├── pyproject.toml
├── .gitignore
├── pyMMAopt
├── __init__.py
├── __about__.py
├── constraints.py
├── mma_solver.py
└── mma.py
├── examples
├── corner_mesh.geo
├── beam_uniform.geo
├── quadratic_pde.py
└── compliance.py
├── README.md
├── CONTRIBUTING.md
├── setup.py
├── setup.cfg
├── NOTICE
├── .github
└── workflows
│ └── publish-to-test-pypi.yml
├── tests
├── test_analytical.py
├── test_restart.py
└── test_compliance.py
├── CODE_OF_CONDUCT.md
└── LICENSE
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = ["setuptools>=42", "wheel"]
3 | build-backend = "setuptools.build_meta"
4 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 | *.swp
3 | *.prof
4 | MANIFEST
5 | dist/
6 | build/
7 | .coverage
8 | .cache/
9 | *.egg-info/
10 | *.eggs/
11 | .pytest_cache/
12 | *.pvd
13 | *.vtu
14 | *.h5
15 |
--------------------------------------------------------------------------------
/pyMMAopt/__init__.py:
--------------------------------------------------------------------------------
1 | from .__about__ import __version__
2 | from .mma import MMAClient
3 | from .mma_solver import MMASolver
4 | from .constraints import ReducedInequality
5 |
6 | __all__ = [
7 | "__version__",
8 | "MMAClient",
9 | ]
10 |
--------------------------------------------------------------------------------
/pyMMAopt/__about__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | #
3 |
4 | __author__ = "Miguel Salazar de Troya"
5 | __email__ = "salazardetro1@llnl.gov"
6 | __copyright__ = "Copyright (c) 2019 {} <{}>".format(__author__, __email__)
7 | __license__ = "License :: OSI Approved :: MIT License"
8 | __version__ = "0.0.8"
9 | __status__ = "Development Status :: 4 - Beta"
10 |
--------------------------------------------------------------------------------
/examples/corner_mesh.geo:
--------------------------------------------------------------------------------
1 | Point(1) = {0., 0., 0., 0.01};
2 | Point(2) = {10., 0., 0., 0.5};
3 | Point(3) = {10., 10., 0., 0.5};
4 | Point(4) = {0., 10., 0., 0.5};
5 | //+
6 | Line(1) = {1, 2};
7 | //+
8 | Line(2) = {2, 3};
9 | //+
10 | Line(3) = {3, 4};
11 | //+
12 | Line(4) = {4, 1};
13 | //+
14 | Curve Loop(1) = {3, 4, 1, 2};
15 | //+
16 | Plane Surface(1) = {1};
17 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # pyMMAopt
2 | [](https://zenodo.org/badge/latestdoi/317367772)
3 |
4 | Python implementation of the Method of Moving Asymptotes optimization algorithm
5 | described in
6 | [Svanberg, K., The method of moving asymptotes- a new method for structural optimization. International journal for numerical methods in engineering, 1987. 24(2): p. 359](https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207). Originally implemented in [GetDP](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=717799) [project](https://gitlab.onelab.info/getdp/getdp).
7 |
8 | LLNL Release Number: LLNL-CODE-817087
9 |
10 | # Install
11 | ```
12 | pip3 install .
13 | ```
14 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing to pyMMAopt
2 |
3 | We welcome contributions to pyMMAopt. To do so please submit a pull request through our
4 | pyMMAopt github page at https://github.com/LLNL/pyMMAopt.
5 |
6 | All contributions to pyMMAopt must be made under the MIT License.
7 |
8 | Any questions can be sent to salazardetro1@llnl.gov.
9 |
10 | # Attribution
11 |
12 | The pyMMAopt project uses git's commit history to track contributions from individual developers.
13 |
14 | Since we want everyone to feel they are getting the proper attribution for their contributions, please add your name to
15 | the list below as part of your commit.
16 |
17 | # Contributors (In Alphabetical Order)
18 |
19 | * Miguel Salazar, LLNL
20 |
--------------------------------------------------------------------------------
/examples/beam_uniform.geo:
--------------------------------------------------------------------------------
1 | // This code was created by pygmsh vunknown.
2 | p0 = newp;
3 | Point(p0) = {0.0, 0.0, 0.0, 1.0};
4 | p3 = newp;
5 | Point(p3) = {100.0, 0.0, 0.0, 1.0};
6 | p4 = newp;
7 | Point(p4) = {100.0, 16.0, 0.0, 0.08};
8 | p5 = newp;
9 | Point(p5) = {100.0, 24.0, 0.0, 0.08};
10 | p6 = newp;
11 | Point(p6) = {100.0, 40.0, 0.0, 1.0};
12 | p9 = newp;
13 | Point(p9) = {0.0, 40.0, 0.0, 1.0};//+
14 | //+
15 | Line(1) = {6, 1};
16 | //+
17 | Line(2) = {1, 2};
18 | //+
19 | Line(3) = {2, 3};
20 | //+
21 | Line(4) = {3, 4};
22 | //+
23 | Line(5) = {4, 5};
24 | //+
25 | Line(6) = {5, 6};
26 | //+
27 | Curve Loop(1) = {6, 1, 2, 3, 4, 5};
28 | //+
29 | Plane Surface(1) = {1};
30 | //+
31 | Transfinite Surface {1} = {6, 5, 2, 1};
32 | //+
33 | Transfinite Curve {6, 2} = 26 Using Progression 1;
34 | //+
35 | Transfinite Curve {1} = 11 Using Progression 1;
36 | //+
37 | Transfinite Curve {5, 3} = 5 Using Progression 1;
38 | //+
39 | Transfinite Curve {4} = 3 Using Progression 1;
40 | //+
41 | Physical Curve(3) = {1};
42 | //+
43 | Physical Curve(4) = {4};
44 | Physical Surface(1) = {1};
45 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import os
4 | from setuptools import setup, find_packages
5 |
6 | base_dir = os.path.abspath(os.path.dirname(__file__))
7 | about = {}
8 | with open(os.path.join(base_dir, "pyMMAopt", "__about__.py"), "rb") as f:
9 | exec(f.read(), about)
10 |
11 | if __name__ == "__main__":
12 | setup(
13 | name="pyMMAopt",
14 | version=about["__version__"],
15 | packages=find_packages(),
16 | author=about["__author__"],
17 | author_email=about["__email__"],
18 | install_requires=["numpy", "numexpr"],
19 | description="MMA optimization algorithm in python",
20 | license=about["__license__"],
21 | classifiers=[
22 | about["__license__"],
23 | about["__status__"],
24 | # See for all classifiers.
25 | "Operating System :: OS Independent",
26 | "Programming Language :: Python",
27 | "Programming Language :: Python :: 3",
28 | "Topic :: Scientific/Engineering",
29 | "Topic :: Scientific/Engineering :: Mathematics",
30 | ],
31 | python_requires=">=3")
32 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [metadata]
2 | name = pyMMAopt
3 | version = 0.0.8
4 | author = GetDP Project
5 | author_email = salazardetro1@llnl.gov
6 | description = MMA algorithm in python
7 | url = https://github.com/LLNL/pyMMAopt
8 | long_description = file: README.md
9 | long_description_content_type = text/markdown
10 | license = GPL
11 | license_files = LICENSE
12 | platforms = any
13 | # See for all classifiers.
14 | classifiers =
15 | Development Status :: 4 - Beta
16 | Intended Audience :: Science/Research
17 | License :: OSI Approved :: GNU General Public License version 2.0
18 | Operating System :: OS Independent
19 | Programming Language :: Python
20 | Programming Language :: Python :: 3
21 | Programming Language :: Python :: 3.5
22 | Programming Language :: Python :: 3.6
23 | Programming Language :: Python :: 3.7
24 | Programming Language :: Python :: 3.8
25 | Topic :: Utilities
26 |
27 | [options]
28 | packages = find:
29 | install_requires =
30 | importlib_metadata
31 | python_requires = >=3.5
32 | setup_requires =
33 | numpy
34 | numexpr
35 | setuptools>=42
36 | wheel
37 |
--------------------------------------------------------------------------------
/NOTICE:
--------------------------------------------------------------------------------
1 | This work was produced under the auspices of the U.S. Department of Energy by
2 | Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
3 |
4 | This work was prepared as an account of work sponsored by an agency of the
5 | United States Government. Neither the United States Government nor Lawrence
6 | Livermore National Security, LLC, nor any of their employees makes any warranty,
7 | expressed or implied, or assumes any legal liability or responsibility for the
8 | accuracy, completeness, or usefulness of any information, apparatus, product, or
9 | process disclosed, or represents that its use would not infringe privately owned
10 | rights. Reference herein to any specific commercial product, process, or service
11 | by trade name, trademark, manufacturer, or otherwise does not necessarily
12 | constitute or imply its endorsement, recommendation, or favoring by the United
13 | States Government or Lawrence Livermore National Security, LLC. The views and
14 | opinions of authors expressed herein do not necessarily state or reflect those
15 | of the United States Government or Lawrence Livermore National Security, LLC,
16 | and shall not be used for advertising or product endorsement purposes.
17 |
--------------------------------------------------------------------------------
/.github/workflows/publish-to-test-pypi.yml:
--------------------------------------------------------------------------------
1 | name: Publish Python 🐍 distributions 📦 to PyPI and TestPyPI
2 | on: push
3 |
4 | jobs:
5 | build-n-publish:
6 | name: Build and publish Python 🐍 distributions 📦 to PyPI and TestPyPI
7 | runs-on: ubuntu-18.04
8 | steps:
9 | - uses: actions/checkout@main
10 | - name: Set up Python 3.9
11 | uses: actions/setup-python@v1
12 | with:
13 | python-version: 3.9
14 | - name: Install pypa/build
15 | run: >-
16 | python -m
17 | pip install
18 | build
19 | --user
20 | - name: Build a binary wheel and a source tarball
21 | run: >-
22 | python -m
23 | build
24 | --sdist
25 | --wheel
26 | --outdir dist/
27 | .
