├── .github
└── workflows
│ └── maven.yml
├── LICENSE
├── README.md
├── pmmlParser1.0文件读取版
├── PMMLDemo.r
├── iris_rf.pmml
├── irisv2.csv
├── pmmlParserFile.jar
├── pmmlParserFile
│ ├── .classpath
│ ├── .project
│ ├── .settings
│ │ └── org.eclipse.jdt.core.prefs
│ ├── bin
│ │ ├── iris_rf.pmml
│ │ ├── parser
│ │ │ ├── ModelCalc.class
│ │ │ └── ModelInvoker.class
│ │ └── test
│ │ │ └── ModelCalcTest.class
│ ├── irisv2.csv
│ ├── lib
│ │ ├── commons-math3-3.6.1.jar
│ │ ├── fastjson-1.2.9.jar
│ │ ├── guava-18.0.jar
│ │ ├── joda-time-2.9.9.jar
│ │ ├── pmml-agent-1.3.7.jar
│ │ ├── pmml-evaluator-1.3.7.jar
│ │ ├── pmml-manager-1.1.20.jar
│ │ ├── pmml-model-1.3.7.jar
│ │ └── pmml-schema-1.3.7.jar
│ ├── result.txt
│ ├── source
│ │ ├── pmml-evaluator-1.3.7-sources.jar
│ │ ├── pmml-model-1.3.7-sources.jar
│ │ └── pmml-schema-1.3.7-sources.jar
│ └── src
│ │ ├── iris_rf.pmml
│ │ ├── parser
│ │ ├── ModelCalc.java
│ │ └── ModelInvoker.java
│ │ └── test
│ │ └── ModelCalcTest.java
└── result.txt
└── pmmlParser2.0Json服务版
└── pmmlParserJson
├── .classpath
├── .project
├── .settings
├── org.eclipse.jdt.core.prefs
└── org.eclipse.wst.common.project.facet.core.xml
├── Parser.log
├── bin
├── baidu
│ └── Parser.class
└── test
│ └── ParserTest.class
├── gbdt.pmml
├── lib
├── commons-math3-3.6.1.jar
├── fastjson-1.2.9.jar
├── guava-18.0.jar
├── joda-time-2.9.9.jar
├── pmml-agent-1.3.7.jar
├── pmml-evaluator-1.3.7.jar
├── pmml-manager-1.1.20.jar
├── pmml-model-1.3.7.jar
└── pmml-schema-1.3.7.jar
├── source
├── pmml-evaluator-1.3.7-sources.jar
├── pmml-model-1.3.7-sources.jar
└── pmml-schema-1.3.7-sources.jar
└── src
├── baidu
└── Parser.java
└── test
└── ParserTest.java
/.github/workflows/maven.yml:
--------------------------------------------------------------------------------
1 | name: Java CI
2 |
3 | on: [push]
4 |
5 | jobs:
6 | build:
7 |
8 | runs-on: ubuntu-latest
9 |
10 | steps:
11 | - uses: actions/checkout@v1
12 | - name: Set up JDK 1.8
13 | uses: actions/setup-java@v1
14 | with:
15 | java-version: 1.8
16 | - name: Build with Maven
17 | run: mvn -B package --file pom.xml
18 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | The 996ICU License (996ICU)
2 | Version 0.1, March 2019
3 |
4 | PACKAGE is distributed under LICENSE with the following restriction:
5 |
6 | The above license is only granted to entities that act in concordance
7 | with local labor laws. In addition, the following requirements must be
8 | observed:
9 |
10 | * The licencee must not, explicitly or implicitly, request or schedule
11 | their employees to work more than 45 hours in any single week.
12 | * The licencee must not, explicitly or implicitly, request or schedule
13 | their employees to be at work consecutively for 10 hours.
14 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # pmmlParser
2 | ## JPMML 加载 PMML 模型
3 | - 调用方式:
4 | ```
5 | java -jar pmmlParser.jar [pmml file] [model input args]
6 | ```
7 | - example:
8 | ```
9 | java -jar pmmlParser.jar iris_rf.pmml irisv2.csv
10 | ```
11 |
12 | ## Json服务版本pmmlParserJson
13 | - 调用方式
14 | 详情见测试用例
15 | ## Contact
16 | - E-mail liaotuocn@gmail.com
17 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/PMMLDemo.r:
--------------------------------------------------------------------------------
1 | # load library and data
2 | library(randomForest)
3 | data(iris)
4 |
5 | # load data and divide(划分) into training set and sampling(训练集和测试集)
6 | # 将数据分为两部分 70%训练集 30%测试集
7 | ind <- sample(2,nrow(iris),replace=TRUE,prob=c(0.7,0.3))
8 | trainData <- iris[ind==1,]
9 | testData <- iris[ind==2,]
10 |
11 | # train model
12 | iris_rf <- randomForest(Species~.,data=trainData,ntree=100,proximity=TRUE)
13 | table(predict(iris_rf),trainData$Species)
14 |
15 | # visualize the model
16 | print(iris_rf)
17 | attributes(iris_rf)
18 | plot(iris_rf)
19 |
20 | # load xml and pmml library
21 | library(XML)
22 | library(pmml)
23 |
24 | # convert model to pmml
25 | iris_rf.pmml <- pmml(iris_rf,name="Iris Random Forest",data=iris_rf)
26 |
27 | # save to file "iris_rf.pmml" in same workspace
28 | saveXML(iris_rf.pmml,"D://iris_rf.pmml")
29 |
30 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/irisv2.csv:
--------------------------------------------------------------------------------
1 | Sepal.Length,Sepal.Width,Petal.Length,Petal.Width,Species,level,level1
2 | 5.1,3.5,1.4,0.2,0,1,1
3 | 4.9,3,1.4,0.2,0,0,0
4 | 4.7,3.2,1.3,0.2,0,0,0
5 | 4.6,3.1,1.5,0.2,0,0,0
6 | 5,3.6,1.4,0.2,0,1,1
7 | 5.4,3.9,1.7,0.4,0,1,1
8 | 4.6,3.4,1.4,0.3,0,0,0
9 | 5,3.4,1.5,0.2,0,1,0
10 | 4.4,2.9,1.4,0.2,0,0,0
11 | 4.9,3.1,1.5,0.1,0,0,0
12 | 5.4,3.7,1.5,0.2,0,1,1
13 | 4.8,3.4,1.6,0.2,0,0,0
14 | 4.8,3,1.4,0.1,0,0,0
15 | 4.3,3,1.1,0.1,0,0,0
16 | 5.8,4,1.2,0.2,0,1,1
17 | 5.7,4.4,1.5,0.4,0,1,1
18 | 5.4,3.9,1.3,0.4,0,1,1
