├── LICENSE
├── README.md
├── SSL_Flexmatch
├── README.md
├── __pycache__
│ ├── custom_writer.cpython-38.pyc
│ ├── train_utils.cpython-38.pyc
│ └── utils.cpython-38.pyc
├── config
│ ├── fixmatch
│ │ ├── fixmatch_cifar100_10000_0.yaml
│ │ ├── fixmatch_cifar100_2500_0.yaml
│ │ ├── fixmatch_cifar100_400_0.yaml
│ │ ├── fixmatch_cifar10_250_0.yaml
│ │ ├── fixmatch_cifar10_4000_0.yaml
│ │ ├── fixmatch_cifar10_40_0.yaml
│ │ ├── fixmatch_imagenet_100000_0.yaml
│ │ ├── fixmatch_stl10_1000_0.yaml
│ │ ├── fixmatch_stl10_250_0.yaml
│ │ ├── fixmatch_stl10_40_0.yaml
│ │ ├── fixmatch_svhn_1000_0.yaml
│ │ ├── fixmatch_svhn_250_0.yaml
│ │ └── fixmatch_svhn_40_0.yaml
│ ├── flexmatch
│ │ ├── flexmatch_cifar100_10000_0.yaml
│ │ ├── flexmatch_cifar100_2500_0.yaml
│ │ ├── flexmatch_cifar100_400_0.yaml
│ │ ├── flexmatch_cifar100_400_2.yaml
│ │ ├── flexmatch_cifar100_400_3.yaml
│ │ ├── flexmatch_cifar10_250_0.yaml
│ │ ├── flexmatch_cifar10_4000_0.yaml
│ │ ├── flexmatch_cifar10_40_0.yaml
│ │ ├── flexmatch_cifar10_40_1.yaml
│ │ ├── flexmatch_cifar10_40_2.yaml
│ │ ├── flexmatch_imagenet_100000_0.yaml
│ │ ├── flexmatch_stl10_1000_0.yaml
│ │ ├── flexmatch_stl10_250_0.yaml
│ │ ├── flexmatch_stl10_40_0.yaml
│ │ ├── flexmatch_svhn_1000_0.yaml
│ │ ├── flexmatch_svhn_250_0.yaml
│ │ └── flexmatch_svhn_40_0.yaml
│ ├── fullysupervised
│ │ ├── fullysupervised_cifar100_10000_0.yaml
│ │ ├── fullysupervised_cifar100_2500_0.yaml
│ │ ├── fullysupervised_cifar100_400_0.yaml
│ │ ├── fullysupervised_cifar10_250_0.yaml
│ │ ├── fullysupervised_cifar10_4000_0.yaml
│ │ ├── fullysupervised_cifar10_40_0.yaml
│ │ ├── fullysupervised_stl10_1000_0.yaml
│ │ ├── fullysupervised_stl10_250_0.yaml
│ │ ├── fullysupervised_stl10_40_0.yaml
│ │ ├── fullysupervised_svhn_1000_0.yaml
│ │ ├── fullysupervised_svhn_250_0.yaml
│ │ └── fullysupervised_svhn_40_0.yaml
│ ├── meanteacher
│ │ ├── meanteacher_cifar100_10000_0.yaml
│ │ ├── meanteacher_cifar100_2500_0.yaml
│ │ ├── meanteacher_cifar100_400_0.yaml
│ │ ├── meanteacher_cifar10_250_0.yaml
│ │ ├── meanteacher_cifar10_4000_0.yaml
│ │ ├── meanteacher_cifar10_40_0.yaml
│ │ ├── meanteacher_stl10_1000_0.yaml
│ │ ├── meanteacher_stl10_250_0.yaml
│ │ ├── meanteacher_stl10_40_0.yaml
│ │ ├── meanteacher_svhn_1000_0.yaml
│ │ ├── meanteacher_svhn_250_0.yaml
│ │ └── meanteacher_svhn_40_0.yaml
│ ├── mixmatch
│ │ ├── mixmatch_cifar100_10000_0.yaml
│ │ ├── mixmatch_cifar100_2500_0.yaml
│ │ ├── mixmatch_cifar100_400_0.yaml
│ │ ├── mixmatch_cifar10_250_0.yaml
│ │ ├── mixmatch_cifar10_4000_0.yaml
│ │ ├── mixmatch_cifar10_40_0.yaml
│ │ ├── mixmatch_stl10_1000_0.yaml
│ │ ├── mixmatch_stl10_250_0.yaml
│ │ ├── mixmatch_stl10_40_0.yaml
│ │ ├── mixmatch_svhn_1000_0.yaml
│ │ ├── mixmatch_svhn_250_0.yaml
│ │ └── mixmatch_svhn_40_0.yaml
│ ├── pimodel
│ │ ├── pimodel_cifar100_10000_0.yaml
│ │ ├── pimodel_cifar100_2500_0.yaml
│ │ ├── pimodel_cifar100_400_0.yaml
│ │ ├── pimodel_cifar10_250_0.yaml
│ │ ├── pimodel_cifar10_4000_0.yaml
│ │ ├── pimodel_cifar10_40_0.yaml
│ │ ├── pimodel_stl10_1000_0.yaml
│ │ ├── pimodel_stl10_250_0.yaml
│ │ ├── pimodel_stl10_40_0.yaml
│ │ ├── pimodel_svhn_1000_0.yaml
│ │ ├── pimodel_svhn_250_0.yaml
│ │ └── pimodel_svhn_40_0.yaml
│ ├── pseudolabel
│ │ ├── pseudolabel_cifar100_10000_0.yaml
│ │ ├── pseudolabel_cifar100_2500_0.yaml
│ │ ├── pseudolabel_cifar100_400_0.yaml
│ │ ├── pseudolabel_cifar10_250_0.yaml
│ │ ├── pseudolabel_cifar10_4000_0.yaml
│ │ ├── pseudolabel_cifar10_40_0.yaml
│ │ ├── pseudolabel_stl10_1000_0.yaml
│ │ ├── pseudolabel_stl10_250_0.yaml
│ │ ├── pseudolabel_stl10_40_0.yaml
│ │ ├── pseudolabel_svhn_1000_0.yaml
│ │ ├── pseudolabel_svhn_250_0.yaml
│ │ └── pseudolabel_svhn_40_0.yaml
│ ├── pseudolabel_flex
│ │ ├── pseudolabel_flex_cifar100_10000_0.yaml
│ │ ├── pseudolabel_flex_cifar100_2500_0.yaml
│ │ ├── pseudolabel_flex_cifar100_400_0.yaml
│ │ ├── pseudolabel_flex_cifar10_250_0.yaml
│ │ ├── pseudolabel_flex_cifar10_4000_0.yaml
│ │ ├── pseudolabel_flex_cifar10_40_0.yaml
│ │ ├── pseudolabel_flex_stl10_1000_0.yaml
│ │ ├── pseudolabel_flex_stl10_250_0.yaml
│ │ ├── pseudolabel_flex_stl10_40_0.yaml
│ │ ├── pseudolabel_flex_svhn_1000_0.yaml
│ │ ├── pseudolabel_flex_svhn_250_0.yaml
│ │ └── pseudolabel_flex_svhn_40_0.yaml
│ ├── remixmatch
│ │ ├── remixmatch_cifar100_10000_0.yaml
│ │ ├── remixmatch_cifar100_2500_0.yaml
│ │ ├── remixmatch_cifar100_400_0.yaml
│ │ ├── remixmatch_cifar10_250_0.yaml
│ │ ├── remixmatch_cifar10_4000_0.yaml
│ │ ├── remixmatch_cifar10_40_0.yaml
│ │ ├── remixmatch_stl10_1000_0.yaml
│ │ ├── remixmatch_stl10_250_0.yaml
│ │ ├── remixmatch_stl10_40_0.yaml
│ │ ├── remixmatch_svhn_1000_0.yaml
│ │ ├── remixmatch_svhn_250_0.yaml
│ │ └── remixmatch_svhn_40_0.yaml
│ ├── uda
│ │ ├── uda_cifar100_10000_0.yaml
│ │ ├── uda_cifar100_2500_0.yaml
│ │ ├── uda_cifar100_400_0.yaml
│ │ ├── uda_cifar10_250_0.yaml
│ │ ├── uda_cifar10_4000_0.yaml
│ │ ├── uda_cifar10_40_0.yaml
│ │ ├── uda_stl10_1000_0.yaml
│ │ ├── uda_stl10_250_0.yaml
│ │ ├── uda_stl10_40_0.yaml
│ │ ├── uda_svhn_1000_0.yaml
│ │ ├── uda_svhn_250_0.yaml
│ │ └── uda_svhn_40_0.yaml
│ ├── uda_flex
│ │ ├── uda_flex_cifar100_10000_0.yaml
│ │ ├── uda_flex_cifar100_2500_0.yaml
│ │ ├── uda_flex_cifar100_400_0.yaml
│ │ ├── uda_flex_cifar10_250_0.yaml
│ │ ├── uda_flex_cifar10_4000_0.yaml
│ │ ├── uda_flex_cifar10_40_0.yaml
│ │ ├── uda_flex_stl10_1000_0.yaml
│ │ ├── uda_flex_stl10_250_0.yaml
│ │ ├── uda_flex_stl10_40_0.yaml
│ │ ├── uda_flex_svhn_1000_0.yaml
│ │ ├── uda_flex_svhn_250_0.yaml
│ │ └── uda_flex_svhn_40_0.yaml
│ └── vat
│ │ ├── vat_cifar100_10000_0.yaml
│ │ ├── vat_cifar100_2500_0.yaml
│ │ ├── vat_cifar100_400_0.yaml
│ │ ├── vat_cifar10_250_0.yaml
│ │ ├── vat_cifar10_4000_0.yaml
│ │ ├── vat_cifar10_40_0.yaml
│ │ ├── vat_stl10_1000_0.yaml
│ │ ├── vat_stl10_250_0.yaml
│ │ ├── vat_stl10_40_0.yaml
│ │ ├── vat_svhn_1000_0.yaml
│ │ ├── vat_svhn_250_0.yaml
│ │ └── vat_svhn_40_0.yaml
├── custom_writer.py
├── datasets
│ ├── DistributedProxySampler.py
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── DistributedProxySampler.cpython-38.pyc
│ │ ├── __init__.cpython-38.pyc
│ │ ├── data_utils.cpython-38.pyc
│ │ ├── dataset.cpython-38.pyc
│ │ └── ssl_dataset.cpython-38.pyc
│ ├── augmentation
│ │ ├── __pycache__
│ │ │ └── randaugment.cpython-38.pyc
│ │ └── randaugment.py
│ ├── data_utils.py
│ ├── dataset.py
│ └── ssl_dataset.py
├── environment.yml
├── environment3090.yml
├── eval.py
├── figures
│ ├── cf10.png
│ ├── cf100.png
│ ├── logo.png
│ ├── stl.png
│ └── svhn.png
├── fixmatch.py
├── flexmatch.py
├── flexmatch_package.jpg
├── fullysupervised.py
├── logs
│ ├── 0
│ │ └── log.txt
│ ├── 1
│ │ └── log.txt
│ └── 2
│ │ └── log.txt
├── meanteacher.py
├── mixmatch.py
├── models
│ ├── fixmatch
│ │ ├── __init__.py
│ │ ├── fixmatch.py
│ │ └── fixmatch_utils.py
│ ├── flexmatch
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── flexmatch.cpython-38.pyc
│ │ │ └── flexmatch_utils.cpython-38.pyc
│ │ ├── flexmatch.py
│ │ ├── flexmatch1.py
│ │ └── flexmatch_utils.py
│ ├── fullysupervised
│ │ ├── __init__.py
│ │ ├── fullysupervised.py
│ │ └── fullysupervised_utils.py
│ ├── meanteacher
│ │ ├── __init__.py
│ │ ├── meanteacher.py
│ │ └── meanteacher_utils.py
│ ├── mixmatch
│ │ ├── __init__.py
│ │ ├── mixmatch.py
│ │ └── mixmatch_utils.py
│ ├── nets
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ └── wrn.cpython-38.pyc
│ │ ├── resnet50.py
│ │ ├── wrn.py
│ │ └── wrn_var.py
│ ├── pimodel
│ │ ├── __init__.py
│ │ ├── pimodel.py
│ │ └── pimodel_utils.py
│ ├── pseudolabel
│ │ ├── __init__.py
│ │ ├── pseudolabel.py
│ │ └── pseudolabel_utils.py
│ ├── remixmatch
│ │ ├── __init__.py
│ │ ├── remixmatch.py
│ │ └── remixmatch_utils.py
│ ├── uda
│ │ ├── __init__.py
│ │ ├── uda.py
│ │ └── uda_utils.py
│ └── vat
│ │ ├── __init__.py
│ │ ├── vat.py
│ │ └── vat_utils.py
├── my_environment.txt
├── pimodel.py
├── pseudolabel.py
├── remixmatch.py
├── scripts
│ ├── average_log.py
│ ├── cifar.sh
│ └── config_generator.py
├── train.sh
├── train_utils.py
├── uda.py
├── utils.py
└── vat.py
└── UDA_GVB
├── .idea
├── .gitignore
├── clsda.iml
├── deployment.xml
├── inspectionProfiles
│ ├── Project_Default.xml
