├── .dockerignore
├── .gitignore
├── Dockerfile
├── LICENSE
├── README.md
├── data
├── coco.yaml
├── coco128.yaml
├── drive.yaml
└── get_coco2017.sh
├── detect.py
├── hubconf.py
├── labels.png
├── models
├── __init__.py
├── common.py
├── experimental.py
├── onnx_export.py
├── yolo.py
├── yolov3-spp.yaml
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5s.yaml
└── yolov5x.yaml
├── my_utils
├── data_aug.py
├── imgaug_utils.py
├── my_utils.rar
├── parse_xml.py
└── remove_noexist.py
├── requirements.txt
├── results.png
├── results.txt
├── test.py
├── test_batch0_gt.jpg
├── test_batch0_pred.jpg
├── train.py
├── train_batch0.jpg
├── train_batch1.jpg
├── train_batch2.jpg
├── tutorial.ipynb
├── utils
├── __init__.py
├── activations.py
├── datasets.py
├── google_utils.py
├── torch_utils.py
├── utils.py
└── video2rgb.py
└── weights
├── best.pt
├── download_weights.sh
├── last.pt
└── yolov5s.pt
/.dockerignore:
--------------------------------------------------------------------------------
1 | # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2 | # .git
3 | .cache
4 | .idea
5 | runs
6 | output
7 | coco
8 | storage.googleapis.com
9 |
10 | data/samples/*
11 | **/results*.txt
12 | *.jpg
13 |
14 | # Neural Network weights -----------------------------------------------------------------------------------------------
15 | **/*.weights
16 | **/*.pt
17 | **/*.onnx
18 | **/*.mlmodel
19 |
20 |
21 | # Below Copied From .gitignore -----------------------------------------------------------------------------------------
22 | # Below Copied From .gitignore -----------------------------------------------------------------------------------------
23 |
24 |
25 | # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
26 | # Byte-compiled / optimized / DLL files
27 | __pycache__/
28 | *.py[cod]
29 | *$py.class
30 |
31 | # C extensions
32 | *.so
33 |
34 | # Distribution / packaging
35 | .Python
36 | env/
37 | build/
38 | develop-eggs/
39 | dist/
40 | downloads/
41 | eggs/
42 | .eggs/
43 | lib/
44 | lib64/
45 | parts/
46 | sdist/
47 | var/
48 | wheels/
49 | *.egg-info/
50 | .installed.cfg
51 | *.egg
52 |
53 | # PyInstaller
54 | # Usually these files are written by a python script from a template
55 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
56 | *.manifest
57 | *.spec
58 |
59 | # Installer logs
60 | pip-log.txt
61 | pip-delete-this-directory.txt
62 |
63 | # Unit test / coverage reports
64 | htmlcov/
65 | .tox/
66 | .coverage
67 | .coverage.*
68 | .cache
69 | nosetests.xml
70 | coverage.xml
71 | *.cover
72 | .hypothesis/
73 |
74 | # Translations
75 | *.mo
76 | *.pot
77 |
78 | # Django stuff:
79 | *.log
80 | local_settings.py
81 |
82 | # Flask stuff:
83 | instance/
84 | .webassets-cache
85 |
86 | # Scrapy stuff:
87 | .scrapy
88 |
89 | # Sphinx documentation
90 | docs/_build/
91 |
92 | # PyBuilder
93 | target/
94 |
95 | # Jupyter Notebook
96 | .ipynb_checkpoints
97 |
98 | # pyenv
99 | .python-version
100 |
101 | # celery beat schedule file
102 | celerybeat-schedule
103 |
104 | # SageMath parsed files
105 | *.sage.py
106 |
107 | # dotenv
108 | .env
109 |
110 | # virtualenv
111 | .venv
112 | venv/
113 | ENV/
114 |
115 | # Spyder project settings
116 | .spyderproject
117 | .spyproject
118 |
119 | # Rope project settings
120 | .ropeproject
121 |
122 | # mkdocs documentation
123 | /site
124 |
125 | # mypy
126 | .mypy_cache/
127 |
128 |
129 | # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
130 |
131 | # General
132 | .DS_Store
133 | .AppleDouble
134 | .LSOverride
135 |
136 | # Icon must end with two \r
137 | Icon
138 | Icon?
139 |
140 | # Thumbnails
141 | ._*
142 |
143 | # Files that might appear in the root of a volume
144 | .DocumentRevisions-V100
145 | .fseventsd
146 | .Spotlight-V100
147 | .TemporaryItems
148 | .Trashes
149 | .VolumeIcon.icns
150 | .com.apple.timemachine.donotpresent
151 |
152 | # Directories potentially created on remote AFP share
153 | .AppleDB
154 | .AppleDesktop
155 | Network Trash Folder
156 | Temporary Items
157 | .apdisk
158 |
159 |
160 | # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
161 | # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
162 | # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
163 |
164 | # User-specific stuff:
165 | .idea/*
166 | .idea/**/workspace.xml
167 | .idea/**/tasks.xml
168 | .idea/dictionaries
169 | .html # Bokeh Plots
170 | .pg # TensorFlow Frozen Graphs
171 | .avi # videos
172 |
173 | # Sensitive or high-churn files:
174 | .idea/**/dataSources/
175 | .idea/**/dataSources.ids
176 | .idea/**/dataSources.local.xml
177 | .idea/**/sqlDataSources.xml
178 | .idea/**/dynamic.xml
179 | .idea/**/uiDesigner.xml
180 |
181 | # Gradle:
182 | .idea/**/gradle.xml
183 | .idea/**/libraries
184 |
185 | # CMake
186 | cmake-build-debug/
187 | cmake-build-release/
188 |
189 | # Mongo Explorer plugin:
190 | .idea/**/mongoSettings.xml
191 |
192 | ## File-based project format:
193 | *.iws
194 |
195 | ## Plugin-specific files:
196 |
197 | # IntelliJ
198 | out/
199 |
200 | # mpeltonen/sbt-idea plugin
201 | .idea_modules/
202 |
203 | # JIRA plugin
204 | atlassian-ide-plugin.xml
205 |
206 | # Cursive Clojure plugin
207 | .idea/replstate.xml
208 |
209 | # Crashlytics plugin (for Android Studio and IntelliJ)
210 | com_crashlytics_export_strings.xml
211 | crashlytics.properties
212 | crashlytics-build.properties
213 | fabric.properties
214 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2 | FROM nvcr.io/nvidia/pytorch:20.03-py3
3 |
4 | # Create working directory
5 | RUN mkdir -p /usr/src/app
6 | WORKDIR /usr/src/app
7 |
8 | # Copy contents
9 | COPY . /usr/src/app
10 |
11 | # Install dependencies (pip or conda)
12 | #RUN pip install -r requirements.txt
13 | RUN pip install -U gsutil
14 |
15 | # Copy weights
16 | #RUN python3 -c "from models import *; \
17 | #attempt_download('weights/yolov5s.pt'); \
18 | #attempt_download('weights/yolov5m.pt'); \
19 | #attempt_download('weights/yolov5l.pt')"
20 |
21 |
22 | # --------------------------------------------------- Extras Below ---------------------------------------------------
23 |
24 | # Build and Push
25 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
26 |
27 | # Pull and Run
28 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
29 |
30 | # Pull and Run with local directory access
31 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t bash
32 |
33 | # Kill all
34 | # sudo docker kill "$(sudo docker ps -q)"
35 |
36 | # Kill all image-based
37 | # sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
38 |
39 | # Run bash for loop
40 | # sudo docker run --gpus all --ipc=host ultralytics/yolov5:latest while true; do python3 train.py --evolve; done
41 |
42 | # Bash into running container
43 | # sudo docker container exec -it ba65811811ab bash
44 | # python -c "from utils.utils import *; create_backbone('weights/last.pt')" && gsutil cp weights/backbone.pt gs://*
45 |
46 | # Bash into stopped container
47 | # sudo docker commit 6d525e299258 user/test_image && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh user/test_image
48 |
49 | # Clean up
50 | # docker system prune -a --volumes
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |  
4 |
5 | This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
6 |
7 |
** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
8 |
9 | - **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: increased layers, reduced parameters, faster inference and improved mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
10 | - **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
11 | - **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy. Credit to @WongKinYiu for excellent CSP work.
12 | - **May 27, 2020**: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations, YOLOv5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) bottlenecks, [YOLOv4](https://github.com/AlexeyAB/darknet) features, as well as PANet or BiFPN heads.
13 | - **April 1, 2020**: Begin development of a 100% PyTorch, scaleable YOLOv3/4-based group of future models, in a range of compound-scaled sizes. Models will be defined by new user-friendly `*.yaml` files. New training methods will be simpler to start, faster to finish, and more robust to training a wider variety of custom dataset.
14 |
15 |
16 | ## Pretrained Checkpoints
17 |
18 | | Model | APval | APtest | AP50 | SpeedGPU | FPSGPU || params | FLOPS |
19 | |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
20 | | [YOLOv5s](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 36.6 | 36.6 | 55.8 | **2.1ms** | **476** || 7.5M | 13.2B
21 | | [YOLOv5m](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 43.4 | 43.4 | 62.4 | 3.0ms | 333 || 21.8M | 39.4B
22 | | [YOLOv5l](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 46.6 | 46.7 | 65.4 | 3.9ms | 256 || 47.8M | 88.1B
23 | | [YOLOv5x](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | **48.4** | **48.4** | **66.9** | 6.1ms | 164 || 89.0M | 166.4B
24 | | [YOLOv3-SPP](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
25 |
26 |
27 | ** APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
28 | ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
29 | ** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
30 | ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
31 |
32 |
33 | ## Requirements
34 |
35 | Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
36 | ```bash
37 | $ pip install -U -r requirements.txt
38 | ```
39 |
40 |
41 | ## Tutorials
42 |
43 | * [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb)
44 | * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
45 | * [Google Cloud Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
46 | * [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
47 |
48 |
49 | ## Inference
50 |
51 | Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
52 | ```bash
53 | $ python detect.py --source file.jpg # image
54 | file.mp4 # video
55 | ./dir # directory
56 | 0 # webcam
57 | rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
58 | http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
59 | ```
60 |
61 | To run inference on examples in the `./inference/images` folder:
62 |
63 | ```bash
64 | $ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
65 |
66 | Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
67 | Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
68 |
69 | Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
70 |
71 | image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
72 | image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
73 | Results saved to /content/yolov5/inference/output
74 | ```
75 |
76 |
77 |
78 | ## Reproduce Our Training
79 |
80 | Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
81 | ```bash
82 | $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
83 | yolov5m 48
84 | yolov5l 32
85 | yolov5x 16
86 | ```
87 |
88 |
89 |
90 | ## Reproduce Our Environment
91 |
92 | To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
93 |
94 | - **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
95 | - **Google Colab Notebook** with 12 hours of free GPU time.
96 | - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
97 |
98 |
99 | ## Citation
100 |
101 | [](https://zenodo.org/badge/latestdoi/146165888)
102 |
103 |
104 | ## About Us
105 |
106 | Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
107 | - **Cloud-based AI** surveillance systems operating on **hundreds of HD video streams in realtime.**
108 | - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
109 | - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
110 |
111 | For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
112 |
113 |
114 | ## Contact
115 |
116 | **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
117 |
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org
2 | # Download command: bash yolov5/data/get_coco2017.sh
3 | # Train command: python train.py --data ./data/coco.yaml
4 | # Dataset should be placed next to yolov5 folder:
5 | # /parent_folder
6 | # /coco
7 | # /yolov5
8 |
9 |
10 | # train and val datasets (image directory or *.txt file with image paths)
11 | train: ../coco/train2017.txt # 118k images
12 | val: ../coco/val2017.txt # 5k images
13 | test: ../coco/test-dev2017.txt # 20k images for submission to https://competitions.codalab.org/competitions/20794
14 |
15 | # number of classes
16 | nc: 80
17 |
18 | # class names
19 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
20 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
21 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
22 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
23 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
24 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
25 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
26 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
27 | 'hair drier', 'toothbrush']
28 |
29 | # Print classes
30 | # with open('data/coco.yaml') as f:
31 | # d = yaml.load(f, Loader=yaml.FullLoader) # dict
32 | # for i, x in enumerate(d['names']):
33 | # print(i, x)
--------------------------------------------------------------------------------
/data/coco128.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org - first 128 training images
2 | # Download command: python -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')"
3 | # Train command: python train.py --data ./data/coco128.yaml
4 | # Dataset should be placed next to yolov5 folder:
5 | # /parent_folder
6 | # /coco128
7 | # /yolov5
8 |
9 |
10 | # train and val datasets (image directory or *.txt file with image paths)
11 | train: ../coco128/images/train2017/
12 | val: ../coco128/images/train2017/
13 |
14 | # number of classes
15 | nc: 80
16 |
17 | # class names
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26 | 'hair drier', 'toothbrush']
--------------------------------------------------------------------------------
/data/drive.yaml:
--------------------------------------------------------------------------------
1 | train: G:\drive\images\train2017
2 | val: G:\drive\images\val2017
3 |
4 | # number of classes
5 | nc: 3
6 |
7 | # class names
8 | names: ['smoke', 'call', 'drink']
9 |
10 |
--------------------------------------------------------------------------------
/data/get_coco2017.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Zip coco folder
3 | # zip -r coco.zip coco
4 | # tar -czvf coco.tar.gz coco
5 |
6 | # Download labels from Google Drive, accepting presented query
7 | filename="coco2017labels.zip"
8 | fileid="1cXZR_ckHki6nddOmcysCuuJFM--T-Q6L"
9 | curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=${fileid}" > /dev/null
10 | curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=${fileid}" -o ${filename}
11 | rm ./cookie
12 |
13 | # Unzip labels
14 | unzip -q ${filename} # for coco.zip
15 | # tar -xzf ${filename} # for coco.tar.gz
16 | rm ${filename}
17 |
18 | # Download and unzip images
19 | cd coco/images
20 | f="train2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 19G, 118k images
21 | f="val2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 1G, 5k images
22 | # f="test2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7G, 41k images
23 |
24 | # cd out
25 | cd ../..