19 | 5.1,3.5,1.4,0.3,0,1,1
20 | 5.7,3.8,1.7,0.3,0,1,1
21 | 5.1,3.8,1.5,0.3,0,1,1
22 | 5.4,3.4,1.7,0.2,0,1,0
23 | 5.1,3.7,1.5,0.4,0,1,1
24 | 4.6,3.6,1,0.2,0,0,1
25 | 5.1,3.3,1.7,0.5,0,1,0
26 | 4.8,3.4,1.9,0.2,0,0,0
27 | 5,3,1.6,0.2,0,1,0
28 | 5,3.4,1.6,0.4,0,1,0
29 | 5.2,3.5,1.5,0.2,0,1,1
30 | 5.2,3.4,1.4,0.2,0,1,0
31 | 4.7,3.2,1.6,0.2,0,0,0
32 | 4.8,3.1,1.6,0.2,0,0,0
33 | 5.4,3.4,1.5,0.4,0,1,0
34 | 5.2,4.1,1.5,0.1,0,1,1
35 | 5.5,4.2,1.4,0.2,0,1,1
36 | 4.9,3.1,1.5,0.1,0,0,0
37 | 5,3.2,1.2,0.2,0,1,0
38 | 5.5,3.5,1.3,0.2,0,1,1
39 | 4.9,3.1,1.5,0.1,0,0,0
40 | 4.4,3,1.3,0.2,0,0,0
41 | 5.1,3.4,1.5,0.2,0,1,0
42 | 5,3.5,1.3,0.3,0,1,1
43 | 4.5,2.3,1.3,0.3,0,0,0
44 | 4.4,3.2,1.3,0.2,0,0,0
45 | 5,3.5,1.6,0.6,0,1,1
46 | 5.1,3.8,1.9,0.4,0,1,1
47 | 4.8,3,1.4,0.3,0,0,0
48 | 5.1,3.8,1.6,0.2,0,1,1
49 | 4.6,3.2,1.4,0.2,0,0,0
50 | 5.3,3.7,1.5,0.2,0,1,1
51 | 5,3.3,1.4,0.2,0,1,0
52 | 7,3.2,4.7,1.4,1,1,0
53 | 6.4,3.2,4.5,1.5,1,1,0
54 | 6.9,3.1,4.9,1.5,1,1,0
55 | 5.5,2.3,4,1.3,1,1,0
56 | 6.5,2.8,4.6,1.5,1,1,0
57 | 5.7,2.8,4.5,1.3,1,1,0
58 | 6.3,3.3,4.7,1.6,1,1,0
59 | 4.9,2.4,3.3,1,1,0,0
60 | 6.6,2.9,4.6,1.3,1,1,0
61 | 5.2,2.7,3.9,1.4,1,1,0
62 | 5,2,3.5,1,1,1,0
63 | 5.9,3,4.2,1.5,1,1,0
64 | 6,2.2,4,1,1,1,0
65 | 6.1,2.9,4.7,1.4,1,1,0
66 | 5.6,2.9,3.6,1.3,1,1,0
67 | 6.7,3.1,4.4,1.4,1,1,0
68 | 5.6,3,4.5,1.5,1,1,0
69 | 5.8,2.7,4.1,1,1,1,0
70 | 6.2,2.2,4.5,1.5,1,1,0
71 | 5.6,2.5,3.9,1.1,1,1,0
72 | 5.9,3.2,4.8,1.8,1,1,0
73 | 6.1,2.8,4,1.3,1,1,0
74 | 6.3,2.5,4.9,1.5,1,1,0
75 | 6.1,2.8,4.7,1.2,1,1,0
76 | 6.4,2.9,4.3,1.3,1,1,0
77 | 6.6,3,4.4,1.4,1,1,0
78 | 6.8,2.8,4.8,1.4,1,1,0
79 | 6.7,3,5,1.7,1,1,0
80 | 6,2.9,4.5,1.5,1,1,0
81 | 5.7,2.6,3.5,1,1,1,0
82 | 5.5,2.4,3.8,1.1,1,1,0
83 | 5.5,2.4,3.7,1,1,1,0
84 | 5.8,2.7,3.9,1.2,1,1,0
85 | 6,2.7,5.1,1.6,1,1,0
86 | 5.4,3,4.5,1.5,1,1,0
87 | 6,3.4,4.5,1.6,1,1,0
88 | 6.7,3.1,4.7,1.5,1,1,0
89 | 6.3,2.3,4.4,1.3,1,1,0
90 | 5.6,3,4.1,1.3,1,1,0
91 | 5.5,2.5,4,1.3,1,1,0
92 | 5.5,2.6,4.4,1.2,1,1,0
93 | 6.1,3,4.6,1.4,1,1,0
94 | 5.8,2.6,4,1.2,1,1,0
95 | 5,2.3,3.3,1,1,1,0
96 | 5.6,2.7,4.2,1.3,1,1,0
97 | 5.7,3,4.2,1.2,1,1,0
98 | 5.7,2.9,4.2,1.3,1,1,0
99 | 6.2,2.9,4.3,1.3,1,1,0
100 | 5.1,2.5,3,1.1,1,1,0
101 | 5.7,2.8,4.1,1.3,1,1,0
102 | 6.3,3.3,6,2.5,2,1,0
103 | 5.8,2.7,5.1,1.9,2,1,0
104 | 7.1,3,5.9,2.1,2,1,0
105 | 6.3,2.9,5.6,1.8,2,1,0
106 | 6.5,3,5.8,2.2,2,1,0
107 | 7.6,3,6.6,2.1,2,1,0
108 | 4.9,2.5,4.5,1.7,2,0,0
109 | 7.3,2.9,6.3,1.8,2,1,0
110 | 6.7,2.5,5.8,1.8,2,1,0
111 | 7.2,3.6,6.1,2.5,2,1,1
112 | 6.5,3.2,5.1,2,2,1,0
113 | 6.4,2.7,5.3,1.9,2,1,0
114 | 6.8,3,5.5,2.1,2,1,0
115 | 5.7,2.5,5,2,2,1,0
116 | 5.8,2.8,5.1,2.4,2,1,0
117 | 6.4,3.2,5.3,2.3,2,1,0
118 | 6.5,3,5.5,1.8,2,1,0
119 | 7.7,3.8,6.7,2.2,2,1,1
120 | 7.7,2.6,6.9,2.3,2,1,0
121 | 6,2.2,5,1.5,2,1,0
122 | 6.9,3.2,5.7,2.3,2,1,0
123 | 5.6,2.8,4.9,2,2,1,0
124 | 7.7,2.8,6.7,2,2,1,0
125 | 6.3,2.7,4.9,1.8,2,1,0
126 | 6.7,3.3,5.7,2.1,2,1,0
127 | 7.2,3.2,6,1.8,2,1,0
128 | 6.2,2.8,4.8,1.8,2,1,0
129 | 6.1,3,4.9,1.8,2,1,0
130 | 6.4,2.8,5.6,2.1,2,1,0
131 | 7.2,3,5.8,1.6,2,1,0
132 | 7.4,2.8,6.1,1.9,2,1,0
133 | 7.9,3.8,6.4,2,2,1,1
134 | 6.4,2.8,5.6,2.2,2,1,0
135 | 6.3,2.8,5.1,1.5,2,1,0
136 | 6.1,2.6,5.6,1.4,2,1,0
137 | 7.7,3,6.1,2.3,2,1,0
138 | 6.3,3.4,5.6,2.4,2,1,0
139 | 6.4,3.1,5.5,1.8,2,1,0
140 | 6,3,4.8,1.8,2,1,0
141 | 6.9,3.1,5.4,2.1,2,1,0
142 | 6.7,3.1,5.6,2.4,2,1,0
143 | 6.9,3.1,5.1,2.3,2,1,0
144 | 5.8,2.7,5.1,1.9,2,1,0
145 | 6.8,3.2,5.9,2.3,2,1,0
146 | 6.7,3.3,5.7,2.5,2,1,0
147 | 6.7,3,5.2,2.3,2,1,0
148 | 6.3,2.5,5,1.9,2,1,0
149 | 6.5,3,5.2,2,2,1,0
150 | 6.2,3.4,5.4,2.3,2,1,0
151 | 5.9,3,5.1,1.8,2,1,0
152 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/.classpath:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/.project:
--------------------------------------------------------------------------------
1 |
2 |
3 | pmmlParserFile
4 |
5 |
6 |
7 |
8 |
9 | org.eclipse.jdt.core.javabuilder
10 |
11 |
12 |
13 |
14 |
15 | org.eclipse.jdt.core.javanature
16 |
17 |
18 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/.settings/org.eclipse.jdt.core.prefs:
--------------------------------------------------------------------------------
1 | eclipse.preferences.version=1
2 | org.eclipse.jdt.core.compiler.codegen.inlineJsrBytecode=enabled
3 | org.eclipse.jdt.core.compiler.codegen.targetPlatform=1.8
4 | org.eclipse.jdt.core.compiler.codegen.unusedLocal=preserve
5 | org.eclipse.jdt.core.compiler.compliance=1.8
6 | org.eclipse.jdt.core.compiler.debug.lineNumber=generate
7 | org.eclipse.jdt.core.compiler.debug.localVariable=generate
8 | org.eclipse.jdt.core.compiler.debug.sourceFile=generate
9 | org.eclipse.jdt.core.compiler.problem.assertIdentifier=error
10 | org.eclipse.jdt.core.compiler.problem.enumIdentifier=error
11 | org.eclipse.jdt.core.compiler.source=1.8
