└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # 3d detection papers
2 |
3 | > Author: Li Heyuan (李贺元)
4 | > Email: lhyfst@gmail.com
5 | > The papers in this list are about Autonomous Vehicles 3d detection & semantic segmentation
6 | > especially those using point clouds and in deep learning methods.
7 | > All rights reserved
8 |
9 |
10 | If you have any suggestion or want to recommend new papers, please feel free to let me know.
11 | I have read most of the papers here, and am very happy to discuss with you if you have any issues on these papers.
12 | I will keep updating this project continuously.
13 |
14 | ---
15 |
16 | I will improve this project in a few days.
17 |
18 | todo list:
19 | 1. links -- done
20 | 2. recommended papers -- done. The ones that I particularly liked are marked with :star:.
21 | 3. authors -- done
22 | 4. models -- remove this item
23 | 5. relevant code -- done
24 | 6. rank by year -- done
25 | 7. active researchers -- done
26 | 8. write a brief review for each mainstream method
27 | 9. try to write some reviews for the recommended papers, if I have time.
28 |
29 |
30 | ## Mainstream Method Series
31 | - Voxel
32 | - Multi-view
33 | - Pointnet
34 | - Other
35 |
36 | ## Voxel
37 | - [Sliding shapes for 3d object detection in depth images](http://slidingshapes.cs.princeton.edu/paper.pdf),
38 | Shuran Song, Jianxiong Xiao,
39 | [code](http://slidingshapes.cs.princeton.edu/),
40 | [website](http://slidingshapes.cs.princeton.edu/),
41 | ECCV, 2014
42 | - [Voxnet: A 3d convolutional neural network for real-time object recognition](https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf),
43 | Daniel Maturana and Sebastian Scherer,
44 | [code](https://github.com/dimatura/voxnet),
45 | [website](http://dimatura.net/research/voxnet/),
46 | IROS, 2015
47 | - [Deep sliding shapes for amodal 3d object detection in rgb-d images](http://dss.cs.princeton.edu/paper.pdf),
48 | Shuran Song, Jianxiong Xiao,
49 | [code](https://github.com/shurans/DeepSlidingShape),
50 | [website](http://dss.cs.princeton.edu/),
51 | CVPR, 2016
52 | - [Octnet: Learning deep 3d representations at high resolutions](https://arxiv.org/pdf/1611.05009.pdf),
53 | Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger,
54 | [code](https://github.com/griegler/octnet),
55 | CVPR, 2017 :star:
56 | - [3d fully convolutional network for vehicle detection in point cloud](https://arxiv.org/pdf/1611.08069.pdf),
57 | Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger,
58 | [unofficial code](https://github.com/yukitsuji/3D_CNN_tensorflow),
59 | IROS, 2017
60 | - [Voting for voting in online point cloud object detection](http://www.robots.ox.ac.uk/~mobile/Papers/2015RSS_wang.pdf),
61 | Dominic Zeng Wang, Ingmar Posner,
62 | Robotics: Science and System, 2015
63 | - [Vote3deep: Fast object detection in 3d point clouds using efficient convolutional neural networks](https://arxiv.org/pdf/1609.06666),
64 | Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, Ingmar Posner,
65 | ICRA, 2017
66 |
67 |
68 | ## Multi-view
69 | - [Pedestrian detection combining RGB and dense LIDAR data](https://ieeexplore.ieee.org/document/6943141),
70 | Cristiano Premebida, João Carreira, Jorge Batista, Urbano Nunes,
71 | IROS, 2014
72 | - [3d-assisted feature synthesis for novel views of an object](http://openaccess.thecvf.com/content_iccv_2015/papers/Su_3D-Assisted_Feature_Synthesis_ICCV_2015_paper.pdf),
73 | Hao Su, Fan Wang, Eric Yi, Leonidas Guibas,
74 | ICCV, 2015
75 | - [Multiview random forest of local experts combining rgb and lidar data for pedestrian detection](https://ieeexplore.ieee.org/document/7225711),
76 | A. González, G. Villalonga, J. Xu, D. Vázquez, J. Amores, and A. López.,
77 | IEEE Intelligent Vehicles Symposium, 2015
78 | - [Multiview convolutional neural networks for 3d shape recognition](http://vis-www.cs.umass.edu/mvcnn/docs/su15mvcnn.pdf),
79 | Hang Su Subhransu Maji Evangelos Kalogerakis Erik Learned-Miller,
80 | [code](https://github.com/jongchyisu/mvcnn_pytorch)
81 | ICCV, 2015
82 | - [Vehicle detection from 3d lidar using fully convolutional network](https://arxiv.org/pdf/1608.07916.pdf),
83 | Bo Li, Tianlei Zhang, Tian Xia,
84 | Robotics: Science and System, 2016