28 | - name: Publish distribution 📦 to Test PyPI
29 | uses: pypa/gh-action-pypi-publish@master
30 | with:
31 | skip_existing: True
32 | password: ${{ secrets.TEST_PYPI_API_TOKEN }}
33 | repository_url: https://test.pypi.org/legacy/
34 | - name: Publish distribution 📦 to PyPI
35 | if: startsWith(github.ref, 'refs/tags')
36 | uses: pypa/gh-action-pypi-publish@master
37 | with:
38 | password: ${{ secrets.PYPI_API_TOKEN }}
--------------------------------------------------------------------------------
/tests/test_analytical.py:
--------------------------------------------------------------------------------
1 | from firedrake import *
2 | from firedrake_adjoint import *
3 | from pyMMAopt import MMASolver, ReducedInequality
4 |
5 | def test_analytical():
6 | mesh = UnitSquareMesh(1, 1, quadrilateral=True)
7 | DG = VectorFunctionSpace(mesh, "DG", 0)
8 | X = Function(DG)
9 | with stop_annotating():
10 | X.interpolate(Constant((1.234, 2.345)))
11 | x, y = split(X)
12 | J = assemble(sqrt(y) * dx)
13 | G1 = assemble(((2.0 * x) ** 3 - y) * dx)
14 | G2 = assemble(((-1.0 * x + 1.0) ** 3 - y) * dx)
15 |
16 | m = Control(X)
17 |
18 | Jhat = ReducedFunctional(J, m)
19 | G1hat = ReducedFunctional(G1, m)
20 | G2hat = ReducedFunctional(G2, m)
21 | print(f"{G1hat.derivative().dat.data_ro}")
22 | print(f"{G2hat.derivative().dat.data_ro}")
23 |
24 | problem = MinimizationProblem(
25 | Jhat,
26 | bounds=(0.0, 100.0),
27 | constraints=[
28 | ReducedInequality(G1hat, 1e-5, Control(G1), normalized=False),
29 | ReducedInequality(G2hat, 1e-5, Control(G2), normalized=False),
30 | ],
31 | )
32 |
33 | parameters_mma = {
34 | "move": 0.1,
35 | "maximum_iterations": 10,
36 | "m": 2,
37 | "IP": 0,
38 | "tol": 1e-9,
39 | "accepted_tol": 1e-8,
40 | "gcmma": True,
41 | }
42 | solver = MMASolver(problem, parameters=parameters_mma)
43 | results = solver.solve()
44 | rho_opt = results["control"]
45 | assert abs(Jhat(rho_opt) - 0.5443418101973394) < 1e-7
46 | solution = Function(DG).interpolate(Constant((0.33332924, 0.29630801)))
47 | assert errornorm(rho_opt, solution) < 1e-7
48 |
--------------------------------------------------------------------------------
/tests/test_restart.py:
--------------------------------------------------------------------------------
1 | from firedrake import *
2 | from firedrake_adjoint import *
3 | from pyMMAopt import MMASolver, ReducedInequality
4 |
5 | import os, signal, itertools
6 |
7 |
8 | def test_save_with_signal():
9 | mesh = UnitSquareMesh(10, 10)
10 | DG = FunctionSpace(mesh, "DG", 0)
11 | print(f"DOFS: {DG.dim()}")
12 | rho = interpolate(Constant(1.0), DG)
13 | J = assemble(rho * rho * rho * dx)
14 | G = assemble(rho * dx)
15 | m = Control(rho)
16 |
17 | g_counter = itertools.count()
18 |
19 | def deriv_cb(j, dj, rho):
20 | iter = next(g_counter)
21 | print(iter)
22 | if iter % 10 == 0 and iter > 0:
23 | os.kill(os.getpid(), signal.SIGUSR1)
24 |
25 | Jhat = ReducedFunctional(J, m, derivative_cb_post=deriv_cb)
26 | Ghat = ReducedFunctional(G, m)
27 | total_area = assemble(Constant(1.0) * dx(domain=mesh), annotate=False)
28 | Glimit = total_area * 50
29 | Gcontrol = Control(G)
30 |
31 | problem = MinimizationProblem(
32 | Jhat,
33 | bounds=(1e-5, 100.0),
34 | constraints=[
35 | ReducedInequality(Ghat, Glimit, Gcontrol),
36 | ],
37 | )
38 |
39 | parameters_mma = {
40 | "move": 0.1,
41 | "maximum_iterations": 10,
42 | "m": 1,
43 | "IP": 0,
44 | "tol": 1e-9,
45 | "accepted_tol": 1e-8,
46 | "norm": "L2",
47 | }
48 | solver = MMASolver(problem, parameters=parameters_mma)
49 | results = solver.solve()
50 | rho_sol = results["control"]
51 |
52 | assert os.path.isfile("checkpoint_iter_10.h5")
53 |
54 | parameters_mma["restart_file"] = "./checkpoint_iter_10.h5"
55 | parameters_mma["maximum_iterations"] = 0
56 | solver = MMASolver(problem, parameters=parameters_mma)
57 | results = solver.solve()
58 | rho_restart = results["control"]
59 | assert errornorm(rho_sol, rho_restart) < 1e-2
60 |
61 |
--------------------------------------------------------------------------------
/pyMMAopt/constraints.py:
--------------------------------------------------------------------------------
1 | from pyadjoint.optimization.constraints import InequalityConstraint
2 | from firedrake import warning
3 | from pyadjoint import stop_annotating
4 |
5 | from firedrake.petsc import PETSc
6 | from firedrake import COMM_WORLD
7 | print = lambda x: PETSc.Sys.Print(x, comm=COMM_WORLD)
8 |
9 | class ReducedInequality(InequalityConstraint):
10 | """This class represents constraints of the form
11 | Ghat(m) - Glimit >= 0
12 | where m is the parameter.
13 | For Ghat(m) - Glimit <= 0, pass lower=True
14 | """
15 |
16 | def __init__(self, Ghat, Glimit, Gcontrol, lower=True, normalized=True):
17 | self.Ghat = Ghat
18 | self.Glimit = float(Glimit)
19 | self.Gcontrol = Gcontrol
20 | self.lower = lower
21 | self.normalized = normalized
22 | if abs(Glimit) < 1e-4 and normalized:
23 | warning(f"Normalized is on with a very small bound {Glimit}")
24 |
25 | def function(self, m):
26 |
27 | # Compute the integral of the control over the domain
28 | integral = self.Gcontrol.tape_value()
29 | print(f"Value: {integral}, Constraint {self.Glimit}")
30 | with stop_annotating():
31 | if self.lower:
32 | if self.normalized:
33 | value = -integral / self.Glimit + 1.0
34 | else:
35 | value = -integral + self.Glimit
36 | else:
37 | if self.normalized:
38 | value = integral / self.Glimit - 1.0
39 | else:
40 | value = integral - self.Glimit
41 | return [value]
42 |
43 | def jacobian(self, m):
44 |
45 | with stop_annotating():
46 | gradients = self.Ghat.derivative()
47 | with gradients.dat.vec as v:
48 | if self.lower:
49 | if self.normalized:
50 | v.scale(-1.0 / self.Glimit)
51 | else:
52 | v.scale(-1.0)
53 | else:
54 | if self.normalized:
55 | v.scale(1.0 / self.Glimit)
56 | else:
57 | v.scale(1.0)
58 | return [gradients]
59 |
60 | def output_workspace(self):
61 | return [0.0]
62 |
63 | def length(self):
64 | """Return the number of components in the constraint vector (here, one)."""
65 | return 1
66 |
--------------------------------------------------------------------------------
/examples/quadratic_pde.py:
--------------------------------------------------------------------------------
1 | from firedrake import *
2 | from firedrake.petsc import PETSc
3 | from firedrake_adjoint import *
4 | from pyMMAopt import MMASolver
5 | import os
6 |
7 | print = lambda x: PETSc.Sys.Print(x, comm=COMM_SELF)
8 |
9 | import numpy as np
10 | import argparse
11 |
12 |
13 | parser = argparse.ArgumentParser(description="Simple optimization problem")
14 | parser.add_argument(
15 | "--n_vars",
16 | action="store",
17 | dest="n_vars",
18 | type=int,
19 | help="Number of design variables",
20 | default=200,
21 | )
22 | args = parser.parse_args()
23 | n_vars = args.n_vars
24 | grid_resol = int(np.sqrt(n_vars))
25 |
26 |
27 | mesh = Mesh("./corner_mesh.msh")
28 | DG = FunctionSpace(mesh, "DG", 0)
29 | x, y = SpatialCoordinate(mesh)
30 | rho = interpolate(Constant(1.0), DG)
31 |
32 | solution_pvd = File("quadratic_sol.pvd")
33 | derivative_pvd = File("derivative.pvd")
34 | rho_viz = Function(DG)
35 | der_viz = Function(DG)
36 |
37 |
38 | def deriv_cb(j, dj, rho):
39 | with stop_annotating():
40 | rho_viz.assign(rho)
41 | solution_pvd.write(rho_viz)
42 |
43 | der_viz.assign(dj)
44 | derivative_pvd.write(der_viz)
45 |
46 |
47 | J = assemble(Constant(1e4) * rho * rho * dx)
48 | G = assemble(rho * dx)
49 | m = Control(rho)
50 | Jhat = ReducedFunctional(J, m, derivative_cb_post=deriv_cb)
51 | Ghat = ReducedFunctional(G, m)
52 | total_area = assemble(Constant(1.0) * dx(domain=mesh), annotate=False)
53 | Glimit = total_area * 20.0
54 | Gcontrol = Control(G)
55 |
56 |
57 | class ReducedInequality(InequalityConstraint):
58 | def __init__(self, Ghat, Glimit, Gcontrol):
59 | self.Ghat = Ghat
60 | self.Glimit = float(Glimit)
61 | self.Gcontrol = Gcontrol
62 |
63 | def function(self, m):
64 | # Compute the integral of the control over the domain
65 | integral = self.Gcontrol.tape_value()
66 | print(f"Constraint function: {integral}, Constraint upper bound {self.Glimit}")
67 | with stop_annotating():
68 | value = -integral / self.Glimit + 1.0
69 | return [value]
70 |
71 | def jacobian(self, m):
72 | with stop_annotating():
73 | gradients = self.Ghat.derivative()
74 | with gradients.dat.vec as v:
75 | v.scale(-1.0 / self.Glimit)
76 | return [gradients]
77 |
78 | def output_workspace(self):
79 | return [0.0]
80 |
81 | def length(self):
82 | """Return the number of components in the constraint vector (here, one)."""
83 | return 1
84 |
85 |
86 | problem = MinimizationProblem(
87 | Jhat,
88 | bounds=(1e-5, 100.0),
89 | constraints=[
90 | ReducedInequality(Ghat, Glimit, Gcontrol),
91 | ],
92 | )
93 |
94 |
95 | parameters_mma = {
96 | "move": 0.1,
97 | "maximum_iterations": 5,
98 | "m": 1,
99 | "IP": 0,
100 | "tol": 1e-9,
101 | "accepted_tol": 1e-8,
102 | "norm": "L2",
103 | }
104 | solver = MMASolver(problem, parameters=parameters_mma)
105 | rho_sol = solver.solve()
106 |
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: "Code of Conduct"
3 | ---
4 |
5 | ## Community Code of Conduct
6 |
7 | ### Our Pledge
8 |
9 | In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.
10 |
11 | ### Our Standards
12 |
13 | Examples of behavior that contributes to creating a positive environment include:
14 |
15 | * Using welcoming and inclusive language
16 | * Being respectful of differing viewpoints and experiences
17 | * Gracefully accepting constructive criticism
18 | * Focusing on what is best for the community
19 | * Showing empathy towards other community members
20 |
21 | Examples of unacceptable behavior by participants include:
22 |
23 | * The use of sexualized language or imagery and unwelcome sexual attention or advances
24 | * Trolling, insulting/derogatory comments, and personal or political attacks
25 | * Public or private harassment
26 | * Publishing others' private information, such as a physical or electronic address, without explicit permission
27 | * Other conduct which could reasonably be considered inappropriate in a professional setting
28 |
29 | ### Our Responsibilities
30 |
31 | Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
32 |
33 | Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
34 |
35 | ### Scope
36 |
37 | This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the lestofire project or its community. Examples of representing the project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of the project may be further defined and clarified by lestofire maintainers.
38 |
39 | ### Enforcement
40 |
41 | Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at lestofire or the LLNL GitHub Admins at [github-admin@llnl.gov](mailto:github-admin@llnl.gov) . The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
42 |
43 | Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project or organization's leadership.
44 |
45 | ### Attribution
46 |
47 | This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org/) ([version 1.4](http://contributor-covenant.org/version/1/4)).
