├── CNER_paper.md ├── CNER_sota.md ├── LICENSE ├── README.md └── image ├── AImedical.jpeg └── CNER.png /CNER_paper.md: -------------------------------------------------------------------------------- 1 | # 中文电子病历实体识别研究相关论文 # 2 | 3 | 在中文电子病历实体识别任务上,已经有不少研究方法被提出,这些研究主要集中在对领域特征的探索上,即在通用领域NER方法的基础上,研究中文汉字特征和电子病历知识特征等来提升模型性能。 4 | 5 | 6 | ## 综述论文 ## 7 | 1. **电子病历命名实体识别和实体关系抽取研究综述**. 杨锦锋, 于秋滨, 关毅等. *自动化学报*, 2014, 40(8):1537-1561.[[paper]](https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKL%25mmd2BWhGHP2RH%25mmd2FCcuaMktoPCjRlKnAIz4oZz%25mmd2BWOWrqC5VotmpIfFB%25mmd2FZRngYzCVRatXzqraGtMafLaJ&uniplatform=NZKPT) 8 | 2. **中文电子病历的命名实体识别研究进展**. 杨飞洪,张宇,覃露等.*中国数字医学*,2020,15(02):9-12. [[paper]](https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKMypi3qVj28LGACqMpRVR0Cx7F0z4nrArNWbts3p5zihivTqK4RpjMhvn4k60HG29gkaN2O%25mmd2FT23D&uniplatform=NZKPT) 9 | 2. **Overview of CCKS 2018 Task 1: Named Entity Recognition in Chinese Electronic Medical Records**. Zhang J, Li J, Jiao Z, et al. *In China Conference on Knowledge Graph and Semantic Computing*, Springer, 2019:158-164. [[paper]](https://link.springer.com/chapter/10.1007/978-981-15-1956-7_14) 10 | 2. **Overview of the CCKS 2019 Knowledge Graph Evaluation Track: Entity, Relation, Event and QA**. Han X, Wang Z, Zhang J, et al. *arXiv preprint*, 2020, arXiv:2003.03875. [[paper]](https://arxiv.org/abs/2003.03875) 11 | 12 | 13 | 14 | ## 方法论文 ## 15 | 1. **HITSZ_CNER: a hybrid system for entity recognition from Chinese clinical text**. Hu J, Shi X, Liu Z, et al. *Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2017)*, Chendu, China, 2017:1-6. [[paper]](http://ceur-ws.org/Vol-1976/paper05.pdf). 16 | 2. **Clinical named entity recognition from Chinese electronic health records via machine learning methods**. Zhang Y, Wang X, Hou Z, et al. *JMIR medical informatics*. 2018;6(4):e50. [[paper]](https://doi.org/10.2196/medinform.9965) 17 | 2. **A BiLSTM-CRF Method to Chinese Electronic Medical Record Named Entity Recognition**. Ji B, Liu R, Li S, et al. *In Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence*, 2018:1-6.[[paper]](https://doi.org/10.1145/3302425.3302465) 18 | 3. **A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records**. Chowdhury S, Dong X, Qian L, et al. *BMC bioinformatics*. 2018, 19(17):75-84.[[paper]](https://doi.org/10.1186/s12859-018-2467-9) 19 | 2. **A Conditional Random Fields Approach to Clinical Name Entity Recognition**. Yang X, Huang W. *Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2018)*. Tianjin, China, 2018:1-6.[[paper]](http://ceur-ws.org/Vol-2242/paper01.pdf) 20 | 5. **DUTIR at the CCKS-2018 Task1: A Neural Network Ensemble Approach for Chinese Clinical Named Entity Recognition**. Luo L, Li N, Li S, et al. *Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2018)*. Tianjin, China, 2018:1-6. [[paper]](http://ceur-ws.org/Vol-2242/paper02.pdf) 21 | 2. **Incorporating dictionaries into deep neural networks for the chinese clinical named entity recognition**. Wang Q, Zhou Y, Ruan T, et al. *Journal of biomedical informatics*, 2019, 92: 103133. [[paper]](https://doi.org/10.1016/j.jbi.2019.103133) 22 | 3. **A hybrid approach for named entity recognition in Chinese electronic medical record**. Ji B, Liu R, Li S, et al. *BMC medical informatics and decision making*. 