12 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/bin/parser/ModelCalc.class:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/bin/parser/ModelCalc.class
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/bin/parser/ModelInvoker.class:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/bin/parser/ModelInvoker.class
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/bin/test/ModelCalcTest.class:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/bin/test/ModelCalcTest.class
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/irisv2.csv:
--------------------------------------------------------------------------------
1 | Sepal.Length,Sepal.Width,Petal.Length,Petal.Width,Species,level,level1
2 | 5.1,3.5,1.4,0.2,0,1,1
3 | 4.9,3,1.4,0.2,0,0,0
4 | 4.7,3.2,1.3,0.2,0,0,0
5 | 4.6,3.1,1.5,0.2,0,0,0
6 | 5,3.6,1.4,0.2,0,1,1
7 | 5.4,3.9,1.7,0.4,0,1,1
8 | 4.6,3.4,1.4,0.3,0,0,0
9 | 5,3.4,1.5,0.2,0,1,0
10 | 4.4,2.9,1.4,0.2,0,0,0
11 | 4.9,3.1,1.5,0.1,0,0,0
12 | 5.4,3.7,1.5,0.2,0,1,1
13 | 4.8,3.4,1.6,0.2,0,0,0
14 | 4.8,3,1.4,0.1,0,0,0
15 | 4.3,3,1.1,0.1,0,0,0
16 | 5.8,4,1.2,0.2,0,1,1
17 | 5.7,4.4,1.5,0.4,0,1,1
18 | 5.4,3.9,1.3,0.4,0,1,1
19 | 5.1,3.5,1.4,0.3,0,1,1
20 | 5.7,3.8,1.7,0.3,0,1,1
21 | 5.1,3.8,1.5,0.3,0,1,1
22 | 5.4,3.4,1.7,0.2,0,1,0
23 | 5.1,3.7,1.5,0.4,0,1,1
24 | 4.6,3.6,1,0.2,0,0,1
25 | 5.1,3.3,1.7,0.5,0,1,0
26 | 4.8,3.4,1.9,0.2,0,0,0
27 | 5,3,1.6,0.2,0,1,0
28 | 5,3.4,1.6,0.4,0,1,0
29 | 5.2,3.5,1.5,0.2,0,1,1
30 | 5.2,3.4,1.4,0.2,0,1,0
31 | 4.7,3.2,1.6,0.2,0,0,0
32 | 4.8,3.1,1.6,0.2,0,0,0
33 | 5.4,3.4,1.5,0.4,0,1,0
34 | 5.2,4.1,1.5,0.1,0,1,1
35 | 5.5,4.2,1.4,0.2,0,1,1
36 | 4.9,3.1,1.5,0.1,0,0,0
37 | 5,3.2,1.2,0.2,0,1,0
38 | 5.5,3.5,1.3,0.2,0,1,1
39 | 4.9,3.1,1.5,0.1,0,0,0
40 | 4.4,3,1.3,0.2,0,0,0
41 | 5.1,3.4,1.5,0.2,0,1,0
42 | 5,3.5,1.3,0.3,0,1,1
43 | 4.5,2.3,1.3,0.3,0,0,0
44 | 4.4,3.2,1.3,0.2,0,0,0
45 | 5,3.5,1.6,0.6,0,1,1
46 | 5.1,3.8,1.9,0.4,0,1,1
47 | 4.8,3,1.4,0.3,0,0,0
48 | 5.1,3.8,1.6,0.2,0,1,1
49 | 4.6,3.2,1.4,0.2,0,0,0
50 | 5.3,3.7,1.5,0.2,0,1,1
51 | 5,3.3,1.4,0.2,0,1,0
52 | 7,3.2,4.7,1.4,1,1,0
53 | 6.4,3.2,4.5,1.5,1,1,0
54 | 6.9,3.1,4.9,1.5,1,1,0
55 | 5.5,2.3,4,1.3,1,1,0
56 | 6.5,2.8,4.6,1.5,1,1,0
57 | 5.7,2.8,4.5,1.3,1,1,0
58 | 6.3,3.3,4.7,1.6,1,1,0
59 | 4.9,2.4,3.3,1,1,0,0
60 | 6.6,2.9,4.6,1.3,1,1,0
61 | 5.2,2.7,3.9,1.4,1,1,0
62 | 5,2,3.5,1,1,1,0
63 | 5.9,3,4.2,1.5,1,1,0
64 | 6,2.2,4,1,1,1,0
65 | 6.1,2.9,4.7,1.4,1,1,0
66 | 5.6,2.9,3.6,1.3,1,1,0
67 | 6.7,3.1,4.4,1.4,1,1,0
68 | 5.6,3,4.5,1.5,1,1,0
69 | 5.8,2.7,4.1,1,1,1,0
70 | 6.2,2.2,4.5,1.5,1,1,0
71 | 5.6,2.5,3.9,1.1,1,1,0
72 | 5.9,3.2,4.8,1.8,1,1,0
73 | 6.1,2.8,4,1.3,1,1,0
74 | 6.3,2.5,4.9,1.5,1,1,0
75 | 6.1,2.8,4.7,1.2,1,1,0
76 | 6.4,2.9,4.3,1.3,1,1,0
77 | 6.6,3,4.4,1.4,1,1,0
78 | 6.8,2.8,4.8,1.4,1,1,0
79 | 6.7,3,5,1.7,1,1,0
80 | 6,2.9,4.5,1.5,1,1,0
81 | 5.7,2.6,3.5,1,1,1,0
82 | 5.5,2.4,3.8,1.1,1,1,0
83 | 5.5,2.4,3.7,1,1,1,0
84 | 5.8,2.7,3.9,1.2,1,1,0
85 | 6,2.7,5.1,1.6,1,1,0
86 | 5.4,3,4.5,1.5,1,1,0
87 | 6,3.4,4.5,1.6,1,1,0
88 | 6.7,3.1,4.7,1.5,1,1,0
89 | 6.3,2.3,4.4,1.3,1,1,0
90 | 5.6,3,4.1,1.3,1,1,0
91 | 5.5,2.5,4,1.3,1,1,0
92 | 5.5,2.6,4.4,1.2,1,1,0
93 | 6.1,3,4.6,1.4,1,1,0
94 | 5.8,2.6,4,1.2,1,1,0
95 | 5,2.3,3.3,1,1,1,0
96 | 5.6,2.7,4.2,1.3,1,1,0
97 | 5.7,3,4.2,1.2,1,1,0
98 | 5.7,2.9,4.2,1.3,1,1,0
99 | 6.2,2.9,4.3,1.3,1,1,0
100 | 5.1,2.5,3,1.1,1,1,0
101 | 5.7,2.8,4.1,1.3,1,1,0
102 | 6.3,3.3,6,2.5,2,1,0
103 | 5.8,2.7,5.1,1.9,2,1,0
104 | 7.1,3,5.9,2.1,2,1,0
105 | 6.3,2.9,5.6,1.8,2,1,0
106 | 6.5,3,5.8,2.2,2,1,0
107 | 7.6,3,6.6,2.1,2,1,0
108 | 4.9,2.5,4.5,1.7,2,0,0
109 | 7.3,2.9,6.3,1.8,2,1,0
110 | 6.7,2.5,5.8,1.8,2,1,0
111 | 7.2,3.6,6.1,2.5,2,1,1
112 | 6.5,3.2,5.1,2,2,1,0
113 | 6.4,2.7,5.3,1.9,2,1,0
114 | 6.8,3,5.5,2.1,2,1,0
115 | 5.7,2.5,5,2,2,1,0
116 | 5.8,2.8,5.1,2.4,2,1,0
117 | 6.4,3.2,5.3,2.3,2,1,0
118 | 6.5,3,5.5,1.8,2,1,0
119 | 7.7,3.8,6.7,2.2,2,1,1
120 | 7.7,2.6,6.9,2.3,2,1,0
121 | 6,2.2,5,1.5,2,1,0
122 | 6.9,3.2,5.7,2.3,2,1,0
123 | 5.6,2.8,4.9,2,2,1,0
124 | 7.7,2.8,6.7,2,2,1,0
125 | 6.3,2.7,4.9,1.8,2,1,0
126 | 6.7,3.3,5.7,2.1,2,1,0
127 | 7.2,3.2,6,1.8,2,1,0
128 | 6.2,2.8,4.8,1.8,2,1,0
129 | 6.1,3,4.9,1.8,2,1,0
130 | 6.4,2.8,5.6,2.1,2,1,0
131 | 7.2,3,5.8,1.6,2,1,0
132 | 7.4,2.8,6.1,1.9,2,1,0
133 | 7.9,3.8,6.4,2,2,1,1
134 | 6.4,2.8,5.6,2.2,2,1,0
135 | 6.3,2.8,5.1,1.5,2,1,0
136 | 6.1,2.6,5.6,1.4,2,1,0
137 | 7.7,3,6.1,2.3,2,1,0
138 | 6.3,3.4,5.6,2.4,2,1,0
139 | 6.4,3.1,5.5,1.8,2,1,0
140 | 6,3,4.8,1.8,2,1,0
141 | 6.9,3.1,5.4,2.1,2,1,0
142 | 6.7,3.1,5.6,2.4,2,1,0
143 | 6.9,3.1,5.1,2.3,2,1,0
144 | 5.8,2.7,5.1,1.9,2,1,0
145 | 6.8,3.2,5.9,2.3,2,1,0
146 | 6.7,3.3,5.7,2.5,2,1,0
147 | 6.7,3,5.2,2.3,2,1,0
148 | 6.3,2.5,5,1.9,2,1,0
149 | 6.5,3,5.2,2,2,1,0
150 | 6.2,3.4,5.4,2.3,2,1,0
151 | 5.9,3,5.1,1.8,2,1,0