48 |
--------------------------------------------------------------------------------
/tests/test_compliance.py:
--------------------------------------------------------------------------------
1 | from firedrake import *
2 | from firedrake_adjoint import *
3 | import pytest
4 | import numpy as np
5 |
6 | from pyMMAopt import MMASolver, ReducedInequality
7 |
8 |
9 | @pytest.mark.parametrize(
10 | "norm,result",
11 | [["l2", 7.454771069410802], ["L2", 7.420380654729631]],
12 | )
13 | def test_compliance(norm, result):
14 | mesh = RectangleMesh(100, 30, 10, 3)
15 |
16 | V = VectorFunctionSpace(mesh, "CG", 1)
17 | u, v = TrialFunction(V), TestFunction(V)
18 | print(f"# DOFS: {V.dim()}")
19 |
20 | # Elasticity parameters
21 | E, nu = 1e0, 0.3
22 | mu, lmbda = Constant(E / (2 * (1 + nu))), Constant(
23 | E * nu / ((1 + nu) * (1 - 2 * nu))
24 | )
25 |
26 | # Helmholtz solver
27 | RHO = FunctionSpace(mesh, "DG", 0)
28 | rho = interpolate(Constant(0.1), RHO)
29 | af, b = TrialFunction(RHO), TestFunction(RHO)
30 |
31 | filter_radius = Constant(0.02)
32 | x, y = SpatialCoordinate(mesh)
33 | x_ = interpolate(x, RHO)
34 | y_ = interpolate(y, RHO)
35 | Delta_h = sqrt(jump(x_) ** 2 + jump(y_) ** 2)
36 |
37 | rhof = Function(RHO)
38 | solver_params = {
39 | "ksp_type": "preonly",
40 | "pc_type": "lu",
41 | "pc_factor_mat_solver_type": "mumps",
42 | "mat_mumps_icntl_14": 200,
43 | "mat_mumps_icntl_24": 1,
44 | }
45 |
46 | eps = Constant(1e-5)
47 | p = Constant(3.0)
48 |
49 | def simp(rho):
50 | return eps + (Constant(1.0) - eps) * rho ** p
51 |
52 | def epsilon(v):
53 | return sym(nabla_grad(v))
54 |
55 | def sigma(v):
56 | return 2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(2)
57 |
58 | DIRICHLET = 1
59 | NEUMANN = 2
60 | load = Constant((0.0, -5.0))
61 |
62 | c = Control(rho)
63 |
64 | def forward(rho):
65 |
66 | aH = filter_radius * jump(af) / Delta_h * jump(b) * dS + af * b * dx
67 | LH = rho * b * dx
68 |
69 | solve(aH == LH, rhof, solver_parameters=solver_params)
70 | rhofControl = Control(rhof)
71 |
72 | a = inner(simp(rhof) * sigma(u), epsilon(v)) * dx
73 | L = inner(load, v) * ds(NEUMANN)
74 |
75 | u_sol = Function(V)
76 |
77 | bcs = DirichletBC(V, Constant((0.0, 0.0)), DIRICHLET)
78 |
79 | solve(a == L, u_sol, bcs=bcs, solver_parameters=solver_params)
80 |
81 | return rhof, u_sol
82 |
83 | rhof, u_sol = forward(rho)
84 | solution_pvd = File("compliance_design.pvd")
85 | rho_viz = Function(RHO)
86 |
87 | def deriv_cb(j, dj, rho):
88 | with stop_annotating():
89 | rho_viz.assign(rho)
90 | solution_pvd.write(rho_viz)
91 |
92 | J = assemble(Constant(1e-4) * inner(u_sol, load) * ds(NEUMANN))
93 | Vol = assemble(rhof * dx)
94 | VolControl = Control(Vol)
95 |
96 | with stop_annotating():
97 | Vlimit = assemble(Constant(1.0) * dx(domain=mesh)) * 0.5
98 |
99 | Jhat = ReducedFunctional(J, c, derivative_cb_post=deriv_cb)
100 | Volhat = ReducedFunctional(Vol, c)
101 |
102 | lb = 0.0
103 | ub = 1.0
104 | problem = MinimizationProblem(
105 | Jhat,
106 | bounds=(lb, ub),
107 | constraints=[ReducedInequality(Volhat, Vlimit, VolControl)],
108 | )
109 |
110 | parameters_mma = {
111 | "move": 0.2,
112 | "maximum_iterations": 20,
113 | "m": 1,
114 | "IP": 0,
115 | "tol": 1e-6,
116 | "accepted_tol": 1e-4,
117 | "gcmma": True,
118 | "norm": norm,
119 | }
120 | solver = MMASolver(problem, parameters=parameters_mma)
121 |
122 | results = solver.solve()
123 | rho_opt = results["control"]
124 |
125 | final_cost_func = Jhat(rho_opt)
126 |
127 | assert np.allclose(final_cost_func, result, rtol=1e-5)
128 |
129 |
130 | if __name__ == "__main__":
131 | test_compliance("L2", 7.420380654729631)
132 |
--------------------------------------------------------------------------------
/examples/compliance.py:
--------------------------------------------------------------------------------
1 | import firedrake as fd
2 | from firedrake import sqrt, jump, dx, ds, dS, inner, sym, nabla_grad, tr, Identity, grad
3 | import firedrake_adjoint as fda
4 |
5 | from pyMMAopt import MMASolver
6 | import argparse
7 |
8 |
9 | def compliance():
10 | parser = argparse.ArgumentParser(description="Compliance problem with MMA")
11 | parser.add_argument(
12 | "--nref",
13 | action="store",
14 | dest="nref",
15 | type=int,
16 | help="Number of mesh refinements",
17 | default=2,
18 | )
19 | parser.add_argument(
20 | "--uniform",
21 | action="store",
22 | dest="uniform",
23 | type=int,
24 | help="Use uniform mesh",
25 | default=0,
26 | )
27 | parser.add_argument(
28 | "--inner_product",
29 | action="store",
30 | dest="inner_product",
31 | type=str,
32 | help="Inner product, euclidean or L2",
33 | default="L2",
34 | )
35 | parser.add_argument(
36 | "--output_dir",
37 | action="store",
38 | dest="output_dir",
39 | type=str,
40 | help="Directory for all the output",
41 | default="./",
42 | )
43 | args = parser.parse_args()
44 | nref = args.nref
45 | inner_product = args.inner_product
46 | output_dir = args.output_dir
47 |
48 | assert inner_product == "L2" or inner_product == "euclidean"
49 |
50 | mesh = fd.Mesh("./beam_uniform.msh")
51 | #mh = fd.MeshHierarchy(mesh, 2)
52 | #mesh = mh[-1]
53 |
54 | if nref > 0:
55 | mh = fd.MeshHierarchy(mesh, nref)
56 | mesh = mh[-1]
57 | elif nref < 0:
58 | raise RuntimeError("Non valid mesh argument")
59 |
60 | V = fd.VectorFunctionSpace(mesh, "CG", 1)
61 | u, v = fd.TrialFunction(V), fd.TestFunction(V)
62 |
63 | # Elasticity parameters
64 | E, nu = 1e0, 0.3
65 | mu, lmbda = fd.Constant(E / (2 * (1 + nu))), fd.Constant(
66 | E * nu / ((1 + nu) * (1 - 2 * nu))
67 | )
68 |
69 | # Helmholtz solver
70 | RHO = fd.FunctionSpace(mesh, "CG", 1)
71 | rho = fd.interpolate(fd.Constant(0.1), RHO)
72 | af, b = fd.TrialFunction(RHO), fd.TestFunction(RHO)
73 |
74 | #filter_radius = fd.Constant(0.2)
75 | #x, y = fd.SpatialCoordinate(mesh)
76 | #x_ = fd.interpolate(x, RHO)
77 | #y_ = fd.interpolate(y, RHO)
78 | #aH = filter_radius * inner(grad(af), grad(b)) * dx + af * b * dx
79 | #LH = rho * b * dx
80 |
81 | rhof = fd.Function(RHO)
82 | solver_params = {
83 | "ksp_type": "preonly",
84 | "pc_type": "lu",
85 | "pc_factor_mat_solver_type": "mumps",
86 | "mat_mumps_icntl_14": 200,
87 | "mat_mumps_icntl_24": 1,
88 | }
89 | #fd.solve(aH == LH, rhof, solver_parameters=solver_params)
90 | rhof.assign(rho)
91 | rhofControl = fda.Control(rhof)
92 |
93 | eps = fd.Constant(1e-5)
94 | p = fd.Constant(3.0)
95 |
96 | def simp(rho):
97 | return eps + (fd.Constant(1.0) - eps) * rho ** p
98 |
99 | def epsilon(v):
100 | return sym(nabla_grad(v))
101 |
102 | def sigma(v):
103 | return 2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(2)
104 |
105 | DIRICHLET = 3
106 | NEUMANN = 4
107 |
108 | a = inner(simp(rhof) * sigma(u), epsilon(v)) * dx
109 | load = fd.Constant((0.0, -1.0))
110 | L = inner(load, v) * ds(NEUMANN)
111 |
112 | u_sol = fd.Function(V)
113 |
114 | bcs = fd.DirichletBC(V, fd.Constant((0.0, 0.0)), DIRICHLET)
115 |
116 | fd.solve(a == L, u_sol, bcs=bcs, solver_parameters=solver_params)
117 | c = fda.Control(rho)
118 | J = fd.assemble(fd.Constant(1e-4) * inner(u_sol, load) * ds(NEUMANN))
119 | Vol = fd.assemble(rhof * dx)
120 | VolControl = fda.Control(Vol)
121 |
122 | with fda.stop_annotating():
123 | Vlimit = fd.assemble(fd.Constant(1.0) * dx(domain=mesh)) * 0.5
124 |
125 | rho_viz_f = fd.Function(RHO, name="rho")
126 | plot_file = f"{output_dir}/design_{inner_product}.pvd"
127 | controls_f = fd.File(plot_file)
128 |
129 | def deriv_cb(j, dj, rho):
130 | with fda.stop_annotating():
131 | rho_viz_f.assign(rhofControl.tape_value())
132 | controls_f.write(rho_viz_f)
133 |
134 | Jhat = fda.ReducedFunctional(J, c, derivative_cb_post=deriv_cb)
135 | Volhat = fda.ReducedFunctional(Vol, c)
136 |
137 | class VolumeConstraint(fda.InequalityConstraint):
138 | def __init__(self, Vhat, Vlimit, VolControl):
139 | self.Vhat = Vhat
140 | self.Vlimit = float(Vlimit)
141 | self.VolControl = VolControl
142 |
143 | def function(self, m):
144 | # Compute the integral of the control over the domain
145 | integral = self.VolControl.tape_value()
146 | with fda.stop_annotating():
147 | value = -integral / self.Vlimit + 1.0
148 | return [value]
149 |
150 | def jacobian(self, m):
151 | with fda.stop_annotating():
152 | gradients = self.Vhat.derivative()
153 | with gradients.dat.vec as v:
154 | v.scale(-1.0 / self.Vlimit)
155 | return [gradients]
156 |
157 | def output_workspace(self):
158 | return [0.0]
159 |
160 | def length(self):
161 | """Return the number of components in the constraint vector (here, one)."""