2019 Apr;19(2):149-58. [[paper]](https://doi.org/10.1186/s12911-019-0767-2) 23 | 4. **Chinese Clinical Named Entity Recognition Using Residual Dilated Convolutional Neural Network with Conditional Random Field**. Qiu J, Zhou Y, Wang Q, et al. *IEEE Transactions on NanoBioscience*. 2019, 18(3):306-315. [[paper]](https://doi.org/10.1109/TNB.2019.2908678) 24 | 4. **An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records**. Li L, Zhao J, Hou L, et al. *BMC medical informatics and decision making*. 2019, 19(5):1-1. [[paper]](https://doi.org/10.1186/s12911-019-0933-6) 25 | 5. **Chinese clinical named entity recognition with word-level information incorporating dictionaries**. Lu N, Zheng J, Wu W, et al. *In 2019 International Joint Conference on Neural Networks (IJCNN)*, 2019,1-8. [[paper]](https://doi.org/10.1109/IJCNN.2019.8852113) 26 | 6. **Fine-tuning BERT for joint entity and relation extraction in Chinese medical text**. Xue K, Zhou Y, Ma Z, et al. *In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, 2019, 892-897. [[paper]](https://doi.org/10.1109/BIBM47256.2019.8983370) 27 | 7. **Chinese clinical named entity recognition with radical-level feature and self-attention mechanism**. Yin M, Mou C, Xiong K, et al. *Journal of biomedical informatics*. 2019, 98:103289. [[paper]](https://doi.org/10.1016/j.jbi.2019.103289) 28 | 8. **Adversarial training based lattice LSTM for Chinese clinical named entity recognition**. Zhao S, Cai Z, Chen H, et al. *Journal of biomedical informatics*. 2019, 99:103290. [[paper]](https://doi.org/10.1016/j.jbi.2019.103290) 29 | 3. **基于句子级 Lattice-长短记忆神经网络的中文电子病历命名实体识别**. 潘璀然, 王青华, 汤步洲等. *第二军医大学学报*. 2019,40(05):497-507.[[paper]](https://doi.org/10.16781/j.0258-879x.2019.05.0497) 30 | 4. **基于BERT与模型融合的医疗命名实体识别**. 乔锐,杨笑然,黄文亢. *Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2019)* [[paper]](https://conference.bj.bcebos.com/ccks2019/eval/webpage/pdfs/eval_paper_1_1_1.pdf) 31 | 6. **Noisy Label Learning for Chinese Medical Named Entity Recognition Based on Uncertainty Strategy**. Li Z, Gan Z, Zhang B, et al. *Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2020)* [[paper]](https://bj.bcebos.com/v1/conference/ccks2020/eval_paper/ccks2020_eval_paper_3_1_1.pdf) 32 | 7. **基于BERT与字形字音特征的医疗命名实体识别**. 晏阳天, 赵新宇, 吴贤. *Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing (CCKS 2020)* [[paper]](https://bj.bcebos.com/v1/conference/ccks2020/eval_paper/ccks2020_eval_paper_3_1_2.pdf) 33 | 7. **Cross domains adversarial learning for Chinese named entity recognition for online medical consultation**. Wen G, Chen H, Li H, et al. *Journal of Biomedical Informatics*. 2020 Dec 1;112:103608. [[paper]](https://doi.org/10.1016/j.jbi.2020.103608) 34 | 8. **Chinese medical named entity recognition based on multi-granularity semantic dictionary and multimodal tree**. Wang C, Wang H, Zhuang H, et al. *Journal of Biomedical Informatics*. 2020, 111:103583. [[paper]](https://doi.org/10.1016/j.jbi.2020.103583) 35 | 9. **Chinese Clinical Named Entity Recognition in Electronic Medical Records: Development of a Lattice Long Short-Term Memory Model With Contextualized Character Representations**. Li Y, Wang X, Hui L, et al. *JMIR Medical Informatics*. 