│ └── profiles_settings.xml
├── misc.xml
├── modules.xml
├── remote-mappings.xml
└── webServers.xml
├── ReadMe.md
├── clsda
├── __init__.py
├── loader
│ ├── __init__.py
│ └── cls_loaders
│ │ ├── __init__.py
│ │ ├── builder.py
│ │ ├── cls_loaders.py
│ │ └── pipelines
│ │ ├── __init__.py
│ │ └── pipelines.py
├── loss
│ ├── __init__.py
│ └── loss.py
├── models
│ ├── __init__.py
│ └── cls_models
│ │ ├── __init__.py
│ │ ├── basenet.py
│ │ ├── builder.py
│ │ ├── gvb_network.py
│ │ └── resnet.py
├── optimizers
│ └── __init__.py
├── runner
│ ├── __init__.py
│ ├── hooks
│ │ ├── __init__.py
│ │ ├── cls_accuracy.py
│ │ ├── cls_analysis.py
│ │ ├── cls_best_accuracy_by_val.py
│ │ ├── cls_classwise_accuracy.py
│ │ └── training_hooks.py
│ ├── trainer.py
│ └── validator.py
├── schedulers
│ ├── __init__.py
│ ├── builder.py
│ └── schedulers.py
├── trainers
│ ├── __init__.py
│ ├── builder.py
│ └── trainer_gvb.py
└── utils
│ ├── __init__.py
│ ├── gradcam.py
│ ├── labels2wv.py
│ ├── logger.py
│ ├── metrics.py
│ ├── spkmeans.py
│ ├── utils.py
│ └── writer.py
├── configs
├── _base_
│ ├── cls_datasets
│ │ ├── uda_officehome
│ │ │ ├── uda_officehome_A_C.py
│ │ │ ├── uda_officehome_A_C_4gpu.py
│ │ │ ├── uda_officehome_A_C_all_weak.py
│ │ │ ├── uda_officehome_A_C_weak.py
│ │ │ ├── uda_officehome_A_P.py
│ │ │ ├── uda_officehome_A_P_all_weak.py
│ │ │ ├── uda_officehome_A_P_weak.py
│ │ │ ├── uda_officehome_A_R.py
│ │ │ ├── uda_officehome_A_R_all_weak.py
│ │ │ ├── uda_officehome_A_R_weak.py
│ │ │ ├── uda_officehome_C_A.py
│ │ │ ├── uda_officehome_C_A_all_weak.py
│ │ │ ├── uda_officehome_C_A_weak.py
│ │ │ ├── uda_officehome_C_P.py
│ │ │ ├── uda_officehome_C_P_all_weak.py
│ │ │ ├── uda_officehome_C_P_weak.py
│ │ │ ├── uda_officehome_C_R.py
│ │ │ ├── uda_officehome_C_R_all_weak.py
│ │ │ ├── uda_officehome_C_R_weak.py
│ │ │ ├── uda_officehome_P_A.py
│ │ │ ├── uda_officehome_P_A_all_weak.py
│ │ │ ├── uda_officehome_P_A_weak.py
│ │ │ ├── uda_officehome_P_C.py
│ │ │ ├── uda_officehome_P_C_all_weak.py
│ │ │ ├── uda_officehome_P_C_weak.py
│ │ │ ├── uda_officehome_P_R.py
│ │ │ ├── uda_officehome_P_R_all_weak.py
│ │ │ ├── uda_officehome_P_R_weak.py
│ │ │ ├── uda_officehome_R_A.py
│ │ │ ├── uda_officehome_R_A_all_weak.py
│ │ │ ├── uda_officehome_R_A_weak.py
│ │ │ ├── uda_officehome_R_C.py
│ │ │ ├── uda_officehome_R_C_all_weak.py
│ │ │ ├── uda_officehome_R_C_weak.py
│ │ │ ├── uda_officehome_R_P.py
│ │ │ ├── uda_officehome_R_P_all_weak.py
│ │ │ └── uda_officehome_R_P_weak.py
│ │ └── uda_visda
│ │ │ ├── uda_visda.py
│ │ │ ├── uda_visda_2gpu.py
│ │ │ ├── uda_visda_2gpu_all_train_aug.py
│ │ │ └── uda_visda_2gpu_train_aug.py
│ └── cls_models
│ │ ├── resnet_50_gvb.py
│ │ └── resnet_50_gvb_visda.py
└── gvb
│ ├── gvb_officehome_A_C.py
│ ├── gvb_officehome_A_C_fixmatch.py
│ ├── gvb_officehome_A_C_fixmatch_nce.py
│ ├── gvb_officehome_A_C_nce.py
│ ├── gvb_officehome_A_C_nce_all_weak.py
│ ├── gvb_officehome_A_C_nce_fixmatch.py
│ ├── gvb_officehome_A_C_nce_weak.py
│ ├── gvb_officehome_A_C_test.py
│ ├── gvb_officehome_A_C_weak.py
│ ├── gvb_officehome_A_P_fixmatch.py
│ ├── gvb_officehome_A_P_fixmatch_nce.py
│ ├── gvb_officehome_A_P_nce.py
│ ├── gvb_officehome_A_P_nce_all_weak.py
│ ├── gvb_officehome_A_P_nce_weak.py
│ ├── gvb_officehome_A_P_weak.py
│ ├── gvb_officehome_A_R_fixmatch.py
│ ├── gvb_officehome_A_R_fixmatch_nce.py
│ ├── gvb_officehome_A_R_nce.py
│ ├── gvb_officehome_A_R_nce_all_weak.py
│ ├── gvb_officehome_A_R_nce_weak.py
│ ├── gvb_officehome_A_R_weak.py
│ ├── gvb_officehome_C_A_fixmatch.py
│ ├── gvb_officehome_C_A_fixmatch_nce.py
│ ├── gvb_officehome_C_A_nce.py
│ ├── gvb_officehome_C_A_nce_all_weak.py
│ ├── gvb_officehome_C_A_nce_weak.py
│ ├── gvb_officehome_C_A_weak.py
│ ├── gvb_officehome_C_P_fixmatch.py
│ ├── gvb_officehome_C_P_fixmatch_nce.py
│ ├── gvb_officehome_C_P_nce.py
│ ├── gvb_officehome_C_P_nce_all_weak.py
│ ├── gvb_officehome_C_P_nce_weak.py
│ ├── gvb_officehome_C_P_weak.py
│ ├── gvb_officehome_C_R_fixmatch.py
│ ├── gvb_officehome_C_R_fixmatch_nce.py
│ ├── gvb_officehome_C_R_nce.py
│ ├── gvb_officehome_C_R_nce_all_weak.py
│ ├── gvb_officehome_C_R_nce_weak.py
│ ├── gvb_officehome_C_R_weak.py
│ ├── gvb_officehome_P_A_fixmatch.py
│ ├── gvb_officehome_P_A_fixmatch_nce.py
│ ├── gvb_officehome_P_A_nce.py
│ ├── gvb_officehome_P_A_nce_all_weak.py
│ ├── gvb_officehome_P_A_nce_weak.py
│ ├── gvb_officehome_P_A_weak.py
│ ├── gvb_officehome_P_C_fixmatch.py
│ ├── gvb_officehome_P_C_fixmatch_nce.py
│ ├── gvb_officehome_P_C_nce.py
│ ├── gvb_officehome_P_C_nce_all_weak.py
│ ├── gvb_officehome_P_C_nce_weak.py
│ ├── gvb_officehome_P_C_weak.py
│ ├── gvb_officehome_P_R_fixmatch.py
│ ├── gvb_officehome_P_R_fixmatch_nce.py
│ ├── gvb_officehome_P_R_nce.py
│ ├── gvb_officehome_P_R_nce_all_weak.py
│ ├── gvb_officehome_P_R_nce_weak.py
│ ├── gvb_officehome_P_R_weak.py
│ ├── gvb_officehome_R_A_fixmatch.py
│ ├── gvb_officehome_R_A_fixmatch_nce.py
│ ├── gvb_officehome_R_A_nce.py
│ ├── gvb_officehome_R_A_nce_all_weak.py
│ ├── gvb_officehome_R_A_nce_weak.py
│ ├── gvb_officehome_R_A_weak.py
│ ├── gvb_officehome_R_C_fixmatch.py
│ ├── gvb_officehome_R_C_fixmatch_nce.py
│ ├── gvb_officehome_R_C_nce.py
│ ├── gvb_officehome_R_C_nce_all_weak.py
│ ├── gvb_officehome_R_C_nce_weak.py
│ ├── gvb_officehome_R_C_weak.py
│ ├── gvb_officehome_R_P_fixmatch.py
│ ├── gvb_officehome_R_P_fixmatch_nce.py
│ ├── gvb_officehome_R_P_nce.py
│ ├── gvb_officehome_R_P_nce_all_weak.py
│ ├── gvb_officehome_R_P_nce_weak.py
│ └── gvb_officehome_R_P_weak.py
├── data
└── txt
│ └── officehome
│ ├── labeled_source_images_Art.txt
│ ├── labeled_source_images_Clipart.txt
│ ├── labeled_source_images_Product.txt
│ ├── labeled_source_images_Real.txt
│ ├── unlabeled_target_images_Art_0.txt
│ ├── unlabeled_target_images_Clipart_0.txt
│ ├── unlabeled_target_images_Product_0.txt
│ ├── unlabeled_target_images_Real_0.txt
│ ├── validation_target_images_Art_3.txt
│ ├── validation_target_images_Clipart_3.txt
│ ├── validation_target_images_Product_3.txt
│ └── validation_target_images_Real_3.txt
├── experiments
└── scripts
│ ├── generate_random_port.py
│ ├── get_visible_card_num.py
│ └── uda_gvb_train_release.sh
├── train.py
└── training_logs
├── OfficeHome_AC
└── events.out.tfevents.1628751971.38927820282d.159.0
├── OfficeHome_AP
└── events.out.tfevents.1628752143.0a5bab1dda68.154.0
├── OfficeHome_AR
└── events.out.tfevents.1628752173.33d1f1e1bf5a.159.0
├── OfficeHome_CA
└── events.out.tfevents.1628752855.9bfb4147b9cf.159.0
├── OfficeHome_CP
└── events.out.tfevents.1628752285.66c55db0326d.159.0
├── OfficeHome_CR
└── events.out.tfevents.1628752499.791e1b1299e1.154.0
├── OfficeHome_PA
└── events.out.tfevents.1628752416.b8545536f29f.203.0
├── OfficeHome_PC
└── events.out.tfevents.1628752363.ab72c3b0dc3a.154.0
├── OfficeHome_PR
└── events.out.tfevents.1628752417.719def797de8.202.0
├── OfficeHome_RA
└── events.out.tfevents.1628752597.cddd8f788339.154.0
├── OfficeHome_RC
└── events.out.tfevents.1628748264.89588d5e003f.154.0
├── OfficeHome_RP
└── events.out.tfevents.1628752442.a76f7378e503.159.0
└── ReadMe.md
/SSL_Flexmatch/README.md:
--------------------------------------------------------------------------------
1 | # TorchSSL
2 |
3 |
4 |
5 | This code is based on [FlexMatch: boosting semi-supervised learning using curriculum pseudo labeling](https://proceedings.neurips.cc/paper/2021/hash/995693c15f439e3d189b06e89d145dd5-Abstract.html).
6 |
7 | ### Training
8 |
9 | Command line for training model on 4 GPU
10 | ```bash
11 | sh train.sh
12 |
13 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/__pycache__/custom_writer.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/__pycache__/custom_writer.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/__pycache__/train_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/__pycache__/train_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/__pycache__/utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/__pycache__/utils.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10007
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10007
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10007