152 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/commons-math3-3.6.1.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/commons-math3-3.6.1.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/fastjson-1.2.9.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/fastjson-1.2.9.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/guava-18.0.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/guava-18.0.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/joda-time-2.9.9.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/joda-time-2.9.9.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-agent-1.3.7.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-agent-1.3.7.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-evaluator-1.3.7.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-evaluator-1.3.7.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-manager-1.1.20.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-manager-1.1.20.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-model-1.3.7.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-model-1.3.7.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-schema-1.3.7.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/lib/pmml-schema-1.3.7.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/result.txt:
--------------------------------------------------------------------------------
1 | 模型读取成功
2 | ======当前行: 1=======
3 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
4 | setosa
5 | 1.0
6 | 0.0
7 | 0.0
8 | ======当前行: 2=======
9 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
10 | setosa
11 | 1.0
12 | 0.0
13 | 0.0
14 | ======当前行: 3=======
15 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
16 | setosa
17 | 1.0
18 | 0.0
19 | 0.0
20 | ======当前行: 4=======
21 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
22 | setosa
23 | 1.0
24 | 0.0
25 | 0.0
26 | ======当前行: 5=======
27 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
28 | setosa
29 | 1.0
30 | 0.0
31 | 0.0
32 | ======当前行: 6=======
33 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
34 | setosa
35 | 1.0
36 | 0.0
37 | 0.0
38 | ======当前行: 7=======
39 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
40 | setosa
41 | 1.0
42 | 0.0
43 | 0.0
44 | ======当前行: 8=======
45 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
46 | setosa
47 | 1.0
48 | 0.0
49 | 0.0
50 | ======当前行: 9=======
51 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
52 | setosa
53 | 1.0
54 | 0.0
55 | 0.0
56 | ======当前行: 10=======
57 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
58 | setosa
59 | 1.0
60 | 0.0
61 | 0.0
62 | ======当前行: 11=======
63 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
64 | setosa
65 | 1.0
66 | 0.0
67 | 0.0
68 | ======当前行: 12=======
69 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
70 | setosa
71 | 1.0
72 | 0.0
73 | 0.0
74 | ======当前行: 13=======
75 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
76 | setosa
77 | 1.0
78 | 0.0
79 | 0.0
80 | ======当前行: 14=======
81 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
82 | setosa
83 | 1.0
84 | 0.0
85 | 0.0
86 | ======当前行: 15=======
87 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=0.98, versicolor=0.02]}
88 | setosa
89 | 0.98
90 | 0.02
91 | 0.0
92 | ======当前行: 16=======
93 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=0.97, versicolor=0.03]}
94 | setosa
95 | 0.97
96 | 0.03
97 | 0.0
98 | ======当前行: 17=======
99 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
100 | setosa
101 | 1.0
102 | 0.0
103 | 0.0
104 | ======当前行: 18=======
105 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
106 | setosa
107 | 1.0
108 | 0.0
109 | 0.0
110 | ======当前行: 19=======
111 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=0.97, versicolor=0.03]}
112 | setosa
113 | 0.97
114 | 0.03
115 | 0.0
116 | ======当前行: 20=======
117 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
118 | setosa
119 | 1.0
120 | 0.0
121 | 0.0
122 | ======当前行: 21=======
123 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
124 | setosa
125 | 1.0
126 | 0.0
127 | 0.0
128 | ======当前行: 22=======
129 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
130 | setosa
131 | 1.0
132 | 0.0
133 | 0.0
134 | ======当前行: 23=======
135 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
136 | setosa
137 | 1.0
138 | 0.0
139 | 0.0
140 | ======当前行: 24=======
141 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
142 | setosa
143 | 1.0
144 | 0.0
145 | 0.0
146 | ======当前行: 25=======
147 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
148 | setosa
149 | 1.0
150 | 0.0
151 | 0.0
152 | ======当前行: 26=======
153 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
154 | setosa
155 | 1.0
156 | 0.0
157 | 0.0
158 | ======当前行: 27=======
159 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
160 | setosa
161 | 1.0
162 | 0.0
163 | 0.0
164 | ======当前行: 28=======
165 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
