├── losses ├── losses.npy ├── CNN-LSTM_losses.npy ├── GCN-LSTM_losses.npy ├── losses_allUsers.npy ├── C-GCN-LSTM_losses.npy ├── S-GCN-LSTM_losses.npy ├── C-GCN-LSTM_losses_allUsers.npy ├── CNN-LSTM_losses_allUsers.npy ├── GCN-LSTM_losses_allUsers.npy └── S-GCN-LSTM_losses_allUsers.npy ├── 收敛性Training_loss_new ├── Training_loss.jpg ├── Training_loss.pdf ├── Training_loss_AllUsers.pdf ├── Training_loss_oneUser.pdf ├── Training_loss_oneUser.eps ├── Training_loss_AllUsers.eps └── Training_loss.eps ├── pltTrainingLossOfDifferentMethod.py ├── README.md ├── CS-GCN-LSTM_predict.py ├── CS-GCN-LSTM.py ├── CS-GCN-LSTM_AllUsers_predict.py └── CS-GCN-LSTM_AllUsers.py /losses/losses.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/losses.npy -------------------------------------------------------------------------------- /losses/CNN-LSTM_losses.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/CNN-LSTM_losses.npy -------------------------------------------------------------------------------- /losses/GCN-LSTM_losses.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/GCN-LSTM_losses.npy -------------------------------------------------------------------------------- /losses/losses_allUsers.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/losses_allUsers.npy -------------------------------------------------------------------------------- /losses/C-GCN-LSTM_losses.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/C-GCN-LSTM_losses.npy -------------------------------------------------------------------------------- /losses/S-GCN-LSTM_losses.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/S-GCN-LSTM_losses.npy -------------------------------------------------------------------------------- /losses/C-GCN-LSTM_losses_allUsers.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/C-GCN-LSTM_losses_allUsers.npy -------------------------------------------------------------------------------- /losses/CNN-LSTM_losses_allUsers.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/CNN-LSTM_losses_allUsers.npy -------------------------------------------------------------------------------- /losses/GCN-LSTM_losses_allUsers.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/GCN-LSTM_losses_allUsers.npy -------------------------------------------------------------------------------- /losses/S-GCN-LSTM_losses_allUsers.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/losses/S-GCN-LSTM_losses_allUsers.npy -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/收敛性Training_loss_new/Training_loss.jpg -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/收敛性Training_loss_new/Training_loss.pdf -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss_AllUsers.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/收敛性Training_loss_new/Training_loss_AllUsers.pdf -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss_oneUser.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lidongyang1/CS-UPL/HEAD/收敛性Training_loss_new/Training_loss_oneUser.pdf -------------------------------------------------------------------------------- /pltTrainingLossOfDifferentMethod.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # @Time : 2022/4/7 7:54 3 | # @Author : cmdxmm 4 | # @FileName: plotPredictAndGroundTrue_Matrix.py 5 | # @Email :lidongyang@mail.sdu.edu.cn 6 | 7 | import numpy as np 8 | import matplotlib.pyplot as plt 9 | oneUser_CS_GCN_LSTM = np.load('./losses/losses.npy') 10 | oneUser_S_GCN_LSTM = np.load('./losses/S-GCN-LSTM_losses.npy') 11 | oneUser_C_GCN_LSTM = np.load('./losses/C-GCN-LSTM_losses.npy') 12 | oneUser_GCN_LSTM = np.load('./losses/GCN-LSTM_losses.npy') 13 | AllUser_CS_GCN_LSTM = np.load('./losses/losses_allUsers.npy') 14 | AllUser_S_GCN_LSTM = np.load('./losses/S-GCN-LSTM_losses_allUsers.npy') 15 | AllUser_C_GCN_LSTM = np.load('./losses/C-GCN-LSTM_losses_allUsers.npy') 16 | AllUser_GCN_LSTM = np.load('./losses/GCN-LSTM_losses_allUsers.npy') 17 | labels=['UPL(Single User)','C-UPL(Single User)','S-UPL(Single User)','CS-UPL(Single User)','UPL(Multiple Users)','C-UPL(Multiple Users)','S-UPL(Multiple Users)','CS-UPL(Multiple Users)'] 18 | x = np.arange(100) 19 | 20 | plt.figure() 21 | plt.plot(x,oneUser_GCN_LSTM,label=labels[0],linewidth=2) 22 | plt.plot(x,oneUser_C_GCN_LSTM,label=labels[1],linewidth=2) 23 | plt.plot(x,oneUser_S_GCN_LSTM,label=labels[2],linewidth=2) 24 | plt.plot(x,oneUser_CS_GCN_LSTM,label=labels[3],linewidth=2) 25 | plt.plot(x,AllUser_GCN_LSTM,label=labels[4],linewidth=2) 26 | plt.plot(x,AllUser_C_GCN_LSTM,label=labels[5],linewidth=2) 27 | plt.plot(x,AllUser_S_GCN_LSTM,label=labels[6],linewidth=2) 28 | plt.plot(x,AllUser_CS_GCN_LSTM,label=labels[7],linewidth=2) 29 | plt.legend(ncol=2,fontsize=10.5) 30 | plt.xlabel('Epochs', fontsize=15,fontweight='bold') 31 | plt.ylabel('Training Loss', fontsize=15,fontweight='bold') 32 | plt.grid(ls='--') 33 | plt.show() 34 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # User-Preference-Learning-based-Proactive-Edge-Caching-for-D2D-Assisted-Wireless-Networks 2 | ## Abstract 3 | This work investigates proactive edge caching for device-to-device (D2D) assisted wireless networks, where user equipment (UE) can be selected as caching nodes to assist content delivery for reducing the content transmission latency. Doing so, there are two challenging problems: 1) How to precisely learn the user's preference to cache the proper contents on each UE; 2) How to replace the contents cached on UEs when there are new popular contents continuously emerging. To address these, a user preference learning-based proactive edge caching (UPL-PEC) strategy is proposed in this work. In the strategy, we first propose a novel context and social-aware user preference learning method to precisely predict user's dynamic preferences by jointly exploiting the context correlation among different contents, the influence of social relationships and the time-sequential patterns of user's content requests. Specifically, we utilize the bidirectional long short term memory networks to capture the time-sequential patterns of user's content request. And, the graph convolutional networks are adopted to capture the high-order similarity representation among different contents from the constructed content graph. To learn the social influence representation, an attention mechanism is developed to generate the social influence weights to users with different social relationship. Based on the user preference learning, 4 | a learning-based proactive edge caching architecture is proposed to continuously caching the popular contents on UEs by integrating the offline caching 5 | content placement and the online caching content replacement policy. Real-world trace-based simulation results show that the proposed UPL-PEC strategy 6 | outperforms the compared existing caching strategies at about 2.5\%-45.3\% in terms of the average content transmission latency. 7 | 8 | ## Requirements 9 | stellargraph == 1.2.1 10 | tensorflow-gpu == 2.1.0 11 | pandas = 1.3.4 12 | numpy == 1.19.5 13 | matplotlib == 3.5.0 14 | ## Dataset 15 | We uploaded the processed dataset to:https://pan.baidu.com/s/1i9R6PJDiEhxxhTgAr8fdLQ 16 | Extraction Code:g97g 17 | 18 | 19 | Based on the reviewers' comments, we revised the number of users to 100 in the final version of the paper. 20 | The update dataset can be seen at:https://pan.baidu.com/s/11KETpeBprwuvOoczMMgXzQ 21 | Extraction Code:s2i8 22 | 23 | ## Training 24 | ``` 25 | python CS-GCN-LSTM.py #To train the model in single user scenario 26 | 27 | python CS-GCN-LSTM_AllUsers.py #To train the model in multiple user scenarios 28 | ``` 29 | ## Predict 30 | 31 | ``` 32 | python CS-GCN-LSTM_predict.py #To predict the results in single user scenario 33 | 34 | python CS-GCN-LSTM_AllUsers_predict.py #To predict the results in multiple user scenarios 35 | ``` 36 | 37 | ## Results 38 | The convergence of the proposed CS-UPL method is investigated, and comparisons are made with UPL, C-UPL and S-UPL in single user and multiple users scenarios. The results are shown in Fig.\ref{convergence}, from which it is seen that the training loss of four methods all gradually converges as the epoch increases. But, the proposed CS-UPL method outperforms UPL, C-UPL and S-UPL methods on the convergence speed and prediction accuracy for all the single user and multiple users scenarios. This proves that the user preference learning method jointly considering the context correlation among different contents and the influence of social relationships can have a better prediction performance. 39 | 40 | 41 | 42 | ## Pleasae cite the work if you would like to use it 43 | 44 | [1] Dongyang Li, Haixia Zhang, Hui Ding, Tiantian Li, Daojun Liang and Dongfeng Yuan, "User Preference Learning-based Proactive Edge Caching for D2D-Assisted Wireless Networks," in IEEE Internet of Things Journal, early access. DOI:10.1109/JIOT.2023.3244621. 45 | 46 | [2] Dongyang Li, Haixia Zhang, Tiantian Li, Hui Ding and Dongfeng Yuan, "Community Detection and Attention-Weighted Federated Learning Based Proactive Edge Caching for D2D-Assisted Wireless Networks," in IEEE Transactions on Wireless Communications,early access. DOI:10.1109/TWC.2023.3249756. 47 | 48 | [3] Dongyang Li, Haixia Zhang, Dongfeng Yuan and Minggao Zhang, "Learning-Based Hierarchical Edge Caching for Cloud-Aided Heterogeneous Networks," in IEEE Transactions on Wireless Communications,early access. DOI:10.1109/TWC.2022.3206236. 49 | 50 | 51 | 52 | -------------------------------------------------------------------------------- /CS-GCN-LSTM_predict.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # @Time : 2022/2/21 16:17 3 | # @Author : cmdxmm 4 | # @FileName: getDifferentUserData_less_30000.py 5 | # @Email :lidongyang@mail.sdu.edu.cn 6 | import numpy as np 7 | from tensorflow.keras import Model 8 | from stellargraph.layer import GCN_LSTM 9 | import pandas as pd 10 | import tensorflow as tf 11 | from tensorflow import keras 12 | import tensorflow.keras as K 13 | import heapq 14 | import math 15 | from sklearn.metrics import mean_squared_error #MSE 16 | from sklearn.metrics import mean_absolute_error #MAE 17 | from sklearn.metrics import r2_score 18 | 19 | class LossHistory(keras.callbacks.Callback): 20 | def on_train_begin(self, logs={}): 21 | self.losses = [] 22 | def on_epoch_end(self, batch, logs={}): 23 | self.losses.append(logs.get('loss')) 24 | 25 | ####将数据分为训练集和测试集 26 | def train_test_split(data, train_portion): 27 | time_len = data.shape[1] 28 | train_size = int(time_len * train_portion) 29 | train_data = np.array(data.iloc[:, :train_size]) 30 | test_data = np.array(data.iloc[:, train_size:]) 31 | return train_data, test_data 32 | 33 | ###对数据进行归一化 34 | def scale_data(train_data, test_data): 35 | # print(np.argwhere(np.isnan(train_data))) 36 | # print(np.argwhere(np.isnan(test_data))) 37 | train_data = np.abs(train_data) 38 | test_data = np.abs(test_data) 39 | max_speed = train_data.max() 40 | min_speed = train_data.min() 41 | print('max:',max_speed) 42 | print('min:',min_speed) 43 | train_scaled = (train_data - min_speed) / (max_speed - min_speed) 44 | test_scaled = (test_data - min_speed) / (max_speed - min_speed) 45 | return train_scaled, test_scaled 46 | 47 | #将数据转成10个step训练1个step的格式 48 | def sequence_data_preparation(seq_len, pre_len, train_data, test_data): 49 | trainX, trainY, testX, testY = [], [], [], [] 50 | 51 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 52 | a = train_data[:, i : i + seq_len + pre_len] 53 | trainX.append(a[:, :seq_len]) 54 | trainY.append(a[:, -1]) 55 | 56 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 57 | b = test_data[:, i : i + seq_len + pre_len] 58 | testX.append(b[:, :seq_len]) 59 | testY.append(b[:, -1]) 60 | 61 | trainX = np.array(trainX) 62 | trainY = np.array(trainY) 63 | testX = np.array(testX) 64 | testY = np.array(testY) 65 | 66 | return trainX, trainY, testX, testY 67 | 68 | #将数据转成10个step训练1个step的格式 69 | def sequence_data_preparationOtherUsers(seq_len, pre_len, train_data, test_data): 70 | trainX, trainY, testX, testY = [], [], [], [] 71 | 72 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 73 | a = train_data[:, i : i + seq_len + pre_len] 74 | trainX.append(a[:, -2]) 75 | trainY.append(a[:, -1]) 76 | 77 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 78 | b = test_data[:, i : i + seq_len + pre_len] 79 | testX.append(b[:, -2]) 80 | testY.append(b[:, -1]) 81 | 82 | trainX = np.array(trainX) 83 | trainY = np.array(trainY) 84 | testX = np.array(testX) 85 | testY = np.array(testY) 86 | 87 | return trainX, trainY, testX, testY 88 | 89 | def attention_block(inputs,time_stpes): 90 | input_dim = int(inputs.shape[2]) # shape = (batch_size, time_steps, input_dim) 91 | 92 | a = keras.layers.Permute((2, 1))(inputs) # shape = (batch_size, input_dim, time_steps) 93 | 94 | a = keras.layers.Reshape((input_dim, time_stpes))(a) # this line is not useful. It's just to know which dimension is what. 95 | 96 | a = tf.keras.layers.Dense(time_stpes, activation='softmax')(a)# 为了让输出的维数和时间序列数相同(这样才能生成各个时间点的注意力值) 97 | 98 | a = keras.layers.Lambda(lambda x: K.backend.mean(x, axis=1), name='dim_reduction')(a) 99 | a = keras.layers.RepeatVector(input_dim)(a) 100 | 101 | a_probs = keras.layers.Permute((2, 1), name='attention_vec')(a) # shape = (batch_size, time_steps, input_dim) 102 | 103 | output_attention_mul = keras.layers.Multiply()([inputs, a_probs]) #把注意力值和输入按位相乘,权重乘以输入 104 | 105 | return output_attention_mul 106 | 107 | def getOneDimension(X): 108 | l = [] 109 | for m in range(len(X)): 110 | for i in X[m]: 111 | l.append(i) 112 | return l 113 | def mape(y_true, y_pred): 114 | for i in range(len(y_true)): 115 | if y_true[i]==0: 116 | y_true[i]=0.1 117 | return np.mean(np.abs((y_pred - y_true) / y_true)) 118 | 119 | userId = 0 #当前为用户1的相似用户辅助信息 120 | top_k = 3 121 | seq_len = 24 122 | pre_len = 25 123 | 124 | view_counts = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_1_Contents.npy') 125 | video_dist_adj = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/Content_EdgeMatrix.npy') 126 | view_counts= pd.DataFrame(view_counts) 127 | num_nodes, time_len = view_counts.shape 128 | train_rate = 0.8 129 | train_data, test_data = train_test_split(view_counts, train_rate) 130 | trainX, trainY, testX, testY = sequence_data_preparation( 131 | seq_len, pre_len, train_data, test_data 132 | ) 133 | 134 | 135 | SocialRelationship = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/socialRelationship.npy') 136 | SocialSimilarityUsers = np.delete(heapq.nlargest(top_k+1,range(len(SocialRelationship[userId])),SocialRelationship[userId].take), userId, axis=0) 137 | view_counts_top_1 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[0]+1)+'_Contents.npy') 138 | view_counts_top_2 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[1]+1)+'_Contents.npy') 139 | view_counts_top_3 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[2]+1)+'_Contents.npy') 140 | 141 | view_counts_top_1 = pd.DataFrame(view_counts_top_1) 142 | view_counts_top_2 = pd.DataFrame(view_counts_top_2) 143 | view_counts_top_3 = pd.DataFrame(view_counts_top_3) 144 | 145 | train_data_top_1, test_data_top_1 = train_test_split(view_counts_top_1, train_rate) 146 | train_data_top_2, test_data_top_2 = train_test_split(view_counts_top_2, train_rate) 147 | train_data_top_3, test_data_top_3 = train_test_split(view_counts_top_3, train_rate) 148 | 149 | 150 | trainX_top_1, _, testX_top_1, _ = sequence_data_preparationOtherUsers( 151 | seq_len, pre_len, train_data_top_1, test_data_top_1 152 | ) 153 | trainX_top_2, _, testX_top_2, _ = sequence_data_preparationOtherUsers( 154 | seq_len, pre_len, train_data_top_2, test_data_top_2 155 | ) 156 | trainX_top_3, _, testX_top_3, _ = sequence_data_preparationOtherUsers( 157 | seq_len, pre_len, train_data_top_3, test_data_top_3 158 | ) 159 | 160 | gcn_lstm = GCN_LSTM( 161 | seq_len=seq_len, 162 | adj=video_dist_adj, 163 | gc_layer_sizes=[32, 64], 164 | gc_activations=["relu", "relu"], 165 | lstm_layer_sizes=[32, 64], 166 | lstm_activations=["relu","relu"], 167 | dropout=0.2, 168 | ) 169 | x_input, x_output1 = gcn_lstm.in_out_tensors() 170 | x_output1 = keras.layers.Dense(200,activation='relu')(x_output1) 171 | 172 | input1 = tf.keras.Input(shape=(400,24), name='input1') 173 | x1 = keras.layers.Bidirectional(keras.layers.LSTM(32,activation='tanh',return_sequences=True))(input1) 174 | x2 = keras.layers.Bidirectional(keras.layers.LSTM(64,activation='tanh',return_sequences=False))(x1) 175 | 176 | x3 = tf.keras.layers.Dense(512,activation='relu')(x2) 177 | x_output = keras.layers.Dense(400,activation='relu')(x3) 178 | 179 | 180 | input_top_1 = tf.keras.Input(shape=(400), name='input_top_1') 181 | input_top_2 = tf.keras.Input(shape=(400), name='input_top_2') 182 | input_top_3 = tf.keras.Input(shape=(400), name='input_top_3') 183 | 184 | x1_input_top_1 = keras.layers.Dense(512,activation='relu')(input_top_1) 185 | x2_input_top_1 = keras.layers.Dense(100,activation='relu')(x1_input_top_1) 186 | 187 | x1_input_top_2 = keras.layers.Dense(512,activation='relu')(input_top_2) 188 | x2_input_top_2 = keras.layers.Dense(100,activation='relu')(x1_input_top_2) 189 | 190 | 191 | x1_input_top_3 = keras.layers.Dense(512,activation='relu')(input_top_3) 192 | x2_input_top_3 = keras.layers.Dense(100,activation='relu')(x1_input_top_3) 193 | 194 | top_k_output = keras.layers.Concatenate()([x2_input_top_1,x2_input_top_2,x2_input_top_3]) 195 | 196 | top_k_output = keras.layers.Reshape((3,100))(top_k_output) 197 | 198 | top_k_output = attention_block(top_k_output,3) 199 | # 200 | 201 | top_k_output = keras.layers.Flatten()(top_k_output) 202 | # 203 | # top_k_output = keras.layers.Dense(100)(top_k_output) 204 | 205 | # ,top_k_output 206 | x_output_f1 = keras.layers.Concatenate()([x_output1,x_output]) 207 | x_output_f1 = keras.layers.Dense(100,activation='relu')(x_output_f1) 208 | 209 | x_output_f2 = keras.layers.Concatenate()([x_output,top_k_output]) 210 | x_output_f2 = keras.layers.Dense(100,activation='relu')(x_output_f2) 211 | 212 | 213 | x_output_f = keras.layers.Concatenate()([x_output,x_output_f1,x_output_f2]) 214 | x_output_f = keras.layers.Dense(512,activation='relu')(x_output_f) 215 | x_output_f = keras.layers.Dense(400)(x_output_f) 216 | 217 | model = Model(inputs=[x_input,input1,input_top_1,input_top_2,input_top_3], outputs=x_output_f) 218 | model.load_weights('./model/CS-GCN-LSTM.h5') 219 | predict = model.predict([testX,testX,testX_top_1,testX_top_2,testX_top_3]) 220 | np.save('Results/CS-GCN-LSTM/User=30_FileNum=400_predict.npy', predict) 221 | np.save('Results/CS-GCN-LSTM/User=30_FileNum=400_test.npy', testY) 222 | predict = np.array(getOneDimension(predict)) 223 | test = np.array(getOneDimension(testY)) 224 | 225 | print(mean_absolute_error(predict,test)) 226 | print(np.sqrt(mean_squared_error(predict,test))) 227 | print(r2_score(predict,test)) 228 | -------------------------------------------------------------------------------- /CS-GCN-LSTM.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # @Time : 2022/2/21 16:17 3 | # @Author : cmdxmm 4 | # @FileName: getDifferentUserData_less_30000.py 5 | # @Email :lidongyang@mail.sdu.edu.cn 6 | import numpy as np 7 | from tensorflow.keras import Model 8 | from stellargraph.layer import GCN_LSTM 9 | import pandas as pd 10 | import tensorflow as tf 11 | from tensorflow.keras.callbacks import ModelCheckpoint 12 | from tensorflow import keras 13 | import tensorflow.keras as K 14 | import heapq 15 | from tensorflow.keras.utils import plot_model 16 | 17 | 18 | class LossHistory(keras.callbacks.Callback): 19 | def on_train_begin(self, logs={}): 20 | self.losses = [] 21 | def on_epoch_end(self, batch, logs={}): 22 | self.losses.append(logs.get('loss')) 23 | 24 | ####将数据分为训练集和测试集 25 | def train_test_split(data, train_portion): 26 | time_len = data.shape[1] 27 | train_size = int(time_len * train_portion) 28 | train_data = np.array(data.iloc[:, :train_size]) 29 | test_data = np.array(data.iloc[:, train_size:]) 30 | return train_data, test_data 31 | 32 | ###对数据进行归一化 33 | def scale_data(train_data, test_data): 34 | # print(np.argwhere(np.isnan(train_data))) 35 | # print(np.argwhere(np.isnan(test_data))) 36 | train_data = np.abs(train_data) 37 | test_data = np.abs(test_data) 38 | max_speed = train_data.max() 39 | min_speed = train_data.min() 40 | print('max:',max_speed) 41 | print('min:',min_speed) 42 | train_scaled = (train_data - min_speed) / (max_speed - min_speed) 43 | test_scaled = (test_data - min_speed) / (max_speed - min_speed) 44 | return train_scaled, test_scaled 45 | 46 | #将数据转成10个step训练1个step的格式 47 | def sequence_data_preparation(seq_len, pre_len, train_data, test_data): 48 | trainX, trainY, testX, testY = [], [], [], [] 49 | 50 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 51 | a = train_data[:, i : i + seq_len + pre_len] 52 | trainX.append(a[:, :seq_len]) 53 | trainY.append(a[:, -1]) 54 | 55 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 56 | b = test_data[:, i : i + seq_len + pre_len] 57 | testX.append(b[:, :seq_len]) 58 | testY.append(b[:, -1]) 59 | 60 | trainX = np.array(trainX) 61 | trainY = np.array(trainY) 62 | testX = np.array(testX) 63 | testY = np.array(testY) 64 | 65 | return trainX, trainY, testX, testY 66 | 67 | #将数据转成10个step训练1个step的格式 68 | def sequence_data_preparationOtherUsers(seq_len, pre_len, train_data, test_data): 69 | trainX, trainY, testX, testY = [], [], [], [] 70 | 71 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 72 | a = train_data[:, i : i + seq_len + pre_len] 73 | trainX.append(a[:, -2]) 74 | trainY.append(a[:, -1]) 75 | 76 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 77 | b = test_data[:, i : i + seq_len + pre_len] 78 | testX.append(b[:, -2]) 79 | testY.append(b[:, -1]) 80 | 81 | trainX = np.array(trainX) 82 | trainY = np.array(trainY) 83 | testX = np.array(testX) 84 | testY = np.array(testY) 85 | 86 | return trainX, trainY, testX, testY 87 | 88 | def attention_block(inputs,time_stpes): 89 | input_dim = int(inputs.shape[2]) # shape = (batch_size, time_steps, input_dim) 90 | 91 | a = keras.layers.Permute((2, 1))(inputs) # shape = (batch_size, input_dim, time_steps) 92 | 93 | a = keras.layers.Reshape((input_dim, time_stpes))(a) # this line is not useful. It's just to know which dimension is what. 94 | 95 | a = tf.keras.layers.Dense(time_stpes, activation='softmax')(a)# 为了让输出的维数和时间序列数相同(这样才能生成各个时间点的注意力值) 96 | 97 | a = keras.layers.Lambda(lambda x: K.backend.mean(x, axis=1), name='dim_reduction')(a) 98 | a = keras.layers.RepeatVector(input_dim)(a) 99 | 100 | a_probs = keras.layers.Permute((2, 1), name='attention_vec')(a) # shape = (batch_size, time_steps, input_dim) 101 | 102 | output_attention_mul = keras.layers.Multiply()([inputs, a_probs]) #把注意力值和输入按位相乘,权重乘以输入 103 | 104 | return output_attention_mul 105 | 106 | userId = 0 #当前为用户1的相似用户辅助信息 107 | top_k = 3 108 | seq_len = 24 109 | pre_len = 25 110 | 111 | view_counts = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_1_Contents.npy') 112 | video_dist_adj = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/Content_EdgeMatrix.npy') 113 | view_counts= pd.DataFrame(view_counts) 114 | num_nodes, time_len = view_counts.shape 115 | train_rate = 0.8 116 | print(view_counts.shape) 117 | train_data, test_data = train_test_split(view_counts, train_rate) 118 | print("Train data: ", train_data.shape) 119 | print("Test data: ", test_data.shape) 120 | trainX, trainY, testX, testY = sequence_data_preparation( 121 | seq_len, pre_len, train_data, test_data 122 | ) 123 | 124 | 125 | SocialRelationship = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/socialRelationship.npy') 126 | SocialSimilarityUsers = np.delete(heapq.nlargest(top_k+1,range(len(SocialRelationship[userId])),SocialRelationship[userId].take), userId, axis=0) 127 | print(SocialSimilarityUsers[0]) 128 | view_counts_top_1 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[0]+1)+'_Contents.npy') 129 | view_counts_top_2 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[1]+1)+'_Contents.npy') 130 | view_counts_top_3 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[2]+1)+'_Contents.npy') 131 | 132 | view_counts_top_1 = pd.DataFrame(view_counts_top_1) 133 | view_counts_top_2 = pd.DataFrame(view_counts_top_2) 134 | view_counts_top_3 = pd.DataFrame(view_counts_top_3) 135 | 136 | train_data_top_1, test_data_top_1 = train_test_split(view_counts_top_1, train_rate) 137 | train_data_top_2, test_data_top_2 = train_test_split(view_counts_top_2, train_rate) 138 | train_data_top_3, test_data_top_3 = train_test_split(view_counts_top_3, train_rate) 139 | 140 | 141 | print("Train data: ", train_data_top_1.shape) 142 | print("Test data: ", test_data_top_1.shape) 143 | trainX_top_1, _, testX_top_1, _ = sequence_data_preparationOtherUsers( 144 | seq_len, pre_len, train_data_top_1, test_data_top_1 145 | ) 146 | trainX_top_2, _, testX_top_2, _ = sequence_data_preparationOtherUsers( 147 | seq_len, pre_len, train_data_top_2, test_data_top_2 148 | ) 149 | trainX_top_3, _, testX_top_3, _ = sequence_data_preparationOtherUsers( 150 | seq_len, pre_len, train_data_top_3, test_data_top_3 151 | ) 152 | 153 | gcn_lstm = GCN_LSTM( 154 | seq_len=seq_len, 155 | adj=video_dist_adj, 156 | gc_layer_sizes=[32, 64], 157 | gc_activations=["relu", "relu"], 158 | lstm_layer_sizes=[32, 64], 159 | lstm_activations=["relu","relu"], 160 | dropout=0.2, 161 | ) 162 | x_input, x_output1 = gcn_lstm.in_out_tensors() 163 | x_output1 = keras.layers.Dense(200,activation='relu')(x_output1) 164 | 165 | input1 = tf.keras.Input(shape=(400,24), name='input1') 166 | x1 = keras.layers.Bidirectional(keras.layers.LSTM(32,activation='tanh',return_sequences=True))(input1) 167 | x2 = keras.layers.Bidirectional(keras.layers.LSTM(64,activation='tanh',return_sequences=False))(x1) 168 | 169 | x3 = tf.keras.layers.Dense(512,activation='relu')(x2) 170 | x_output = keras.layers.Dense(400,activation='relu')(x3) 171 | 172 | 173 | input_top_1 = tf.keras.Input(shape=(400), name='input_top_1') 174 | input_top_2 = tf.keras.Input(shape=(400), name='input_top_2') 175 | input_top_3 = tf.keras.Input(shape=(400), name='input_top_3') 176 | 177 | x1_input_top_1 = keras.layers.Dense(512,activation='relu')(input_top_1) 178 | x2_input_top_1 = keras.layers.Dense(100,activation='relu')(x1_input_top_1) 179 | 180 | x1_input_top_2 = keras.layers.Dense(512,activation='relu')(input_top_2) 181 | x2_input_top_2 = keras.layers.Dense(100,activation='relu')(x1_input_top_2) 182 | 183 | 184 | x1_input_top_3 = keras.layers.Dense(512,activation='relu')(input_top_3) 185 | x2_input_top_3 = keras.layers.Dense(100,activation='relu')(x1_input_top_3) 186 | 187 | top_k_output = keras.layers.Concatenate()([x2_input_top_1,x2_input_top_2,x2_input_top_3]) 188 | 189 | top_k_output = keras.layers.Reshape((3,100))(top_k_output) 190 | 191 | top_k_output = attention_block(top_k_output,3) 192 | # 193 | 194 | top_k_output = keras.layers.Flatten()(top_k_output) 195 | # 196 | # top_k_output = keras.layers.Dense(100)(top_k_output) 197 | 198 | # ,top_k_output 199 | x_output_f1 = keras.layers.Concatenate()([x_output1,x_output]) 200 | x_output_f1 = keras.layers.Dense(100,activation='relu')(x_output_f1) 201 | 202 | x_output_f2 = keras.layers.Concatenate()([x_output,top_k_output]) 203 | x_output_f2 = keras.layers.Dense(100,activation='relu')(x_output_f2) 204 | 205 | 206 | x_output_f = keras.layers.Concatenate()([x_output,x_output_f1,x_output_f2]) 207 | x_output_f = keras.layers.Dense(512,activation='relu')(x_output_f) 208 | x_output_f = keras.layers.Dense(400)(x_output_f) 209 | 210 | model = Model(inputs=[x_input,input1,input_top_1,input_top_2,input_top_3], outputs=x_output_f) 211 | 212 | adam = tf.keras.optimizers.Adam(learning_rate=0.001) 213 | history = model.compile(optimizer=adam, loss="mae", metrics=["mae"]) 214 | checkpoint = ModelCheckpoint(filepath='model/CS-GCN-LSTM.h5', monitor='val_loss', mode='auto', save_best_only='True', verbose=1) 215 | history = LossHistory() 216 | callback_lists = [checkpoint,history] 217 | model.summary() 218 | plot_model(model,to_file='model.png',show_shapes=True) 219 | 220 | history2 = model.fit( 221 | [trainX,trainX,trainX_top_1,trainX_top_2,trainX_top_3], 222 | trainY, 223 | epochs=100, 224 | batch_size=8, 225 | shuffle=True, 226 | verbose=1, 227 | validation_data=[[testX,testX,testX_top_1,testX_top_2,testX_top_3], testY], 228 | callbacks=callback_lists 229 | ) 230 | 231 | print( 232 | "Train loss: ", 233 | history2.history["loss"][-1], 234 | "\nTest loss:", 235 | history2.history["val_loss"][-1], 236 | ) 237 | losses = history.losses 238 | print(losses) 239 | np.save('./model/losses/' 240 | 'losses.npy',losses) 241 | -------------------------------------------------------------------------------- /CS-GCN-LSTM_AllUsers_predict.