763 | Kathiresan S., Melander O., Guiducci C., Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans (2008) Nat Genet, 40, pp. 189-197; 1764 | Kooner J.S., Chambers J.C., Aguilar-Salinas C.A., Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides (2008) Nat Genet, 40, pp. 149-151; 1765 | Willer C.J., Sanna S., Jackson A.U., Newly identified loci that influence lipid concentrations and risk of coronary artery disease (2008) Nat Genet, 40, pp. 161-169 1766 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-55649107932&partnerID=40&md5=a60e73344e0a2d1321315212760a1ae3 1767 | ER - 1768 | 1769 | TI - Genetics of metabolic syndrome 1770 | T2 - Current Diabetes Reports 1771 | VL - 8 1772 | IS - 2 1773 | SP - 141 1774 | EP - 148 1775 | PY - 2008 1776 | AU - Joy T. 1777 | AU - Lahiry P. 1778 | AU - Pollex R.L. 1779 | AU - Hegele R.A. 1780 | N1 - Export Date: 3 January 2016 1781 | N1 - References: Definition, diagnosis, and classification of diabetes mellitus and its complications Report of a WHO Consultation, , http://www.staff.newcastle.ac.uk/philip.home/who_dmc.htm, Available at, Accessed December 6, 2007; 1782 | Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) [no authors listed] (2001) JAMA, 285, pp. 2486-2497. , Executive Summary of The Third Report of The National Cholesterol Education Program NCEP; 1783 | Alberti K.G., Zimmet P., Shaw J., The metabolic syndrome - a new worldwide definition (2005) Lancet, 366, pp. 109-1062; 1784 | Balkau B., Charles M.A., Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR) (1999) Diabet Med, 16, pp. 442-443; 1785 | Einhorn D., Reaven G.M., Cobin R.H., American College of Endocrinology position statement on the insulin resistance syndrome (2003) Endocr Pract, 9, pp. 237-252; 1786 | Grundy S.M., Cleeman J.I., Daniels S.R., Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement (2005) Circulation, 112, pp. 2735-2752; 1787 | Ford E.S., Giles W.H., Dietz W.H., Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey (2002) JAMA, 287, pp. 356-359; 1788 | Carmelli D., Cardon L.R., Fabsitz R., Clustering of hypertension, diabetes, and obesity in adult male twins: Same genes or same environments? (1994) Am J Hum Genet, 55, pp. 566-573; 1789 | Edwards K.L., Newman B., Mayer E., Heritability of factors of the insulin resistance syndrome in women twins (1997) Genet Epidemiol, 14, pp. 241-253; 1790 | Lin H.F., Boden-Albala B., Juo S.H., Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study (2005) Diabetologia, 48, pp. 2006-2012; 1791 | Kissebah A.H., Sonnenberg G.E., Myklebust J., Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome (2000) Proc Natl Acad Sci U S A, 97, pp. 14478-14483; 1792 | Arya R., Blangero J., Williams K., Factors of insulin resistance syndrome - related phenotypes are linked to genetic locations on chromosomes 6 and 7 in nondiabetic Mexican-Americans (2002) Diabetes, 51, pp. 841-847; 1793 | Langefeld C.D., Wagenknecht L.E., Rotter J.I., Linkage of the metabolic syndrome to 1q23-q31 in Hispanic families: The Insulin Resistance Atherosclerosis Study Family Study (2004) Diabetes, 53, pp. 1170-1174; 1794 | Loos R.J., Katzmarzyk P.T., Rao D.C., Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study (2003) J Clin Endocrinol Metab, 88, pp. 5935-5943; 1795 | Hsueh W.C., St Jean P.L., Mitchell B.D., Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: Evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24 (2003) Diabetes, 52, pp. 550-557; 1796 | Ng M.C., So W.Y., Cox N.J., Genome-wide scan for type 2 diabetes loci in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25 (2004) Diabetes, 53, pp. 1609-1613; 1797 | Das S.K., Hasstedt S.J., Zhang Z., Elbein S.C., Linkage and association mapping of a chromosome 1q21-q24 type 2 diabetes susceptibility locus in northern European Caucasians (2004) Diabetes, 53, pp. 492-499; 1798 | Vionnet N., Hani E.H., Dupont S., Genomewide search for type 2 diabetes-susceptibility genes in French whites: Evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24 (2000) Am J Hum Genet, 67, pp. 1470-1480; 1799 | Thameem F., Farook V.S., Bogardus C., Prochazka M., Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians (2006) Diabetes, 55, pp. 839-842; 1800 | Ng M.C., So W.Y., Lam V.K., Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25 (2004) Diabetes, 53, pp. 2676-2683; 1801 | Hoffmann K., Mattheisen M., Dahm S., A German genome-wide linkage scan for type 2 diabetes supports the existence of a metabolic syndrome locus on chromosome 1p36.13 and a type 2 diabetes locus on chromosome 16p12.2 (2007) Diabetologia, 50, pp. 1418-1422; 1802 | Bowden D.W., Rudock M., Ziegler J., Coincident linkage of type 2 diabetes, metabolic syndrome, and measures of cardiovascular disease in a genome scan of the diabetes heart study (2006) Diabetes, 55, pp. 1985-1994; 1803 | Yang W.S., Yang Y.C., Chen C.L., Adiponectin SNP276 is associated with obesity, the metabolic syndrome, and diabetes in the elderly (2007) Am J Clin Nutr, 86, pp. 509-513; 1804 | Norata G.D., Ongari M., Garlaschelli K., Effect of the -420C/G variant of the resistin gene promoter on metabolic syndrome, obesity, myocardial infarction and kidney dysfunction (2007) J Intern Med, 262, pp. 104-112; 1805 | Mousavinasab F., Tahtinen T., Jokelainen J., The Pro-12Ala polymorphism of the PPAR gamma 2 gene influences sex hormone-binding globulin level and its relationship to the development of the metabolic syndrome in young Finnish men (2006) Endocrine, 30, pp. 185-190; 1806 | Rhee E.J., Oh K.W., Lee W.Y., Effects of two common polymorphisms of peroxisome proliferator-activated receptor-gamma gene on metabolic syndrome (2006) Arch Med Res, 37, pp. 86-94; 1807 | Tonjes A., Scholz M., Loeffler M., Stumvoll M., Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma with pre-diabetic phenotypes: Meta-analysis of 57 studies on nondiabetic individuals (2006) Diabetes Care, 29, pp. 2489-2497; 1808 | Meirhaeghe A., Cottel D., Amouyel P., Dallongeville J., Association between peroxisome proliferator-activated receptor gamma haplotypes and the metabolic syndrome in French men and women (2005) Diabetes, 54, pp. 3043-3048; 1809 | Robitaille J., Brouillette C., Houde A., Association between the PPARalpha-L162V polymorphism and components of the metabolic syndrome (2004) J Hum Genet, 49, pp. 482-489; 1810 | Robitaille J., Gaudet D., Perusse L., Vohl M.C., Features of the metabolic syndrome are modulated by an interaction between the peroxisome proliferator-activated receptor-delta -87T>C polymorphism. and dietary fat in French-Canadians (2007) Int J Obes (Lond), 31, pp. 411-417; 1811 | Miller M., Rhyne J., Chen H., APOC3 promoter polymorphisms C-482T and T-455C are associated with the metabolic syndrome (2007) Arch