├── CMakeLists.txt ├── README.md ├── bin ├── 1.jpg ├── ORBextractor └── orb_features.jpg ├── include └── ORBextractor.h ├── lib └── liborbextractor.so ├── param └── orb.yaml ├── screenshots ├── 1.jpg ├── 2.jpg ├── liu1.jpg └── liu2.jpg └── src ├── ORBextractor ├── ORBextractor.cpp └── main.cpp /CMakeLists.txt: -------------------------------------------------------------------------------- 1 | cmake_minimum_required(VERSION 2.8) 2 | project(orbextractor) 3 | 4 | IF(NOT CMAKE_BUILD_TYPE) 5 | SET(CMAKE_BUILD_TYPE Release) 6 | ENDIF() 7 | 8 | MESSAGE("Build type: " ${CMAKE_BUILD_TYPE}) 9 | 10 | set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -O3 -march=native ") 11 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -O3 -march=native") 12 | 13 | # Check C++11 or C++0x support 14 | include(CheckCXXCompilerFlag) 15 | CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11) 16 | CHECK_CXX_COMPILER_FLAG("-std=c++0x" COMPILER_SUPPORTS_CXX0X) 17 | if(COMPILER_SUPPORTS_CXX11) 18 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") 19 | add_definitions(-DCOMPILEDWITHC11) 20 | message(STATUS "Using flag -std=c++11.") 21 | elseif(COMPILER_SUPPORTS_CXX0X) 22 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x") 23 | add_definitions(-DCOMPILEDWITHC0X) 24 | message(STATUS "Using flag -std=c++0x.") 25 | else() 26 | message(FATAL_ERROR "The compiler ${CMAKE_CXX_COMPILER} has no C++11 support. Please use a different C++ compiler.") 27 | endif() 28 | 29 | #LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules) 30 | 31 | find_package(OpenCV 3.0 QUIET) 32 | if(NOT OpenCV_FOUND) 33 | find_package(OpenCV 2.4.3 QUIET) 34 | if(NOT OpenCV_FOUND) 35 | message(FATAL_ERROR "OpenCV > 2.4.3 not found.") 36 | endif() 37 | endif() 38 | 39 | 40 | include_directories( 41 | ${PROJECT_SOURCE_DIR} 42 | ${PROJECT_SOURCE_DIR}/include 43 | ) 44 | 45 | set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/lib) 46 | 47 | add_library(${PROJECT_NAME} SHARED 48 | src/ORBextractor.cpp 49 | ) 50 | 51 | target_link_libraries(${PROJECT_NAME} 52 | ${OpenCV_LIBS} 53 | ) 54 | 55 | # Build examples 56 | 57 | set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/bin) 58 | 59 | add_executable(ORBextractor 60 | src/main.cpp) 61 | target_link_libraries(ORBextractor ${PROJECT_NAME}) 62 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # orb-extractor 2 | 3 | **29 Nov 2019** 4 | 5 | I separate orb-feature extractor code from [orbslam2 project](https://github.com/raulmur/ORB_SLAM2). 6 | 7 | # 1. Prerequisites 8 | I have tested the library in **Ubuntu 18.04** 9 | 10 | ## C++11 or C++0x Compiler 11 | 12 | ## OpenCV 13 | I use [OpenCV](http://opencv.org) to manipulate images and features.My version is 3.4.8. 14 | 15 | # 2. Building this library and examples(main.cpp) 16 | 17 | Clone the repository: 18 | ``` 19 | git clone https://github.com/slaming/ORBExtractor 20 | ``` 21 | ``` 22 | cd ORBExtractor 23 | ``` 24 | ``` 25 | mkdir build 26 | ``` 27 | ``` 28 | cd build 29 | ``` 30 | ``` 31 | cmake .. 32 | ``` 33 | ``` 34 | build -j4 35 | ``` 36 | 37 | # 3.Examples(main.cpp) 38 | 39 | ``` 40 | cd bin 41 | ``` 42 | ``` 43 | ./ORBextractor ../pictures/liu2.jpg ../param/orb.yaml 44 | ``` 45 | 46 | ## Provide two results 47 | ### First 48 | ORBExtractor1 50 | ORBExtractor1 52 | ### Second 53 | ORBExtractor2 55 | ORBExtractor2 57 | -------------------------------------------------------------------------------- /bin/1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/bin/1.jpg -------------------------------------------------------------------------------- /bin/ORBextractor: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/bin/ORBextractor -------------------------------------------------------------------------------- /bin/orb_features.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/bin/orb_features.jpg -------------------------------------------------------------------------------- /include/ORBextractor.h: -------------------------------------------------------------------------------- 1 | #ifndef ORBEXTRACTOR_H 2 | #define ORBEXTRACTOR_H 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | 9 | namespace ORB_SLAM2 10 | { 11 | 12 | class ExtractorNode 13 | { 14 | public: 15 | ExtractorNode():bNoMore(false){} 16 | 17 | void DivideNode(ExtractorNode &n1, ExtractorNode &n2, ExtractorNode &n3, ExtractorNode &n4); 18 | 19 | std::vector vKeys; 20 | cv::Point2i UL, UR, BL, BR; 21 | std::list::iterator lit; 22 | bool bNoMore; 23 | }; 24 | 25 | class ORBextractor 26 | { 27 | public: 28 | 29 | enum {HARRIS_SCORE=0, FAST_SCORE=1 }; 30 | 31 | ORBextractor(int nfeatures, float scaleFactor, int nlevels, 32 | int iniThFAST, int minThFAST); 33 | 34 | ~ORBextractor(){} 35 | 36 | // Compute the ORB features and descriptors on an image. 37 | // ORB are dispersed on the image using an octree. 38 | // Mask is ignored in the current implementation. 39 | void operator()( cv::InputArray image, cv::InputArray mask, 40 | std::vector& keypoints, 41 | cv::OutputArray descriptors); 42 | 43 | int inline GetLevels(){ 44 | return nlevels;} 45 | 46 | float inline GetScaleFactor(){ 47 | return scaleFactor;} 48 | 49 | std::vector inline GetScaleFactors(){ 50 | return mvScaleFactor; 51 | } 52 | 53 | std::vector inline GetInverseScaleFactors(){ 54 | return mvInvScaleFactor; 55 | } 56 | 57 | std::vector inline GetScaleSigmaSquares(){ 58 | return mvLevelSigma2; 59 | } 60 | 61 | std::vector inline GetInverseScaleSigmaSquares(){ 62 | return mvInvLevelSigma2; 63 | } 64 | 65 | std::vector mvImagePyramid; 66 | 67 | protected: 68 | 69 | void ComputePyramid(cv::Mat image); 70 | void ComputeKeyPointsOctTree(std::vector >& allKeypoints); 71 | std::vector DistributeOctTree(const std::vector& vToDistributeKeys, const int &minX, 72 | const int &maxX, const int &minY, const int &maxY, const int &nFeatures, const int &level); 73 | 74 | void ComputeKeyPointsOld(std::vector >& allKeypoints); 75 | std::vector pattern; 76 | 77 | int nfeatures; 78 | double scaleFactor; 79 | int nlevels; 80 | int iniThFAST; 81 | int minThFAST; 82 | 83 | std::vector mnFeaturesPerLevel; 84 | 85 | std::vector umax; 86 | 87 | std::vector mvScaleFactor; 88 | std::vector mvInvScaleFactor; 89 | std::vector mvLevelSigma2; 90 | std::vector mvInvLevelSigma2; 91 | }; 92 | 93 | } //namespace ORB_SLAM 94 | 95 | #endif 96 | 97 | -------------------------------------------------------------------------------- /lib/liborbextractor.