2020;8(9):e19848. [[paper]](https://doi.org/10.2196/19848) 36 | 10. **Chinese clinical named entity recognition with variant neural structures based on BERT methods**. Li X, Zhang H, Zhou XH. *Journal of biomedical informatics*. 2020, 107:103422. [[paper]](https://doi.org/10.1016/j.jbi.2020.103422) 37 | 11. **融入语言模型和注意力机制的临床电子病历命名实体识别**. 唐国强,高大启,阮彤等. *计算机科学*,2020,47(03):211-216.[[paper]](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JSJA202003034&v=Ntl86ICshXNN1esogTLhJ2IVb0OpIvyIjXQtWpJ%25mmd2BHFriZZVaOS1OAvlni6EQ3gJB) 38 | 3. **基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究**. 罗凌, 杨志豪, 宋雅文等. *计算机学报*, 2020, 43(10): 1943-1957. [[paper]](https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKMypi3qVj28LGACqMpRVR0Cx7F0z4nrArOkieaNEVV6aCvPFCLMxyD4Jd9UPWqorowq7bp%25mmd2BEnUre&uniplatform=NZKPT) 39 | 40 | 41 | 42 | 43 | 44 | 45 | -------------------------------------------------------------------------------- /CNER_sota.md: -------------------------------------------------------------------------------- 1 | # 中文电子病历实体识别现存方法性能 # 2 | 3 | 中文电子病历实体识别任务的数据集以及相应数据集上系统模型性能表现。目前现存公开的中文电子病历标注数据十分稀缺,为了推动CNER系统在中文临床文本上的表现,中国知识图谱与语义计算大会(China Conference on Knowledge Graph and Semantic Computing, CCKS)在近几年都组织了面向中文电子病历的命名实体识别评测任务,下面我们主要关注CCKS CNER数据集上的结果。 4 | 5 | - [CCKS 2017](#17) 6 | - [CCKS 2018](#18) 7 | - [CCKS 2019](#19) 8 | - [CCKS 2020](#20) 9 | 10 | 11 | ## [CCKS 2017](https://www.biendata.xyz/competition/CCKS2017_2/) ## 12 | 13 | CCKS17数据集:原始数据集分为训练集和测试集,其中训练集包括300个医疗记录,人工标注了五类实体(包括症状和体征、检查和检验、疾病和诊断、治疗、身体部位)。测试集包含100个医疗记录。 14 | 15 | **语料数据统计** 16 | | | 症状体征|检查检验|疾病诊断|治疗|身体部位|总数| 17 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | 18 | | 训练集 | 7,831 | 9,546 | 722 | 1,048 | 10,719 | 29,866 | 19 | | 测试集 | 2,311 | 3,143 | 553 | 465 | 3,021 | 9,493 | 20 | 21 | 22 | **现存方法性能比较 (%F值)** 23 | 24 | 25 | 26 | | 方法 | 症状体征|检查检验|疾病诊断|治疗|身体部位|总体|论文| 27 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | 28 | | HIT-CNER (Hu et al., 2017) Top1 | 96.00 | 94.43 | 78.97 | 81.47 | 87.48 | 91.14 | [HITSZ_CNER: a hybrid system for entity recognition from Chinese clinical text](http://ceur-ws.org/Vol-1976/paper05.pdf) | 29 | | BiLSTM-CRF-DIC (Wang et al., 2019) | - | - | - | - | - | 91.24 | [Incorporating dictionaries into deep neural networks for the chinese clinical named entity recognition](https://doi.org/10.1016/j.jbi.2019.103133) | 30 | | RD-CNN-CRF (Qiu et al., 2019) | - | - | - | - | - | 91.32 | [Chinese Clinical Named Entity Recognition Using Residual Dilated Convolutional Neural Network with Conditional Random Field](https://doi.org/10.1109/TNB.2019.2908678) | 31 | | Tang et al. (2019) | - | - | - | - | - | 91.34 | [融入语言模型和注意力机制的临床电子病历命名实体 识别](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JSJA202003034&v=Ntl86ICshXNN1esogTLhJ2IVb0OpIvyIjXQtWpJ%25mmd2BHFriZZVaOS1OAvlni6EQ3gJB) | 32 | | PDET Feature in Model-II (Lu et al., 2019) | - | - | - | - | - | 92.68 | [Chinese Clinical Named Entity Recognition with Word-Level Information Incorporating Dictionaries](https://doi.org/10.1109/IJCNN.2019.8852113) | 33 | | BiLSTM-CRF-SP+ELMo (Luo et al., 2020) | 95.37 | 94.94 | 81.13 | 83.32 | 88.74 | 91.75 | [基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究](https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKMypi3qVj28LGACqMpRVR0Cx7F0z4nrArOkieaNEVV6aCvPFCLMxyD4Jd9UPWqorowq7bp%25mmd2BEnUre&uniplatform=NZKPT) | 34 | | FT-BERT + BiLSTM + CRF+Fea (Li et al., 2020) | 96.57 | 94.09 | 81.26 | 82.62 | 88.37 | 91.60 | [Chinese clinical named entity recognition with variant neural structures based on BERT methods](https://doi.org/10.1016/j.jbi.2020.103422) | 35 | 36 | 注:Top表示当时评测的前三名系统方法。 