26 |
--------------------------------------------------------------------------------
/detect.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import torch.backends.cudnn as cudnn
4 |
5 | from utils import google_utils
6 | from utils.datasets import *
7 | from utils.utils import *
8 |
9 |
10 | def detect(save_img=False):
11 | out, source, weights, view_img, save_txt, imgsz = \
12 | opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
13 | webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
14 |
15 | # Initialize
16 | device = torch_utils.select_device(opt.device)
17 | if os.path.exists(out):
18 | shutil.rmtree(out) # delete output folder
19 | os.makedirs(out) # make new output folder
20 | half = device.type != 'cpu' # half precision only supported on CUDA
21 |
22 | # Load model
23 | google_utils.attempt_download(weights)
24 | model = torch.load(weights, map_location=device)['model'].float() # load to FP32
25 | # torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning
26 | # model.fuse()
27 | model.to(device).eval()
28 | if half:
29 | model.half() # to FP16
30 |
31 | # Second-stage classifier
32 | classify = False
33 | if classify:
34 | modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
35 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
36 | modelc.to(device).eval()
37 |
38 | # Set Dataloader
39 | vid_path, vid_writer = None, None
40 | if webcam:
41 | view_img = True
42 | cudnn.benchmark = True # set True to speed up constant image size inference
43 | dataset = LoadStreams(source, img_size=imgsz)
44 | else:
45 | save_img = True
46 | dataset = LoadImages(source, img_size=imgsz)
47 |
48 | # Get names and colors
49 | names = model.names if hasattr(model, 'names') else model.modules.names
50 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
51 |
52 | # Run inference
53 | t0 = time.time()
54 | img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
55 | _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
56 | for path, img, im0s, vid_cap in dataset:
57 | img = torch.from_numpy(img).to(device)
58 | img = img.half() if half else img.float() # uint8 to fp16/32
59 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
60 | if img.ndimension() == 3:
61 | img = img.unsqueeze(0)
62 |
63 | # Inference
64 | t1 = torch_utils.time_synchronized()
65 | pred = model(img, augment=opt.augment)[0]
66 |
67 | # Apply NMS
68 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
69 | t2 = torch_utils.time_synchronized()
70 |
71 | # Apply Classifier
72 | if classify:
73 | pred = apply_classifier(pred, modelc, img, im0s)
74 |
75 | # Process detections
76 | for i, det in enumerate(pred): # detections per image
77 | if webcam: # batch_size >= 1
78 | p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
79 | else:
80 | p, s, im0 = path, '', im0s
81 |
82 | save_path = str(Path(out) / Path(p).name)
83 | s += '%gx%g ' % img.shape[2:] # print string
84 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
85 | if det is not None and len(det):
86 | # Rescale boxes from img_size to im0 size
87 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
88 |
89 | # Print results
90 | for c in det[:, -1].unique():
91 | n = (det[:, -1] == c).sum() # detections per class
92 | s += '%g %ss, ' % (n, names[int(c)]) # add to string
93 |
94 | # Write results
95 | for *xyxy, conf, cls in det:
96 | if save_txt: # Write to file
97 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
98 | with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
99 | file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
100 |
101 | if save_img or view_img: # Add bbox to image
102 | label = '%s %.2f' % (names[int(cls)], conf)
103 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
104 |
105 | # Print time (inference + NMS)
106 | print('%sDone. (%.3fs)' % (s, t2 - t1))
107 |
108 | # Stream results
109 | if view_img:
110 | cv2.imshow(p, im0)
111 | if cv2.waitKey(1) == ord('q'): # q to quit
112 | raise StopIteration
113 |
114 | # Save results (image with detections)
115 | if save_img:
116 | if dataset.mode == 'images':
117 | cv2.imwrite(save_path, im0)
118 | else:
119 | if vid_path != save_path: # new video
120 | vid_path = save_path
121 | if isinstance(vid_writer, cv2.VideoWriter):
122 | vid_writer.release() # release previous video writer
123 |
124 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
125 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
126 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
127 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
128 | vid_writer.write(im0)
129 |
130 | if save_txt or save_img:
131 | print('Results saved to %s' % os.getcwd() + os.sep + out)
132 | if platform == 'darwin': # MacOS
133 | os.system('open ' + save_path)
134 |
135 | print('Done. (%.3fs)' % (time.time() - t0))
136 |
137 |
138 | if __name__ == '__main__':
139 | parser = argparse.ArgumentParser()
140 | parser.add_argument('--weights', type=str, default='weights/best.pt', help='model.pt path')
141 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
142 | parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
143 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
144 | parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
145 | parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
146 | parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
147 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
148 | parser.add_argument('--view-img', action='store_true', help='display results')
149 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
150 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
151 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
152 | parser.add_argument('--augment', action='store_true', help='augmented inference')
153 | opt = parser.parse_args()
154 | opt.img_size = check_img_size(opt.img_size)
155 | print(opt)
156 |
157 | with torch.no_grad():
158 | detect()
159 |
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
2 |
3 | Usage:
4 | import torch
5 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
6 | """
7 |
8 | dependencies = ['torch', 'yaml']
9 |
10 | import os
11 |
12 | import torch
13 |
14 | from models.yolo import Model
15 | from utils import google_utils
16 |
17 |
18 | def create(name, pretrained, channels, classes):
19 | """Creates a specified YOLOv5 model
20 |
21 | Arguments:
22 | name (str): name of model, i.e. 'yolov5s'
23 | pretrained (bool): load pretrained weights into the model
24 | channels (int): number of input channels
25 | classes (int): number of model classes
26 |
27 | Returns:
28 | pytorch model
29 | """
30 | config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) # model.yaml path
31 | model = Model(config, channels, classes)
32 | if pretrained:
33 | ckpt = '%s.pt' % name # checkpoint filename
34 | google_utils.attempt_download(ckpt) # download if not found locally
35 | state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32
36 | state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
37 | model.load_state_dict(state_dict, strict=False) # load
38 | return model
39 |
40 |
41 | def yolov5s(pretrained=False, channels=3, classes=80):
42 | """YOLOv5-small model from https://github.com/ultralytics/yolov5
43 |
44 | Arguments:
45 | pretrained (bool): load pretrained weights into the model, default=False
46 | channels (int): number of input channels, default=3
47 | classes (int): number of model classes, default=80
48 |
49 | Returns:
50 | pytorch model
51 | """
52 | return create('yolov5s', pretrained, channels, classes)
53 |
54 |
55 | def yolov5m(pretrained=False, channels=3, classes=80):
56 | """YOLOv5-medium model from https://github.com/ultralytics/yolov5
57 |
58 | Arguments:
59 | pretrained (bool): load pretrained weights into the model, default=False
60 | channels (int): number of input channels, default=3
61 | classes (int): number of model classes, default=80
62 |
63 | Returns:
64 | pytorch model
65 | """
66 | return create('yolov5m', pretrained, channels, classes)
67 |
68 |
69 | def yolov5l(pretrained=False, channels=3, classes=80):
70 | """YOLOv5-large model from https://github.com/ultralytics/yolov5
71 |
72 | Arguments:
73 | pretrained (bool): load pretrained weights into the model, default=False
74 | channels (int): number of input channels, default=3
75 | classes (int): number of model classes, default=80
76 |
77 | Returns:
78 | pytorch model
79 | """
80 | return create('yolov5l', pretrained, channels, classes)
81 |
82 |
83 | def yolov5x(pretrained=False, channels=3, classes=80):
84 | """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
85 |
86 | Arguments:
87 | pretrained (bool): load pretrained weights into the model, default=False
88 | channels (int): number of input channels, default=3
89 | classes (int): number of model classes, default=80
90 |
91 | Returns:
92 | pytorch model
93 | """
94 | return create('yolov5x', pretrained, channels, classes)
95 |
--------------------------------------------------------------------------------
/labels.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/labels.png
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/models/__init__.py
--------------------------------------------------------------------------------
/models/common.py:
--------------------------------------------------------------------------------
1 | # This file contains modules common to various models
2 |
3 |
4 | from utils.utils import *
5 |
6 |
7 | def DWConv(c1, c2, k=1, s=1, act=True):
8 | # Depthwise convolution
9 | return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
10 |
11 |
12 | class Conv(nn.Module):
13 | # Standard convolution
14 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
15 | super(Conv, self).__init__()
16 | self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
17 | self.bn = nn.BatchNorm2d(c2)
18 | self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()
19 |
20 | def forward(self, x):
21 | return self.act(self.bn(self.conv(x)))
22 |
23 | def fuseforward(self, x):
24 | return self.act(self.conv(x))
25 |
26 |
27 | class Bottleneck(nn.Module):
28 | # Standard bottleneck
29 | def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
30 | super(Bottleneck, self).__init__()
31 | c_ = int(c2 * e) # hidden channels
32 | self.cv1 = Conv(c1, c_, 1, 1)
33 | self.cv2 = Conv(c_, c2, 3, 1, g=g)
34 | self.add = shortcut and c1 == c2
35 |
36 | def forward(self, x):
37 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
38 |
39 |
40 | class BottleneckCSP(nn.Module):
41 | # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
42 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
43 | super(BottleneckCSP, self).__init__()
44 | c_ = int(c2 * e) # hidden channels
45 | self.cv1 = Conv(c1, c_, 1, 1)
46 | self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
47 | self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
48 | self.cv4 = Conv(c2, c2, 1, 1)
49 | self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
50 | self.act = nn.LeakyReLU(0.1, inplace=True)
51 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
52 |
53 | def forward(self, x):
54 | y1 = self.cv3(self.m(self.cv1(x)))
55 | y2 = self.cv2(x)
56 | return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
57 |
58 |
59 | class SPP(nn.Module):
60 | # Spatial pyramid pooling layer used in YOLOv3-SPP
61 | def __init__(self, c1, c2, k=(5, 9, 13)):
62 | super(SPP, self).__init__()
63 | c_ = c1 // 2 # hidden channels
64 | self.cv1 = Conv(c1, c_, 1, 1)
65 | self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
66 | self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
67 |
68 | def forward(self, x):
69 | x = self.cv1(x)
70 | return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
71 |
72 |
73 | class Flatten(nn.Module):
74 | # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
75 | def forward(self, x):
76 | return x.view(x.size(0), -1)
77 |
78 |
79 | class Focus(nn.Module):
80 | # Focus wh information into c-space
81 | def __init__(self, c1, c2, k=1):
82 | super(Focus, self).__init__()
83 | self.conv = Conv(c1 * 4, c2, k, 1)
84 |
85 | def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
86 | return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
87 |
88 |
89 | class Concat(nn.Module):
90 | # Concatenate a list of tensors along dimension
91 | def __init__(self, dimension=1):
92 | super(Concat, self).__init__()
93 | self.d = dimension
94 |
95 | def forward(self, x):
96 | return torch.cat(x, self.d)
97 |
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | from models.common import *
2 |
3 |
4 | class Sum(nn.Module):
5 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
6 | def __init__(self, n, weight=False): # n: number of inputs
7 | super(Sum, self).__init__()
8 | self.weight = weight # apply weights boolean
9 | self.iter = range(n - 1) # iter object
10 | if weight:
11 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
12 |
13 | def forward(self, x):
14 | y = x[0] # no weight
15 | if self.weight:
16 | w = torch.sigmoid(self.w) * 2
17 | for i in self.iter:
18 | y = y + x[i + 1] * w[i]
19 | else:
20 | for i in self.iter:
21 | y = y + x[i + 1]
22 | return y
23 |
24 |
25 | class GhostConv(nn.Module):
26 | # Ghost Convolution https://github.com/huawei-noah/ghostnet
27 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
28 | super(GhostConv, self).__init__()
29 | c_ = c2 // 2 # hidden channels
30 | self.cv1 = Conv(c1, c_, k, s, g, act)
31 | self.cv2 = Conv(c_, c_, 5, 1, c_, act)
32 |
33 | def forward(self, x):
34 | y = self.cv1(x)
35 | return torch.cat([y, self.cv2(y)], 1)
36 |
37 |
38 | class GhostBottleneck(nn.Module):
39 | # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
40 | def __init__(self, c1, c2, k, s):
41 | super(GhostBottleneck, self).__init__()
42 | c_ = c2 // 2
43 | self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
44 | DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
45 | GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
46 | self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
47 | Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
48 |
49 | def forward(self, x):
50 | return self.conv(x) + self.shortcut(x)
51 |
52 |
53 | class ConvPlus(nn.Module):
54 | # Plus-shaped convolution
55 | def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
56 | super(ConvPlus, self).__init__()
57 | self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
58 | self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)
59 |
60 | def forward(self, x):
61 | return self.cv1(x) + self.cv2(x)
62 |
63 |
64 | class MixConv2d(nn.Module):
65 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
66 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
67 | super(MixConv2d, self).__init__()
68 | groups = len(k)
69 | if equal_ch: # equal c_ per group
70 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
71 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
72 | else: # equal weight.numel() per group
73 | b = [c2] + [0] * groups
74 | a = np.eye(groups + 1, groups, k=-1)
75 | a -= np.roll(a, 1, axis=1)
76 | a *= np.array(k) ** 2
77 | a[0] = 1
78 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
79 |
80 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
81 | self.bn = nn.BatchNorm2d(c2)
82 | self.act = nn.LeakyReLU(0.1, inplace=True)
83 |
84 | def forward(self, x):
85 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
86 |
--------------------------------------------------------------------------------
/models/onnx_export.py:
--------------------------------------------------------------------------------
1 | """Exports a pytorch *.pt model to *.onnx format
2 |
3 | Usage:
4 | $ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
5 | """
6 |
7 | import argparse
8 |
9 | import onnx
10 |
11 | from models.common import *
12 |
13 | if __name__ == '__main__':
14 | parser = argparse.ArgumentParser()
15 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
16 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
17 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
18 | opt = parser.parse_args()
19 | print(opt)
20 |
21 | # Parameters
22 | f = opt.weights.replace('.pt', '.onnx') # onnx filename
23 | img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection
24 |
25 | # Load pytorch model
26 | google_utils.attempt_download(opt.weights)
27 | model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
28 | model.eval()
29 | model.fuse()
30 |
31 | # Export to onnx
32 | model.model[-1].export = True # set Detect() layer export=True
33 | _ = model(img) # dry run
34 | torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
35 | output_names=['output']) # output_names=['classes', 'boxes']
36 |
37 | # Check onnx model
38 | model = onnx.load(f) # load onnx model
39 | onnx.checker.check_model(model) # check onnx model
40 | print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
41 | print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
42 |
--------------------------------------------------------------------------------
/models/yolo.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | from models.experimental import *
4 |
5 |
6 | class Detect(nn.Module):
7 | def __init__(self, nc=80, anchors=()): # detection layer
8 | super(Detect, self).__init__()
9 | self.stride = None # strides computed during build
10 | self.nc = nc # number of classes
11 | self.no = nc + 5 # number of outputs per anchor
12 | self.nl = len(anchors) # number of detection layers
13 | self.na = len(anchors[0]) // 2 # number of anchors
14 | self.grid = [torch.zeros(1)] * self.nl # init grid
15 | a = torch.tensor(anchors).float().view(self.nl, -1, 2)
16 | self.register_buffer('anchors', a) # shape(nl,na,2)
17 | self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
18 | self.export = False # onnx export
19 |
20 | def forward(self, x):
21 | # x = x.copy() # for profiling
22 | z = [] # inference output
23 | self.training |= self.export
24 | for i in range(self.nl):
25 | bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
26 | x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
27 |
28 | if not self.training: # inference
29 | if self.grid[i].shape[2:4] != x[i].shape[2:4]:
30 | self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
31 |
32 | y = x[i].sigmoid()
33 | y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
34 | y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
35 | z.append(y.view(bs, -1, self.no))
36 |
37 | return x if self.training else (torch.cat(z, 1), x)
38 |
39 | @staticmethod
40 | def _make_grid(nx=20, ny=20):
41 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
42 | return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
43 |
44 |
45 | class Model(nn.Module):
46 | def __init__(self, model_cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
47 | super(Model, self).__init__()
48 | if type(model_cfg) is dict:
49 | self.md = model_cfg # model dict
50 | else: # is *.yaml
51 | with open(model_cfg) as f:
52 | self.md = yaml.load(f, Loader=yaml.FullLoader) # model dict
53 |
54 | # Define model
55 | if nc:
56 | self.md['nc'] = nc # override yaml value
57 | self.model, self.save = parse_model(self.md, ch=[ch]) # model, savelist, ch_out
58 | # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
59 |
60 | # Build strides, anchors
61 | m = self.model[-1] # Detect()
62 | m.stride = torch.tensor([128 / x.shape[-2] for x in self.forward(torch.zeros(1, ch, 128, 128))]) # forward
63 | m.anchors /= m.stride.view(-1, 1, 1)
64 | check_anchor_order(m)
65 | self.stride = m.stride
66 |
67 | # Init weights, biases
68 | torch_utils.initialize_weights(self)
69 | self._initialize_biases() # only run once
70 | torch_utils.model_info(self)
71 | print('')
72 |
73 | def forward(self, x, augment=False, profile=False):
74 | if augment:
75 | img_size = x.shape[-2:] # height, width
76 | s = [0.83, 0.67] # scales
77 | y = []
78 | for i, xi in enumerate((x,
79 | torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
80 | torch_utils.scale_img(x, s[1]), # scale
81 | )):
82 | # cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
83 | y.append(self.forward_once(xi)[0])
84 |
85 | y[1][..., :4] /= s[0] # scale
86 | y[1][..., 0] = img_size[1] - y[1][..., 0] # flip lr
87 | y[2][..., :4] /= s[1] # scale
88 | return torch.cat(y, 1), None # augmented inference, train
89 | else:
90 | return self.forward_once(x, profile) # single-scale inference, train
91 |
92 | def forward_once(self, x, profile=False):
93 | y, dt = [], [] # outputs
94 | for m in self.model:
95 | if m.f != -1: # if not from previous layer
96 | x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
97 |
98 | if profile:
99 | import thop
100 | o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
101 | t = torch_utils.time_synchronized()
102 | for _ in range(10):
103 | _ = m(x)
104 | dt.append((torch_utils.time_synchronized() - t) * 100)
105 | print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
106 |
107 | x = m(x) # run
108 | y.append(x if m.i in self.save else None) # save output
109 |
110 | if profile:
111 | print('%.1fms total' % sum(dt))
112 | return x
113 |
114 | def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
115 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
116 | m = self.model[-1] # Detect() module
117 | for f, s in zip(m.f, m.stride): # from
118 | mi = self.model[f % m.i]
119 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
120 | b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
121 | b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
122 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
123 |
124 | def _print_biases(self):
125 | m = self.model[-1] # Detect() module
126 | for f in sorted([x % m.i for x in m.f]): # from
127 | b = self.model[f].bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
128 | print(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))
129 |
130 | # def _print_weights(self):
131 | # for m in self.model.modules():
132 | # if type(m) is Bottleneck:
133 | # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
134 |
135 | def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
136 | print('Fusing layers...')