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # @Time : 2022/2/21 16:17 3 | # @Author : cmdxmm 4 | # @FileName: getDifferentUserData_less_30000.py 5 | # @Email :lidongyang@mail.sdu.edu.cn 6 | import numpy as np 7 | from tensorflow.keras import Model 8 | from stellargraph.layer import GCN_LSTM 9 | import pandas as pd 10 | import tensorflow as tf 11 | from tensorflow.keras.callbacks import ModelCheckpoint 12 | from tensorflow import keras 13 | import tensorflow.keras as K 14 | import heapq 15 | from tensorflow.keras.utils import plot_model 16 | from sklearn.metrics import mean_squared_error #MSE 17 | from sklearn.metrics import mean_absolute_error #MAE 18 | from sklearn.metrics import r2_score 19 | def getOneDimension(X): 20 | l = [] 21 | for m in range(len(X)): 22 | for i in X[m]: 23 | l.append(i) 24 | return l 25 | class LossHistory(keras.callbacks.Callback): 26 | def on_train_begin(self, logs={}): 27 | self.losses = [] 28 | def on_epoch_end(self, batch, logs={}): 29 | self.losses.append(logs.get('loss')) 30 | 31 | ####将数据分为训练集和测试集 32 | def train_test_split(data, train_portion): 33 | time_len = data.shape[1] 34 | train_size = int(time_len * train_portion) 35 | train_data = np.array(data.iloc[:, :train_size]) 36 | test_data = np.array(data.iloc[:, train_size:]) 37 | return train_data, test_data 38 | 39 | ###对数据进行归一化 40 | def scale_data(train_data, test_data): 41 | train_data = np.abs(train_data) 42 | test_data = np.abs(test_data) 43 | max_speed = train_data.max() 44 | min_speed = train_data.min() 45 | print('max:',max_speed) 46 | print('min:',min_speed) 47 | train_scaled = (train_data - min_speed) / (max_speed - min_speed) 48 | test_scaled = (test_data - min_speed) / (max_speed - min_speed) 49 | return train_scaled, test_scaled 50 | 51 | #将数据转成10个step训练1个step的格式 52 | def sequence_data_preparation(seq_len, pre_len, train_data, test_data): 53 | trainX, trainY, testX, testY = [], [], [], [] 54 | 55 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 56 | a = train_data[:, i : i + seq_len + pre_len] 57 | trainX.append(a[:, :seq_len]) 58 | trainY.append(a[:, -1]) 59 | 60 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 61 | b = test_data[:, i : i + seq_len + pre_len] 62 | testX.append(b[:, :seq_len]) 63 | testY.append(b[:, -1]) 64 | 65 | trainX = np.array(trainX) 66 | trainY = np.array(trainY) 67 | testX = np.array(testX) 68 | testY = np.array(testY) 69 | 70 | return trainX, trainY, testX, testY 71 | 72 | #将数据转成10个step训练1个step的格式 73 | def sequence_data_preparationOtherUsers(seq_len, pre_len, train_data, test_data): 74 | trainX, trainY, testX, testY = [], [], [], [] 75 | 76 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 77 | a = train_data[:, i : i + seq_len + pre_len] 78 | trainX.append(a[:, -2]) 79 | trainY.append(a[:, -1]) 80 | 81 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 82 | b = test_data[:, i : i + seq_len + pre_len] 83 | testX.append(b[:, -2]) 84 | testY.append(b[:, -1]) 85 | 86 | trainX = np.array(trainX) 87 | trainY = np.array(trainY) 88 | testX = np.array(testX) 89 | testY = np.array(testY) 90 | 91 | return trainX, trainY, testX, testY 92 | 93 | def attention_block(inputs,time_stpes): 94 | input_dim = int(inputs.shape[2]) # shape = (batch_size, time_steps, input_dim) 95 | 96 | a = keras.layers.Permute((2, 1))(inputs) # shape = (batch_size, input_dim, time_steps) 97 | 98 | a = keras.layers.Reshape((input_dim, time_stpes))(a) # this line is not useful. It's just to know which dimension is what. 99 | 100 | a = tf.keras.layers.Dense(time_stpes, activation='softmax')(a) # 为了让输出的维数和时间序列数相同(这样才能生成各个时间点的注意力值) 101 | 102 | a = keras.layers.Lambda(lambda x: K.backend.mean(x, axis=1), name='dim_reduction')(a) 103 | a = keras.layers.RepeatVector(input_dim)(a) 104 | 105 | a_probs = keras.layers.Permute((2, 1), name='attention_vec')(a) # shape = (batch_size, time_steps, input_dim) 106 | 107 | output_attention_mul = keras.layers.Multiply()([inputs, a_probs]) # 把注意力值和输入按位相乘,权重乘以输入 108 | 109 | return output_attention_mul 110 | 111 | def getMostNSimilarityUEs(topN,Similarity): 112 | topN_index = [] 113 | tmp = np.sort(Similarity) 114 | MostValues = [] 115 | for i in range(topN): 116 | MostValues.append(tmp[len(Similarity)-i-1]) 117 | for i in range(topN): 118 | for j in range(len(Similarity)): 119 | if MostValues[i] == Similarity[j]: 120 | topN_index.append(j) 121 | return topN_index 122 | 123 | userId = 0 # 当前为用户1的相似用户辅助信息 124 | top_k = 3 125 | seq_len = 24 126 | pre_len = 25 127 | userNum = 30 128 | 129 | trainX_allUser = [] 130 | trainY_allUser = [] 131 | testX_allUser = [] 132 | testY_allUser = [] 133 | trainX_top_1_allUser = [] 134 | trainX_top_2_allUser = [] 135 | trainX_top_3_allUser = [] 136 | testX_top_1_allUser = [] 137 | testX_top_2_allUser = [] 138 | testX_top_3_allUser = [] 139 | 140 | for userId in range(userNum): 141 | view_counts = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(userId+1)+'_Contents.npy') 142 | video_dist_adj = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/Content_EdgeMatrix.npy') 143 | view_counts= pd.DataFrame(view_counts) 144 | num_nodes, time_len = view_counts.shape 145 | train_rate = 0.8 146 | print(view_counts.shape) 147 | train_data, test_data = train_test_split(view_counts, train_rate) 148 | print("Train data: ", train_data.shape) 149 | print("Test data: ", test_data.shape) 150 | trainX, trainY, testX, testY = sequence_data_preparation( 151 | seq_len, pre_len, train_data, test_data 152 | ) 153 | trainX_allUser.extend(trainX) 154 | trainY_allUser.extend(trainY) 155 | testX_allUser.extend(testX) 156 | testY_allUser.extend(testY) 157 | print('userId',userId) 158 | SocialRelationship = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/socialRelationship.npy') 159 | SocialSimilarityUsers = np.delete(getMostNSimilarityUEs(top_k+1,SocialRelationship[userId]), 0, axis=0) 160 | print(SocialSimilarityUsers[0]) 161 | view_counts_top_1 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[0]+1)+'_Contents.npy') 162 | view_counts_top_2 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[1]+1)+'_Contents.npy') 163 | view_counts_top_3 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[2]+1)+'_Contents.npy') 164 | 165 | view_counts_top_1 = pd.DataFrame(view_counts_top_1) 166 | view_counts_top_2 = pd.DataFrame(view_counts_top_2) 167 | view_counts_top_3 = pd.DataFrame(view_counts_top_3) 168 | 169 | train_data_top_1, test_data_top_1 = train_test_split(view_counts_top_1, train_rate) 170 | train_data_top_2, test_data_top_2 = train_test_split(view_counts_top_2, train_rate) 171 | train_data_top_3, test_data_top_3 = train_test_split(view_counts_top_3, train_rate) 172 | 173 | print("Train data: ", train_data_top_1.shape) 174 | print("Test data: ", test_data_top_1.shape) 175 | trainX_top_1, _, testX_top_1, _ = sequence_data_preparationOtherUsers( 176 | seq_len, pre_len, train_data_top_1, test_data_top_1 177 | ) 178 | trainX_top_2, _, testX_top_2, _ = sequence_data_preparationOtherUsers( 179 | seq_len, pre_len, train_data_top_2, test_data_top_2 180 | ) 181 | trainX_top_3, _, testX_top_3, _ = sequence_data_preparationOtherUsers( 182 | seq_len, pre_len, train_data_top_3, test_data_top_3 183 | ) 184 | trainX_top_1_allUser.extend(trainX_top_1) 185 | trainX_top_2_allUser.extend(trainX_top_2) 186 | trainX_top_3_allUser.extend(trainX_top_3) 187 | testX_top_1_allUser.extend(testX_top_1) 188 | testX_top_2_allUser.extend(testX_top_2) 189 | testX_top_3_allUser.extend(testX_top_3) 190 | 191 | trainX_allUser = np.array(trainX_allUser) 192 | trainY_allUser = np.array(trainY_allUser) 193 | testX_allUser = np.array(testX_allUser) 194 | testY_allUser = np.array(testY_allUser) 195 | trainX_top_1_allUser = np.array(trainX_top_1_allUser) 196 | trainX_top_2_allUser = np.array(trainX_top_2_allUser) 197 | trainX_top_3_allUser = np.array(trainX_top_3_allUser) 198 | testX_top_1_allUser = np.array(testX_top_1_allUser) 199 | testX_top_2_allUser = np.array(testX_top_2_allUser) 200 | testX_top_3_allUser = np.array(testX_top_3_allUser) 201 | print(trainX_allUser.shape) 202 | 203 | gcn_lstm = GCN_LSTM( 204 | seq_len=seq_len, 205 | adj=video_dist_adj, 206 | gc_layer_sizes=[32, 64], 207 | gc_activations=["relu", "relu"], 208 | lstm_layer_sizes=[32, 64], 209 | lstm_activations=["relu","relu"], 210 | dropout=0.2, 211 | 212 | ) 213 | x_input, x_output1 = gcn_lstm.in_out_tensors() 214 | x_output1 = keras.layers.Dense(200,activation='relu')(x_output1) 215 | 216 | input1 = tf.keras.Input(shape=(400,24), name='input1') 217 | x1 = keras.layers.Bidirectional(keras.layers.LSTM(32,activation='tanh',return_sequences=True))(input1) 218 | x2 = keras.layers.Bidirectional(keras.layers.LSTM(64,activation='tanh',return_sequences=False))(x1) 219 | 220 | x3 = tf.keras.layers.Dense(512,activation='relu')(x2) 221 | x_output = keras.layers.Dense(400,activation='relu')(x3) 222 | 223 | 224 | input_top_1 = tf.keras.Input(shape=(400), name='input_top_1') 225 | input_top_2 = tf.keras.Input(shape=(400), name='input_top_2') 226 | input_top_3 = tf.keras.Input(shape=(400), name='input_top_3') 227 | 228 | x1_input_top_1 = keras.layers.Dense(512,activation='relu')(input_top_1) 229 | x2_input_top_1 = keras.layers.Dense(100,activation='relu')(x1_input_top_1) 230 | 231 | x1_input_top_2 = keras.layers.Dense(512,activation='relu')(input_top_2) 232 | x2_input_top_2 = keras.layers.Dense(100,activation='relu')(x1_input_top_2) 233 | 234 | 235 | x1_input_top_3 = keras.layers.Dense(512,activation='relu')(input_top_3) 236 | x2_input_top_3 = keras.layers.Dense(100,activation='relu')(x1_input_top_3) 237 | 238 | top_k_output = keras.layers.Concatenate()([x2_input_top_1,x2_input_top_2,x2_input_top_3]) 239 | 240 | top_k_output = keras.layers.Reshape((3,100))(top_k_output) 241 | 242 | top_k_output = attention_block(top_k_output,3) 243 | # 244 | 245 | top_k_output = keras.layers.Flatten()(top_k_output) 246 | # 247 | # top_k_output = keras.layers.Dense(100)(top_k_output) 248 | 249 | # ,top_k_output 250 | x_output_f1 = keras.layers.Concatenate()([x_output1,x_output]) 251 | x_output_f1 = keras.layers.Dense(100,activation='relu')(x_output_f1) 252 | 253 | x_output_f2 = keras.layers.Concatenate()([x_output,top_k_output]) 254 | x_output_f2 = keras.layers.Dense(100,activation='relu')(x_output_f2) 255 | 256 | 257 | x_output_f = keras.layers.Concatenate()([x_output,x_output_f1,x_output_f2]) 258 | x_output_f = keras.layers.Dense(512,activation='relu')(x_output_f) 259 | x_output_f = keras.layers.Dense(400)(x_output_f) 260 | 261 | model = Model(inputs=[x_input,input1,input_top_1,input_top_2,input_top_3], outputs=x_output_f) 262 | model.load_weights('./model/CS-GCN-LSTM_allUsers.h5') 263 | predict = model.predict([testX_allUser,testX_allUser,testX_top_1_allUser,testX_top_2_allUser,testX_top_3_allUser]) 264 | np.save('Results/CS-GCN-LSTM_AllUsers/User=30_FileNum=400_predict.npy', predict) 265 | np.save('Results/CS-GCN-LSTM_AllUsers/User=30_FileNum=400_test.npy', testY_allUser) 266 | predict = np.array(getOneDimension(predict)) 267 | test = np.array(getOneDimension(testY_allUser)) 268 | 269 | print(mean_absolute_error(predict,test)) 270 | print(np.sqrt(mean_squared_error(predict,test))) 271 | print(r2_score(predict,test)) 272 | 273 | 274 | 275 | -------------------------------------------------------------------------------- /CS-GCN-LSTM_AllUsers.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # @Time : 2022/2/21 16:17 3 | # @Author : cmdxmm 4 | # @FileName: getDifferentUserData_less_30000.py 5 | # @Email :lidongyang@mail.sdu.edu.cn 6 | import numpy as np 7 | from tensorflow.keras import Model 8 | from stellargraph.layer import GCN_LSTM 9 | import pandas as pd 10 | import tensorflow as tf 11 | from tensorflow.keras.callbacks import ModelCheckpoint 12 | from tensorflow import keras 13 | import tensorflow.keras as K 14 | import heapq 15 | from tensorflow.keras.utils import plot_model 16 | 17 | class LossHistory(keras.callbacks.Callback): 18 | def on_train_begin(self, logs={}): 19 | self.losses = [] 20 | def on_epoch_end(self, batch, logs={}): 21 | self.losses.append(logs.get('loss')) 22 | 23 | ####将数据分为训练集和测试集 24 | def train_test_split(data, train_portion): 25 | time_len = data.shape[1] 26 | train_size = int(time_len * train_portion) 27 | train_data = np.array(data.iloc[:, :train_size]) 28 | test_data = np.array(data.iloc[:, train_size:]) 29 | return train_data, test_data 30 | 31 | ###对数据进行归一化 32 | def scale_data(train_data, test_data): 33 | train_data = np.abs(train_data) 34 | test_data = np.abs(test_data) 35 | max_speed = train_data.max() 36 | min_speed = train_data.min() 37 | print('max:',max_speed) 38 | print('min:',min_speed) 39 | train_scaled = (train_data - min_speed) / (max_speed - min_speed) 40 | test_scaled = (test_data - min_speed) / (max_speed - min_speed) 41 | return train_scaled, test_scaled 42 | 43 | #将数据转成10个step训练1个step的格式 44 | def sequence_data_preparation(seq_len, pre_len, train_data, test_data): 45 | trainX, trainY, testX, testY = [], [], [], [] 46 | 47 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 48 | a = train_data[:, i : i + seq_len + pre_len] 49 | trainX.append(a[:, :seq_len]) 50 | trainY.append(a[:, -1]) 51 | 52 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 53 | b = test_data[:, i : i + seq_len + pre_len] 54 | testX.append(b[:, :seq_len]) 55 | testY.append(b[:, -1]) 56 | 57 | trainX = np.array(trainX) 58 | trainY = np.array(trainY) 59 | testX = np.array(testX) 60 | testY = np.array(testY) 61 | 62 | return trainX, trainY, testX, testY 63 | 64 | #将数据转成10个step训练1个step的格式 65 | def sequence_data_preparationOtherUsers(seq_len, pre_len, train_data, test_data): 66 | trainX, trainY, testX, testY = [], [], [], [] 67 | 68 | for i in range(train_data.shape[1] - int(seq_len + pre_len - 1)): 69 | a = train_data[:, i : i + seq_len + pre_len] 70 | trainX.append(a[:, -2]) 71 | trainY.append(a[:, -1]) 72 | 73 | for i in range(test_data.shape[1] - int(seq_len + pre_len - 1)): 74 | b = test_data[:, i : i + seq_len + pre_len] 75 | testX.append(b[:, -2]) 76 | testY.append(b[:, -1]) 77 | 78 | trainX = np.array(trainX) 79 | trainY = np.array(trainY) 80 | testX = np.array(testX) 81 | testY = np.array(testY) 82 | 83 | return trainX, trainY, testX, testY 84 | 85 | def attention_block(inputs,time_stpes): 86 | input_dim = int(inputs.shape[2]) # shape = (batch_size, time_steps, input_dim) 87 | 88 | a = keras.layers.Permute((2, 1))(inputs) # shape = (batch_size, input_dim, time_steps) 89 | 90 | a = keras.layers.Reshape((input_dim, time_stpes))(a) # this line is not useful. It's just to know which dimension is what. 91 | 92 | a = tf.keras.layers.Dense(time_stpes, activation='softmax')(a) # 为了让输出的维数和时间序列数相同(这样才能生成各个时间点的注意力值) 93 | 94 | a = keras.layers.Lambda(lambda x: K.backend.mean(x, axis=1), name='dim_reduction')(a) 95 | a = keras.layers.RepeatVector(input_dim)(a) 96 | 97 | a_probs = keras.layers.Permute((2, 1), name='attention_vec')(a) # shape = (batch_size, time_steps, input_dim) 98 | 99 | output_attention_mul = keras.layers.Multiply()([inputs, a_probs]) # 把注意力值和输入按位相乘,权重乘以输入 100 | 101 | return output_attention_mul 102 | 103 | def getMostNSimilarityUEs(topN,Similarity): 104 | topN_index = [] 105 | tmp = np.sort(Similarity) 106 | MostValues = [] 107 | for i in range(topN): 108 | MostValues.append(tmp[len(Similarity)-i-1]) 109 | for i in range(topN): 110 | for j in range(len(Similarity)): 111 | if MostValues[i] == Similarity[j]: 112 | topN_index.append(j) 113 | return topN_index 114 | 115 | userId = 0 # 当前为用户1的相似用户辅助信息 116 | top_k = 3 117 | seq_len = 24 118 | pre_len = 25 119 | userNum = 30 120 | 121 | trainX_allUser = [] 122 | trainY_allUser = [] 123 | testX_allUser = [] 124 | testY_allUser = [] 125 | trainX_top_1_allUser = [] 126 | trainX_top_2_allUser = [] 127 | trainX_top_3_allUser = [] 128 | testX_top_1_allUser = [] 129 | testX_top_2_allUser = [] 130 | testX_top_3_allUser = [] 131 | 132 | for userId in range(userNum): 133 | view_counts = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(userId+1)+'_Contents.npy') 134 | video_dist_adj = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/Content_EdgeMatrix.npy') 135 | view_counts= pd.DataFrame(view_counts) 136 | num_nodes, time_len = view_counts.shape 137 | train_rate = 0.8 138 | print(view_counts.shape) 139 | train_data, test_data = train_test_split(view_counts, train_rate) 140 | print("Train data: ", train_data.shape) 141 | print("Test data: ", test_data.shape) 142 | trainX, trainY, testX, testY = sequence_data_preparation( 143 | seq_len, pre_len, train_data, test_data 144 | ) 145 | trainX_allUser.extend(trainX) 146 | trainY_allUser.extend(trainY) 147 | testX_allUser.extend(testX) 148 | testY_allUser.extend(testY) 149 | print('userId',userId) 150 | SocialRelationship = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/socialRelationship.npy') 151 | SocialSimilarityUsers = np.delete(getMostNSimilarityUEs(top_k+1,SocialRelationship[userId]), 0, axis=0) 152 | print(SocialSimilarityUsers[0]) 153 | view_counts_top_1 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[0]+1)+'_Contents.npy') 154 | view_counts_top_2 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[1]+1)+'_Contents.npy') 155 | view_counts_top_3 = np.load('./YouTube_NewDATA/data/userData/users=30_FileNum=400/User_'+str(SocialSimilarityUsers[2]+1)+'_Contents.npy') 156 | 157 | view_counts_top_1 = pd.DataFrame(view_counts_top_1) 158 | view_counts_top_2 = pd.DataFrame(view_counts_top_2) 159 | view_counts_top_3 = pd.DataFrame(view_counts_top_3) 160 | 161 | train_data_top_1, test_data_top_1 = train_test_split(view_counts_top_1, train_rate) 162 | train_data_top_2, test_data_top_2 = train_test_split(view_counts_top_2, train_rate) 163 | train_data_top_3, test_data_top_3 = train_test_split(view_counts_top_3, train_rate) 164 | 165 | print("Train data: ", train_data_top_1.shape) 166 | print("Test data: ", test_data_top_1.shape) 167 | trainX_top_1, _, testX_top_1, _ = sequence_data_preparationOtherUsers( 168 | seq_len, pre_len, train_data_top_1, test_data_top_1 169 | ) 170 | trainX_top_2, _, testX_top_2, _ = sequence_data_preparationOtherUsers( 171 | seq_len, pre_len, train_data_top_2, test_data_top_2 172 | ) 173 | trainX_top_3, _, testX_top_3, _ = sequence_data_preparationOtherUsers( 174 | seq_len, pre_len, train_data_top_3, test_data_top_3 175 | ) 176 | trainX_top_1_allUser.extend(trainX_top_1) 177 | trainX_top_2_allUser.extend(trainX_top_2) 178 | trainX_top_3_allUser.extend(trainX_top_3) 179 | testX_top_1_allUser.extend(testX_top_1) 180 | testX_top_2_allUser.extend(testX_top_2) 181 | testX_top_3_allUser.extend(testX_top_3) 182 | 183 | trainX_allUser = np.array(trainX_allUser) 184 | trainY_allUser = np.array(trainY_allUser) 185 | testX_allUser = np.array(testX_allUser) 186 | testY_allUser = np.array(testY_allUser) 187 | trainX_top_1_allUser = np.array(trainX_top_1_allUser) 188 | trainX_top_2_allUser = np.array(trainX_top_2_allUser) 189 | trainX_top_3_allUser = np.array(trainX_top_3_allUser) 190 | testX_top_1_allUser = np.array(testX_top_1_allUser) 191 | testX_top_2_allUser = np.array(testX_top_2_allUser) 192 | testX_top_3_allUser = np.array(testX_top_3_allUser) 193 | print(trainX_allUser.shape) 194 | 195 | gcn_lstm = GCN_LSTM( 196 | seq_len=seq_len, 197 | adj=video_dist_adj, 198 | gc_layer_sizes=[32, 64], 199 | gc_activations=["relu", "relu"], 200 | lstm_layer_sizes=[32, 64], 201 | lstm_activations=["relu","relu"], 202 | dropout=0.2, 203 | 204 | ) 205 | x_input, x_output1 = gcn_lstm.in_out_tensors() 206 | x_output1 = keras.layers.Dense(200,activation='relu')(x_output1) 207 | 208 | input1 = tf.keras.Input(shape=(400,24), name='input1') 209 | x1 = keras.layers.Bidirectional(keras.layers.LSTM(32,activation='tanh',return_sequences=True))(input1) 210 | x2 = keras.layers.Bidirectional(keras.layers.LSTM(64,activation='tanh',return_sequences=False))(x1) 211 | 212 | x3 = tf.keras.layers.Dense(512,activation='relu')(x2) 213 | x_output = keras.layers.Dense(400,activation='relu')(x3) 214 | 215 | 216 | input_top_1 = tf.keras.Input(shape=(400), name='input_top_1') 217 | input_top_2 = tf.keras.Input(shape=(400), name='input_top_2') 218 | input_top_3 = tf.keras.Input(shape=(400), name='input_top_3') 219 | 220 | x1_input_top_1 = keras.layers.Dense(512,activation='relu')(input_top_1) 221 | x2_input_top_1 = keras.layers.Dense(100,activation='relu')(x1_input_top_1) 222 | 223 | x1_input_top_2 = keras.layers.Dense(512,activation='relu')(input_top_2) 224 | x2_input_top_2 = keras.layers.Dense(100,activation='relu')(x1_input_top_2) 225 | 226 | 227 | x1_input_top_3 = keras.layers.Dense(512,activation='relu')(input_top_3) 228 | x2_input_top_3 = keras.layers.Dense(100,activation='relu')(x1_input_top_3) 229 | 230 | top_k_output = keras.layers.Concatenate()([x2_input_top_1,x2_input_top_2,x2_input_top_3]) 231 | 232 | top_k_output = keras.layers.Reshape((3,100))(top_k_output) 233 | 234 | top_k_output = attention_block(top_k_output,3) 235 | # 236 | 237 | top_k_output = keras.layers.Flatten()(top_k_output) 238 | # 239 | # top_k_output = keras.layers.Dense(100)(top_k_output) 240 | 241 | # ,top_k_output 242 | x_output_f1 = keras.layers.Concatenate()([x_output1,x_output]) 243 | x_output_f1 = keras.layers.Dense(100,activation='relu')(x_output_f1) 244 | 245 | x_output_f2 = keras.layers.Concatenate()([x_output,top_k_output]) 246 | x_output_f2 = keras.layers.Dense(100,activation='relu')(x_output_f2) 247 | 248 | 249 | x_output_f = keras.layers.Concatenate()([x_output,x_output_f1,x_output_f2]) 250 | x_output_f = keras.layers.Dense(512,activation='relu')(x_output_f) 251 | x_output_f = keras.layers.Dense(400)(x_output_f) 252 | 253 | model = Model(inputs=[x_input,input1,input_top_1,input_top_2,input_top_3], outputs=x_output_f) 254 | 255 | adam = tf.keras.optimizers.Adam(learning_rate=0.0005) 256 | history = model.compile(optimizer=adam, loss="mae", metrics=["mae"]) 257 | checkpoint = ModelCheckpoint(filepath='model/CS-GCN-LSTM_allUsers.h5', monitor='val_loss', mode='auto', save_best_only='True', verbose=1) 258 | history = LossHistory() 259 | callback_lists = [checkpoint,history] 260 | model.summary() 261 | plot_model(model,to_file='model.png',show_shapes=True) 262 | 263 | history2 = model.fit( 264 | [trainX_allUser,trainX_allUser,trainX_top_1_allUser,trainX_top_2_allUser,trainX_top_3_allUser], 265 | trainY_allUser, 266 | epochs=100, 267 | batch_size=512, 268 | shuffle=True, 269 | verbose=1, 270 | validation_data=[[testX_allUser,testX_allUser,testX_top_1_allUser,testX_top_2_allUser,testX_top_3_allUser], testY_allUser], 271 | callbacks=callback_lists 272 | ) 273 | 274 | print( 275 | "Train loss: ", 276 | history2.history["loss"][-1], 277 | "\nTest loss:", 278 | history2.history["val_loss"][-1], 279 | ) 280 | losses = history.losses 281 | print(losses) 282 | np.save('./model/losses/losses_allUsers.npy',losses) 283 | -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss_oneUser.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-3.0 EPSF-3.0 2 | %%Title: Training_loss_oneUser.eps 3 | %%Creator: Matplotlib v3.5.0, https://matplotlib.org/ 4 | %%CreationDate: Fri May 20 17:28:52 2022 5 | %%Orientation: portrait 6 | %%BoundingBox: 75 223 537 569 7 | %%HiResBoundingBox: 75.600000 223.200000 536.400000 568.800000 8 | %%EndComments 9 | %%BeginProlog 10 | /mpldict 12 dict def 11 | mpldict begin 12 | /_d { bind def } bind def 13 | /m { moveto } _d 14 | /l { lineto } _d 15 | /r { rlineto } _d 16 | /c { curveto } _d 17 | /cl { closepath } _d 18 | /ce { closepath eofill } _d 19 | /box { 20 | m 21 | 1 index 0 r 22 | 0 exch r 23 | neg 0 r 24 | cl 25 | } _d 26 | /clipbox { 27 | box 28 | clip 29 | newpath 30 | } _d 31 | /sc { setcachedevice } _d 32 | %!PS-Adobe-3.0 Resource-Font 33 | %%Creator: Converted from TrueType to Type 3 by Matplotlib. 