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/lib/liborbextractor.so -------------------------------------------------------------------------------- /param/orb.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | 3 | #-------------------------------------------------------------------------------------------- 4 | # ORB Parameters 5 | #-------------------------------------------------------------------------------------------- 6 | 7 | # ORB Extractor: Number of features per image 8 | ORBextractor.nFeatures: 2000 9 | 10 | # ORB Extractor: Scale factor between levels in the scale pyramid 11 | ORBextractor.scaleFactor: 1.2 12 | 13 | # ORB Extractor: Number of levels in the scale pyramid 14 | ORBextractor.nLevels: 8 15 | 16 | # ORB Extractor: Fast threshold 17 | # Image is divided in a grid. At each cell FAST are extracted imposing a minimum response. 18 | # Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST 19 | # You can lower these values if your images have low contrast 20 | ORBextractor.iniThFAST: 20 21 | ORBextractor.minThFAST: 7 22 | -------------------------------------------------------------------------------- /screenshots/1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/screenshots/1.jpg -------------------------------------------------------------------------------- /screenshots/2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/screenshots/2.jpg -------------------------------------------------------------------------------- /screenshots/liu1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/screenshots/liu1.jpg -------------------------------------------------------------------------------- /screenshots/liu2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/screenshots/liu2.jpg -------------------------------------------------------------------------------- /src/ORBextractor: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/liuzhenboo/orb-extractor/538dbab86a60fd6632b4d222819fe2058332fcc2/src/ORBextractor -------------------------------------------------------------------------------- /src/ORBextractor.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | #include 6 | #include 7 | 8 | #include "ORBextractor.h" 9 | #include 10 | 11 | 12 | using namespace cv; 13 | using namespace std; 14 | 15 | namespace ORB_SLAM2 16 | { 17 | 18 | const int PATCH_SIZE = 31; 19 | const int HALF_PATCH_SIZE = 15; 20 | const int EDGE_THRESHOLD = 19; 21 | 22 | 23 | static float IC_Angle(const Mat& image, Point2f pt, const vector & u_max) 24 | { 25 | int m_01 = 0, m_10 = 0; 26 | 27 | const uchar* center = &image.at (cvRound(pt.y), cvRound(pt.x)); 28 | 29 | // Treat the center line differently, v=0 30 | for (int u = -HALF_PATCH_SIZE; u <= HALF_PATCH_SIZE; ++u) 31 | m_10 += u * center[u]; 32 | 33 | // Go line by line in the circuI853lar patch 34 | int step = (int)image.step1(); 35 | for (int v = 1; v <= HALF_PATCH_SIZE; ++v) 36 | { 37 | // Proceed over the two lines 38 | int v_sum = 0; 39 | int d = u_max[v]; 40 | for (int u = -d; u <= d; ++u) 41 | { 42 | int val_plus = center[u + v*step], val_minus = center[u - v*step]; 43 | v_sum += (val_plus - val_minus); 44 | m_10 += u * (val_plus + val_minus); 45 | } 46 | m_01 += v * v_sum; 47 | } 48 | 49 | return fastAtan2((float)m_01, (float)m_10); 50 | } 51 | 52 | 53 | const float factorPI = (float)(CV_PI/180.f); 54 | static void computeOrbDescriptor(const KeyPoint& kpt, 55 | const Mat& img, const Point* pattern, 56 | uchar* desc) 57 | { 58 | float angle = (float)kpt.angle*factorPI; 59 | float a = (float)cos(angle), b = (float)sin(angle); 60 | 61 | const uchar* center = &img.at(cvRound(kpt.pt.y), cvRound(kpt.pt.x)); 62 | const int step = (int)img.step; 63 | 64 | #define GET_VALUE(idx) \ 65 | center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \ 66 | cvRound(pattern[idx].x*a - pattern[idx].y*b)] 67 | 68 | 69 | for (int i = 0; i < 32; ++i, pattern += 16) 70 | { 71 | int t0, t1, val; 72 | t0 = GET_VALUE(0); t1 = GET_VALUE(1); 73 | val = t0 < t1; 74 | t0 = GET_VALUE(2); t1 = GET_VALUE(3); 75 | val |= (t0 < t1) << 1; 76 | t0 = GET_VALUE(4); t1 = GET_VALUE(5); 77 | val |= (t0 < t1) << 2; 78 | t0 = GET_VALUE(6); t1 = GET_VALUE(7); 79 | val |= (t0 < t1) << 3; 80 | t0 = GET_VALUE(8); t1 = GET_VALUE(9); 81 | val |= (t0 < t1) << 4; 82 | t0 = GET_VALUE(10); t1 = GET_VALUE(11); 83 | val |= (t0 < t1) << 5; 84 | t0 = GET_VALUE(12); t1 = GET_VALUE(13); 85 | val |= (t0 < t1) << 6; 86 | t0 = GET_VALUE(14); t1 = GET_VALUE(15); 87 | val |= (t0 < t1) << 7; 88 | 89 | desc[i] = (uchar)val; 90 | } 91 | 92 | #undef GET_VALUE 93 | } 94 | 95 | 96 | static int bit_pattern_31_[256*4] = 97 | { 98 | 8,-3, 9,5/*mean (0), correlation (0)*/, 99 | 4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, 100 | -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, 101 | 7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, 102 | 2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, 103 | 1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, 104 | -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, 105 | -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, 