162 | return 1
163 |
164 | lb = 1e-5
165 | ub = 1.0
166 | problem = fda.MinimizationProblem(
167 | Jhat,
168 | bounds=(lb, ub),
169 | constraints=[VolumeConstraint(Volhat, Vlimit, VolControl)],
170 | )
171 |
172 | parameters_mma = {
173 | "move": 0.2,
174 | "maximum_iterations": 200,
175 | "m": 1,
176 | "IP": 0,
177 | "tol": 1e-6,
178 | "accepted_tol": 1e-4,
179 | "norm": inner_product,
180 | #"norm": "euclidean",
181 | "gcmma": False,
182 | }
183 | solver = MMASolver(problem, parameters=parameters_mma)
184 |
185 | rho_opt = solver.solve()
186 |
187 | with open(f"{output_dir}/finished_{inner_product}.txt", "w") as f:
188 | f.write("Done")
189 |
190 |
191 | if __name__ == "__main__":
192 | compliance()
193 |
--------------------------------------------------------------------------------
/pyMMAopt/mma_solver.py:
--------------------------------------------------------------------------------
1 | from pyadjoint.adjfloat import AdjFloat
2 | from pyadjoint.optimization.optimization_solver import OptimizationSolver
3 | from firedrake.petsc import PETSc
4 | import firedrake as fd
5 | from pyadjoint import stop_annotating
6 | from firedrake import COMM_WORLD, HDF5File
7 | from firedrake.tsfc_interface import TSFCKernel
8 | from pyop2.global_kernel import GlobalKernel
9 | import gc
10 | import petsc4py
11 | from mpi4py import MPI
12 | import time
13 | import signal
14 |
15 | try:
16 | from .mma import MMAClient
17 | except ImportError:
18 | print("You need to install MMA")
19 | raise
20 | import numpy
21 |
22 |
23 | def print(x):
24 | return PETSc.Sys.Print(x, comm=COMM_WORLD)
25 |
26 |
27 | def copy_vec_into_funct(func, vec):
28 | with func.dat.vec as a_vec:
29 | a_vec.array_w = vec
30 |
31 |
32 | def func_to_vec(func):
33 | with func.dat.vec_ro as func_vec:
34 | vec = func_vec.array
35 | return vec
36 |
37 |
38 | class MMASolver(OptimizationSolver):
39 | def __init__(self, problem, parameters=None):
40 | OptimizationSolver.__init__(self, problem, parameters)
41 |
42 | self.rf = self.problem.reduced_functional
43 | if len(self.rf.controls) > 1:
44 | raise RuntimeError("Only one control is possible for MMA")
45 |
46 | if isinstance(self.rf.controls[0].control, fd.Function) is False:
47 | raise RuntimeError("Only control of type Function is possible for MMA")
48 |
49 | control_funcspace = self.rf.controls[0].control.function_space()
50 | self.mesh = control_funcspace.mesh()
51 | control_elem = control_funcspace.ufl_element()
52 |
53 | supported_fe = ["DQ", "Discontinuous Lagrange"]
54 | mass_matrix_support = True
55 | if control_elem.family() == "TensorProductElement":
56 | sub_elem = control_elem.sub_elements()
57 | if (
58 | sub_elem[0].family() not in supported_fe
59 | or sub_elem[0].degree() != 0
60 | or sub_elem[1].family() not in supported_fe
61 | or sub_elem[1].degree() != 0
62 | ):
63 | mass_matrix_support = False
64 | elif control_elem.family() not in supported_fe or control_elem.degree() != 0:
65 | mass_matrix_support = False
66 |
67 | if parameters.get("norm") == "L2":
68 | if mass_matrix_support:
69 | with stop_annotating():
70 | self.Mdiag = fd.assemble(
71 | fd.TrialFunction(control_funcspace)
72 | * fd.TestFunction(control_funcspace)
73 | * fd.dx,
74 | diagonal=True,
75 | ).dat.data_ro
76 | else:
77 | fd.warning(
78 | "Only zero degree Discontinuous Galerkin function space is supported for norm = L2"
79 | )
80 | self.Mdiag = numpy.ones(self.rf.controls[0].control.dat.data_ro.size)
81 | else:
82 | self.Mdiag = numpy.ones(self.rf.controls[0].control.dat.data_ro.size)
83 |
84 | self.__build_mma_problem()
85 | self.__set_parameters()
86 |
87 | self.change = 0.0
88 | self.f0val = 0.0
89 | self.g0val = [[0.0] for _ in range(parameters["m"])]
90 | self.loop = 0
91 |
92 | def __set_parameters(self):
93 | """Set some basic parameters from the parameters dictionary that the user
94 | passed in, if any."""
95 | param_defaults = {
96 | "m": 1,
97 | "n": 1,
98 | "Mdiag": False,
99 | "tol": 1e-8,
100 | "rfunctol": 1e-8,
101 | "accepted_tol": 1e-4,
102 | "maximum_iterations": 100,
103 | "asyinit": 0.5,
104 | "asyincr": 1.2,
105 | "asydecr": 0.7,
106 | "albefa": 0.1,
107 | "move": 0.1,
108 | "epsimin": 1.0e-05,
109 | "raa0": 1.0e-05,
110 | "xmin": [],
111 | "xmax": [],
112 | "a0": 1.0,
113 | "a": [],
114 | "c": [],
115 | "d": [],
116 | "IP": 0,
117 | "norm": "L2",
118 | "gcmma": False,
119 | "output_dir": "./",
120 | "restart_file": False,
121 | }
122 | if self.parameters is not None:
123 | for key in self.parameters.keys():
124 | if key not in param_defaults.keys():
125 | raise ValueError(
126 | "Don't know how to deal with parameter %s (a %s)"
127 | % (key, self.parameters[key].__class__)
128 | )
129 |
130 | for (prop, default) in param_defaults.items():
131 | self.parameters[prop] = self.parameters.get(prop, default)
132 | else:
133 | self.parameters = param_defaults
134 |
135 | def __build_mma_problem(self):
136 | """Build the pyipopt problem from the OptimizationProblem instance."""
137 |
138 | self.rf = self.problem.reduced_functional
139 | assert len(self.rf.controls) == 1, "Only one control is possible for MMA"
140 | assert isinstance(
141 | self.rf.controls[0].control, fd.Function
142 | ), "Only control of type Function is possible for MMA"
143 |
144 | (self.lb, self.ub) = self.__get_bounds()
145 | (nconstraints, self.fun_g, self.jac_g) = self.__get_constraints()
146 |
147 | def __get_bounds(self):
148 | r"""Convert the bounds into the format accepted by MMA (two numpy arrays,
149 | one for the lower bound and one for the upper)."""
150 |
151 | bounds = self.problem.bounds
152 |
153 | if bounds is not None:
154 | lb_list = []
155 | ub_list = [] # a list of numpy arrays, one for each control
156 |
157 | for (bound, control) in zip(bounds, self.rf.controls):
158 | general_lb, general_ub = bound # could be float, Constant, or Function
159 |
160 | if isinstance(control.control, fd.Function):
161 | n_local_control = control.control.dat.data_ro.size
162 | elif isinstance(control.control, (fd.Constant, AdjFloat)):
163 | n_local_control = 1
164 | else:
165 | raise TypeError(
166 | f"Type of control: {type(control.control)} not supported by pyMMAopt"
167 | )
168 |
169 | if isinstance(general_lb, (float, int)):
170 | lb = numpy.array([float(general_lb)] * n_local_control)
171 | else:
172 | with general_lb.dat.vec_ro as lb_v:
173 | lb = lb_v.array
174 |
175 | lb_list.append(lb)
176 |
177 | if isinstance(general_ub, (float, int)):
178 | ub = numpy.array([float(general_ub)] * n_local_control)
179 | else:
180 | with general_ub.dat.vec_ro as ub_v:
181 | ub = ub_v.array
182 |
183 | ub_list.append(ub)
184 |
185 | ub = numpy.concatenate(ub_list)
186 | lb = numpy.concatenate(lb_list)
187 |
188 | else:
189 | # Unfortunately you really need to specify bounds, I think?!
190 | ncontrols = len(self.rf.get_controls())
191 | max_float = numpy.finfo(numpy.double).max
192 | ub = numpy.array([max_float] * ncontrols)
193 |
194 | min_float = numpy.finfo(numpy.double).min
195 | lb = numpy.array([min_float] * ncontrols)
196 |
197 | return (lb, ub)
198 |
199 | def __get_constraints(self):
200 | constraint = self.problem.constraints
201 |
202 | if constraint is None:
203 | # The length of the constraint vector
204 | nconstraints = 0
205 |
206 | # The bounds for the constraint
207 | empty = numpy.array([], dtype=float)
208 |
209 | # The constraint function, should do nothing
210 | def fun_g(x, user_data=None):
211 | return empty
212 |
213 | # The constraint Jacobian
214 | def jac_g(x, flag, user_data=None):
215 | if not flag:
216 | return empty
217 |
218 | rows = numpy.array([], dtype=int)
219 | cols = numpy.array([], dtype=int)
220 | return (rows, cols)
221 |
222 | return (nconstraints, fun_g, jac_g)
223 | else:
224 | # The length of the constraint vector
225 | nconstraints = constraint._get_constraint_dim()
226 | # The constraint function
227 |
228 | def fun_g(x, user_data=None):
229 | return numpy.array(constraint.function(x), dtype=float)
230 |
231 | # The constraint Jacobian:
232 | # flag = True means 'tell me the sparsity pattern';
233 | # flag = False means 'give me the damn Jacobian'.