166 | setosa
167 | 1.0
168 | 0.0
169 | 0.0
170 | ======当前行: 29=======
171 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
172 | setosa
173 | 1.0
174 | 0.0
175 | 0.0
176 | ======当前行: 30=======
177 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
178 | setosa
179 | 1.0
180 | 0.0
181 | 0.0
182 | ======当前行: 31=======
183 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
184 | setosa
185 | 1.0
186 | 0.0
187 | 0.0
188 | ======当前行: 32=======
189 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
190 | setosa
191 | 1.0
192 | 0.0
193 | 0.0
194 | ======当前行: 33=======
195 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
196 | setosa
197 | 1.0
198 | 0.0
199 | 0.0
200 | ======当前行: 34=======
201 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
202 | setosa
203 | 1.0
204 | 0.0
205 | 0.0
206 | ======当前行: 35=======
207 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
208 | setosa
209 | 1.0
210 | 0.0
211 | 0.0
212 | ======当前行: 36=======
213 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
214 | setosa
215 | 1.0
216 | 0.0
217 | 0.0
218 | ======当前行: 37=======
219 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=0.99, versicolor=0.01]}
220 | setosa
221 | 0.99
222 | 0.01
223 | 0.0
224 | ======当前行: 38=======
225 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
226 | setosa
227 | 1.0
228 | 0.0
229 | 0.0
230 | ======当前行: 39=======
231 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
232 | setosa
233 | 1.0
234 | 0.0
235 | 0.0
236 | ======当前行: 40=======
237 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
238 | setosa
239 | 1.0
240 | 0.0
241 | 0.0
242 | ======当前行: 41=======
243 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
244 | setosa
245 | 1.0
246 | 0.0
247 | 0.0
248 | ======当前行: 42=======
249 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=0.99, versicolor=0.01]}
250 | setosa
251 | 0.99
252 | 0.01
253 | 0.0
254 | ======当前行: 43=======
255 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
256 | setosa
257 | 1.0
258 | 0.0
259 | 0.0
260 | ======当前行: 44=======
261 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
262 | setosa
263 | 1.0
264 | 0.0
265 | 0.0
266 | ======当前行: 45=======
267 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
268 | setosa
269 | 1.0
270 | 0.0
271 | 0.0
272 | ======当前行: 46=======
273 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
274 | setosa
275 | 1.0
276 | 0.0
277 | 0.0
278 | ======当前行: 47=======
279 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
280 | setosa
281 | 1.0
282 | 0.0
283 | 0.0
284 | ======当前行: 48=======
285 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
286 | setosa
287 | 1.0
288 | 0.0
289 | 0.0
290 | ======当前行: 49=======
291 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
292 | setosa
293 | 1.0
294 | 0.0
295 | 0.0
296 | ======当前行: 50=======
297 | ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
298 | setosa
299 | 1.0
300 | 0.0
301 | 0.0
302 | ======当前行: 51=======
303 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.97, virginica=0.03]}
304 | versicolor
305 | 0.0
306 | 0.97
307 | 0.03
308 | ======当前行: 52=======
309 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, virginica=0.03, setosa=0.01]}
310 | versicolor
311 | 0.01
312 | 0.96
313 | 0.03
314 | ======当前行: 53=======
315 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.85, virginica=0.15]}
316 | versicolor
317 | 0.0
318 | 0.85
319 | 0.15
320 | ======当前行: 54=======
321 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
322 | versicolor
323 | 0.0
324 | 1.0
325 | 0.0
326 | ======当前行: 55=======
327 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, virginica=0.04]}
328 | versicolor
329 | 0.0
330 | 0.96
331 | 0.04
332 | ======当前行: 56=======
333 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
334 | versicolor
335 | 0.0
336 | 1.0
337 | 0.0
338 | ======当前行: 57=======
339 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.94, virginica=0.05, setosa=0.01]}
340 | versicolor
341 | 0.01
342 | 0.94
343 | 0.05
344 | ======当前行: 58=======
345 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.97, virginica=0.03]}
346 | versicolor
347 | 0.0
348 | 0.97
349 | 0.03
350 | ======当前行: 59=======
351 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
352 | versicolor
353 | 0.0
354 | 0.99
355 | 0.01
356 | ======当前行: 60=======
357 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
358 | versicolor
359 | 0.0
360 | 1.0
361 | 0.0
362 | ======当前行: 61=======
363 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
364 | versicolor
365 | 0.0
366 | 0.99
367 | 0.01
368 | ======当前行: 62=======
369 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.98, setosa=0.01, virginica=0.01]}
370 | versicolor
371 | 0.01
372 | 0.98
373 | 0.01
374 | ======当前行: 63=======
