
Articles
48 |All vignettes
52 | 53 | 54 |- A posteriori dose selection 55 |
- 56 |
- A priori dose selection 57 |
- 58 |
- AUC-based dose selection 59 |
- 60 |
- Classic posologyr models 61 |
- 62 |
- Multiple endpoints 63 |
- 64 |
- Patient data 65 |
- 66 |
- Population models 67 |
- 68 |
- Route of administration 69 |
- 70 |
](https://github.com/levenc/posologyr/)
18 |
19 |
20 | [](https://github.com/levenc/posologyr/actions/workflows/R-CMD-check.yaml)
21 | [](https://CRAN.R-project.org/package=posologyr)
22 |
23 |
24 | ## Overview
25 |
26 | Personalize drug regimens using individual pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) profiles. By combining therapeutic drug monitoring (TDM) data with a population model, `posologyr` offers accurate posterior estimates and helps compute optimal individualized dosing regimens.
27 |
28 | Key dosage optimization functions in `posologyr` include:
29 |
30 | + `poso_dose_conc()` estimates the optimal dose to achieve a target concentration at any given time
31 | + `poso_dose_auc()` estimates the dose needed to reach a target area under the concentration-time curve (AUC)
32 | + `poso_time_cmin()` estimates the time required to reach a target trough concentration (Cmin)
33 | + `poso_inter_cmin()` estimates the optimal dosing interval to consistently achieve a target Cmin
34 |
35 | Individual PK profiles can be estimated with or without TDM data:
36 |
37 | + `poso_estim_map()` computes Maximum A Posteriori Bayesian Estimates (MAP-BE) of individual PK parameters using TDM results
38 | + `poso_simu_pop()` samples from the the prior distributions of PK parameters
39 |
40 | `posologyr` leverages the simulation capabilities of the
41 | [rxode2](https://github.com/nlmixr2/rxode2) package.
42 |
43 | ## Installation
44 |
45 | You can install the released version of `posologyr` from
46 | [CRAN](https://CRAN.R-project.org) with:
47 |
48 | ``` {r eval = FALSE}
49 | install.packages("posologyr")
50 | ```
51 |
52 | You can install the development version of `posologyr` from
53 | [GitHub](https://github.com/) with:
54 |
55 | ```{r eval = FALSE}
56 | # install.packages("remotes")
57 | remotes::install_github("levenc/posologyr")
58 | ```
59 |
60 | ## Bayesian dosing example
61 |
62 | To determine the optimal dose of gentamicin for a patient with `posologyr`, you will need:
63 |
64 | 1. A prior PK model, written in `rxode2` mini-language
65 |
66 | In this example, a gentamicin PK from the literature
139 |
140 | ### Dose optimization
141 |
142 | We will optimize the gentamicin dosage for this patient to meet two
143 | criteria:
144 |
145 | - A peak concentration of 12 mg/L, 30 minutes after a 30-minute
146 | infusion.
147 | - A trough concentration of less than 0.5 mg/L.
148 |
149 | The time required to reach a residual concentration of 0.5 mg/L can be
150 | estimated as follows:
151 |
152 | ``` r
153 | poso_time_cmin(patient_data,mod_gentamicin_Xuan2003,tdm=TRUE,
154 | target_cmin = 0.5)
155 | #> $time
156 | #> [1] 44.9
157 | #>
158 | #> $type_of_estimate
159 | #> [1] "point estimate"
160 | #>
161 | #> $cmin_estimate
162 | #> [1] 0.4991313
163 | #>
164 | #> $indiv_param
165 | #> THETA_Cl THETA_V THETA_k12 THETA_k21 add_sd prop_sd ETA_Cl ETA_V
166 | #> 3 0.047 0.28 0.092 0.071 0.23 0.237 0.03701064 0.001447308
167 | #> ETA_k12 ETA_k21 ClCr WT
168 | #> 3 0.08904703 -0.04838898 38 63
169 | ```
170 |
171 | The dose required to achieve our target concentration can then be
172 | determined for an infusion at H48.
173 |
174 | ``` r
175 | poso_dose_conc(patient_data,mod_gentamicin_Xuan2003,tdm=TRUE,
176 | target_conc = 12,duration=0.5,time_dose = 48,time_c = 49)
177 | #> $dose
178 | #> [1] 237.5902
179 | #>
180 | #> $type_of_estimate
181 | #> [1] "point estimate"
182 | #>
183 | #> $conc_estimate
184 | #> [1] 12
185 | #>
186 | #> $indiv_param
187 | #> THETA_Cl THETA_V THETA_k12 THETA_k21 add_sd prop_sd ETA_Cl ETA_V
188 | #> 3 0.047 0.28 0.092 0.071 0.23 0.237 0.03701052 0.001447305
189 | #> ETA_k12 ETA_k21 ClCr WT
190 | #> 3 0.08904752 -0.04838936 38 63
191 | ```
192 |
193 | In conclusion a dose of 240 mg 48 h after the first injection would be
194 | appropriate to meet our 2 criteria.
195 |
196 | More examples can be found at: 