Med Res, 38, pp. 444-451; 1812 | Pennacchio L.A., Olivier M., Hubacek J.A., An apolipoprotcin influencing triglycerides in humans and mice revealed by comparative sequencing (2001) Science, 294, pp. 169-173; 1813 | Yamada Y., Kato K., Hibino T., Prediction of genetic risk for metabolic syndrome (2007) Atherosclerosis, 191, pp. 298-304; 1814 | Grallert H., Sedlmeier E.M., Huth C., APOAS variants and metabolic syndrome in Caucasians (2007) J Lipid Res, 48, pp. 2614-2621; 1815 | Komurcu-Bayrak E., Onat A., Poda M., The S447X variant of lipoprotein lipase gene is associated with metabolic syndrome and lipid levels among Turks (2007) Clin Chim Acta, 383, pp. 110-115; 1816 | Hamid Y.H., Rose C.S., Urhammer S.A., Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Danes (2005) Diabetologia, 48, pp. 251-260; 1817 | Stephens J.W., Hurel S.J., Lowe G.D., Association between plasma IL-6, the 116 -174G>C gene variant and the metabolic syndrome in type 2 diabetes mellitus (2007) Mol Genet Metab, 90, pp. 422-428; 1818 | Sedlmeier E.M., Grallert H., Huth C., Gene variants of monocyte chemoattractant protein 1 and components of metabolic syndrome in KORA S4, Augsburg (2007) Eur J Endocrinol, 156, pp. 377-385; 1819 | Sookoian S.C., Gonzalez C., Pirola C.J., Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome (2005) Obes Res, 13, pp. 2122-2131; 1820 | Carballo E., Lai W.S., Blackshear P.J., Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin (1998) Science, 281, pp. 1001-1005; 1821 | Bouchard L., Tchernof A., Deshaies Y., ZFP36: A promising candidate gene for obesity-related metabolic complications identified by converging genomics (2007) Obes Surg, 17, pp. 372-382; 1822 | Bosse Y., Despres J.P., Chagnon Y.C., Quantitative trait locus on 15q for a metabolic syndrome variable derived from factor analysis (2007) Obesity (Silver Spring), 15, pp. 544-550; 1823 | Hegele R.A., Anderson C.M., Wang J., Association between nuclear lamin A/C R482Q mutation and partial lipodystrophy with hyperinsulinemia, dystipidemia, hypertension, and diabetes (2000) Genome Res, 10, pp. 652-658; 1824 | Cao H., Hegele R.A., Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy (2000) Hum Mol Genet, 9, pp. 109-112; 1825 | Shackleton S., Lloyd D.J., Jackson S.N., LMNA, encoding lamin A/C, is mutated in partial lipodystrophy (2000) Nat Genet, 24, pp. 153-156; 1826 | Mesa J.L., Loos R.J., Franks P.W., Lamin A/C polymorphisms, type 2 diabetes, and the metabolic syndrome: Case-control and quantitative trait studies (2007) Diabetes, 56, pp. 884-889; 1827 | Robitaille J., Brouillette C., Houde A., Molecular screening of the 11beta-HSD1 gene in men characterized by the metabolic syndrome (2004) Obes Res, 12, pp. 1570-1575; 1828 | Seckl J.R., Morton N.M., Chapman K.E., Walker B.R., Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue (2004) Recent Prog Horm Res, 59, pp. 359-393; 1829 | Oakley R.H., Jewell C.M., Yudt M.R., The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action (1999) J Biol Cbem, 274, pp. 27857-27866; 1830 | Derijk R.H., Schaaf M.J., Turner G., A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis (2001) J Rheumatol, 28, pp. 2383-2388; 1831 | Syed A.A., Irving J.A., Redfern C.P., Association of glucocorticoid receptor polymorphism A3669G in exon 9beta with reduced central adiposity in women (2006) Obesity (Silver Spring), 14, pp. 