375 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, virginica=0.04]}
376 | versicolor
377 | 0.0
378 | 0.96
379 | 0.04
380 | ======当前行: 64=======
381 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.98, virginica=0.02]}
382 | versicolor
383 | 0.0
384 | 0.98
385 | 0.02
386 | ======当前行: 65=======
387 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
388 | versicolor
389 | 0.0
390 | 1.0
391 | 0.0
392 | ======当前行: 66=======
393 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.97, virginica=0.02, setosa=0.01]}
394 | versicolor
395 | 0.01
396 | 0.97
397 | 0.02
398 | ======当前行: 67=======
399 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
400 | versicolor
401 | 0.0
402 | 1.0
403 | 0.0
404 | ======当前行: 68=======
405 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.97, setosa=0.02, virginica=0.01]}
406 | versicolor
407 | 0.02
408 | 0.97
409 | 0.01
410 | ======当前行: 69=======
411 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.95, virginica=0.05]}
412 | versicolor
413 | 0.0
414 | 0.95
415 | 0.05
416 | ======当前行: 70=======
417 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
418 | versicolor
419 | 0.0
420 | 0.99
421 | 0.01
422 | ======当前行: 71=======
423 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.94, versicolor=0.05, setosa=0.01]}
424 | virginica
425 | 0.01
426 | 0.05
427 | 0.94
428 | ======当前行: 72=======
429 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
430 | versicolor
431 | 0.0
432 | 1.0
433 | 0.0
434 | ======当前行: 73=======
435 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.86, virginica=0.14]}
436 | versicolor
437 | 0.0
438 | 0.86
439 | 0.14
440 | ======当前行: 74=======
441 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.98, virginica=0.02]}
442 | versicolor
443 | 0.0
444 | 0.98
445 | 0.02
446 | ======当前行: 75=======
447 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.98, virginica=0.02]}
448 | versicolor
449 | 0.0
450 | 0.98
451 | 0.02
452 | ======当前行: 76=======
453 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
454 | versicolor
455 | 0.0
456 | 0.99
457 | 0.01
458 | ======当前行: 77=======
459 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.79, virginica=0.21]}
460 | versicolor
461 | 0.0
462 | 0.79
463 | 0.21
464 | ======当前行: 78=======
465 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.68, versicolor=0.32]}
466 | virginica
467 | 0.0
468 | 0.32
469 | 0.68
470 | ======当前行: 79=======
471 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
472 | versicolor
473 | 0.0
474 | 0.99
475 | 0.01
476 | ======当前行: 80=======
477 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
478 | versicolor
479 | 0.0
480 | 1.0
481 | 0.0
482 | ======当前行: 81=======
483 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
484 | versicolor
485 | 0.0
486 | 1.0
487 | 0.0
488 | ======当前行: 82=======
489 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
490 | versicolor
491 | 0.0
492 | 1.0
493 | 0.0
494 | ======当前行: 83=======
495 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.97, setosa=0.02, virginica=0.01]}
496 | versicolor
497 | 0.02
498 | 0.97
499 | 0.01
500 | ======当前行: 84=======
501 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.8, virginica=0.2]}
502 | versicolor
503 | 0.0
504 | 0.8
505 | 0.2
506 | ======当前行: 85=======
507 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, setosa=0.03, virginica=0.01]}
508 | versicolor
509 | 0.03
510 | 0.96
511 | 0.01
512 | ======当前行: 86=======
513 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, setosa=0.04]}
514 | versicolor
515 | 0.04
516 | 0.96
517 | 0.0
518 | ======当前行: 87=======
519 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, virginica=0.04]}
520 | versicolor
521 | 0.0
522 | 0.96
523 | 0.04
524 | ======当前行: 88=======
525 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
526 | versicolor
527 | 0.0
528 | 0.99
529 | 0.01
530 | ======当前行: 89=======
531 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
532 | versicolor
533 | 0.0
534 | 1.0
535 | 0.0
536 | ======当前行: 90=======
537 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, setosa=0.01]}
538 | versicolor
539 | 0.01
540 | 0.99
541 | 0.0
542 | ======当前行: 91=======
543 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.98, setosa=0.01, virginica=0.01]}
544 | versicolor
545 | 0.01
546 | 0.98
547 | 0.01
548 | ======当前行: 92=======
549 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
550 | versicolor
551 | 0.0
552 | 1.0
553 | 0.0
554 | ======当前行: 93=======
555 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.96, virginica=0.02, setosa=0.02]}
556 | versicolor
557 | 0.02
558 | 0.96
559 | 0.02
560 | ======当前行: 94=======
561 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
562 | versicolor
563 | 0.0
564 | 1.0
565 | 0.0
566 | ======当前行: 95=======
567 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