234 |
235 | def jac_g(x, user_data=None):
236 | return constraint.jacobian(x)
237 |
238 | return (nconstraints, fun_g, jac_g)
239 |
240 | def solve(
241 | self, xold1_func=None, xold2_func=None, low_func=None, upp_func=None, loop=0
242 | ):
243 | assert (
244 | xold1_func is None
245 | and xold2_func is None
246 | and low_func is None
247 | and upp_func is None
248 | ) or (xold1_func and xold2_func and low_func and upp_func)
249 |
250 | parameters = self.parameters
251 | tol = parameters["tol"]
252 | rfunctol = parameters["rfunctol"]
253 | # Initial estimation
254 | control_function = self.rf.controls[0].control
255 |
256 | if not xold1_func:
257 | xold1_func = fd.Function(control_function.function_space())
258 | xold2_func = fd.Function(control_function.function_space())
259 | low_func = fd.Function(control_function.function_space())
260 | upp_func = fd.Function(control_function.function_space())
261 |
262 | if parameters.get("restart_file", None):
263 | with HDF5File(parameters["restart_file"], "r") as checkpoint:
264 | checkpoint.read(control_function, "/control")
265 | checkpoint.read(xold1_func, "/xold1_func")
266 | checkpoint.read(xold2_func, "/xold2_func")
267 | checkpoint.read(low_func, "/low_func")
268 | checkpoint.read(upp_func, "/upp_func")
269 |
270 | with control_function.dat.vec_ro as control_vec:
271 | a_np = control_vec.array
272 |
273 | xold1 = func_to_vec(xold1_func)
274 | xold2 = func_to_vec(xold2_func)
275 | low = func_to_vec(low_func)
276 | upp = func_to_vec(upp_func)
277 |
278 | import numpy as np
279 |
280 | parameters["xmin"] = self.lb
281 | parameters["xmax"] = self.ub
282 | parameters["n"] = control_function.dat.data_ro.size
283 | parameters["Mdiag"] = self.Mdiag
284 | itermax = parameters["maximum_iterations"]
285 |
286 | # Create an optimizer client
287 | clientOpt = MMAClient(parameters)
288 | # 'asyinit':0.2,'asyincr':0.8,'asydecr':0.3
289 |
290 | change_arr = []
291 |
292 | a_function = control_function.copy(deepcopy=True)
293 |
294 | def receive_signal(signum, stack):
295 | copy_vec_into_funct(xold1_func, xold1)
296 | copy_vec_into_funct(xold2_func, xold2)
297 | copy_vec_into_funct(low_func, low)
298 | copy_vec_into_funct(upp_func, upp)
299 |
300 | with HDF5File(
301 | f"{parameters['output_dir']}/checkpoint_iter_{loop}.h5", "w"
302 | ) as checkpoint:
303 | checkpoint.write(a_function, "/control")
304 | checkpoint.write(xold1_func, "/xold1_func")
305 | checkpoint.write(xold2_func, "/xold2_func")
306 | checkpoint.write(low_func, "/low_func")
307 | checkpoint.write(upp_func, "/upp_func")
308 |
309 | signal.signal(signal.SIGUSR1, receive_signal)
310 |
311 | def eval_f(a_np):
312 | with a_function.dat.vec as a_vec:
313 | a_vec.array_w = a_np
314 | return self.rf(a_function)
315 |
316 | def eval_g(a_np):
317 | with a_function.dat.vec as a_vec:
318 | a_vec.array_w = a_np
319 | return -1.0 * self.fun_g(a_function)
320 |
321 | n = parameters["n"]
322 | m = parameters["m"]
323 | dg0dx = np.empty([m, n])
324 | df0dx = np.empty([n])
325 | comm = MPI.COMM_WORLD
326 |
327 | f0val = eval_f(a_np)
328 | g0val = eval_g(a_np).flatten()
329 |
330 | change = 1.0
331 | rfunc_change = 1.0
332 | prev_f0val = f0val
333 | while change > tol and loop <= itermax and rfunc_change > rfunctol:
334 | t0 = time.time()
335 | if loop % 10 == 0 and loop > 0:
336 | TSFCKernel._cache.clear()
337 | GlobalKernel._cache.clear()
338 | gc.collect()
339 | petsc4py.PETSc.garbage_cleanup(self.mesh._comm)
340 | petsc4py.PETSc.garbage_cleanup(self.mesh.comm)
341 |
342 | # Gradients
343 | df0dx_func = self.rf.derivative()
344 | jac = self.jac_g(a_function)
345 |
346 | # Copy into the numpy arrays
347 | with df0dx_func.dat.vec_ro as df_vec:
348 | df0dx[:] = df_vec.array
349 | for j, jac_j in enumerate(jac):
350 | with jac_j[0].dat.vec_ro as jac_vec:
351 | dg0dx[j, :] = -1.0 * jac_vec.array
352 |
353 | # move limits
354 | clientOpt.xmin = self.lb
355 | clientOpt.xmax = self.ub
356 |
357 | (xmma, y, z, lam, low, upp, factor, f0val, g0val,) = clientOpt.mma(
358 | a_np,
359 | xold1,
360 | xold2,
361 | low,
362 | upp,
363 | f0val,
364 | g0val,
365 | df0dx,
366 | dg0dx,
367 | loop,
368 | eval_f=eval_f,
369 | eval_g=eval_g,
370 | )
371 |
372 | kkt_norm = clientOpt.residualKKTPrimal(
373 | xmma,
374 | y,
375 | z,
376 | lam,
377 | df0dx,
378 | g0val,
379 | dg0dx,
380 | )
381 |
382 | local_change = np.abs(np.max(xmma - xold1))
383 | change = comm.allreduce(local_change, op=MPI.MAX)
384 | rfunc_change = abs(prev_f0val - f0val) / abs(prev_f0val)
385 | prev_f0val = f0val
386 | # update design variables
387 | xold2 = np.copy(xold1)
388 | xold1 = np.copy(a_np)
389 | a_np = np.copy(xmma)
390 | loop = loop + 1
391 |
392 | PETSc.Sys.Print("It: {it}, obj: {obj} ".format(it=loop, obj=f0val), end="")
393 | PETSc.Sys.Print(
394 | "".join([f"g[{index}]: {value} " for index, value in enumerate(g0val)])
395 | )
396 | # PETSc.Sys.Print(" Inner iterations: {:d}".format(inner_it), end="")
397 | PETSc.Sys.Print(" kkt: {:6f}".format(kkt_norm), end="")
398 | PETSc.Sys.Print(" change: {:.6f}".format(change), end="")
399 | PETSc.Sys.Print(" rel obj change: {:.6f}".format(rfunc_change))
400 |
401 | change_arr.append(change)
402 | self.change = change
403 | self.f0val = f0val
404 | self.g0val = g0val
405 | self.loop = loop
406 |
407 | # print(f"rank: {rank} array {a_np}")
408 | # if np.all(np.array(change_arr[-10:]) < accepted_tol):
409 | # break
410 | print(f"Time per iteration: {time.time() - t0}")
411 |
412 | copy_vec_into_funct(a_function, a_np)
413 | copy_vec_into_funct(xold1_func, xold1)
414 | copy_vec_into_funct(xold2_func, xold2)
415 | copy_vec_into_funct(low_func, low)
416 | copy_vec_into_funct(upp_func, upp)
417 | # self.rf.set_local(new_params, a_np)
418 | PETSc.Sys.Print(
419 | "Optimization finished with change: {0:.5f} and iterations: {1}".format(
420 | change, loop
421 | )
422 | )
423 | results = {
424 | "control": self.rf.controls.delist([a_function]),
425 | "xold1": xold1_func,
426 | "xold2": xold2_func,
427 | "low": low_func,
428 | "upp": upp_func,
429 | "loop": loop,
430 | }
431 | return results
432 |
433 | def current_state(self):
434 | return (
435 | "It: {it}, obj: {obj:.3f} ".format(it=self.loop, obj=self.f0val)
436 | + "".join(
437 | [*(map("g[{0[0]}]: {0[1][0]:.3e} ".format, enumerate(self.g0val)))]
438 | )
439 | + " change: {:.3f}\n".format(self.change)
440 | )
441 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 2, June 1991
3 |
4 | Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
5 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
6 | Everyone is permitted to copy and distribute verbatim copies
7 | of this license document, but changing it is not allowed.
8 |
9 | Preamble
10 |
11 | The licenses for most software are designed to take away your
12 | freedom to share and change it. By contrast, the GNU General Public
13 | License is intended to guarantee your freedom to share and change free
14 | software--to make sure the software is free for all its users. This
15 | General Public License applies to most of the Free Software
16 | Foundation's software and to any other program whose authors commit to
17 | using it. (Some other Free Software Foundation software is covered by
18 | the GNU Lesser General Public License instead.) You can apply it to
19 | your programs, too.
20 |
21 | When we speak of free software, we are referring to freedom, not
22 | price. Our General Public Licenses are designed to make sure that you
23 | have the freedom to distribute copies of free software (and charge for
24 | this service if you wish), that you receive source code or can get it
25 | if you want it, that you can change the software or use pieces of it
26 | in new free programs; and that you know you can do these things.
27 |
28 | To protect your rights, we need to make restrictions that forbid
29 | anyone to deny you these rights or to ask you to surrender the rights.
30 | These restrictions translate to certain responsibilities for you if you
31 | distribute copies of the software, or if you modify it.
32 |
33 | For example, if you distribute copies of such a program, whether
34 | gratis or for a fee, you must give the recipients all the rights that
35 | you have. You must make sure that they, too, receive or can get the
36 | source code. And you must show them these terms so they know their
37 | rights.
38 |
39 | We protect your rights with two steps: (1) copyright the software, and
40 | (2) offer you this license which gives you legal permission to copy,
41 | distribute and/or modify the software.
42 |
43 | Also, for each author's protection and ours, we want to make certain
44 | that everyone understands that there is no warranty for this free
45 | software. If the software is modified by someone else and passed on, we
46 | want its recipients to know that what they have is not the original, so
47 | that any problems introduced by others will not reflect on the original
48 | authors' reputations.
49 |
50 | Finally, any free program is threatened constantly by software
51 | patents. We wish to avoid the danger that redistributors of a free
52 | program will individually obtain patent licenses, in effect making the
53 | program proprietary. To prevent this, we have made it clear that any
54 | patent must be licensed for everyone's free use or not licensed at all.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | GNU GENERAL PUBLIC LICENSE
60 | TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
61 |
62 | 0. This License applies to any program or other work which contains
63 | a notice placed by the copyright holder saying it may be distributed
64 | under the terms of this General Public License. The "Program", below,
65 | refers to any such program or work, and a "work based on the Program"
66 | means either the Program or any derivative work under copyright law:
67 | that is to say, a work containing the Program or a portion of it,
68 | either verbatim or with modifications and/or translated into another
69 | language. (Hereinafter, translation is included without limitation in
70 | the term "modification".) Each licensee is addressed as "you".
71 |
72 | Activities other than copying, distribution and modification are not
73 | covered by this License; they are outside its scope. The act of
74 | running the Program is not restricted, and the output from the Program
75 | is covered only if its contents constitute a work based on the
76 | Program (independent of having been made by running the Program).
77 | Whether that is true depends on what the Program does.
78 |
79 | 1. You may copy and distribute verbatim copies of the Program's
80 | source code as you receive it, in any medium, provided that you
81 | conspicuously and appropriately publish on each copy an appropriate
82 | copyright notice and disclaimer of warranty; keep intact all the
83 | notices that refer to this License and to the absence of any warranty;
84 | and give any other recipients of the Program a copy of this License
85 | along with the Program.
86 |
87 | You may charge a fee for the physical act of transferring a copy, and
88 | you may at your option offer warranty protection in exchange for a fee.
89 |
90 | 2. You may modify your copy or copies of the Program or any portion
91 | of it, thus forming a work based on the Program, and copy and
92 | distribute such modifications or work under the terms of Section 1
93 | above, provided that you also meet all of these conditions:
94 |
95 | a) You must cause the modified files to carry prominent notices
96 | stating that you changed the files and the date of any change.
97 |
98 | b) You must cause any work that you distribute or publish, that in
99 | whole or in part contains or is derived from the Program or any
100 | part thereof, to be licensed as a whole at no charge to all third
101 | parties under the terms of this License.
102 |
103 | c) If the modified program normally reads commands interactively
104 | when run, you must cause it, when started running for such
105 | interactive use in the most ordinary way, to print or display an
106 | announcement including an appropriate copyright notice and a
107 | notice that there is no warranty (or else, saying that you provide
108 | a warranty) and that users may redistribute the program under
109 | these conditions, and telling the user how to view a copy of this
110 | License. (Exception: if the Program itself is interactive but
111 | does not normally print such an announcement, your work based on
112 | the Program is not required to print an announcement.)
113 |
114 | These requirements apply to the modified work as a whole. If
115 | identifiable sections of that work are not derived from the Program,
116 | and can be reasonably considered independent and separate works in
117 | themselves, then this License, and its terms, do not apply to those
118 | sections when you distribute them as separate works. But when you
119 | distribute the same sections as part of a whole which is a work based
120 | on the Program, the distribution of the whole must be on the terms of
121 | this License, whose permissions for other licensees extend to the
122 | entire whole, and thus to each and every part regardless of who wrote it.