759-764; 1832 | Gallagher C.J., Langefeld C.D., Gordon C.J., Association of the estrogen receptor-alpha gene with the metabolic syndrome and its component traits in African-American families: The Insulin Resistance Atherosclerosis Family Study (2007) Diabetes, 56, pp. 2135-2141; 1833 | Dong H., Maddux B.A., Altomonte J., Increased hepatic levels of the insulin receptor inhibitor, PC-1/NPP1, induce insulin resistance and glucose intolerance (2005) Diabetes, 54, pp. 367-372; 1834 | Tasic I., Milojkovic M., Sunder-Plassmann R., The association of PC-1 (ENPP1) K121Q polymorphism with metabolic syndrome in patients with coronary heart disease (2007) Clin Chim Acta, 377, pp. 237-242; 1835 | Higaki Y., Hirshman M.F., Fujii N., Goodyear L.J., Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle (2001) Diabetes, 50, pp. 241-247; 1836 | Pieper G.M., Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: Importance of disease duration (1999) Diabetologia, 42, pp. 204-213; 1837 | Gonzalez-Sanchez J.L., Martinez-Larrad M.T., Saez M.E., Endothelial nitric oxide synthase haplotypes; are associated with features of metabolic syndrome (2007) Clin Chem, 53, pp. 91-97; 1838 | Krief S., Lonnqvist F., Raimbault S., Tissue distribution of beta 3-adrenergic receptor mRNA in man (1993) J Clin Invest, 91, pp. 344-349; 1839 | Emorine L.J., Marullo S., Briend-Sutren M.M., Molecular characterization of the human beta 3-adrenergic receptor (1989) Science, 245, pp. 1118-1121; 1840 | Tamaki S., Nakamura Y., Tabara Y., Relationship between metabolic syndrome and Trp64arg polymorphism of the beta-adrenergic receptor gene in a general sample: The Shigaraki study (2006) Hypertens Res, 29, pp. 891-896; 1841 | Fleury C., Neverova M., Collins S., Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia (1997) Nat Genet, 15, pp. 269-272; 1842 | Chan C.B., Saleh M.C., Koshkin V., Wheeler M.B., Uncoupling protein 2 and islet function (2004) Diabetes, 53 (SUPPL. 1), pp. S136-S142; 1843 | Himms-Hagen J., Harper M.E., Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: An hypothesis (2001) Exp Biol Med, 226, pp. 78-84; 1844 | Shen H., Qi L., Tai E.S., Uncoupling protein 2 promoter polymorphism -866G/A, central adiposity, and metabolic syndrome in Asians (2006) Obesity (Silver Spring), 14, pp. 656-661; 1845 | Wang H., Chu W.S., Lu T., Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion (2004) Am J Physiol, 286, pp. E1-E7; 1846 | Yamada Y., Ichihara S., Kato K., Genetic risk for metabolic syndrome: Examination of candidate gene polymorphisms related to tipid metabolism in Japanese individuals (2008) J Med Genet, 45, pp. 22-28; 1847 | Shapiro L., Scherer P.E., The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor (1998) Curr Biol, 8, pp. 335-338; 1848 | Lee Y.H., Nair S., Rousseau E., Microarray profiting of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: Increased expression of inflammation-related genes (2005) Diabetologia, 48, pp. 1776-1783; 1849 | McCarthy J.J., Meyer J., Moliterno D.J., Evidence for substantial effect modification by gender in a Luge-scale genetic association study of the metabolic syndrome among coronary heart disease patients (2003) Hum Genet, 114, pp. 87-98; 1850 | Russo P., Lauria F., Loguercio M., 344C/T Variant in the promoter of the aldosterone synthase gene (CYP11B2) is associated with metabolic syndrome in men (2007) Am J Hypertens, 20, pp. 218-222; 1851 | Tanaka M., Fuku N., Nishigaki Y., Women with mitochondrial haplogroup N9a are protected against metabolic syndrome (2007) Diabetes, 56, pp. 518-521; 1852 | Wang B., Chehab F.F., Deletion of the serotonin 2c receptor from transgenic mice overexpressing leptin does not affect their lipodystrophy but exacerbates their diet-induced obesity (2006) Biochem Biopbys Res Comm, 351, pp. 418-423; 1853 | Mulder H., Franke B., van der-Beek, van der A.A., The association between HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia (2007) J Clin Psychopharmacol, 27, pp. 338-343; 1854 | Frayling T.M., Timpson N.J., Weedon M.N., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity (2007) Science, 316, pp. 889-894; 1855 | Dina C., Meyre D., Gallina S., Variation in FTO contributes to childhood obesity and severe adult obesity (2007) Nat Genet, 39, pp. 724-726; 1856 | Lyon H.N., Emilsson V., Hinney A., The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts (2007) PLoS Genet, 3, pp. e61; 1857 | Pollex R.L., Hanley A.J., Zinman B., Metabolic syndrome in aboriginal Canadians: Prevalence and genetic associations (2006) Atherosclerosis, 184, pp. 121-129; 1858 | Lahiry P., Pollex R.L., Hegele R.A., Uncloaking the genetic determinants of metabolic syndrome (2008) Nutrigenetics Nutrigenomics, , in press 1859 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-44849141754&partnerID=40&md5=18abc0364d9c779f925f8d6b2ceac237 1860 | ER - 1861 | 1862 | TI - Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-wide screening in a Japanese population - The Suita study 1863 | T2 - Circulation Journal 1864 | VL - 73 1865 | IS - 6 1866 | SP - 1119 1867 | EP - 1126 1868 | PY - 2009 1869 | AU - Hiura Y. 1870 | AU - Shen C.-S. 1871 | AU - Kokubo Y. 1872 | AU - Okamura T. 1873 | AU - Morisaki T. 1874 | AU - Tomoike H. 1875 | AU - Yoshida T. 1876 | AU - Sakamoto H. 1877 | AU - Goto Y. 1878 | AU - Nonogi H. 1879 | AU - Iwai N. 1880 | N1 - Export Date: 3 January 2016 1881 | N1 - References: Gordon D.J., Probstfield J.L., Garrison R.J., Neaton J.D., Castelli W.P., Knoke J.D., Jacobs Jr. D.R., Tyroler H.A., High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies (1989) Circulation, 79 (1), pp. 8-15; 1882 | Pekkanen J., Linn S., Heiss G., Suchindran C.M., Leon A., Rifkind B.M., Tyroler H.A., Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease (1990) New England Journal of Medicine, 322 (24), pp. 1700-1707; 1883 | Wilson P.W.F., Abbott R.D., Castelli W.P., High density lipoprotein cholesterol and mortality. the Framingham heart study (1988) Arteriosclerosis, 8 (6), pp. 737-741; 1884 | Wilson P.W.F., High-density lipoprotein, low-density lipoprotein and coronary artery disease (1990) American Journal of Cardiology, 66 (6), pp. 7A-10A; 1885 | Teramoto T., Ohashi Y., Nakaya N., Yokoyama S., Mizuno K., Nakamura H., Practical risk prediction tools for coronary heart disease in mild to moderate hypercholesterolemia in Japan: Originated from the MEGA study data (2008) Circ J, 72, pp. 1569-1575; 1886 | Shimizu M., Kanazawa K., Hirata K.