137 | for m in self.model.modules():
138 | if type(m) is Conv:
139 | m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
140 | m.bn = None # remove batchnorm
141 | m.forward = m.fuseforward # update forward
142 | torch_utils.model_info(self)
143 |
144 |
145 | def parse_model(md, ch): # model_dict, input_channels(3)
146 | print('\n%3s%15s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
147 | anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple']
148 | na = (len(anchors[0]) // 2) # number of anchors
149 | no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
150 |
151 | layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
152 | for i, (f, n, m, args) in enumerate(md['backbone'] + md['head']): # from, number, module, args
153 | m = eval(m) if isinstance(m, str) else m # eval strings
154 | for j, a in enumerate(args):
155 | try:
156 | args[j] = eval(a) if isinstance(a, str) else a # eval strings
157 | except:
158 | pass
159 |
160 | n = max(round(n * gd), 1) if n > 1 else n # depth gain
161 | if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, ConvPlus, BottleneckCSP]:
162 | c1, c2 = ch[f], args[0]
163 |
164 | # Normal
165 | # if i > 0 and args[0] != no: # channel expansion factor
166 | # ex = 1.75 # exponential (default 2.0)
167 | # e = math.log(c2 / ch[1]) / math.log(2)
168 | # c2 = int(ch[1] * ex ** e)
169 | # if m != Focus:
170 | c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
171 |
172 | # Experimental
173 | # if i > 0 and args[0] != no: # channel expansion factor
174 | # ex = 1 + gw # exponential (default 2.0)
175 | # ch1 = 32 # ch[1]
176 | # e = math.log(c2 / ch1) / math.log(2) # level 1-n
177 | # c2 = int(ch1 * ex ** e)
178 | # if m != Focus:
179 | # c2 = make_divisible(c2, 8) if c2 != no else c2
180 |
181 | args = [c1, c2, *args[1:]]
182 | if m is BottleneckCSP:
183 | args.insert(2, n)
184 | n = 1
185 | elif m is nn.BatchNorm2d:
186 | args = [ch[f]]
187 | elif m is Concat:
188 | c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
189 | elif m is Detect:
190 | f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
191 | else:
192 | c2 = ch[f]
193 |
194 | m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
195 | t = str(m)[8:-2].replace('__main__.', '') # module type
196 | np = sum([x.numel() for x in m_.parameters()]) # number params
197 | m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
198 | print('%3s%15s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
199 | save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
200 | layers.append(m_)
201 | ch.append(c2)
202 | return nn.Sequential(*layers), sorted(save)
203 |
204 |
205 | if __name__ == '__main__':
206 | parser = argparse.ArgumentParser()
207 | parser.add_argument('--cfg', type=str, default='yolov5m-p6.yaml', help='model.yaml')
208 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
209 | opt = parser.parse_args()
210 | opt.cfg = check_file(opt.cfg) # check file
211 | device = torch_utils.select_device(opt.device)
212 |
213 | # Create model
214 | model = Model(opt.cfg).to(device)
215 | model.train()
216 |
217 | # Profile
218 | # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
219 | # y = model(img, profile=True)
220 | # print([y[0].shape] + [x.shape for x in y[1]])
221 |
222 | # ONNX export
223 | # model.model[-1].export = True
224 | # torch.onnx.export(model, img, f.replace('.yaml', '.onnx'), verbose=True, opset_version=11)
225 |
226 | # Tensorboard
227 | # from torch.utils.tensorboard import SummaryWriter
228 | # tb_writer = SummaryWriter()
229 | # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
230 | # tb_writer.add_graph(model.model, img) # add model to tensorboard
231 | # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
232 |
--------------------------------------------------------------------------------
/models/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3-SPP head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]], # 11
31 | [-1, 1, SPP, [512, [5, 9, 13]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]],
35 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 16 (P5/32-large)
36 |
37 | [-3, 1, Conv, [256, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Bottleneck, [512, False]],
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, Conv, [512, 3, 1]],
44 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 24 (P4/16-medium)
45 |
46 | [-3, 1, Conv, [128, 1, 1]],
47 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
48 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
49 | [-1, 1, Bottleneck, [256, False]],
50 | [-1, 2, Bottleneck, [256, False]],
51 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 30 (P3/8-small)
52 |
53 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
54 | ]
55 |
--------------------------------------------------------------------------------
/models/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [116,90, 156,198, 373,326] # P5/32
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [10,13, 16,30, 33,23] # P3/8
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | ]
25 |
26 | # YOLOv5 head
27 | head:
28 | [[-1, 3, BottleneckCSP, [1024, False]], # 9
29 |
30 | [-1, 1, Conv, [512, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 3, BottleneckCSP, [512, False]], # 13
34 |
35 | [-1, 1, Conv, [256, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 3, BottleneckCSP, [256, False]],
39 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
40 |
41 | [-2, 1, Conv, [256, 3, 2]],
42 | [[-1, 14], 1, Concat, [1]], # cat head P4
43 | [-1, 3, BottleneckCSP, [512, False]],
44 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
45 |
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 10], 1, Concat, [1]], # cat head P5
48 | [-1, 3, BottleneckCSP, [1024, False]],
49 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
50 |
51 | [[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
52 | ]
53 |
--------------------------------------------------------------------------------
/models/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.67 # model depth multiple
4 | width_multiple: 0.75 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [116,90, 156,198, 373,326] # P5/32
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [10,13, 16,30, 33,23] # P3/8
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | ]
25 |
26 | # YOLOv5 head
27 | head:
28 | [[-1, 3, BottleneckCSP, [1024, False]], # 9
29 |
30 | [-1, 1, Conv, [512, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 3, BottleneckCSP, [512, False]], # 13
34 |
35 | [-1, 1, Conv, [256, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 3, BottleneckCSP, [256, False]],
39 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
40 |
41 | [-2, 1, Conv, [256, 3, 2]],
42 | [[-1, 14], 1, Concat, [1]], # cat head P4
43 | [-1, 3, BottleneckCSP, [512, False]],
44 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
45 |
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 10], 1, Concat, [1]], # cat head P5
48 | [-1, 3, BottleneckCSP, [1024, False]],
49 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
50 |
51 | [[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
52 | ]
53 |
--------------------------------------------------------------------------------
/models/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 3 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [116,90, 156,198, 373,326] # P5/32
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [10,13, 16,30, 33,23] # P3/8
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | ]
25 |
26 | # YOLOv5 head
27 | head:
28 | [[-1, 3, BottleneckCSP, [1024, False]], # 9
29 |
30 | [-1, 1, Conv, [512, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 3, BottleneckCSP, [512, False]], # 13
34 |
35 | [-1, 1, Conv, [256, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 3, BottleneckCSP, [256, False]],
39 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
40 |
41 | [-2, 1, Conv, [256, 3, 2]],
42 | [[-1, 14], 1, Concat, [1]], # cat head P4
43 | [-1, 3, BottleneckCSP, [512, False]],
44 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
45 |
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 10], 1, Concat, [1]], # cat head P5
48 | [-1, 3, BottleneckCSP, [1024, False]],
49 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
50 |
51 | [[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
52 | ]
53 |
--------------------------------------------------------------------------------
/models/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [116,90, 156,198, 373,326] # P5/32
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [10,13, 16,30, 33,23] # P3/8
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | ]
25 |
26 | # YOLOv5 head
27 | head:
28 | [[-1, 3, BottleneckCSP, [1024, False]], # 9
29 |
30 | [-1, 1, Conv, [512, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 3, BottleneckCSP, [512, False]], # 13
34 |
35 | [-1, 1, Conv, [256, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 3, BottleneckCSP, [256, False]],
39 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
40 |
41 | [-2, 1, Conv, [256, 3, 2]],
42 | [[-1, 14], 1, Concat, [1]], # cat head P4
43 | [-1, 3, BottleneckCSP, [512, False]],
44 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
45 |
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 10], 1, Concat, [1]], # cat head P5
48 | [-1, 3, BottleneckCSP, [1024, False]],
49 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
50 |
51 | [[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
52 | ]
53 |
--------------------------------------------------------------------------------
/my_utils/data_aug.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | @Author : LiuZhian
4 | @Time : 2019/4/24 0024 上午 9:19
5 | @Comment :
6 | """
7 | import os
8 |
9 | from xml.dom.minidom import parse, Document
10 | from my_utils.imgaug_utils import get_inner_bbs
11 | import numpy as np
12 |
13 | def save_xml(aug_info, dst_xml_dir):
14 | coor_array, img_info = aug_info
15 | img_name, img_h, img_w, img_c = list(map(str, img_info))
16 | xml_name = os.path.split(img_name)[-1].split(".")[0]
17 |
18 | # 1.创建DOM树对象
19 | dom = Document()
20 | # 2.创建根节点。每次都要用DOM对象来创建任何节点。
21 | root_node = dom.createElement('root')
22 | # 3.用DOM对象添加根节点
23 | dom.appendChild(root_node)
24 |
25 |
26 | path_node = dom.createElement('path')
27 | root_node.appendChild(path_node)
28 | path_text = dom.createTextNode(img_name)
29 | path_node.appendChild(path_text)
30 |
31 | outputs_node = dom.createElement('outputs')
32 | root_node.appendChild(outputs_node)
33 |
34 | object_node = dom.createElement('object')
35 | outputs_node.appendChild(object_node)
36 |
37 | for row_data in coor_array:
38 | cls_name = inv_trans_cls_name(int(row_data[4]))
39 | item_node = dom.createElement('item')
40 | object_node.appendChild(item_node)
41 |
42 | name_node = dom.createElement('name')
43 | item_node.appendChild(name_node)
44 | name_text = dom.createTextNode(cls_name)
45 | name_node.appendChild(name_text)
46 |
47 | bndbox_node = dom.createElement('bndbox')
48 | item_node.appendChild(bndbox_node)
49 |
50 | xmin_node = dom.createElement('xmin')
51 | bndbox_node.appendChild(xmin_node)
52 | xmin_text = dom.createTextNode(str(row_data[0]))
53 | xmin_node.appendChild(xmin_text)
54 |
55 | ymin_node = dom.createElement('ymin')
56 | bndbox_node.appendChild(ymin_node)
57 | ymin_text = dom.createTextNode(str(row_data[1]))
58 | ymin_node.appendChild(ymin_text)
59 |
60 | xmax_node = dom.createElement('xmax')
61 | bndbox_node.appendChild(xmax_node)
62 | xmax_text = dom.createTextNode(str(row_data[2]))
63 | xmax_node.appendChild(xmax_text)
64 |
65 | ymax_node = dom.createElement('ymax')
66 | bndbox_node.appendChild(ymax_node)
67 | ymax_text = dom.createTextNode(str(row_data[3]))
68 | ymax_node.appendChild(ymax_text)
69 |
70 | size_node = dom.createElement('size')
71 | root_node.appendChild(size_node)
72 |
73 | width_node = dom.createElement('width')
74 | size_node.appendChild(width_node)
75 | width_text = dom.createTextNode(img_w)
76 | width_node.appendChild(width_text)
77 |
78 | height_node = dom.createElement('height')
79 | size_node.appendChild(height_node)
80 | height_text = dom.createTextNode(img_h)
81 | height_node.appendChild(height_text)
82 |
83 | depth_node = dom.createElement('depth')
84 | size_node.appendChild(depth_node)
85 | depth_text = dom.createTextNode(img_c)
86 | depth_node.appendChild(depth_text)
87 |
88 | # 每一个结点对象(包括dom对象本身)都有输出XML内容的方法,如:toxml()--字符串, toprettyxml()--美化树形格式。
89 |
90 | try:
91 | with open(rf'{dst_xml_dir}/{xml_name}.xml', 'w') as f:
92 | # 4.writexml()第一个参数是目标文件对象,第二个参数是根节点的缩进格式,第三个参数是其他子节点的缩进格式,
93 | # 第四个参数制定了换行格式,第五个参数制定了xml内容的编码。
94 | dom.writexml(f, indent='', addindent='\t', newl='\n', encoding='utf-8')
95 | print(rf'dst: {dst_xml_dir}/{xml_name}.xml')
96 | except Exception as err:
97 | print('错误:{err}'.format(err=err))
98 |
99 |
100 | def trans_cls_name(name):
101 | if name == "call":
102 | return 0
103 | elif name == "smoke":
104 | return 1
105 | elif name == "drink":
106 | return 2
107 | else:
108 | raise ValueError(f"wrong class name! {name}")
109 |
110 | def inv_trans_cls_name(value):
111 | if value == 0:
112 | return "call"
113 | elif value == 1:
114 | return "smoke"
115 | elif value == 2:
116 | return "drink"
117 | else:
118 | raise ValueError(f"wrong class name! {value}")
119 |
120 | def change_xml_info(src_xml_path, src_img_dir, dst_img_dir, dst_xml_dir, p_number):
121 | '''
122 | :param p_number: Numbers of images to enhance
123 | :return:
124 | '''
125 | print(f"src: {src_xml_path}")
126 | dom = parse(src_xml_path)
127 | root = dom.documentElement
128 | img_name = root.getElementsByTagName("path")[0].childNodes[0].data
129 | img_name = os.path.split(img_name)[-1].split(".")[0]
130 | img_path = f"{src_img_dir}/{img_name}.jpg"
131 | item = root.getElementsByTagName("item")
132 |
133 | # label = root.getElementsByTagName("name")[0].childNodes[0].data
134 |
135 | coor_list = []
136 | for box in item:
137 | cls_name = box.getElementsByTagName("name")[0].childNodes[0].data
138 | x1 = max(0, int(box.getElementsByTagName("xmin")[0].childNodes[0].data))
139 | y1 = max(0, int(box.getElementsByTagName("ymin")[0].childNodes[0].data))
140 | x2 = max(0, int(box.getElementsByTagName("xmax")[0].childNodes[0].data))
141 | y2 = max(0, int(box.getElementsByTagName("ymax")[0].childNodes[0].data))
142 | cls_name = trans_cls_name(cls_name)
143 | coor_list.append([x1,y1,x2,y2,cls_name])
144 | aug_list = get_inner_bbs(img_path, dst_img_dir, np.array(coor_list), p_number)
145 | if not aug_list:
146 | return
147 | for aug_info in aug_list:
148 | save_xml(aug_info, dst_xml_dir)
149 |
150 |
151 | if __name__ == '__main__':
152 | xml_dir = r"E:\imgs_and_labels\labels"
153 | src_img_dir = r"E:\imgs_and_labels\imgs"
154 | # dst_img_path = r"G:\yolov5-master\data\augmentation"
155 | dst_img_path = r"E:\imgs_and_labels"
156 | dst_xml_path = r"E:\imgs_and_labels"
157 | epochs = 3
158 |
159 | # for xml_path in os.listdir(xml_dir):
160 | # change_xml_info(f"{xml_dir}/{xml_path}", src_img_dir, dst_img_path, dst_xml_path, epochs)
161 | change_xml_info(r"E:\imgs_and_labels\labels\1_40.xml", src_img_dir, dst_img_path, dst_xml_path, 3)
162 |
--------------------------------------------------------------------------------
/my_utils/imgaug_utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | from PIL import Image
3 | import numpy as np
4 | import imgaug as ia
5 | import imgaug.augmenters as iaa
6 | from imgaug.augmentables.bbs import BoundingBoxesOnImage
7 |
8 |
9 | ia.seed(1)
10 |
11 | GREEN = [0, 255, 0]
12 | ORANGE = [255, 140, 0]
13 | RED = [255, 0, 0]
14 |
15 | # Pad image with a 1px white and (BY-1)px black border
16 | def _pad(image, by):
17 | image_border1 = ia.augmenters.size.pad(image, top=1, right=1, bottom=1, left=1,
18 | mode="constant", cval=255)
19 | image_border2 = ia.augmenters.size.pad(image_border1, top=by-1, right=by-1,
20 | bottom=by-1, left=by-1,
21 | mode="constant", cval=0)
22 | return image_border2
23 |
24 | # Draw BBs on an image
25 | # and before doing that, extend the image plane by BORDER pixels.