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10006
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10006
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10006
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_imagenet_100000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_imagenet_100000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 10000
10 | num_labels: 100000
11 | batch_size: 128
12 | eval_batch_size: 256
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.7
16 | ulb_loss_ratio: 1.0
17 | uratio: 1
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0003
23 | amp: False
24 | net: ResNet50
25 | net_from_name: False
26 | depth: 0
27 | widen_factor: 0
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: imagenet
32 | train_sampler: RandomSampler
33 | num_classes: 1000
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10010
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10009
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10009
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10009
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10008
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10008
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fixmatch/fixmatch_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fixmatch_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: fixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10008
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10002
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10002
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: /gdata2/lijj/Torch_ssl
2 | save_name: flexmatch_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10002
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar100_400_2.yaml:
--------------------------------------------------------------------------------
1 | save_dir: /gdata2/lijj/Torch_ssl
2 | save_name: flexmatch_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 1
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10002
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar100_400_3.yaml:
--------------------------------------------------------------------------------
1 | save_dir: /gdata2/lijj/Torch_ssl
2 | save_name: flexmatch_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 2
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10002
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10001
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10001
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: /gdata2/lijj/Torch_ssl
2 | save_name: flexmatch_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10001
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar10_40_1.yaml:
--------------------------------------------------------------------------------
1 | save_dir: /gdata2/lijj/Torch_ssl
2 | save_name: flexmatch_cifar10_40_1
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 1
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10001
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_cifar10_40_2.yaml:
--------------------------------------------------------------------------------
1 | save_dir: /gdata2/lijj/Torch_ssl
2 | save_name: flexmatch_cifar10_40_2
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 2
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10001
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_imagenet_100000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_imagenet_100000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 10000
10 | num_labels: 100000
11 | batch_size: 128
12 | eval_batch_size: 256
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.7
16 | ulb_loss_ratio: 1.0
17 | uratio: 1
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0003
23 | amp: False
24 | net: ResNet50
25 | net_from_name: False
26 | depth: 0
27 | widen_factor: 0
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: imagenet
32 | train_sampler: RandomSampler
33 | num_classes: 1000
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10005
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10004
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10004
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10004
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10003
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10003
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/flexmatch/flexmatch_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: flexmatch_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | hard_label: True
14 | T: 0.5
15 | p_cutoff: 0.95
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: flexmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10003
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.001
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 8
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar100
27 | train_sampler: RandomSampler
28 | num_classes: 100
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10020
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.001
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 8
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar100
27 | train_sampler: RandomSampler
28 | num_classes: 100
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10020
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.001
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 8
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar100
27 | train_sampler: RandomSampler
28 | num_classes: 100
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10020
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10019
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10019
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10019
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNetVar
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: stl10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10022
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNetVar
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: stl10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10022
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNetVar
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: stl10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10022
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: svhn
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10021
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: svhn
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10021
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/fullysupervised/fullysupervised_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: fullysupervised_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: svhn
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: fullysupervised
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10021
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.001
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 8
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: cifar100
30 | train_sampler: RandomSampler
31 | num_classes: 100
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10032
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.001
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 8
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: cifar100
30 | train_sampler: RandomSampler
31 | num_classes: 100
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10032
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.001
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 8
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: cifar100
30 | train_sampler: RandomSampler
31 | num_classes: 100
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10032
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: cifar10
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10031
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: cifar10
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10031
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: cifar10