-I., Ishida T., Hiraoka E., Matsuda Y., Iwai C., Yokoyama M., Endothelial lipase gene polymorphism is associated with acute myocardial infarction, independently of high-density lipoprotein-cholesterol levels (2007) Circulation Journal, 71 (6), pp. 842-846. , http://www.jstage.jst.go.jp/article/circj/71/6/842/_pdf, DOI 10.1253/circj.71.842; 1887 | Arai H., Yamamoto A., Matsuzawa Y., Saito Y., Yamada N., Oikawa S., Polymorphisms in four genes related to triglyceride and HDL-cholesterol levels in the general Japanese population in 2000 (2005) J Atheroscler Thromb, 12, pp. 240-250; 1888 | Iijima H., Emi M., Wada M., Daimon M., Toriyama S., Koyano S., Association of an intronic haplotype of the LIPC gene with hyperalphalipoproteinemia in two independent populations (2008) J Hum Genet, 53, pp. 193-200; 1889 | Inazu A., Brown M.L., Hesler C.B., Agellon L.B., Koizumi J., Takata K., Maruhama Y., Tall A.R., Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation (1990) New England Journal of Medicine, 323 (18), pp. 1234-1238; 1890 | Inazu A., Jiang X.-C., Haraki T., Yagi K., Kamon N., Koizumi J., Mabuchi H., Tall A., Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol (1994) Journal of Clinical Investigation, 94 (5), pp. 1872-1882; 1891 | Shioji K., Mannami T., Kokubo Y., Goto Y., Nonogi H., Iwai N., An association analysis between ApoA1 polymorphisms and the high-density lipoprotein (HDL) cholesterol level and myocardial infarction (MI) in Japanese (2004) Journal of Human Genetics, 49 (8), pp. 433-439. , DOI 10.1007/s10038-004-0172-1; 1892 | Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Jonasdottir A., Stefansson K., A common variant on chromosome 9p21 affects the risk of myocardial infarction (2007) Science, 316 (5830), pp. 1491-1493. , DOI 10.1126/science.1142842; 1893 | McPherson R., Pertsemlidis A., Kavaslar N., Stewart A., Roberts R., Cox D.R., Hinds D.A., Cohen J.C., A common allele on chromosome 9 associated with coronary heart disease (2007) Science, 316 (5830), pp. 1488-1491. , DOI 10.1126/science.1142447; 1894 | Saxena R., Voight B.F., Lyssenko V., Burtt N.P., De Bakker P.I.W., Chen H., Roix J.J., Altshuler D., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels (2007) Science, 316 (5829), pp. 1331-1336. , DOI 10.1126/science.1142358; 1895 | Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Froguel P., A genome-wide association study identifies novel risk loci for type 2 diabetes (2007) Nature, 445 (7130), pp. 881-885. , DOI 10.1038/nature05616, PII NATURE05616; 1896 | Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007) Nature, 447, pp. 661-678. , The Wellcome Trust Case Control Consortium; 1897 | Wallace C., Newhouse S.J., Braund P., Zhang F., Tobin M., Falchi M., Ahmadi K., Munroe P.B., Genome-wide Association Study Identifies Genes for Biomarkers of Cardiovascular Disease: Serum Urate and Dyslipidemia (2008) American Journal of Human Genetics, 82 (1), pp. 139-149. , DOI 10.1016/j.ajhg.2007.11.001, PII S0002929707000262; 1898 | Willer C.J., Sanna S., Jackson A.U., Scuteri A., Bonnycastle L.L., Clarke R., Heath S.C., Abecasis G.R., Newly identified loci that influence lipid concentrations and risk of coronary artery disease (2008) Nature Genetics, 40 (2), pp. 161-169. , DOI 10.1038/ng.76, PII NG76; 1899 | Chasman D.I., Pare G., Zee R.Y.L., Parker A.N., Cook N.R., Buring J.E., Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and apolipoprotein B among 6382 white women in genome-wide analysis with reptication (2008) Circ Cardiovasc Genet, 1, pp. 21-30; 1900 | Heid I.M., Boes E., Muller M., Kollerits B., Lamina C., Coassin S., Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions (2008) Circ Cardiovasc Genet, 1, pp. 10-20; 1901 | Kooner J.S., Chambers J.C., Aguilar-Salinas C.A., Hinds D.A., Hyde C.L., Warnes G.R., Gomez Perez F.J., Thompson J.F., Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides (2008) Nature Genetics, 40 (2), pp. 149-151. , DOI 10.1038/ng.2007.61, PII NG200761; 1902 | Mannami T., Konishi M., Baba S., Nishi N., Terao A., Prevalence of asymptomatic carotid atherosclerotic lesions detected by high-resolution ultrasonography and its relation to cardiovascular risk factors in the general population of a Japanese city: The Suita study (1997) Stroke, 28 (3), pp. 518-525; 1903 | Iwai N., Katsuya T., Mannami T., Higaki J., Ogihara T., Kokame K., Ogata J., Baba S., Association between SAH, an acyl-CoA synthetase gene, and hypertriglyceridemia, obesity, and hypertension (2002) Circulation, 105 (1), pp. 41-47. , DOI 10.1161/hc0102.101780; 1904 | Shioji K., Kokubo Y., Mannami T., Inamoto N., Morisaki H., Mino Y., Tago N., Iwai N., Association between hypertension and the alpha-adducin, beta1-adrenoreceptor, and G-protein beta3 subunit genes in the Japanese population; the Suita study (2004) Hypertension Research, 27 (1), pp. 31-37. , DOI 10.1291/hypres.27.31; 1905 | Kokubo Y., Iwai N., Tago N., Inamoto N., Okayama A., Yamawaki H., Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population: The Suita Study (2005) Circ J, 69, pp. 138-142; 1906 | Iwai N., Kajimoto K., Kokubo Y., Okayama A., Miyazaki S., Nonogi H., Goto Y., Tomoike H., Assessment of genetic effects of polymorphisms in the MCP-1 gene on serum MCP-1 levels and myocardial infarction in Japanese (2006) Circulation Journal, 70 (7), pp. 805-809. , http://www.jstage.jst.go.jp/article/circj/70/7/805/_pdf, DOI 10.1253/circj.70.805; 1907 | Iwai N., Kajimoto K., Tomoike H., Takashima N., Polymorphism of CYP11B2 determines salt sensitivity in Japanese (2007) Hypertension, 49 (4), pp. 825-831. , DOI 10.1161/01.HYP.0000258796.52134.26; 1908 | Takashima N., Shioji K., Kokubo Y., Okayama A., Goto Y., Nonogi H., Validation of the association between the gene encoding proteasome subunit α type 6 and myocardial infarction in a Japanese population (2007) Circ J, 71, pp. 495-498; 1909 | Hiura Y., Fukushima Y., Yuno M., Sawamura H., Kokubo Y., Okamura T., Validation of the association of genetic variants on chromosome 9p21 and 1q41 with myocardial infarction in a Japanese population (2008) Circ J, 72, pp. 1213-1217; 1910 | Barrett J.C., Fry B., Maller J., Daly M.J., Haploview: Analysis and visualization of LD and haplotype maps (2005) Bioinformatics, 21 (2), pp. 263-265. , DOI 10.1093/bioinformatics/bth457; 1911 | Barter P.J., Caulfield M., Eriksson M., Grundy S.M., Kastelein J.J.P., Komajda M., Lopez-Sendon J., Brewer B., Effects of torcetrapib in patients at high risk for coronary events (2007) New England Journal of Medicine, 357 (21), pp. 2109-2122. , http://content.nejm.org/cgi/reprint/357/21/2109.pdf, DOI 10.1056/NEJMoa0706628; 1912 | Borggreve S.E., Hillege H.L., Wolffenbuttel B.H.R., De Jong P.E., Zuurman M.W., Van Der Steege G., Van Tol A., Dullaart R.P.F., An increased coronary risk is paradoxically associated with common cholesteryl ester transfer protein gene variations that relate to higher high-density lipoprotein cholesterol: A population-based study (2006) Journal of Clinical Endocrinology and Metabolism, 