26 | # Mark BBs inside the image plane with green color, those partially inside
27 | # with orange and those fully outside with red.
28 | def draw_bbs(image, bbs, border):
29 | image_border = _pad(image, border)
30 | for bb in bbs.bounding_boxes:
31 | if bb.is_fully_within_image(image.shape):
32 | color = GREEN
33 | elif bb.is_partly_within_image(image.shape):
34 | color = ORANGE
35 | else:
36 | color = RED
37 | image_border = bb.shift(x=border, y=border)\
38 | .draw_on_image(image_border, size=2, color=color)
39 |
40 | return image_border
41 |
42 | def get_inner_bbs(image_path, dst_img_dir, array_info, p_numbers):
43 | '''
44 | :param image_path: src img path
45 | :param dst_img_dir: img save path
46 | :param coor_array: label coor array
47 | :param p_numbers: Numbers of images to enhance
48 | :return: [(bbs_array, img_info),
49 | (bbs_array, img_info)]
50 | '''
51 |
52 |
53 |
54 |
55 | try:
56 | assert array_info.shape[1] == 5
57 | coor_array = array_info[:, :-1]
58 | cls_array = array_info[:, -1]
59 |
60 | image = Image.open(image_path)
61 | image = np.array(image)
62 | img_name = os.path.split(image_path)[-1].split(".")[0]
63 | bbs = BoundingBoxesOnImage.from_xyxy_array(coor_array, shape=image.shape)
64 | except Exception as e:
65 | print(f"err:{e}")
66 | print(array_info.shape)
67 | print(image_path)
68 | return None
69 |
70 | # # Draw the original picture
71 | # image_before = draw_bbs(image, bbs, 100)
72 | # ia.imshow(image_before)
73 |
74 | # Image augmentation sequence
75 | seq = iaa.Sequential([
76 | iaa.Fliplr(0.5),
77 | iaa.Crop(percent=(0, 0.1)),
78 | iaa.Sometimes(
79 | 0.5,
80 | iaa.GaussianBlur(sigma=(0, 0.5))
81 | ),
82 | # Strengthen or weaken the contrast in each image.
83 | iaa.LinearContrast((0.75, 1.5)),
84 | iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
85 | # change illumination
86 | iaa.Multiply((0.3, 1.2), per_channel=0.2),
87 | # affine transformation
88 | iaa.Affine(
89 | scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
90 | translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
91 | rotate=(-5, 5),
92 | shear=(-8, 8)
93 | )
94 | ], random_order=True) # apply augmenters in random order
95 |
96 | res_list = []
97 | # gen img and coor
98 | try:
99 | for epoch in range(p_numbers):
100 | image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)
101 | # bbs_aug = bbs_aug.remove_out_of_image().clip_out_of_image()
102 |
103 | # # draw aug img and label
104 | image_after = bbs_aug.draw_on_image(image_aug, size=2, color=[0, 0, 255])
105 | ia.imshow(image_after)
106 |
107 | # save img
108 | h, w, c = image_aug.shape
109 |
110 | img_aug_name = rf'{dst_img_dir}/{img_name}_{epoch}.jpg'
111 | im = Image.fromarray(image_aug)
112 |
113 | im.save(img_aug_name)
114 |
115 |
116 | bbs_array = bbs_aug.to_xyxy_array()
117 | result_array = np.column_stack((bbs_array, cls_array))
118 | res_list.append([result_array, (img_aug_name, h, w, c)])
119 | except Exception as e:
120 | print(e)
121 | print(img_aug_name)
122 | return None
123 | # return coor and img info
124 | return res_list
125 |
126 |
127 |
128 |
129 |
130 | if __name__ == '__main__':
131 | bbs = np.array([[25, 75, 25, 75], [100, 150, 25, 75], [175, 225, 25, 75]])
132 | get_inner_bbs(r"/inference/output/smoke81.jpg", r"/data/augmentation", bbs, 3)
--------------------------------------------------------------------------------
/my_utils/my_utils.rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/my_utils/my_utils.rar
--------------------------------------------------------------------------------
/my_utils/parse_xml.py:
--------------------------------------------------------------------------------
1 | from xml.dom.minidom import parse
2 | from PIL import Image
3 | import os
4 |
5 | # xml_dir = r"E:yolov3\data\path\outputs"
6 | # xml_dir = r"G:\img_label\train_xml"
7 | # xml_dir = r"G:\yolov5-master\data\augmentation\outputs"
8 | xml_dir = r"E:\imgs_and_labels\labels"
9 | xml_file_list = os.listdir(xml_dir)
10 |
11 |
12 | def parse_2_txt():
13 | for file_path in xml_file_list:
14 | xml_path = os.path.join(xml_dir, file_path)
15 | dom = parse(xml_path)
16 | root = dom.documentElement
17 | img_name = root.getElementsByTagName("path")[0].childNodes[0].data
18 | label_name = os.path.split(img_name)[-1].split(".")[0]
19 |
20 | img_size = root.getElementsByTagName("size")[0]
21 | img_w = int(img_size.getElementsByTagName("width")[0].childNodes[0].data)
22 | img_h = int(img_size.getElementsByTagName("height")[0].childNodes[0].data)
23 | # img_c = img_size.getElementsByTagName("depth")[0].childNodes[0].data
24 | # objects = root.getElementsByTagName("object")
25 | item = root.getElementsByTagName("item")
26 | with open(rf"E:\imgs_and_labels\txt_labels/{label_name}.txt", "w") as f:
27 | for box in item:
28 | cls_name = box.getElementsByTagName("name")[0].childNodes[0].data
29 | # a = box.getElementsByTagName("xmin")[0].childNodes[0].data
30 |
31 | x1 = float(box.getElementsByTagName("xmin")[0].childNodes[0].data)
32 | y1 = float(box.getElementsByTagName("ymin")[0].childNodes[0].data)
33 | x2 = float(box.getElementsByTagName("xmax")[0].childNodes[0].data)
34 | y2 = float(box.getElementsByTagName("ymax")[0].childNodes[0].data)
35 |
36 | if min(x1, x2) > img_w or min(y1, y2)>img_h:
37 | print(f"bbs out of range: x1:{x1},y1:{y1},x2:{x2},y2:{y2}")
38 | print(xml_path)
39 | continue
40 |
41 | if max(x1, x2) < 0 or max(y1, y2) < 0:
42 | print(f"bbs out of range: x1:{x1},y1:{y1},x2:{x2},y2:{y2}")
43 | print(xml_path)
44 | continue
45 |
46 | def maxmin(x, y):
47 | if x > y:
48 | return y
49 | elif x < 0:
50 | return 0
51 | else:
52 | return x
53 |
54 | x1, y1, x2, y2 = map(maxmin, [x1,y1,x2,y2],[img_w, img_h, img_w, img_h])
55 |
56 | w, h = (x2 - x1) / img_w, (y2 - y1) / img_h
57 | cx, cy = (w / 2 + x1) / img_w, (h / 2 + y1) / img_h
58 |
59 | if not len(list(filter(lambda x: (0 <= x <= 1), [w, h, cx, cy]))) == 4:
60 | print(file_path)
61 | raise ValueError(f"cx:{cx}, cy:{cy}, w:{w}, h:{h}")
62 |
63 | if cls_name == "smoke":
64 | class_num = 0
65 | elif cls_name == "call":
66 | class_num = 1
67 | elif cls_name == "drink":
68 | class_num = 2
69 | else:
70 | raise ValueError("class name error!")
71 | f.writelines(f"{' '.join(list(map(str, [class_num, cx, cy, w, h])))}\n")
72 |
73 | # print(len(objects))
74 |
75 |
76 | def check_cls_name():
77 | for file_path in xml_file_list:
78 | xml_path = os.path.join(xml_dir, file_path)
79 | dom = parse(xml_path)
80 | root = dom.documentElement
81 | item = root.getElementsByTagName("item")
82 | for box in item:
83 | cls_name = box.getElementsByTagName("name")[0].childNodes[0].data
84 | if cls_name == "smoker":
85 | print(xml_path)
86 |
87 |
88 | if __name__ == '__main__':
89 | # check_cls_name()
90 | parse_2_txt()
91 |
--------------------------------------------------------------------------------
/my_utils/remove_noexist.py:
--------------------------------------------------------------------------------
1 | import os
2 | import shutil
3 |
4 | img_dir = r"G:\drive\images\val2017"
5 | xml_dir = r"E:\imgs_and_labels\labels"
6 |
7 | txt_dir = r"G:\drive\labels\train2017"
8 | dst_txt_dir = r"G:\drive\labels\val2017"
9 |
10 |
11 |
12 | def rm_img():
13 | for img_path in os.listdir(img_dir):
14 | if img_path.endswith(".jpg"):
15 | txt_path = f"{xml_dir}/{os.path.split(img_path)[-1].split('.')[0]}.xml" # .xml文件,必要时替换为.txt
16 | if not os.path.exists(txt_path):
17 | print(txt_path)
18 | os.remove(f"{img_dir}/{img_path}")
19 |
20 |
21 | def rm_xml():
22 | for txt_path in os.listdir(xml_dir):
23 | if txt_path.endswith(".xml"):
24 | img_path = f"{img_dir}/{os.path.split(txt_path)[-1].split('.')[0]}.jpg"
25 | if not os.path.exists(img_path):
26 | print(img_path)
27 | os.remove(f"{xml_dir}/{txt_path}")
28 |
29 |
30 | def mv_txt():
31 | for img_path in os.listdir(img_dir):
32 | try:
33 | txt_name = img_path.split(".")[0]
34 | shutil.move(f"{txt_dir}/{txt_name}.txt", f"{dst_txt_dir}/{txt_name}.txt")
35 | except Exception as e:
36 | print(f"err: {e}")
37 | print(img_path)
38 | if __name__ == '__main__':
39 | mv_txt()
40 | # rm_img()
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # pip install -U -r requirements.txt
2 | Cython
3 | numpy==1.17
4 | opencv-python
5 | torch>=1.4
6 | matplotlib
7 | pillow
8 | tensorboard
9 | PyYAML>=5.3
10 | torchvision
11 | scipy
12 | tqdm
13 | git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
14 |
15 | # Nvidia Apex (optional) for mixed precision training --------------------------
16 | # git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex
17 |
18 | # Conda commands (in place of pip) ---------------------------------------------
19 | # conda update -yn base -c defaults conda
20 | # conda install -yc anaconda numpy opencv matplotlib tqdm pillow ipython
21 | # conda install -yc conda-forge scikit-image pycocotools tensorboard
22 | # conda install -yc spyder-ide spyder-line-profiler
23 | # conda install -yc pytorch pytorch torchvision
24 | # conda install -yc conda-forge protobuf numpy && pip install onnx==1.6.0 # https://github.com/onnx/onnx#linux-and-macos
25 |
--------------------------------------------------------------------------------
/results.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/results.png
--------------------------------------------------------------------------------
/results.txt:
--------------------------------------------------------------------------------
1 | 0/19999 1.94G 0.09479 0.02711 0.03801 0.1599 2 640 0.01535 0.001035 0.02525 0.004363 0.07638 0.02755 0.0285
2 | 1/19999 1.99G 0.07996 0.02483 0.02178 0.1266 5 640 0.1302 0.2073 0.09073 0.01653 0.06813 0.025 0.01206
3 | 2/19999 1.99G 0.07579 0.0239 0.01475 0.1144 1 640 0.1107 0.3243 0.1144 0.02739 0.0677 0.02496 0.01216
4 | 3/19999 1.99G 0.07102 0.02438 0.01308 0.1085 1 640 0.1723 0.4174 0.1925 0.04886 0.05921 0.02392 0.007498
5 | 4/19999 1.99G 0.06633 0.02389 0.01111 0.1013 1 640 0.2216 0.5431 0.2794 0.09128 0.05687 0.02307 0.007023
6 | 5/19999 1.99G 0.06369 0.02345 0.009795 0.09694 4 640 0.1931 0.6247 0.2579 0.07557 0.05607 0.02302 0.00499
7 | 6/19999 1.99G 0.06071 0.02282 0.009015 0.09255 1 640 0.2136 0.6347 0.2827 0.08081 0.0535 0.02323 0.004051
8 | 7/19999 1.99G 0.05965 0.02287 0.008389 0.09091 4 640 0.2428 0.6627 0.328 0.09926 0.05113 0.02286 0.004135
9 | 8/19999 1.99G 0.05748 0.02309 0.008025 0.0886 2 640 0.2484 0.7229 0.3727 0.1154 0.05095 0.0225 0.004082
10 | 9/19999 1.99G 0.05597 0.0227 0.007296 0.08597 2 640 0.2527 0.6944 0.4087 0.1294 0.0491 0.02231 0.003524
11 | 10/19999 1.99G 0.05541 0.02249 0.007216 0.08512 4 640 0.248 0.7169 0.3989 0.1449 0.04955 0.02179 0.003479
12 | 11/19999 1.99G 0.05376 0.0226 0.007324 0.08368 2 640 0.2758 0.7217 0.4345 0.1303 0.04884 0.02178 0.003166
13 | 12/19999 1.99G 0.05318 0.02228 0.006304 0.08176 0 640 0.2668 0.7152 0.308 0.09562 0.04879 0.02308 0.002858
14 | 13/19999 1.99G 0.05257 0.02189 0.006127 0.08059 1 640 0.3137 0.7173 0.4864 0.1834 0.04614 0.02058 0.00275
15 | 14/19999 1.99G 0.05187 0.02215 0.006297 0.08031 2 640 0.2802 0.7523 0.439 0.1573 0.04648 0.02121 0.002762
16 | 15/19999 1.99G 0.05152 0.02157 0.005957 0.07904 3 640 0.2848 0.7382 0.4203 0.1474 0.04636 0.02178 0.002775
17 | 16/19999 1.99G 0.05069 0.02206 0.005904 0.07865 2 640 0.2755 0.7741 0.4035 0.1507 0.04583 0.02138 0.002615
18 | 17/19999 1.99G 0.04991 0.02169 0.005668 0.07727 1 640 0.3154 0.7619 0.4426 0.1617 0.04595 0.02084 0.002162
19 | 18/19999 1.99G 0.04995 0.02148 0.005574 0.07701 1 640 0.3126 0.7435 0.4031 0.1579 0.04514 0.02165 0.002263
20 | 19/19999 1.99G 0.04919 0.02156 0.005628 0.07638 2 640 0.3121 0.7531 0.4033 0.154 0.04448 0.02214 0.002628
21 | 20/19999 1.99G 0.04846 0.02116 0.004931 0.07455 1 640 0.3093 0.7699 0.4288 0.1746 0.04404 0.02124 0.002119
22 | 21/19999 1.99G 0.04864 0.02137 0.005267 0.07528 3 640 0.3085 0.7777 0.427 0.1756 0.04512 0.02093 0.001915
23 | 22/19999 1.99G 0.04707 0.02152 0.004823 0.07341 1 640 0.2995 0.784 0.4853 0.1884 0.04466 0.02102 0.002026
24 | 23/19999 1.99G 0.0468 0.02125 0.004821 0.07287 3 640 0.331 0.7781 0.3906 0.1498 0.04565 0.02156 0.001589
25 | 24/19999 1.99G 0.04655 0.02117 0.004685 0.0724 3 640 0.3204 0.7894 0.4668 0.1727 0.04436 0.02152 0.002194
26 | 25/19999 1.99G 0.04648 0.02027 0.004597 0.07135 2 640 0.3347 0.801 0.4113 0.1484 0.04443 0.02161 0.002346
27 | 26/19999 1.99G 0.04609 0.0211 0.004461 0.07165 3 640 0.3351 0.8046 0.4531 0.1808 0.04292 0.02121 0.001946
28 | 27/19999 1.99G 0.04603 0.02124 0.004902 0.07218 0 640 0.3131 0.7726 0.4245 0.1588 0.04366 0.02231 0.001895
29 | 28/19999 1.99G 0.04571 0.02058 0.00445 0.07074 2 640 0.3191 0.7995 0.3866 0.1498 0.04332 0.02119 0.001916
30 | 29/19999 1.99G 0.04494 0.02082 0.004788 0.07054 1 640 0.3428 0.7688 0.38 0.1447 0.0431 0.02275 0.001808
31 | 30/19999 1.99G 0.04475 0.02085 0.004319 0.06991 5 640 0.3323 0.7792 0.3858 0.1436 0.04301 0.02185 0.002357
32 | 31/19999 1.99G 0.04461 0.02027 0.004323 0.0692 1 640 0.337 0.8373 0.5391 0.2077 0.04268 0.01966 0.001657
33 | 32/19999 1.99G 0.0445 0.02015 0.004282 0.06893 1 640 0.3281 0.8104 0.4804 0.1898 0.04184 0.02116 0.001714
34 | 33/19999 1.99G 0.04356 0.02042 0.004195 0.06818 3 640 0.3458 0.7919 0.5159 0.203 0.04179 0.02138 0.001888
35 | 34/19999 1.99G 0.04317 0.02075 0.004364 0.06828 2 640 0.3583 0.8305 0.5448 0.2198 0.04106 0.02118 0.001912
36 | 35/19999 1.99G 0.04339 0.02058 0.004886 0.06886 2 640 0.3485 0.8231 0.477 0.1895 0.04154 0.02088 0.001644
37 | 36/19999 1.99G 0.04359 0.02062 0.004155 0.06837 4 640 0.3414 0.8181 0.4035 0.1669 0.04176 0.02208 0.001626
38 | 37/19999 1.99G 0.04382 0.02065 0.004382 0.06885 4 640 0.3626 0.8339 0.5025 0.204 0.04218 0.02128 0.001814
39 | 38/19999 1.99G 0.04368 0.01984 0.004374 0.06789 2 640 0.3572 0.827 0.4724 0.1993 0.04142 0.02094 0.00197
40 | 39/19999 1.99G 0.04297 0.01981 0.004165 0.06695 3 640 0.3804 0.7949 0.4794 0.1937 0.04118 0.02136 0.001793
41 | 40/19999 1.99G 0.04273 0.0197 0.004249 0.06668 1 640 0.3703 0.8214 0.4875 0.2031 0.04114 0.02045 0.001755
42 | 41/19999 1.99G 0.04196 0.02013 0.004102 0.06619 2 640 0.3467 0.8141 0.4618 0.1915 0.04095 0.02167 0.001776
43 | 42/19999 1.99G 0.04242 0.01969 0.003726 0.06584 2 640 0.3406 0.8508 0.5022 0.2125 0.04044 0.02115 0.001773
44 | 43/19999 1.99G 0.04219 0.01987 0.003913 0.06597 1 640 0.3857 0.8266 0.4665 0.1998 0.04042 0.02097 0.001955
45 | 44/19999 1.99G 0.04173 0.01959 0.003878 0.06519 1 640 0.376 0.8461 0.5028 0.2092 0.0407 0.02035 0.001837
46 | 45/19999 1.99G 0.04188 0.01949 0.00391 0.06529 2 640 0.3526 0.8252 0.4807 0.2069 0.04141 0.02063 0.001787