85 | - [Volumetric and multi-view cnns for object classification on 3d data](http://openaccess.thecvf.com/content_cvpr_2016/papers/Qi_Volumetric_and_Multi-View_CVPR_2016_paper.pdf),
86 | Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai, Mengyuan Yan, Leonidas J. Guibas,
87 | CVPR, 2016
88 | - [Fusionnet: 3d object classification using multiple data representations](https://arxiv.org/pdf/1607.05695.pdf),
89 | Vishakh Hegde, Reza Zadeh,
90 | CoRR, 2016
91 | - [Multi-view 3d object detection network for autonomous driving](https://arxiv.org/pdf/1611.07759.pdf),
92 | Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia,
93 | [code](https://github.com/bostondiditeam/MV3D),
94 | CVPR, 2017 :star:
95 | - [Joint 3d proposal generation and object detection from view aggregation](https://arxiv.org/pdf/1712.02294.pdf),
96 | Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, Steven L. Waslander,
97 | [code](https://github.com/kujason/avod),
98 | IROS, 2018
99 | - [Pixor: Real-time 3d object detection from point clouds](https://arxiv.org/pdf/1902.06326),
100 | Bin Yang, Wenjie Luo, Raquel Urtasun,
101 | CVPR, 2018 :star:
102 | - [Deep continuous fusion for multi-sensor 3d object detection](http://openaccess.thecvf.com/content_ECCV_2018/papers/Ming_Liang_Deep_Continuous_Fusion_ECCV_2018_paper.pdf),
103 | Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun,
104 | ECCV, 2018 :star:
105 | - [MLOD: A multi-view 3D object detection based on robust feature fusion method](https://arxiv.org/pdf/1909.04163.pdf)
106 | Jian Deng and Krzysztof Czarnecki,
107 | 2019
108 |
109 | ## PointNet
110 | - [Pointnet: Deep learning on point sets for 3d classification and segmentation](https://arxiv.org/abs/1612.00593),
111 | Charles R. Qi*, Hao Su*, Kaichun Mo, Leonidas J. Guibas,
112 | [code](https://github.com/charlesq34/pointnet),
113 | [website](http://stanford.edu/~rqi/pointnet/),
114 | CVPR, 2017 :star:
115 | - [Pointnet++: Deep hierarchical feature learning on point sets in a metric space](https://arxiv.org/abs/1706.02413),
116 | Charles R. Qi, Li (Eric) Yi, Hao Su, Leonidas J. Guibas,
117 | [code](https://github.com/charlesq34/pointnet2),
118 | [website](http://stanford.edu/~rqi/pointnet2/),
119 | NIPS, 2017
120 | - [Frustum pointnets for 3d object detection from rgb-d data](https://arxiv.org/abs/1711.08488),
121 | Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, Leonidas J. Guibas,
122 | [code](https://github.com/charlesq34/frustum-pointnets),
123 | [website](http://stanford.edu/~rqi/frustum-pointnets/),
124 | CVPR, 2018 :star:
125 | - [PointRCNN 3D Object Proposal Generation and Detection from Point Cloud](https://arxiv.org/pdf/1812.04244.pdf),
126 | Shaoshuai Shi, Xiaogang Wang, Hongsheng Li,
127 | 2018 :star:
128 | - [Pointfusion: Deep sensor fusion for 3d bounding box estimation](https://arxiv.org/pdf/1711.10871.pdf),
129 | Danfei Xu, Dragomir Anguelov, Ashesh Jain,
130 | CVPR, 2018
131 | - [Voxelnet: End-to-end learning for point cloud based 3d object detection](https://arxiv.org/pdf/1711.06396.pdf),
132 | Yin Zhou, Oncel Tuzel,
133 | [unofficial code](https://github.com/jeasinema/VoxelNet-tensorflow),
134 | CVPR, 2018 :star:
135 | - [Second: Sparsely embedded convolutional detection](https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf),
136 | Yan Yan,, Yuxing Mao, and Bo Li,
137 | [code](https://github.com/traveller59/second.pytorch),
138 | Sensors, 2018
139 | - [Pointpillars: Encoders for object detection from point clouds](https://arxiv.org/pdf/1812.05784.pdf),
140 | Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, Oscar Beijbom,
141 | [code](https://github.com/nutonomy/second.pytorch),
142 | 2018
143 | - [RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement](https://arxiv.org/pdf/1811.03818),
144 | Kiwoo Shin, Youngwook Paul Kwon, Masayoshi Tomizuka,
145 | [code](https://github.com/Kiwoo/RoarNet),
146 | 2018 :star:
147 | - [IPOD: Intensive Point-based Object Detector for Point Cloud](https://arxiv.org/pdf/1812.05276.pdf),
148 | Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, Jiaya Jia,
149 | 2018
150 | - [Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection](https://arxiv.org/pdf/1903.01864.pdf),
151 | Zhixin Wang, Kui Jia,
152 | 2019 :star:
153 | - [3D Object Detection Using Scale Invariant and Feature Reweighting Networks](https://arxiv.org/pdf/1711.10871.pdf),
154 | Xin Zhao, Zhe Liu, Ruolan Hu, Kaiqi Huang,
155 | AAAI, 2019
156 | - [STD: Sparse-to-Dense 3D Object Detector for Point Cloud](https://arxiv.org/pdf/1907.10471.pdf)Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, Jiaya Jia,
157 | ICCV, 2019 :star:
158 | - [Patch Refinement - Localized 3D Object Detection](https://arxiv.org/pdf/1910.04093.pdf)
159 | Johannes Lehner, Andreas Mitterecker, Thomas Adler, Markus Hofmarcher, Bernhard Nessler, Sepp Hochreiter,
160 | 2019
161 |
162 | ## Other
163 | - [Recurrent slice networks for 3d segmentation of point clouds](https://arxiv.org/pdf/1802.04402.pdf),
164 | Qiangui Huang, Weiyue Wang, Ulrich Neumann,
165 | [code](https://github.com/qianguih/RSNet),
166 | CVPR, 2018 :star:
167 | - [Pointsift: A sift-like network module for 3d point cloud semantic segmentation](https://arxiv.org/abs/1807.00652),
168 | Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, Cewu Lu,
169 | [code](https://github.com/MVIG-SJTU/pointSIFT),
170 | CoRR, 2018
171 | - [A General Pipeline for 3D Detection of Vehicles](https://ieeexplore.ieee.org/abstract/document/8461232)
172 | Xinxin Du ; Marcelo H. Ang ; Sertac Karaman ; Daniela Rus,
173 | 2018
174 | - [Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud](https://arxiv.org/pdf/1907.03670.pdf),Shaoshuai Shi, Zhe Wang, Xiaogang Wang, Hongsheng Li,
175 | 2019 :star:
176 | - [Multi-Task Multi-Sensor Fusion for 3D Object Detection](http://openaccess.thecvf.com/content_CVPR_2019/papers/Liang_Multi-Task_Multi-Sensor_Fusion_for_3D_Object_Detection_CVPR_2019_paper.pdf),
177 | Ming Liang, Bin Yang, Yun Chen, Rui Hu, Raquel Urtasun,
178 | 2019, :star:
179 | - [Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression](https://arxiv.org/pdf/1902.09630.pdf),
180 | Hamid Rezatofighi, Nathan Tsoi1, JunYoung Gwak, Amir Sadeghian, Ian Reid, Silvio Savarese,
181 | 2019, :star:
182 | - [Voxel-FPN: multi-scale voxel feature aggregationin 3D object detection from point clouds](https://arxiv.org/ftp/arxiv/papers/1907/1907.05286.pdf),
183 | Bei Wang, Jianping An and Jiayan Cao,
184 | 2019, :star:
185 | - [PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud](http://openaccess.thecvf.com/content_CVPR_2019/papers/Shi_PointRCNN_3D_Object_Proposal_Generation_and_Detection_From_Point_Cloud_CVPR_2019_paper.pdf),
186 | Shaoshuai Shi, Xiaogang Wang, Hongsheng Li,
187 | 2019
188 | - [Fast Point R-CNN](https://arxiv.org/pdf/1908.02990.pdf),
189 | Yilun Chen, Shu Liu, Xiaoyong Shen, Jiaya Jia,
190 | 2019
191 | - [Three-dimensional Backbone Network for 3D Object Detection in Traffic Scenes](https://arxiv.org/pdf/1901.08373.pdf)
192 | Xuesong Li, Jose Guivant, Ngaiming Kwok, Yongzhi Xu, Ruowei Li, Hongkun Wu,
193 | 2019
194 | - [SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813061)
195 | ZHIYU WANG, HAO FU, LI WANG, LIANG XIAO, AND BIN DA,
196 | 2019
197 | - [PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module](https://arxiv.org/pdf/1911.06084.pdf)
198 | Liang Xie, Chao Xiang, Zhengxu Yu, Guodong Xu, Zheng Yang, Deng Cai1, Xiaofei He,
199 | AAAI, 2019
200 | - [HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection]
201 | (https://arxiv.org/pdf/2003.00186.pdf)
202 | Maosheng Ye, Shuangjie Xu, Tongyi Cao,
203 | CVPR, 2020
204 | - [FPConv: Learning Local Flattening for Point Convolution]
205 | (https://arxiv.org/pdf/2002.10701.pdf)
206 | Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han,
207 | CVPR, 2020
208 | - [Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection]
209 | (https://arxiv.org/pdf/2002.10701.pdf)
210 | Liang Du, Xiaoqing Ye, Xiao Tan, Jianfeng Feng, Zhenbo Xu, Errui Ding and Shilei Wen,
211 | CVPR, 2020
212 | - [SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds]
213 | (https://arxiv.org/pdf/2006.04043.pdf)
214 | Qingdong He, Zhengning Wang, Hao Zeng, Yi Zeng, Shuaicheng Liu, Bing Zeng,
215 | CVPR, 2020
216 | - [H3DNet: 3D Object Detection Using Hybrid Geometric Primitives]
217 | (https://arxiv.org/pdf/2006.05682.pdf)
218 | Zaiwei Zhang, Bo Sun, Haitao Yang, Qixing Huang
219 |
--------------------------------------------------------------------------------