91 (9), pp. 3382-3388. , http://jcem.endojournals.org/cgi/reprint/91/9/3382, DOI 10.1210/jc.2005-2322; 1913 | Sviridov D., Mukhamedova N., Remaley A.T., Chin-Dusting J., Nestel P., Antiatherogenic functionality of high density lipoprotein: How much versus how good (2008) J Atheroscler Thromb, 15, pp. 52-62; 1914 | Bhangale T.R., Rieder M.J., Nickerson D.A., Estimating coverage and power for genetic association studies using near-complete variation data (2008) Nat Genet, 40, pp. 841-843; 1915 | Cohen J.C., Kiss R.S., Pertsemlidis A., Marcel Y.L., McPherson R., Hobbs H.H., Multiple rare alleles contribute to low plasma levels of HDL cholesterol (2004) Science, 305 (5685), pp. 869-872. , DOI 10.1126/science.1099870; 1916 | Cupples L.A., Arruda H.T., Benjamin E.J., D'Agostino Sr. R.B., Demissie S., Destefano A.L., Dupuis J., Atwood L.D., The Framingham Heart Study 100K SNP genome-wide association study resource: Overview of 17 phenotype working group reports (2007) BMC Medical Genetics, 8 (SUPPL. 1), pp. S1. , DOI 10.1186/1471-2350-8-S1-S1 1917 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-67649875301&partnerID=40&md5=63b1a3327b236957f23181625ce7fd16 1918 | ER - 1919 | 1920 | TI - Heritability and genetic correlations of insulin resistance and component phenotypes in Asian Indian families using a multivariate analysis 1921 | T2 - Diabetologia 1922 | VL - 52 1923 | IS - 12 1924 | SP - 2585 1925 | EP - 2589 1926 | PY - 2009 1927 | AU - Zabaneh D. 1928 | AU - Chambers J.C. 1929 | AU - Elliott P. 1930 | AU - Scott J. 1931 | AU - Balding D.J. 1932 | AU - Kooner J.S. 1933 | N1 - Export Date: 3 January 2016 1934 | N1 - References: Defronzo R.A., Ferrannini E., Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease (1991) Diabetes Care, 14, pp. 173-194. , 10.2337/diacare.14.3.173 1:STN:280:DyaK3M3ls1ymsw%3D%3D 2044434; 1935 | Hill J.O., Wyatt H.R., Reed G.W., Peters J.C., Obesity and the environment: Where do we go from here? (2003) Science, 299 (5608), pp. 853-855. , DOI 10.1126/science.1079857; 1936 | Lopez A.D., Murray C.C.J.L., The global burden of disease, 1990-2020 (1998) Nature Medicine, 4 (11), pp. 1241-1243. , DOI 10.1038/3218; 1937 | Neumaier A., Groeneveld E., Restricted maximum likelihood estimation of covariances in sparse linear models (1998) Genet Sel Evol, 30, pp. 3-26. , 10.1186/1297-9686-30-1-3; 1938 | Barroso I., Genetics of Type 2 diabetes (2005) Diabetic Medicine, 22 (5), pp. 517-535. , DOI 10.1111/j.1464-5491.2005.01550.x; 1939 | Falconer D.S., MacKay T.F.C., (1996) Introduction to Quantitative Genetics, , 4 Longman Harlow; 1940 | Chambers J.C., Elliott P., Zabaneh D., Zhang W., Li Y., Froguel P., Balding D., Kooner J.S., Common genetic variation near MC4R is associated with waist circumference and insulin resistance (2008) Nature Genetics, 40 (6), pp. 716-718. , DOI 10.1038/ng.156, PII NG156 1941 | UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-70949105620&partnerID=40&md5=93beb9c79d92c1da48c7e3df33639ff2 1942 | ER - 1943 | 1944 | N1 - Export Date: 3 January 2016 1945 | ER - 1946 | 1947 | T2 - Genopedia, HuGE Navigator 1948 | PY - 2009 1949 | AU - Yu W. 1950 | AU - Clyne M. 1951 | AU - Wulf A. 1952 | AU - Yesupriya A. 1953 | AU - Gwinn M. 1954 | N1 - Export Date: 3 January 2016 1955 | ER - 1956 | 1957 | --------------------------------------------------------------------------------