123 |
124 | Thus, it is not the intent of this section to claim rights or contest
125 | your rights to work written entirely by you; rather, the intent is to
126 | exercise the right to control the distribution of derivative or
127 | collective works based on the Program.
128 |
129 | In addition, mere aggregation of another work not based on the Program
130 | with the Program (or with a work based on the Program) on a volume of
131 | a storage or distribution medium does not bring the other work under
132 | the scope of this License.
133 |
134 | 3. You may copy and distribute the Program (or a work based on it,
135 | under Section 2) in object code or executable form under the terms of
136 | Sections 1 and 2 above provided that you also do one of the following:
137 |
138 | a) Accompany it with the complete corresponding machine-readable
139 | source code, which must be distributed under the terms of Sections
140 | 1 and 2 above on a medium customarily used for software interchange; or,
141 |
142 | b) Accompany it with a written offer, valid for at least three
143 | years, to give any third party, for a charge no more than your
144 | cost of physically performing source distribution, a complete
145 | machine-readable copy of the corresponding source code, to be
146 | distributed under the terms of Sections 1 and 2 above on a medium
147 | customarily used for software interchange; or,
148 |
149 | c) Accompany it with the information you received as to the offer
150 | to distribute corresponding source code. (This alternative is
151 | allowed only for noncommercial distribution and only if you
152 | received the program in object code or executable form with such
153 | an offer, in accord with Subsection b above.)
154 |
155 | The source code for a work means the preferred form of the work for
156 | making modifications to it. For an executable work, complete source
157 | code means all the source code for all modules it contains, plus any
158 | associated interface definition files, plus the scripts used to
159 | control compilation and installation of the executable. However, as a
160 | special exception, the source code distributed need not include
161 | anything that is normally distributed (in either source or binary
162 | form) with the major components (compiler, kernel, and so on) of the
163 | operating system on which the executable runs, unless that component
164 | itself accompanies the executable.
165 |
166 | If distribution of executable or object code is made by offering
167 | access to copy from a designated place, then offering equivalent
168 | access to copy the source code from the same place counts as
169 | distribution of the source code, even though third parties are not
170 | compelled to copy the source along with the object code.
171 |
172 | 4. You may not copy, modify, sublicense, or distribute the Program
173 | except as expressly provided under this License. Any attempt
174 | otherwise to copy, modify, sublicense or distribute the Program is
175 | void, and will automatically terminate your rights under this License.
176 | However, parties who have received copies, or rights, from you under
177 | this License will not have their licenses terminated so long as such
178 | parties remain in full compliance.
179 |
180 | 5. You are not required to accept this License, since you have not
181 | signed it. However, nothing else grants you permission to modify or
182 | distribute the Program or its derivative works. These actions are
183 | prohibited by law if you do not accept this License. Therefore, by
184 | modifying or distributing the Program (or any work based on the
185 | Program), you indicate your acceptance of this License to do so, and
186 | all its terms and conditions for copying, distributing or modifying
187 | the Program or works based on it.
188 |
189 | 6. Each time you redistribute the Program (or any work based on the
190 | Program), the recipient automatically receives a license from the
191 | original licensor to copy, distribute or modify the Program subject to
192 | these terms and conditions. You may not impose any further
193 | restrictions on the recipients' exercise of the rights granted herein.
194 | You are not responsible for enforcing compliance by third parties to
195 | this License.
196 |
197 | 7. If, as a consequence of a court judgment or allegation of patent
198 | infringement or for any other reason (not limited to patent issues),
199 | conditions are imposed on you (whether by court order, agreement or
200 | otherwise) that contradict the conditions of this License, they do not
201 | excuse you from the conditions of this License. If you cannot
202 | distribute so as to satisfy simultaneously your obligations under this
203 | License and any other pertinent obligations, then as a consequence you
204 | may not distribute the Program at all. For example, if a patent
205 | license would not permit royalty-free redistribution of the Program by
206 | all those who receive copies directly or indirectly through you, then
207 | the only way you could satisfy both it and this License would be to
208 | refrain entirely from distribution of the Program.
209 |
210 | If any portion of this section is held invalid or unenforceable under
211 | any particular circumstance, the balance of the section is intended to
212 | apply and the section as a whole is intended to apply in other
213 | circumstances.
214 |
215 | It is not the purpose of this section to induce you to infringe any
216 | patents or other property right claims or to contest validity of any
217 | such claims; this section has the sole purpose of protecting the
218 | integrity of the free software distribution system, which is
219 | implemented by public license practices. Many people have made
220 | generous contributions to the wide range of software distributed
221 | through that system in reliance on consistent application of that
222 | system; it is up to the author/donor to decide if he or she is willing
223 | to distribute software through any other system and a licensee cannot
224 | impose that choice.
225 |
226 | This section is intended to make thoroughly clear what is believed to
227 | be a consequence of the rest of this License.
228 |
229 | 8. If the distribution and/or use of the Program is restricted in
230 | certain countries either by patents or by copyrighted interfaces, the
231 | original copyright holder who places the Program under this License
232 | may add an explicit geographical distribution limitation excluding
233 | those countries, so that distribution is permitted only in or among
234 | countries not thus excluded. In such case, this License incorporates
235 | the limitation as if written in the body of this License.
236 |
237 | 9. The Free Software Foundation may publish revised and/or new versions
238 | of the General Public License from time to time. Such new versions will
239 | be similar in spirit to the present version, but may differ in detail to
240 | address new problems or concerns.
241 |
242 | Each version is given a distinguishing version number. If the Program
243 | specifies a version number of this License which applies to it and "any
244 | later version", you have the option of following the terms and conditions
245 | either of that version or of any later version published by the Free
246 | Software Foundation. If the Program does not specify a version number of
247 | this License, you may choose any version ever published by the Free Software
248 | Foundation.
249 |
250 | 10. If you wish to incorporate parts of the Program into other free
251 | programs whose distribution conditions are different, write to the author
252 | to ask for permission. For software which is copyrighted by the Free
253 | Software Foundation, write to the Free Software Foundation; we sometimes
254 | make exceptions for this. Our decision will be guided by the two goals
255 | of preserving the free status of all derivatives of our free software and
256 | of promoting the sharing and reuse of software generally.
257 |
258 | NO WARRANTY
259 |
260 | 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
261 | FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
262 | OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
263 | PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
264 | OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
265 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
266 | TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
267 | PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
268 | REPAIR OR CORRECTION.
269 |
270 | 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
271 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
272 | REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
273 | INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
274 | OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
275 | TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
276 | YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
277 | PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
278 | POSSIBILITY OF SUCH DAMAGES.
279 |
280 | END OF TERMS AND CONDITIONS
281 |
282 | How to Apply These Terms to Your New Programs
283 |
284 | If you develop a new program, and you want it to be of the greatest
285 | possible use to the public, the best way to achieve this is to make it
286 | free software which everyone can redistribute and change under these terms.
287 |
288 | To do so, attach the following notices to the program. It is safest
289 | to attach them to the start of each source file to most effectively
290 | convey the exclusion of warranty; and each file should have at least
291 | the "copyright" line and a pointer to where the full notice is found.
292 |
293 |
294 | Copyright (C)
295 |
296 | This program is free software; you can redistribute it and/or modify
297 | it under the terms of the GNU General Public License as published by
298 | the Free Software Foundation; either version 2 of the License, or
299 | (at your option) any later version.
300 |
301 | This program is distributed in the hope that it will be useful,
302 | but WITHOUT ANY WARRANTY; without even the implied warranty of
303 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
304 | GNU General Public License for more details.
305 |
306 | You should have received a copy of the GNU General Public License along
307 | with this program; if not, write to the Free Software Foundation, Inc.,
308 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
309 |
310 | Also add information on how to contact you by electronic and paper mail.
311 |
312 | If the program is interactive, make it output a short notice like this
313 | when it starts in an interactive mode:
314 |
315 | Gnomovision version 69, Copyright (C) year name of author
316 | Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
317 | This is free software, and you are welcome to redistribute it
318 | under certain conditions; type `show c' for details.
319 |
320 | The hypothetical commands `show w' and `show c' should show the appropriate
321 | parts of the General Public License. Of course, the commands you use may
322 | be called something other than `show w' and `show c'; they could even be
323 | mouse-clicks or menu items--whatever suits your program.
324 |
325 | You should also get your employer (if you work as a programmer) or your
326 | school, if any, to sign a "copyright disclaimer" for the program, if
327 | necessary. Here is a sample; alter the names:
328 |
329 | Yoyodyne, Inc., hereby disclaims all copyright interest in the program
330 | `Gnomovision' (which makes passes at compilers) written by James Hacker.
331 |
332 | , 1 April 1989
333 | Ty Coon, President of Vice
334 |
335 | This General Public License does not permit incorporating your program into
336 | proprietary programs. If your program is a subroutine library, you may
337 | consider it more useful to permit linking proprietary applications with the
338 | library. If this is what you want to do, use the GNU Lesser General
339 | Public License instead of this License.
340 |
341 |
--------------------------------------------------------------------------------
/pyMMAopt/mma.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import copy
3 | import numexpr as ne
4 | from firedrake.petsc import PETSc
5 | from mpi4py import MPI
6 | from firedrake import COMM_WORLD, warning
7 |
8 |
9 | def print(x):
10 | return PETSc.Sys.Print(x, comm=COMM_WORLD)
11 |
12 |
13 | class DesignState(object):
14 | state_args = [
15 | "x",
16 | "y",
17 | "z",
18 | "lam",
19 | "xsi",
20 | "eta",
21 | "mu",
22 | "zet",
23 | "s",
24 | ]
25 |
26 | def __init__(self, *args, **kwargs):
27 | for k, v in kwargs.items():
28 | assert k in self.state_args, f"Variable {k} is not admitted"
29 | setattr(self, k, v)
30 |
31 |
32 | class MMAClient(object):
33 | def __init__(self, parameters):
34 | """
35 | This package performs one MMA-iteration and solves the nonlinear
36 | programming problem written in the form:
37 | Minimize f_0(x) + a_0*z + sum( c_i*y_i + 0.5*d_i*(y_i)^2 )
38 | subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m
39 | xmin_j <= x_j <= xmax_j, j = 1,...,n
40 | z >= 0, y_i >= 0, i = 1,...,m
41 |
42 | At a given iteration, the moving lower "low" and upper "upp"
43 | asymptotes are updated as follows:
44 | * the first two iterations:
45 | low_j = x_j - asyinit * (xmax - xmin)
46 | upp_j = x_j + asyinit * (xmax - xmin)
47 | * the later iterations:
48 | low_j = x_j - gamma_j * (xold_j - low_j)
49 | upp_j = x_j + gamma_j * (upp_j - xold_j)
50 | with
51 | zzz = (xval-xold1)*(xold1-xold2)
52 | gamma_j = asyincr if zzz>0; asydecr if zzz<0; 1 otherwise
53 | and finally
54 | low_j = maximum(low_j, x_j - 10*(xmax_j-xmin_j))
55 | low_j = minimum(low_j, x_j - 0.01*(xmax_j-xmin_j))
56 | upp_j = minimum(upp_j, x_j + 10*(xmax_j-xmin_j))
57 | upp_j = maximum(upp_j, x_j + 0.01*(xmax_j-xmin_j))
58 |
59 | All the parameters are provided in a dictionnary "parameter" s.t.