106 | -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, 107 | 10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, 108 | -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, 109 | -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, 110 | 7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, 111 | -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, 112 | -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, 113 | -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, 114 | 12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, 115 | -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, 116 | -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, 117 | 11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, 118 | 4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, 119 | 5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, 120 | 3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, 121 | -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, 122 | -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, 123 | -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, 124 | -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, 125 | -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, 126 | -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, 127 | 5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, 128 | 5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, 129 | 1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, 130 | 9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, 131 | 4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, 132 | 2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, 133 | -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, 134 | -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, 135 | 4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, 136 | 0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, 137 | -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, 138 | -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, 139 | -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, 140 | 8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, 141 | 0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, 142 | 7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, 143 | -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, 144 | 10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, 145 | -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, 146 | 10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, 147 | -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, 148 | -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, 149 | 3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, 150 | 5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, 151 | -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, 152 | 3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, 153 | 2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, 154 | -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, 155 | -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, 156 | -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, 157 | -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, 158 | 6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, 159 | -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, 160 | -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, 161 | -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, 162 | 3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, 163 | -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, 164 | -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, 165 | 2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, 166 | -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, 167 | -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, 168 | 5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, 169 | -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, 170 | -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, 171 | -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, 172 | 10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, 173 | 7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, 174 | -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, 175 | -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, 176 | 7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, 177 | -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, 178 | -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, 179 | -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, 180 | 7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, 181 | -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, 182 | 1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, 183 | 2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, 184 | -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, 185 | -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, 186 | 7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, 187 | 1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, 188 | 9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, 189 | -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, 190 | -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, 191 | 7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, 192 | 12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, 193 | 6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, 194 | 5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, 195 | 2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, 196 | 3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, 197 | 2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, 198 | 9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, 