568 | versicolor
569 | 0.0
570 | 0.99
571 | 0.01
572 | ======当前行: 96=======
573 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
574 | versicolor
575 | 0.0
576 | 1.0
577 | 0.0
578 | ======当前行: 97=======
579 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
580 | versicolor
581 | 0.0
582 | 1.0
583 | 0.0
584 | ======当前行: 98=======
585 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=0.99, virginica=0.01]}
586 | versicolor
587 | 0.0
588 | 0.99
589 | 0.01
590 | ======当前行: 99=======
591 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
592 | versicolor
593 | 0.0
594 | 1.0
595 | 0.0
596 | ======当前行: 100=======
597 | ProbabilityDistribution{result=versicolor, probability_entries=[versicolor=1.0]}
598 | versicolor
599 | 0.0
600 | 1.0
601 | 0.0
602 | ======当前行: 101=======
603 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
604 | virginica
605 | 0.0
606 | 0.0
607 | 1.0
608 | ======当前行: 102=======
609 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.99, versicolor=0.01]}
610 | virginica
611 | 0.0
612 | 0.01
613 | 0.99
614 | ======当前行: 103=======
615 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
616 | virginica
617 | 0.0
618 | 0.0
619 | 1.0
620 | ======当前行: 104=======
621 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
622 | virginica
623 | 0.0
624 | 0.0
625 | 1.0
626 | ======当前行: 105=======
627 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
628 | virginica
629 | 0.0
630 | 0.0
631 | 1.0
632 | ======当前行: 106=======
633 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
634 | virginica
635 | 0.0
636 | 0.0
637 | 1.0
638 | ======当前行: 107=======
639 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.69, versicolor=0.31]}
640 | virginica
641 | 0.0
642 | 0.31
643 | 0.69
644 | ======当前行: 108=======
645 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
646 | virginica
647 | 0.0
648 | 0.0
649 | 1.0
650 | ======当前行: 109=======
651 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.96, versicolor=0.04]}
652 | virginica
653 | 0.0
654 | 0.04
655 | 0.96
656 | ======当前行: 110=======
657 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
658 | virginica
659 | 0.0
660 | 0.0
661 | 1.0
662 | ======当前行: 111=======
663 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
664 | virginica
665 | 0.0
666 | 0.0
667 | 1.0
668 | ======当前行: 112=======
669 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.99, versicolor=0.01]}
670 | virginica
671 | 0.0
672 | 0.01
673 | 0.99
674 | ======当前行: 113=======
675 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
676 | virginica
677 | 0.0
678 | 0.0
679 | 1.0
680 | ======当前行: 114=======
681 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.89, versicolor=0.11]}
682 | virginica
683 | 0.0
684 | 0.11
685 | 0.89
686 | ======当前行: 115=======
687 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.99, versicolor=0.01]}
688 | virginica
689 | 0.0
690 | 0.01
691 | 0.99
692 | ======当前行: 116=======
693 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
694 | virginica
695 | 0.0
696 | 0.0
697 | 1.0
698 | ======当前行: 117=======
699 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
700 | virginica
701 | 0.0
702 | 0.0
703 | 1.0
704 | ======当前行: 118=======
705 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
706 | virginica
707 | 0.0
708 | 0.0
709 | 1.0
710 | ======当前行: 119=======
711 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
712 | virginica
713 | 0.0
714 | 0.0
715 | 1.0
716 | ======当前行: 120=======
717 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.7, versicolor=0.3]}
718 | virginica
719 | 0.0
720 | 0.3
721 | 0.7
722 | ======当前行: 121=======
723 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
724 | virginica
725 | 0.0
726 | 0.0
727 | 1.0
728 | ======当前行: 122=======
729 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.91, versicolor=0.09]}
730 | virginica
731 | 0.0
732 | 0.09
733 | 0.91
734 | ======当前行: 123=======
735 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
736 | virginica
737 | 0.0
738 | 0.0
739 | 1.0
740 | ======当前行: 124=======
741 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.98, versicolor=0.02]}
742 | virginica
743 | 0.0
744 | 0.02
745 | 0.98
746 | ======当前行: 125=======
747 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
748 | virginica
749 | 0.0
750 | 0.0
751 | 1.0
752 | ======当前行: 126=======
753 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
754 | virginica
755 | 0.0
756 | 0.0
757 | 1.0
758 | ======当前行: 127=======
759 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.98, versicolor=0.02]}
760 | virginica
761 | 0.0
762 | 0.02
763 | 0.98
764 | ======当前行: 128=======
765 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.98, versicolor=0.02]}
766 | virginica
767 | 0.0
768 | 0.02
769 | 0.98
770 | ======当前行: 129=======