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10031
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNetVar
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: stl10
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10034
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNetVar
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: stl10
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10034
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNetVar
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: stl10
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10034
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: svhn
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10033
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: svhn
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10033
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/meanteacher/meanteacher_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: meanteacher_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | ulb_loss_ratio: 50
15 | unsup_warm_up: 0.4
16 | ema_m: 0.999
17 | optim: SGD
18 | lr: 0.03
19 | momentum: 0.9
20 | weight_decay: 0.0005
21 | amp: False
22 | net: WideResNet
23 | net_from_name: False
24 | depth: 28
25 | widen_factor: 2
26 | leaky_slope: 0.1
27 | dropout: 0.0
28 | data_dir: ./data
29 | dataset: svhn
30 | train_sampler: RandomSampler
31 | num_classes: 10
32 | num_workers: 1
33 | alg: meanteacher
34 | seed: 0
35 | world_size: 1
36 | rank: 0
37 | multiprocessing_distributed: True
38 | dist_url: tcp://127.0.0.1:10033
39 | dist_backend: nccl
40 | gpu: None
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10028
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10028
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10028
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10027
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10027
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10027
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10030
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10030
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10030
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10029
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10029
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/mixmatch/mixmatch_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: mixmatch_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | uratio: 1
14 | alpha: 0.5
15 | T: 0.5
16 | ulb_loss_ratio: 100
17 | ramp_up: 0.4
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: mixmatch
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10029
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10036
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10036
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10036
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10035
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10035
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10035
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10038
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10038
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10038
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10037
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10037
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pimodel/pimodel_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pimodel_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 10
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pimodel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10037
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10016
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10016
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10016
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10015
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10015
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10015
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10018
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10018
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10018
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10017
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10017
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel/pseudolabel_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:10017
38 | dist_backend: nccl
39 | gpu: None
40 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11126
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11126
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.001
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 8
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar100
29 | train_sampler: RandomSampler
30 | num_classes: 100
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11126
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11125
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11125
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: cifar10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11125
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11128
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11128
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNetVar
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: stl10
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11128
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11127
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11127
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/pseudolabel_flex/pseudolabel_flex_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: pseudolabel_flex_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ulb_loss_ratio: 1.0
14 | uratio: 1
15 | ema_m: 0.999
16 | optim: SGD
17 | lr: 0.03
18 | momentum: 0.9
19 | weight_decay: 0.0005
20 | amp: False
21 | net: WideResNet
22 | net_from_name: False
23 | depth: 28
24 | widen_factor: 2
25 | leaky_slope: 0.1
26 | dropout: 0.0
27 | data_dir: ./data
28 | dataset: svhn
29 | train_sampler: RandomSampler
30 | num_classes: 10
31 | num_workers: 1
32 | alg: pseudolabel_flex
33 | seed: 0
34 | world_size: 1
35 | rank: 0
36 | multiprocessing_distributed: True
37 | dist_url: tcp://127.0.0.1:11127
38 | dist_backend: nccl
39 | gpu: None
40 | use_flex: True
41 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10012
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10012
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.001
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 8
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar100
32 | train_sampler: RandomSampler
33 | num_classes: 100
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10012
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10011
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10011
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10011
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10014
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10014
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10014
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10013
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10013
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda/uda_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:10013
41 | dist_backend: nccl
42 | gpu: None
43 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11121
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: cifar10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11121
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11124
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11124
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNetVar
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: stl10
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11124
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11123
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11123
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/uda_flex/uda_flex_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: uda_flex_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | TSA_schedule: none