47 | 46/19999 1.99G 0.04121 0.01971 0.003795 0.06472 1 640 0.3865 0.8302 0.4948 0.2043 0.04035 0.02113 0.00164
48 | 47/19999 1.99G 0.04175 0.02007 0.004665 0.06649 5 640 0.3836 0.8249 0.4787 0.2057 0.0412 0.02103 0.001824
49 | 48/19999 1.99G 0.04157 0.01975 0.004306 0.06562 1 640 0.3873 0.8073 0.4932 0.2102 0.04139 0.02062 0.001962
50 | 49/19999 1.99G 0.04154 0.01962 0.004227 0.06538 2 640 0.401 0.7979 0.4416 0.1881 0.04073 0.02132 0.002052
51 | 50/19999 1.99G 0.04115 0.01967 0.003957 0.06478 4 640 0.3636 0.8122 0.4149 0.1791 0.04086 0.02184 0.002169
52 | 51/19999 1.99G 0.04104 0.01912 0.004014 0.06417 2 640 0.3857 0.799 0.4507 0.2002 0.03991 0.02087 0.001431
53 | 52/19999 1.99G 0.04043 0.01927 0.003782 0.06349 2 640 0.382 0.8115 0.4501 0.1967 0.0408 0.02105 0.001545
54 | 53/19999 1.99G 0.04049 0.0197 0.003748 0.06394 1 640 0.3915 0.8123 0.4812 0.2135 0.0404 0.0211 0.001879
55 | 54/19999 1.99G 0.04074 0.01938 0.003677 0.0638 3 640 0.3747 0.8177 0.4873 0.2263 0.03946 0.02108 0.001871
56 | 55/19999 1.99G 0.04016 0.01919 0.003939 0.0633 2 640 0.3939 0.8204 0.542 0.2424 0.03954 0.02022 0.001736
57 | 56/19999 1.99G 0.03979 0.01922 0.003592 0.0626 1 640 0.3681 0.8506 0.5118 0.215 0.03943 0.02124 0.001555
58 | 57/19999 1.99G 0.0392 0.01909 0.003111 0.06141 0 640 0.3833 0.8476 0.4896 0.2197 0.03954 0.02064 0.001521
59 | 58/19999 1.99G 0.04012 0.01923 0.003765 0.06311 3 640 0.3884 0.8553 0.4862 0.2046 0.03992 0.02073 0.001579
60 | 59/19999 1.99G 0.03981 0.01927 0.003946 0.06302 1 640 0.394 0.8424 0.5481 0.2471 0.0391 0.0205 0.001479
61 | 60/19999 1.99G 0.03946 0.01921 0.003846 0.06252 2 640 0.3855 0.8625 0.5441 0.2505 0.03914 0.01978 0.00165
62 | 61/19999 1.99G 0.03974 0.01932 0.003661 0.06272 4 640 0.3881 0.8449 0.4545 0.1977 0.03978 0.02139 0.00183
63 | 62/19999 1.99G 0.03935 0.01919 0.00377 0.0623 1 640 0.3667 0.8227 0.4837 0.2231 0.04022 0.02113 0.001636
64 | 63/19999 1.99G 0.03931 0.01913 0.003623 0.06206 3 640 0.3909 0.8332 0.4712 0.2124 0.03977 0.0208 0.001639
65 | 64/19999 1.99G 0.03894 0.01914 0.003396 0.06147 0 640 0.3988 0.8382 0.5055 0.2256 0.03947 0.02014 0.001336
66 | 65/19999 1.99G 0.03865 0.01921 0.003725 0.06159 2 640 0.3872 0.8105 0.4573 0.2075 0.03964 0.02123 0.001661
67 | 66/19999 1.99G 0.03917 0.01882 0.003521 0.06152 3 640 0.385 0.8319 0.5125 0.2398 0.03905 0.02034 0.001624
68 | 67/19999 1.99G 0.03836 0.01903 0.00356 0.06095 0 640 0.4003 0.8316 0.4917 0.2295 0.03852 0.02084 0.002074
69 | 68/19999 1.99G 0.0381 0.01873 0.003331 0.06016 1 640 0.4203 0.8607 0.5423 0.2482 0.03823 0.0203 0.001514
70 | 69/19999 1.99G 0.038 0.01842 0.003094 0.05952 3 640 0.4031 0.854 0.5829 0.2723 0.03837 0.01968 0.001494
71 | 70/19999 1.99G 0.03849 0.01863 0.003468 0.06058 1 640 0.4127 0.8613 0.5237 0.2438 0.0383 0.01999 0.001646
72 | 71/19999 1.99G 0.03857 0.01932 0.00349 0.06137 1 640 0.4006 0.8225 0.4931 0.2312 0.03871 0.02084 0.001674
73 | 72/19999 1.99G 0.03853 0.01847 0.00365 0.06065 3 640 0.4051 0.8174 0.4606 0.2095 0.03892 0.0215 0.001803
74 | 73/19999 1.99G 0.0384 0.01849 0.003539 0.06043 2 640 0.3895 0.8427 0.531 0.2557 0.03799 0.02079 0.001908
75 | 74/19999 1.99G 0.03853 0.01846 0.003378 0.06037 4 640 0.4035 0.8497 0.5528 0.2627 0.03763 0.0199 0.001378
76 | 75/19999 1.99G 0.03769 0.01807 0.003415 0.05917 1 640 0.4034 0.8427 0.5293 0.2481 0.03788 0.0204 0.001517
77 | 76/19999 1.99G 0.03764 0.0184 0.003322 0.05937 4 640 0.4182 0.8479 0.5241 0.247 0.03761 0.02032 0.00149
78 | 77/19999 1.99G 0.03769 0.01851 0.003439 0.05964 3 640 0.4031 0.8401 0.5285 0.2504 0.03773 0.02049 0.001732
79 | 78/19999 1.99G 0.03809 0.01888 0.003582 0.06056 1 640 0.4049 0.8197 0.4483 0.2061 0.03898 0.02179 0.001679
80 | 79/19999 1.99G 0.0379 0.01887 0.003582 0.06034 1 640 0.4073 0.8317 0.5563 0.2656 0.03776 0.01991 0.001527
81 | 80/19999 1.99G 0.03744 0.01872 0.003977 0.06013 1 640 0.4027 0.8735 0.6111 0.2851 0.03824 0.01928 0.001181
82 | 81/19999 1.99G 0.03725 0.01854 0.003079 0.05887 2 640 0.4124 0.8395 0.5554 0.2676 0.03809 0.02 0.00136
83 | 82/19999 1.99G 0.03748 0.01824 0.003317 0.05904 0 640 0.4209 0.8322 0.5256 0.2431 0.0384 0.02066 0.001465
84 | 83/19999 1.99G 0.03763 0.01819 0.003182 0.059 1 640 0.4093 0.8483 0.5014 0.2402 0.03781 0.02036 0.001536
85 | 84/19999 1.99G 0.03708 0.01832 0.003271 0.05868 3 640 0.4043 0.8245 0.5084 0.2475 0.03876 0.02062 0.001496
86 | 85/19999 1.99G 0.03659 0.01849 0.003084 0.05816 0 640 0.4104 0.8327 0.5423 0.2588 0.03793 0.02068 0.001468
87 | 86/19999 1.99G 0.03694 0.01828 0.003291 0.05851 2 640 0.4179 0.8262 0.5636 0.2758 0.03702 0.02066 0.001533
88 | 87/19999 1.99G 0.03706 0.01847 0.003343 0.05887 3 640 0.4125 0.8383 0.5511 0.2692 0.03767 0.01993 0.001426
89 | 88/19999 1.99G 0.03725 0.01825 0.003373 0.05887 1 640 0.426 0.8352 0.5293 0.2596 0.03744 0.02049 0.0017
90 | 89/19999 1.99G 0.03622 0.01826 0.003052 0.05753 4 640 0.4119 0.8228 0.5151 0.2407 0.03826 0.02073 0.001432
91 | 90/19999 1.99G 0.0365 0.01779 0.003145 0.05743 3 640 0.4131 0.8543 0.5375 0.2568 0.03757 0.02012 0.001507
92 | 91/19999 1.99G 0.03619 0.01842 0.0034 0.05801 1 640 0.4114 0.8236 0.506 0.2403 0.03725 0.02086 0.001307
93 | 92/19999 1.99G 0.03645 0.01812 0.003077 0.05764 0 640 0.4166 0.8528 0.6098 0.2899 0.03779 0.01937 0.001279
94 | 93/19999 1.99G 0.03656 0.01827 0.003312 0.05814 1 640 0.3987 0.8401 0.4821 0.2329 0.03791 0.02094 0.001383
95 | 94/19999 1.99G 0.0362 0.01848 0.003419 0.05809 2 640 0.3937 0.8215 0.5105 0.2464 0.03787 0.02048 0.001533
96 | 95/19999 1.99G 0.0362 0.01814 0.003234 0.05757 2 640 0.4289 0.8416 0.5169 0.2356 0.03787 0.02087 0.001408
97 | 96/19999 1.99G 0.0359 0.01782 0.002918 0.05664 1 640 0.4278 0.8339 0.5235 0.254 0.03719 0.02061 0.001519
98 | 97/19999 1.99G 0.03577 0.01777 0.002964 0.05651 3 640 0.4121 0.835 0.5321 0.2558 0.03704 0.02079 0.001506
99 | 98/19999 1.99G 0.03578 0.01784 0.002793 0.05642 2 640 0.4179 0.8167 0.5473 0.2601 0.03822 0.0206 0.001591
100 | 99/19999 1.99G 0.03595 0.01814 0.003104 0.05719 2 640 0.4317 0.8653 0.5833 0.284 0.03666 0.01962 0.001315
101 | 100/19999 1.99G 0.03569 0.01765 0.002823 0.05616 3 640 0.4056 0.8296 0.4987 0.2299 0.03785 0.02128 0.001537
102 | 101/19999 1.99G 0.03591 0.01793 0.003007 0.05685 1 640 0.4355 0.8464 0.5555 0.268 0.03682 0.02039 0.001185
103 | 102/19999 1.99G 0.03571 0.0179 0.003043 0.05665 1 640 0.4279 0.8581 0.5918 0.2883 0.03694 0.0201 0.001223
104 | 103/19999 1.99G 0.03564 0.01756 0.003281 0.05648 1 640 0.4183 0.829 0.5125 0.2499 0.03762 0.02062 0.00161
105 | 104/19999 1.99G 0.03566 0.01781 0.002854 0.05632 1 640 0.4217 0.8323 0.511 0.2468 0.03769 0.02067 0.001343
106 | 105/19999 1.99G 0.03517 0.01795 0.002817 0.05594 1 640 0.4403 0.8551 0.559 0.2657 0.03734 0.0204 0.001508
107 | 106/19999 1.99G 0.03594 0.01719 0.002933 0.05606 2 640 0.425 0.8212 0.5182 0.2486 0.03748 0.0213 0.001492
108 | 107/19999 1.99G 0.03542 0.01813 0.002997 0.05655 1 640 0.4222 0.8508 0.5739 0.2793 0.03661 0.02006 0.001384
109 | 108/19999 1.99G 0.03556 0.01774 0.003033 0.05634 2 640 0.4273 0.8437 0.5644 0.2696 0.0369 0.02036 0.001204
110 | 109/19999 1.99G 0.03564 0.01763 0.003206 0.05648 2 640 0.4227 0.8428 0.5411 0.2711 0.0367 0.02031 0.001394
111 | 110/19999 1.99G 0.03572 0.01777 0.002821 0.05632 4 640 0.4276 0.8584 0.5489 0.2754 0.03686 0.02006 0.001241
112 | 111/19999 1.99G 0.03532 0.01763 0.002875 0.05583 1 640 0.4214 0.8337 0.5236 0.2606 0.03674 0.02089 0.001455
113 | 112/19999 1.99G 0.03545 0.01792 0.003082 0.05645 1 640 0.4065 0.8158 0.5346 0.27 0.03691 0.02048 0.001474
114 | 113/19999 1.99G 0.03505 0.0176 0.002881 0.05553 2 640 0.4189 0.8355 0.5676 0.2752 0.03739 0.01997 0.001557
115 | 114/19999 1.99G 0.03504 0.01774 0.002904 0.05569 2 640 0.4237 0.8209 0.5294 0.2617 0.03703 0.02098 0.001507
116 | 115/19999 1.99G 0.03463 0.01732 0.00324 0.05519 2 640 0.4259 0.8262 0.5547 0.2784 0.03683 0.02018 0.001577
117 | 116/19999 1.99G 0.03532 0.01754 0.003191 0.05605 3 640 0.4249 0.8523 0.5431 0.269 0.03657 0.02043 0.001655
118 | 117/19999 1.99G 0.03473 0.01716 0.003052 0.05494 2 640 0.4291 0.8519 0.5501 0.2774 0.03638 0.0203 0.00138
119 | 118/19999 1.99G 0.03488 0.01726 0.002928 0.05507 1 640 0.443 0.8482 0.6004 0.2956 0.03635 0.0197 0.001218
120 | 119/19999 1.99G 0.03499 0.0171 0.002853 0.05495 1 640 0.4222 0.8439 0.5459 0.2753 0.03679 0.02064 0.001389
121 | 120/19999 1.99G 0.03506 0.01726 0.002809 0.05513 2 640 0.4286 0.8299 0.5689 0.294 0.03586 0.01995 0.001602
122 | 121/19999 1.99G 0.03508 0.01731 0.002896 0.05528 1 640 0.4228 0.8498 0.5656 0.2861 0.03623 0.02013 0.00151
123 | 122/19999 1.99G 0.03528 0.01715 0.003013 0.05544 1 640 0.424 0.8405 0.5579 0.2743 0.03635 0.02015 0.001369
124 | 123/19999 1.99G 0.03451 0.01731 0.002858 0.05467 4 640 0.421 0.8255 0.5558 0.2772 0.03671 0.0206 0.001286
125 | 124/19999 1.99G 0.03421 0.01751 0.003172 0.0549 0 640 0.4245 0.8363 0.5599 0.2788 0.03593 0.02057 0.001565
126 | 125/19999 1.99G 0.03487 0.01748 0.003266 0.05562 2 640 0.4312 0.843 0.5334 0.2662 0.03606 0.02063 0.001457
127 | 126/19999 1.99G 0.03408 0.01697 0.002936 0.05398 0 640 0.4394 0.8429 0.5491 0.2738 0.03556 0.02086 0.00123
128 | 127/19999 1.99G 0.0345 0.01714 0.002792 0.05443 1 640 0.424 0.8396 0.5578 0.2834 0.03619 0.02035 0.001303
129 | 128/19999 1.99G 0.03498 0.01752 0.003183 0.05569 1 640 0.4299 0.8449 0.5685 0.2791 0.03627 0.01967 0.001176
130 | 129/19999 1.99G 0.03484 0.01742 0.002989 0.05525 1 640 0.425 0.8407 0.562 0.2791 0.03663 0.01972 0.001116
131 | 130/19999 1.99G 0.0344 0.01731 0.00272 0.05443 0 640 0.4352 0.8333 0.5362 0.2645 0.03692 0.02035 0.001264
132 | 131/19999 1.99G 0.03444 0.01709 0.002969 0.0545 1 640 0.4294 0.8292 0.5515 0.275 0.03648 0.02108 0.001368
133 | 132/19999 1.99G 0.03415 0.01684 0.002747 0.05373 5 640 0.4322 0.8352 0.5647 0.281 0.03622 0.02091 0.001425
134 | 133/19999 1.99G 0.03417 0.01692 0.002829 0.05392 0 640 0.4283 0.8312 0.5581 0.2809 0.03636 0.02088 0.001227
135 | 134/19999 1.99G 0.03476 0.01717 0.003465 0.05539 4 640 0.4309 0.8365 0.5381 0.272 0.03643 0.0209 0.001304
136 | 135/19999 1.99G 0.03413 0.01693 0.002961 0.05402 1 640 0.4392 0.8628 0.5375 0.271 0.03582 0.02089 0.001186
137 | 136/19999 1.99G 0.03429 0.01727 0.002755 0.05432 2 640 0.4328 0.8507 0.5512 0.2812 0.03574 0.02034 0.001203
138 | 137/19999 1.99G 0.03424 0.01681 0.002953 0.054 1 640 0.4332 0.8467 0.5552 0.2796 0.03601 0.02066 0.001118
139 | 138/19999 1.99G 0.03435 0.0168 0.002914 0.05406 1 640 0.4515 0.8571 0.5983 0.3022 0.0356 0.01996 0.001181
140 | 139/19999 1.99G 0.03391 0.01694 0.002768 0.05362 4 640 0.4402 0.8497 0.5894 0.3009 0.03567 0.02001 0.001128
141 | 140/19999 1.99G 0.03419 0.01667 0.002967 0.05383 3 640 0.4405 0.8535 0.5793 0.2919 0.03579 0.02012 0.00117
142 | 141/19999 1.99G 0.0342 0.01717 0.002822 0.05419 1 640 0.4413 0.8602 0.5607 0.2821 0.03604 0.0203 0.001077
143 | 142/19999 1.99G 0.03429 0.01712 0.003105 0.05452 2 640 0.4364 0.8586 0.5598 0.2765 0.03606 0.02045 0.001138
144 | 143/19999 1.99G 0.03402 0.01713 0.002931 0.05408 2 640 0.4355 0.8283 0.5464 0.2731 0.03627 0.02086 0.001388
145 | 144/19999 1.99G 0.03379 0.01669 0.002753 0.05323 1 640 0.4435 0.8406 0.5499 0.2761 0.03605 0.02066 0.001406
146 | 145/19999 1.99G 0.034 0.01703 0.002812 0.05384 3 640 0.437 0.8417 0.5723 0.2877 0.03604 0.02053 0.001284
147 | 146/19999 1.99G 0.03383 0.01682 0.002609 0.05326 2 640 0.4366 0.8559 0.5594 0.2798 0.03591 0.02055 0.001173
148 | 147/19999 1.99G 0.03337 0.01655 0.002698 0.05263 2 640 0.4401 0.8556 0.554 0.2788 0.03578 0.02091 0.001286
149 | 148/19999 1.99G 0.03344 0.01686 0.002965 0.05326 1 640 0.4288 0.8409 0.5478 0.2843 0.03537 0.02083 0.001229
150 | 149/19999 1.99G 0.03383 0.01658 0.003025 0.05344 1 640 0.4334 0.8334 0.5452 0.281 0.03546 0.02108 0.001399
151 | 150/19999 1.99G 0.03361 0.0165 0.00272 0.05283 1 640 0.4404 0.8376 0.555 0.2875 0.0355 0.02107 0.001385
152 | 151/19999 1.99G 0.03314 0.01684 0.002581 0.05257 1 640 0.4358 0.8356 0.5642 0.2914 0.03564 0.02076 0.001401
153 | 152/19999 1.99G 0.03358 0.01675 0.002804 0.05313 1 640 0.4244 0.8343 0.5441 0.2815 0.03546 0.02117 0.001469
154 | 153/19999 1.99G 0.03332 0.01667 0.002588 0.05258 4 640 0.4213 0.8594 0.566 0.2927 0.03521 0.02023 0.001393
155 | 154/19999 1.99G 0.03271 0.01642 0.002541 0.05167 2 640 0.4203 0.8449 0.5603 0.2937 0.03528 0.02024 0.001334
156 | 155/19999 1.99G 0.03357 0.01662 0.002661 0.05285 1 640 0.425 0.8505 0.5828 0.2993 0.0353 0.02021 0.001264
157 | 156/19999 1.99G 0.03339 0.01646 0.002785 0.05263 2 640 0.4368 0.8607 0.6054 0.3138 0.03526 0.02007 0.001265
158 | 157/19999 1.99G 0.03347 0.01672 0.002483 0.05268 1 640 0.4313 0.8492 0.5771 0.3007 0.03538 0.02018 0.001192
159 | 158/19999 1.99G 0.03304 0.01624 0.002527 0.0518 2 640 0.4388 0.8642 0.5685 0.2945 0.03518 0.02061 0.001121
160 | 159/19999 1.99G 0.03313 0.01646 0.002983 0.05257 3 640 0.4407 0.8669 0.5804 0.2981 0.03496 0.02025 0.001086
161 | 160/19999 1.99G 0.03312 0.01664 0.002646 0.0524 1 640 0.4391 0.8538 0.5809 0.3043 0.03502 0.01992 0.001099
162 | 161/19999 1.99G 0.03334 0.0165 0.002565 0.0524 0 640 0.4304 0.847 0.5654 0.293 0.03529 0.02045 0.0012
163 | 162/19999 1.99G 0.03272 0.01645 0.00264 0.05181 2 640 0.4282 0.8382 0.5579 0.2911 0.03554 0.02101 0.001212
164 | 163/19999 1.99G 0.03312 0.01645 0.002565 0.05213 0 640 0.4303 0.8456 0.5633 0.2902 0.0354 0.02098 0.001251
165 | 164/19999 1.99G 0.03357 0.01607 0.002983 0.05263 1 640 0.4309 0.8372 0.552 0.2872 0.03505 0.02132 0.001233
166 | 165/19999 1.99G 0.03315 0.01638 0.002799 0.05232 0 640 0.4353 0.8471 0.555 0.2933 0.03483 0.02113 0.001289
167 | 166/19999 1.99G 0.03247 0.01605 0.002397 0.05092 1 640 0.434 0.8457 0.5659 0.3001 0.03469 0.02081 0.001393
168 |
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 |
4 | from torch.utils.data import DataLoader
5 |
6 | from utils import google_utils
7 | from utils.datasets import *
8 | from utils.utils import *
9 |
10 |
11 | def test(data,
12 | weights=None,
13 | batch_size=16,
14 | imgsz=640,
15 | conf_thres=0.001,
16 | iou_thres=0.6, # for NMS
17 | save_json=False,
18 | single_cls=False,
19 | augment=False,
20 | verbose=False,
21 | model=None,
22 | dataloader=None,
23 | merge=False):
24 | # Initialize/load model and set device
25 | if model is None:
26 | training = False
27 | device = torch_utils.select_device(opt.device, batch_size=batch_size)
28 | half = device.type != 'cpu' # half precision only supported on CUDA
29 |
30 | # Remove previous
31 | for f in glob.glob('test_batch*.jpg'):
32 | os.remove(f)
33 |
34 | # Load model
35 | google_utils.attempt_download(weights)