37 | 38 | 39 | 40 | ## [CCKS 2018](https://www.biendata.xyz/competition/CCKS2018_1/) ## 41 | 42 | CCKS18数据集:原始数据集包括训练集和测试集.其中训练集包括600个医疗记录,人工标注了五 类实体(包括解剖部位、症状描述、独立症状、药物、 手术)。测试集包含400个医疗记录原始数据。 43 | 44 | 45 | **语料数据统计** 46 | | | 解剖部位|症状描述|独立症状|药物|手术|总数| 47 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | 48 | | 训练集 | 9,472 | 2,484 | 3,712 | 1,221 | 1,329 | 18,218 | 49 | | 测试集 | 6,339 | 918 | 1,327 | 813 | 735 | 10,132 | 50 | 51 | 52 | **现存方法性能比较 (%F值)** 53 | 54 | 55 | 56 | | 方法 | 解剖部位|症状描述|独立症状|药物|手术|总体|论文| 57 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | 58 | | Alihealth Lab (Yang and Huang) (2018) Top1 | 87.97 | 90.59 | 92.45 | 94.49 | 85.43 | 89.13 | [A Conditional Random Fields Approach to Clinical Name Entity Recognition](http://ceur-ws.org/Vol-2242/paper01.pdf) | 59 | | DUTIR (Luo et al., 2018) Top3 | 87.59 | 90.77 | 91.72 | 91.53 | 86.41 | 88.63 | [DUTIR at the CCKS-2018 Task1: A Neural Network Ensemble Approach for Chinese Clinical Named Entity Recognition](http://ceur-ws.org/Vol-2242/paper02.pdf) | 60 | | BiLSTM-CRF (Ji et al., 2018) | 86.65 | 89.13 | 90.69 | 91.15 | 85.61 | 87.68 | [A BiLSTM-CRF Method to Chinese Electronic Medical Record Named Entity Recognition](https://doi.org/10.1145/3302425.3302465) | 61 | | Lattice-LSTM (潘璀然等人, 2019) | - | - | - | - | - | 89.75 | [基于句子级 Lattice- 长短记忆神经网络的中文电子病历命名实体识别](https://doi.org/10.16781/j.0258-879x.2019.05.0497) | 62 | | Attention-BiLSTM-CRF + all (Ji et al, 2019) | - | - | - | - | - | 90.82 | [A hybrid approach for named entity recognition in Chinese electronic medical record](https://doi.org/10.1186/s12911-019-0767-2) | 63 | | MSD_DT_NER (Wang et al., 2020) | 88.01 | 92.57 | 90.71 | 94.58 | 85.62 | 89.88 | [Chinese medical named entity recognition based on multi-granularity semantic dictionary and multimodal tree](https://doi.org/10.1016/j.jbi.2020.103583) | 64 | | BiLSTM-CRF-SP+ELMo (Luo et al., 2020) | 89.69 | 91.83 | 92.01 | 91.30 | 86.22 | 90.05 | [基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究](https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKMypi3qVj28LGACqMpRVR0Cx7F0z4nrArOkieaNEVV6aCvPFCLMxyD4Jd9UPWqorowq7bp%25mmd2BEnUre&uniplatform=NZKPT) | 65 | | FT-BERT + BiLSTM + CRF+Fea (Li et al., 2020) | 89.12 | 90.66 | 92.94 | 87.99 | 87.59 | 89.56 | [Chinese clinical named entity recognition with variant neural structures based on BERT methods](https://doi.org/10.1016/j.jbi.2020.103422) | 66 | 67 | 注:Top表示当时评测的前三名系统方法。 68 | 69 | 70 | ## [CCKS 2019](https://www.biendata.xyz/competition/ccks_2019_1/) ## 71 | 72 | CCKS19数据集:原始数据集包括训练集和测试集.其中训练集包括1000个医疗记录,人工标注了六类实体(包括疾病和诊断、检查、检验、手术、药物、解剖部位)。测试集包含379个医疗记录原始数据。 