199 | -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, 200 | -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, 201 | 1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, 202 | 6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, 203 | 2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, 204 | 6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, 205 | 3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, 206 | 7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, 207 | -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, 208 | -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, 209 | -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, 210 | -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, 211 | 8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, 212 | 4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, 213 | -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, 214 | 4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, 215 | -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, 216 | -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, 217 | 7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, 218 | -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, 219 | -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, 220 | 8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, 221 | -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, 222 | 1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, 223 | 7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, 224 | -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, 225 | 11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, 226 | -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, 227 | 3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, 228 | 5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, 229 | 0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, 230 | -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, 231 | 0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, 232 | -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, 233 | 5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, 234 | 3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, 235 | -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, 236 | -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, 237 | -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, 238 | 6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, 239 | -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, 240 | -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, 241 | 1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, 242 | 4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, 243 | -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, 244 | 2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, 245 | -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, 246 | 4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, 247 | -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, 248 | -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, 249 | 7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, 250 | 4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, 251 | -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, 252 | 7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, 253 | 7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, 254 | -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, 255 | -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, 256 | -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, 257 | 2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, 258 | 10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, 259 | -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, 260 | 8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, 261 | 2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, 262 | -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, 263 | -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, 264 | -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, 265 | 5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, 266 | -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, 267 | -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, 268 | -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, 269 | -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, 270 | -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, 271 | 2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, 272 | -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, 273 | -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, 274 | -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, 275 | -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, 276 | 6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, 277 | -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, 278 | 11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, 279 | 7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, 280 | -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, 281 | -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, 282 | -7,1, -6,7/*mean (0.175), correlation (0.500024)*/, 283 | -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, 284 | -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, 285 | -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, 286 | -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, 287 | -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, 288 | 1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, 289 | 1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, 290 | 9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, 291 | 5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, 