14 | T: 0.4
15 | p_cutoff: 0.8
16 | ulb_loss_ratio: 1.0
17 | uratio: 7
18 | ema_m: 0.999
19 | optim: SGD
20 | lr: 0.03
21 | momentum: 0.9
22 | weight_decay: 0.0005
23 | amp: False
24 | net: WideResNet
25 | net_from_name: False
26 | depth: 28
27 | widen_factor: 2
28 | leaky_slope: 0.1
29 | dropout: 0.0
30 | data_dir: ./data
31 | dataset: svhn
32 | train_sampler: RandomSampler
33 | num_classes: 10
34 | num_workers: 1
35 | alg: uda_flex
36 | seed: 0
37 | world_size: 1
38 | rank: 0
39 | multiprocessing_distributed: True
40 | dist_url: tcp://127.0.0.1:11123
41 | dist_backend: nccl
42 | gpu: None
43 | use_flex: True
44 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_cifar100_10000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_cifar100_10000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 10000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.001
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 8
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar100
27 | train_sampler: RandomSampler
28 | num_classes: 100
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10040
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_cifar100_2500_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_cifar100_2500_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 2500
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.001
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 8
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar100
27 | train_sampler: RandomSampler
28 | num_classes: 100
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10040
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_cifar100_400_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_cifar100_400_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 400
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.001
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 8
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar100
27 | train_sampler: RandomSampler
28 | num_classes: 100
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10040
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_cifar10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_cifar10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10039
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_cifar10_4000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_cifar10_4000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 4000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10039
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_cifar10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_cifar10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: cifar10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10039
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_stl10_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_stl10_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNetVar
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: stl10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10042
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_stl10_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_stl10_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNetVar
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: stl10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10042
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_stl10_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_stl10_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNetVar
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: stl10
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10042
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_svhn_1000_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_svhn_1000_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 1000
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: svhn
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10041
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_svhn_250_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_svhn_250_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 250
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: svhn
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10041
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/config/vat/vat_svhn_40_0.yaml:
--------------------------------------------------------------------------------
1 | save_dir: ./saved_models
2 | save_name: vat_svhn_40_0
3 | resume: False
4 | load_path: None
5 | overwrite: True
6 | use_tensorboard: True
7 | epoch: 1
8 | num_train_iter: 1048576
9 | num_eval_iter: 5000
10 | num_labels: 40
11 | batch_size: 64
12 | eval_batch_size: 1024
13 | ema_m: 0.999
14 | optim: SGD
15 | lr: 0.03
16 | momentum: 0.9
17 | weight_decay: 0.0005
18 | amp: False
19 | net: WideResNet
20 | net_from_name: False
21 | depth: 28
22 | widen_factor: 2
23 | leaky_slope: 0.1
24 | dropout: 0.0
25 | data_dir: ./data
26 | dataset: svhn
27 | train_sampler: RandomSampler
28 | num_classes: 10
29 | num_workers: 1
30 | alg: vat
31 | seed: 0
32 | world_size: 1
33 | rank: 0
34 | multiprocessing_distributed: True
35 | dist_url: tcp://127.0.0.1:10041
36 | dist_backend: nccl
37 | gpu: None
38 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/__pycache__/DistributedProxySampler.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/__pycache__/DistributedProxySampler.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/__pycache__/data_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/__pycache__/data_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/__pycache__/dataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/__pycache__/dataset.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/__pycache__/ssl_dataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/__pycache__/ssl_dataset.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/datasets/augmentation/__pycache__/randaugment.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/datasets/augmentation/__pycache__/randaugment.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/figures/cf10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/figures/cf10.png
--------------------------------------------------------------------------------
/SSL_Flexmatch/figures/cf100.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/figures/cf100.png
--------------------------------------------------------------------------------
/SSL_Flexmatch/figures/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/figures/logo.png
--------------------------------------------------------------------------------
/SSL_Flexmatch/figures/stl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/figures/stl.png
--------------------------------------------------------------------------------
/SSL_Flexmatch/figures/svhn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/figures/svhn.png
--------------------------------------------------------------------------------
/SSL_Flexmatch/flexmatch_package.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/flexmatch_package.jpg
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/fixmatch/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/fixmatch/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/flexmatch/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/flexmatch/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/flexmatch/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/flexmatch/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/flexmatch/__pycache__/flexmatch.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/flexmatch/__pycache__/flexmatch.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/flexmatch/__pycache__/flexmatch_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/flexmatch/__pycache__/flexmatch_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/fullysupervised/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/fullysupervised/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/fullysupervised/fullysupervised_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from train_utils import ce_loss