34 | 10 dict begin 35 | /FontName /DejaVuSans def 36 | /PaintType 0 def 37 | /FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def 38 | /FontBBox [-2090 -948 3673 2524] def 39 | /FontType 3 def 40 | /Encoding [/space /parenleft /parenright /hyphen /zero /one /two /four /five /six /eight /C /L /P /S /U /e /g /i /l /n /r /s] def 41 | /CharStrings 24 dict dup begin 42 | /.notdef 0 def 43 | /space{651 0 0 0 0 0 sc 44 | ce} _d 45 | /parenleft{799 0 176 -270 635 1554 sc 46 | 635 1554 m 47 | 546 1401 479 1249 436 1099 c 48 | 393 949 371 797 371 643 c 49 | 371 489 393 336 436 185 c 50 | 480 34 546 -117 635 -270 c 51 | 475 -270 l 52 | 375 -113 300 41 250 192 c 53 | 201 343 176 494 176 643 c 54 | 176 792 201 941 250 1092 c 55 | 299 1243 374 1397 475 1554 c 56 | 635 1554 l 57 | 58 | ce} _d 59 | /parenright{799 0 164 -270 623 1554 sc 60 | 164 1554 m 61 | 324 1554 l 62 | 424 1397 499 1243 548 1092 c 63 | 598 941 623 792 623 643 c 64 | 623 494 598 343 548 192 c 65 | 499 41 424 -113 324 -270 c 66 | 164 -270 l 67 | 253 -117 319 34 362 185 c 68 | 406 336 428 489 428 643 c 69 | 428 797 406 949 362 1099 c 70 | 319 1249 253 1401 164 1554 c 71 | 72 | ce} _d 73 | /hyphen{739 0 100 479 639 643 sc 74 | 100 643 m 75 | 639 643 l 76 | 639 479 l 77 | 100 479 l 78 | 100 643 l 79 | 80 | ce} _d 81 | /zero{1303 0 135 -29 1167 1520 sc 82 | 651 1360 m 83 | 547 1360 469 1309 416 1206 c 84 | 364 1104 338 950 338 745 c 85 | 338 540 364 387 416 284 c 86 | 469 182 547 131 651 131 c 87 | 756 131 834 182 886 284 c 88 | 939 387 965 540 965 745 c 89 | 965 950 939 1104 886 1206 c 90 | 834 1309 756 1360 651 1360 c 91 | 92 | 651 1520 m 93 | 818 1520 946 1454 1034 1321 c 94 | 1123 1189 1167 997 1167 745 c 95 | 1167 494 1123 302 1034 169 c 96 | 946 37 818 -29 651 -29 c 97 | 484 -29 356 37 267 169 c 98 | 179 302 135 494 135 745 c 99 | 135 997 179 1189 267 1321 c 100 | 356 1454 484 1520 651 1520 c 101 | 102 | ce} _d 103 | /one{1303 0 225 0 1114 1493 sc 104 | 254 170 m 105 | 584 170 l 106 | 584 1309 l 107 | 225 1237 l 108 | 225 1421 l 109 | 582 1493 l 110 | 784 1493 l 111 | 784 170 l 112 | 1114 170 l 113 | 1114 0 l 114 | 254 0 l 115 | 254 170 l 116 | 117 | ce} _d 118 | /two{1303 0 150 0 1098 1520 sc 119 | 393 170 m 120 | 1098 170 l 121 | 1098 0 l 122 | 150 0 l 123 | 150 170 l 124 | 227 249 331 356 463 489 c 125 | 596 623 679 709 713 748 c 126 | 778 821 823 882 848 932 c 127 | 874 983 887 1032 887 1081 c 128 | 887 1160 859 1225 803 1275 c 129 | 748 1325 675 1350 586 1350 c 130 | 523 1350 456 1339 385 1317 c 131 | 315 1295 240 1262 160 1217 c 132 | 160 1421 l 133 | 241 1454 317 1478 388 1495 c 134 | 459 1512 523 1520 582 1520 c 135 | 737 1520 860 1481 952 1404 c 136 | 1044 1327 1090 1223 1090 1094 c 137 | 1090 1033 1078 974 1055 919 c 138 | 1032 864 991 800 930 725 c 139 | 913 706 860 650 771 557 c 140 | 682 465 556 336 393 170 c 141 | 142 | ce} _d 143 | /four{1303 0 100 0 1188 1493 sc 144 | 774 1317 m 145 | 264 520 l 146 | 774 520 l 147 | 774 1317 l 148 | 149 | 721 1493 m 150 | 975 1493 l 151 | 975 520 l 152 | 1188 520 l 153 | 1188 352 l 154 | 975 352 l 155 | 975 0 l 156 | 774 0 l 157 | 774 352 l 158 | 100 352 l 159 | 100 547 l 160 | 721 1493 l 161 | 162 | ce} _d 163 | /five{1303 0 158 -29 1124 1493 sc 164 | 221 1493 m 165 | 1014 1493 l 166 | 1014 1323 l 167 | 406 1323 l 168 | 406 957 l 169 | 435 967 465 974 494 979 c 170 | 523 984 553 987 582 987 c 171 | 749 987 881 941 978 850 c 172 | 1075 759 1124 635 1124 479 c 173 | 1124 318 1074 193 974 104 c 174 | 874 15 733 -29 551 -29 c 175 | 488 -29 424 -24 359 -13 c 176 | 294 -2 227 14 158 35 c 177 | 158 238 l 178 | 218 205 280 181 344 165 c 179 | 408 149 476 141 547 141 c 180 | 662 141 754 171 821 232 c 181 | 888 293 922 375 922 479 c 182 | 922 583 888 665 821 726 c 183 | 754 787 662 817 547 817 c 184 | 493 817 439 811 385 799 c 185 | 332 787 277 768 221 743 c 186 | 221 1493 l 187 | 188 | ce} _d 189 | /six{1303 0 143 -29 1174 1520 sc 190 | 676 827 m 191 | 585 827 513 796 460 734 c 192 | 407 672 381 587 381 479 c 193 | 381 372 407 287 460 224 c 194 | 513 162 585 131 676 131 c 195 | 767 131 838 162 891 224 c 196 | 944 287 971 372 971 479 c 197 | 971 587 944 672 891 734 c 198 | 838 796 767 827 676 827 c 199 | 200 | 1077 1460 m 201 | 1077 1276 l 202 | 1026 1300 975 1318 923 1331 c 203 | 872 1344 821 1350 770 1350 c 204 | 637 1350 535 1305 464 1215 c 205 | 394 1125 354 989 344 807 c 206 | 383 865 433 909 492 940 c 207 | 551 971 617 987 688 987 c 208 | 838 987 956 941 1043 850 c 209 | 1130 759 1174 636 1174 479 c 210 | 1174 326 1129 203 1038 110 c 211 | 947 17 827 -29 676 -29 c 212 | 503 -29 371 37 280 169 c 213 | 189 302 143 494 143 745 c 214 | 143 981 199 1169 311 1309 c 215 | 423 1450 573 1520 762 1520 c 216 | 813 1520 864 1515 915 1505 c 217 | 967 1495 1021 1480 1077 1460 c 218 | 219 | ce} _d 220 | /eight{1303 0 139 -29 1163 1520 sc 221 | 651 709 m 222 | 555 709 479 683 424 632 c 223 | 369 581 342 510 342 420 c 224 | 342 330 369 259 424 208 c 225 | 479 157 555 131 651 131 c 226 | 747 131 823 157 878 208 c 227 | 933 260 961 331 961 420 c 228 | 961 510 933 581 878 632 c 229 | 823 683 748 709 651 709 c 230 | 231 | 449 795 m 232 | 362 816 295 857 246 916 c 233 | 198 975 174 1048 174 1133 c 234 | 174 1252 216 1347 301 1416 c 235 | 386 1485 503 1520 651 1520 c 236 | 800 1520 916 1485 1001 1416 c 237 | 1086 1347 1128 1252 1128 1133 c 238 | 1128 1048 1104 975 1055 916 c 239 | 1007 857 940 816 854 795 c 240 | 951 772 1027 728 1081 662 c 241 | 1136 596 1163 515 1163 420 c 242 | 1163 275 1119 164 1030 87 c 243 | 942 10 816 -29 651 -29 c 244 | 486 -29 360 10 271 87 c 245 | 183 164 139 275 139 420 c 246 | 139 515 166 596 221 662 c 247 | 276 728 352 772 449 795 c 248 | 249 | 375 1114 m 250 | 375 1037 399 976 447 933 c 251 | 496 890 564 868 651 868 c 252 | 738 868 805 890 854 933 c 253 | 903 976 928 1037 928 1114 c 254 | 928 1191 903 1252 854 1295 c 255 | 805 1338 738 1360 651 1360 c 256 | 564 1360 496 1338 447 1295 c 257 | 399 1252 375 1191 375 1114 c 258 | 259 | ce} _d 260 | /C{1430 0 115 -29 1319 1520 sc 261 | 1319 1378 m 262 | 1319 1165 l 263 | 1251 1228 1178 1276 1101 1307 c 264 | 1024 1338 943 1354 856 1354 c 265 | 685 1354 555 1302 464 1197 c 266 | 373 1093 328 942 328 745 c 267 | 328 548 373 398 464 293 c 268 | 555 189 685 137 856 137 c 269 | 943 137 1024 153 1101 184 c 270 | 1178 215 1251 263 1319 326 c 271 | 1319 115 l 272 | 1248 67 1173 31 1094 7 c 273 | 1015 -17 932 -29 844 -29 c 274 | 618 -29 440 40 310 178 c 275 | 180 317 115 506 115 745 c 276 | 115 985 180 1174 310 1312 c 277 | 440 1451 618 1520 844 1520 c 278 | 933 1520 1017 1508 1096 1484 c 279 | 1175 1461 1250 1425 1319 1378 c 280 | 281 | ce} _d 282 | /L{1141 0 201 0 1130 1493 sc 283 | 201 1493 m 284 | 403 1493 l 285 | 403 170 l 286 | 1130 170 l 287 | 1130 0 l 288 | 201 0 l 289 | 201 1493 l 290 | 291 | ce} _d 292 | /P{1235 0 201 0 1165 1493 sc 293 | 403 1327 m 294 | 403 766 l 295 | 657 766 l 296 | 751 766 824 790 875 839 c 297 | 926 888 952 957 952 1047 c 298 | 952 1136 926 1205 875 1254 c 299 | 824 1303 751 1327 657 1327 c 300 | 403 1327 l 301 | 302 | 201 1493 m 303 | 657 1493 l 304 | 824 1493 951 1455 1036 1379 c 305 | 1122 1304 1165 1193 1165 1047 c 306 | 1165 900 1122 788 1036 713 c 307 | 951 638 824 600 657 600 c 308 | 403 600 l 309 | 403 0 l 310 | 201 0 l 311 | 201 1493 l 312 | 313 | ce} _d 314 | /S{1300 0 135 -29 1186 1520 sc 315 | 1096 1444 m 316 | 1096 1247 l 317 | 1019 1284 947 1311 879 1329 c 318 | 811 1347 745 1356 682 1356 c 319 | 572 1356 487 1335 427 1292 c 320 | 368 1249 338 1189 338 1110 c 321 | 338 1044 358 994 397 960 c 322 | 437 927 512 900 623 879 c 323 | 745 854 l 324 | 896 825 1007 775 1078 702 c 325 | 1150 630 1186 533 1186 412 c 326 | 1186 267 1137 158 1040 83 c 327 | 943 8 801 -29 614 -29 c 328 | 543 -29 468 -21 388 -5 c 329 | 309 11 226 35 141 66 c 330 | 141 274 l 331 | 223 228 303 193 382 170 c 332 | 461 147 538 135 614 135 c 333 | 729 135 818 158 881 203 c 334 | 944 248 975 313 975 397 c 335 | 975 470 952 528 907 569 c 336 | 862 610 789 641 686 662 c 337 | 563 686 l 338 | 412 716 303 763 236 827 c 339 | 169 891 135 980 135 1094 c 340 | 135 1226 181 1330 274 1406 c 341 | 367 1482 496 1520 659 1520 c 342 | 729 1520 800 1514 873 1501 c 343 | 946 1488 1020 1469 1096 1444 c 344 | 345 | ce} _d 346 | /U{1499 0 178 -29 1321 1493 sc 347 | 178 1493 m 348 | 381 1493 l 349 | 381 586 l 350 | 381 426 410 311 468 240 c 351 | 526 170 620 135 750 135 c 352 | 879 135 973 170 1031 240 c 353 | 1089 311 1118 426 1118 586 c 354 | 1118 1493 l 355 | 1321 1493 l 356 | 1321 561 l 357 | 1321 366 1273 219 1176 120 c 358 | 1080 21 938 -29 750 -29 c 359 | 561 -29 419 21 322 120 c 360 | 226 219 178 366 178 561 c 361 | 178 1493 l 362 | 363 | ce} _d 364 | /e{1260 0 113 -29 1151 1147 sc 365 | 1151 606 m 366 | 1151 516 l 367 | 305 516 l 368 | 313 389 351 293 419 226 c 369 | 488 160 583 127 705 127 c 370 | 776 127 844 136 910 153 c 371 | 977 170 1043 196 1108 231 c 372 | 1108 57 l 373 | 1042 29 974 8 905 -7 c 374 | 836 -22 765 -29 694 -29 c 375 | 515 -29 374 23 269 127 c 376 | 165 231 113 372 113 549 c 377 | 113 732 162 878 261 985 c 378 | 360 1093 494 1147 662 1147 c 379 | 813 1147 932 1098 1019 1001 c 380 | 1107 904 1151 773 1151 606 c 381 | 382 | 967 660 m 383 | 966 761 937 841 882 901 c 384 | 827 961 755 991 664 991 c 385 | 561 991 479 962 417 904 c 386 | 356 846 320 764 311 659 c 387 | 967 660 l 388 | 389 | ce} _d 390 | /g{1300 0 113 -426 1114 1147 sc 391 | 930 573 m 392 | 930 706 902 810 847 883 c 393 | 792 956 715 993 616 993 c 394 | 517 993 440 956 385 883 c 395 | 330 810 303 706 303 573 c 396 | 303 440 330 337 385 264 c 397 | 440 191 517 154 616 154 c 398 | 715 154 792 191 847 264 c 399 | 902 337 930 440 930 573 c 400 | 401 | 1114 139 m 402 | 1114 -52 1072 -193 987 -286 c 403 | 902 -379 773 -426 598 -426 c 404 | 533 -426 472 -421 415 -411 c 405 | 358 -402 302 -387 248 -367 c 406 | 248 -188 l 407 | 302 -217 355 -239 408 -253 c 408 | 461 -267 514 -274 569 -274 c 409 | 690 -274 780 -242 840 -179 c 410 | 900 -116 930 -21 930 106 c 411 | 930 197 l 412 | 892 131 843 82 784 49 c 413 | 725 16 654 0 571 0 c 414 | 434 0 323 52 239 157 c 415 | 155 262 113 400 113 573 c 416 | 113 746 155 885 239 990 c 417 | 323 1095 434 1147 571 1147 c 418 | 654 1147 725 1131 784 1098 c 419 | 843 1065 892 1016 930 950 c 420 | 930 1120 l 421 | 1114 1120 l 422 | 1114 139 l 423 | 424 | ce} _d 425 | /i{569 0 193 0 377 1556 sc 426 | 193 1120 m 427 | 377 1120 l 428 | 377 0 l 429 | 193 0 l 430 | 193 1120 l 431 | 432 | 193 1556 m 433 | 377 1556 l 434 | 377 1323 l 435 | 193 1323 l 436 | 193 1556 l 437 | 438 | ce} _d 439 | /l{569 0 193 0 377 1556 sc 440 | 193 1556 m 441 | 377 1556 l 442 | 377 0 l 443 | 193 0 l 444 | 193 1556 l 445 | 446 | ce} _d 447 | /n{1298 0 186 0 1124 1147 sc 448 | 1124 676 m 449 | 1124 0 l 450 | 940 0 l 451 | 940 670 l 452 | 940 776 919 855 878 908 c 453 | 837 961 775 987 692 987 c 454 | 593 987 514 955 457 892 c 455 | 400 829 371 742 371 633 c 456 | 371 0 l 457 | 186 0 l 458 | 186 1120 l 459 | 371 1120 l 460 | 371 946 l 461 | 415 1013 467 1064 526 1097 c 462 | 586 1130 655 1147 733 1147 c 463 | 862 1147 959 1107 1025 1027 c 464 | 1091 948 1124 831 1124 676 c 465 | 466 | ce} _d 467 | /r{842 0 186 0 842 1147 sc 468 | 842 948 m 469 | 821 960 799 969 774 974 c 470 | 750 980 723 983 694 983 c 471 | 590 983 510 949 454 881 c 472 | 399 814 371 717 371 590 c 473 | 371 0 l 474 | 186 0 l 475 | 186 1120 l 476 | 371 1120 l 477 | 371 946 l 478 | 410 1014 460 1064 522 1097 c 479 | 584 1130 659 1147 748 1147 c 480 | 761 1147 775 1146 790 1144 c 481 | 805 1143 822 1140 841 1137 c 482 | 842 948 l 483 | 484 | ce} _d 485 | /s{1067 0 111 -29 967 1147 sc 486 | 907 1087 m 487 | 907 913 l 488 | 855 940 801 960 745 973 c 489 | 689 986 631 993 571 993 c 490 | 480 993 411 979 365 951 c 491 | 320 923 297 881 297 825 c 492 | 297 782 313 749 346 724 c 493 | 379 700 444 677 543 655 c 494 | 606 641 l 495 | 737 613 829 573 884 522 c 496 | 939 471 967 400 967 309 c 497 | 967 205 926 123 843 62 c 498 | 761 1 648 -29 504 -29 c 499 | 444 -29 381 -23 316 -11 c 500 | 251 0 183 18 111 41 c 501 | 111 231 l 502 | 179 196 246 169 312 151 c 503 | 378 134 443 125 508 125 c 504 | 595 125 661 140 708 169 c 505 | 755 199 778 241 778 295 c 506 | 778 345 761 383 727 410 c 507 | 694 437 620 462 506 487 c 508 | 442 502 l 509 | 328 526 246 563 195 612 c 510 | 144 662 119 730 119 817 c 511 | 119 922 156 1004 231 1061 c 512 | 306 1118 412 1147 549 1147 c 513 | 617 1147 681 1142 741 1132 c 514 | 801 1122 856 1107 907 1087 c 515 | 516 | ce} _d 517 | end readonly def 518 | 519 | /BuildGlyph { 520 | exch begin 521 | CharStrings exch 522 | 2 copy known not {pop /.notdef} if 523 | true 3 1 roll get exec 524 | end 525 | } _d 526 | 527 | /BuildChar { 528 | 1 index /Encoding get exch get 529 | 1 index /BuildGlyph get exec 530 | } _d 531 | 532 | FontName currentdict end definefont pop 533 | %!PS-Adobe-3.0 Resource-Font 534 | %%Creator: Converted from TrueType to Type 3 by Matplotlib. 535 | 10 dict begin 536 | /FontName /DejaVuSans-Bold def 537 | /PaintType 0 def 538 | /FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def 539 | /FontBBox [-2190 -850 4045 2405] def 540 | /FontType 3 def 541 | /Encoding [/space /a /c /E /g /h /i /L /n /o /p /r /s /T] def 542 | /CharStrings 15 dict dup begin 543 | /.notdef 0 def 544 | /space{713 0 0 0 0 0 sc 545 | ce} _d 546 | /a{1382 0 88 -29 1221 1147 sc 547 | 674 504 m 548 | 599 504 543 491 505 466 c 549 | 468 441 449 403 449 354 c 550 | 449 309 464 273 494 247 c 551 | 525 222 567 209 621 209 c 552 | 688 209 745 233 791 281 c 553 | 837 330 860 390 860 463 c 554 | 860 504 l 555 | 674 504 l 556 | 557 | 1221 639 m 558 | 1221 0 l 559 | 860 0 l 560 | 860 166 l 561 | 812 98 758 48 698 17 c 562 | 638 -14 565 -29 479 -29 c 563 | 363 -29 269 5 196 72 c 564 | 124 140 88 228 88 336 c 565 | 88 467 133 564 223 625 c 566 | 314 686 456 717 649 717 c 567 | 860 717 l 568 | 860 745 l 569 | 860 802 838 843 793 869 c 570 | 748 896 679 909 584 909 c 571 | 507 909 436 901 370 886 c 572 | 304 871 243 848 186 817 c 573 | 186 1090 l 574 | 263 1109 340 1123 417 1132 c 575 | 494 1142 572 1147 649 1147 c 576 | 851 1147 997 1107 1086 1027 c 577 | 1176 948 1221 818 1221 639 c 578 | 579 | ce} _d 580 | /c{1214 0 88 -29 1077 1147 sc 581 | 1077 1085 m 582 | 1077 793 l 583 | 1028 826 979 851 930 867 c 584 | 881 883 831 891 778 891 c 585 | 678 891 600 862 544 803 c 586 | 489 745 461 664 461 559 c 587 | 461 454 489 373 544 314 c 588 | 600 256 678 227 778 227 c 589 | 834 227 887 235 937 252 c 590 | 988 269 1034 293 1077 326 c 591 | 1077 33 l 592 | 1021 12 964 -3 906 -13 c 593 | 849 -24 791 -29 733 -29 c 594 | 531 -29 373 23 259 126 c 595 | 145 230 88 374 88 559 c 596 | 88 744 145 888 259 991 c 597 | 373 1095 531 1147 733 1147 c 598 | 792 1147 849 1142 906 1131 c 599 | 963 1121 1020 1106 1077 1085 c 600 | 601 | ce} _d 602 | /E{1399 0 188 0 1249 1493 sc 603 | 188 1493 m 604 | 1227 1493 l 605 | 1227 1202 l 606 | 573 1202 l 607 | 573 924 l 608 | 1188 924 l 609 | 1188 633 l 610 | 573 633 l 611 | 573 291 l 612 | 1249 291 l 613 | 1249 0 l 614 | 188 0 l 615 | 188 1493 l 616 | 617 | ce} _d 618 | /g{1466 0 92 -442 1294 1145 sc 619 | 934 190 m 620 | 885 125 830 77 771 46 c 621 | 712 15 643 0 565 0 c 622 | 428 0 315 54 226 161 c 623 | 137 269 92 406 92 573 c 624 | 92 740 137 877 226 984 c 625 | 315 1091 428 1145 565 1145 c 626 | 643 1145 712 1130 771 1099 c 627 | 830 1068 885 1020 934 954 c 628 | 934 1120 l 629 | 1294 1120 l 630 | 1294 113 l 631 | 1294 -67 1237 -204 1123 -299 c 632 | 1010 -394 845 -442 629 -442 c 633 | 559 -442 491 -437 426 -426 c 634 | 361 -415 295 -399 229 -377 c 635 | 229 -98 l 636 | 292 -134 353 -161 413 -178 c 637 | 473 -196 533 -205 594 -205 c 638 | 711 -205 797 -179 852 -128 c 639 | 907 -77 934 4 934 113 c 640 | 934 190 l 641 | 642 | 698 887 m 643 | 624 887 566 860 525 805 c 644 | 484 750 463 673 463 573 c 645 | 463 470 483 392 523 339 c 646 | 563 286 621 260 698 260 c 647 | 773 260 831 287 872 342 c 648 | 913 397 934 474 934 573 c 649 | 934 673 913 750 872 805 c 650 | 831 860 773 887 698 887 c 651 | 652 | ce} _d 653 | /h{1458 0 172 0 1298 1556 sc 654 | 1298 682 m 655 | 1298 0 l 656 | 938 0 l 657 | 938 111 l 658 | 938 520 l 659 | 938 618 936 685 931 722 c 660 | 927 759 920 786 909 803 c 661 | 895 826 876 844 852 857 c 662 | 828 870 801 877 770 877 c 663 | 695 877 637 848 594 790 c 664 | 551 733 530 653 530 551 c 665 | 530 0 l 666 | 172 0 l 667 | 172 1556 l 668 | 530 1556 l 669 | 530 956 l 670 | 584 1021 641 1069 702 1100 c 671 | 763 1131 830 1147 903 1147 c 672 | 1032 1147 1130 1107 1197 1028 c 673 | 1264 949 1298 833 1298 682 c 674 | 675 | ce} _d 676 | /i{702 0 172 0 530 1556 sc 677 | 172 1120 m 678 | 530 1120 l 679 | 530 0 l 680 | 172 0 l 681 | 172 1120 l 682 | 683 | 172 1556 m 684 | 530 1556 l 685 | 530 1264 l 686 | 172 1264 l 687 | 172 1556 l 688 | 689 | ce} _d 690 | /L{1305 0 188 0 1249 1493 sc 691 | 188 1493 m 692 | 573 1493 l 693 | 573 291 l 694 | 1249 291 l 695 | 1249 0 l 696 | 188 0 l 697 | 188 1493 l 698 | 699 | ce} _d 700 | /n{1458 0 172 0 1298 1147 sc 701 | 1298 682 m 702 | 1298 0 l 703 | 938 0 l 704 | 938 111 l 705 | 938 522 l 706 | 938 619 936 685 931 722 c 707 | 927 759 920 786 909 803 c 708 | 895 826 876 844 852 857 c 709 | 828 870 801 877 770 877 c 710 | 695 877 637 848 594 790 c 711 | 551 733 530 653 530 551 c 712 | 530 0 l 713 | 172 0 l 714 | 172 1120 l 715 | 530 1120 l 716 | 530 956 l 717 | 584 1021 641 1069 702 1100 c 718 | 763 1131 830 1147 903 1147 c 719 | 1032 1147 1130 1107 1197 1028 c 720 | 1264 949 1298 833 1298 682 c 721 | 722 | ce} _d 723 | /o{1407 0 88 -29 1319 1147 sc 724 | 705 891 m 725 | 626 891 565 862 523 805 c 726 | 482 748 461 666 461 559 c 727 | 461 452 482 369 523 312 c 728 | 565 255 626 227 705 227 c 729 | 783 227 843 255 884 312 c 730 | 925 369 946 452 946 559 c 731 | 946 666 925 748 884 805 c 732 | 843 862 783 891 705 891 c 733 | 734 | 705 1147 m 735 | 898 1147 1048 1095 1156 991 c 736 | 1265 887 1319 743 1319 559 c 737 | 1319 375 1265 231 1156 127 c 738 | 1048 23 898 -29 705 -29 c 739 | 512 -29 360 23 251 127 c 740 | 142 231 88 375 88 559 c 741 | 88 743 142 887 251 991 c 742 | 360 1095 512 1147 705 1147 c 743 | 744 | ce} _d 745 | /p{1466 0 172 -426 1374 1147 sc 746 | 530 162 m 747 | 530 -426 l 748 | 172 -426 l 749 | 172 1120 l 750 | 530 1120 l 751 | 530 956 l 752 | 579 1021 634 1069 694 1100 c 753 | 754 1131 823 1147 901 1147 c 754 | 1039 1147 1152 1092 1241 982 c 755 | 1330 873 1374 732 1374 559 c 756 | 1374 386 1330 245 1241 135 c 757 | 1152 26 1039 -29 901 -29 c 758 | 823 -29 754 -14 694 17 c 759 | 634 48 579 97 530 162 c 760 | 761 | 768 887 m 762 | 691 887 632 859 591 802 c 763 | 550 746 530 665 530 559 c 764 | 530 453 550 372 591 315 c 765 | 632 259 691 231 768 231 c 766 | 845 231 903 259 943 315 c 767 | 984 371 1004 452 1004 559 c 768 | 1004 666 984 747 943 803 c 769 | 903 859 845 887 768 887 c 770 | 771 | ce} _d 772 | /r{1010 0 172 0 1004 1147 sc 773 | 1004 815 m 774 | 973 830 941 840 910 847 c 775 | 879 854 848 858 817 858 c 776 | 725 858 654 828 604 769 c 777 | 555 710 530 626 530 516 c 778 | 530 0 l 779 | 172 0 l 780 | 172 1120 l 781 | 530 1120 l 782 | 530 936 l 783 | 576 1009 629 1063 688 1096 c 784 | 748 1130 820 1147 903 1147 c 785 | 915 1147 928 1146 942 1145 c 786 | 956 1144 976 1142 1003 1139 c 787 | 1004 815 l 788 | 789 | ce} _d 790 | /s{1219 0 106 -29 1122 1147 sc 791 | 1047 1085 m 792 | 1047 813 l 793 | 970 845 896 869 825 885 c 794 | 754 901 686 909 623 909 c 795 | 555 909 504 900 471 883 c 796 | 438 866 422 840 422 805 c 797 | 422 776 434 754 459 739 c 798 | 484 724 529 712 594 705 c 799 | 657 696 l 800 | 840 673 964 634 1027 581 c 801 | 1090 528 1122 444 1122 330 c 802 | 1122 211 1078 121 990 61 c 803 | 902 1 771 -29 596 -29 c 804 | 522 -29 445 -23 366 -11 c 805 | 287 0 206 18 123 41 c 806 | 123 313 l 807 | 194 278 267 252 342 235 c 808 | 417 218 494 209 571 209 c 809 | 641 209 694 219 729 238 c 810 | 764 257 782 286 782 324 c 811 | 782 356 770 380 745 395 c 812 | 721 411 673 423 600 432 c 813 | 537 440 l 814 | 378 460 266 497 202 551 c 815 | 138 605 106 687 106 797 c 816 | 106 916 147 1004 228 1061 c 817 | 309 1118 434 1147 602 1147 c 818 | 668 1147 737 1142 810 1132 c 819 | 883 1122 962 1106 1047 1085 c 820 | 821 | ce} _d 822 | /T{1397 0 10 0 1386 1493 sc 823 | 10 1493 m 824 | 1386 1493 l 825 | 1386 1202 l 826 | 891 1202 l 827 | 891 0 l 828 | 506 0 l 829 | 506 1202 l 830 | 10 1202 l 831 | 10 1493 l 832 | 833 | ce} _d 834 | end readonly def 835 | 836 | /BuildGlyph { 837 | exch begin 838 | CharStrings exch 839 | 2 copy known not {pop /.notdef} if 840 | true 3 1 roll get exec 841 | end 842 | } _d 843 | 844 | /BuildChar { 845 | 1 index /Encoding get exch get 846 | 1 index /BuildGlyph get exec 847 | } _d 848 | 849 | FontName currentdict end definefont pop 850 | end 851 | %%EndProlog 852 | mpldict begin 853 | 75.6 223.2 translate 854 | 460.8 345.6 0 0 clipbox 855 | gsave 856 | 0 0 m 857 | 460.8 0 l 858 | 460.8 345.6 l 859 | 0 345.6 l 860 | cl 861 | 1.000 setgray 862 | fill 863 | grestore 864 | gsave 865 | 57.6 38.016 m 866 | 414.72 38.016 l 867 | 414.72 304.128 l 868 | 57.6 304.128 l 869 | cl 870 | 1.000 setgray 871 | fill 872 | grestore 873 | 0.800 setlinewidth 874 | 1 setlinejoin 875 | 0 setlinecap 876 | [2.96 1.28] 0 setdash 877 | 0.690 setgray 878 | gsave 879 | 357.12 266.112 57.6 38.016 clipbox 880 | 73.832727 38.016 m 881 | 73.832727 304.128 l 882 | stroke 883 | grestore 884 | [] 0 setdash 885 | 0.000 setgray 886 | gsave 887 | /o { 888 | gsave 889 | newpath 890 | translate 891 | 0.8 setlinewidth 892 | 1 setlinejoin 893 | 894 | 0 setlinecap 895 | 896 | 0 0 m 897 | 0 -3.5 l 898 | 899 | gsave 900 | 0.000 setgray 901 | fill 902 | grestore 903 | stroke 904 | grestore 905 | } bind def 906 | 73.8327 38.016 o 907 | grestore 908 | /DejaVuSans 10.000 selectfont 909 | gsave 910 | 911 | 70.653040 23.422250 translate 912 | 0.000000 rotate 913 | 0.000000 0 m /zero glyphshow 914 | grestore 915 | [2.96 1.28] 0 setdash 916 | 0.690 setgray 917 | gsave 918 | 357.12 266.112 57.6 38.016 clipbox 919 | 139.419504 38.016 m 920 | 139.419504 304.128 l 921 | stroke 922 | grestore 923 | [] 0 setdash 924 | 0.000 setgray 925 | gsave 926 | /o { 927 | gsave 928 | newpath 929 | translate 930 | 0.8 setlinewidth 931 | 1 setlinejoin 932 | 933 | 0 setlinecap 934 | 935 | 0 0 m 936 | 0 -3.5 l 937 | 938 | gsave 939 | 0.000 setgray 940 | fill 941 | grestore 942 | stroke 943 | grestore 944 | } bind def 945 | 139.42 38.016 o 946 | grestore 947 | gsave 948 | 949 | 133.060129 23.422250 translate 950 | 0.000000 rotate 951 | 0.000000 0 m /two glyphshow 952 | 6.362305 0 m /zero glyphshow 953 | grestore 954 | [2.96 1.28] 0 setdash 955 | 0.690 setgray 956 | gsave 957 | 357.12 266.112 57.6 38.016 clipbox 958 | 205.006281 38.016 m 959 | 205.006281 304.128 l 960 | stroke 961 | grestore 962 | [] 0 setdash 963 | 0.000 setgray 964 | gsave 965 | /o { 966 | gsave 967 | newpath 968 | translate 969 | 0.8 setlinewidth 970 | 1 setlinejoin 971 | 972 | 0 setlinecap 973 | 974 | 0 0 m 975 | 0 -3.5 l 976 | 977 | gsave 978 | 0.000 setgray 979 | fill 980 | grestore 981 | stroke 982 | grestore 983 | } bind def 984 | 205.006 38.016 o 985 | grestore 986 | gsave 987 | 988 | 198.646906 23.422250 translate 989 | 0.000000 rotate 990 | 0.000000 0 m /four glyphshow 991 | 6.362305 0 m /zero glyphshow 992 | grestore 993 | [2.96 1.28] 0 setdash 994 | 0.690 setgray 995 | gsave 996 | 357.12 266.112 57.6 38.016 clipbox 997 | 270.593058 38.016 m 998 | 270.593058 304.128 l 999 | stroke 1000 | grestore 1001 | [] 0 setdash 1002 | 0.000 setgray 1003 | gsave 1004 | /o { 1005 | gsave 1006 | newpath 1007 | translate 1008 | 0.8 setlinewidth 1009 | 1 setlinejoin 1010 | 1011 | 0 setlinecap 1012 | 1013 | 0 0 m 1014 | 0 -3.5 l 1015 | 1016 | gsave 1017 | 0.000 setgray 1018 | fill 1019 | grestore 1020 | stroke 1021 | grestore 1022 | } bind def 1023 | 270.593 38.016 o 1024 | grestore 1025 | gsave 1026 | 1027 | 264.233683 23.422250 translate 1028 | 0.000000 rotate 1029 | 0.000000 0 m /six glyphshow 1030 | 6.362305 0 m /zero glyphshow 1031 | grestore 1032 | [2.96 1.28] 0 setdash 1033 | 0.690 setgray 1034 | gsave 1035 | 357.12 266.112 57.6 38.016 clipbox 1036 | 336.179835 38.016 m 1037 | 336.179835 304.128 l 1038 | stroke 1039 | grestore 1040 | [] 0 setdash 1041 | 0.000 setgray 1042 | gsave 1043 | /o { 1044 | gsave 1045 | newpath 1046 | translate 1047 | 0.8 setlinewidth 1048 | 1 setlinejoin 1049 | 1050 | 0 setlinecap 1051 | 1052 | 0 0 m 1053 | 0 -3.5 l 1054 | 1055 | gsave 1056 | 0.000 setgray 1057 | fill 1058 | grestore 1059 | stroke 1060 | grestore 1061 | } bind def 1062 | 336.18 38.016 o 1063 | grestore 1064 | gsave 1065 | 1066 | 329.820460 23.422250 translate 1067 | 0.000000 rotate 1068 | 0.000000 0 m /eight glyphshow 1069 | 6.362305 0 m /zero glyphshow 1070 | grestore 1071 | [2.96 1.28] 0 setdash 1072 | 0.690 setgray 1073 | gsave 1074 | 357.12 266.112 57.6 38.016 clipbox 1075 | 401.766612 38.016 m 1076 | 401.766612 304.128 l 1077 | stroke 1078 | grestore 1079 | [] 0 setdash 1080 | 0.000 setgray 1081 | gsave 1082 | /o { 1083 | gsave 1084 | newpath 1085 | translate 1086 | 0.8 setlinewidth 1087 | 1 setlinejoin 1088 | 1089 | 0 setlinecap 1090 | 1091 | 0 0 m 1092 | 0 -3.5 l 1093 | 1094 | gsave 1095 | 0.000 setgray 1096 | fill 1097 | grestore 1098 | stroke 1099 | grestore 1100 | } bind def 1101 | 401.767 38.016 o 1102 | grestore 1103 | gsave 1104 | 1105 | 392.227549 23.422250 translate 1106 | 0.000000 rotate 1107 | 0.000000 0 m /one glyphshow 1108 | 6.362305 0 m /zero glyphshow 1109 | 12.724609 0 m /zero glyphshow 1110 | grestore 1111 | /DejaVuSans-Bold 15.000 selectfont 1112 | gsave 1113 | 1114 | 206.261562 5.953500 translate 1115 | 0.000000 rotate 1116 | 0.000000 0 m /E glyphshow 1117 | 10.246582 0 m /p glyphshow 1118 | 20.983887 0 m /o glyphshow 1119 | 31.289062 0 m /c glyphshow 1120 | 40.180664 0 m /h glyphshow 1121 | 50.859375 0 m /s glyphshow 1122 | grestore 1123 | [2.96 1.28] 0 setdash 1124 | 0.690 setgray 1125 | gsave 1126 | 357.12 266.112 57.6 38.016 clipbox 1127 | 57.6 64.617108 m 1128 | 414.72 64.617108 l 1129 | stroke 1130 | grestore 1131 | [] 0 setdash 1132 | 0.000 setgray 1133 | gsave 1134 | /o { 1135 | gsave 1136 | newpath 1137 | translate 1138 | 0.8 setlinewidth 1139 | 1 setlinejoin 1140 | 1141 | 0 setlinecap 1142 | 1143 | -0 0 m 1144 | -3.5 0 l 1145 | 1146 | gsave 1147 | 0.000 setgray 1148 | fill 1149 | grestore 1150 | stroke 1151 | grestore 1152 | } bind def 1153 | 57.6 64.6171 o 1154 | grestore 1155 | /DejaVuSans 10.000 selectfont 1156 | gsave 1157 | 1158 | 44.240625 60.820233 translate 1159 | 0.000000 rotate 1160 | 0.000000 0 m /five glyphshow 1161 | grestore 1162 | [2.96 1.28] 0 setdash 1163 | 0.690 setgray 1164 | gsave 1165 | 357.12 266.112 57.6 38.016 clipbox 1166 | 57.6 117.674517 m 1167 | 414.72 117.674517 l 1168 | stroke 1169 | grestore 1170 | [] 0 setdash 1171 | 0.000 setgray 1172 | gsave 1173 | /o { 1174 | gsave 1175 | newpath 1176 | translate 1177 | 0.8 setlinewidth 1178 | 1 setlinejoin 1179 | 1180 | 0 setlinecap 1181 | 1182 | -0 0 m 1183 | -3.5 0 l 1184 | 1185 | gsave 1186 | 0.000 setgray 1187 | fill 1188 | grestore 1189 | stroke 1190 | grestore 1191 | } bind def 1192 | 57.6 117.675 o 1193 | grestore 1194 | gsave 1195 | 1196 | 37.881250 113.877642 translate 1197 | 0.000000 rotate 1198 | 0.000000 0 m /one glyphshow 1199 | 6.362305 0 m /zero glyphshow 1200 | grestore 1201 | [2.96 1.28] 0 setdash 1202 | 0.690 setgray 1203 | gsave 1204 | 357.12 266.112 57.6 38.016 clipbox 1205 | 57.6 170.731925 m 1206 | 414.72 170.731925 l 1207 | stroke 1208 | grestore 1209 | [] 0 setdash 1210 | 0.000 setgray 1211 | gsave 1212 | /o { 1213 | gsave 1214 | newpath 1215 | translate 1216 | 0.8 setlinewidth 1217 | 1 setlinejoin 1218 | 1219 | 0 setlinecap 1220 | 1221 | -0 0 m 1222 | -3.5 0 l 1223 | 1224 | gsave 1225 | 0.000 setgray 1226 | fill 1227 | grestore 1228 | stroke 1229 | grestore 1230 | } bind def 1231 | 57.6 170.732 o 1232 | grestore 1233 | gsave 1234 | 1235 | 37.881250 166.935050 translate 1236 | 0.000000 rotate 1237 | 0.000000 0 m /one glyphshow 1238 | 6.362305 0 m /five glyphshow 1239 | grestore 1240 | [2.96 1.28] 0 setdash 1241 | 0.690 setgray 1242 | gsave 1243 | 357.12 266.112 57.6 38.016 clipbox 1244 | 57.6 223.789333 m 1245 | 414.72 223.789333 l 1246 | stroke 1247 | grestore 1248 | [] 0 setdash 1249 | 0.000 setgray 1250 | gsave 1251 | /o { 1252 | gsave 1253 | newpath 1254 | translate 1255 | 0.8 setlinewidth 1256 | 1 setlinejoin 1257 | 1258 | 0 setlinecap 1259 | 1260 | -0 0 m 1261 | -3.5 0 l 1262 | 1263 | gsave 1264 | 0.000 setgray 1265 | fill 1266 | grestore 1267 | stroke 1268 | grestore 1269 | } bind def 1270 | 57.6 223.789 o 1271 | grestore 1272 | gsave 1273 | 1274 | 37.881250 219.992458 translate 1275 | 0.000000 rotate 1276 | 0.000000 0 m /two glyphshow 1277 | 6.362305 0 m /zero glyphshow 1278 | grestore 1279 | [2.96 1.28] 0 setdash 1280 | 0.690 setgray 1281 | gsave 1282 | 357.12 266.112 57.6 38.016 clipbox 1283 | 57.6 276.846742 m 1284 | 414.72 276.846742 l 1285 | stroke 1286 | grestore 1287 | [] 0 setdash 1288 | 0.000 setgray 1289 | gsave 1290 | /o { 1291 | gsave 1292 | newpath 1293 | translate 1294 | 0.8 setlinewidth 1295 | 1 setlinejoin 1296 | 1297 | 0 setlinecap 1298 | 1299 | -0 0 m 1300 | -3.5 0 l 1301 | 1302 | gsave 1303 | 0.000 setgray 1304 | fill 1305 | grestore 1306 | stroke 1307 | grestore 1308 | } bind def 1309 | 57.6 276.847 o 1310 | grestore 1311 | gsave 1312 | 1313 | 37.881250 273.049867 translate 1314 | 0.000000 rotate 1315 | 0.000000 0 m /two glyphshow 1316 | 6.362305 0 m /five glyphshow 1317 | grestore 1318 | /DejaVuSans-Bold 15.000 selectfont 1319 | gsave 1320 | 1321 | 30.646875 115.337625 translate 1322 | 90.000000 rotate 1323 | 0.000000 0 m /T glyphshow 1324 | 8.606934 0 m /r glyphshow 1325 | 16.004395 0 m /a glyphshow 1326 | 26.126465 0 m /i glyphshow 1327 | 31.268066 0 m /n glyphshow 1328 | 41.946777 0 m /i glyphshow 