60 | "parameter = {
61 | m: "number of constraints",
62 | n: "number of variables x_j",
63 | xmin: "list with the lower bounds for the variables x_j",
64 | xmax: "list with the upper bounds for the variables x_j",
65 | a0: "constant in the term a_0*z",
66 | a: "list with the constants a_i in the terms a_i*z",
67 | c: "list with the constants c_i in the terms c_i*y_i",
68 | d: "list with the constants d_i in the terms 0.5*d_i*(y_i)^2",
69 | asyinit: "constant in the term update of low and upp",
70 | asyincr: "constant in the term update of low and upp",
71 | asydecr: "constant in the term update of low and upp",
72 | albefa: "constant in the term update of low and upp"
73 | move:"constant in the term update of low and upp"
74 | }
75 | """
76 | param_defaults = {
77 | "m": 1,
78 | "n": 1,
79 | "asyinit": 0.5,
80 | "asyincr": 1.2,
81 | "asydecr": 0.7,
82 | "albefa": 0.1,
83 | "move": 0.1,
84 | "epsimin": 1.0e-05,
85 | "raa0": 1.0e-05,
86 | "xmin": [],
87 | "xmax": [],
88 | "a0": 1.0,
89 | "a": [],
90 | "c": [],
91 | "d": [],
92 | "IP": 0,
93 | "Mdiag": None,
94 | "gcmma": True,
95 | }
96 |
97 | # create the attributes
98 | for (prop, default) in param_defaults.items():
99 | setattr(self, prop, parameters.get(prop, default))
100 | self.local_n = len(self.xmin)
101 | if self.m > self.local_n:
102 | raise RuntimeError(
103 | "This MMA implementation only handles a number of constraints smaller than the number of design variables"
104 | )
105 | self.xmin = np.array(self.xmin)
106 | self.xmax = np.array(self.xmax)
107 | self.comm = MPI.COMM_WORLD
108 |
109 | # TODO if there are two variables per cell, the volume will be twice as big...
110 | # So far, this is not allowed by the element check in MMASolver
111 | local_volume = np.sum(self.Mdiag)
112 | self.volume = self.comm.allreduce(local_volume, op=MPI.SUM)
113 | print(f"Volume for MMA is: {self.volume}")
114 |
115 | # clasical configuration when parameters are unspecified
116 | if len(self.a) == 0:
117 | self.a = np.array([0.0] * self.m)
118 | if len(self.c) == 0:
119 | self.c = np.array([1000.0] * self.m)
120 | if len(self.d) == 0:
121 | self.d = np.array([1.0] * self.m)
122 |
123 | def iPrint(self, msgS, msg, level):
124 | if self.IP > level:
125 | print(
126 | str(" " * level)
127 | + " ".join(msgS[k] + ": {}".format(v) for k, v in enumerate(msg))
128 | )
129 |
130 | def residualKKTPrimal(
131 | self,
132 | x,
133 | y,
134 | z,
135 | lam,
136 | df0dx,
137 | fval,
138 | dfdx,
139 | ):
140 |
141 | residual_gradients = df0dx + np.dot(np.transpose(dfdx), lam)
142 |
143 | mu_min = np.where(residual_gradients > 0.0, residual_gradients, 0.0)
144 | mu_min *= (self.xmin - x) * np.sqrt(self.Mdiag)
145 | mu_max = np.where(residual_gradients < 0.0, -residual_gradients, 0.0)
146 | mu_max *= (self.xmax - x) * np.sqrt(self.Mdiag)
147 | norm2_grad = mu_min**2 + mu_max**2
148 | local_norm2 = np.sum(norm2_grad)
149 | norm2 = self.comm.allreduce(local_norm2, op=MPI.SUM)
150 |
151 | residual_constraints = fval - self.a * z - y
152 | residual_constraints = np.where(
153 | residual_constraints < 0.0, lam * residual_constraints, residual_constraints
154 | )
155 | return np.sqrt(np.sum(residual_constraints**2) + norm2)
156 |
157 | def resKKT(
158 | self,
159 | alfa,
160 | beta,
161 | low,
162 | upp,
163 | p0,
164 | q0,
165 | P,
166 | Q,
167 | b,
168 | design_state,
169 | epsi,
170 | ):
171 | x = design_state.x
172 | y = design_state.y
173 | z = design_state.z
174 | lam = design_state.lam
175 | xsi = design_state.xsi
176 | eta = design_state.eta
177 | mu = design_state.mu
178 | s = design_state.s
179 | zet = design_state.zet
180 | z = design_state.z
181 |
182 | Mdiag = self.Mdiag
183 | ux1 = upp - x
184 | xl1 = x - low
185 | ux2 = ux1 * ux1
186 | xl2 = xl1 * xl1
187 | uxinv1 = 1.0 / ux1
188 | xlinv1 = 1.0 / xl1
189 | plam = p0 + np.dot(P.T, lam)
190 | qlam = q0 + np.dot(Q.T, lam)
191 | local_gvec = (P * self.Mdiag).dot(uxinv1) + (Q * self.Mdiag).dot(xlinv1)
192 | gvec = self.comm.allreduce(local_gvec, op=MPI.SUM)
193 | dpsidx = ne.evaluate("plam / ux2 - qlam / xl2")
194 |
195 | def global_res_norm_square(local_residual):
196 | local_residuNorm = ne.evaluate("sum(local_residual ** 2)")
197 | residuNorm = self.comm.allreduce(local_residuNorm, op=MPI.SUM)
198 | return residuNorm
199 |
200 | def global_residual_max(local_residual):
201 | local_residuMax = np.linalg.norm(local_residual, np.inf)
202 | residuMax = self.comm.allreduce(local_residuMax, op=MPI.MAX)
203 | return residuMax
204 |
205 | # rex
206 | local_residu_x = ne.evaluate("(dpsidx * Mdiag - Mdiag*xsi + Mdiag*eta)")
207 | residu_x_norm = global_res_norm_square(
208 | ne.evaluate("local_residu_x / sqrt(Mdiag)")
209 | ) # This components is in the dual space, the norm has
210 | # to be weighted b the inverse of the mass matrix a.T * M^{-1} * a
211 | # do a sqrt if you're going to do **2 later
212 | residu_x_max = global_residual_max(local_residu_x)
213 | # rey
214 | residu_y = self.c + self.d * y - mu - lam
215 | residu_y_norm = np.sum(residu_y**2)
216 | residu_y_max = np.linalg.norm(residu_y, np.inf)
217 | # rez
218 | residu_z = self.a0 - zet - np.dot(self.a, lam)
219 | residu_z_norm = residu_z**2
220 | residu_z_max = np.abs(residu_z)
221 | # relam
222 | residu_lam = gvec - self.a * z - y + s + b
223 | residu_lam_norm = np.sum(residu_lam**2)
224 | residu_lam_max = np.linalg.norm(residu_lam, np.inf)
225 | # rexsi
226 | local_residu_xsi = ne.evaluate("(xsi * (x - alfa) - epsi) * sqrt(Mdiag)")
227 | residu_xsi_norm = global_res_norm_square(local_residu_xsi)
228 | residu_xsi_max = global_residual_max(local_residu_xsi)
229 | # reeta
230 | local_residu_eta = ne.evaluate("(eta * (beta - x) - epsi)* sqrt(Mdiag)")
231 | residu_eta_norm = global_res_norm_square(local_residu_eta)
232 | residu_eta_max = global_residual_max(local_residu_eta)
233 | # remu
234 | residu_mu = mu * y - epsi
235 | residu_mu_norm = np.sum(residu_mu**2)
236 | residu_mu_max = np.linalg.norm(residu_mu, np.inf)
237 | # rezet
238 | residu_zet = zet * z - epsi
239 | residu_zet_norm = residu_zet**2
240 | residu_zet_max = np.abs(residu_zet)
241 | # res
242 | residu_s = lam * s - epsi
243 | residu_s_norm = np.sum(residu_s**2)
244 | residu_s_max = np.linalg.norm(residu_s, np.inf)
245 |
246 | residu_norm = np.sqrt(
247 | residu_x_norm
248 | + residu_y_norm
249 | + residu_lam_norm
250 | + residu_xsi_norm
251 | + residu_eta_norm
252 | + residu_mu_norm
253 | + residu_s_norm
254 | + residu_z_norm
255 | + residu_zet_norm
256 | )
257 | residu_max = np.max(
258 | (
259 | residu_x_max,
260 | residu_y_max,
261 | residu_lam_max,
262 | residu_xsi_max,
263 | residu_eta_max,
264 | residu_mu_max,
265 | residu_s_max,
266 | residu_z_max,
267 | residu_zet_max,
268 | )
269 | )
270 |
271 | return residu_norm, residu_max
272 |
273 | def preCompute(self, alfa, beta, low, upp, p0, q0, P, Q, b, design_state, epsi):
274 | x = design_state.x
275 | y = design_state.y
276 | z = design_state.z
277 | lam = design_state.lam
278 | xsi = design_state.xsi
279 | eta = design_state.eta
280 | mu = design_state.mu
281 | s = design_state.s
282 | zet = design_state.zet
283 | z = design_state.z
284 |
285 | # delx,dely,delz,dellam,diagx,diagy,diagxinv,diaglamyi,GG):
286 | invxalpha = ne.evaluate("1 / (x - alfa)")
287 | invxbeta = ne.evaluate("1 / (beta - x)")
288 | ux1 = upp - x
289 | xl1 = x - low
290 | ux2 = ux1 * ux1
291 | xl2 = xl1 * xl1
292 | ux3 = ux1 * ux2
293 | xl3 = xl1 * xl2
294 | uxinv1 = 1.0 / ux1
295 | xlinv1 = 1.0 / xl1
296 | uxinv2 = 1.0 / ux2
297 | xlinv2 = 1.0 / xl2
298 | plam = p0 + lam.dot(P)
299 | qlam = q0 + lam.dot(Q)
300 | local_gvec = (P * self.Mdiag).dot(uxinv1) + (Q * self.Mdiag).dot(xlinv1)
301 | gvec = self.comm.allreduce(local_gvec, op=MPI.SUM)
302 | Mdiag = self.Mdiag
303 | GG = ne.evaluate("uxinv2 * P * Mdiag - xlinv2 * Q * Mdiag")
304 | dpsidx = ne.evaluate("plam * uxinv2 - qlam * xlinv2")
305 | delx = ne.evaluate(
306 | "dpsidx * Mdiag - Mdiag * epsi * invxalpha + Mdiag * epsi * invxbeta"
307 | )
308 | diagx = ne.evaluate(
309 | "2 * (plam / ux3 + qlam / xl3) * Mdiag + Mdiag * xsi * invxalpha + Mdiag * eta * invxbeta"
310 | )
311 | diagxinv = 1.0 / diagx
312 |
313 | dely = self.c + self.d * y - lam - epsi / y
314 | delz = self.a0 - np.dot(self.a, lam) - epsi / z
315 | dellam = gvec - self.a * z - y + b + epsi / lam
316 | diagy = self.d + mu / y
317 | diagyinv = 1.0 / diagy
318 | diaglam = s / lam
319 | diaglamyi = diaglam + diagyinv
320 |
321 | return delx, dely, delz, dellam, diagx, diagy, diagxinv, diaglamyi, GG
322 |
323 | def JacDual(self, diagxinvGG, diaglamyi, GG, z, zet):
324 | """
325 | JAC = [Alam a
326 | a' -zet/z ]
327 | """
328 | local_Alam = np.dot(diagxinvGG, GG.T)
329 | Alam = self.comm.allreduce(local_Alam, op=MPI.SUM)
330 | mm = range(0, self.m)
331 | Alam[mm, mm] += diaglamyi
332 | jac = np.empty(shape=(self.m + 1, self.m + 1), dtype=float)
333 | jac[0 : self.m, 0 : self.m] = Alam
334 | jac[self.m, 0 : self.m] = self.a
335 | jac[self.m, self.m] = -zet / z
336 | jac[0 : self.m, self.m] = self.a
337 |
338 | return jac
339 |
340 | def RHSdual(self, dellam, delx, dely, delz, diagxinvGG, diagy, GG):
341 | rhs = np.empty(shape=(self.m + 1,), dtype=float)
342 | local_diagxinvGG_delx = diagxinvGG.dot(delx)
343 | diagxinvGG_delx = self.comm.allreduce(local_diagxinvGG_delx, op=MPI.SUM)
344 | rhs[0 : self.m] = dellam + dely / diagy - diagxinvGG_delx
345 | rhs[self.m] = delz
346 | return rhs
347 |
348 | def getNewPoint(
349 | self,
350 | design_state_old,
351 | dx,
352 | dy,
353 | dz,
354 | dlam,
355 | dxsi,
356 | deta,
357 | dmu,
358 | dzet,
359 | ds,
360 | step,
361 | ):
362 | xold = design_state_old.x
363 | yold = design_state_old.y
364 | zold = design_state_old.z
365 | lamold = design_state_old.lam
366 | xsiold = design_state_old.xsi
367 | etaold = design_state_old.eta
368 | muold = design_state_old.mu
369 | sold = design_state_old.s
370 | zetold = design_state_old.zet
371 | zold = design_state_old.z
372 |
373 | x = xold + step * dx
374 | y = yold + step * dy
375 | z = zold + step * dz
376 | lam = lamold + step * dlam
377 | xsi = xsiold + step * dxsi
378 | eta = etaold + step * deta
379 | mu = muold + step * dmu
380 | zet = zetold + step * dzet
381 | s = sold + step * ds
382 |
383 | design_state = DesignState(
384 | x=x, y=y, z=z, lam=lam, xsi=xsi, eta=eta, mu=mu, zet=zet, s=s
385 | )
386 |
387 | return design_state
388 |
389 | def subsolvIP(self, alfa, beta, low, upp, p0, q0, P, Q, b):
390 | """
391 | This function subsolv solves the MMA subproblem with interior
392 | point method:
393 |
394 | minimize SUM[ p0j/(uppj-xj) + q0j/(xj-lowj) ] + a0*z +
395 | + SUM[ ci*yi + 0.5*di*(yi)^2 ],
396 |
397 | subject to SUM[ pij/(uppj-xj) + qij/(xj-lowj) ] - ai*z - yi <= bi,
398 | alfaj <= xj <= betaj, yi >= 0, z >= 0.