4 |
5 |
6 | class Get_Scalar:
7 | def __init__(self, value):
8 | self.value = value
9 |
10 | def get_value(self, iter):
11 | return self.value
12 |
13 | def __call__(self, iter):
14 | return self.value
15 |
16 |
17 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/meanteacher/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/meanteacher/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/meanteacher/meanteacher_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from train_utils import ce_loss
4 |
5 |
6 | class Get_Scalar:
7 | def __init__(self, value):
8 | self.value = value
9 |
10 | def get_value(self, iter):
11 | return self.value
12 |
13 | def __call__(self, iter):
14 | return self.value
15 |
16 |
17 | def consistency_loss(logits_w1, logits_w2):
18 | logits_w2 = logits_w2.detach()
19 | assert logits_w1.size() == logits_w2.size()
20 | return F.mse_loss(torch.softmax(logits_w1,dim=-1), torch.softmax(logits_w2,dim=-1), reduction='mean')
21 |
22 |
23 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/mixmatch/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/mixmatch/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/nets/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/nets/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/nets/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/nets/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/nets/__pycache__/wrn.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/nets/__pycache__/wrn.cpython-38.pyc
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/pimodel/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/pimodel/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/pimodel/pimodel_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from train_utils import ce_loss
4 |
5 |
6 | class Get_Scalar:
7 | def __init__(self, value):
8 | self.value = value
9 |
10 | def get_value(self, iter):
11 | return self.value
12 |
13 | def __call__(self, iter):
14 | return self.value
15 |
16 |
17 | def consistency_loss(logits_w1, logits_w2):
18 | logits_w2 = logits_w2.detach()
19 | assert logits_w1.size() == logits_w2.size()
20 | return F.mse_loss(torch.softmax(logits_w1, dim=-1), torch.softmax(logits_w2, dim=-1), reduction='mean')
21 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/pseudolabel/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/pseudolabel/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/remixmatch/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/remixmatch/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/uda/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/uda/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/models/vat/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/SSL_Flexmatch/models/vat/__init__.py
--------------------------------------------------------------------------------
/SSL_Flexmatch/scripts/cifar.sh:
--------------------------------------------------------------------------------
1 | cd ../
2 | pwd
3 | source ~/.bashrc
4 | conda activate ssl
5 |
6 |
7 | declare -A alg_dist_dict
8 | alg_dist_dict=([pimodel]="10001" [pseudolabel]="10002" [meanteacher]="10003" [uda]="10004" [mixmatch]="10005" [remixmatch]="10006" [fixmatch]="10007")
9 | alg=$1
10 | num_class=$2
11 | weight_decay=$3
12 | dist_port=${alg_dist_dict[${alg}]}
13 | exp_name=${alg}_cifar${num_class}
14 |
15 |
16 | #for size in 4000 250 40; do
17 | for size in 250 4000; do
18 | python ${alg}.py --world-size 1 --rank 0 --amp False --multiprocessing-distributed True --num_labels ${size} --save_name ${exp_name}@${size}_${weight_decay} --weight_decay ${weight_decay} --dataset cifar${num_class} --num_classes ${num_class} --widen_factor 2 --overwrite True --dist-url 'tcp://127.0.0.1:'${dist_port}
19 | done
20 |
21 |
--------------------------------------------------------------------------------
/SSL_Flexmatch/train.sh:
--------------------------------------------------------------------------------
1 | cd /ghome/lijj/DA/TorchSSL-main/TorchSSL-main/
2 | python flexmatch.py --c ./config/flexmatch/flexmatch_cifar100_400_0.yaml
3 | #python flexmatch.py --c ./config/flexmatch/flexmatch_cifar10_40_0.yaml
--------------------------------------------------------------------------------
/UDA_GVB/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 | # Editor-based HTTP Client requests
5 | /httpRequests/
6 | # Datasource local storage ignored files
7 | /dataSources/
8 | /dataSources.local.xml
9 |
--------------------------------------------------------------------------------
/UDA_GVB/.idea/clsda.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/UDA_GVB/.idea/deployment.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
--------------------------------------------------------------------------------
/UDA_GVB/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/UDA_GVB/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/UDA_GVB/.idea/remote-mappings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
--------------------------------------------------------------------------------
/UDA_GVB/.idea/webServers.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
9 |
10 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/__init__.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 |
4 |
5 | if __name__ == "__main__":
6 | pass
7 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/loader/cls_loaders/builder.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | from mmcv.utils import Registry, build_from_cfg
4 | from mmcls.datasets import PIPELINES as CLS_PIPELINES
5 |
6 | CLS_DATASETS = Registry('cls_datasets')
7 |
8 |
9 | def build_dataset(cfg, default_args=None):
10 | dataset = build_from_cfg(cfg, CLS_DATASETS, default_args)
11 | return dataset
12 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/loader/cls_loaders/pipelines/__init__.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | from mmcls.datasets.pipelines import Compose
4 | from .pipelines import Apply, ColorJitter
5 | from ..builder import CLS_PIPELINES
6 |
7 |
8 | if __name__ == "__main__":
9 | pass
10 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/models/cls_models/builder.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | import torch.nn as nn
4 | from mmcv.utils import Registry, build_from_cfg
5 |
6 | CLS_MODELS = Registry('cls_models')
7 |
8 |
9 | def build_cls_models(cfg, default_args=None):
10 | if isinstance(cfg, list):
11 | modules = [
12 | build_from_cfg(cfg_, CLS_MODELS, default_args) for cfg_ in cfg
13 | ]
14 | return nn.Sequential(*modules)
15 | else:
16 | return build_from_cfg(cfg, CLS_MODELS, default_args)
17 |
18 |
19 | if __name__ == "__main__":
20 | pass
21 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/runner/__init__.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/schedulers/__init__.py:
--------------------------------------------------------------------------------
1 | from .builder import SCHEDULER, build_scheduler
2 | from .schedulers import TORCH_SCHEDULER, ConstantLR, PolynomialLR, WarmUpLR, InvLR
3 |
4 | __all__ = [
5 | 'SCHEDULER', 'build_scheduler', 'TORCH_SCHEDULER', 'ConstantLR', 'PolynomialLR', 'WarmUpLR', 'InvLR'
6 | ]
7 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/schedulers/builder.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | import logging
4 | from copy import deepcopy
5 | from mmcv.utils import build_from_cfg
6 | from mmcv.utils import Registry
7 | from clsda.utils import get_root_logger
8 |
9 | SCHEDULER = Registry('scheduler')
10 |
11 |
12 | def build_scheduler(optimizer, scheduler_dict):
13 | temp_scheduler_dict = deepcopy(scheduler_dict)
14 | logger = get_root_logger()
15 | #
16 | if temp_scheduler_dict is None:
17 | logger.info('Using No LR Scheduling')
18 | temp_scheduler_dict = {'type': 'ConstantLR'}
19 | #
20 | s_type = temp_scheduler_dict['type']
21 | logging.info('Using {} scheduler with {} params'.format(s_type,
22 | temp_scheduler_dict))
23 | #
24 | temp_scheduler_dict['optimizer'] = optimizer