73 | 74 | 75 | **语料数据统计(唯一实体个数)** 76 | | | 疾病和诊断|检查|检验|手术|药物|解剖部位| 总数| 77 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: |:----: | 78 | | 训练集 | 2,116 | 222 | 318 | 765 | 456 | 1486 | 5,363| 79 | | 测试集 | 682 | 91 | 193 | 140 | 263 | 447 | 1,816 | 80 | 81 | 82 | 83 | **现存方法性能比较 (%F值)** 84 | 85 | 86 | 87 | | 方法 | 疾病和诊断|检查|检验|手术|药物|解剖部位|总体|论文| 88 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: |:----: | 89 | | Alihealth (乔锐等人, 2019) Top1 | 84.29 | 86.29 | 76.94 | 83.33 | 96.02 | 86.18 | 85.62 |[基于BERT与模型融合的医疗命名实体识别](https://conference.bj.bcebos.com/ccks2019/eval/webpage/pdfs/eval_paper_1_1_1.pdf) | 90 | | MSIIP (Liu et al., 2019) Top2 | - | - | - | - | - | - | 85.59|[Team MSIIP at CCKS 2019 Task 1](https://conference.bj.bcebos.com/ccks2019/eval/webpage/pdfs/eval_paper_1_1_2.pdf) | 91 | | DUTIR (Li et al., 2019) Top3 | 82.81 | 88.01 | 75.65 | 86.79 | 94.49 | 85.99 | 85.16| [DUTIR at the CCKS-2019 Task 1: Improving Chinese clinical named entity recognition using stroke ELMo and transfer learning](https://www.researchgate.net/profile/Ling_Luo11/publication/335824610_DUTIR_at_the_CCKS-2019_Task1_Improving_Chinese_Clinical_Named_Entity_Recognition_using_Stroke_ELMo_and_Transfer_Learning/links/5d7d836992851c87c389caf8/DUTIR-at-the-CCKS-2019-Task1-Improving-Chinese-Clinical-Named-Entity-Recognition-using-Stroke-ELMo-and-Transfer-Learning.pdf) | 92 | 93 | 注:Top表示当时评测的前三名系统方法。 94 | 95 | ## [CCKS 2020](https://www.biendata.xyz/competition/ccks_2020_2_1/) ## 96 | 97 | CCKS20数据集:原始数据集包括训练集和测试集.其中训练集包括1050个医疗记录,人工标注了六类实体(包括疾病和诊断、检查、检验、手术、药物、解剖部位)。测试集未公开。 98 | 99 | 100 | **语料数据统计** 101 | | | 疾病和诊断|检查|检验|手术|药物|解剖部位| 总数| 102 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: |:----: | 103 | | 训练集 | 4,345 | 1002 | 1297 | 923 | 1935 | 8811 | 18313| 104 | 105 | 106 | 107 | 108 | **现存方法性能比较 (%F值)** 109 | 110 | 111 | 112 | | 方法 | 疾病和诊断|检查|检验|手术|药物|解剖部位|总体|论文| 113 | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: |:----: | 114 | | CASIA_Unisound (Li et al.,2020) Top1 | 90.93 | 89.96 | 85.94 | 94.85 | 93.56 | 91.62 | 91.56 |[Noisy Label Learning for Chinese Medical Named Entity Recognition Based on Uncertainty Strategy](https://bj.bcebos.com/v1/conference/ccks2020/eval_paper/ccks2020_eval_paper_3_1_1.pdf) | 115 | | TMAIL (晏阳天等人, 2020) Top2 | 90.53 | 88.47 | 83.50 | 96.21 | 93.75 | 92.00 | 91.54|[基于BERT与字形字音特征的医疗命名实体识别](https://bj.bcebos.com/v1/conference/ccks2020/eval_paper/ccks2020_eval_paper_3_1_2.pdf) | 116 | | ChiEHRBert (杨文明等人, 2020) Top3 | 91.10 | 88.62 | 85.71 | 95.52 | 92.93 | 91.16 | 91.24| [基于 ChiEHRBert 与多模型融合的医疗命名实体识别](https://bj.bcebos.com/v1/conference/ccks2020/eval_paper/ccks2020_eval_paper_3_1_3.pdf) | 117 | 118 | 注:Top表示当时评测的前三名系统方法。 -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 中文生物医学自然语言处理(Chinese-BioNLP) 2 | 3 | 4 | 该项目旨在跟踪中文生物医学自然语言处理的进展,收集整理相关的论文列表和展示现存方法性能。 5 | 6 | ## 中文电子病历命名实体识别 ## 7 | 中文电子病历命名实体识别(Chinese Clinical Named Entity Recognition, Chinese-CNER)任务目标是从给定的电子病历纯文本文档中识别并抽取出与医学临床相关的实体提及,并将它们归类到预定义的类别。下图展示了CCKS18 CNER评测数据的一个样例。 8 | 9 |
10 | 11 |
12 | 13 | - [相关论文](CNER_paper.md) 14 | - 综述论文 15 | - 方法论文 16 | 17 | 18 | - [现存方法性能](CNER_sota.md) 19 | - CCKS 2017 20 | - CCKS 2018 21 | - CCKS 2019 22 | - CCkS 2020 23 | 24 | 25 | -------------------------------------------------------------------------------- /image/AImedical.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lingluodlut/Chinese-BioNLP/35af6d0c44b01e1817f0e0a5e547591047d2ded7/image/AImedical.jpeg -------------------------------------------------------------------------------- /image/CNER.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lingluodlut/Chinese-BioNLP/35af6d0c44b01e1817f0e0a5e547591047d2ded7/image/CNER.png --------------------------------------------------------------------------------