292 | -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, 293 | -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, 294 | -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, 295 | -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, 296 | 8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, 297 | 2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, 298 | 7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, 299 | -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, 300 | -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, 301 | 4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, 302 | 3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, 303 | -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, 304 | 5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, 305 | 4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, 306 | -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, 307 | 0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, 308 | -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, 309 | 3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, 310 | -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, 311 | 8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, 312 | -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, 313 | 2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, 314 | 10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, 315 | 6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, 316 | -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, 317 | -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, 318 | -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, 319 | -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, 320 | -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, 321 | 4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, 322 | 2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, 323 | 6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, 324 | 3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, 325 | 11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, 326 | -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, 327 | 4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, 328 | 2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, 329 | -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, 330 | -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, 331 | -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, 332 | 6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, 333 | 0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, 334 | -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, 335 | -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, 336 | -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, 337 | 5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, 338 | 2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, 339 | -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, 340 | 9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, 341 | 11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, 342 | 3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, 343 | -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, 344 | 3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, 345 | -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, 346 | 5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, 347 | 8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, 348 | 7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, 349 | -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, 350 | 7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, 351 | 9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, 352 | 7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, 353 | -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ 354 | }; 355 | 356 | ORBextractor::ORBextractor(int _nfeatures, float _scaleFactor, int _nlevels, 357 | int _iniThFAST, int _minThFAST): 358 | nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels), 359 | iniThFAST(_iniThFAST), minThFAST(_minThFAST) 360 | { 361 | mvScaleFactor.resize(nlevels); 362 | mvLevelSigma2.resize(nlevels); 363 | mvScaleFactor[0]=1.0f; 364 | mvLevelSigma2[0]=1.0f; 365 | for(int i=1; i= vmin; --v) 410 | { 411 | while (umax[v0] == umax[v0 + 1]) 412 | ++v0; 413 | umax[v] = v0; 414 | ++v0; 415 | } 416 | } 417 | 418 | static void computeOrientation(const Mat& image, vector& keypoints, const vector& umax) 419 | { 420 | for (vector::iterator keypoint = keypoints.begin(), 421 | keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) 422 | { 423 | keypoint->angle = IC_Angle(image, keypoint->pt, umax); 424 | } 425 | } 426 | 427 | void ExtractorNode::DivideNode(ExtractorNode &n1, ExtractorNode &n2, ExtractorNode &n3, ExtractorNode &n4) 428 | { 429 | const int halfX = ceil(static_cast(UR.x-UL.x)/2); 430 | const int halfY = ceil(static_cast(BR.y-UL.y)/2); 431 | 432 | //Define boundaries of childs 433 | n1.UL = UL; 434 | n1.UR = cv::Point2i(UL.x+halfX,UL.y); 435 | n1.BL = cv::Point2i(UL.x,UL.y+halfY); 436 | n1.BR = cv::Point2i(UL.x+halfX,UL.y+halfY); 437 | n1.vKeys.reserve(vKeys.size()); 438 | 439 | n2.UL = n1.UR; 440 | n2.UR = UR; 441 | n2.BL = n1.BR; 442 | n2.BR = cv::Point2i(UR.x,UL.y+halfY); 443 | n2.vKeys.reserve(vKeys.size()); 444 | 445 | n3.UL = n1.BL; 446 | n3.UR = n1.BR; 447 | n3.BL = BL; 448 | n3.BR = cv::Point2i(n1.BR.x,BL.y); 449 | n3.vKeys.reserve(vKeys.size()); 450 | 451 | n4.UL = n3.UR; 452 | n4.UR = n2.BR; 453 | n4.BL = n3.BR; 454 | n4.BR = BR; 455 | n4.vKeys.reserve(vKeys.size()); 456 | 457 | //Associate points to childs 458 | for(size_t i=0;i ORBextractor::DistributeOctTree(const vector& vToDistributeKeys, const int &minX, 486 | const int &maxX, const int &minY, const int &maxY, const int &N, const int &level) 487 | { 488 | // Compute how many initial nodes 489 | const int nIni = round(static_cast(maxX-minX)/(maxY-minY)); 490 | 491 | const float hX = static_cast(maxX-minX)/nIni; 492 | 493 | list lNodes; 494 | 495 | vector vpIniNodes; 496 | vpIniNodes.resize(nIni); 497 | 498 | for(int i=0; i(i),0); 502 | ni.UR = cv::Point2i(hX*static_cast(i+1),0); 503 | ni.BL = cv::Point2i(ni.UL.x,maxY-minY); 504 | ni.BR = cv::Point2i(ni.UR.x,maxY-minY); 505 | ni.vKeys.reserve(vToDistributeKeys.size()); 506 | 507 | lNodes.push_back(ni); 508 | vpIniNodes[i] = &lNodes.back(); 509 | } 510 | 511 | //Associate points to childs 512 | for(size_t i=0;ivKeys.push_back(kp); 516 | } 517 | 518 | list::iterator lit = lNodes.begin(); 519 | 520 | while(lit!