25 | return build_from_cfg(temp_scheduler_dict, SCHEDULER)
26 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/trainers/__init__.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | from .builder import TRAINER, VALIDATOR, build_validator, build_trainer
4 | from .trainer_gvb import TrainerGVB, ValidatorGVB
5 |
6 | __all__ = [
7 | 'TRAINER', 'VALIDATOR', 'build_validator', 'build_trainer', 'TrainerGVB', 'ValidatorGVB',
8 | ]
9 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/trainers/builder.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | from mmcv.utils import Registry, build_from_cfg
4 |
5 | TRAINER = Registry('trainer')
6 | VALIDATOR = Registry('validator')
7 |
8 |
9 | def build_trainer(cfg, default_args=None):
10 | return build_from_cfg(cfg, TRAINER, default_args=default_args)
11 |
12 |
13 | def build_validator(cfg, default_args=None):
14 | return build_from_cfg(cfg, VALIDATOR, default_args=default_args)
15 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/utils/__init__.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | from clsda.utils.utils import *
4 | from clsda.utils.metrics import *
5 | from .logger import get_root_logger
6 | from .writer import get_root_writer
7 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/utils/logger.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | import logging
4 | from mmcv.utils import get_logger
5 | from mmcv.utils.logging import logger_initialized
6 |
7 | def get_root_logger(log_file=None, log_level=logging.INFO):
8 | if log_file is None:
9 | assert 'DAExp' in logger_initialized, 'logger not initialized'
10 | return get_logger('DAExp', log_file, log_level)
11 |
12 |
--------------------------------------------------------------------------------
/UDA_GVB/clsda/utils/writer.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | import torch.utils.tensorboard as tb
4 | from mmcv.runner import get_dist_info
5 |
6 | ROOT_TB_WRITER = []
7 |
8 |
9 | def get_root_writer(log_dir=None):
10 | rank, _ = get_dist_info()
11 | if rank == 0:
12 | if log_dir is None:
13 | if len(ROOT_TB_WRITER) == 0:
14 | raise RuntimeError('You should initialize the tensorboard writer first')
15 | else:
16 | return ROOT_TB_WRITER[0]
17 | elif log_dir is not None:
18 | if len(ROOT_TB_WRITER) == 0:
19 | ROOT_TB_WRITER.append(tb.SummaryWriter(log_dir=log_dir))
20 | return ROOT_TB_WRITER[0]
21 | else:
22 | raise RuntimeError('You have initialized the tensorboard writer before')
23 | else:
24 | return None
25 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/_base_/cls_models/resnet_50_gvb.py:
--------------------------------------------------------------------------------
1 | backbone_optimizer = dict(
2 | type='SGD',
3 | lr=0.001,
4 | weight_decay=0.001,
5 | momentum=0.9,
6 | nesterov=True,
7 | )
8 |
9 | backbone = dict(
10 | type='GVBResNetFc',
11 | resnet_name='ResNet50',
12 | class_num=65,
13 | optimizer=backbone_optimizer,
14 | )
15 |
16 | discriminator_optimizer = dict(
17 | type='SGD',
18 | lr=0.001,
19 | weight_decay=0.001,
20 | momentum=0.9,
21 | nesterov=True,
22 | )
23 |
24 | discriminator = dict(
25 | type='GVBAdversarialNetwork',
26 | in_feature=65,
27 | hidden_size=1024,
28 | optimizer=discriminator_optimizer,
29 | )
30 |
31 | scheduler = dict(
32 | type='InvLR',
33 | gamma=0.0001,
34 | power=0.75,
35 | )
36 |
37 | models = dict(
38 | base_model=backbone,
39 | discriminator=discriminator,
40 | lr_scheduler=scheduler,
41 | )
42 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/_base_/cls_models/resnet_50_gvb_visda.py:
--------------------------------------------------------------------------------
1 | backbone_optimizer = dict(
2 | type='SGD',
3 | lr=0.0003,
4 | weight_decay=0.001,
5 | momentum=0.9,
6 | nesterov=True,
7 | )
8 |
9 | backbone = dict(
10 | type='GVBResNetFc',
11 | resnet_name='ResNet50',
12 | class_num=12,
13 | optimizer=backbone_optimizer,
14 | )
15 |
16 | discriminator_optimizer = dict(
17 | type='SGD',
18 | lr=0.001,
19 | weight_decay=0.0003,
20 | momentum=0.9,
21 | nesterov=True,
22 | )
23 |
24 | discriminator = dict(
25 | type='GVBAdversarialNetwork',
26 | in_feature=12,
27 | hidden_size=1024,
28 | optimizer=discriminator_optimizer,
29 | )
30 |
31 | scheduler = dict(
32 | type='InvLR',
33 | gamma=0.0001,
34 | power=0.75,
35 | )
36 |
37 | models = dict(
38 | base_model=backbone,
39 | discriminator=discriminator,
40 | lr_scheduler=scheduler,
41 | )
42 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_nce_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | using_fixmatch=True,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_test.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 10
7 | val_interval = 50
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=200,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=False,
22 | using_fixmatch=False,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_C_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_P_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_P_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_P_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_P_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_P_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_P_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_P_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_R_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_R_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_R_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_R.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_R_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_R_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_R_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_A_R_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_A_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_A_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_A_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_A_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_A.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_A_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_A_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_A_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_A_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_P_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_P_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_P_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_P.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_P_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_P_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_P_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_P_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_R_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_R_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_R_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_R.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_R_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_R_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_R_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_C_R_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_C_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_A_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_A_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_A_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_A.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_A_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_A_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_A_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_A_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_C_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_C_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_C_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_C_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_C_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_C_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_C_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_R_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_R_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_R_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_R.