1329 | 47.088379 0 m /n glyphshow 1330 | 57.767090 0 m /g glyphshow 1331 | 68.504395 0 m /space glyphshow 1332 | 73.726562 0 m /L glyphshow 1333 | 83.284668 0 m /o glyphshow 1334 | 93.589844 0 m /s glyphshow 1335 | 102.518066 0 m /s glyphshow 1336 | grestore 1337 | 2.000 setlinewidth 1338 | 2 setlinecap 1339 | 0.122 0.467 0.706 setrgbcolor 1340 | gsave 1341 | 357.12 266.112 57.6 38.016 clipbox 1342 | 73.832727 292.032 m 1343 | 77.112066 193.340413 l 1344 | 80.391405 177.262744 l 1345 | 83.670744 176.098412 l 1346 | 86.950083 175.331309 l 1347 | 90.229421 174.489248 l 1348 | 93.50876 171.828249 l 1349 | 96.788099 168.652485 l 1350 | 100.067438 166.100262 l 1351 | 103.346777 162.757079 l 1352 | 106.626116 160.779284 l 1353 | 109.905455 156.91609 l 1354 | 113.184793 155.720673 l 1355 | 116.464132 154.490418 l 1356 | 119.743471 153.181055 l 1357 | 123.02281 152.282414 l 1358 | 126.302149 150.728405 l 1359 | 129.581488 149.791154 l 1360 | 132.860826 148.258985 l 1361 | 136.140165 148.703787 l 1362 | 139.419504 145.249627 l 1363 | 142.698843 144.387426 l 1364 | 145.978182 142.801454 l 1365 | 149.257521 141.620132 l 1366 | 152.53686 140.94232 l 1367 | 155.816198 140.129595 l 1368 | 159.095537 139.601485 l 1369 | 162.374876 139.616995 l 1370 | 165.654215 137.930247 l 1371 | 168.933554 137.348174 l 1372 | 172.212893 136.121439 l 1373 | 175.492231 135.295164 l 1374 | 178.77157 135.284543 l 1375 | 182.050909 131.449715 l 1376 | 185.330248 121.870691 l 1377 | 188.609587 119.680041 l 1378 | 191.888926 120.371701 l 1379 | 195.168264 119.874966 l 1380 | 198.447603 118.395318 l 1381 | 201.726942 118.873455 l 1382 | 205.006281 118.934849 l 1383 | 208.28562 117.66358 l 1384 | 211.564959 118.607666 l 1385 | 214.844298 118.496771 l 1386 | 218.123636 117.385701 l 1387 | 221.402975 117.729389 l 1388 | 224.682314 115.631869 l 1389 | 227.961653 115.604457 l 1390 | 231.240992 113.877968 l 1391 | 234.520331 112.772547 l 1392 | 237.799669 112.914906 l 1393 | 241.079008 111.203851 l 1394 | 244.358347 112.206333 l 1395 | 247.637686 110.192572 l 1396 | 250.917025 109.757305 l 1397 | 254.196364 107.925921 l 1398 | 257.475702 107.199921 l 1399 | 260.755041 107.615633 l 1400 | 264.03438 108.034375 l 1401 | 267.313719 107.497937 l 1402 | 270.593058 106.069192 l 1403 | 273.872397 105.157181 l 1404 | 277.151736 105.610213 l 1405 | 280.431074 104.339096 l 1406 | 283.710413 103.397915 l 1407 | 286.989752 103.568175 l 1408 | 290.269091 103.044018 l 1409 | 293.54843 102.628902 l 1410 | 296.827769 102.572737 l 1411 | 300.107107 101.739812 l 1412 | 303.386446 101.495268 l 1413 | 306.665785 102.672026 l 1414 | 309.945124 102.286615 l 1415 | 313.224463 100.902428 l 1416 | 316.503802 100.346834 l 1417 | 319.78314 101.226059 l 1418 | 323.062479 99.373969 l 1419 | 326.341818 98.181186 l 1420 | 329.621157 98.446574 l 1421 | 332.900496 98.209993 l 1422 | 336.179835 99.575903 l 1423 | 339.459174 98.020337 l 1424 | 342.738512 97.88219 l 1425 | 346.017851 97.258301 l 1426 | 349.29719 95.886861 l 1427 | 352.576529 95.586348 l 1428 | 355.855868 95.38447 l 1429 | 359.135207 96.170103 l 1430 | 362.414545 95.170984 l 1431 | 365.693884 94.342741 l 1432 | 368.973223 94.39423 l 1433 | 372.252562 93.389928 l 1434 | 375.531901 92.515756 l 1435 | 378.81124 92.774322 l 1436 | 382.090579 92.574076 l 1437 | 385.369917 93.643805 l 1438 | 388.649256 92.460391 l 1439 | 391.928595 91.171251 l 1440 | 395.207934 91.094784 l 1441 | 398.487273 90.879446 l 1442 | stroke 1443 | grestore 1444 | 1.000 0.498 0.055 setrgbcolor 1445 | gsave 1446 | 357.12 266.112 57.6 38.016 clipbox 1447 | 73.832727 241.119138 m 1448 | 77.112066 151.605136 l 1449 | 80.391405 144.508607 l 1450 | 83.670744 144.768363 l 1451 | 86.950083 143.155986 l 1452 | 90.229421 141.956633 l 1453 | 93.50876 142.478452 l 1454 | 96.788099 139.343915 l 1455 | 100.067438 137.231618 l 1456 | 103.346777 132.609093 l 1457 | 106.626116 129.375692 l 1458 | 109.905455 125.941975 l 1459 | 113.184793 123.662149 l 1460 | 116.464132 123.186178 l 1461 | 119.743471 122.211213 l 1462 | 123.02281 119.370532 l 1463 | 126.302149 117.935437 l 1464 | 129.581488 117.008459 l 1465 | 132.860826 116.16995 l 1466 | 136.140165 116.072369 l 1467 | 139.419504 114.455803 l 1468 | 142.698843 111.909229 l 1469 | 145.978182 110.692582 l 1470 | 149.257521 109.045432 l 1471 | 152.53686 108.520033 l 1472 | 155.816198 106.368234 l 1473 | 159.095537 105.854826 l 1474 | 162.374876 103.773068 l 1475 | 165.654215 105.581191 l 1476 | 168.933554 101.170379 l 1477 | 172.212893 100.983506 l 1478 | 175.492231 99.832852 l 1479 | 178.77157 98.610351 l 1480 | 182.050909 98.482741 l 1481 | 185.330248 96.474226 l 1482 | 188.609587 95.206479 l 1483 | 191.888926 94.665492 l 1484 | 195.168264 92.848463 l 1485 | 198.447603 91.992565 l 1486 | 201.726942 93.012735 l 1487 | 205.006281 90.928834 l 1488 | 208.28562 90.61808 l 1489 | 211.564959 90.143109 l 1490 | 214.844298 89.037379 l 1491 | 218.123636 89.415124 l 1492 | 221.402975 88.582133 l 1493 | 224.682314 87.108339 l 1494 | 227.961653 85.323128 l 1495 | 231.240992 85.980938 l 1496 | 234.520331 86.185896 l 1497 | 237.799669 85.622549 l 1498 | 241.079008 83.477165 l 1499 | 244.358347 83.26339 l 1500 | 247.637686 84.401977 l 1501 | 250.917025 82.722591 l 1502 | 254.196364 81.768088 l 1503 | 257.475702 81.517166 l 1504 | 260.755041 80.69321 l 1505 | 264.03438 81.089256 l 1506 | 267.313719 80.436644 l 1507 | 270.593058 79.614521 l 1508 | 273.872397 78.382129 l 1509 | 277.151736 77.66452 l 1510 | 280.431074 77.416509 l 1511 | 283.710413 76.984406 l 1512 | 286.989752 77.390503 l 1513 | 290.269091 77.4632 l 1514 | 293.54843 78.108335 l 1515 | 296.827769 75.942913 l 1516 | 300.107107 73.958393 l 1517 | 303.386446 72.793639 l 1518 | 306.665785 72.960631 l 1519 | 309.945124 72.622331 l 1520 | 313.224463 71.693019 l 1521 | 316.503802 71.663425 l 1522 | 319.78314 71.719299 l 1523 | 323.062479 71.465764 l 1524 | 326.341818 71.341246 l 1525 | 329.621157 71.114683 l 1526 | 332.900496 71.308646 l 1527 | 336.179835 70.739016 l 1528 | 339.459174 70.577117 l 1529 | 342.738512 69.525687 l 1530 | 346.017851 70.653965 l 1531 | 349.29719 71.81664 l 1532 | 352.576529 69.971118 l 1533 | 355.855868 69.090814 l 1534 | 359.135207 68.207594 l 1535 | 362.414545 68.211904 l 1536 | 365.693884 68.255881 l 1537 | 368.973223 66.574311 l 1538 | 372.252562 68.01952 l 1539 | 375.531901 69.171881 l 1540 | 378.81124 69.658822 l 1541 | 382.090579 68.284632 l 1542 | 385.369917 66.270342 l 1543 | 388.649256 65.390324 l 1544 | 391.928595 65.631797 l 1545 | 395.207934 66.430413 l 1546 | 398.487273 65.479842 l 1547 | stroke 1548 | grestore 1549 | 0.173 0.627 0.173 setrgbcolor 1550 | gsave 1551 | 357.12 266.112 57.6 38.016 clipbox 1552 | 73.832727 226.938555 m 1553 | 77.112066 144.601678 l 1554 | 80.391405 140.041272 l 1555 | 83.670744 131.989286 l 1556 | 86.950083 125.949126 l 1557 | 90.229421 120.998021 l 1558 | 93.50876 118.791766 l 1559 | 96.788099 114.482274 l 1560 | 100.067438 112.251127 l 1561 | 103.346777 110.954767 l 1562 | 106.626116 109.143374 l 1563 | 109.905455 109.201518 l 1564 | 113.184793 107.879972 l 1565 | 116.464132 108.199972 l 1566 | 119.743471 105.83509 l 1567 | 123.02281 104.277312 l 1568 | 126.302149 103.056257 l 1569 | 129.581488 104.003319 l 1570 | 132.860826 102.195122 l 1571 | 136.140165 102.280675 l 1572 | 139.419504 98.686013 l 1573 | 142.698843 100.362926 l 1574 | 145.978182 97.142614 l 1575 | 149.257521 95.06018 l 1576 | 152.53686 92.5815 l 1577 | 155.816198 94.67 l 1578 | 159.095537 91.326395 l 1579 | 162.374876 89.582808 l 1580 | 165.654215 90.909807 l 1581 | 168.933554 89.590376 l 1582 | 172.212893 88.090959 l 1583 | 175.492231 87.956818 l 1584 | 178.77157 89.797388 l 1585 | 182.050909 87.301341 l 1586 | 185.330248 84.431333 l 1587 | 188.609587 83.496359 l 1588 | 191.888926 83.166443 l 1589 | 195.168264 82.387787 l 1590 | 198.447603 82.609034 l 1591 | 201.726942 81.696345 l 1592 | 205.006281 81.641476 l 1593 | 208.28562 81.041844 l 1594 | 211.564959 80.950425 l 1595 | 214.844298 80.027555 l 1596 | 218.123636 78.235123 l 1597 | 221.402975 78.741505 l 1598 | 224.682314 77.325576 l 1599 | 227.961653 76.886446 l 1600 | 231.240992 78.197439 l 1601 | 234.520331 75.505369 l 1602 | 237.799669 75.880124 l 1603 | 241.079008 75.844558 l 1604 | 244.358347 78.634832 l 1605 | 247.637686 74.704029 l 1606 | 250.917025 74.284417 l 1607 | 254.196364 74.361953 l 1608 | 257.475702 73.356467 l 1609 | 260.755041 72.815777 l 1610 | 264.03438 72.057576 l 1611 | 267.313719 76.046377 l 1612 | 270.593058 73.12066 l 1613 | 273.872397 71.339527 l 1614 | 277.151736 70.424298 l 1615 | 280.431074 69.71391 l 1616 | 283.710413 69.197201 l 1617 | 286.989752 67.663671 l 1618 | 290.269091 69.675427 l 1619 | 293.54843 69.097341 l 1620 | 296.827769 69.117154 l 1621 | 300.107107 68.324385 l 1622 | 303.386446 71.411548 l 1623 | 306.665785 69.373187 l 1624 | 309.945124 67.633986 l 1625 | 313.224463 65.896517 l 1626 | 316.503802 65.171613 l 1627 | 319.78314 66.052452 l 1628 | 323.062479 65.590081 l 1629 | 326.341818 65.486035 l 1630 | 329.621157 64.840575 l 1631 | 332.900496 62.805367 l 1632 | 336.179835 63.300828 l 1633 | 339.459174 64.382518 l 1634 | 342.738512 65.722205 l 1635 | 346.017851 66.83588 l 1636 | 349.29719 64.74372 l 1637 | 352.576529 64.176124 l 1638 | 355.855868 62.736622 l 1639 | 359.135207 62.721504 l 1640 | 362.414545 63.270657 l 1641 | 365.693884 63.93736 l 1642 | 368.973223 62.178508 l 1643 | 372.252562 61.644688 l 1644 | 375.531901 61.323236 l 1645 | 378.81124 62.662038 l 1646 | 382.090579 60.996748 l 1647 | 385.369917 60.209696 l 1648 | 388.649256 59.635336 l 1649 | 391.928595 59.385687 l 1650 | 395.207934 59.89175 l 1651 | 398.487273 59.587315 l 1652 | stroke 1653 | grestore 1654 | 0.839 0.153 0.157 setrgbcolor 1655 | gsave 1656 | 357.12 266.112 57.6 38.016 clipbox 1657 | 73.832727 188.383219 m 1658 | 77.112066 135.584379 l 1659 | 80.391405 124.326384 l 1660 | 83.670744 120.341018 l 1661 | 86.950083 116.758377 l 1662 | 90.229421 113.274911 l 1663 | 93.50876 108.556144 l 1664 | 96.788099 106.755028 l 1665 | 100.067438 106.28949 l 1666 | 103.346777 105.766719 l 1667 | 106.626116 101.079451 l 1668 | 109.905455 99.884206 l 1669 | 113.184793 99.977357 l 1670 | 116.464132 100.61494 l 1671 | 119.743471 97.67867 l 1672 | 123.02281 96.279415 l 1673 | 126.302149 96.337322 l 1674 | 129.581488 93.714628 l 1675 | 132.860826 92.211788 l 1676 | 136.140165 93.141607 l 1677 | 139.419504 92.037473 l 1678 | 142.698843 89.749132 l 1679 | 145.978182 89.493268 l 1680 | 149.257521 89.796482 l 1681 | 152.53686 86.570061 l 1682 | 155.816198 89.424399 l 1683 | 159.095537 89.631794 l 1684 | 162.374876 85.536843 l 1685 | 165.654215 81.461434 l 1686 | 168.933554 82.297175 l 1687 | 172.212893 84.044823 l 1688 | 175.492231 81.893952 l 1689 | 178.77157 79.715958 l 1690 | 182.050909 78.06277 l 1691 | 185.330248 78.75572 l 1692 | 188.609587 78.625632 l 1693 | 191.888926 81.322811 l 1694 | 195.168264 76.309515 l 1695 | 198.447603 73.482705 l 1696 | 201.726942 73.340433 l 1697 | 205.006281 72.373015 l 1698 | 208.28562 72.770347 l 1699 | 211.564959 71.463717 l 1700 | 214.844298 70.3804 l 1701 | 218.123636 71.820013 l 1702 | 221.402975 71.071533 l 1703 | 224.682314 68.293775 l 1704 | 227.961653 67.394469 l 1705 | 231.240992 66.254921 l 1706 | 234.520331 67.385588 l 1707 | 237.799669 67.195778 l 1708 | 241.079008 65.163447 l 1709 | 244.358347 65.69152 l 1710 | 247.637686 64.953258 l 1711 | 250.917025 64.209604 l 1712 | 254.196364 63.12099 l 1713 | 257.475702 62.50198 l 1714 | 260.755041 67.144124 l 1715 | 264.03438 62.809801 l 1716 | 267.313719 60.980836 l 1717 | 270.593058 58.905673 l 1718 | 273.872397 60.459572 l 1719 | 277.151736 60.02023 l 1720 | 280.431074 59.485595 l 1721 | 283.710413 58.48504 l 1722 | 286.989752 57.402083 l 1723 | 290.269091 57.705998 l 1724 | 293.54843 58.510644 l 1725 | 296.827769 56.432516 l 1726 | 300.107107 55.95366 l 1727 | 303.386446 57.266415 l 1728 | 306.665785 56.230804 l 1729 | 309.945124 54.918422 l 1730 | 313.224463 56.788787 l 1731 | 316.503802 55.738778 l 1732 | 319.78314 54.07502 l 1733 | 323.062479 53.631985 l 1734 | 326.341818 55.303984 l 1735 | 329.621157 54.505467 l 1736 | 332.900496 53.600228 l 1737 | 336.179835 54.005264 l 1738 | 339.459174 54.222448 l 1739 | 342.738512 53.394155 l 1740 | 346.017851 53.856427 l 1741 | 349.29719 53.077536 l 1742 | 352.576529 53.452714 l 1743 | 355.855868 55.630253 l 1744 | 359.135207 54.744909 l 1745 | 362.414545 54.869309 l 1746 | 365.693884 54.090378 l 1747 | 368.973223 51.307109 l 1748 | 372.252562 50.763321 l 1749 | 375.531901 52.139185 l 1750 | 378.81124 50.676621 l 1751 | 382.090579 50.112 l 1752 | 385.369917 50.604671 l 1753 | 388.649256 51.60965 l 1754 | 391.928595 51.34352 l 1755 | 395.207934 51.120467 l 1756 | 398.487273 53.084966 l 1757 | stroke 1758 | grestore 1759 | 0.800 setlinewidth 1760 | 0 setlinejoin 1761 | 0.000 setgray 1762 | gsave 1763 | 57.6 38.016 m 1764 | 57.6 304.128 l 1765 | stroke 1766 | grestore 1767 | gsave 1768 | 414.72 38.016 m 1769 | 414.72 304.128 l 1770 | stroke 1771 | grestore 1772 | gsave 1773 | 57.6 38.016 m 1774 | 414.72 38.016 l 1775 | stroke 1776 | grestore 1777 | gsave 1778 | 57.6 304.128 m 1779 | 414.72 304.128 l 1780 | stroke 1781 | grestore 1782 | 1.000 setlinewidth 1783 | 0 setlinecap 1784 | 0.800 setgray 1785 | gsave 1786 | 90.998125 261.178 m 1787 | 406.67 261.178 l 1788 | 408.203333 261.178 408.97 261.944667 408.97 263.478 c 1789 | 408.97 296.078 l 1790 | 408.97 297.611333 408.203333 298.378 406.67 298.378 c 1791 | 90.998125 298.378 l 1792 | 89.464792 298.378 88.698125 297.611333 88.698125 296.078 c 1793 | 88.698125 263.478 l 1794 | 88.698125 261.944667 89.464792 261.178 90.998125 261.178 c 1795 | cl 1796 | gsave 1797 | 1.000 setgray 1798 | fill 1799 | grestore 1800 | stroke 1801 | grestore 1802 | 2.000 setlinewidth 1803 | 1 setlinejoin 1804 | 2 setlinecap 1805 | 0.122 0.467 0.706 setrgbcolor 1806 | gsave 1807 | 93.298125 289.068625 m 1808 | 104.798125 289.068625 l 1809 | 116.298125 289.068625 l 1810 | stroke 1811 | grestore 1812 | 0.000 setgray 1813 | /DejaVuSans 11.500 selectfont 1814 | gsave 1815 | 1816 | 125.498125 285.043625 translate 1817 | 0.000000 rotate 1818 | 0.000000 0 m /U glyphshow 1819 | 8.417236 0 m /P glyphshow 1820 | 15.352051 0 m /L glyphshow 1821 | 21.759033 0 m /parenleft glyphshow 1822 | 26.245605 0 m /S glyphshow 1823 | 33.545410 0 m /i glyphshow 1824 | 36.740479 0 m /n glyphshow 1825 | 44.029053 0 m /g glyphshow 1826 | 51.328857 0 m /l glyphshow 1827 | 54.523926 0 m /e glyphshow 1828 | 61.599121 0 m /space glyphshow 1829 | 65.254639 0 m /U glyphshow 1830 | 73.671875 0 m /s glyphshow 1831 | 79.663330 0 m /e glyphshow 1832 | 86.738525 0 m /r glyphshow 1833 | 91.466553 0 m /parenright glyphshow 1834 | grestore 1835 | 1.000 0.498 0.055 setrgbcolor 1836 | gsave 1837 | 93.298125 272.193625 m 1838 | 104.798125 272.193625 l 1839 | 116.298125 272.193625 l 1840 | stroke 1841 | grestore 1842 | 0.000 setgray 1843 | gsave 1844 | 1845 | 125.498125 268.168625 translate 1846 | 0.000000 rotate 1847 | 0.000000 0 m /C glyphshow 1848 | 8.029785 0 m /hyphen glyphshow 1849 | 12.179443 0 m /U glyphshow 1850 | 20.596680 0 m /P glyphshow 1851 | 27.531494 0 m /L glyphshow 1852 | 33.938477 0 m /parenleft glyphshow 1853 | 38.425049 0 m /S glyphshow 1854 | 45.724854 0 m /i glyphshow 1855 | 48.919922 0 m /n glyphshow 1856 | 56.208496 0 m /g glyphshow 1857 | 63.508301 0 m /l glyphshow 1858 | 66.703369 0 m /e glyphshow 1859 | 73.778564 0 m /space glyphshow 1860 | 77.434082 0 m /U glyphshow 1861 | 85.851318 0 m /s glyphshow 1862 | 91.842773 0 m /e glyphshow 1863 | 98.917969 0 m /r glyphshow 1864 | 103.645996 0 m /parenright glyphshow 1865 | grestore 1866 | 0.173 0.627 0.173 setrgbcolor 1867 | gsave 1868 | 256.685625 289.068625 m 1869 | 268.185625 289.068625 l 1870 | 279.685625 289.068625 l 1871 | stroke 1872 | grestore 1873 | 0.000 setgray 1874 | gsave 1875 | 1876 | 288.885625 285.043625 translate 1877 | 0.000000 rotate 1878 | 0.000000 0 m /S glyphshow 1879 | 7.299805 0 m /hyphen glyphshow 1880 | 11.449463 0 m /U glyphshow 1881 | 19.866699 0 m /P glyphshow 1882 | 26.801514 0 m /L glyphshow 1883 | 33.208496 0 m /parenleft glyphshow 1884 | 37.695068 0 m /S glyphshow 1885 | 44.994873 0 m /i glyphshow 1886 | 48.189941 0 m /n glyphshow 1887 | 55.478516 0 m /g glyphshow 1888 | 62.778320 0 m /l glyphshow 1889 | 65.973389 0 m /e glyphshow 1890 | 73.048584 0 m /space glyphshow 1891 | 76.704102 0 m /U glyphshow 1892 | 85.121338 0 m /s glyphshow 1893 | 91.112793 0 m /e glyphshow 1894 | 98.187988 0 m /r glyphshow 1895 | 102.916016 0 m /parenright glyphshow 1896 | grestore 1897 | 0.839 0.153 0.157 setrgbcolor 1898 | gsave 1899 | 256.685625 272.193625 m 1900 | 268.185625 272.193625 l 1901 | 279.685625 272.193625 l 1902 | stroke 1903 | grestore 1904 | 0.000 setgray 1905 | gsave 1906 | 1907 | 288.885625 268.168625 translate 1908 | 0.000000 rotate 1909 | 0.000000 0 m /C glyphshow 1910 | 8.029785 0 m /S glyphshow 1911 | 15.329590 0 m /hyphen glyphshow 1912 | 19.479248 0 m /U glyphshow 1913 | 27.896484 0 m /P glyphshow 1914 | 34.831299 0 m /L glyphshow 1915 | 41.238281 0 m /parenleft glyphshow 1916 | 45.724854 0 m /S glyphshow 1917 | 53.024658 0 m /i glyphshow 1918 | 56.219727 0 m /n glyphshow 1919 | 63.508301 0 m /g glyphshow 1920 | 70.808105 0 m /l glyphshow 1921 | 74.003174 0 m /e glyphshow 1922 | 81.078369 0 m /space glyphshow 1923 | 84.733887 0 m /U glyphshow 1924 | 93.151123 0 m /s glyphshow 1925 | 99.142578 0 m /e glyphshow 1926 | 106.217773 0 m /r glyphshow 1927 | 110.945801 0 m /parenright glyphshow 1928 | grestore 1929 | 1930 | end 1931 | showpage 1932 | -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss_AllUsers.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-3.0 EPSF-3.0 2 | %%Title: Training_loss_AllUsers.eps 3 | %%Creator: Matplotlib v3.5.0, https://matplotlib.org/ 4 | %%CreationDate: Fri May 20 17:29:05 2022 5 | %%Orientation: portrait 6 | %%BoundingBox: 75 223 537 569 7 | %%HiResBoundingBox: 75.600000 223.200000 536.400000 568.800000 8 | %%EndComments 9 | %%BeginProlog 10 | /mpldict 12 dict def 11 | mpldict begin 12 | /_d { bind def } bind def 13 | /m { moveto } _d 14 | /l { lineto } _d 15 | /r { rlineto } _d 16 | /c { curveto } _d 17 | /cl { closepath } _d 18 | /ce { closepath eofill } _d 19 | /box { 20 | m 21 | 1 index 0 r 22 | 0 exch r 23 | neg 0 r 24 | cl 25 | } _d 26 | /clipbox { 27 | box 28 | clip 29 | newpath 30 | } _d 31 | /sc { setcachedevice } _d 32 | %!PS-Adobe-3.0 Resource-Font 33 | %%Creator: Converted from TrueType to Type 3 by Matplotlib. 34 | 10 dict begin 35 | /FontName /DejaVuSans def 36 | /PaintType 0 def 37 | /FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def 38 | /FontBBox [-2090 -948 3673 2524] def 39 | /FontType 3 def 40 | /Encoding [/space /parenleft /parenright /hyphen /zero /one /two /three /four /five /six /eight /C /L /M /P /S /U /e /i /l /p /r /s /t /u] def 41 | /CharStrings 27 dict dup begin 42 | /.notdef 0 def 43 | /space{651 0 0 0 0 0 sc 44 | ce} _d 45 | /parenleft{799 0 176 -270 635 1554 sc 46 | 635 1554 m 47 | 546 1401 479 1249 436 1099 c 48 | 393 949 371 797 371 643 c 49 | 371 489 393 336 436 185 c 50 | 480 34 546 -117 635 -270 c 51 | 475 -270 l 52 | 375 -113 300 41 250 192 c 53 | 201 343 176 494 176 643 c 54 | 176 792 201 941 250 1092 c 55 | 299 1243 374 1397 475 1554 c 56 | 635 1554 l 57 | 58 | ce} _d 59 | /parenright{799 0 164 -270 623 1554 sc 60 | 164 1554 m 61 | 324 1554 l 62 | 424 1397 499 1243 548 1092 c 63 | 598 941 623 792 623 643 c 64 | 623 494 598 343 548 192 c 65 | 499 41 424 -113 324 -270 c 66 | 164 -270 l 67 | 253 -117 319 34 362 185 c 68 | 406 336 428 489 428 643 c 69 | 428 797 406 949 362 1099 c 70 | 319 1249 253 1401 164 1554 c 71 | 72 | ce} _d 73 | /hyphen{739 0 100 479 639 643 sc 74 | 100 643 m 75 | 639 643 l 76 | 639 479 l 77 | 100 479 l 78 | 100 643 l 79 | 80 | ce} _d 81 | /zero{1303 0 135 -29 1167 1520 sc 82 | 651 1360 m 83 | 547 1360 469 1309 416 1206 c 84 | 364 1104 338 950 338 745 c 85 | 338 540 364 387 416 284 c 86 | 469 182 547 131 651 131 c 87 | 756 131 834 182 886 284 c 88 | 939 387 965 540 965 745 c 89 | 965 950 939 1104 886 1206 c 90 | 834 1309 756 1360 651 1360 c 91 | 92 | 651 1520 m 93 | 818 1520 946 1454 1034 1321 c 94 | 1123 1189 1167 997 1167 745 c 95 | 1167 494 1123 302 1034 169 c 96 | 946 37 818 -29 651 -29 c 97 | 484 -29 356 37 267 169 c 98 | 179 302 135 494 135 745 c 99 | 135 997 179 1189 267 1321 c 100 | 356 1454 484 1520 651 1520 c 101 | 102 | ce} _d 103 | /one{1303 0 225 0 1114 1493 sc 104 | 254 170 m 105 | 584 170 l 106 | 584 1309 l 107 | 225 1237 l 108 | 225 1421 l 109 | 582 1493 l 110 | 784 1493 l 111 | 784 170 l 112 | 1114 170 l 113 | 1114 0 l 114 | 254 0 l 115 | 254 170 l 116 | 117 | ce} _d 118 | /two{1303 0 150 0 1098 1520 sc 119 | 393 170 m 120 | 1098 170 l 121 | 1098 0 l 122 | 150 0 l 123 | 150 170 l 124 | 227 249 331 356 463 489 c 125 | 596 623 679 709 713 748 c 126 | 778 821 823 882 848 932 c 127 | 874 983 887 1032 887 1081 c 128 | 887 1160 859 1225 803 1275 c 129 | 748 1325 675 1350 586 1350 c 130 | 523 1350 456 1339 385 1317 c 131 | 315 1295 240 1262 160 1217 c 132 | 160 1421 l 133 | 241 1454 317 1478 388 1495 c 134 | 459 1512 523 1520 582 1520 c 135 | 737 1520 860 1481 952 1404 c 136 | 1044 1327 1090 1223 1090 1094 c 137 | 1090 1033 1078 974 1055 919 c 138 | 1032 864 991 800 930 725 c 139 | 913 706 860 650 771 557 c 140 | 682 465 556 336 393 170 c 141 | 142 | ce} _d 143 | /three{1303 0 156 -29 1139 1520 sc 144 | 831 805 m 145 | 928 784 1003 741 1057 676 c 146 | 1112 611 1139 530 1139 434 c 147 | 1139 287 1088 173 987 92 c 148 | 886 11 742 -29 555 -29 c 149 | 492 -29 428 -23 361 -10 c 150 | 295 2 227 20 156 45 c 151 | 156 240 l 152 | 212 207 273 183 340 166 c 153 | 407 149 476 141 549 141 c 154 | 676 141 772 166 838 216 c 155 | 905 266 938 339 938 434 c 156 | 938 522 907 591 845 640 c 157 | 784 690 698 715 588 715 c 158 | 414 715 l 159 | 414 881 l 160 | 596 881 l 161 | 695 881 771 901 824 940 c 162 | 877 980 903 1037 903 1112 c 163 | 903 1189 876 1247 821 1288 c 164 | 767 1329 689 1350 588 1350 c 165 | 533 1350 473 1344 410 1332 c 166 | 347 1320 277 1301 201 1276 c 167 | 201 1456 l 168 | 278 1477 349 1493 416 1504 c 169 | 483 1515 547 1520 606 1520 c 170 | 759 1520 881 1485 970 1415 c 171 | 1059 1346 1104 1252 1104 1133 c 172 | 1104 1050 1080 980 1033 923 c 173 | 986 866 918 827 831 805 c 174 | 175 | ce} _d 176 | /four{1303 0 100 0 1188 1493 sc 177 | 774 1317 m 178 | 264 520 l 179 | 774 520 l 180 | 774 1317 l 181 | 182 | 721 1493 m 183 | 975 1493 l 184 | 975 520 l 185 | 1188 520 l 186 | 1188 352 l 187 | 975 352 l 188 | 975 0 l 189 | 774 0 l 190 | 774 352 l 191 | 100 352 l 192 | 100 547 l 193 | 721 1493 l 194 | 195 | ce} _d 196 | /five{1303 0 158 -29 1124 1493 sc 197 | 221 1493 m 198 | 1014 1493 l 199 | 1014 1323 l 200 | 406 1323 l 201 | 406 957 l 202 | 435 967 465 974 494 979 c 203 | 523 984 553 987 582 987 c 204 | 749 987 881 941 978 850 c 205 | 1075 759 1124 635 1124 479 c 206 | 1124 318 1074 193 974 104 c 207 | 874 15 733 -29 551 -29 c 208 | 488 -29 424 -24 359 -13 c 209 | 294 -2 227 14 158 35 c 210 | 158 238 l 211 | 218 205 280 181 344 165 c 212 | 408 149 476 141 547 141 c 213 | 662 141 754 171 821 232 c 214 | 888 293 922 375 922 479 c 215 | 922 583 888 665 821 726 c 216 | 754 787 662 817 547 817 c 217 | 493 817 439 811 385 799 c 218 | 332 787 277 768 221 743 c 219 | 221 1493 l 220 | 221 | ce} _d 222 | /six{1303 0 143 -29 1174 1520 sc 223 | 676 827 m 224 | 585 827 513 796 460 734 c 225 | 407 672 381 587 381 479 c 226 | 381 372 407 287 460 224 c 227 | 513 162 585 131 676 131 c 228 | 767 131 838 162 891 224 c 229 | 944 287 971 372 971 479 c 230 | 971 587 944 672 891 734 c 231 | 838 796 767 827 676 827 c 232 | 233 | 1077 1460 m 234 | 1077 1276 l 235 | 1026 1300 975 1318 923 1331 c 236 | 872 1344 821 1350 770 1350 c 237 | 637 1350 535 1305 464 1215 c 238 | 394 1125 354 989 344 807 c 239 | 383 865 433 909 492 940 c 240 | 551 971 617 987 688 987 c 241 | 838 987 956 941 1043 850 c 242 | 1130 759 1174 636 1174 479 c 243 | 1174 326 1129 203 1038 110 c 244 | 947 17 827 -29 676 -29 c 245 | 503 -29 371 37 280 169 c 246 | 189 302 143 494 143 745 c 247 | 143 981 199 1169 311 1309 c 248 | 423 1450 573 1520 762 1520 c 249 | 813 1520 864 1515 915 1505 c 250 | 967 1495 1021 1480 1077 1460 c 251 | 252 | ce} _d 253 | /eight{1303 0 139 -29 1163 1520 sc 254 | 651 709 m 255 | 555 709 479 683 424 632 c 256 | 369 581 342 510 342 420 c 257 | 342 330 369 259 424 208 c 258 | 479 157 555 131 651 131 c 259 | 747 131 823 157 878 208 c 260 | 933 260 961 331 961 420 c 261 | 961 510 933 581 878 632 c 262 | 823 683 748 709 651 709 c 263 | 264 | 449 795 m 265 | 362 816 295 857 246 916 c 266 | 198 975 174 1048 174 1133 c 267 | 174 1252 216 1347 301 1416 c 268 | 386 1485 503 1520 651 1520 c 269 | 800 1520 916 1485 1001 1416 c 270 | 1086 1347 1128 1252 1128 1133 c 271 | 1128 1048 1104 975 1055 916 c 272 | 1007 857 940 816 854 795 c 273 | 951 772 1027 728 1081 662 c 274 | 1136 596 1163 515 1163 420 c 275 | 1163 275 1119 164 1030 87 c 276 | 942 10 816 -29 651 -29 c 277 | 486 -29 360 10 271 87 c 278 | 183 164 139 275 139 420 c 279 | 139 515 166 596 221 662 c 280 | 276 728 352 772 449 795 c 281 | 282 | 375 1114 m 283 | 375 1037 399 976 447 933 c 284 | 496 890 564 868 651 868 c 285 | 738 868 805 890 854 933 c 286 | 903 976 928 1037 928 1114 c 287 | 928 1191 903 1252 854 1295 c 288 | 805 1338 738 1360 651 1360 c 289 | 564 1360 496 1338 447 1295 c 290 | 399 1252 375 1191 375 1114 c 291 | 292 | ce} _d 293 | /C{1430 0 115 -29 1319 1520 sc 294 | 1319 1378 m 295 | 1319 1165 l 296 | 1251 1228 1178 1276 1101 1307 c 297 | 1024 1338 943 1354 856 1354 c 298 | 685 1354 555 1302 464 1197 c 299 | 373 1093 328 942 328 745 c 300 | 328 548 373 398 464 293 c 301 | 555 189 685 137 856 137 c 302 | 943 137 1024 153 1101 184 c 303 | 1178 215 1251 263 1319 326 c 304 | 1319 115 l 305 | 1248 67 1173 31 1094 7 c 306 | 1015 -17 932 -29 844 -29 c 307 | 618 -29 440 40 310 178 c 308 | 180 317 115 506 115 745 c 309 | 115 985 180 1174 310 1312 c 310 | 440 1451 618 1520 844 1520 c 311 | 933 1520 1017 1508 1096 1484 c 312 | 1175 1461 1250 1425 1319 1378 c 313 | 314 | ce} _d 315 | /L{1141 0 201 0 1130 1493 sc 316 | 201 1493 m 317 | 403 1493 l 318 | 403 170 l 319 | 1130 170 l 320 | 1130 0 l 321 | 201 0 l 322 | 201 1493 l 323 | 324 | ce} _d 325 | /M{1767 0 201 0 1567 1493 sc 326 | 201 1493 m 327 | 502 1493 l 328 | 883 477 l 329 | 1266 1493 l 330 | 1567 1493 l 331 | 1567 0 l 332 | 1370 0 l 333 | 1370 1311 l 334 | 985 287 l 335 | 782 287 l 336 | 397 1311 l 337 | 397 0 l 338 | 201 0 l 339 | 201 1493 l 340 | 341 | ce} _d 342 | /P{1235 0 201 0 1165 1493 sc 343 | 403 1327 m 344 | 403 766 l 345 | 657 766 l 346 | 751 766 824 790 875 839 c 347 | 926 888 952 957 952 1047 c 348 | 952 1136 926 1205 875 1254 c 349 | 824 1303 751 1327 657 1327 c 350 | 403 1327 l 351 | 352 | 201 1493 m 353 | 657 1493 l 354 | 824 1493 951 1455 1036 1379 c 355 | 1122 1304 1165 1193 1165 1047 c 356 | 1165 900 1122 788 1036 713 c 357 | 951 638 824 600 657 600 c 358 | 403 600 l 359 | 403 0 l 360 | 201 0 l 361 | 201 1493 l 362 | 363 | ce} _d 364 | /S{1300 0 135 -29 1186 1520 sc 365 | 1096 1444 m 366 | 1096 1247 l 367 | 1019 1284 947 1311 879 1329 c 368 | 811 1347 745 1356 682 1356 c 369 | 572 1356 487 1335 427 1292 c 370 | 368 1249 338 1189 338 1110 c 371 | 338 1044 358 994 397 960 c 372 | 437 927 512 900 623 879 c 373 | 745 854 l 374 | 896 825 1007 775 1078 702 c 375 | 1150 