=lNodes.end()) 521 | { 522 | if(lit->vKeys.size()==1) 523 | { 524 | lit->bNoMore=true; 525 | lit++; 526 | } 527 | else if(lit->vKeys.empty()) 528 | lit = lNodes.erase(lit); 529 | else 530 | lit++; 531 | } 532 | 533 | bool bFinish = false; 534 | 535 | int iteration = 0; 536 | 537 | vector > vSizeAndPointerToNode; 538 | vSizeAndPointerToNode.reserve(lNodes.size()*4); 539 | 540 | // 根据兴趣点分布,利用N叉树方法对图像进行划分区域 541 | while(!bFinish) 542 | { 543 | iteration++; 544 | 545 | int prevSize = lNodes.size(); 546 | 547 | lit = lNodes.begin(); 548 | 549 | int nToExpand = 0; 550 | 551 | vSizeAndPointerToNode.clear(); 552 | 553 | // 将目前的子区域经行划分 554 | while(lit!=lNodes.end()) 555 | { 556 | if(lit->bNoMore) 557 | { 558 | // If node only contains one point do not subdivide and continue 559 | lit++; 560 | continue; 561 | } 562 | else 563 | { 564 | // If more than one point, subdivide 565 | ExtractorNode n1,n2,n3,n4; 566 | lit->DivideNode(n1,n2,n3,n4); // 再细分成四个子区域 567 | 568 | // Add childs if they contain points 569 | if(n1.vKeys.size()>0) 570 | { 571 | lNodes.push_front(n1); 572 | if(n1.vKeys.size()>1) 573 | { 574 | nToExpand++; 575 | vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front())); 576 | lNodes.front().lit = lNodes.begin(); 577 | } 578 | } 579 | if(n2.vKeys.size()>0) 580 | { 581 | lNodes.push_front(n2); 582 | if(n2.vKeys.size()>1) 583 | { 584 | nToExpand++; 585 | vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front())); 586 | lNodes.front().lit = lNodes.begin(); 587 | } 588 | } 589 | if(n3.vKeys.size()>0) 590 | { 591 | lNodes.push_front(n3); 592 | if(n3.vKeys.size()>1) 593 | { 594 | nToExpand++; 595 | vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front())); 596 | lNodes.front().lit = lNodes.begin(); 597 | } 598 | } 599 | if(n4.vKeys.size()>0) 600 | { 601 | lNodes.push_front(n4); 602 | if(n4.vKeys.size()>1) 603 | { 604 | nToExpand++; 605 | vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front())); 606 | lNodes.front().lit = lNodes.begin(); 607 | } 608 | } 609 | 610 | lit=lNodes.erase(lit); 611 | continue; 612 | } 613 | } 614 | 615 | // Finish if there are more nodes than required features 616 | // or all nodes contain just one point 617 | if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize) 618 | { 619 | bFinish = true; 620 | } 621 | // 当再划分之后所有的Node数大于要求数目时 622 | else if(((int)lNodes.size()+nToExpand*3)>N) 623 | { 624 | 625 | while(!bFinish) 626 | { 627 | 628 | prevSize = lNodes.size(); 629 | 630 | vector > vPrevSizeAndPointerToNode = vSizeAndPointerToNode; 631 | vSizeAndPointerToNode.clear(); 632 | 633 | // 对需要划分的部分进行排序, 即对兴趣点数较多的区域进行划分 634 | sort(vPrevSizeAndPointerToNode.begin(),vPrevSizeAndPointerToNode.end()); 635 | for(int j=vPrevSizeAndPointerToNode.size()-1;j>=0;j--) 636 | { 637 | ExtractorNode n1,n2,n3,n4; 638 | vPrevSizeAndPointerToNode[j].second->DivideNode(n1,n2,n3,n4); 639 | 640 | // Add childs if they contain points 641 | if(n1.vKeys.size()>0) 642 | { 643 | lNodes.push_front(n1); 644 | if(n1.vKeys.size()>1) 645 | { 646 | vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front())); 647 | lNodes.front().lit = lNodes.begin(); 648 | } 649 | } 650 | if(n2.vKeys.size()>0) 651 | { 652 | lNodes.push_front(n2); 653 | if(n2.vKeys.size()>1) 654 | { 655 | vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front())); 656 | lNodes.front().lit = lNodes.begin(); 657 | } 658 | } 659 | if(n3.vKeys.size()>0) 660 | { 661 | lNodes.push_front(n3); 662 | if(n3.vKeys.size()>1) 663 | { 664 | vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front())); 665 | lNodes.front().lit = lNodes.begin(); 666 | } 667 | } 668 | if(n4.vKeys.size()>0) 669 | { 670 | lNodes.push_front(n4); 671 | if(n4.vKeys.size()>1) 672 | { 673 | vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front())); 674 | lNodes.front().lit = lNodes.begin(); 675 | } 676 | } 677 | 678 | lNodes.erase(vPrevSizeAndPointerToNode[j].second->lit); 679 | 680 | if((int)lNodes.size()>=N) 681 | break; 682 | } 683 | 684 | if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize) 685 | bFinish = true; 686 | 687 | } 688 | } 689 | } 690 | 691 | // Retain the best point in each node 692 | // 保留每个区域响应值最大的一个兴趣点 693 | vector vResultKeys; 694 | vResultKeys.reserve(nfeatures); 695 | for(list::iterator lit=lNodes.begin(); lit!