771 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
772 | virginica
773 | 0.0
774 | 0.0
775 | 1.0
776 | ======当前行: 130=======
777 | ProbabilityDistribution{result=virginica, probability_entries=[versicolor=0.44, virginica=0.56]}
778 | virginica
779 | 0.0
780 | 0.44
781 | 0.56
782 | ======当前行: 131=======
783 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
784 | virginica
785 | 0.0
786 | 0.0
787 | 1.0
788 | ======当前行: 132=======
789 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
790 | virginica
791 | 0.0
792 | 0.0
793 | 1.0
794 | ======当前行: 133=======
795 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
796 | virginica
797 | 0.0
798 | 0.0
799 | 1.0
800 | ======当前行: 134=======
801 | ProbabilityDistribution{result=virginica, probability_entries=[versicolor=0.23, virginica=0.77]}
802 | virginica
803 | 0.0
804 | 0.23
805 | 0.77
806 | ======当前行: 135=======
807 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.72, versicolor=0.28]}
808 | virginica
809 | 0.0
810 | 0.28
811 | 0.72
812 | ======当前行: 136=======
813 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
814 | virginica
815 | 0.0
816 | 0.0
817 | 1.0
818 | ======当前行: 137=======
819 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
820 | virginica
821 | 0.0
822 | 0.0
823 | 1.0
824 | ======当前行: 138=======
825 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
826 | virginica
827 | 0.0
828 | 0.0
829 | 1.0
830 | ======当前行: 139=======
831 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.94, versicolor=0.06]}
832 | virginica
833 | 0.0
834 | 0.06
835 | 0.94
836 | ======当前行: 140=======
837 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
838 | virginica
839 | 0.0
840 | 0.0
841 | 1.0
842 | ======当前行: 141=======
843 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
844 | virginica
845 | 0.0
846 | 0.0
847 | 1.0
848 | ======当前行: 142=======
849 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
850 | virginica
851 | 0.0
852 | 0.0
853 | 1.0
854 | ======当前行: 143=======
855 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.99, versicolor=0.01]}
856 | virginica
857 | 0.0
858 | 0.01
859 | 0.99
860 | ======当前行: 144=======
861 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
862 | virginica
863 | 0.0
864 | 0.0
865 | 1.0
866 | ======当前行: 145=======
867 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
868 | virginica
869 | 0.0
870 | 0.0
871 | 1.0
872 | ======当前行: 146=======
873 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
874 | virginica
875 | 0.0
876 | 0.0
877 | 1.0
878 | ======当前行: 147=======
879 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=0.92, versicolor=0.08]}
880 | virginica
881 | 0.0
882 | 0.08
883 | 0.92
884 | ======当前行: 148=======
885 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
886 | virginica
887 | 0.0
888 | 0.0
889 | 1.0
890 | ======当前行: 149=======
891 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
892 | virginica
893 | 0.0
894 | 0.0
895 | 1.0
896 | ======当前行: 150=======
897 | ProbabilityDistribution{result=virginica, probability_entries=[virginica=1.0]}
898 | virginica
899 | 0.0
900 | 0.0
901 | 1.0
902 |
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/source/pmml-evaluator-1.3.7-sources.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/source/pmml-evaluator-1.3.7-sources.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/source/pmml-model-1.3.7-sources.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/source/pmml-model-1.3.7-sources.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/source/pmml-schema-1.3.7-sources.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/liaotuo/pmml-parser/b1080f5a914ea42397179fc13c6d7a08613a1223/pmmlParser1.0文件读取版/pmmlParserFile/source/pmml-schema-1.3.7-sources.jar
--------------------------------------------------------------------------------
/pmmlParser1.0文件读取版/pmmlParserFile/src/parser/ModelCalc.java:
--------------------------------------------------------------------------------
1 | package parser;
2 |
3 | import java.io.BufferedReader;
4 | import java.io.FileReader;
5 | import java.io.IOException;
6 | import java.io.PrintStream;
7 | import java.util.ArrayList;
8 | import java.util.HashMap;
9 | import java.util.List;
10 | import java.util.Map;
11 | import java.util.Set;
12 |
13 | import org.dmg.pmml.FieldName;
14 |
15 | /**
16 | * 使用模型
17 | * @author liaotuo
18 | *
19 | */
20 | public class ModelCalc {
21 | public static void main(String[] args) throws IOException {
22 | if(args.length < 2){
23 | System.out.println("参数个数不匹配");
24 | }
25 | //文件生成路径
26 | PrintStream ps=new PrintStream("result.txt");
27 | System.setOut(ps);
28 |
29 | String pmmlPath = args[0];
30 | String modelArgsFilePath = args[1];
31 |
32 | ModelInvoker invoker = new ModelInvoker(pmmlPath);
33 | List