630 1186 533 1186 412 c 376 | 1186 267 1137 158 1040 83 c 377 | 943 8 801 -29 614 -29 c 378 | 543 -29 468 -21 388 -5 c 379 | 309 11 226 35 141 66 c 380 | 141 274 l 381 | 223 228 303 193 382 170 c 382 | 461 147 538 135 614 135 c 383 | 729 135 818 158 881 203 c 384 | 944 248 975 313 975 397 c 385 | 975 470 952 528 907 569 c 386 | 862 610 789 641 686 662 c 387 | 563 686 l 388 | 412 716 303 763 236 827 c 389 | 169 891 135 980 135 1094 c 390 | 135 1226 181 1330 274 1406 c 391 | 367 1482 496 1520 659 1520 c 392 | 729 1520 800 1514 873 1501 c 393 | 946 1488 1020 1469 1096 1444 c 394 | 395 | ce} _d 396 | /U{1499 0 178 -29 1321 1493 sc 397 | 178 1493 m 398 | 381 1493 l 399 | 381 586 l 400 | 381 426 410 311 468 240 c 401 | 526 170 620 135 750 135 c 402 | 879 135 973 170 1031 240 c 403 | 1089 311 1118 426 1118 586 c 404 | 1118 1493 l 405 | 1321 1493 l 406 | 1321 561 l 407 | 1321 366 1273 219 1176 120 c 408 | 1080 21 938 -29 750 -29 c 409 | 561 -29 419 21 322 120 c 410 | 226 219 178 366 178 561 c 411 | 178 1493 l 412 | 413 | ce} _d 414 | /e{1260 0 113 -29 1151 1147 sc 415 | 1151 606 m 416 | 1151 516 l 417 | 305 516 l 418 | 313 389 351 293 419 226 c 419 | 488 160 583 127 705 127 c 420 | 776 127 844 136 910 153 c 421 | 977 170 1043 196 1108 231 c 422 | 1108 57 l 423 | 1042 29 974 8 905 -7 c 424 | 836 -22 765 -29 694 -29 c 425 | 515 -29 374 23 269 127 c 426 | 165 231 113 372 113 549 c 427 | 113 732 162 878 261 985 c 428 | 360 1093 494 1147 662 1147 c 429 | 813 1147 932 1098 1019 1001 c 430 | 1107 904 1151 773 1151 606 c 431 | 432 | 967 660 m 433 | 966 761 937 841 882 901 c 434 | 827 961 755 991 664 991 c 435 | 561 991 479 962 417 904 c 436 | 356 846 320 764 311 659 c 437 | 967 660 l 438 | 439 | ce} _d 440 | /i{569 0 193 0 377 1556 sc 441 | 193 1120 m 442 | 377 1120 l 443 | 377 0 l 444 | 193 0 l 445 | 193 1120 l 446 | 447 | 193 1556 m 448 | 377 1556 l 449 | 377 1323 l 450 | 193 1323 l 451 | 193 1556 l 452 | 453 | ce} _d 454 | /l{569 0 193 0 377 1556 sc 455 | 193 1556 m 456 | 377 1556 l 457 | 377 0 l 458 | 193 0 l 459 | 193 1556 l 460 | 461 | ce} _d 462 | /p{1300 0 186 -426 1188 1147 sc 463 | 371 168 m 464 | 371 -426 l 465 | 186 -426 l 466 | 186 1120 l 467 | 371 1120 l 468 | 371 950 l 469 | 410 1017 458 1066 517 1098 c 470 | 576 1131 647 1147 729 1147 c 471 | 865 1147 975 1093 1060 985 c 472 | 1145 877 1188 735 1188 559 c 473 | 1188 383 1145 241 1060 133 c 474 | 975 25 865 -29 729 -29 c 475 | 647 -29 576 -13 517 19 c 476 | 458 52 410 101 371 168 c 477 | 478 | 997 559 m 479 | 997 694 969 800 913 877 c 480 | 858 954 781 993 684 993 c 481 | 587 993 510 954 454 877 c 482 | 399 800 371 694 371 559 c 483 | 371 424 399 317 454 240 c 484 | 510 163 587 125 684 125 c 485 | 781 125 858 163 913 240 c 486 | 969 317 997 424 997 559 c 487 | 488 | ce} _d 489 | /r{842 0 186 0 842 1147 sc 490 | 842 948 m 491 | 821 960 799 969 774 974 c 492 | 750 980 723 983 694 983 c 493 | 590 983 510 949 454 881 c 494 | 399 814 371 717 371 590 c 495 | 371 0 l 496 | 186 0 l 497 | 186 1120 l 498 | 371 1120 l 499 | 371 946 l 500 | 410 1014 460 1064 522 1097 c 501 | 584 1130 659 1147 748 1147 c 502 | 761 1147 775 1146 790 1144 c 503 | 805 1143 822 1140 841 1137 c 504 | 842 948 l 505 | 506 | ce} _d 507 | /s{1067 0 111 -29 967 1147 sc 508 | 907 1087 m 509 | 907 913 l 510 | 855 940 801 960 745 973 c 511 | 689 986 631 993 571 993 c 512 | 480 993 411 979 365 951 c 513 | 320 923 297 881 297 825 c 514 | 297 782 313 749 346 724 c 515 | 379 700 444 677 543 655 c 516 | 606 641 l 517 | 737 613 829 573 884 522 c 518 | 939 471 967 400 967 309 c 519 | 967 205 926 123 843 62 c 520 | 761 1 648 -29 504 -29 c 521 | 444 -29 381 -23 316 -11 c 522 | 251 0 183 18 111 41 c 523 | 111 231 l 524 | 179 196 246 169 312 151 c 525 | 378 134 443 125 508 125 c 526 | 595 125 661 140 708 169 c 527 | 755 199 778 241 778 295 c 528 | 778 345 761 383 727 410 c 529 | 694 437 620 462 506 487 c 530 | 442 502 l 531 | 328 526 246 563 195 612 c 532 | 144 662 119 730 119 817 c 533 | 119 922 156 1004 231 1061 c 534 | 306 1118 412 1147 549 1147 c 535 | 617 1147 681 1142 741 1132 c 536 | 801 1122 856 1107 907 1087 c 537 | 538 | ce} _d 539 | /t{803 0 55 0 754 1438 sc 540 | 375 1438 m 541 | 375 1120 l 542 | 754 1120 l 543 | 754 977 l 544 | 375 977 l 545 | 375 369 l 546 | 375 278 387 219 412 193 c 547 | 437 167 488 154 565 154 c 548 | 754 154 l 549 | 754 0 l 550 | 565 0 l 551 | 423 0 325 26 271 79 c 552 | 217 132 190 229 190 369 c 553 | 190 977 l 554 | 55 977 l 555 | 55 1120 l 556 | 190 1120 l 557 | 190 1438 l 558 | 375 1438 l 559 | 560 | ce} _d 561 | /u{1298 0 174 -29 1112 1147 sc 562 | 174 442 m 563 | 174 1120 l 564 | 358 1120 l 565 | 358 449 l 566 | 358 343 379 263 420 210 c 567 | 461 157 523 131 606 131 c 568 | 705 131 784 163 841 226 c 569 | 899 289 928 376 928 485 c 570 | 928 1120 l 571 | 1112 1120 l 572 | 1112 0 l 573 | 928 0 l 574 | 928 172 l 575 | 883 104 831 53 772 20 c 576 | 713 -13 645 -29 567 -29 c 577 | 438 -29 341 11 274 91 c 578 | 207 171 174 288 174 442 c 579 | 580 | 637 1147 m 581 | 637 1147 l 582 | 583 | ce} _d 584 | end readonly def 585 | 586 | /BuildGlyph { 587 | exch begin 588 | CharStrings exch 589 | 2 copy known not {pop /.notdef} if 590 | true 3 1 roll get exec 591 | end 592 | } _d 593 | 594 | /BuildChar { 595 | 1 index /Encoding get exch get 596 | 1 index /BuildGlyph get exec 597 | } _d 598 | 599 | FontName currentdict end definefont pop 600 | %!PS-Adobe-3.0 Resource-Font 601 | %%Creator: Converted from TrueType to Type 3 by Matplotlib. 602 | 10 dict begin 603 | /FontName /DejaVuSans-Bold def 604 | /PaintType 0 def 605 | /FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def 606 | /FontBBox [-2190 -850 4045 2405] def 607 | /FontType 3 def 608 | /Encoding [/space /a /c /E /g /h /i /L /n /o /p /r /s /T] def 609 | /CharStrings 15 dict dup begin 610 | /.notdef 0 def 611 | /space{713 0 0 0 0 0 sc 612 | ce} _d 613 | /a{1382 0 88 -29 1221 1147 sc 614 | 674 504 m 615 | 599 504 543 491 505 466 c 616 | 468 441 449 403 449 354 c 617 | 449 309 464 273 494 247 c 618 | 525 222 567 209 621 209 c 619 | 688 209 745 233 791 281 c 620 | 837 330 860 390 860 463 c 621 | 860 504 l 622 | 674 504 l 623 | 624 | 1221 639 m 625 | 1221 0 l 626 | 860 0 l 627 | 860 166 l 628 | 812 98 758 48 698 17 c 629 | 638 -14 565 -29 479 -29 c 630 | 363 -29 269 5 196 72 c 631 | 124 140 88 228 88 336 c 632 | 88 467 133 564 223 625 c 633 | 314 686 456 717 649 717 c 634 | 860 717 l 635 | 860 745 l 636 | 860 802 838 843 793 869 c 637 | 748 896 679 909 584 909 c 638 | 507 909 436 901 370 886 c 639 | 304 871 243 848 186 817 c 640 | 186 1090 l 641 | 263 1109 340 1123 417 1132 c 642 | 494 1142 572 1147 649 1147 c 643 | 851 1147 997 1107 1086 1027 c 644 | 1176 948 1221 818 1221 639 c 645 | 646 | ce} _d 647 | /c{1214 0 88 -29 1077 1147 sc 648 | 1077 1085 m 649 | 1077 793 l 650 | 1028 826 979 851 930 867 c 651 | 881 883 831 891 778 891 c 652 | 678 891 600 862 544 803 c 653 | 489 745 461 664 461 559 c 654 | 461 454 489 373 544 314 c 655 | 600 256 678 227 778 227 c 656 | 834 227 887 235 937 252 c 657 | 988 269 1034 293 1077 326 c 658 | 1077 33 l 659 | 1021 12 964 -3 906 -13 c 660 | 849 -24 791 -29 733 -29 c 661 | 531 -29 373 23 259 126 c 662 | 145 230 88 374 88 559 c 663 | 88 744 145 888 259 991 c 664 | 373 1095 531 1147 733 1147 c 665 | 792 1147 849 1142 906 1131 c 666 | 963 1121 1020 1106 1077 1085 c 667 | 668 | ce} _d 669 | /E{1399 0 188 0 1249 1493 sc 670 | 188 1493 m 671 | 1227 1493 l 672 | 1227 1202 l 673 | 573 1202 l 674 | 573 924 l 675 | 1188 924 l 676 | 1188 633 l 677 | 573 633 l 678 | 573 291 l 679 | 1249 291 l 680 | 1249 0 l 681 | 188 0 l 682 | 188 1493 l 683 | 684 | ce} _d 685 | /g{1466 0 92 -442 1294 1145 sc 686 | 934 190 m 687 | 885 125 830 77 771 46 c 688 | 712 15 643 0 565 0 c 689 | 428 0 315 54 226 161 c 690 | 137 269 92 406 92 573 c 691 | 92 740 137 877 226 984 c 692 | 315 1091 428 1145 565 1145 c 693 | 643 1145 712 1130 771 1099 c 694 | 830 1068 885 1020 934 954 c 695 | 934 1120 l 696 | 1294 1120 l 697 | 1294 113 l 698 | 1294 -67 1237 -204 1123 -299 c 699 | 1010 -394 845 -442 629 -442 c 700 | 559 -442 491 -437 426 -426 c 701 | 361 -415 295 -399 229 -377 c 702 | 229 -98 l 703 | 292 -134 353 -161 413 -178 c 704 | 473 -196 533 -205 594 -205 c 705 | 711 -205 797 -179 852 -128 c 706 | 907 -77 934 4 934 113 c 707 | 934 190 l 708 | 709 | 698 887 m 710 | 624 887 566 860 525 805 c 711 | 484 750 463 673 463 573 c 712 | 463 470 483 392 523 339 c 713 | 563 286 621 260 698 260 c 714 | 773 260 831 287 872 342 c 715 | 913 397 934 474 934 573 c 716 | 934 673 913 750 872 805 c 717 | 831 860 773 887 698 887 c 718 | 719 | ce} _d 720 | /h{1458 0 172 0 1298 1556 sc 721 | 1298 682 m 722 | 1298 0 l 723 | 938 0 l 724 | 938 111 l 725 | 938 520 l 726 | 938 618 936 685 931 722 c 727 | 927 759 920 786 909 803 c 728 | 895 826 876 844 852 857 c 729 | 828 870 801 877 770 877 c 730 | 695 877 637 848 594 790 c 731 | 551 733 530 653 530 551 c 732 | 530 0 l 733 | 172 0 l 734 | 172 1556 l 735 | 530 1556 l 736 | 530 956 l 737 | 584 1021 641 1069 702 1100 c 738 | 763 1131 830 1147 903 1147 c 739 | 1032 1147 1130 1107 1197 1028 c 740 | 1264 949 1298 833 1298 682 c 741 | 742 | ce} _d 743 | /i{702 0 172 0 530 1556 sc 744 | 172 1120 m 745 | 530 1120 l 746 | 530 0 l 747 | 172 0 l 748 | 172 1120 l 749 | 750 | 172 1556 m 751 | 530 1556 l 752 | 530 1264 l 753 | 172 1264 l 754 | 172 1556 l 755 | 756 | ce} _d 757 | /L{1305 0 188 0 1249 1493 sc 758 | 188 1493 m 759 | 573 1493 l 760 | 573 291 l 761 | 1249 291 l 762 | 1249 0 l 763 | 188 0 l 764 | 188 1493 l 765 | 766 | ce} _d 767 | /n{1458 0 172 0 1298 1147 sc 768 | 1298 682 m 769 | 1298 0 l 770 | 938 0 l 771 | 938 111 l 772 | 938 522 l 773 | 938 619 936 685 931 722 c 774 | 927 759 920 786 909 803 c 775 | 895 826 876 844 852 857 c 776 | 828 870 801 877 770 877 c 777 | 695 877 637 848 594 790 c 778 | 551 733 530 653 530 551 c 779 | 530 0 l 780 | 172 0 l 781 | 172 1120 l 782 | 530 1120 l 783 | 530 956 l 784 | 584 1021 641 1069 702 1100 c 785 | 763 1131 830 1147 903 1147 c 786 | 1032 1147 1130 1107 1197 1028 c 787 | 1264 949 1298 833 1298 682 c 788 | 789 | ce} _d 790 | /o{1407 0 88 -29 1319 1147 sc 791 | 705 891 m 792 | 626 891 565 862 523 805 c 793 | 482 748 461 666 461 559 c 794 | 461 452 482 369 523 312 c 795 | 565 255 626 227 705 227 c 796 | 783 227 843 255 884 312 c 797 | 925 369 946 452 946 559 c 798 | 946 666 925 748 884 805 c 799 | 843 862 783 891 705 891 c 800 | 801 | 705 1147 m 802 | 898 1147 1048 1095 1156 991 c 803 | 1265 887 1319 743 1319 559 c 804 | 1319 375 1265 231 1156 127 c 805 | 1048 23 898 -29 705 -29 c 806 | 512 -29 360 23 251 127 c 807 | 142 231 88 375 88 559 c 808 | 88 743 142 887 251 991 c 809 | 360 1095 512 1147 705 1147 c 810 | 811 | ce} _d 812 | /p{1466 0 172 -426 1374 1147 sc 813 | 530 162 m 814 | 530 -426 l 815 | 172 -426 l 816 | 172 1120 l 817 | 530 1120 l 818 | 530 956 l 819 | 579 1021 634 1069 694 1100 c 820 | 754 1131 823 1147 901 1147 c 821 | 1039 1147 1152 1092 1241 982 c 822 | 1330 873 1374 732 1374 559 c 823 | 1374 386 1330 245 1241 135 c 824 | 1152 26 1039 -29 901 -29 c 825 | 823 -29 754 -14 694 17 c 826 | 634 48 579 97 530 162 c 827 | 828 | 768 887 m 829 | 691 887 632 859 591 802 c 830 | 550 746 530 665 530 559 c 831 | 530 453 550 372 591 315 c 832 | 632 259 691 231 768 231 c 833 | 845 231 903 259 943 315 c 834 | 984 371 1004 452 1004 559 c 835 | 1004 666 984 747 943 803 c 836 | 903 859 845 887 768 887 c 837 | 838 | ce} _d 839 | /r{1010 0 172 0 1004 1147 sc 840 | 1004 815 m 841 | 973 830 941 840 910 847 c 842 | 879 854 848 858 817 858 c 843 | 725 858 654 828 604 769 c 844 | 555 710 530 626 530 516 c 845 | 530 0 l 846 | 172 0 l 847 | 172 1120 l 848 | 530 1120 l 849 | 530 936 l 850 | 576 1009 629 1063 688 1096 c 851 | 748 1130 820 1147 903 1147 c 852 | 915 1147 928 1146 942 1145 c 853 | 956 1144 976 1142 1003 1139 c 854 | 1004 815 l 855 | 856 | ce} _d 857 | /s{1219 0 106 -29 1122 1147 sc 858 | 1047 1085 m 859 | 1047 813 l 860 | 970 845 896 869 825 885 c 861 | 754 901 686 909 623 909 c 862 | 555 909 504 900 471 883 c 863 | 438 866 422 840 422 805 c 864 | 422 776 434 754 459 739 c 865 | 484 724 529 712 594 705 c 866 | 657 696 l 867 | 840 673 964 634 1027 581 c 868 | 1090 528 1122 444 1122 330 c 869 | 1122 211 1078 121 990 61 c 870 | 902 1 771 -29 596 -29 c 871 | 522 -29 445 -23 366 -11 c 872 | 287 0 206 18 123 41 c 873 | 123 313 l 874 | 194 278 267 252 342 235 c 875 | 417 218 494 209 571 209 c 876 | 641 209 694 219 729 238 c 877 | 764 257 782 286 782 324 c 878 | 782 356 770 380 745 395 c 879 | 721 411 673 423 600 432 c 880 | 537 440 l 881 | 378 460 266 497 202 551 c 882 | 138 605 106 687 106 797 c 883 | 106 916 147 1004 228 1061 c 884 | 309 1118 434 1147 602 1147 c 885 | 668 1147 737 1142 810 1132 c 886 | 883 1122 962 1106 1047 1085 c 887 | 888 | ce} _d 889 | /T{1397 0 10 0 1386 1493 sc 890 | 10 1493 m 891 | 1386 1493 l 892 | 1386 1202 l 893 | 891 1202 l 894 | 891 0 l 895 | 506 0 l 896 | 506 1202 l 897 | 10 1202 l 898 | 10 1493 l 899 | 900 | ce} _d 901 | end readonly def 902 | 903 | /BuildGlyph { 904 | exch begin 905 | CharStrings exch 906 | 2 copy known not {pop /.notdef} if 907 | true 3 1 roll get exec 908 | end 909 | } _d 910 | 911 | /BuildChar { 912 | 1 index /Encoding get exch get 913 | 1 index /BuildGlyph get exec 914 | } _d 915 | 916 | FontName currentdict end definefont pop 917 | end 918 | %%EndProlog 919 | mpldict begin 920 | 75.6 223.2 translate 921 | 460.8 345.6 0 0 clipbox 922 | gsave 923 | 0 0 m 924 | 460.8 0 l 925 | 460.8 345.6 l 926 | 0 345.6 l 927 | cl 928 | 1.000 setgray 929 | fill 930 | grestore 931 | gsave 932 | 57.6 38.016 m 933 | 414.72 38.016 l 934 | 414.72 304.128 l 935 | 57.6 304.128 l 936 | cl 937 | 1.000 setgray 938 | fill 939 | grestore 940 | 0.800 setlinewidth 941 | 1 setlinejoin 942 | 0 setlinecap 943 | [2.96 1.28] 0 setdash 944 | 0.690 setgray 945 | gsave 946 | 357.12 266.112 57.6 38.016 clipbox 947 | 73.832727 38.016 m 948 | 73.832727 304.128 l 949 | stroke 950 | grestore 951 | [] 0 setdash 952 | 0.000 setgray 953 | gsave 954 | /o { 955 | gsave 956 | newpath 957 | translate 958 | 0.8 setlinewidth 959 | 1 setlinejoin 960 | 961 | 0 setlinecap 962 | 963 | 0 0 m 964 | 0 -3.5 l 965 | 966 | gsave 967 | 0.000 setgray 968 | fill 969 | grestore 970 | stroke 971 | grestore 972 | } bind def 973 | 73.8327 38.016 o 974 | grestore 975 | /DejaVuSans 10.000 selectfont 976 | gsave 977 | 978 | 70.653040 23.422250 translate 979 | 0.000000 rotate 980 | 0.000000 0 m /zero glyphshow 981 | grestore 982 | [2.96 1.28] 0 setdash 983 | 0.690 setgray 984 | gsave 985 | 357.12 266.112 57.6 38.016 clipbox 986 | 139.419504 38.016 m 987 | 139.419504 304.128 l 988 | stroke 989 | grestore 990 | [] 0 setdash 991 | 0.000 setgray 992 | gsave 993 | /o { 994 | gsave 995 | newpath 996 | translate 997 | 0.8 setlinewidth 998 | 1 setlinejoin 999 | 1000 | 0 setlinecap 1001 | 1002 | 0 0 m 1003 | 0 -3.5 l 1004 | 1005 | gsave 1006 | 0.000 setgray 1007 | fill 1008 | grestore 1009 | stroke 1010 | grestore 1011 | } bind def 1012 | 139.42 38.016 o 1013 | grestore 1014 | gsave 1015 | 1016 | 133.060129 23.422250 translate 1017 | 0.000000 rotate 1018 | 0.000000 0 m /two glyphshow 1019 | 6.362305 0 m /zero glyphshow 1020 | grestore 1021 | [2.96 1.28] 0 setdash 1022 | 0.690 setgray 1023 | gsave 1024 | 357.12 266.112 57.6 38.016 clipbox 1025 | 205.006281 38.016 m 1026 | 205.006281 304.128 l 1027 | stroke 1028 | grestore 1029 | [] 0 setdash 1030 | 0.000 setgray 1031 | gsave 1032 | /o { 1033 | gsave 1034 | newpath 1035 | translate 1036 | 0.8 setlinewidth 1037 | 1 setlinejoin 1038 | 1039 | 0 setlinecap 1040 | 1041 | 0 0 m 1042 | 0 -3.5 l 1043 | 1044 | gsave 1045 | 0.000 setgray 1046 | fill 1047 | grestore 1048 | stroke 1049 | grestore 1050 | } bind def 1051 | 205.006 38.016 o 1052 | grestore 1053 | gsave 1054 | 1055 | 198.646906 23.422250 translate 1056 | 0.000000 rotate 1057 | 0.000000 0 m /four glyphshow 1058 | 6.362305 0 m /zero glyphshow 1059 | grestore 1060 | [2.96 1.28] 0 setdash 1061 | 0.690 setgray 1062 | gsave 1063 | 357.12 266.112 57.6 38.016 clipbox 1064 | 270.593058 38.016 m 1065 | 270.593058 304.128 l 1066 | stroke 1067 | grestore 1068 | [] 0 setdash 1069 | 0.000 setgray 1070 | gsave 1071 | /o { 1072 | gsave 1073 | newpath 1074 | translate 1075 | 0.8 setlinewidth 1076 | 1 setlinejoin 1077 | 1078 | 0 setlinecap 1079 | 1080 | 0 0 m 1081 | 0 -3.5 l 1082 | 1083 | gsave 1084 | 0.000 setgray 1085 | fill 1086 | grestore 1087 | stroke 1088 | grestore 1089 | } bind def 1090 | 270.593 38.016 o 1091 | grestore 1092 | gsave 1093 | 1094 | 264.233683 23.422250 translate 1095 | 0.000000 rotate 1096 | 0.000000 0 m /six glyphshow 1097 | 6.362305 0 m /zero glyphshow 1098 | grestore 1099 | [2.96 1.28] 0 setdash 1100 | 0.690 setgray 1101 | gsave 1102 | 357.12 266.112 57.6 38.016 clipbox 1103 | 336.179835 38.016 m 1104 | 336.179835 304.128 l 1105 | stroke 1106 | grestore 1107 | [] 0 setdash 1108 | 0.000 setgray 1109 | gsave 1110 | /o { 1111 | gsave 1112 | newpath 1113 | translate 1114 | 0.8 setlinewidth 1115 | 1 setlinejoin 1116 | 1117 | 0 setlinecap 1118 | 1119 | 0 0 m 1120 | 0 -3.5 l 1121 | 1122 | gsave 1123 | 0.000 setgray 1124 | fill 1125 | grestore 1126 | stroke 1127 | grestore 1128 | } bind def 1129 | 336.18 38.016 o 1130 | grestore 1131 | gsave 1132 | 1133 | 329.820460 23.422250 translate 1134 | 0.000000 rotate 1135 | 0.000000 0 m /eight glyphshow 1136 | 6.362305 0 m /zero glyphshow 1137 | grestore 1138 | [2.96 1.28] 0 setdash 1139 | 0.690 setgray 1140 | gsave 1141 | 357.12 266.112 57.6 38.016 clipbox 1142 | 401.766612 38.016 m 1143 | 401.766612 304.128 l 1144 | stroke 1145 | grestore 1146 | [] 0 setdash 1147 | 0.000 setgray 1148 | gsave 1149 | /o { 1150 | gsave 1151 | newpath 1152 | translate 1153 | 0.8 setlinewidth 1154 | 1 setlinejoin 1155 | 1156 | 0 setlinecap 1157 | 1158 | 0 0 m 1159 | 0 -3.5 l 1160 | 1161 | gsave 1162 | 0.000 setgray 1163 | fill 1164 | grestore 1165 | stroke 1166 | grestore 1167 | } bind def 1168 | 401.767 38.016 o 1169 | grestore 1170 | gsave 1171 | 1172 | 392.227549 23.422250 translate 1173 | 0.000000 rotate 1174 | 0.000000 0 m /one glyphshow 1175 | 6.362305 0 m /zero glyphshow 1176 | 12.724609 0 m /zero glyphshow 1177 | grestore 1178 | /DejaVuSans-Bold 15.000 selectfont 1179 | gsave 1180 | 1181 | 206.261562 5.953500 translate 1182 | 0.000000 rotate 1183 | 0.000000 0 m /E glyphshow 1184 | 10.246582 0 m /p glyphshow 1185 | 20.983887 0 m /o glyphshow 1186 | 31.289062 0 m /c glyphshow 1187 | 40.180664 0 m /h glyphshow 1188 | 50.859375 0 m /s glyphshow 1189 | grestore 1190 | [2.96 1.28] 0 setdash 1191 | 0.690 setgray 1192 | gsave 1193 | 357.12 266.112 57.6 38.016 clipbox 1194 | 57.6 74.235988 m 1195 | 414.72 74.235988 l 1196 | stroke 1197 | grestore 1198 | [] 0 setdash 1199 | 0.000 setgray 1200 | gsave 1201 | /o { 1202 | gsave 1203 | newpath 1204 | translate 1205 | 0.8 setlinewidth 1206 | 1 setlinejoin 1207 | 1208 | 0 setlinecap 1209 | 1210 | -0 0 m 1211 | -3.5 0 l 1212 | 1213 | gsave 1214 | 0.000 setgray 1215 | fill 1216 | grestore 1217 | stroke 1218 | grestore 1219 | } bind def 1220 | 57.6 74.236 o 1221 | grestore 1222 | /DejaVuSans 10.000 selectfont 1223 | gsave 1224 | 1225 | 44.240625 70.439113 translate 1226 | 0.000000 rotate 1227 | 0.000000 0 m /five glyphshow 1228 | grestore 1229 | [2.96 1.28] 0 setdash 1230 | 0.690 setgray 1231 | gsave 1232 | 357.12 266.112 57.6 38.016 clipbox 1233 | 57.6 117.855258 m 1234 | 414.72 117.855258 l 1235 | stroke 1236 | grestore 1237 | [] 0 setdash 1238 | 0.000 setgray 1239 | gsave 1240 | /o { 1241 | gsave 1242 | newpath 1243 | translate 1244 | 0.8 setlinewidth 1245 | 1 setlinejoin 1246 | 1247 | 0 setlinecap 1248 | 1249 | -0 0 m 1250 | -3.5 0 l 1251 | 1252 | gsave 1253 | 0.000 setgray 1254 | fill 1255 | grestore 1256 | stroke 1257 | grestore 1258 | } bind def 1259 | 57.6 117.855 o 1260 | grestore 1261 | gsave 1262 | 1263 | 37.881250 114.058383 translate 1264 | 0.000000 rotate 1265 | 0.000000 0 m /one glyphshow 1266 | 6.362305 0 m /zero glyphshow 1267 | grestore 1268 | [2.96 1.28] 0 setdash 1269 | 0.690 setgray 1270 | gsave 1271 | 357.12 266.112 57.6 38.016 clipbox 1272 | 57.6 161.474527 m 1273 | 414.72 161.474527 l 1274 | stroke 1275 | grestore 1276 | [] 0 setdash 1277 | 0.000 setgray 1278 | gsave 1279 | /o { 1280 | gsave 1281 | newpath 1282 | translate 1283 | 0.8 setlinewidth 1284 | 1 setlinejoin 1285 | 1286 | 0 setlinecap 1287 | 1288 | -0 0 m 1289 | -3.5 0 l 1290 | 1291 | gsave 1292 | 0.000 setgray 1293 | fill 1294 | grestore 1295 | stroke 1296 | grestore 1297 | } bind def 1298 | 57.6 161.475 o 1299 | grestore 1300 | gsave 1301 | 1302 | 37.881250 157.677652 translate 1303 | 0.000000 rotate 1304 | 0.000000 0 m /one glyphshow 1305 | 6.362305 0 m /five glyphshow 1306 | grestore 1307 | [2.96 1.28] 0 setdash 1308 | 0.690 setgray 1309 | gsave 1310 | 357.12 266.112 57.6 38.016 clipbox 1311 | 57.6 205.093797 m 1312 | 414.72 205.093797 l 1313 | stroke 1314 | grestore 1315 | [] 0 setdash 1316 | 0.000 setgray 1317 | gsave 1318 | /o { 1319 | gsave 1320 | newpath 1321 | translate 1322 | 0.8 setlinewidth 1323 | 1 setlinejoin 1324 | 1325 | 0 setlinecap 1326 | 1327 | -0 0 m 1328 | -3.5 0 l 1329 | 1330 | gsave 1331 | 0.000 setgray 1332 | fill 1333 | grestore 1334 | stroke 1335 | grestore 1336 | } bind def 1337 | 57.6 205.094 o 1338 | grestore 1339 | gsave 1340 | 1341 | 37.881250 201.296922 translate 1342 | 0.000000 rotate 1343 | 0.000000 0 m /two glyphshow 1344 | 6.362305 0 m /zero glyphshow 1345 | grestore 1346 | [2.96 1.28] 0 setdash 1347 | 0.690 setgray 1348 | gsave 1349 | 357.12 266.112 57.6 38.016 clipbox 1350 | 57.6 248.713067 m 1351 | 414.72 248.713067 l 1352 | stroke 1353 | grestore 1354 | [] 0 setdash 1355 | 0.000 setgray 1356 | gsave 1357 | /o { 1358 | gsave 1359 | newpath 1360 | translate 1361 | 0.8 setlinewidth 1362 | 1 setlinejoin 1363 | 1364 | 0 setlinecap 1365 | 1366 | -0 0 m 1367 | -3.5 0 l 1368 | 1369 | gsave 1370 | 0.000 setgray 1371 | fill 1372 | grestore 1373 | stroke 1374 | grestore 1375 | } bind def 1376 | 57.6 248.713 o 1377 | grestore 1378 | gsave 1379 | 1380 | 37.881250 244.916192 translate 1381 | 0.000000 rotate 1382 | 0.000000 0 m /two glyphshow 1383 | 6.362305 0 m /five glyphshow 1384 | grestore 1385 | [2.96 1.28] 0 setdash 1386 | 0.690 setgray 1387 | gsave 1388 | 357.12 266.112 57.6 38.016 clipbox 1389 | 57.6 292.332337 m 1390 | 414.72 292.332337 l 1391 | stroke 1392 | grestore 1393 | [] 0 setdash 1394 | 0.000 setgray 1395 | gsave 1396 | /o { 1397 | gsave 1398 | newpath 1399 | translate 1400 | 0.8 setlinewidth 1401 | 1 setlinejoin 1402 | 1403 | 0 setlinecap 1404 | 1405 | -0 0 m 1406 | -3.5 0 l 1407 | 1408 | gsave 1409 | 0.000 setgray 1410 | fill 1411 | grestore 1412 | stroke 1413 | grestore 1414 | } bind def 1415 | 57.6 292.332 o 1416 | grestore 1417 | gsave 1418 | 1419 | 37.881250 288.535462 translate 1420 | 0.000000 rotate 1421 | 0.000000 0 m /three glyphshow 1422 | 6.362305 0 m /zero glyphshow 1423 | grestore 1424 | /DejaVuSans-Bold 15.000 selectfont 1425 | gsave 1426 | 1427 | 30.646875 115.337625 translate 1428 | 90.000000 rotate 1429 | 0.000000 0 m /T glyphshow 1430 | 8.606934 0 m /r glyphshow 1431 | 16.004395 0 m /a glyphshow 1432 | 26.126465 0 m /i glyphshow 1433 | 31.268066 0 m /n glyphshow 1434 | 41.946777 0 m /i glyphshow 1435 | 47.088379 0 m /n glyphshow 1436 | 57.767090 0 m /g glyphshow 1437 | 68.504395 0 m /space glyphshow 1438 | 73.726562 0 m /L glyphshow 1439 | 83.284668 0 m /o glyphshow 1440 | 93.589844 0 m /s glyphshow 1441 | 102.518066 0 m /s glyphshow 1442 | grestore 1443 | 2.000 setlinewidth 1444 | 2 setlinecap 1445 | 0.122 0.467 0.706 setrgbcolor 1446 | gsave 1447 | 357.12 266.112 57.6 38.016 clipbox 1448 | 73.832727 292.032 m 1449 | 77.112066 240.604549 l 1450 | 80.391405 196.727099 l 1451 | 83.670744 173.277928 l 1452 | 86.950083 153.842465 l 1453 | 90.229421 146.177023 l 1454 | 93.50876 142.155821 l 1455 | 96.788099 139.732536 l 1456 | 100.067438 138.38436 l 1457 | 103.346777 136.88266 l 1458 | 106.626116 136.200255 l 1459 | 109.905455 134.282182 l 1460 | 113.184793 133.265821 l 1461 | 116.464132 132.928699 l 1462 | 119.743471 130.946102 l 1463 | 123.02281 128.789324 l 1464 | 126.302149 126.094256 l 1465 | 129.581488 123.403642 l 1466 | 132.860826 120.837198 l 1467 | 136.140165 118.663911 l 1468 | 139.419504 116.732178 l 1469 | 142.698843 115.572219 l 1470 | 145.978182 112.431417 l 1471 | 149.257521 110.604868 l 1472 | 152.53686 108.836764 l 1473 | 155.816198 107.533613 l 1474 | 159.095537 106.487022 l 1475 | 162.374876 105.34255 l 1476 | 165.654215 104.274512 l 1477 | 168.933554 102.753858 l 1478 | 172.212893 102.510876 l 1479 | 175.492231 101.143683 l 1480 | 178.77157 100.298584 l 1481 | 182.050909 99.38382 l 1482 | 185.330248 98.500086 l 1483 | 188.609587 97.662562 l 1484 | 191.888926 96.79624 l 1485 | 195.168264 96.964108 l 1486 | 198.447603 95.588327 l 1487 | 201.726942 94.696634 l 1488 | 205.006281 94.07666 l 1489 | 208.28562 93.346924 l 1490 | 211.564959 93.016267 l 1491 | 214.844298 92.545324 l 1492 | 218.123636 91.981761 l 1493 | 221.402975 91.411406 l 1494 | 224.682314 90.943681 l 1495 | 227.961653 90.449757 l 1496 | 231.240992 90.107218 l 1497 | 234.520331 90.106982 l 1498 | 237.799669 89.583068 l 1499 | 241.079008 89.185361 l 1500 | 244.358347 88.557471 l 1501 | 247.637686 88.056132 l 1502 | 250.917025 87.758012 l 1503 | 254.196364 87.41807 l 1504 | 257.475702 87.017364 l 1505 | 260.755041 86.734215 l 1506 | 264.03438 86.459636 l 1507 | 267.313719 86.151244 l 1508 | 270.593058 86.188751 l 1509 | 273.872397 85.646633 l 1510 | 277.151736 85.525963 l 1511 | 280.431074 84.956967 l 1512 | 283.710413 84.517225 l 1513 | 286.989752 84.403507 l 1514 | 290.269091 84.226007 l 1515 | 293.54843 83.853425 l 1516 | 296.827769 83.734479 l 1517 | 300.107107 83.360816 l 1518 | 303.386446 83.362758 l 1519 | 306.665785 83.021719 l 1520 | 309.945124 83.082486 l 1521 | 313.224463 82.664196 l 1522 | 316.503802 81.994182 l 1523 | 319.78314 81.953266 l 1524 | 323.062479 81.542774 l 1525 | 326.341818 81.456532 l 1526 | 329.621157 81.65013 l 1527 | 332.900496 81.075407 l 1528 | 336.179835 80.76436 l 1529 | 339.459174 80.277231 l 1530 | 342.738512 80.012501 l 1531 | 346.017851 79.911259 l 1532 | 349.29719 80.029348 l 1533 | 352.576529 79.522517 l 1534 | 355.855868 79.402244 l 1535 | 359.135207 79.10774 l 1536 | 362.414545 78.76925 l 1537 | 365.693884 78.707331 l 1538 | 368.973223 78.321047 l 1539 | 372.252562 78.202878 l 1540 | 375.531901 78.012855 l 1541 | 378.81124 77.872746 l 1542 | 382.090579 77.804672 l 1543 | 385.369917 77.53968 l 1544 | 388.649256 77.222702 l 1545 | 391.928595 77.173609 l 1546 | 395.207934 76.832782 l 1547 | 398.487273 76.824402 l 1548 | stroke 1549 | grestore 1550 | 1.000 0.498 0.055 setrgbcolor 1551 | gsave 1552 | 357.12 266.112 57.6 38.016 clipbox 1553 | 73.832727 274.213003 m 1554 | 77.112066 167.104977 l 1555 | 80.391405 139.185943 l 1556 | 83.670744 135.590921 l 1557 | 86.950083 130.963918 l 1558 | 90.229421 128.504058 l 1559 | 93.50876 124.035435 l 1560 | 96.788099 118.763664 l 1561 | 100.067438 114.315037 l 1562 | 103.346777 111.777762 l 1563 | 106.626116 108.225533 l 1564 | 109.905455 107.391603 l 1565 | 113.184793 105.126389 l 1566 | 116.464132 102.660603 l 1567 | 119.743471 101.104759 l 1568 | 123.02281 99.744113 l 1569 | 126.302149 99.123023 l 1570 | 129.581488 97.400107 l 1571 | 132.860826 96.669641 l 1572 | 136.140165 95.461211 l 1573 | 139.419504 94.18568 l 1574 | 142.698843 93.378902 l 1575 | 145.978182 91.539355 l 1576 | 149.257521 90.81535 l 1577 | 152.53686 89.298242 l 1578 | 155.816198 