=lNodes.end(); lit++) 696 | { 697 | vector &vNodeKeys = lit->vKeys; 698 | cv::KeyPoint* pKP = &vNodeKeys[0]; 699 | float maxResponse = pKP->response; 700 | 701 | for(size_t k=1;kmaxResponse) 704 | { 705 | pKP = &vNodeKeys[k]; 706 | maxResponse = vNodeKeys[k].response; 707 | } 708 | } 709 | 710 | vResultKeys.push_back(*pKP); 711 | } 712 | 713 | return vResultKeys; 714 | } 715 | 716 | void ORBextractor::ComputeKeyPointsOctTree(vector >& allKeypoints) 717 | { 718 | allKeypoints.resize(nlevels); 719 | 720 | const float W = 30; 721 | 722 | // 对每一层图像做处理 723 | for (int level = 0; level < nlevels; ++level) 724 | { 725 | const int minBorderX = EDGE_THRESHOLD-3; 726 | const int minBorderY = minBorderX; 727 | const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD+3; 728 | const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD+3; 729 | 730 | vector vToDistributeKeys; 731 | vToDistributeKeys.reserve(nfeatures*10); 732 | 733 | const float width = (maxBorderX-minBorderX); 734 | const float height = (maxBorderY-minBorderY); 735 | 736 | const int nCols = width/W; 737 | const int nRows = height/W; 738 | const int wCell = ceil(width/nCols); 739 | const int hCell = ceil(height/nRows); 740 | 741 | for(int i=0; i=maxBorderY-3) 747 | continue; 748 | if(maxY>maxBorderY) 749 | maxY = maxBorderY; 750 | 751 | for(int j=0; j=maxBorderX-6) 756 | continue; 757 | if(maxX>maxBorderX) 758 | maxX = maxBorderX; 759 | 760 | // FAST提取兴趣点, 自适应阈值 761 | vector vKeysCell; 762 | FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX), 763 | vKeysCell,iniThFAST,true); 764 | 765 | if(vKeysCell.empty()) 766 | { 767 | FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX), 768 | vKeysCell,minThFAST,true); 769 | } 770 | 771 | if(!vKeysCell.empty()) 772 | { 773 | for(vector::iterator vit=vKeysCell.begin(); vit!=vKeysCell.end();vit++) 774 | { 775 | (*vit).pt.x+=j*wCell; 776 | (*vit).pt.y+=i*hCell; 777 | vToDistributeKeys.push_back(*vit); 778 | } 779 | } 780 | 781 | } 782 | } 783 | 784 | vector & keypoints = allKeypoints[level]; 785 | keypoints.reserve(nfeatures); 786 | 787 | // 根据mnFeaturesPerLevel,即该层的兴趣点数,对特征点进行剔除 788 | keypoints = DistributeOctTree(vToDistributeKeys, minBorderX, maxBorderX, 789 | minBorderY, maxBorderY,mnFeaturesPerLevel[level], level); 790 | 791 | const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level]; 792 | 793 | // Add border to coordinates and scale information 794 | const int nkps = keypoints.size(); 795 | for(int i=0; i > &allKeypoints) 810 | { 811 | allKeypoints.resize(nlevels); 812 | 813 | float imageRatio = (float)mvImagePyramid[0].cols/mvImagePyramid[0].rows; 814 | 815 | for (int level = 0; level < nlevels; ++level) 816 | { 817 | const int nDesiredFeatures = mnFeaturesPerLevel[level]; 818 | 819 | const int levelCols = sqrt((float)nDesiredFeatures/(5*imageRatio)); 820 | const int levelRows = imageRatio*levelCols; 821 | 822 | const int minBorderX = EDGE_THRESHOLD; 823 | const int minBorderY = minBorderX; 824 | const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD; 825 | const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD; 826 | 827 | const int W = maxBorderX - minBorderX; 828 | const int H = maxBorderY - minBorderY; 829 | const int cellW = ceil((float)W/levelCols); 830 | const int cellH = ceil((float)H/levelRows); 831 | 832 | const int nCells = levelRows*levelCols; 833 | const int nfeaturesCell = ceil((float)nDesiredFeatures/nCells); 834 | 835 | vector > > cellKeyPoints(levelRows, vector >(levelCols)); 836 | 837 | vector > nToRetain(levelRows,vector(levelCols,0)); 838 | vector > nTotal(levelRows,vector(levelCols,0)); 839 | vector > bNoMore(levelRows,vector(levelCols,false)); 840 | vector iniXCol(levelCols); 841 | vector iniYRow(levelRows); 842 | int nNoMore = 0; 843 | int nToDistribute = 0; 844 | 845 | 846 | float hY = cellH + 6; 847 | 848 | for(int i=0; infeaturesCell) 903 | { 904 | nToRetain[i][j] = nfeaturesCell; 905 | bNoMore[i][j] = false; 906 | } 907 | else 908 | { 909 | nToRetain[i][j] = nKeys; 910 | nToDistribute += nfeaturesCell-nKeys; 911 | bNoMore[i][j] = true; 912 | nNoMore++; 913 | } 914 | 915 | } 916 | } 917 | 918 | 919 | // Retain by score 920 | 921 | while(nToDistribute>0 && nNoMorenNewFeaturesCell) 933 | { 934 | nToRetain[i][j] = nNewFeaturesCell; 935 | bNoMore[i][j] = false; 936 | } 937 | else 938 | { 939 | nToRetain[i][j] = nTotal[i][j]; 940 | nToDistribute += nNewFeaturesCell-nTotal[i][j]; 941 | bNoMore[i][j] = true; 942 | nNoMore++; 943 | } 944 | } 945 | } 946 | } 947 | } 948 | 949 | vector & keypoints = allKeypoints[level]; 950 | keypoints.reserve(nDesiredFeatures*2); 951 | 952 | const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level]; 953 | 954 | // Retain by score and transform coordinates 955 | for(int i=0; i &keysCell = cellKeyPoints[i][j]; 960 | KeyPointsFilter::retainBest(keysCell,nToRetain[i][j]); 961 | if((int)keysCell.size()>nToRetain[i][j]) 962 | keysCell.resize(nToRetain[i][j]); 963 | 964 | 965 | for(size_t k=0, kend=keysCell.size(); knDesiredFeatures) 977 | { 978 | KeyPointsFilter::retainBest(keypoints,nDesiredFeatures); 979 | keypoints.resize(nDesiredFeatures); 980 | } 981 | } 982 | 983 | // and compute orientations 984 | for (int level = 0; level < nlevels; ++level) 985 | computeOrientation(mvImagePyramid[level], allKeypoints[level], umax); 986 | } 987 | 988 | static void computeDescriptors(const Mat& image, vector& keypoints, Mat& descriptors, 989 | const vector& pattern) 990 | { 991 | descriptors = Mat::zeros((int)keypoints.size(), 32, CV_8UC1); 992 | 993 | for (size_t i = 0; i < keypoints.size(); i++) 994 | computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i)); 995 | } 996 | 997 | void ORBextractor::operator()( InputArray _image, InputArray _mask, vector& _keypoints, 998 | OutputArray _descriptors) 999 | { 1000 | if(_image.empty()) 1001 | return; 1002 | 1003 | Mat image = _image.getMat(); 1004 | assert(image.type() == CV_8UC1 ); 1005 | 1006 | // Pre-compute the scale pyramid 1007 | // 构建图像金字塔 1008 | ComputePyramid(image); 1009 | 1010 | // 计算每层图像的兴趣点 1011 | vector < vector > allKeypoints; // vector> 1012 | ComputeKeyPointsOctTree(allKeypoints); 1013 | //ComputeKeyPointsOld(allKeypoints); 1014 | 1015 | Mat descriptors; 1016 | 1017 | int nkeypoints = 0; 1018 | for (int level = 0; level < nlevels; ++level) 1019 | nkeypoints += (int)allKeypoints[level].size(); 1020 | if( nkeypoints == 0 ) 1021 | _descriptors.release(); 1022 | else 1023 | { 1024 | _descriptors.create(nkeypoints, 32, CV_8U); 1025 | descriptors = _descriptors.getMat(); 1026 | } 1027 | 1028 | _keypoints.clear(); 1029 | _keypoints.reserve(nkeypoints); 1030 | 1031 | int offset = 0; 1032 | for (int level = 0; level < nlevels; ++level) 1033 | { 1034 | vector& keypoints = allKeypoints[level]; 1035 | int nkeypointsLevel = (int)keypoints.size(); 1036 | 1037 | if(nkeypointsLevel==0) 1038 | continue; 1039 | 1040 | // preprocess the resized image 对图像进行高斯模糊 1041 | Mat workingMat = mvImagePyramid[level].clone(); 1042 | GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101); 1043 | 1044 | // Compute the descriptors 计算描述子 1045 | Mat desc = descriptors.rowRange(offset, offset + nkeypointsLevel); 1046 | computeDescriptors(workingMat, keypoints, desc, pattern); 1047 | 1048 | offset += nkeypointsLevel; 1049 | 1050 | // Scale keypoint coordinates 1051 | if (level != 0) 1052 | { 1053 | float scale = mvScaleFactor[level]; //getScale(level, firstLevel, scaleFactor); 1054 | for (vector::iterator keypoint = keypoints.begin(), 1055 | keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) 1056 | keypoint->pt *= scale; 1057 | } 1058 | // And add the keypoints to the output 1059 | _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end()); 1060 | } 1061 | } 1062 | 1063 | /** 1064 | * 构建图像金字塔 1065 | * @param image 输入图像 1066 | */ 1067 | void ORBextractor::ComputePyramid(cv::Mat image) 1068 | { 1069 | for (int level = 0; level < nlevels; ++level) 1070 | { 1071 | float scale = mvInvScaleFactor[level]; 1072 | Size sz(cvRound((float)image.cols*scale), cvRound((float)image.rows*scale)); 1073 | Size wholeSize(sz.width + EDGE_THRESHOLD*2, sz.height + EDGE_THRESHOLD*2); 1074 | Mat temp(wholeSize, image.type()), masktemp; 1075 | mvImagePyramid[level] = temp(Rect(EDGE_THRESHOLD, EDGE_THRESHOLD, sz.width, sz.height)); 1076 | 1077 | // Compute the resized image 1078 | if( level != 0 ) 1079 | { 1080 | resize(mvImagePyramid[level-1], mvImagePyramid[level], sz, 0, 0, cv::INTER_LINEAR); 1081 | 1082 | copyMakeBorder(mvImagePyramid[level], temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, 1083 | BORDER_REFLECT_101+BORDER_ISOLATED); 1084 | } 1085 | else 1086 | { 1087 | copyMakeBorder(image, temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, 1088 | BORDER_REFLECT_101); 1089 | } 1090 | } 1091 | 1092 | } 1093 | 1094 | } //namespace ORB_SLAM 1095 | -------------------------------------------------------------------------------- /src/main.cpp: -------------------------------------------------------------------------------- 1 | #include "ORBextractor.h" 2 | #include 3 | #include 4 | #include 5 | #include 6 | #include 7 | using namespace cv; 8 | using namespace std; 9 | using namespace ORB_SLAM2; 10 | void GrabImage(cv::Mat &mImGray, int mbRGB) 11 | { 12 | if(mImGray.channels()==3) 13 | { 14 | if(mbRGB) 15 | { 16 | cvtColor(mImGray,mImGray,CV_RGB2GRAY); 17 | } 18 | else 19 | { 20 | cvtColor(mImGray,mImGray,CV_BGR2GRAY); 21 | } 22 | } 23 | else if(mImGray.channels()==4) 24 | { 25 | if(mbRGB) 26 | { 27 | cvtColor(mImGray,mImGray,CV_RGBA2GRAY); 28 | } 29 | else 30 | { 31 | cvtColor(mImGray,mImGray,CV_BGRA2GRAY); 32 | } 33 | } 34 | 35 | } 36 | int main(int argc, char **argv) 37 | { 38 | if(argc != 3) 39 | { 40 | cerr << endl << "Usage: ./ORBextractor path_to_a_picture named liu.png path to orb.yaml" << endl; 41 | return 1; 42 | } 43 | cout << "liu"; 44 | string strSettingPath = argv[2]; 45 | 46 | // 载入参数文件 47 | cv::FileStorage fSettings(strSettingPath, cv::FileStorage::READ); 48 | 49 | // 1:RGB 0:BGR 50 | int nRGB = fSettings["Camera.RGB"]; 51 | 52 | if(nRGB) 53 | cout << "- color order: RGB (ignored if grayscale)" << endl; 54 | else 55 | cout << "- color order: BGR (ignored if grayscale)" << endl; 56 | 57 | // 每一帧提取的特征点数 1000 58 | int nFeatures = fSettings["ORBextractor.nFeatures"]; 59 | // 图像建立金字塔时的变化尺度 1.2 60 | float fScaleFactor = fSettings["ORBextractor.scaleFactor"]; 61 | // 尺度金字塔的层数 8 62 | int nLevels = fSettings["ORBextractor.nLevels"]; 63 | // 提取fast特征点的默认阈值 20 64 | int fIniThFAST = fSettings["ORBextractor.iniThFAST"]; 65 | // 如果默认阈值提取不出足够fast特征点,则使用最小阈值 8 66 | int fMinThFAST = fSettings["ORBextractor.minThFAST"]; 67 | cout << endl << "ORB Extractor Parameters: " << endl; 68 | cout << "- Number of Features: " << nFeatures << endl; 69 | cout << "- Scale Levels: " << nLevels << endl; 70 | cout << "- Scale Factor: " << fScaleFactor << endl; 71 | cout << "- Initial Fast Threshold: " << fIniThFAST << endl; 72 | cout << "- Minimum Fast Threshold: " << fMinThFAST << endl; 73 | 74 | //****************************************************************************************************************************************** 75 | // 初始化mpORBextractorLeft作为特征点提取器 76 | ORBextractor* mpORBextractorLeft = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST); 77 | 78 | // 载入原图 79 | cv::Mat imLeft; 80 | imLeft = cv::imread(argv[1],CV_LOAD_IMAGE_UNCHANGED); 81 | if( imLeft.empty() ) 82 | { 83 | cout << "Could not open or find the image" << std::endl ; 84 | return -1; 85 | } 86 | // 转为灰度图 87 | cv::Mat &mImGray = imLeft; 88 | GrabImage(mImGray,nRGB); 89 | 90 | // 当前帧图像中提取的特征点集合 91 | std::vector mvKeys; 92 | // 特征点对应的描述子 93 | cv::Mat mDescriptors; 94 | (*mpORBextractorLeft)(mImGray,cv::Mat(),mvKeys,mDescriptors); 95 | 96 | // diaplay 97 | Mat out1; 98 | //drawKeypoints(imLeft, mvKeys, out1, Scalar::all(-1), DrawMatchesFlags::DEFAULT); 99 | drawKeypoints(imLeft, mvKeys, out1, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS); 100 | namedWindow("orb_features", WINDOW_NORMAL); 101 | imshow("orb_features", out1); 102 | waitKey(0); 103 | imwrite("orb_features.jpg", out1); 104 | return 0; 105 | 106 | } --------------------------------------------------------------------------------