36 | model = torch.load(weights, map_location=device)['model'].float() # load to FP32
37 | torch_utils.model_info(model)
38 | model.fuse()
39 | model.to(device)
40 | if half:
41 | model.half() # to FP16
42 |
43 | # Multi-GPU disabled, incompatible with .half()
44 | # if device.type != 'cpu' and torch.cuda.device_count() > 1:
45 | # model = nn.DataParallel(model)
46 |
47 | else: # called by train.py
48 | training = True
49 | device = next(model.parameters()).device # get model device
50 | # half disabled https://github.com/ultralytics/yolov5/issues/99
51 | half = False # device.type != 'cpu' and torch.cuda.device_count() == 1
52 | if half:
53 | model.half() # to FP16
54 |
55 | # Configure
56 | model.eval()
57 | with open(data) as f:
58 | data = yaml.load(f, Loader=yaml.FullLoader) # model dict
59 | nc = 1 if single_cls else int(data['nc']) # number of classes
60 | iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
61 | # iouv = iouv[0].view(1) # comment for mAP@0.5:0.95
62 | niou = iouv.numel()
63 |
64 | # Dataloader
65 | if dataloader is None: # not training
66 | img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
67 | _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
68 |
69 | merge = opt.merge # use Merge NMS
70 | path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
71 | dataset = LoadImagesAndLabels(path,
72 | imgsz,
73 | batch_size,
74 | rect=True, # rectangular inference
75 | single_cls=opt.single_cls, # single class mode
76 | pad=0.5) # padding
77 | batch_size = min(batch_size, len(dataset))
78 | nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
79 | dataloader = DataLoader(dataset,
80 | batch_size=batch_size,
81 | num_workers=nw,
82 | pin_memory=True,
83 | collate_fn=dataset.collate_fn)
84 |
85 | seen = 0
86 | names = model.names if hasattr(model, 'names') else model.module.names
87 | coco91class = coco80_to_coco91_class()
88 | s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
89 | p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
90 | loss = torch.zeros(3, device=device)
91 | jdict, stats, ap, ap_class = [], [], [], []
92 | for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
93 | img = img.to(device)
94 | img = img.half() if half else img.float() # uint8 to fp16/32
95 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
96 | targets = targets.to(device)
97 | nb, _, height, width = img.shape # batch size, channels, height, width
98 | whwh = torch.Tensor([width, height, width, height]).to(device)
99 |
100 | # Disable gradients
101 | with torch.no_grad():
102 | # Run model
103 | t = torch_utils.time_synchronized()
104 | inf_out, train_out = model(img, augment=augment) # inference and training outputs
105 | t0 += torch_utils.time_synchronized() - t
106 |
107 | # Compute loss
108 | if training: # if model has loss hyperparameters
109 | loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls
110 |
111 | # Run NMS
112 | t = torch_utils.time_synchronized()
113 | output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
114 | t1 += torch_utils.time_synchronized() - t
115 |
116 | # Statistics per image
117 | for si, pred in enumerate(output):
118 | labels = targets[targets[:, 0] == si, 1:]
119 | nl = len(labels)
120 | tcls = labels[:, 0].tolist() if nl else [] # target class
121 | seen += 1
122 |
123 | if pred is None:
124 | if nl:
125 | stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
126 | continue
127 |
128 | # Append to text file
129 | # with open('test.txt', 'a') as file:
130 | # [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
131 |
132 | # Clip boxes to image bounds
133 | clip_coords(pred, (height, width))
134 |
135 | # Append to pycocotools JSON dictionary
136 | if save_json:
137 | # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
138 | image_id = int(Path(paths[si]).stem.split('_')[-1])
139 | box = pred[:, :4].clone() # xyxy
140 | scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
141 | box = xyxy2xywh(box) # xywh
142 | box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
143 | for p, b in zip(pred.tolist(), box.tolist()):
144 | jdict.append({'image_id': image_id,
145 | 'category_id': coco91class[int(p[5])],
146 | 'bbox': [round(x, 3) for x in b],
147 | 'score': round(p[4], 5)})
148 |
149 | # Assign all predictions as incorrect
150 | correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
151 | if nl:
152 | detected = [] # target indices
153 | tcls_tensor = labels[:, 0]
154 |
155 | # target boxes
156 | tbox = xywh2xyxy(labels[:, 1:5]) * whwh
157 |
158 | # Per target class
159 | for cls in torch.unique(tcls_tensor):
160 | ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
161 | pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices
162 |
163 | # Search for detections
164 | if pi.shape[0]:
165 | # Prediction to target ious
166 | ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
167 |
168 | # Append detections
169 | for j in (ious > iouv[0]).nonzero():
170 | d = ti[i[j]] # detected target
171 | if d not in detected:
172 | detected.append(d)
173 | correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
174 | if len(detected) == nl: # all targets already located in image
175 | break
176 |
177 | # Append statistics (correct, conf, pcls, tcls)
178 | stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
179 |
180 | # Plot images
181 | if batch_i < 1:
182 | f = 'test_batch%g_gt.jpg' % batch_i # filename
183 | plot_images(img, targets, paths, f, names) # ground truth
184 | f = 'test_batch%g_pred.jpg' % batch_i
185 | plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
186 |
187 | # Compute statistics
188 | stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
189 | if len(stats):
190 | p, r, ap, f1, ap_class = ap_per_class(*stats)
191 | p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
192 | mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
193 | nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
194 | else:
195 | nt = torch.zeros(1)
196 |
197 | # Print results
198 | pf = '%20s' + '%12.3g' * 6 # print format
199 | print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
200 |
201 | # Print results per class
202 | if verbose and nc > 1 and len(stats):
203 | for i, c in enumerate(ap_class):
204 | print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
205 |
206 | # Print speeds
207 | t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
208 | if not training:
209 | print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
210 |
211 | # Save JSON
212 | if save_json and map50 and len(jdict):
213 | imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
214 | f = 'detections_val2017_%s_results.json' % \
215 | (weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
216 | print('\nCOCO mAP with pycocotools... saving %s...' % f)
217 | with open(f, 'w') as file:
218 | json.dump(jdict, file)
219 |
220 | try:
221 | from pycocotools.coco import COCO
222 | from pycocotools.cocoeval import COCOeval
223 |
224 | # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
225 | cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
226 | cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
227 |
228 | cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
229 | cocoEval.params.imgIds = imgIds # image IDs to evaluate
230 | cocoEval.evaluate()
231 | cocoEval.accumulate()
232 | cocoEval.summarize()
233 | map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
234 | except:
235 | print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
236 | 'See https://github.com/cocodataset/cocoapi/issues/356')
237 |
238 | # Return results
239 | maps = np.zeros(nc) + map
240 | for i, c in enumerate(ap_class):
241 | maps[c] = ap[i]
242 | return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
243 |
244 |
245 | if __name__ == '__main__':
246 | parser = argparse.ArgumentParser(prog='test.py')
247 | parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
248 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
249 | parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
250 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
251 | parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
252 | parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
253 | parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
254 | parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
255 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
256 | parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
257 | parser.add_argument('--augment', action='store_true', help='augmented inference')
258 | parser.add_argument('--merge', action='store_true', help='use Merge NMS')
259 | parser.add_argument('--verbose', action='store_true', help='report mAP by class')
260 | opt = parser.parse_args()
261 | opt.img_size = check_img_size(opt.img_size)
262 | opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
263 | opt.data = check_file(opt.data) # check file
264 | print(opt)
265 |
266 | # task = 'val', 'test', 'study'
267 | if opt.task in ['val', 'test']: # (default) run normally
268 | test(opt.data,
269 | opt.weights,
270 | opt.batch_size,
271 | opt.img_size,
272 | opt.conf_thres,
273 | opt.iou_thres,
274 | opt.save_json,
275 | opt.single_cls,
276 | opt.augment,
277 | opt.verbose)
278 |
279 | elif opt.task == 'study': # run over a range of settings and save/plot
280 | for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
281 | f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
282 | x = list(range(352, 832, 64)) # x axis
283 | y = [] # y axis
284 | for i in x: # img-size
285 | print('\nRunning %s point %s...' % (f, i))
286 | r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
287 | y.append(r + t) # results and times
288 | np.savetxt(f, y, fmt='%10.4g') # save
289 | os.system('zip -r study.zip study_*.txt')
290 | # plot_study_txt(f, x) # plot
291 |
--------------------------------------------------------------------------------
/test_batch0_gt.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/test_batch0_gt.jpg
--------------------------------------------------------------------------------
/test_batch0_pred.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/test_batch0_pred.jpg
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import torch.distributed as dist
4 | import torch.nn.functional as F
5 | import torch.optim as optim
6 | import torch.optim.lr_scheduler as lr_scheduler
7 | import torch.utils.data
8 | from torch.utils.tensorboard import SummaryWriter
9 |
10 | import test # import test.py to get mAP after each epoch
11 | from models.yolo import Model
12 | from utils import google_utils
13 | from utils.datasets import *
14 | from utils.utils import *
15 |
16 | mixed_precision = True
17 | try: # Mixed precision training https://github.com/NVIDIA/apex
18 | from apex import amp
19 | except:
20 | # print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
21 | mixed_precision = False # not installed
22 |
23 | wdir = 'weights' + os.sep # weights dir
24 | os.makedirs(wdir, exist_ok=True)
25 | last = wdir + 'last.pt'
26 | best = wdir + 'best.pt'
27 | results_file = 'results.txt'
28 |
29 | # Hyperparameters
30 | hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
31 | 'momentum': 0.937, # SGD momentum
32 | 'weight_decay': 5e-4, # optimizer weight decay
33 | 'giou': 0.05, # giou loss gain
34 | 'cls': 0.58, # cls loss gain
35 | 'cls_pw': 1.0, # cls BCELoss positive_weight
36 | 'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320)
37 | 'obj_pw': 1.0, # obj BCELoss positive_weight
38 | 'iou_t': 0.20, # iou training threshold
39 | 'anchor_t': 4.0, # anchor-multiple threshold
40 | 'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
41 | 'hsv_h': 0.014, # image HSV-Hue augmentation (fraction)
42 | 'hsv_s': 0.68, # image HSV-Saturation augmentation (fraction)
43 | 'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
44 | 'degrees': 0.0, # image rotation (+/- deg)
45 | 'translate': 0.0, # image translation (+/- fraction)
46 | 'scale': 0.5, # image scale (+/- gain)
47 | 'shear': 0.0} # image shear (+/- deg)
48 | print(hyp)
49 |
50 | # Overwrite hyp with hyp*.txt (optional)
51 | f = glob.glob('hyp*.txt')
52 | if f:
53 | print('Using %s' % f[0])
54 | for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
55 | hyp[k] = v
56 |
57 | # Print focal loss if gamma > 0
58 | if hyp['fl_gamma']:
59 | print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])
60 |
61 |
62 | def train(hyp):
63 | epochs = opt.epochs # 300
64 | batch_size = opt.batch_size # 64
65 | weights = opt.weights # initial training weights
66 |
67 | # Configure
68 | init_seeds(1)
69 | with open(opt.data) as f:
70 | data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
71 | train_path = data_dict['train']
72 | test_path = data_dict['val']
73 | nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
74 |
75 | # Remove previous results
76 | for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
77 | os.remove(f)
78 |
79 | # Create model
80 | model = Model(opt.cfg).to(device)
81 | assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc'])
82 |
83 | # Image sizes
84 | gs = int(max(model.stride)) # grid size (max stride)
85 | imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
86 |
87 | # Optimizer
88 | nbs = 64 # nominal batch size
89 | accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
90 | hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
91 | pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
92 | for k, v in model.named_parameters():
93 | if v.requires_grad:
94 | if '.bias' in k:
95 | pg2.append(v) # biases
96 | elif '.weight' in k and '.bn' not in k:
97 | pg1.append(v) # apply weight decay
98 | else:
99 | pg0.append(v) # all else
100 |
101 | optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
102 | optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
103 | optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
104 | optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
105 | print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
106 | del pg0, pg1, pg2
107 |
108 | # Load Model
109 | google_utils.attempt_download(weights)
110 | start_epoch, best_fitness = 0, 0.0
111 | if weights.endswith('.pt'): # pytorch format
112 | ckpt = torch.load(weights, map_location=device) # load checkpoint
113 |
114 | # load model
115 | try:
116 | ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
117 | if model.state_dict()[k].shape == v.shape} # to FP32, filter
118 | model.load_state_dict(ckpt['model'], strict=False)
119 | except KeyError as e:
120 | s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
121 | % (opt.weights, opt.cfg, opt.weights)
122 | raise KeyError(s) from e
123 |
124 | # load optimizer
125 | if ckpt['optimizer'] is not None:
126 | optimizer.load_state_dict(ckpt['optimizer'])
127 | best_fitness = ckpt['best_fitness']
128 |
129 | # load results
130 | if ckpt.get('training_results') is not None:
131 | with open(results_file, 'w') as file:
132 | file.write(ckpt['training_results']) # write results.txt
133 |
134 | start_epoch = ckpt['epoch'] + 1
135 | del ckpt
136 |
137 | # Mixed precision training https://github.com/NVIDIA/apex
138 | if mixed_precision:
139 | model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
140 |
141 | # Scheduler https://arxiv.org/pdf/1812.01187.pdf
142 | lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
143 | scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
144 | scheduler.last_epoch = start_epoch - 1 # do not move
145 | # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
146 | # plot_lr_scheduler(optimizer, scheduler, epochs)
147 |
148 | # Initialize distributed training
149 | if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
150 | dist.init_process_group(backend='nccl', # distributed backend
151 | init_method='tcp://127.0.0.1:9999', # init method
152 | world_size=1, # number of nodes
153 | rank=0) # node rank
154 | model = torch.nn.parallel.DistributedDataParallel(model)
155 | # pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
156 |
157 | # Dataset
158 | dataset = LoadImagesAndLabels(train_path, imgsz, batch_size,
159 | augment=True,
160 | hyp=hyp, # augmentation hyperparameters
161 | rect=opt.rect, # rectangular training
162 | cache_images=opt.cache_images,
163 | single_cls=opt.single_cls)
164 | mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
165 | assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)
166 |
167 | # Dataloader
168 | batch_size = min(batch_size, len(dataset))
169 | nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
170 | dataloader = torch.utils.data.DataLoader(dataset,
171 | batch_size=batch_size,
172 | num_workers=nw,
173 | shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
174 | pin_memory=True,
175 | collate_fn=dataset.collate_fn)
176 |
177 | # Testloader
178 | testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
179 | hyp=hyp,
180 | rect=True,
181 | cache_images=opt.cache_images,
182 | single_cls=opt.single_cls),
183 | batch_size=batch_size,
184 | num_workers=nw,
185 | pin_memory=True,
186 | collate_fn=dataset.collate_fn)
187 |
188 | # Model parameters
189 | hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
190 | model.nc = nc # attach number of classes to model
191 | model.hyp = hyp # attach hyperparameters to model
192 | model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
193 | model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
194 | model.names = data_dict['names']
195 |
196 | # Class frequency
197 | labels = np.concatenate(dataset.labels, 0)
198 | c = torch.tensor(labels[:, 0]) # classes
199 | # cf = torch.bincount(c.long(), minlength=nc) + 1.
200 | # model._initialize_biases(cf.to(device))
201 | if tb_writer:
202 | plot_labels(labels)
203 | tb_writer.add_histogram('classes', c, 0)
204 |
205 | # Check anchors
206 | if not opt.noautoanchor:
207 | check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
208 |
209 | # Exponential moving average
210 | ema = torch_utils.ModelEMA(model)
211 |
212 | # Start training
213 | t0 = time.time()
214 | nb = len(dataloader) # number of batches
215 | n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations)
216 | maps = np.zeros(nc) # mAP per class
217 | results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
218 | print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
219 | print('Using %g dataloader workers' % nw)
220 | print('Starting training for %g epochs...' % epochs)
221 | # torch.autograd.set_detect_anomaly(True)
222 | for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
223 | model.train()
224 |
225 | # Update image weights (optional)
226 | if dataset.image_weights:
227 | w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
228 | image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
229 | dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
230 |
231 | mloss = torch.zeros(4, device=device) # mean losses
232 | print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
233 | pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
234 | for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
235 | ni = i + nb * epoch # number integrated batches (since train start)
236 | imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
237 |
238 | # Burn-in
239 | if ni <= n_burn:
240 | xi = [0, n_burn] # x interp
241 | # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
242 | accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
243 | for j, x in enumerate(optimizer.param_groups):
244 | # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
245 | x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
246 | if 'momentum' in x:
247 | x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
248 |
249 | # Multi-scale
250 | if opt.multi_scale:
251 | sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
252 | sf = sz / max(imgs.shape[2:]) # scale factor
253 | if sf != 1:
254 | ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
255 | imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
256 |
257 | # Forward
258 | pred = model(imgs)
259 |
260 | # Loss
261 | loss, loss_items = compute_loss(pred, targets.to(device), model)
262 | if not torch.isfinite(loss):
263 | print('WARNING: non-finite loss, ending training ', loss_items)
264 | return results
265 |
266 | # Backward
267 | if mixed_precision:
268 | with amp.scale_loss(loss, optimizer) as scaled_loss:
269 | scaled_loss.backward()
270 | else:
271 | loss.backward()
272 |
273 | # Optimize
274 | if ni % accumulate == 0:
275 | optimizer.step()
276 | optimizer.zero_grad()
277 | ema.update(model)
278 |
279 | # Print
280 | mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
281 | mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
282 | s = ('%10s' * 2 + '%10.4g' * 6) % (
283 | '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
284 | pbar.set_description(s)
285 |
286 | # Plot
287 | if ni < 3:
288 | f = 'train_batch%g.jpg' % i # filename
289 | res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
290 | if tb_writer:
291 | tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
292 | # tb_writer.add_graph(model, imgs) # add model to tensorboard
293 |
294 | # end batch ------------------------------------------------------------------------------------------------
295 |
296 | # Scheduler
297 | scheduler.step()
298 |
299 | # mAP
300 | ema.update_attr(model)
301 | final_epoch = epoch + 1 == epochs
302 | if not opt.notest or final_epoch: # Calculate mAP
303 | results, maps, times = test.test(opt.data,
304 | batch_size=batch_size,
305 | imgsz=imgsz_test,
306 | save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
307 | model=ema.ema,
308 | single_cls=opt.single_cls,
309 | dataloader=testloader)
310 |
311 | # Write
312 | with open(results_file, 'a') as f:
313 | f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
314 | if len(opt.name) and opt.bucket:
315 | os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
316 |
317 | # Tensorboard
318 | if tb_writer:
319 | tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
320 | 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
321 | 'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
322 | for x, tag in zip(list(mloss[:-1]) + list(results), tags):
323 | tb_writer.add_scalar(tag, x, epoch)
324 |
325 | # Update best mAP
326 | fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
327 | if fi > best_fitness:
328 | best_fitness = fi
329 |
330 | # Save model
331 | save = (not opt.nosave) or (final_epoch and not opt.evolve)
332 | if save:
333 | with open(results_file, 'r') as f: # create checkpoint
334 | ckpt = {'epoch': epoch,
335 | 'best_fitness': best_fitness,
336 | 'training_results': f.read(),
337 | 'model': ema.ema.module if hasattr(model, 'module') else ema.ema,
338 | 'optimizer': None if final_epoch else optimizer.state_dict()}
339 |
340 | # Save last, best and delete
341 | torch.save(ckpt, last)
342 | if (best_fitness == fi) and not final_epoch:
343 | torch.save(ckpt, best)
344 | del ckpt
345 |
346 | # end epoch ----------------------------------------------------------------------------------------------------
347 | # end training
348 |
349 | n = opt.name
350 | if len(n):
351 | n = '_' + n if not n.isnumeric() else n
352 | fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
353 | for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
354 | if os.path.exists(f1):
355 | os.rename(f1, f2) # rename
356 | ispt = f2.endswith('.pt') # is *.pt
357 | strip_optimizer(f2) if ispt else None # strip optimizer
358 | os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
359 |
360 | if not opt.evolve:
361 | plot_results() # save as results.png
362 | print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
363 | dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
364 | torch.cuda.empty_cache()
365 | return results
366 |
367 |
368 | if __name__ == '__main__':
369 | check_git_status()
370 | parser = argparse.ArgumentParser()
371 | parser.add_argument('--epochs', type=int, default=20000)
372 | parser.add_argument('--batch-size', type=int, default=4)
373 | parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path')
374 | parser.add_argument('--data', type=str, default='data/drive.yaml', help='*.data path')
375 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
376 | parser.add_argument('--rect', action='store_true', help='rectangular training')
377 | parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
378 | parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
379 | parser.add_argument('--notest', action='store_true', help='only test final epoch')
380 | parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
381 | parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
382 | parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
383 | parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
384 | parser.add_argument('--weights', type=str, default=r'weights\yolov5s.pt', help='initial weights path')
385 | parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
386 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
387 | parser.add_argument('--adam', action='store_true', help='use adam optimizer')
388 | parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%')
389 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
390 | opt = parser.parse_args()
391 | opt.weights = last if opt.resume else opt.weights
392 | opt.cfg = check_file(opt.cfg) # check file
393 | opt.data = check_file(opt.data) # check file
394 | opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
395 | device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
396 | if device.type == 'cpu':
397 | mixed_precision = False
398 |
399 | # Train
400 | if not opt.evolve:
401 | tb_writer = SummaryWriter(comment=opt.name)
402 | print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
403 | train(hyp)
404 |
405 | # Evolve hyperparameters (optional)
406 | else:
407 | tb_writer = None
408 | opt.notest, opt.nosave = True, True # only test/save final epoch
409 | if opt.bucket:
410 | os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
411 |
412 | for _ in range(10): # generations to evolve
413 | if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
414 | # Select parent(s)
415 | parent = 'single' # parent selection method: 'single' or 'weighted'
416 | x = np.loadtxt('evolve.txt', ndmin=2)
417 | n = min(5, len(x)) # number of previous results to consider
418 | x = x[np.argsort(-fitness(x))][:n] # top n mutations
419 | w = fitness(x) - fitness(x).min() # weights
420 | if parent == 'single' or len(x) == 1:
421 | # x = x[random.randint(0, n - 1)] # random selection
422 | x = x[random.choices(range(n), weights=w)[0]] # weighted selection
423 | elif parent == 'weighted':
424 | x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
425 |
426 | # Mutate
427 | mp, s = 0.9, 0.2 # mutation probability, sigma
428 | npr = np.random
429 | npr.seed(int(time.time()))
430 | g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
431 | ng = len(g)
432 | v = np.ones(ng)
433 | while all(v == 1): # mutate until a change occurs (prevent duplicates)
434 | v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
435 | for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
436 | hyp[k] = x[i + 7] * v[i] # mutate
437 |
438 | # Clip to limits
439 | keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
440 | limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
441 | for k, v in zip(keys, limits):
442 | hyp[k] = np.clip(hyp[k], v[0], v[1])
443 |
444 | # Train mutation
445 | results = train(hyp.copy())
446 |
447 | # Write mutation results
448 | print_mutation(hyp, results, opt.bucket)
449 |
450 | # Plot results
451 | # plot_evolution_results(hyp)
452 |
--------------------------------------------------------------------------------
/train_batch0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/train_batch0.jpg
--------------------------------------------------------------------------------
/train_batch1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/train_batch1.jpg
--------------------------------------------------------------------------------
/train_batch2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/train_batch2.jpg
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/utils/__init__.py
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import torch.nn as nn
5 |
6 |
7 | # Swish ------------------------------------------------------------------------
8 | class SwishImplementation(torch.autograd.Function):
9 | @staticmethod
10 | def forward(ctx, x):
11 | ctx.save_for_backward(x)
12 | return x * torch.sigmoid(x)
13 |
14 | @staticmethod
15 | def backward(ctx, grad_output):
16 | x = ctx.saved_tensors[0]
17 | sx = torch.sigmoid(x)
18 | return grad_output * (sx * (1 + x * (1 - sx)))
19 |
20 |
21 | class MemoryEfficientSwish(nn.Module):
22 | @staticmethod
23 | def forward(x):
24 | return SwishImplementation.apply(x)
25 |
26 |
27 | class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
28 | @staticmethod
29 | def forward(x):
30 | return x * F.hardtanh(x + 3, 0., 6., True) / 6.