89.340987 l 1579 | 159.095537 88.864153 l 1580 | 162.374876 87.509328 l 1581 | 165.654215 86.35236 l 1582 | 168.933554 85.596075 l 1583 | 172.212893 85.046333 l 1584 | 175.492231 85.040171 l 1585 | 178.77157 84.147052 l 1586 | 182.050909 83.188252 l 1587 | 185.330248 82.344334 l 1588 | 188.609587 82.05667 l 1589 | 191.888926 81.894187 l 1590 | 195.168264 82.18574 l 1591 | 198.447603 81.203092 l 1592 | 201.726942 79.94136 l 1593 | 205.006281 80.195517 l 1594 | 208.28562 79.121647 l 1595 | 211.564959 79.078123 l 1596 | 214.844298 77.853728 l 1597 | 218.123636 77.844058 l 1598 | 221.402975 77.199034 l 1599 | 224.682314 77.047543 l 1600 | 227.961653 75.870892 l 1601 | 231.240992 75.332454 l 1602 | 234.520331 74.939847 l 1603 | 237.799669 74.584787 l 1604 | 241.079008 74.372938 l 1605 | 244.358347 74.183714 l 1606 | 247.637686 73.788458 l 1607 | 250.917025 74.171922 l 1608 | 254.196364 72.603451 l 1609 | 257.475702 72.209528 l 1610 | 260.755041 72.122914 l 1611 | 264.03438 71.589443 l 1612 | 267.313719 71.334374 l 1613 | 270.593058 70.987622 l 1614 | 273.872397 70.498746 l 1615 | 277.151736 70.509598 l 1616 | 280.431074 70.259661 l 1617 | 283.710413 69.945818 l 1618 | 286.989752 69.732557 l 1619 | 290.269091 69.268427 l 1620 | 293.54843 69.113291 l 1621 | 296.827769 69.730498 l 1622 | 300.107107 68.751205 l 1623 | 303.386446 68.575854 l 1624 | 306.665785 68.083715 l 1625 | 309.945124 69.150238 l 1626 | 313.224463 68.222811 l 1627 | 316.503802 67.870559 l 1628 | 319.78314 67.309592 l 1629 | 323.062479 67.15851 l 1630 | 326.341818 67.40654 l 1631 | 329.621157 67.469483 l 1632 | 332.900496 66.485816 l 1633 | 336.179835 66.504839 l 1634 | 339.459174 66.055457 l 1635 | 342.738512 66.055499 l 1636 | 346.017851 65.882875 l 1637 | 349.29719 65.917492 l 1638 | 352.576529 65.869656 l 1639 | 355.855868 65.544363 l 1640 | 359.135207 65.31817 l 1641 | 362.414545 64.906641 l 1642 | 365.693884 64.644283 l 1643 | 368.973223 64.885564 l 1644 | 372.252562 64.63797 l 1645 | 375.531901 64.46702 l 1646 | 378.81124 64.249545 l 1647 | 382.090579 65.889162 l 1648 | 385.369917 64.499685 l 1649 | 388.649256 64.304646 l 1650 | 391.928595 63.679388 l 1651 | 395.207934 63.606699 l 1652 | 398.487273 63.271209 l 1653 | stroke 1654 | grestore 1655 | 0.173 0.627 0.173 setrgbcolor 1656 | gsave 1657 | 357.12 266.112 57.6 38.016 clipbox 1658 | 73.832727 264.506156 m 1659 | 77.112066 170.722324 l 1660 | 80.391405 136.56081 l 1661 | 83.670744 128.891292 l 1662 | 86.950083 122.04646 l 1663 | 90.229421 113.352071 l 1664 | 93.50876 108.635238 l 1665 | 96.788099 104.847133 l 1666 | 100.067438 101.772779 l 1667 | 103.346777 97.423643 l 1668 | 106.626116 93.051212 l 1669 | 109.905455 89.691087 l 1670 | 113.184793 87.281297 l 1671 | 116.464132 85.981901 l 1672 | 119.743471 83.630129 l 1673 | 123.02281 81.882128 l 1674 | 126.302149 80.759052 l 1675 | 129.581488 79.282443 l 1676 | 132.860826 80.045571 l 1677 | 136.140165 77.54008 l 1678 | 139.419504 76.17633 l 1679 | 142.698843 75.598886 l 1680 | 145.978182 75.167023 l 1681 | 149.257521 74.111874 l 1682 | 152.53686 73.522728 l 1683 | 155.816198 73.239335 l 1684 | 159.095537 73.328486 l 1685 | 162.374876 71.842834 l 1686 | 165.654215 71.593285 l 1687 | 168.933554 71.036143 l 1688 | 172.212893 71.337341 l 1689 | 175.492231 70.228464 l 1690 | 178.77157 70.528551 l 1691 | 182.050909 69.375946 l 1692 | 185.330248 69.10677 l 1693 | 188.609587 68.816412 l 1694 | 191.888926 68.629714 l 1695 | 195.168264 67.916577 l 1696 | 198.447603 67.365102 l 1697 | 201.726942 67.089147 l 1698 | 205.006281 67.023502 l 1699 | 208.28562 66.509686 l 1700 | 211.564959 66.351645 l 1701 | 214.844298 65.674934 l 1702 | 218.123636 66.28573 l 1703 | 221.402975 65.660986 l 1704 | 224.682314 65.465225 l 1705 | 227.961653 64.797206 l 1706 | 231.240992 65.361764 l 1707 | 234.520331 64.302954 l 1708 | 237.799669 64.210311 l 1709 | 241.079008 65.649676 l 1710 | 244.358347 64.388325 l 1711 | 247.637686 63.486648 l 1712 | 250.917025 63.135973 l 1713 | 254.196364 63.015819 l 1714 | 257.475702 63.102162 l 1715 | 260.755041 62.537329 l 1716 | 264.03438 62.497507 l 1717 | 267.313719 62.520464 l 1718 | 270.593058 62.682546 l 1719 | 273.872397 62.610245 l 1720 | 277.151736 62.068692 l 1721 | 280.431074 63.321382 l 1722 | 283.710413 62.305667 l 1723 | 286.989752 61.813065 l 1724 | 290.269091 61.378539 l 1725 | 293.54843 61.250104 l 1726 | 296.827769 61.270124 l 1727 | 300.107107 61.353594 l 1728 | 303.386446 61.27486 l 1729 | 306.665785 60.76845 l 1730 | 309.945124 60.897639 l 1731 | 313.224463 60.706451 l 1732 | 316.503802 60.335966 l 1733 | 319.78314 60.33362 l 1734 | 323.062479 60.244226 l 1735 | 326.341818 60.309187 l 1736 | 329.621157 60.937202 l 1737 | 332.900496 59.738958 l 1738 | 336.179835 59.720721 l 1739 | 339.459174 59.534514 l 1740 | 342.738512 59.983701 l 1741 | 346.017851 59.371687 l 1742 | 349.29719 59.229037 l 1743 | 352.576529 58.908239 l 1744 | 355.855868 58.584293 l 1745 | 359.135207 58.845334 l 1746 | 362.414545 59.500681 l 1747 | 365.693884 58.462982 l 1748 | 368.973223 58.463222 l 1749 | 372.252562 58.278404 l 1750 | 375.531901 58.582429 l 1751 | 378.81124 59.112671 l 1752 | 382.090579 58.087179 l 1753 | 385.369917 59.321439 l 1754 | 388.649256 57.941099 l 1755 | 391.928595 58.40906 l 1756 | 395.207934 57.66143 l 1757 | 398.487273 58.257415 l 1758 | stroke 1759 | grestore 1760 | 0.839 0.153 0.157 setrgbcolor 1761 | gsave 1762 | 357.12 266.112 57.6 38.016 clipbox 1763 | 73.832727 241.711091 m 1764 | 77.112066 152.892265 l 1765 | 80.391405 131.378878 l 1766 | 83.670744 119.203962 l 1767 | 86.950083 108.596794 l 1768 | 90.229421 101.797234 l 1769 | 93.50876 96.33731 l 1770 | 96.788099 90.472893 l 1771 | 100.067438 87.213186 l 1772 | 103.346777 84.710062 l 1773 | 106.626116 81.619701 l 1774 | 109.905455 79.457916 l 1775 | 113.184793 77.459974 l 1776 | 116.464132 75.320048 l 1777 | 119.743471 73.92804 l 1778 | 123.02281 73.115623 l 1779 | 126.302149 71.442337 l 1780 | 129.581488 70.714287 l 1781 | 132.860826 69.292301 l 1782 | 136.140165 68.882034 l 1783 | 139.419504 68.733619 l 1784 | 142.698843 68.15081 l 1785 | 145.978182 66.572696 l 1786 | 149.257521 65.477261 l 1787 | 152.53686 65.181795 l 1788 | 155.816198 64.640069 l 1789 | 159.095537 64.181039 l 1790 | 162.374876 63.735308 l 1791 | 165.654215 63.036845 l 1792 | 168.933554 63.079204 l 1793 | 172.212893 62.43758 l 1794 | 175.492231 61.698274 l 1795 | 178.77157 61.510011 l 1796 | 182.050909 62.427582 l 1797 | 185.330248 60.921841 l 1798 | 188.609587 61.11834 l 1799 | 191.888926 60.118777 l 1800 | 195.168264 60.354692 l 1801 | 198.447603 59.763918 l 1802 | 201.726942 59.692094 l 1803 | 205.006281 59.01646 l 1804 | 208.28562 59.146099 l 1805 | 211.564959 59.308818 l 1806 | 214.844298 58.393347 l 1807 | 218.123636 58.646747 l 1808 | 221.402975 57.732274 l 1809 | 224.682314 57.870341 l 1810 | 227.961653 57.45176 l 1811 | 231.240992 57.177181 l 1812 | 234.520331 56.693669 l 1813 | 237.799669 56.273217 l 1814 | 241.079008 56.215262 l 1815 | 244.358347 56.441132 l 1816 | 247.637686 56.999694 l 1817 | 250.917025 56.161296 l 1818 | 254.196364 56.665774 l 1819 | 257.475702 55.743995 l 1820 | 260.755041 55.604446 l 1821 | 264.03438 54.995817 l 1822 | 267.313719 54.824729 l 1823 | 270.593058 54.694238 l 1824 | 273.872397 54.558664 l 1825 | 277.151736 54.606924 l 1826 | 280.431074 54.344593 l 1827 | 283.710413 53.842668 l 1828 | 286.989752 54.143737 l 1829 | 290.269091 53.580257 l 1830 | 293.54843 53.906266 l 1831 | 296.827769 54.594501 l 1832 | 300.107107 53.262649 l 1833 | 303.386446 54.108454 l 1834 | 306.665785 53.304914 l 1835 | 309.945124 53.216922 l 1836 | 313.224463 53.155539 l 1837 | 316.503802 53.215118 l 1838 | 319.78314 52.766721 l 1839 | 323.062479 52.358109 l 1840 | 326.341818 52.475283 l 1841 | 329.621157 53.692336 l 1842 | 332.900496 52.281503 l 1843 | 336.179835 51.447239 l 1844 | 339.459174 51.584179 l 1845 | 342.738512 51.795962 l 1846 | 346.017851 51.41909 l 1847 | 349.29719 51.167129 l 1848 | 352.576529 51.571784 l 1849 | 355.855868 52.240801 l 1850 | 359.135207 51.078565 l 1851 | 362.414545 51.160138 l 1852 | 365.693884 51.174385 l 1853 | 368.973223 50.628435 l 1854 | 372.252562 50.787289 l 1855 | 375.531901 50.663325 l 1856 | 378.81124 50.639614 l 1857 | 382.090579 50.472846 l 1858 | 385.369917 50.946138 l 1859 | 388.649256 51.174185 l 1860 | 391.928595 50.31897 l 1861 | 395.207934 50.367809 l 1862 | 398.487273 50.112 l 1863 | stroke 1864 | grestore 1865 | 0.800 setlinewidth 1866 | 0 setlinejoin 1867 | 0.000 setgray 1868 | gsave 1869 | 57.6 38.016 m 1870 | 57.6 304.128 l 1871 | stroke 1872 | grestore 1873 | gsave 1874 | 414.72 38.016 m 1875 | 414.72 304.128 l 1876 | stroke 1877 | grestore 1878 | gsave 1879 | 57.6 38.016 m 1880 | 414.72 38.016 l 1881 | stroke 1882 | grestore 1883 | gsave 1884 | 57.6 304.128 m 1885 | 414.72 304.128 l 1886 | stroke 1887 | grestore 1888 | 1.000 setlinewidth 1889 | 0 setlinecap 1890 | 0.800 setgray 1891 | gsave 1892 | 89.354375 264.88425 m 1893 | 407.37 264.88425 l 1894 | 408.77 264.88425 409.47 265.58425 409.47 266.98425 c 1895 | 409.47 296.778 l 1896 | 409.47 298.178 408.77 298.878 407.37 298.878 c 1897 | 89.354375 298.878 l 1898 | 87.954375 298.878 87.254375 298.178 87.254375 296.778 c 1899 | 87.254375 266.98425 l 1900 | 87.254375 265.58425 87.954375 264.88425 89.354375 264.88425 c 1901 | cl 1902 | gsave 1903 | 1.000 setgray 1904 | fill 1905 | grestore 1906 | stroke 1907 | grestore 1908 | 2.000 setlinewidth 1909 | 1 setlinejoin 1910 | 2 setlinecap 1911 | 0.122 0.467 0.706 setrgbcolor 1912 | gsave 1913 | 91.454375 290.368625 m 1914 | 101.954375 290.368625 l 1915 | 112.454375 290.368625 l 1916 | stroke 1917 | grestore 1918 | 0.000 setgray 1919 | /DejaVuSans 10.500 selectfont 1920 | gsave 1921 | 1922 | 120.854375 286.693625 translate 1923 | 0.000000 rotate 1924 | 0.000000 0 m /U glyphshow 1925 | 7.685303 0 m /P glyphshow 1926 | 14.017090 0 m /L glyphshow 1927 | 19.866943 0 m /parenleft glyphshow 1928 | 23.963379 0 m /M glyphshow 1929 | 33.022705 0 m /u glyphshow 1930 | 39.677490 0 m /l glyphshow 1931 | 42.594727 0 m /t glyphshow 1932 | 46.711670 0 m /i glyphshow 1933 | 49.628906 0 m /p glyphshow 1934 | 56.293945 0 m /l glyphshow 1935 | 59.211182 0 m /e glyphshow 1936 | 65.671143 0 m /space glyphshow 1937 | 69.008789 0 m /U glyphshow 1938 | 76.694092 0 m /s glyphshow 1939 | 82.164551 0 m /e glyphshow 1940 | 88.624512 0 m /r glyphshow 1941 | 92.941406 0 m /s glyphshow 1942 | 98.411865 0 m /parenright glyphshow 1943 | grestore 1944 | 1.000 0.498 0.055 setrgbcolor 1945 | gsave 1946 | 91.454375 274.94675 m 1947 | 101.954375 274.94675 l 1948 | 112.454375 274.94675 l 1949 | stroke 1950 | grestore 1951 | 0.000 setgray 1952 | gsave 1953 | 1954 | 120.854375 271.271750 translate 1955 | 0.000000 rotate 1956 | 0.000000 0 m /C glyphshow 1957 | 7.331543 0 m /hyphen glyphshow 1958 | 11.120361 0 m /U glyphshow 1959 | 18.805664 0 m /P glyphshow 1960 | 25.137451 0 m /L glyphshow 1961 | 30.987305 0 m /parenleft glyphshow 1962 | 35.083740 0 m /M glyphshow 1963 | 44.143066 0 m /u glyphshow 1964 | 50.797852 0 m /l glyphshow 1965 | 53.715088 0 m /t glyphshow 1966 | 57.832031 0 m /i glyphshow 1967 | 60.749268 0 m /p glyphshow 1968 | 67.414307 0 m /l glyphshow 1969 | 70.331543 0 m /e glyphshow 1970 | 76.791504 0 m /space glyphshow 1971 | 80.129150 0 m /U glyphshow 1972 | 87.814453 0 m /s glyphshow 1973 | 93.284912 0 m /e glyphshow 1974 | 99.744873 0 m /r glyphshow 1975 | 104.061768 0 m /s glyphshow 1976 | 109.532227 0 m /parenright glyphshow 1977 | grestore 1978 | 0.173 0.627 0.173 setrgbcolor 1979 | gsave 1980 | 255.52625 290.368625 m 1981 | 266.02625 290.368625 l 1982 | 276.52625 290.368625 l 1983 | stroke 1984 | grestore 1985 | 0.000 setgray 1986 | gsave 1987 | 1988 | 284.926250 286.693625 translate 1989 | 0.000000 rotate 1990 | 0.000000 0 m /S glyphshow 1991 | 6.665039 0 m /hyphen glyphshow 1992 | 10.453857 0 m /U glyphshow 1993 | 18.139160 0 m /P glyphshow 1994 | 24.470947 0 m /L glyphshow 1995 | 30.320801 0 m /parenleft glyphshow 1996 | 34.417236 0 m /M glyphshow 1997 | 43.476562 0 m /u glyphshow 1998 | 50.131348 0 m /l glyphshow 1999 | 53.048584 0 m /t glyphshow 2000 | 57.165527 0 m /i glyphshow 2001 | 60.082764 0 m /p glyphshow 2002 | 66.747803 0 m /l glyphshow 2003 | 69.665039 0 m /e glyphshow 2004 | 76.125000 0 m /space glyphshow 2005 | 79.462646 0 m /U glyphshow 2006 | 87.147949 0 m /s glyphshow 2007 | 92.618408 0 m /e glyphshow 2008 | 99.078369 0 m /r glyphshow 2009 | 103.395264 0 m /s glyphshow 2010 | 108.865723 0 m /parenright glyphshow 2011 | grestore 2012 | 0.839 0.153 0.157 setrgbcolor 2013 | gsave 2014 | 255.52625 274.94675 m 2015 | 266.02625 274.94675 l 2016 | 276.52625 274.94675 l 2017 | stroke 2018 | grestore 2019 | 0.000 setgray 2020 | gsave 2021 | 2022 | 284.926250 271.271750 translate 2023 | 0.000000 rotate 2024 | 0.000000 0 m /C glyphshow 2025 | 7.331543 0 m /S glyphshow 2026 | 13.996582 0 m /hyphen glyphshow 2027 | 17.785400 0 m /U glyphshow 2028 | 25.470703 0 m /P glyphshow 2029 | 31.802490 0 m /L glyphshow 2030 | 37.652344 0 m /parenleft glyphshow 2031 | 41.748779 0 m /M glyphshow 2032 | 50.808105 0 m /u glyphshow 2033 | 57.462891 0 m /l glyphshow 2034 | 60.380127 0 m /t glyphshow 2035 | 64.497070 0 m /i glyphshow 2036 | 67.414307 0 m /p glyphshow 2037 | 74.079346 0 m /l glyphshow 2038 | 76.996582 0 m /e glyphshow 2039 | 83.456543 0 m /space glyphshow 2040 | 86.794189 0 m /U glyphshow 2041 | 94.479492 0 m /s glyphshow 2042 | 99.949951 0 m /e glyphshow 2043 | 106.409912 0 m /r glyphshow 2044 | 110.726807 0 m /s glyphshow 2045 | 116.197266 0 m /parenright glyphshow 2046 | grestore 2047 | 2048 | end 2049 | showpage 2050 | -------------------------------------------------------------------------------- /收敛性Training_loss_new/Training_loss.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-3.0 EPSF-3.0 2 | %%Title: Training_loss.eps 3 | %%Creator: Matplotlib v3.5.0, https://matplotlib.org/ 4 | %%CreationDate: Fri May 20 21:20:27 2022 5 | %%Orientation: portrait 6 | %%BoundingBox: 75 223 537 569 7 | %%HiResBoundingBox: 75.600000 223.200000 536.400000 568.800000 8 | %%EndComments 9 | %%BeginProlog 10 | /mpldict 12 dict def 11 | mpldict begin 12 | /_d { bind def } bind def 13 | /m { moveto } _d 14 | /l { lineto } _d 15 | /r { rlineto } _d 16 | /c { curveto } _d 17 | /cl { closepath } _d 18 | /ce { closepath eofill } _d 19 | /box { 20 | m 21 | 1 index 0 r 22 | 0 exch r 23 | neg 0 r 24 | cl 25 | } _d 26 | /clipbox { 27 | box 28 | clip 29 | newpath 30 | } _d 31 | /sc { setcachedevice } _d 32 | %!PS-Adobe-3.0 Resource-Font 33 | %%Creator: Converted from TrueType to Type 3 by Matplotlib. 34 | 10 dict begin 35 | /FontName /DejaVuSans def 36 | /PaintType 0 def 37 | /FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def 38 | /FontBBox [-2090 -948 3673 2524] def 39 | /FontType 3 def 40 | /Encoding [/space /parenleft /parenright /hyphen /zero /one /two /three /four /five /six /eight /C /L /M /P /S /U /e /g /i /l /n /p /r /s /t /u] def 41 | /CharStrings 29 dict dup begin 42 | /.notdef 0 def 43 | /space{651 0 0 0 0 0 sc 44 | ce} _d 45 | /parenleft{799 0 176 -270 635 1554 sc 46 | 635 1554 m 47 | 546 1401 479 1249 436 1099 c 48 | 393 949 371 797 371 643 c 49 | 371 489 393 336 436 185 c 50 | 480 34 546 -117 635 -270 c 51 | 475 -270 l 52 | 375 -113 300 41 250 192 c 53 | 201 343 176 494 176 643 c 54 | 176 792 201 941 250 1092 c 55 | 299 1243 374 1397 475 1554 c 56 | 635 1554 l 57 | 58 | ce} _d 59 | /parenright{799 0 164 -270 623 1554 sc 60 | 164 1554 m 61 | 324 1554 l 62 | 424 1397 499 1243 548 1092 c 63 | 598 941 623 792 623 643 c 64 | 623 494 598 343 548 192 c 65 | 499 41 424 -113 324 -270 c 66 | 164 -270 l 67 | 253 -117 319 34 362 185 c 68 | 406 336 428 489 428 643 c 69 | 428 797 406 949 362 1099 c 70 | 319 1249 253 1401 164 1554 c 71 | 72 | ce} _d 73 | /hyphen{739 0 100 479 639 643 sc 74 | 100 643 m 75 | 639 643 l 76 | 639 479 l 77 | 100 479 l 78 | 100 643 l 79 | 80 | ce} _d 81 | /zero{1303 0 135 -29 1167 1520 sc 82 | 651 1360 m 83 | 547 1360 469 1309 416 1206 c 84 | 364 1104 338 950 338 745 c 85 | 338 540 364 387 416 284 c 86 | 469 182 547 131 651 131 c 87 | 756 131 834 182 886 284 c 88 | 939 387 965 540 965 745 c 89 | 965 950 939 1104 886 1206 c 90 | 834 1309 756 1360 651 1360 c 91 | 92 | 651 1520 m 93 | 818 1520 946 1454 1034 1321 c 94 | 1123 1189 1167 997 1167 745 c 95 | 1167 494 1123 302 1034 169 c 96 | 946 37 818 -29 651 -29 c 97 | 484 -29 356 37 267 169 c 98 | 179 302 135 494 135 745 c 99 | 135 997 179 1189 267 1321 c 100 | 356 1454 484 1520 651 1520 c 101 | 102 | ce} _d 103 | /one{1303 0 225 0 1114 1493 sc 104 | 254 170 m 105 | 584 170 l 106 | 584 1309 l 107 | 225 1237 l 108 | 225 1421 l 109 | 582 1493 l 110 | 784 1493 l 111 | 784 170 l 112 | 1114 170 l 113 | 1114 0 l 114 | 254 0 l 115 | 254 170 l 116 | 117 | ce} _d 118 | /two{1303 0 150 0 1098 1520 sc 119 | 393 170 m 120 | 1098 170 l 121 | 1098 0 l 122 | 150 0 l 123 | 150 170 l 124 | 227 249 331 356 463 489 c 125 | 596 623 679 709 713 748 c 126 | 778 821 823 882 848 932 c 127 | 874 983 887 1032 887 1081 c 128 | 887 1160 859 1225 803 1275 c 129 | 748 1325 675 1350 586 1350 c 130 | 523 1350 456 1339 385 1317 c 131 | 315 1295 240 1262 160 1217 c 132 | 160 1421 l 133 | 241 1454 317 1478 388 1495 c 134 | 459 1512 523 1520 582 1520 c 135 | 737 1520 860 1481 952 1404 c 136 | 1044 1327 1090 1223 1090 1094 c 137 | 1090 1033 1078 974 1055 919 c 138 | 1032 864 991 800 930 725 c 139 | 913 706 860 650 771 557 c 140 | 682 465 556 336 393 170 c 141 | 142 | ce} _d 143 | /three{1303 0 156 -29 1139 1520 sc 144 | 831 805 m 145 | 928 784 1003 741 1057 676 c 146 | 1112 611 1139 530 1139 434 c 147 | 1139 287 1088 173 987 92 c 148 | 886 11 742 -29 555 -29 c 149 | 492 -29 428 -23 361 -10 c 150 | 295 2 227 20 156 45 c 151 | 156 240 l 152 | 212 207 273 183 340 166 c 153 | 407 149 476 141 549 141 c 154 | 676 141 772 166 838 216 c 155 | 905 266 938 339 938 434 c 156 | 938 522 907 591 845 640 c 157 | 784 690 698 715 588 715 c 158 | 414 715 l 159 | 414 881 l 160 | 596 881 l 161 | 695 881 771 901 824 940 c 162 | 877 980 903 1037 903 1112 c 163 | 903 1189 876 1247 821 1288 c 164 | 767 1329 689 1350 588 1350 c 165 | 533 1350 473 1344 410 1332 c 166 | 347 1320 277 1301 201 1276 c 167 | 201 1456 l 168 | 278 1477 349 1493 416 1504 c 169 | 483 1515 547 1520 606 1520 c 170 | 759 1520 881 1485 970 1415 c 171 | 1059 1346 1104 1252 1104 1133 c 172 | 1104 1050 1080 980 1033 923 c 173 | 986 866 918 827 831 805 c 174 | 175 | ce} _d 176 | /four{1303 0 100 0 1188 1493 sc 177 | 774 1317 m 178 | 264 520 l 179 | 774 520 l 180 | 774 1317 l 181 | 182 | 721 1493 m 183 | 975 1493 l 184 | 975 520 l 185 | 1188 520 l 186 | 1188 352 l 187 | 975 352 l 188 | 975 0 l 189 | 774 0 l 190 | 774 352 l 191 | 100 352 l 192 | 100 547 l 193 | 721 1493 l 194 | 195 | ce} _d 196 | /five{1303 0 158 -29 1124 1493 sc 197 | 221 1493 m 198 | 1014 1493 l 199 | 1014 1323 l 200 | 406 1323 l 201 | 406 957 l 202 | 435 967 465 974 494 979 c 203 | 523 984 553 987 582 987 c 204 | 749 987 881 941 978 850 c 205 | 1075 759 1124 635 1124 479 c 206 | 1124 318 1074 193 974 104 c 207 | 874 15 733 -29 551 -29 c 208 | 488 -29 424 -24 359 -13 c 209 | 294 -2 227 14 158 35 c 210 | 158 238 l 211 | 218 205 280 181 344 165 c 212 | 408 149 476 141 547 141 c 213 | 662 141 754 171 821 232 c 214 | 888 293 922 375 922 479 c 215 | 922 583 888 665 821 726 c 216 | 754 787 662 817 547 817 c 217 | 493 817 439 811 385 799 c 218 | 332 787 277 768 221 743 c 219 | 221 1493 l 220 | 221 | ce} _d 222 | /six{1303 0 143 -29 1174 1520 sc 223 | 676 827 m 224 | 585 827 513 796 460 734 c 225 | 407 672 381 587 381 479 c 226 | 381 372 407 287 460 224 c 227 | 513 162 585 131 676 131 c 228 | 767 131 838 162 891 224 c 229 | 944 287 971 372 971 479 c 230 | 971 587 944 672 891 734 c 231 | 838 796 767 827 676 827 c 232 | 233 | 1077 1460 m 234 | 1077 1276 l 235 | 1026 1300 975 1318 923 1331 c 236 | 872 1344 821 1350 770 1350 c 237 | 637 1350 535 1305 464 1215 c 238 | 394 1125 354 989 344 807 c 239 | 383 865 433 909 492 940 c 240 | 551 971 617 987 688 987 c 241 | 838 987 956 941 1043 850 c 242 | 1130 759 1174 636 1174 479 c 243 | 1174 326 1129 203 1038 110 c 244 | 947 17 827 -29 676 -29 c 245 | 503 -29 371 37 280 169 c 246 | 189 302 143 494 143 745 c 247 | 143 981 199 1169 311 1309 c 248 | 423 1450 573 1520 762 1520 c 249 | 813 1520 864 1515 915 1505 c 250 | 967 1495 1021 1480 1077 1460 c 251 | 252 | ce} _d 253 | /eight{1303 0 139 -29 1163 1520 sc 254 | 651 709 m 255 | 555 709 479 683 424 632 c 256 | 369 581 342 510 342 420 c 257 | 342 330 369 259 424 208 c 258 | 479 157 555 131 651 131 c 259 | 747 131 823 157 878 208 c 260 | 933 260 961 331 961 420 c 261 | 961 510 933 581 878 632 c 262 | 823 683 748 709 651 709 c 263 | 264 | 449 795 m 265 | 362 816 295 857 246 916 c 266 | 198 975 174 1048 174 1133 c 267 | 174 1252 216 1347 301 1416 c 268 | 386 1485 503 1520 651 1520 c 269 | 800 1520 916 1485 1001 1416 c 270 | 1086 1347 1128 1252 1128 1133 c 271 | 1128 1048 1104 975 1055 916 c 272 | 1007 857 940 816 854 795 c 273 | 951 772 1027 728 1081 662 c 274 | 1136 596 1163 515 1163 420 c 275 | 1163 275 1119 164 1030 87 c 276 | 942 10 816 -29 651 -29 c 277 | 486 -29 360 10 271 87 c 278 | 183 164 139 275 139 420 c 279 | 139 515 166 596 221 662 c 280 | 276 728 352 772 449 795 c 281 | 282 | 375 1114 m 283 | 375 1037 399 976 447 933 c 284 | 496 890 564 868 651 868 c 285 | 738 868 805 890 854 933 c 286 | 903 976 928 1037 928 1114 c 287 | 928 1191 903 1252 854 1295 c 288 | 805 1338 738 1360 651 1360 c 289 | 564 1360 496 1338 447 1295 c 290 | 399 1252 375 1191 375 1114 c 291 | 292 | ce} _d 293 | /C{1430 0 115 -29 1319 1520 sc 294 | 1319 1378 m 295 | 1319 1165 l 296 | 1251 1228 1178 1276 1101 1307 c 297 | 1024 1338 943 1354 856 1354 c 298 | 685 1354 555 1302 464 1197 c 299 | 373 1093 328 942 328 745 c 300 | 328 548 373 398 464 293 c 301 | 555 189 685 137 856 137 c 302 | 943 137 1024 153 1101 184 c 303 | 1178 215 1251 263 1319 326 c 304 | 1319 115 l 305 | 1248 67 1173 31 1094 7 c 306 | 1015 -17 932 -29 844 -29 c 307 | 618 -29 440 40 310 178 c 308 | 180 317 115 506 115 745 c 309 | 115 985 180 1174 310 1312 c 310 | 440 1451 618 1520 844 1520 c 311 | 933 1520 1017 1508 1096 1484 c 312 | 1175 1461 1250 1425 1319 1378 c 313 | 314 | ce} _d 315 | /L{1141 0 201 0 1130 1493 sc 316 | 201 1493 m 317 | 403 1493 l 318 | 403 170 l 319 | 1130 170 l 320 | 1130 0 l 321 | 201 0 l 322 | 201 1493 l 323 | 324 | ce} _d 325 | /M{1767 0 201 0 1567 1493 sc 326 | 201 1493 m 327 | 502 1493 l 328 | 883 477 l 329 | 1266 1493 l 330 | 1567 1493 l 331 | 1567 0 l 332 | 1370 0 l 333 | 1370 1311 l 334 | 985 287 l 335 | 782 287 l 336 | 397 1311 l 337 | 397 0 l 338 | 201 0 l 339 | 201 1493 l 340 | 341 | ce} _d 342 | /P{1235 0 201 0 1165 1493 sc 343 | 403 1327 m 344 | 403 766 l 345 | 657 766 l 346 | 751 766 824 790 875 839 c 347 | 926 888 952 957 952 1047 c 348 | 952 1136 926 1205 875 1254 c 349 | 824 1303 751 1327 657 1327 c 350 | 403 1327 l 351 | 352 | 201 1493 m 353 | 657 1493 l 354 | 824 1493 951 1455 1036 1379 c 355 | 1122 1304 1165 1193 1165 1047 c 356 | 1165 900 1122 788 1036 713 c 357 | 951 638 824 600 657 600 c 358 | 403 600 l 359 | 403 0 l 360 | 201 0 l 361 | 201 1493 l 362 | 363 | ce} _d 364 | /S{1300 0 135 -29 1186 1520 sc 365 | 1096 1444 m 366 | 1096 1247 l 367 | 1019 1284 947 1311 879 1329 c 368 | 811 1347 745 1356 682 1356 c 369 | 572 1356 487 1335 427 1292 c 370 | 368 1249 338 1189 338 1110 c 371 | 338 1044 358 994 397 960 c 372 | 437 927 512 900 623 879 c 373 | 745 854 l 374 | 896 825 1007 775 1078 702 c 375 | 1150 630 1186 533 1186 412 c 376 | 1186 267 1137 158 1040 83 c 377 | 943 8 801 -29 614 -29 c 378 | 543 -29 468 -21 388 -5 c 379 | 309 11 226 35 141 66 c 380 | 141 274 l 381 | 223 228 303 193 382 170 c 382 | 461 147 538 135 614 135 c 383 | 729 135 818 158 881 203 c 384 | 944 248 975 313 975 397 c 385 | 975 470 952 528 907 569 c 386 | 862 610 789 641 686 662 c 387 | 563 686 l 388 | 412 716 303 763 236 827 c 389 | 169 891 135 980 135 1094 c 390 | 135 1226 181 1330 274 1406 c 391 | 367 1482 496 1520 659 1520 c 392 | 729 1520 800 1514 873 1501 c 393 | 946 1488 1020 1469 1096 1444 c 394 | 395 | ce} _d 396 | /U{1499 0 178 -29 1321 1493 sc 397 | 178 1493 m 398 | 381 1493 l 399 | 381 586 l 400 | 381 426 410 311 468 240 c 401 | 526 170 620 135 750 135 c 402 | 879 135 973 170 1031 240 c 403 | 1089 311 1118 426 1118 586 c 404 | 1118 1493 l 405 | 1321 1493 l 406 | 1321 561 l 407 | 1321 366 1273 219 1176 120 c 408 | 1080 21 938 -29 750 -29 c 409 | 561 -29 419 21 322 120 c 410 | 226 219 178 366 178 561 c 411 | 178 1493 l 412 | 413 | ce} _d 414 | /e{1260 0 113 -29 1151 1147 sc 415 | 1151 606 m 416 | 1151 516 l 417 | 305 516 l 418 | 313 389 351 293 419 226 c 419 | 488 160 583 127 705 127 c 420 | 776 127 844 136 910 153 c 421 | 977 170 1043 196 1108 231 c 422 | 1108 57 l 423 | 1042 29 974 8 905 -7 c 424 | 836 -22 765 -29 694 -29 c 425 | 515 -29 374 23 269 127 c 426 | 165 231 113 372 113 549 c 427 | 113 732 162 878 261 985 c 428 | 360 1093 494 1147 662 1147 c 429 | 813 1147 932 1098 1019 1001 c 430 | 1107 904 1151 773 1151 606 c 431 | 432 | 967 660 m 433 | 966 761 937 841 882 901 c 434 | 827 961 755 991 664 991 c 435 | 561 991 479 962 417 904 c 436 | 356 846 320 764 311 659 c 437 | 967 660 l 438 | 439 | ce} _d 440 | /g{1300 0 113 -426 1114 1147 sc 441 | 930 573 m 442 | 930 706 902 810 847 883 c 443 | 792 956 715 993 616 993 c 444 | 517 993 440 956 385 883 c 445 | 330 810 303 706 303 573 c 446 | 303 440 330 337 385 264 c 447 | 440 191 517 154 616 154 c 448 | 715 154 792 191 847 264 c 449 | 902 337 930 440 930 573 c 450 | 451 | 1114 139 m 452 | 1114 -52 1072 -193 987 -286 c 453 | 902 -379 773 -426 598 -426 c 454 | 533 -426 472 -421 415 -411 c 455 | 358 -402 302 -387 248 -367 c 456 | 248 -188 l 457 | 302 -217 355 -239 408 -253 c 458 | 461 -267 514 -274 569 -274 c 459 | 690 -274 780 -242 840 -179 c 460 | 900 -116 930 -21 930 106 c 461 | 930 197 l 462 | 892 131 843 82 784 49 c 463 | 725 16 654 0 571 0 c 464 | 434 0 323 52 239 157 c 465 | 155 262 113 400 113 573 c 466 | 113 746 155 885 239 990 c 467 | 323 1095 434 1147 571 1147 c 468 | 654 1147 725 1131 784 1098 c 469 | 843 1065 892 1016 930 950 c 470 | 930 1120 l 471 | 1114 1120 l 472 | 1114 139 l 473 | 474 | ce} _d 475 | /i{569 0 193 0 377 1556 sc 476 | 193 1120 m 477 | 377 1120 l 478 | 377 0 l 479 | 193 0 l 480 | 193 1120 l 481 | 482 | 193 1556 m 483 | 377 1556 l 484 | 377 1323 l 485 | 193 1323 l 486 | 193 1556 l 487 | 488 | ce} _d 489 | /l{569 0 193 0 377 1556 sc 490 | 193 1556 m 491 | 377 1556 l 492 | 377 0 l 493 | 193 0 l 494 | 193 1556 l 495 | 496 | ce} _d 497 | /n{1298 0 186 0 1124 1147 sc 498 | 1124 676 m 499 | 1124 0 l 500 | 940 0 l 501 | 940 670 l 502 | 940 776 919 855 878 908 c 503 | 837 961 775 987 692 987 c 504 | 593 987 514 955 457 892 c 505 | 400 829 371 742 371 633 c 506 | 371 0 l 507 | 186 0 l 508 | 186 1120 l 509 | 371 1120 l 510 | 371 946 l 511 | 415 1013 467 1064 526 1097 c 512 | 586 1130 655 1147 733 1147 c 513 | 862 1147 959 1107 1025 1027 c 514 | 1091 948 1124 831 1124 676 c 515 | 516 | ce} _d 517 | /p{1300 0 186 -426 1188 1147 sc 518 | 371 168 m 519 | 371 -426 l 520 | 186 -426 l 521 | 186 1120 l 522 | 371 1120 l 523 | 371 950 l 524 | 410 1017 458 1066 517 1098 c 525 | 576 1131 647 1147 729 1147 c 526 | 865 1147 975 1093 1060 985 c 527 | 1145 877 1188 735 1188 559 c 528 | 1188 383 1145 241 1060 133 c 529 | 975 25 865 -29 729 -29 c 530 | 647 -29 576 -13 517 19 c 531 | 458 52 410 101 371 168 c 532 | 533 | 997 559 m 534 | 997 694 969 800 913 877 c 535 | 858 954 781 993 684 993 c 536 | 587 993 510 954 454 877 c 537 | 399 800 371 694 371 559 c 538 | 371 424 399 317 454 240 c 539 | 510 163 587 125 684 125 c 540 | 781 125 858 163 913 240 c 541 | 969 317 997 424 997 559 c 542 | 543 | ce} _d 544 | /r{842 0 186 0 842 1147 sc 545 | 842 948 m 546 | 821 960 799 969 774 974 c 547 | 750 980 723 983 694 983 c 548 | 590 983 510 949 454 881 c 549 | 399 814 371 717 371 590 c 550 | 371 0 l 551 | 186 0 l 552 | 186 1120 l 553 | 371 1120 l 554 | 371 946 l 555 | 410 1014 460 1064 522 1097 c 556 | 584 1130 659 1147 748 1147 c 557 | 761 1147 775 1146 790 1144 c 558 | 805 1143 822 1140 841 1137 c 559 | 842 948 l 560 | 561 | ce} _d 562 | /s{1067 0 111 -29 967 1147 sc 563 | 907 1087 m 564 | 907 913 l 565 | 855 940 801 960 745 973 c 566 | 689 986 631 993 571 993 c 567 | 480 993 411 979 365 951 c 568 | 320 923 297 881 297 825 c 569 | 297 782 313 749 346 724 c 570 | 379 700 444 677 543 655 c 571 | 606 641 l 572 | 737 613 829 573 884 522 c 573 | 939 471 967 400 967 309 c 574 | 967 205 926 123 843 62 c 575 | 761 1 648 -29 504 -29 c 576 | 444 -29 381 -23 316 -11 c 577 | 251 0 183 18 111 41 c 578 | 111 231 l 579 | 179 196 246 169 312 151 c 580 | 378 134 443 125 508 125 c 581 | 595 125 661 140 708 169 c 582 | 755 199 778 241 778 295 c 583 | 778 345 761 383 727 410 c 584 | 694 437 620 462 506 487 c 585 | 442 502 l 586 | 328 526 246 563 195 612 c 587 | 144 662 119 730 119 817 c 588 | 119 922 156 1004 231 1061 c 589 | 306 1118 412 1147 549 1147 c 590 | 617 1147 681 1142 741 1132 c 591 | 801 1122 856 1107 907 1087 c 592 | 593 | ce} _d 594 | /t{803 0 55 0 754 1438 sc 595 | 375 1438 m 596 | 375 1120 l 597 | 754 1120 l 598 | 754 977 l 599 | 375 977 l 600 | 375 369 l 601 | 375 278 387 219 412 193 c 602 | 437 167 488 154 565 154 c 603 | 754 154 l 604 | 754 0 l 605 | 565 0 l 606 | 423 0 325 26 271 79 c 607 | 217 132 190 229 190 369 c 608 | 190 977 l 609 | 55 977 l 610 | 55 1120 l 611 | 190 1120 l 612 | 190 1438 l 613 | 375 1438 l 614 | 615 | ce} _d 616 | /u{1298 0 174 -29 1112 1147 sc 617 | 174 442 m 618 | 174 1120 l 619 | 358 1120 l 620 | 358 449 l 621 | 358 343 379 263 420 210 c 622 | 461 157 523 131 606 131 c 623 | 705 131 784 163 841 226 c 624 | 899 289 928 376 928 485 c 625 | 928 1120 l 626 | 1112 1120 l 627 | 1112 0 l 628 | 928 0 l 629 | 928 172 l 630 | 883 104 831 53 772 20 c 631 | 713 -13 645 -29 567 -29 c 632 | 438 -29 341 11 274 91 c 633 | 207 171 174 288 174 442 c 634 | 635 | 637 1147 m 636 | 637 1147 l 637 | 638 | ce} _d 639 | end readonly def 640 | 641 | /BuildGlyph { 642 | exch begin 643 | CharStrings exch 644 | 2 copy known not {pop /.notdef} if 645 | true 3 1 roll get exec 646 | end 647 | } _d 648 | 649 | /BuildChar { 650 | 1 index /Encoding get exch get 651 | 1 index /BuildGlyph get exec 652 | } _d 653 | 654 | FontName currentdict end definefont pop 655 | %!PS-Adobe-3.0 Resource-Font 656 | %%Creator: Converted from TrueType to Type 3 by Matplotlib. 