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_R_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_R_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_R_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_P_R_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_P_R_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_A_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_A_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_A_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_A.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_A_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_A_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_A_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_A_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_A_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_C_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_C_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_C_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_C.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_C_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_C_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_C_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_C_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_C_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_P_fixmatch.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_P_fixmatch_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_fixmatch=True,
22 | using_NCE=True,
23 | NCE_weight=0.05,
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_P_nce.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_P.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_P_nce_all_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_P_all_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.05,
23 |
24 | )
25 |
26 | test = dict(
27 | )
28 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_P_nce_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 | using_NCE=True,
22 | NCE_weight=0.02,
23 | )
24 |
25 | test = dict(
26 | )
27 |
--------------------------------------------------------------------------------
/UDA_GVB/configs/gvb/gvb_officehome_R_P_weak.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/cls_datasets/uda_officehome/uda_officehome_R_P_weak.py',
3 | '../_base_/cls_models/resnet_50_gvb.py'
4 | ]
5 |
6 | log_interval = 100
7 | val_interval = 500
8 |
9 | control = dict(
10 | log_interval=log_interval,
11 | max_iters=10000,
12 | val_interval=val_interval,
13 | cudnn_deterministic=True,
14 | save_interval=1000,
15 | max_save_num=1,
16 | seed=2,
17 | )
18 |
19 | train = dict(
20 | log_interval=log_interval,
21 |
22 | )
23 |
24 | test = dict(
25 | )
26 |
--------------------------------------------------------------------------------
/UDA_GVB/experiments/scripts/generate_random_port.py:
--------------------------------------------------------------------------------
1 | #
2 | # ----------------------------------------------
3 | import random
4 |
5 | run_id = random.randint(15000, 20000)
6 | print(run_id)
7 |
--------------------------------------------------------------------------------
/UDA_GVB/experiments/scripts/get_visible_card_num.py:
--------------------------------------------------------------------------------
1 | import os
2 | import torch
3 |
4 |
5 | def get_visible_card_num():
6 | if 'CUDA_VISIBLE_DEVICES' in os.environ:
7 | cards = os.environ.get('CUDA_VISIBLE_DEVICES')
8 | cards_num = cards.count(',') + 1
9 | assert cards_num <= torch.cuda.device_count(), 'CUDA_VISIBLE_DEVICES should be lower than real number'
10 | return cards_num
11 | else:
12 | return torch.cuda.device_count()
13 |
14 |
15 | if __name__ == "__main__":
16 | print(get_visible_card_num())
17 |
--------------------------------------------------------------------------------
/UDA_GVB/experiments/scripts/uda_gvb_train_release.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 | job_id=$1
3 | config_file=$2
4 |
5 |
6 | project_home='ghome/your_name/DA/UDA_test/'
7 | export HOME='/ghome/your_name/DA/UDA_test'
8 | export HOME=${HOME}
9 | echo 'HOME is '${HOME}
10 | cd ${HOME} || exit
11 |
12 | trainer_class=gvb
13 | validator_class=gvb
14 | scripts_path=$HOME'/experiments/scripts/get_visible_card_num.py'
15 | GPUS=$(python ${scripts_path})
16 | PORT=16614
17 |
18 | python_file=./train.py
19 | # TODO: removing CUDA_LAUNCH_BLOCKING=1
20 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
21 | ${python_file} --task_type cls --job_id ${job_id} --config ${config_file} \
22 | --trainer ${trainer_class} --validator ${validator_class}
23 |
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_AC/events.out.tfevents.1628751971.38927820282d.159.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_AC/events.out.tfevents.1628751971.38927820282d.159.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_AP/events.out.tfevents.1628752143.0a5bab1dda68.154.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_AP/events.out.tfevents.1628752143.0a5bab1dda68.154.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_AR/events.out.tfevents.1628752173.33d1f1e1bf5a.159.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_AR/events.out.tfevents.1628752173.33d1f1e1bf5a.159.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_CA/events.out.tfevents.1628752855.9bfb4147b9cf.159.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_CA/events.out.tfevents.1628752855.9bfb4147b9cf.159.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_CP/events.out.tfevents.1628752285.66c55db0326d.159.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_CP/events.out.tfevents.1628752285.66c55db0326d.159.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_CR/events.out.tfevents.1628752499.791e1b1299e1.154.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_CR/events.out.tfevents.1628752499.791e1b1299e1.154.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_PA/events.out.tfevents.1628752416.b8545536f29f.203.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_PA/events.out.tfevents.1628752416.b8545536f29f.203.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_PC/events.out.tfevents.1628752363.ab72c3b0dc3a.154.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_PC/events.out.tfevents.1628752363.ab72c3b0dc3a.154.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_PR/events.out.tfevents.1628752417.719def797de8.202.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_PR/events.out.tfevents.1628752417.719def797de8.202.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_RA/events.out.tfevents.1628752597.cddd8f788339.154.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_RA/events.out.tfevents.1628752597.cddd8f788339.154.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_RC/events.out.tfevents.1628748264.89588d5e003f.154.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_RC/events.out.tfevents.1628748264.89588d5e003f.154.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/OfficeHome_RP/events.out.tfevents.1628752442.a76f7378e503.159.0:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ljjcoder/Probabilistic-Contrastive-Learning/0273938ebc3b26d3c84cb064da5507dad5dc955e/UDA_GVB/training_logs/OfficeHome_RP/events.out.tfevents.1628752442.a76f7378e503.159.0
--------------------------------------------------------------------------------
/UDA_GVB/training_logs/ReadMe.md:
--------------------------------------------------------------------------------
1 | ### Declaim
2 |
3 | tensorboard --logdir ./training_logs/OfficeHome_AC
4 | ##########!!!!!!!!!!!!!!!!!!NOTICE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!####################
5 | Note that 'best_acc' is not the final result. See the final result please refer to 'pred_acc_officehome_Clipart_unlabeled_target'
6 |
7 |
--------------------------------------------------------------------------------