31 |
32 |
33 | class Swish(nn.Module):
34 | @staticmethod
35 | def forward(x):
36 | return x * torch.sigmoid(x)
37 |
38 |
39 | # Mish ------------------------------------------------------------------------
40 | class MishImplementation(torch.autograd.Function):
41 | @staticmethod
42 | def forward(ctx, x):
43 | ctx.save_for_backward(x)
44 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
45 |
46 | @staticmethod
47 | def backward(ctx, grad_output):
48 | x = ctx.saved_tensors[0]
49 | sx = torch.sigmoid(x)
50 | fx = F.softplus(x).tanh()
51 | return grad_output * (fx + x * sx * (1 - fx * fx))
52 |
53 |
54 | class MemoryEfficientMish(nn.Module):
55 | @staticmethod
56 | def forward(x):
57 | return MishImplementation.apply(x)
58 |
59 |
60 | class Mish(nn.Module): # https://github.com/digantamisra98/Mish
61 | @staticmethod
62 | def forward(x):
63 | return x * F.softplus(x).tanh()
64 |
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
2 | # pip install --upgrade google-cloud-storage
3 | # from google.cloud import storage
4 |
5 | import os
6 | import time
7 | from pathlib import Path
8 |
9 |
10 | def attempt_download(weights):
11 | # Attempt to download pretrained weights if not found locally
12 | weights = weights.strip()
13 | msg = weights + ' missing, try downloading from https://drive.google.com/drive/folders/1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J'
14 |
15 | r = 1
16 | if len(weights) > 0 and not os.path.isfile(weights):
17 | d = {'yolov3-spp.pt': '1mM67oNw4fZoIOL1c8M3hHmj66d8e-ni_', # yolov3-spp.yaml
18 | 'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO', # yolov5s.yaml
19 | 'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr', # yolov5m.yaml
20 | 'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV', # yolov5l.yaml
21 | 'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS', # yolov5x.yaml
22 | }
23 |
24 | file = Path(weights).name
25 | if file in d:
26 | r = gdrive_download(id=d[file], name=weights)
27 |
28 | if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
29 | os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
30 | s = "curl -L -o %s 'https://storage.googleapis.com/ultralytics/yolov5/ckpt/%s'" % (weights, file)
31 | r = os.system(s) # execute, capture return values
32 |
33 | # Error check
34 | if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
35 | os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
36 | raise Exception(msg)
37 |
38 |
39 | def gdrive_download(id='1HaXkef9z6y5l4vUnCYgdmEAj61c6bfWO', name='coco.zip'):
40 | # https://gist.github.com/tanaikech/f0f2d122e05bf5f971611258c22c110f
41 | # Downloads a file from Google Drive, accepting presented query
42 | # from utils.google_utils import *; gdrive_download()
43 | t = time.time()
44 |
45 | print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
46 | os.remove(name) if os.path.exists(name) else None # remove existing
47 | os.remove('cookie') if os.path.exists('cookie') else None
48 |
49 | # Attempt file download
50 | os.system("curl -c ./cookie -s -L \"https://drive.google.com/uc?export=download&id=%s\" > /dev/null" % id)
51 | if os.path.exists('cookie'): # large file
52 | s = "curl -Lb ./cookie \"https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=%s\" -o %s" % (
53 | id, name)
54 | else: # small file
55 | s = "curl -s -L -o %s 'https://drive.google.com/uc?export=download&id=%s'" % (name, id)
56 | r = os.system(s) # execute, capture return values
57 | os.remove('cookie') if os.path.exists('cookie') else None
58 |
59 | # Error check
60 | if r != 0:
61 | os.remove(name) if os.path.exists(name) else None # remove partial
62 | print('Download error ') # raise Exception('Download error')
63 | return r
64 |
65 | # Unzip if archive
66 | if name.endswith('.zip'):
67 | print('unzipping... ', end='')
68 | os.system('unzip -q %s' % name) # unzip
69 | os.remove(name) # remove zip to free space
70 |
71 | print('Done (%.1fs)' % (time.time() - t))
72 | return r
73 |
74 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
75 | # # Uploads a file to a bucket
76 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
77 | #
78 | # storage_client = storage.Client()
79 | # bucket = storage_client.get_bucket(bucket_name)
80 | # blob = bucket.blob(destination_blob_name)
81 | #
82 | # blob.upload_from_filename(source_file_name)
83 | #
84 | # print('File {} uploaded to {}.'.format(
85 | # source_file_name,
86 | # destination_blob_name))
87 | #
88 | #
89 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
90 | # # Uploads a blob from a bucket
91 | # storage_client = storage.Client()
92 | # bucket = storage_client.get_bucket(bucket_name)
93 | # blob = bucket.blob(source_blob_name)
94 | #
95 | # blob.download_to_filename(destination_file_name)
96 | #
97 | # print('Blob {} downloaded to {}.'.format(
98 | # source_blob_name,
99 | # destination_file_name))
100 |
--------------------------------------------------------------------------------
/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os
3 | import time
4 | from copy import deepcopy
5 |
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | import torch.nn as nn
9 | import torch.nn.functional as F
10 | import torchvision.models as models
11 |
12 |
13 | def init_seeds(seed=0):
14 | torch.manual_seed(seed)
15 |
16 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
17 | if seed == 0: # slower, more reproducible
18 | cudnn.deterministic = True
19 | cudnn.benchmark = False
20 | else: # faster, less reproducible
21 | cudnn.deterministic = False
22 | cudnn.benchmark = True
23 |
24 |
25 | def select_device(device='', apex=False, batch_size=None):
26 | # device = 'cpu' or '0' or '0,1,2,3'
27 | cpu_request = device.lower() == 'cpu'
28 | if device and not cpu_request: # if device requested other than 'cpu'
29 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
30 | assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
31 |
32 | cuda = False if cpu_request else torch.cuda.is_available()
33 | if cuda:
34 | c = 1024 ** 2 # bytes to MB
35 | ng = torch.cuda.device_count()
36 | if ng > 1 and batch_size: # check that batch_size is compatible with device_count
37 | assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
38 | x = [torch.cuda.get_device_properties(i) for i in range(ng)]
39 | s = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex
40 | for i in range(0, ng):
41 | if i == 1:
42 | s = ' ' * len(s)
43 | print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
44 | (s, i, x[i].name, x[i].total_memory / c))
45 | else:
46 | print('Using CPU')
47 |
48 | print('') # skip a line
49 | return torch.device('cuda:0' if cuda else 'cpu')
50 |
51 |
52 | def time_synchronized():
53 | torch.cuda.synchronize() if torch.cuda.is_available() else None
54 | return time.time()
55 |
56 |
57 | def initialize_weights(model):
58 | for m in model.modules():
59 | t = type(m)
60 | if t is nn.Conv2d:
61 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
62 | elif t is nn.BatchNorm2d:
63 | m.eps = 1e-4
64 | m.momentum = 0.03
65 | elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
66 | m.inplace = True
67 |
68 |
69 | def find_modules(model, mclass=nn.Conv2d):
70 | # finds layer indices matching module class 'mclass'
71 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
72 |
73 |
74 | def fuse_conv_and_bn(conv, bn):
75 | # https://tehnokv.com/posts/fusing-batchnorm-and-conv/
76 | with torch.no_grad():
77 | # init
78 | fusedconv = torch.nn.Conv2d(conv.in_channels,
79 | conv.out_channels,
80 | kernel_size=conv.kernel_size,
81 | stride=conv.stride,
82 | padding=conv.padding,
83 | bias=True)
84 |
85 | # prepare filters
86 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
87 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
88 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
89 |
90 | # prepare spatial bias
91 | if conv.bias is not None:
92 | b_conv = conv.bias
93 | else:
94 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device)
95 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
96 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
97 |
98 | return fusedconv
99 |
100 |
101 | def model_info(model, verbose=False):
102 | # Plots a line-by-line description of a PyTorch model
103 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
104 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
105 | if verbose:
106 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
107 | for i, (name, p) in enumerate(model.named_parameters()):
108 | name = name.replace('module_list.', '')
109 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
110 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
111 |
112 | try: # FLOPS
113 | from thop import profile
114 | macs, _ = profile(model, inputs=(torch.zeros(1, 3, 480, 640),), verbose=False)
115 | fs = ', %.1f GFLOPS' % (macs / 1E9 * 2)
116 | except:
117 | fs = ''
118 |
119 | print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
120 |
121 |
122 | def load_classifier(name='resnet101', n=2):
123 | # Loads a pretrained model reshaped to n-class output
124 | model = models.__dict__[name](pretrained=True)
125 |
126 | # Display model properties
127 | input_size = [3, 224, 224]
128 | input_space = 'RGB'
129 | input_range = [0, 1]
130 | mean = [0.485, 0.456, 0.406]
131 | std = [0.229, 0.224, 0.225]
132 | for x in [input_size, input_space, input_range, mean, std]:
133 | print(x + ' =', eval(x))
134 |
135 | # Reshape output to n classes
136 | filters = model.fc.weight.shape[1]
137 | model.fc.bias = torch.nn.Parameter(torch.zeros(n), requires_grad=True)
138 | model.fc.weight = torch.nn.Parameter(torch.zeros(n, filters), requires_grad=True)
139 | model.fc.out_features = n
140 | return model
141 |
142 |
143 | def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
144 | # scales img(bs,3,y,x) by ratio
145 | h, w = img.shape[2:]
146 | s = (int(h * ratio), int(w * ratio)) # new size
147 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
148 | if not same_shape: # pad/crop img
149 | gs = 32 # (pixels) grid size
150 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
151 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
152 |
153 |
154 | class ModelEMA:
155 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
156 | Keep a moving average of everything in the model state_dict (parameters and buffers).
157 | This is intended to allow functionality like
158 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
159 | A smoothed version of the weights is necessary for some training schemes to perform well.
160 | E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
161 | RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
162 | smoothing of weights to match results. Pay attention to the decay constant you are using
163 | relative to your update count per epoch.
164 | To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
165 | disable validation of the EMA weights. Validation will have to be done manually in a separate
166 | process, or after the training stops converging.
167 | This class is sensitive where it is initialized in the sequence of model init,
168 | GPU assignment and distributed training wrappers.
169 | I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
170 | """
171 |
172 | def __init__(self, model, decay=0.9999, device=''):
173 | # make a copy of the model for accumulating moving average of weights
174 | self.ema = deepcopy(model)
175 | self.ema.eval()
176 | self.updates = 0 # number of EMA updates
177 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
178 | self.device = device # perform ema on different device from model if set
179 | if device:
180 | self.ema.to(device=device)
181 | for p in self.ema.parameters():
182 | p.requires_grad_(False)
183 |
184 | def update(self, model):
185 | self.updates += 1
186 | d = self.decay(self.updates)
187 | with torch.no_grad():
188 | if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel):
189 | msd, esd = model.module.state_dict(), self.ema.module.state_dict()
190 | else:
191 | msd, esd = model.state_dict(), self.ema.state_dict()
192 |
193 | for k, v in esd.items():
194 | if v.dtype.is_floating_point:
195 | v *= d
196 | v += (1. - d) * msd[k].detach()
197 |
198 | def update_attr(self, model):
199 | # Assign attributes (which may change during training)
200 | for k in model.__dict__.keys():
201 | if not k.startswith('_'):
202 | setattr(self.ema, k, getattr(model, k))
203 |
--------------------------------------------------------------------------------
/utils/video2rgb.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import os
4 | import cv2
5 |
6 |
7 |
8 |
9 | def video2frame(video_src_path, frame_save_path, interval):
10 | """
11 | 将视频按固定间隔读取写入图片
12 | :param video_src_path: 视频存放路径
13 | :param frame_save_path: 保存路径
14 | :param interval: 保存帧间隔
15 | :return: 帧图片
16 | """
17 | videos = os.listdir(video_src_path)
18 | for video in videos:
19 | if not video.endswith(".mp4"):
20 | videos.remove(video)
21 |
22 | for each_video in videos:
23 | each_video_name = each_video[:-4]
24 | video_save_name = each_video.split(".")[0]
25 | each_video_full_path = os.path.join(video_src_path, each_video)
26 |
27 | cap = cv2.VideoCapture(each_video_full_path)
28 | frame_index = 0
29 | frame_count = 0
30 | if cap.isOpened():
31 | success = True
32 | else:
33 | success = False
34 | print("读取失败!")
35 |
36 | while (success):
37 | success, frame = cap.read()
38 | print("ok")
39 | if frame_index % interval == 0:
40 | cv2.imwrite("E://1.jpg", frame)
41 | frame_count += 1
42 |
43 | frame_index += 1
44 |
45 | cap.release()
46 |
47 |
48 | if __name__ == '__main__':
49 | videos_src_path = r"E:\videos"
50 | frames_save_path = r"E:\images"
51 | time_interval = 50
52 | video2frame(videos_src_path, frames_save_path, time_interval)
53 |
54 |
--------------------------------------------------------------------------------
/weights/best.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/weights/best.pt
--------------------------------------------------------------------------------
/weights/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Download common models
3 |
4 | python3 -c "from utils.google_utils import *;
5 | attempt_download('weights/yolov5s.pt');
6 | attempt_download('weights/yolov5m.pt');
7 | attempt_download('weights/yolov5l.pt');
8 | attempt_download('weights/yolov5x.pt')"
9 |
--------------------------------------------------------------------------------
/weights/last.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/weights/last.pt
--------------------------------------------------------------------------------
/weights/yolov5s.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lieweiAI/action-detection/b8b174d363cf3dac4c94c7736126edc91838c81f/weights/yolov5s.pt
--------------------------------------------------------------------------------