657 | 10 dict begin 658 | /FontName /DejaVuSans-Bold def 659 | /PaintType 0 def 660 | /FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def 661 | /FontBBox [-2190 -850 4045 2405] def 662 | /FontType 3 def 663 | /Encoding [/space /a /c /E /g /h /i /L /n /o /p /r /s /T] def 664 | /CharStrings 15 dict dup begin 665 | /.notdef 0 def 666 | /space{713 0 0 0 0 0 sc 667 | ce} _d 668 | /a{1382 0 88 -29 1221 1147 sc 669 | 674 504 m 670 | 599 504 543 491 505 466 c 671 | 468 441 449 403 449 354 c 672 | 449 309 464 273 494 247 c 673 | 525 222 567 209 621 209 c 674 | 688 209 745 233 791 281 c 675 | 837 330 860 390 860 463 c 676 | 860 504 l 677 | 674 504 l 678 | 679 | 1221 639 m 680 | 1221 0 l 681 | 860 0 l 682 | 860 166 l 683 | 812 98 758 48 698 17 c 684 | 638 -14 565 -29 479 -29 c 685 | 363 -29 269 5 196 72 c 686 | 124 140 88 228 88 336 c 687 | 88 467 133 564 223 625 c 688 | 314 686 456 717 649 717 c 689 | 860 717 l 690 | 860 745 l 691 | 860 802 838 843 793 869 c 692 | 748 896 679 909 584 909 c 693 | 507 909 436 901 370 886 c 694 | 304 871 243 848 186 817 c 695 | 186 1090 l 696 | 263 1109 340 1123 417 1132 c 697 | 494 1142 572 1147 649 1147 c 698 | 851 1147 997 1107 1086 1027 c 699 | 1176 948 1221 818 1221 639 c 700 | 701 | ce} _d 702 | /c{1214 0 88 -29 1077 1147 sc 703 | 1077 1085 m 704 | 1077 793 l 705 | 1028 826 979 851 930 867 c 706 | 881 883 831 891 778 891 c 707 | 678 891 600 862 544 803 c 708 | 489 745 461 664 461 559 c 709 | 461 454 489 373 544 314 c 710 | 600 256 678 227 778 227 c 711 | 834 227 887 235 937 252 c 712 | 988 269 1034 293 1077 326 c 713 | 1077 33 l 714 | 1021 12 964 -3 906 -13 c 715 | 849 -24 791 -29 733 -29 c 716 | 531 -29 373 23 259 126 c 717 | 145 230 88 374 88 559 c 718 | 88 744 145 888 259 991 c 719 | 373 1095 531 1147 733 1147 c 720 | 792 1147 849 1142 906 1131 c 721 | 963 1121 1020 1106 1077 1085 c 722 | 723 | ce} _d 724 | /E{1399 0 188 0 1249 1493 sc 725 | 188 1493 m 726 | 1227 1493 l 727 | 1227 1202 l 728 | 573 1202 l 729 | 573 924 l 730 | 1188 924 l 731 | 1188 633 l 732 | 573 633 l 733 | 573 291 l 734 | 1249 291 l 735 | 1249 0 l 736 | 188 0 l 737 | 188 1493 l 738 | 739 | ce} _d 740 | /g{1466 0 92 -442 1294 1145 sc 741 | 934 190 m 742 | 885 125 830 77 771 46 c 743 | 712 15 643 0 565 0 c 744 | 428 0 315 54 226 161 c 745 | 137 269 92 406 92 573 c 746 | 92 740 137 877 226 984 c 747 | 315 1091 428 1145 565 1145 c 748 | 643 1145 712 1130 771 1099 c 749 | 830 1068 885 1020 934 954 c 750 | 934 1120 l 751 | 1294 1120 l 752 | 1294 113 l 753 | 1294 -67 1237 -204 1123 -299 c 754 | 1010 -394 845 -442 629 -442 c 755 | 559 -442 491 -437 426 -426 c 756 | 361 -415 295 -399 229 -377 c 757 | 229 -98 l 758 | 292 -134 353 -161 413 -178 c 759 | 473 -196 533 -205 594 -205 c 760 | 711 -205 797 -179 852 -128 c 761 | 907 -77 934 4 934 113 c 762 | 934 190 l 763 | 764 | 698 887 m 765 | 624 887 566 860 525 805 c 766 | 484 750 463 673 463 573 c 767 | 463 470 483 392 523 339 c 768 | 563 286 621 260 698 260 c 769 | 773 260 831 287 872 342 c 770 | 913 397 934 474 934 573 c 771 | 934 673 913 750 872 805 c 772 | 831 860 773 887 698 887 c 773 | 774 | ce} _d 775 | /h{1458 0 172 0 1298 1556 sc 776 | 1298 682 m 777 | 1298 0 l 778 | 938 0 l 779 | 938 111 l 780 | 938 520 l 781 | 938 618 936 685 931 722 c 782 | 927 759 920 786 909 803 c 783 | 895 826 876 844 852 857 c 784 | 828 870 801 877 770 877 c 785 | 695 877 637 848 594 790 c 786 | 551 733 530 653 530 551 c 787 | 530 0 l 788 | 172 0 l 789 | 172 1556 l 790 | 530 1556 l 791 | 530 956 l 792 | 584 1021 641 1069 702 1100 c 793 | 763 1131 830 1147 903 1147 c 794 | 1032 1147 1130 1107 1197 1028 c 795 | 1264 949 1298 833 1298 682 c 796 | 797 | ce} _d 798 | /i{702 0 172 0 530 1556 sc 799 | 172 1120 m 800 | 530 1120 l 801 | 530 0 l 802 | 172 0 l 803 | 172 1120 l 804 | 805 | 172 1556 m 806 | 530 1556 l 807 | 530 1264 l 808 | 172 1264 l 809 | 172 1556 l 810 | 811 | ce} _d 812 | /L{1305 0 188 0 1249 1493 sc 813 | 188 1493 m 814 | 573 1493 l 815 | 573 291 l 816 | 1249 291 l 817 | 1249 0 l 818 | 188 0 l 819 | 188 1493 l 820 | 821 | ce} _d 822 | /n{1458 0 172 0 1298 1147 sc 823 | 1298 682 m 824 | 1298 0 l 825 | 938 0 l 826 | 938 111 l 827 | 938 522 l 828 | 938 619 936 685 931 722 c 829 | 927 759 920 786 909 803 c 830 | 895 826 876 844 852 857 c 831 | 828 870 801 877 770 877 c 832 | 695 877 637 848 594 790 c 833 | 551 733 530 653 530 551 c 834 | 530 0 l 835 | 172 0 l 836 | 172 1120 l 837 | 530 1120 l 838 | 530 956 l 839 | 584 1021 641 1069 702 1100 c 840 | 763 1131 830 1147 903 1147 c 841 | 1032 1147 1130 1107 1197 1028 c 842 | 1264 949 1298 833 1298 682 c 843 | 844 | ce} _d 845 | /o{1407 0 88 -29 1319 1147 sc 846 | 705 891 m 847 | 626 891 565 862 523 805 c 848 | 482 748 461 666 461 559 c 849 | 461 452 482 369 523 312 c 850 | 565 255 626 227 705 227 c 851 | 783 227 843 255 884 312 c 852 | 925 369 946 452 946 559 c 853 | 946 666 925 748 884 805 c 854 | 843 862 783 891 705 891 c 855 | 856 | 705 1147 m 857 | 898 1147 1048 1095 1156 991 c 858 | 1265 887 1319 743 1319 559 c 859 | 1319 375 1265 231 1156 127 c 860 | 1048 23 898 -29 705 -29 c 861 | 512 -29 360 23 251 127 c 862 | 142 231 88 375 88 559 c 863 | 88 743 142 887 251 991 c 864 | 360 1095 512 1147 705 1147 c 865 | 866 | ce} _d 867 | /p{1466 0 172 -426 1374 1147 sc 868 | 530 162 m 869 | 530 -426 l 870 | 172 -426 l 871 | 172 1120 l 872 | 530 1120 l 873 | 530 956 l 874 | 579 1021 634 1069 694 1100 c 875 | 754 1131 823 1147 901 1147 c 876 | 1039 1147 1152 1092 1241 982 c 877 | 1330 873 1374 732 1374 559 c 878 | 1374 386 1330 245 1241 135 c 879 | 1152 26 1039 -29 901 -29 c 880 | 823 -29 754 -14 694 17 c 881 | 634 48 579 97 530 162 c 882 | 883 | 768 887 m 884 | 691 887 632 859 591 802 c 885 | 550 746 530 665 530 559 c 886 | 530 453 550 372 591 315 c 887 | 632 259 691 231 768 231 c 888 | 845 231 903 259 943 315 c 889 | 984 371 1004 452 1004 559 c 890 | 1004 666 984 747 943 803 c 891 | 903 859 845 887 768 887 c 892 | 893 | ce} _d 894 | /r{1010 0 172 0 1004 1147 sc 895 | 1004 815 m 896 | 973 830 941 840 910 847 c 897 | 879 854 848 858 817 858 c 898 | 725 858 654 828 604 769 c 899 | 555 710 530 626 530 516 c 900 | 530 0 l 901 | 172 0 l 902 | 172 1120 l 903 | 530 1120 l 904 | 530 936 l 905 | 576 1009 629 1063 688 1096 c 906 | 748 1130 820 1147 903 1147 c 907 | 915 1147 928 1146 942 1145 c 908 | 956 1144 976 1142 1003 1139 c 909 | 1004 815 l 910 | 911 | ce} _d 912 | /s{1219 0 106 -29 1122 1147 sc 913 | 1047 1085 m 914 | 1047 813 l 915 | 970 845 896 869 825 885 c 916 | 754 901 686 909 623 909 c 917 | 555 909 504 900 471 883 c 918 | 438 866 422 840 422 805 c 919 | 422 776 434 754 459 739 c 920 | 484 724 529 712 594 705 c 921 | 657 696 l 922 | 840 673 964 634 1027 581 c 923 | 1090 528 1122 444 1122 330 c 924 | 1122 211 1078 121 990 61 c 925 | 902 1 771 -29 596 -29 c 926 | 522 -29 445 -23 366 -11 c 927 | 287 0 206 18 123 41 c 928 | 123 313 l 929 | 194 278 267 252 342 235 c 930 | 417 218 494 209 571 209 c 931 | 641 209 694 219 729 238 c 932 | 764 257 782 286 782 324 c 933 | 782 356 770 380 745 395 c 934 | 721 411 673 423 600 432 c 935 | 537 440 l 936 | 378 460 266 497 202 551 c 937 | 138 605 106 687 106 797 c 938 | 106 916 147 1004 228 1061 c 939 | 309 1118 434 1147 602 1147 c 940 | 668 1147 737 1142 810 1132 c 941 | 883 1122 962 1106 1047 1085 c 942 | 943 | ce} _d 944 | /T{1397 0 10 0 1386 1493 sc 945 | 10 1493 m 946 | 1386 1493 l 947 | 1386 1202 l 948 | 891 1202 l 949 | 891 0 l 950 | 506 0 l 951 | 506 1202 l 952 | 10 1202 l 953 | 10 1493 l 954 | 955 | ce} _d 956 | end readonly def 957 | 958 | /BuildGlyph { 959 | exch begin 960 | CharStrings exch 961 | 2 copy known not {pop /.notdef} if 962 | true 3 1 roll get exec 963 | end 964 | } _d 965 | 966 | /BuildChar { 967 | 1 index /Encoding get exch get 968 | 1 index /BuildGlyph get exec 969 | } _d 970 | 971 | FontName currentdict end definefont pop 972 | end 973 | %%EndProlog 974 | mpldict begin 975 | 75.6 223.2 translate 976 | 460.8 345.6 0 0 clipbox 977 | gsave 978 | 0 0 m 979 | 460.8 0 l 980 | 460.8 345.6 l 981 | 0 345.6 l 982 | cl 983 | 1.000 setgray 984 | fill 985 | grestore 986 | gsave 987 | 57.6 38.016 m 988 | 414.72 38.016 l 989 | 414.72 304.128 l 990 | 57.6 304.128 l 991 | cl 992 | 1.000 setgray 993 | fill 994 | grestore 995 | 0.800 setlinewidth 996 | 1 setlinejoin 997 | 0 setlinecap 998 | [2.96 1.28] 0 setdash 999 | 0.690 setgray 1000 | gsave 1001 | 357.12 266.112 57.6 38.016 clipbox 1002 | 73.832727 38.016 m 1003 | 73.832727 304.128 l 1004 | stroke 1005 | grestore 1006 | [] 0 setdash 1007 | 0.000 setgray 1008 | gsave 1009 | /o { 1010 | gsave 1011 | newpath 1012 | translate 1013 | 0.8 setlinewidth 1014 | 1 setlinejoin 1015 | 1016 | 0 setlinecap 1017 | 1018 | 0 0 m 1019 | 0 -3.5 l 1020 | 1021 | gsave 1022 | 0.000 setgray 1023 | fill 1024 | grestore 1025 | stroke 1026 | grestore 1027 | } bind def 1028 | 73.8327 38.016 o 1029 | grestore 1030 | /DejaVuSans 10.000 selectfont 1031 | gsave 1032 | 1033 | 70.653040 23.422250 translate 1034 | 0.000000 rotate 1035 | 0.000000 0 m /zero glyphshow 1036 | grestore 1037 | [2.96 1.28] 0 setdash 1038 | 0.690 setgray 1039 | gsave 1040 | 357.12 266.112 57.6 38.016 clipbox 1041 | 139.419504 38.016 m 1042 | 139.419504 304.128 l 1043 | stroke 1044 | grestore 1045 | [] 0 setdash 1046 | 0.000 setgray 1047 | gsave 1048 | /o { 1049 | gsave 1050 | newpath 1051 | translate 1052 | 0.8 setlinewidth 1053 | 1 setlinejoin 1054 | 1055 | 0 setlinecap 1056 | 1057 | 0 0 m 1058 | 0 -3.5 l 1059 | 1060 | gsave 1061 | 0.000 setgray 1062 | fill 1063 | grestore 1064 | stroke 1065 | grestore 1066 | } bind def 1067 | 139.42 38.016 o 1068 | grestore 1069 | gsave 1070 | 1071 | 133.060129 23.422250 translate 1072 | 0.000000 rotate 1073 | 0.000000 0 m /two glyphshow 1074 | 6.362305 0 m /zero glyphshow 1075 | grestore 1076 | [2.96 1.28] 0 setdash 1077 | 0.690 setgray 1078 | gsave 1079 | 357.12 266.112 57.6 38.016 clipbox 1080 | 205.006281 38.016 m 1081 | 205.006281 304.128 l 1082 | stroke 1083 | grestore 1084 | [] 0 setdash 1085 | 0.000 setgray 1086 | gsave 1087 | /o { 1088 | gsave 1089 | newpath 1090 | translate 1091 | 0.8 setlinewidth 1092 | 1 setlinejoin 1093 | 1094 | 0 setlinecap 1095 | 1096 | 0 0 m 1097 | 0 -3.5 l 1098 | 1099 | gsave 1100 | 0.000 setgray 1101 | fill 1102 | grestore 1103 | stroke 1104 | grestore 1105 | } bind def 1106 | 205.006 38.016 o 1107 | grestore 1108 | gsave 1109 | 1110 | 198.646906 23.422250 translate 1111 | 0.000000 rotate 1112 | 0.000000 0 m /four glyphshow 1113 | 6.362305 0 m /zero glyphshow 1114 | grestore 1115 | [2.96 1.28] 0 setdash 1116 | 0.690 setgray 1117 | gsave 1118 | 357.12 266.112 57.6 38.016 clipbox 1119 | 270.593058 38.016 m 1120 | 270.593058 304.128 l 1121 | stroke 1122 | grestore 1123 | [] 0 setdash 1124 | 0.000 setgray 1125 | gsave 1126 | /o { 1127 | gsave 1128 | newpath 1129 | translate 1130 | 0.8 setlinewidth 1131 | 1 setlinejoin 1132 | 1133 | 0 setlinecap 1134 | 1135 | 0 0 m 1136 | 0 -3.5 l 1137 | 1138 | gsave 1139 | 0.000 setgray 1140 | fill 1141 | grestore 1142 | stroke 1143 | grestore 1144 | } bind def 1145 | 270.593 38.016 o 1146 | grestore 1147 | gsave 1148 | 1149 | 264.233683 23.422250 translate 1150 | 0.000000 rotate 1151 | 0.000000 0 m /six glyphshow 1152 | 6.362305 0 m /zero glyphshow 1153 | grestore 1154 | [2.96 1.28] 0 setdash 1155 | 0.690 setgray 1156 | gsave 1157 | 357.12 266.112 57.6 38.016 clipbox 1158 | 336.179835 38.016 m 1159 | 336.179835 304.128 l 1160 | stroke 1161 | grestore 1162 | [] 0 setdash 1163 | 0.000 setgray 1164 | gsave 1165 | /o { 1166 | gsave 1167 | newpath 1168 | translate 1169 | 0.8 setlinewidth 1170 | 1 setlinejoin 1171 | 1172 | 0 setlinecap 1173 | 1174 | 0 0 m 1175 | 0 -3.5 l 1176 | 1177 | gsave 1178 | 0.000 setgray 1179 | fill 1180 | grestore 1181 | stroke 1182 | grestore 1183 | } bind def 1184 | 336.18 38.016 o 1185 | grestore 1186 | gsave 1187 | 1188 | 329.820460 23.422250 translate 1189 | 0.000000 rotate 1190 | 0.000000 0 m /eight glyphshow 1191 | 6.362305 0 m /zero glyphshow 1192 | grestore 1193 | [2.96 1.28] 0 setdash 1194 | 0.690 setgray 1195 | gsave 1196 | 357.12 266.112 57.6 38.016 clipbox 1197 | 401.766612 38.016 m 1198 | 401.766612 304.128 l 1199 | stroke 1200 | grestore 1201 | [] 0 setdash 1202 | 0.000 setgray 1203 | gsave 1204 | /o { 1205 | gsave 1206 | newpath 1207 | translate 1208 | 0.8 setlinewidth 1209 | 1 setlinejoin 1210 | 1211 | 0 setlinecap 1212 | 1213 | 0 0 m 1214 | 0 -3.5 l 1215 | 1216 | gsave 1217 | 0.000 setgray 1218 | fill 1219 | grestore 1220 | stroke 1221 | grestore 1222 | } bind def 1223 | 401.767 38.016 o 1224 | grestore 1225 | gsave 1226 | 1227 | 392.227549 23.422250 translate 1228 | 0.000000 rotate 1229 | 0.000000 0 m /one glyphshow 1230 | 6.362305 0 m /zero glyphshow 1231 | 12.724609 0 m /zero glyphshow 1232 | grestore 1233 | /DejaVuSans-Bold 15.000 selectfont 1234 | gsave 1235 | 1236 | 206.261562 5.953500 translate 1237 | 0.000000 rotate 1238 | 0.000000 0 m /E glyphshow 1239 | 10.246582 0 m /p glyphshow 1240 | 20.983887 0 m /o glyphshow 1241 | 31.289062 0 m /c glyphshow 1242 | 40.180664 0 m /h glyphshow 1243 | 50.859375 0 m /s glyphshow 1244 | grestore 1245 | [2.96 1.28] 0 setdash 1246 | 0.690 setgray 1247 | gsave 1248 | 357.12 266.112 57.6 38.016 clipbox 1249 | 57.6 74.235988 m 1250 | 414.72 74.235988 l 1251 | stroke 1252 | grestore 1253 | [] 0 setdash 1254 | 0.000 setgray 1255 | gsave 1256 | /o { 1257 | gsave 1258 | newpath 1259 | translate 1260 | 0.8 setlinewidth 1261 | 1 setlinejoin 1262 | 1263 | 0 setlinecap 1264 | 1265 | -0 0 m 1266 | -3.5 0 l 1267 | 1268 | gsave 1269 | 0.000 setgray 1270 | fill 1271 | grestore 1272 | stroke 1273 | grestore 1274 | } bind def 1275 | 57.6 74.236 o 1276 | grestore 1277 | /DejaVuSans 10.000 selectfont 1278 | gsave 1279 | 1280 | 44.240625 70.439113 translate 1281 | 0.000000 rotate 1282 | 0.000000 0 m /five glyphshow 1283 | grestore 1284 | [2.96 1.28] 0 setdash 1285 | 0.690 setgray 1286 | gsave 1287 | 357.12 266.112 57.6 38.016 clipbox 1288 | 57.6 117.855258 m 1289 | 414.72 117.855258 l 1290 | stroke 1291 | grestore 1292 | [] 0 setdash 1293 | 0.000 setgray 1294 | gsave 1295 | /o { 1296 | gsave 1297 | newpath 1298 | translate 1299 | 0.8 setlinewidth 1300 | 1 setlinejoin 1301 | 1302 | 0 setlinecap 1303 | 1304 | -0 0 m 1305 | -3.5 0 l 1306 | 1307 | gsave 1308 | 0.000 setgray 1309 | fill 1310 | grestore 1311 | stroke 1312 | grestore 1313 | } bind def 1314 | 57.6 117.855 o 1315 | grestore 1316 | gsave 1317 | 1318 | 37.881250 114.058383 translate 1319 | 0.000000 rotate 1320 | 0.000000 0 m /one glyphshow 1321 | 6.362305 0 m /zero glyphshow 1322 | grestore 1323 | [2.96 1.28] 0 setdash 1324 | 0.690 setgray 1325 | gsave 1326 | 357.12 266.112 57.6 38.016 clipbox 1327 | 57.6 161.474527 m 1328 | 414.72 161.474527 l 1329 | stroke 1330 | grestore 1331 | [] 0 setdash 1332 | 0.000 setgray 1333 | gsave 1334 | /o { 1335 | gsave 1336 | newpath 1337 | translate 1338 | 0.8 setlinewidth 1339 | 1 setlinejoin 1340 | 1341 | 0 setlinecap 1342 | 1343 | -0 0 m 1344 | -3.5 0 l 1345 | 1346 | gsave 1347 | 0.000 setgray 1348 | fill 1349 | grestore 1350 | stroke 1351 | grestore 1352 | } bind def 1353 | 57.6 161.475 o 1354 | grestore 1355 | gsave 1356 | 1357 | 37.881250 157.677652 translate 1358 | 0.000000 rotate 1359 | 0.000000 0 m /one glyphshow 1360 | 6.362305 0 m /five glyphshow 1361 | grestore 1362 | [2.96 1.28] 0 setdash 1363 | 0.690 setgray 1364 | gsave 1365 | 357.12 266.112 57.6 38.016 clipbox 1366 | 57.6 205.093797 m 1367 | 414.72 205.093797 l 1368 | stroke 1369 | grestore 1370 | [] 0 setdash 1371 | 0.000 setgray 1372 | gsave 1373 | /o { 1374 | gsave 1375 | newpath 1376 | translate 1377 | 0.8 setlinewidth 1378 | 1 setlinejoin 1379 | 1380 | 0 setlinecap 1381 | 1382 | -0 0 m 1383 | -3.5 0 l 1384 | 1385 | gsave 1386 | 0.000 setgray 1387 | fill 1388 | grestore 1389 | stroke 1390 | grestore 1391 | } bind def 1392 | 57.6 205.094 o 1393 | grestore 1394 | gsave 1395 | 1396 | 37.881250 201.296922 translate 1397 | 0.000000 rotate 1398 | 0.000000 0 m /two glyphshow 1399 | 6.362305 0 m /zero glyphshow 1400 | grestore 1401 | [2.96 1.28] 0 setdash 1402 | 0.690 setgray 1403 | gsave 1404 | 357.12 266.112 57.6 38.016 clipbox 1405 | 57.6 248.713067 m 1406 | 414.72 248.713067 l 1407 | stroke 1408 | grestore 1409 | [] 0 setdash 1410 | 0.000 setgray 1411 | gsave 1412 | /o { 1413 | gsave 1414 | newpath 1415 | translate 1416 | 0.8 setlinewidth 1417 | 1 setlinejoin 1418 | 1419 | 0 setlinecap 1420 | 1421 | -0 0 m 1422 | -3.5 0 l 1423 | 1424 | gsave 1425 | 0.000 setgray 1426 | fill 1427 | grestore 1428 | stroke 1429 | grestore 1430 | } bind def 1431 | 57.6 248.713 o 1432 | grestore 1433 | gsave 1434 | 1435 | 37.881250 244.916192 translate 1436 | 0.000000 rotate 1437 | 0.000000 0 m /two glyphshow 1438 | 6.362305 0 m /five glyphshow 1439 | grestore 1440 | [2.96 1.28] 0 setdash 1441 | 0.690 setgray 1442 | gsave 1443 | 357.12 266.112 57.6 38.016 clipbox 1444 | 57.6 292.332337 m 1445 | 414.72 292.332337 l 1446 | stroke 1447 | grestore 1448 | [] 0 setdash 1449 | 0.000 setgray 1450 | gsave 1451 | /o { 1452 | gsave 1453 | newpath 1454 | translate 1455 | 0.8 setlinewidth 1456 | 1 setlinejoin 1457 | 1458 | 0 setlinecap 1459 | 1460 | -0 0 m 1461 | -3.5 0 l 1462 | 1463 | gsave 1464 | 0.000 setgray 1465 | fill 1466 | grestore 1467 | stroke 1468 | grestore 1469 | } bind def 1470 | 57.6 292.332 o 1471 | grestore 1472 | gsave 1473 | 1474 | 37.881250 288.535462 translate 1475 | 0.000000 rotate 1476 | 0.000000 0 m /three glyphshow 1477 | 6.362305 0 m /zero glyphshow 1478 | grestore 1479 | /DejaVuSans-Bold 15.000 selectfont 1480 | gsave 1481 | 1482 | 30.646875 115.337625 translate 1483 | 90.000000 rotate 1484 | 0.000000 0 m /T glyphshow 1485 | 8.606934 0 m /r glyphshow 1486 | 16.004395 0 m /a glyphshow 1487 | 26.126465 0 m /i glyphshow 1488 | 31.268066 0 m /n glyphshow 1489 | 41.946777 0 m /i glyphshow 1490 | 47.088379 0 m /n glyphshow 1491 | 57.767090 0 m /g glyphshow 1492 | 68.504395 0 m /space glyphshow 1493 | 73.726562 0 m /L glyphshow 1494 | 83.284668 0 m /o glyphshow 1495 | 93.589844 0 m /s glyphshow 1496 | 102.518066 0 m /s glyphshow 1497 | grestore 1498 | 2.000 setlinewidth 1499 | 2 setlinecap 1500 | 0.122 0.467 0.706 setrgbcolor 1501 | gsave 1502 | 357.12 266.112 57.6 38.016 clipbox 1503 | 73.832727 261.197089 m 1504 | 77.112066 180.061296 l 1505 | 80.391405 166.843609 l 1506 | 83.670744 165.886394 l 1507 | 86.950083 165.255748 l 1508 | 90.229421 164.563477 l 1509 | 93.50876 162.375832 l 1510 | 96.788099 159.764989 l 1511 | 100.067438 157.66677 l 1512 | 103.346777 154.91829 l 1513 | 106.626116 153.292316 l 1514 | 109.905455 150.116328 l 1515 | 113.184793 149.133558 l 1516 | 116.464132 148.122147 l 1517 | 119.743471 147.045701 l 1518 | 123.02281 146.306915 l 1519 | 126.302149 145.029342 l 1520 | 129.581488 144.258814 l 1521 | 132.860826 142.999195 l 1522 | 136.140165 143.364874 l 1523 | 139.419504 140.525159 l 1524 | 142.698843 139.816331 l 1525 | 145.978182 138.512479 l 1526 | 149.257521 137.541298 l 1527 | 152.53686 136.984058 l 1528 | 155.816198 136.315906 l 1529 | 159.095537 135.881738 l 1530 | 162.374876 135.894489 l 1531 | 165.654215 134.507789 l 1532 | 168.933554 134.029259 l 1533 | 172.212893 133.020742 l 1534 | 175.492231 132.341449 l 1535 | 178.77157 132.332717 l 1536 | 182.050909 129.180049 l 1537 | 185.330248 121.304994 l 1538 | 188.609587 119.504029 l 1539 | 191.888926 120.072653 l 1540 | 195.168264 119.664279 l 1541 | 198.447603 118.447839 l 1542 | 201.726942 118.840922 l 1543 | 205.006281 118.891395 l 1544 | 208.28562 117.846266 l 1545 | 211.564959 118.622414 l 1546 | 214.844298 118.531245 l 1547 | 218.123636 117.617818 l 1548 | 221.402975 117.900369 l 1549 | 224.682314 116.175968 l 1550 | 227.961653 116.153432 l 1551 | 231.240992 114.734059 l 1552 | 234.520331 113.825277 l 1553 | 237.799669 113.942312 l 1554 | 241.079008 112.535629 l 1555 | 244.358347 113.359784 l 1556 | 247.637686 111.704241 l 1557 | 250.917025 111.346403 l 1558 | 254.196364 109.840795 l 1559 | 257.475702 109.24394 l 1560 | 260.755041 109.585703 l 1561 | 264.03438 109.929957 l 1562 | 267.313719 109.488943 l 1563 | 270.593058 108.314351 l 1564 | 273.872397 107.564573 l 1565 | 277.151736 107.937018 l 1566 | 280.431074 106.892014 l 1567 | 283.710413 106.118255 l 1568 | 286.989752 106.258228 l 1569 | 290.269091 105.827311 l 1570 | 293.54843 105.486038 l 1571 | 296.827769 105.439865 l 1572 | 300.107107 104.755105 l 1573 | 303.386446 104.554061 l 1574 | 306.665785 105.521491 l 1575 | 309.945124 105.204639 l 1576 | 313.224463 104.066679 l 1577 | 316.503802 103.609917 l 1578 | 319.78314 104.332741 l 1579 | 323.062479 102.810111 l 1580 | 326.341818 101.829506 l 1581 | 329.621157 102.047686 l 1582 | 332.900496 101.853188 l 1583 | 336.179835 102.976123 l 1584 | 339.459174 101.69727 l 1585 | 342.738512 101.583697 l 1586 | 346.017851 101.070789 l 1587 | 349.29719 99.943308 l 1588 | 352.576529 99.696252 l 1589 | 355.855868 99.530285 l 1590 | 359.135207 100.176165 l 1591 | 362.414545 99.354775 l 1592 | 365.693884 98.673864 l 1593 | 368.973223 98.716195 l 1594 | 372.252562 97.890543 l 1595 | 375.531901 97.171874 l 1596 | 378.81124 97.384444 l 1597 | 382.090579 97.219819 l 1598 | 385.369917 98.099259 l 1599 | 388.649256 97.126357 l 1600 | 391.928595 96.066537 l 1601 | 395.207934 96.003672 l 1602 | 398.487273 95.826639 l 1603 | stroke 1604 | grestore 1605 | 1.000 0.498 0.055 setrgbcolor 1606 | gsave 1607 | 357.12 266.112 57.6 38.016 clipbox 1608 | 73.832727 219.340882 m 1609 | 77.112066 145.750115 l 1610 | 80.391405 139.915955 l 1611 | 83.670744 140.129504 l 1612 | 86.950083 138.803945 l 1613 | 90.229421 137.81794 l 1614 | 93.50876 138.246935 l 1615 | 96.788099 135.669986 l 1616 | 100.067438 133.933436 l 1617 | 103.346777 130.133191 l 1618 | 106.626116 127.474964 l 1619 | 109.905455 124.652056 l 1620 | 113.184793 122.777778 l 1621 | 116.464132 122.386475 l 1622 | 119.743471 121.584942 l 1623 | 123.02281 119.249577 l 1624 | 126.302149 118.069764 l 1625 | 129.581488 117.307682 l 1626 | 132.860826 116.618332 l 1627 | 136.140165 116.538109 l 1628 | 139.419504 115.209106 l 1629 | 142.698843 113.115531 l 1630 | 145.978182 112.115307 l 1631 | 149.257521 110.761161 l 1632 | 152.53686 110.329223 l 1633 | 155.816198 108.560198 l 1634 | 159.095537 108.138117 l 1635 | 162.374876 106.426674 l 1636 | 165.654215 107.913158 l 1637 | 168.933554 104.286965 l 1638 | 172.212893 104.133334 l 1639 | 175.492231 103.187365 l 1640 | 178.77157 102.182329 l 1641 | 182.050909 102.077419 l 1642 | 185.330248 100.426189 l 1643 | 188.609587 99.383956 l 1644 | 191.888926 98.939202 l 1645 | 195.168264 97.445397 l 1646 | 198.447603 96.74175 l 1647 | 201.726942 97.580447 l 1648 | 205.006281 95.867242 l 1649 | 208.28562 95.611766 l 1650 | 211.564959 95.221286 l 1651 | 214.844298 94.312249 l 1652 | 218.123636 94.622799 l 1653 | 221.402975 93.937985 l 1654 | 224.682314 92.726357 l 1655 | 227.961653 91.258709 l 1656 | 231.240992 91.799504 l 1657 | 234.520331 91.968003 l 1658 | 237.799669 91.504867 l 1659 | 241.079008 89.741116 l 1660 | 244.358347 89.565368 l 1661 | 247.637686 90.501417 l 1662 | 250.917025 89.120769 l 1663 | 254.196364 88.336059 l 1664 | 257.475702 88.129772 l 1665 | 260.755041 87.452386 l 1666 | 264.03438 87.777981 l 1667 | 267.313719 87.241459 l 1668 | 270.593058 86.56558 l 1669 | 273.872397 85.552412 l 1670 | 277.151736 84.962455 l 1671 | 280.431074 84.758562 l 1672 | 283.710413 84.403324 l 1673 | 286.989752 84.737182 l 1674 | 290.269091 84.796947 l 1675 | 293.54843 85.327323 l 1676 | 296.827769 83.547097 l 1677 | 300.107107 81.915594 l 1678 | 303.386446 80.958033 l 1679 | 306.665785 81.09532 l 1680 | 309.945124 80.817199 l 1681 | 313.224463 80.053197 l 1682 | 316.503802 80.028868 l 1683 | 319.78314 80.074802 l 1684 | 323.062479 79.866368 l 1685 | 326.341818 79.764 l 1686 | 329.621157 79.577739 l 1687 | 332.900496 79.737199 l 1688 | 336.179835 79.268898 l 1689 | 339.459174 79.135798 l 1690 | 342.738512 78.271402 l 1691 | 346.017851 79.198976 l 1692 | 349.29719 80.154828 l 1693 | 352.576529 78.637598 l 1694 | 355.855868 77.913887 l 1695 | 359.135207 77.187778 l 1696 | 362.414545 77.191322 l 1697 | 365.693884 77.227476 l 1698 | 368.973223 75.845033 l 1699 | 372.252562 77.03316 l 1700 | 375.531901 77.980533 l 1701 | 378.81124 78.380854 l 1702 | 382.090579 77.251113 l 1703 | 385.369917 75.595135 l 1704 | 388.649256 74.87166 l 1705 | 391.928595 75.070179 l 1706 | 395.207934 75.726732 l 1707 | 398.487273 74.945254 l 1708 | stroke 1709 | grestore 1710 | 0.173 0.627 0.173 setrgbcolor 1711 | gsave 1712 | 357.12 266.112 57.6 38.016 clipbox 1713 | 73.832727 207.682818 m 1714 | 77.112066 139.99247 l 1715 | 80.391405 136.243294 l 1716 | 83.670744 129.623639 l 1717 | 86.950083 124.657935 l 1718 | 90.229421 120.587559 l 1719 | 93.50876 118.773765 l 1720 | 96.788099 115.230868 l 1721 | 100.067438 113.39661 l 1722 | 103.346777 112.330854 l 1723 | 106.626116 110.841681 l 1724 | 109.905455 110.889482 l 1725 | 113.184793 109.80302 l 1726 | 116.464132 110.066096 l 1727 | 119.743471 108.121892 l 1728 | 123.02281 106.84122 l 1729 | 126.302149 105.837373 l 1730 | 129.581488 106.615966 l 1731 | 132.860826 105.129421 l 1732 | 136.140165 105.199756 l 1733 | 139.419504 102.244532 l 1734 | 142.698843 103.623146 l 1735 | 145.978182 100.975681 l 1736 | 149.257521 99.263682 l 1737 | 152.53686 97.225923 l 1738 | 155.816198 98.942908 l 1739 | 159.095537 96.194082 l 1740 | 162.374876 94.760654 l 1741 | 165.654215 95.851599 l 1742 | 168.933554 94.766876 l 1743 | 172.212893 93.534183 l 1744 | 175.492231 93.423904 l 1745 | 178.77157 94.937064 l 1746 | 182.050909 92.885026 l 1747 | 185.330248 90.525551 l 1748 | 188.609587 89.756895 l 1749 | 191.888926 89.485667 l 1750 | 195.168264 88.845522 l 1751 | 198.447603 89.027413 l 1752 | 201.726942 88.277078 l 1753 | 205.006281 88.231969 l 1754 | 208.28562 87.739003 l 1755 | 211.564959 87.663846 l 1756 | 214.844298 86.905141 l 1757 | 218.123636 85.431557 l 1758 | 221.402975 85.847861 l 1759 | 224.682314 84.683805 l 1760 | 227.961653 84.322789 l 1761 | 231.240992 85.400576 l 1762 | 234.520331 83.187386 l 1763 | 237.799669 83.495478 l 1764 | 241.079008 83.466238 l 1765 | 244.358347 85.760163 l 1766 | 247.637686 82.528593 l 1767 | 250.917025 82.183623 l 1768 | 254.196364 82.247367 l 1769 | 257.475702 81.420742 l 1770 | 260.755041 80.976233 l 1771 | 264.03438 80.352905 l 1772 | 267.313719 83.632156 l 1773 | 270.593058 81.226882 l 1774 | 273.872397 79.762587 l 1775 | 277.151736 79.010163 l 1776 | 280.431074 78.426143 l 1777 | 283.710413 78.001349 l 1778 | 286.989752 76.740611 l 1779 | 290.269091 78.394506 l 1780 | 293.54843 77.919253 l 1781 | 296.827769 77.935541 l 1782 | 300.107107 77.283794 l 1783 | 303.386446 79.821796 l 1784 | 306.665785 78.146029 l 1785 | 309.945124 76.716208 l 1786 | 313.224463 75.287809 l 1787 | 316.503802 74.691855 l 1788 | 319.78314 75.416005 l 1789 | 323.062479 75.035883 l 1790 | 326.341818 74.950346 l 1791 | 329.621157 74.419703 l 1792 | 332.900496 72.746529 l 1793 | 336.179835 73.153855 l 1794 | 339.459174 74.043128 l 1795 | 342.738512 75.144504 l 1796 | 346.017851 76.060073 l 1797 | 349.29719 74.340077 l 1798 | 352.576529 73.873448 l 1799 | 355.855868 72.690013 l 1800 | 359.135207 72.677584 l 1801 | 362.414545 73.129051 l 1802 | 365.693884 73.677157 l 1803 | 368.973223 72.231179 l 1804 | 372.252562 71.792318 l 1805 | 375.531901 71.528047 l 1806 | 378.81124 72.628696 l 1807 | 382.090579 71.259637 l 1808 | 385.369917 70.61259 l 1809 | 388.649256 70.1404 l 1810 | 391.928595 69.93516 l 1811 | 395.207934 70.351202 l 1812 | 398.487273 70.100921 l 1813 | stroke 1814 | grestore 1815 | 0.839 0.153 0.157 setrgbcolor 1816 | gsave 1817 | 357.12 266.112 57.6 38.016 clipbox 1818 | 73.832727 175.985914 m 1819 | 77.112066 132.579217 l 1820 | 80.391405 123.323855 l 1821 | 83.670744 120.047428 l 1822 | 86.950083 117.102086 l 1823 | 90.229421 114.238277 l 1824 | 93.50876 110.358911 l 1825 | 96.788099 108.878187 l 1826 | 100.067438 108.495461 l 1827 | 103.346777 108.065683 l 1828 | 106.626116 104.212212 l 1829 | 109.905455 103.229584 l 1830 | 113.184793 103.306164 l 1831 | 116.464132 103.830331 l 1832 | 119.743471 101.416381 l 1833 | 123.02281 100.266033 l 1834 | 126.302149 100.313639 l 1835 | 129.581488 98.157483 l 1836 | 132.860826 96.921977 l 1837 | 136.140165 97.686395 l 1838 | 139.419504 96.77867 l 1839 | 142.698843 94.897391 l 1840 | 145.978182 94.687042 l 1841 | 149.257521 94.936318 l 1842 | 152.53686 92.283831 l 1843 | 155.816198 94.630424 l 1844 | 159.095537 94.800926 l 1845 | 162.374876 91.434407 l 1846 | 165.654215 88.083954 l 1847 | 168.933554 88.771029 l 1848 | 172.212893 90.207796 l 1849 | 175.492231 88.439533 l 1850 | 178.77157 86.648973 l 1851 | 182.050909 85.289862 l 1852 | 185.330248 85.859547 l 1853 | 188.609587 85.7526 l 1854 | 191.888926 87.96999 l 1855 | 195.168264 83.848486 l 1856 | 198.447603 81.524525 l 1857 | 201.726942 81.40756 l 1858 | 205.006281 80.612232 l 1859 | 208.28562 80.938884 l 1860 | 211.564959 79.864685 l 1861 | 214.844298 78.974074 l 1862 | 218.123636 80.157601 l 1863 | 221.402975 79.542265 l 1864 | 224.682314 77.258629 l 1865 | 227.961653 76.519296 l 1866 | 231.240992 75.582458 l 1867 | 234.520331 76.511995 l 1868 | 237.799669 76.35595 l 1869 | 241.079008 74.685141 l 1870 | 244.358347 75.119278 l 1871 | 247.637686 74.512342 l 1872 | 250.917025 73.900973 l 1873 | 254.196364 73.006007 l 1874 | 257.475702 72.49711 l 1875 | 260.755041 76.313485 l 1876 | 264.03438 72.750174 l 1877 | 267.313719 71.246555 l 1878 | 270.593058 69.540534 l 1879 | 273.872397 70.818017 l 1880 | 277.151736 70.456827 l 1881 | 280.431074 70.017296 l 1882 | 283.710413 69.194725 l 1883 | 286.989752 68.304411 l 1884 | 290.269091 68.554263 l 1885 | 293.54843 69.215774 l 1886 | 296.827769 67.507316 l 1887 | 300.107107 67.113641 l 1888 | 303.386446 68.192876 l 1889 | 306.665785 67.341485 l 1890 | 309.945124 66.262556 l 1891 | 313.224463 67.800211 l 1892 | 316.503802 66.936983 l 1893 | 319.78314 65.569184 l 1894 | 323.062479 65.204958 l 1895 | 326.341818 66.579532 l 1896 | 329.621157 65.92306 l 1897 | 332.900496 65.17885 l 1898 | 336.179835 65.511836 l 1899 | 339.459174 65.690386 l 1900 | 342.738512 65.009435 l 1901 | 346.017851 65.389475 l 1902 | 349.29719 64.749137 l 1903 | 352.576529 65.057576 l 1904 | 355.855868 66.847763 l 1905 | 359.135207 66.119909 l 1906 | 362.414545 66.22218 l 1907 | 365.693884 65.581809 l 1908 | 368.973223 63.293643 l 1909 | 372.252562 62.846587 l 1910 | 375.531901 63.977705 l 1911 | 378.81124 62.77531 l 1912 | 382.090579 62.311127 l 1913 | 385.369917 62.716159 l 1914 | 388.649256 63.542366 l 1915 | 391.928595 63.323577 l 1916 | 395.207934 63.140202 l 1917 | 398.487273 64.755246 l 1918 | stroke 1919 | grestore 1920 | 0.580 0.404 0.741 setrgbcolor 1921 | gsave 1922 | 357.12 266.112 57.6 38.016 clipbox 1923 | 73.832727 292.032 m 1924 | 77.112066 240.604549 l 1925 | 80.391405 196.727099 l 1926 | 83.670744 173.277928 l 1927 | 86.950083 153.842465 l 1928 | 90.229421 146.177023 l 1929 | 93.50876 142.155821 l 1930 | 96.788099 139.732536 l 1931 | 100.067438 138.38436 l 1932 | 103.346777 136.88266 l 1933 | 106.626116 136.200255 l 1934 | 109.905455 134.282182 l 1935 | 113.184793 133.265821 l 1936 | 116.464132 132.928699 l 1937 | 119.743471 130.946102 l 1938 | 123.02281 128.789324 l 1939 | 126.302149 126.094256 l 1940 | 129.581488 123.403642 l 1941 | 132.860826 120.837198 l 1942 | 136.140165 118.663911 l 1943 | 139.419504 116.732178 l 1944 | 142.698843 115.572219 l 1945 | 145.978182 112.431417 l 1946 | 149.257521 110.604868 l 1947 | 152.53686 108.836764 l 1948 | 155.816198 107.533613 l 1949 | 159.095537 106.487022 l 1950 | 162.374876 105.34255 l 1951 | 165.654215 104.274512 l 1952 | 168.933554 102.753858 l 1953 | 172.212893 102.510876 l 1954 | 175.492231 101.143683 l 1955 | 178.77157 100.298584 l 1956 | 182.050909 99.38382 l 1957 | 185.330248 98.500086 l 1958 | 188.609587 97.662562 l 1959 | 191.888926 96.79624 l 1960 | 195.168264 96.964108 l 1961 | 198.447603 95.588327 l 1962 | 201.726942 94.696634 l 1963 | 205.006281 94.07666 l 1964 | 208.28562 93.346924 l 1965 | 211.564959 93.016267 l 1966 | 214.844298 92.545324 l 1967 | 218.123636 91.981761 l 1968 | 221.402975 91.411406 l 1969 | 224.682314 90.943681 l 1970 | 227.961653 90.449757 l 1971 | 231.240992 90.107218 l 1972 | 234.520331 90.106982 l 1973 | 237.799669 89.583068 l 1974 | 241.079008 89.185361 l 1975 | 244.358347 88.557471 l 1976 | 247.637686 88.056132 l 1977 | 250.917025 87.758012 l 1978 | 254.196364 87.41807 l 1979 | 257.475702 87.017364 l 1980 | 260.755041 86.734215 l 1981 | 264.03438 86.459636 l 1982 | 267.313719 86.151244 l 1983 | 270.593058 86.188751 l 1984 | 273.872397 85.646633 l 1985 | 277.151736 85.525963 l 1986 | 280.431074 84.956967 l 1987 | 283.710413 84.517225 l 1988 | 286.989752 84.403507 l 1989 | 290.269091 84.226007 l 1990 | 293.54843 83.853425 l 1991 | 296.827769 83.734479 l 1992 | 300.107107 83.360816 l 1993 | 303.386446 83.362758 l 1994 | 306.665785 83.021719 l 1995 | 309.945124 83.082486 l 1996 | 313.224463 82.664196 l 1997 | 316.503802 81.994182 l 1998 | 319.78314 81.953266 l 1999 | 323.062479 81.542774 l 2000 | 326.341818 81.456532 l 2001 | 329.621157 81.65013 l 2002 | 332.900496 81.075407 l 2003 | 336.179835 80.76436 l 2004 | 339.459174 80.277231 l 2005 | 342.738512 80.012501 l 2006 | 346.017851 79.911259 l 2007 | 349.29719 80.029348 l 2008 | 352.576529 79.522517 l 2009 | 355.855868 79.402244 l 2010 | 359.135207 79.10774 l 2011 | 362.414545 78.76925 l 2012 | 365.693884 78.707331 l 2013 | 368.973223 78.321047 l 2014 | 372.252562 78.202878 l 2015 | 375.531901 78.012855 l 2016 | 378.81124 77.872746 l 2017 | 382.090579 77.804672 l 2018 | 385.369917 77.53968 l 2019 | 388.649256 77.222702 l 2020 | 391.928595 77.173609 l 2021 | 395.207934 76.832782 l 2022 | 398.487273 76.824402 l 2023 | stroke 2024 | grestore 2025 | 0.549 0.337 0.294 setrgbcolor 2026 | gsave 2027 | 357.12 266.112 57.6 38.016 clipbox 2028 | 73.832727 274.213003 m 2029 | 77.112066 167.104977 l 2030 | 80.391405 139.185943 l 2031 | 83.670744 135.590921 l 2032 | 86.950083 130.963918 l 2033 | 90.229421 128.504058 l 2034 | 93.50876 124.035435 l 2035 | 96.788099 118.763664 l 2036 | 100.067438 114.315037 l 2037 | 103.346777 111.777762 l 2038 | 106.626116 108.225533 l 2039 | 109.905455 107.391603 l 2040 | 113.184793 105.126389 l 2041 | 116.464132 102.660603 l 2042 | 119.743471 101.104759 l 2043 | 123.02281 99.744113 l 2044 | 126.302149 99.123023 l 2045 | 129.581488 97.400107 l 2046 | 132.860826 96.669641 l 2047 | 136.140165 95.461211 l 2048 | 139.419504 94.18568 l 2049 | 142.698843 93.378902 l 2050 | 145.978182 91.539355 l 2051 | 149.257521 90.81535 l 2052 | 152.53686 89.298242 l 2053 | 155.816198 89.340987 l 2054 | 159.095537 88.864153 l 2055 | 162.374876 87.509328 l 2056 | 165.654215 86.35236 l 2057 | 168.933554 85.596075 l 2058 | 172.212893 85.046333 l 2059 | 175.492231 85.040171 l 2060 | 178.77157 84.147052 l 2061 | 182.050909 83.188252 l 2062 | 185.330248 82.344334 l 2063 | 188.609587 82.05667 l 2064 | 191.888926 81.894187 l 2065 | 195.168264 82.18574 l 2066 | 198.447603 81.203092 l 2067 | 201.726942 79.94136 l 2068 | 205.006281 80.195517 l 2069 | 208.28562 79.121647 l 2070 | 211.564959 79.078123 l 2071 | 214.844298 77.853728 l 2072 | 218.123636 77.844058 l 2073 | 221.402975 77.199034 l 2074 | 224.682314 77.047543 l 2075 | 227.961653 75.870892 l 2076 | 231.240992 75.332454 l 2077 | 234.520331 74.939847 l 2078 | 237.799669 74.584787 l 2079 | 241.079008 74.372938 l 2080 | 244.358347 74.183714 l 2081 | 247.637686 73.788458 l 2082 | 250.917025 74.171922 l 2083 | 254.196364 72.603451 l 2084 | 257.475702 72.209528 l 2085 | 260.755041 72.122914 l 2086 | 264.03438 71.589443 l 2087 | 267.313719 71.334374 l 2088 | 270.593058 70.987622 l 2089 | 273.872397 70.498746 l 2090 | 277.151736 70.509598 l 2091 | 280.431074 70.259661 l 2092 | 283.710413 69.945818 l 2093 | 286.989752 69.732557 l 2094 | 290.269091 69.268427 l 2095 | 293.54843 69.113291 l 2096 | 296.827769 69.730498 l 2097 | 300.107107 68.751205 l 2098 | 303.386446 68.575854 l 2099 | 306.665785 68.083715 l 2100 | 309.945124 69.150238 l 2101 | 313.224463 68.222811 l 2102 | 316.503802 67.870559 l 2103 | 319.78314 67.309592 l 2104 | 323.062479 67.15851 l 2105 | 326.341818 67.40654 l 2106 | 329.621157 67.469483 l 2107 | 332.900496 66.485816 l 2108 | 336.179835 66.504839 l 2109 | 339.459174 66.055457 l 2110 | 342.738512 66.055499 l 2111 | 346.017851 65.882875 l 2112 | 349.29719 65.917492 l 2113 | 352.576529 65.869656 l 2114 | 355.855868 65.544363 l 2115 | 359.135207 65.31817 l 2116 | 362.414545 64.906641 l 2117 | 365.693884 64.644283 l 2118 | 368.973223 64.885564 l 2119 | 372.252562 64.63797 l 2120 | 375.531901 64.46702 l 2121 | 378.81124 64.249545 l 2122 | 382.090579 65.889162 l 2123 | 385.369917 64.499685 l 2124 | 388.649256 64.304646 l 2125 | 391.928595 63.679388 l 2126 | 395.207934 63.606699 l 2127 | 398.487273 63.271209 l 2128 | stroke 2129 | grestore 2130 | 0.890 0.467 0.761 setrgbcolor 2131 | gsave 2132 | 357.12 266.112 57.6 38.016 clipbox 2133 | 73.832727 264.506156 m 2134 | 77.112066 170.722324 l 2135 | 80.391405 136.56081 l 2136 | 83.670744 128.891292 l 2137 | 86.950083 122.04646 l 2138 | 90.229421 113.352071 l 2139 | 93.50876 108.635238 l 2140 | 96.788099 104.847133 l 2141 | 100.067438 101.772779 l 2142 | 103.346777 97.423643 l 2143 | 106.626116 93.051212 l 2144 | 109.905455 89.691087 l 2145 | 113.184793 87.281297 l 2146 | 116.464132 85.981901 l 2147 | 119.743471 83.630129 l 2148 | 123.02281 81.882128 l 2149 | 126.302149 80.759052 l 2150 | 129.581488 79.282443 l 2151 | 132.860826 80.045571 l 2152 | 136.140165 77.54008 l 2153 | 139.419504 76.17633 l 2154 | 142.698843 75.598886 l 2155 | 145.978182 75.167023 l 2156 | 149.257521 74.111874 l 2157 | 152.53686 73.522728 l 2158 | 155.816198 73.239335 l 2159 | 159.095537 73.328486 l 2160 | 162.374876 71.842834 l 2161 | 165.654215 71.593285 l 2162 | 168.933554 71.036143 l 2163 | 172.212893 71.337341 l 2164 | 175.492231 70.228464 l 2165 | 178.77157 70.528551 l 2166 | 182.050909 69.375946 l 2167 | 185.330248 69.10677 l 2168 | 188.609587 68.816412 l 2169 | 191.888926 68.629714 l 2170 | 195.168264 67.916577 l 2171 | 198.447603 67.365102 l 2172 | 201.726942 67.089147 l 2173 | 205.006281 67.023502 l 2174 | 208.28562 66.509686 l 2175 | 211.564959 66.351645 l 2176 | 214.844298 65.674934 l 2177 | 218.123636 66.28573 l 2178 | 221.402975 65.660986 l 2179 | 224.682314 65.465225 l 2180 | 227.961653 64.797206 l 2181 | 231.240992 65.361764 l 2182 | 234.520331 64.302954 l 2183 | 237.799669 64.210311 l 2184 | 241.079008 65.649676 l 2185 | 244.358347 64.388325 l 2186 | 247.637686 63.486648 l 2187 | 250.917025 63.135973 l 2188 | 254.196364 63.015819 l 2189 | 257.475702 63.102162 l 2190 | 260.755041 62.537329 l 2191 | 264.03438 62.497507 l 2192 | 267.313719 62.520464 l 2193 | 270.593058 62.682546 l 2194 | 273.872397 62.610245 l 2195 | 277.151736 62.068692 l 2196 | 280.431074 63.321382 l 2197 | 283.710413 62.305667 l 2198 | 286.989752 61.813065 l 2199 | 290.269091 61.378539 l 2200 | 293.54843 61.250104 l 2201 | 296.827769 61.270124 l 2202 | 300.107107 61.353594 l 2203 | 303.386446 61.27486 l 2204 | 306.665785 60.76845 l 2205 | 309.945124 60.897639 l 2206 | 313.224463 60.706451 l 2207 | 316.503802 60.335966 l 2208 | 319.78314 60.33362 l 2209 | 323.062479 60.244226 l 2210 | 326.341818 60.309187 l 2211 | 329.621157 60.937202 l 2212 | 332.900496 59.738958 l 2213 | 336.179835 59.720721 l 2214 | 339.459174 59.534514 l 2215 | 342.738512 59.983701 l 2216 | 346.017851 59.371687 l 2217 | 349.29719 59.229037 l 2218 | 352.576529 58.908239 l 2219 | 355.855868 58.584293 l 2220 | 359.135207 58.845334 l 2221 | 362.414545 59.500681 l 2222 | 365.693884 58.462982 l 2223 | 368.973223 58.463222 l 2224 | 372.252562 58.278404 l 2225 | 375.531901 58.582429 l 2226 | 378.81124 59.112671 l 2227 | 382.090579 58.087179 l 2228 | 385.369917 59.321439 l 2229 | 388.649256 57.941099 l 2230 | 391.928595 58.40906 l 2231 | 395.207934 57.66143 l 2232 | 398.487273 58.257415 l 2233 | stroke 2234 | grestore 2235 | 0.498 setgray 2236 | gsave 2237 | 357.12 266.112 57.6 38.016 clipbox 2238 | 73.832727 241.711091 m 2239 | 77.112066 152.892265 l 2240 | 80.391405 131.378878 l 2241 | 83.670744 119.203962 l 2242 | 86.950083 108.596794 l 2243 | 90.229421 101.797234 l 2244 | 93.50876 96.33731 l 2245 | 96.788099 90.472893 l 2246 | 100.067438 87.213186 l 2247 | 103.346777 84.710062 l 2248 | 106.626116 81.619701 l 2249 | 109.905455 79.457916 l 2250 | 113.184793 77.459974 l 2251 | 116.464132 75.320048 l 2252 | 119.743471 73.92804 l 2253 | 123.02281 73.115623 l 2254 | 126.302149 71.442337 l 2255 | 129.581488 70.714287 l 2256 | 132.860826 69.292301 l 2257 | 136.140165 68.882034 l 2258 | 139.419504 68.733619 l 2259 | 142.698843 68.15081 l 2260 | 145.978182 66.572696 l 2261 | 149.257521 65.477261 l 2262 | 152.53686 65.181795 l 2263 | 155.816198 64.640069 l 2264 | 159.095537 64.181039 l 2265 | 162.374876 63.735308 l 2266 | 165.654215 63.036845 l 2267 | 168.933554 63.079204 l 2268 | 172.212893 62.43758 l 2269 | 175.492231 61.698274 l 2270 | 178.77157 61.510011 l 2271 | 182.050909 62.427582 l 2272 | 185.330248 60.921841 l 2273 | 188.609587 61.11834 l 2274 | 191.888926 60.118777 l 2275 | 195.168264 60.354692 l 2276 | 198.447603 59.763918 l 2277 | 201.726942 59.692094 l 2278 | 205.006281 59.01646 l 2279 | 208.28562 59.146099 l 2280 | 211.564959 59.308818 l 2281 | 214.844298 58.393347 l 2282 | 218.123636 58.646747 l 2283 | 221.402975 57.732274 l 2284 | 224.682314 57.870341 l 2285 | 227.961653 57.45176 l 2286 | 231.240992 57.177181 l 2287 | 234.520331 56.693669 l 2288 | 237.799669 56.273217 l 2289 | 241.079008 56.215262 l 2290 | 244.358347 56.441132 l 2291 | 247.637686 56.999694 l 2292 | 250.917025 56.161296 l 2293 | 254.196364 56.665774 l 2294 | 257.475702 55.743995 l 2295 | 260.755041 55.604446 l 2296 | 264.03438 54.995817 l 2297 | 267.313719 54.824729 l 2298 | 270.593058 54.694238 l 2299 | 273.872397 54.558664 l 2300 | 277.151736 54.606924 l 2301 | 280.431074 54.344593 l 2302 | 283.710413 53.842668 l 2303 | 286.989752 54.143737 l 2304 | 290.269091 53.580257 l 2305 | 293.54843 53.906266 l 2306 | 296.827769 54.594501 l 2307 | 300.107107 53.262649 l 2308 | 303.386446 54.108454 l 2309 | 306.665785 53.304914 l 2310 | 309.945124 53.216922 l 2311 | 313.224463 53.155539 l 2312 | 316.503802 53.215118 l 2313 | 319.78314 52.766721 l 2314 | 323.062479 52.358109 l 2315 | 326.341818 52.475283 l 2316 | 329.621157 53.692336 l 2317 | 332.900496 52.281503 l 2318 | 336.179835 51.447239 l 2319 | 339.459174 51.584179 l 2320 | 342.738512 51.795962 l 2321 | 346.017851 51.41909 l 2322 | 349.29719 51.167129 l 2323 | 352.576529 51.571784 l 2324 | 355.855868 52.240801 l 2325 | 359.135207 51.078565 l 2326 | 362.414545 51.160138 l 2327 | 365.693884 51.174385 l 2328 | 368.973223 50.628435 l 2329 | 372.252562 50.787289 l 2330 | 375.531901 50.663325 l 2331 | 378.81124 50.639614 l 2332 | 382.090579 50.472846 l 2333 | 385.369917 50.946138 l 2334 | 388.649256 51.174185 l 2335 | 391.928595 50.31897 l 2336 | 395.207934 50.367809 l 2337 | 398.487273 50.112 l 2338 | stroke 2339 | grestore 2340 | 0.800 setlinewidth 2341 | 0 setlinejoin 2342 | 0.000 setgray 2343 | gsave 2344 | 57.6 38.016 m 2345 | 57.6 304.128 l 2346 | stroke 2347 | grestore 2348 | gsave 2349 | 414.72 38.016 m 2350 | 414.72 304.128 l 2351 | stroke 2352 | grestore 2353 | gsave 2354 | 57.6 38.016 m 2355 | 414.72 38.016 l 2356 | stroke 2357 | grestore 2358 | gsave 2359 | 57.6 304.128 m 2360 | 414.72 304.128 l 2361 | stroke 2362 | grestore 2363 | 1.000 setlinewidth 2364 | 0 setlinecap 2365 | 0.800 setgray 2366 | gsave 2367 | 97.58875 234.0405 m 2368 | 407.37 234.0405 l 2369 | 408.77 234.0405 409.47 234.7405 409.47 236.1405 c 2370 | 409.47 296.778 l 2371 | 409.47 298.178 408.77 298.878 407.37 298.878 c 2372 | 97.58875 298.878 l 2373 | 96.18875 298.878 95.48875 298.178 95.48875 296.778 c 2374 | 95.48875 236.1405 l 2375 | 95.48875 234.7405 96.18875 234.0405 97.58875 234.0405 c 2376 | cl 2377 | gsave 2378 | 1.000 setgray 2379 | fill 2380 | grestore 2381 | stroke 2382 | grestore 2383 | 2.000 setlinewidth 2384 | 1 setlinejoin 2385 | 2 setlinecap 2386 | 0.122 0.467 0.706 setrgbcolor 2387 | gsave 2388 | 99.68875 290.368625 m 2389 | 110.18875 290.368625 l 2390 | 120.68875 290.368625 l 2391 | stroke 2392 | grestore 2393 | 0.000 setgray 2394 | /DejaVuSans 10.500 selectfont 2395 | gsave 2396 | 2397 | 129.088750 286.693625 translate 2398 | 0.000000 rotate 2399 | 0.000000 0 m /U glyphshow 2400 | 7.685303 0 m /P glyphshow 2401 | 14.017090 0 m /L glyphshow 2402 | 19.866943 0 m /parenleft glyphshow 2403 | 23.963379 0 m /S glyphshow 2404 | 30.628418 0 m /i glyphshow 2405 | 33.545654 0 m /n glyphshow 2406 | 40.200439 0 m /g glyphshow 2407 | 46.865479 0 m /l glyphshow 2408 | 49.782715 0 m /e glyphshow 2409 | 56.242676 0 m /space glyphshow 2410 | 59.580322 0 m /U glyphshow 2411 | 67.265625 0 m /s glyphshow 2412 | 72.736084 0 m /e glyphshow 2413 | 79.196045 0 m /r glyphshow 2414 | 83.512939 0 m /parenright glyphshow 2415 | grestore 2416 | 1.000 0.498 0.055 setrgbcolor 2417 | gsave 2418 | 99.68875 274.94675 m 2419 | 110.18875 274.94675 l 2420 | 120.68875 274.94675 l 2421 | stroke 2422 | grestore 2423 | 0.000 setgray 2424 | gsave 2425 | 2426 | 129.088750 271.271750 translate 2427 | 0.000000 rotate 2428 | 0.000000 0 m /C glyphshow 2429 | 7.331543 0 m /hyphen glyphshow 2430 | 11.120361 0 m /U glyphshow 2431 | 18.805664 0 m /P glyphshow 2432 | 25.137451 0 m /L glyphshow 2433 | 30.987305 0 m /parenleft glyphshow 2434 | 35.083740 0 m /S glyphshow 2435 | 41.748779 0 m /i glyphshow 2436 | 44.666016 0 m /n glyphshow 2437 | 51.320801 0 m /g glyphshow 2438 | 57.985840 0 m /l glyphshow 2439 | 60.903076 0 m /e glyphshow 2440 | 67.363037 0 m /space glyphshow 2441 | 70.700684 0 m /U glyphshow 2442 | 78.385986 0 m /s glyphshow 2443 | 83.856445 0 m /e glyphshow 2444 | 90.316406 0 m /r glyphshow 2445 | 94.633301 0 m /parenright glyphshow 2446 | grestore 2447 | 0.173 0.627 0.173 setrgbcolor 2448 | gsave 2449 | 99.68875 259.524875 m 2450 | 110.18875 259.524875 l 2451 | 120.68875 259.524875 l 2452 | stroke 2453 | grestore 2454 | 0.000 setgray 2455 | gsave 2456 | 2457 | 129.088750 255.849875 translate 2458 | 0.000000 rotate 2459 | 0.000000 0 m /S glyphshow 2460 | 6.665039 0 m /hyphen glyphshow 2461 | 10.453857 0 m /U glyphshow 2462 | 18.139160 0 m /P glyphshow 2463 | 24.470947 0 m /L glyphshow 2464 | 30.320801 0 m /parenleft glyphshow 2465 | 34.417236 0 m /S glyphshow 2466 | 41.082275 0 m /i glyphshow 2467 | 43.999512 0 m /n glyphshow 2468 | 50.654297 0 m /g glyphshow 2469 | 57.319336 0 m /l glyphshow 2470 | 60.236572 0 m /e glyphshow 2471 | 66.696533 0 m /space glyphshow 2472 | 70.034180 0 m /U glyphshow 2473 | 77.719482 0 m /s glyphshow 2474 | 83.189941 0 m /e glyphshow 2475 | 89.649902 0 m /r glyphshow 2476 | 93.966797 0 m /parenright glyphshow 2477 | grestore 2478 | 0.839 0.153 0.157 setrgbcolor 2479 | gsave 2480 | 99.68875 244.103 m 2481 | 110.18875 244.103 l 2482 | 120.68875 244.103 l 2483 | stroke 2484 | grestore 2485 | 0.000 setgray 2486 | gsave 2487 | 2488 | 129.088750 240.428000 translate 2489 | 0.000000 rotate 2490 | 0.000000 0 m /C glyphshow 2491 | 7.331543 0 m /S glyphshow 2492 | 13.996582 0 m /hyphen glyphshow 2493 | 17.785400 0 m /U glyphshow 2494 | 25.470703 0 m /P glyphshow 2495 | 31.802490 0 m /L glyphshow 2496 | 37.652344 0 m /parenleft glyphshow 2497 | 41.748779 0 m /S glyphshow 2498 | 48.413818 0 m /i glyphshow 2499 | 51.331055 0 m /n glyphshow 2500 | 57.985840 0 m /g glyphshow 2501 | 64.650879 0 m /l glyphshow 2502 | 67.568115 0 m /e glyphshow 2503 | 74.028076 0 m /space glyphshow 2504 | 77.365723 0 m /U glyphshow 2505 | 85.051025 0 m /s glyphshow 2506 | 90.521484 0 m /e glyphshow 2507 | 96.981445 0 m /r glyphshow 2508 | 101.298340 0 m /parenright glyphshow 2509 | grestore 2510 | 0.580 0.404 0.741 setrgbcolor 2511 | gsave 2512 | 255.52625 290.368625 m 2513 | 266.02625 290.368625 l 2514 | 276.52625 290.368625 l 2515 | stroke 2516 | grestore 2517 | 0.000 setgray 2518 | gsave 2519 | 2520 | 284.926250 286.693625 translate 2521 | 0.000000 rotate 2522 | 0.000000 0 m /U glyphshow 2523 | 7.685303 0 m /P glyphshow 2524 | 14.017090 0 m /L glyphshow 2525 | 19.866943 0 m /parenleft glyphshow 2526 | 23.963379 0 m /M glyphshow 2527 | 33.022705 0 m /u glyphshow 2528 | 39.677490 0 m /l glyphshow 2529 | 42.594727 0 m /t glyphshow 2530 | 46.711670 0 m /i glyphshow 2531 | 49.628906 0 m /p glyphshow 2532 | 56.293945 0 m /l glyphshow 2533 | 59.211182 0 m /e glyphshow 2534 | 65.671143 0 m /space glyphshow 2535 | 69.008789 0 m /U glyphshow 2536 | 76.694092 0 m /s glyphshow 2537 | 82.164551 0 m /e glyphshow 2538 | 88.624512 0 m /r glyphshow 2539 | 92.941406 0 m /s glyphshow 2540 | 98.411865 0 m /parenright glyphshow 2541 | grestore 2542 | 0.549 0.337 0.294 setrgbcolor 2543 | gsave 2544 | 255.52625 274.94675 m 2545 | 266.02625 274.94675 l 2546 | 276.52625 274.94675 l 2547 | stroke 2548 | grestore 2549 | 0.000 setgray 2550 | gsave 2551 | 2552 | 284.926250 271.271750 translate 2553 | 0.000000 rotate 2554 | 0.000000 0 m /C glyphshow 2555 | 7.331543 0 m /hyphen glyphshow 2556 | 11.120361 0 m /U glyphshow 2557 | 18.805664 0 m /P glyphshow 2558 | 25.137451 0 m /L glyphshow 2559 | 30.987305 0 m /parenleft glyphshow 2560 | 35.083740 0 m /M glyphshow 2561 | 44.143066 0 m /u glyphshow 2562 | 50.797852 0 m /l glyphshow 2563 | 53.715088 0 m /t glyphshow 2564 | 57.832031 0 m /i glyphshow 2565 | 60.749268 0 m /p glyphshow 2566 | 67.414307 0 m /l glyphshow 2567 | 70.331543 0 m /e glyphshow 2568 | 76.791504 0 m /space glyphshow 2569 | 80.129150 0 m /U glyphshow 2570 | 87.814453 0 m /s glyphshow 2571 | 93.284912 0 m /e glyphshow 2572 | 99.744873 0 m /r glyphshow 2573 | 104.061768 0 m /s glyphshow 2574 | 109.532227 0 m /parenright glyphshow 2575 | grestore 2576 | 0.890 0.467 0.761 setrgbcolor 2577 | gsave 2578 | 255.52625 259.524875 m 2579 | 266.02625 259.524875 l 2580 | 276.52625 259.524875 l 2581 | stroke 2582 | grestore 2583 | 0.000 setgray 2584 | gsave 2585 | 2586 | 284.926250 255.849875 translate 2587 | 0.000000 rotate 2588 | 0.000000 0 m /S glyphshow 2589 | 6.665039 0 m /hyphen glyphshow 2590 | 10.453857 0 m /U glyphshow 2591 | 18.139160 0 m /P glyphshow 2592 | 24.470947 0 m /L glyphshow 2593 | 30.320801 0 m /parenleft glyphshow 2594 | 34.417236 0 m /M glyphshow 2595 | 43.476562 0 m /u glyphshow 2596 | 50.131348 0 m /l glyphshow 2597 | 53.048584 0 m /t glyphshow 2598 | 57.165527 0 m /i glyphshow 2599 | 60.082764 0 m /p glyphshow 2600 | 66.747803 0 m /l glyphshow 2601 | 69.665039 0 m /e glyphshow 2602 | 76.125000 0 m /space glyphshow 2603 | 79.462646 0 m /U glyphshow 2604 | 87.147949 0 m /s glyphshow 2605 | 92.618408 0 m /e glyphshow 2606 | 99.078369 0 m /r glyphshow 2607 | 103.395264 0 m /s glyphshow 2608 | 108.865723 0 m /parenright glyphshow 2609 | grestore 2610 | 0.498 setgray 2611 | gsave 2612 | 255.52625 244.103 m 2613 | 266.02625 244.103 l 2614 | 276.52625 244.103 l 2615 | stroke 2616 | grestore 2617 | 0.000 setgray 2618 | gsave 2619 | 2620 | 284.926250 240.428000 translate 2621 | 0.000000 rotate 2622 | 0.000000 0 m /C glyphshow 2623 | 7.331543 0 m /S glyphshow 2624 | 13.996582 0 m /hyphen glyphshow 2625 | 17.785400 0 m /U glyphshow 2626 | 25.470703 0 m /P glyphshow 2627 | 31.802490 0 m /L glyphshow 2628 | 37.652344 0 m /parenleft glyphshow 2629 | 41.748779 0 m /M glyphshow 2630 | 50.808105 0 m /u glyphshow 2631 | 57.462891 0 m /l glyphshow 2632 | 60.380127 0 m /t glyphshow 2633 | 64.497070 0 m /i glyphshow 2634 | 67.414307 0 m /p glyphshow 2635 | 74.079346 0 m /l glyphshow 2636 | 76.996582 0 m /e glyphshow 2637 | 83.456543 0 m /space glyphshow 2638 | 86.794189 0 m /U glyphshow 2639 | 94.479492 0 m /s glyphshow 2640 | 99.949951 0 m /e glyphshow 2641 | 106.409912 0 m /r glyphshow 2642 | 110.726807 0 m /s glyphshow 2643 | 116.197266 0 m /parenright glyphshow 2644 | grestore 2645 | 2646 | end 2647 | showpage 2648 | --------------------------------------------------------------------------------