399 |
400 | Input: m, n, low, upp, alfa, beta, p0, q0, P, Q, a0, a, b, c, d.
401 | Output: xmma,ymma,zmma, slack variables and Lagrange multiplers.
402 | """
403 | # Initialize the variable values
404 | epsi = 1
405 | x = 0.5 * (alfa + beta)
406 | y = np.ones([self.m])
407 | z = 1
408 | lam = np.ones([self.m])
409 | xsi = 1.0 / (x - alfa)
410 | xsi = np.maximum(xsi, 1.0)
411 | eta = np.maximum(1.0 / (beta - x), 1.0)
412 | mu = np.maximum(np.ones([self.m]), 0.5 * self.c)
413 | zet = 1
414 | s = np.ones([self.m])
415 | epsiIt = 1
416 |
417 | design_state = DesignState(
418 | x=x, y=y, z=z, lam=lam, xsi=xsi, eta=eta, mu=mu, zet=zet, s=s
419 | )
420 |
421 | if self.IP > 0:
422 | print(str("*" * 80))
423 |
424 | while epsi > self.epsimin: # Loop over epsilon
425 | self.iPrint(["Interior Point it.", "epsilon"], [epsiIt, epsi], 0)
426 |
427 | # compute residual
428 | residuNorm, residuMax = self.resKKT(
429 | alfa,
430 | beta,
431 | low,
432 | upp,
433 | p0,
434 | q0,
435 | P,
436 | Q,
437 | b,
438 | design_state,
439 | epsi,
440 | )
441 |
442 | # Solve the NL KKT problem for a given epsilon
443 | it_NL = 1
444 | relaxloopEpsi = []
445 | while residuNorm > 0.9 * epsi and it_NL < 200:
446 | self.iPrint(
447 | ["NL it.", "Norm(res)", "Max(|res|)"],
448 | [it_NL, residuNorm, residuMax],
449 | 1,
450 | )
451 |
452 | # precompute useful data -> time consuming!!!
453 | (
454 | delx,
455 | dely,
456 | delz,
457 | dellam,
458 | diagx,
459 | diagy,
460 | diagxinv,
461 | diaglamyi,
462 | GG,
463 | ) = self.preCompute(
464 | alfa,
465 | beta,
466 | low,
467 | upp,
468 | p0,
469 | q0,
470 | P,
471 | Q,
472 | b,
473 | design_state,
474 | epsi,
475 | )
476 |
477 | # assemble and solve the system: dlam or dx
478 | diagxinvGG = diagxinv * GG
479 | AA = self.JacDual(diagxinvGG, diaglamyi, GG, z, zet)
480 | bb = self.RHSdual(dellam, delx, dely, delz, diagxinvGG, diagy, GG)
481 | solut = np.linalg.solve(AA, bb)
482 |
483 | dlam = solut[0 : self.m]
484 | dz = solut[self.m]
485 | dx = -delx * diagxinv - np.dot((diagxinv * GG).T, dlam)
486 | dy = -dely / diagy + dlam / diagy
487 | dxsi = ne.evaluate(
488 | "-xsi + epsi / (x - alfa) - (xsi * dx) / (x - alfa)"
489 | )
490 | deta = ne.evaluate(
491 | "-eta + epsi / (beta - x) + (eta * dx) / (beta - x)"
492 | )
493 | dmu = -mu + epsi / y - (mu * dy) / y
494 | dzet = -zet + epsi / z - zet * dz / z
495 | ds = -s + epsi / lam - (s * dlam) / lam
496 |
497 | # store variables
498 | design_state_old = copy.copy(design_state)
499 |
500 | # relaxation of the newton step for staying in feasible region
501 | len_xx = self.local_n * 2 + self.m * 4 + 2
502 | xx = np.zeros(len_xx)
503 | np.concatenate((y, [z], lam, xsi, eta, mu, [zet], s), out=xx)
504 | dxx = np.zeros(len_xx)
505 | np.concatenate((dy, [dz], dlam, dxsi, deta, dmu, [dzet], ds), out=dxx)
506 |
507 | stepxx = ne.evaluate("-1.01 * dxx / xx")
508 | local_stmxx = np.max(stepxx)
509 | stmxx = self.comm.allreduce(local_stmxx, op=MPI.MAX)
510 | stepalfa = ne.evaluate("-1.01 * dx / (x - alfa)")
511 | local_stmalfa = np.max(stepalfa)
512 | stmalfa = self.comm.allreduce(local_stmalfa, op=MPI.MAX)
513 | stepbeta = ne.evaluate("1.01 * dx / (beta - x)")
514 | local_stmbeta = np.max(stepbeta)
515 | stmbeta = self.comm.allreduce(local_stmbeta, op=MPI.MAX)
516 | stmalbe = np.maximum(stmalfa, stmbeta)
517 | stmalbexx = np.maximum(stmalbe, stmxx)
518 | stminv = np.maximum(stmalbexx, 1.0)
519 | step = 1.0 / np.maximum(stmalbexx, 1.0)
520 | itto = 1
521 | resinewNorm = 2 * residuNorm
522 | resinewMax = 1e10
523 | while resinewNorm > residuNorm and itto < 200:
524 | self.iPrint(
525 | ["relax. it.", "Norm(res)", "step"],
526 | [itto, resinewNorm, step],
527 | 2,
528 | )
529 | # compute new point
530 | design_state = self.getNewPoint(
531 | design_state_old,
532 | dx,
533 | dy,
534 | dz,
535 | dlam,
536 | dxsi,
537 | deta,
538 | dmu,
539 | dzet,
540 | ds,
541 | step,
542 | )
543 | x = design_state.x
544 | y = design_state.y
545 | z = design_state.z
546 | lam = design_state.lam
547 | xsi = design_state.xsi
548 | eta = design_state.eta
549 | mu = design_state.mu
550 | s = design_state.s
551 | zet = design_state.zet
552 | z = design_state.z
553 |
554 | # compute the residual
555 | resinewNorm, resinewMax = self.resKKT(
556 | alfa,
557 | beta,
558 | low,
559 | upp,
560 | p0,
561 | q0,
562 | P,
563 | Q,
564 | b,
565 | design_state,
566 | epsi,
567 | )
568 |
569 | # update step
570 | step /= 2.0
571 | itto += 1
572 |
573 | if itto > 198:
574 | warning(f"Line search iteration limit {itto} reached")
575 |
576 | self.iPrint(
577 | ["relax. it.", "Norm(res)", "step"], [itto, resinewNorm, step], 2
578 | )
579 |
580 | residuNorm = resinewNorm
581 | residuMax = resinewMax
582 | step *= 2.0
583 | it_NL += 1
584 |
585 | if it_NL > 500:
586 | warning(f"Iteration limit of the Newton solver ({it_NL}) reached")
587 | epsi *= 0.1
588 | epsiIt += 1
589 |
590 | if self.IP > 0:
591 | print(str("*" * 80))
592 |
593 | return x, y, z, lam
594 |
595 | def moveAsymp(self, xval, xold1, xold2, low, upp, iter):
596 | """
597 | Calculation of the asymptotes low and upp
598 | """
599 | if iter <= 2:
600 | low = xval - self.asyinit * (self.xmax - self.xmin)
601 | upp = xval + self.asyinit * (self.xmax - self.xmin)
602 | else:
603 | zzz = (xval - xold1) * (xold1 - xold2)
604 | factor = np.ones(self.local_n)
605 | factor[np.where(zzz > 0)] = self.asyincr
606 | factor[np.where(zzz < 0)] = self.asydecr
607 | low = xval - factor * (xold1 - low)
608 | upp = xval + factor * (upp - xold1)
609 | low = np.maximum(low, xval - 10 * (self.xmax - self.xmin))
610 | low = np.minimum(low, xval - 0.01 * (self.xmax - self.xmin))
611 | upp = np.minimum(upp, xval + 10 * (self.xmax - self.xmin))
612 | upp = np.maximum(upp, xval + 0.01 * (self.xmax - self.xmin))
613 |
614 | return low, upp
615 |
616 | def moveLim(self, iter, xval, xold1, xold2, low, upp, factor):
617 | """
618 | Calculation of the move limits: alfa and beta
619 | """
620 | aa = np.maximum(
621 | low + self.albefa * (xval - low), xval - self.move * (self.xmax - self.xmin)
622 | )
623 | alfa = np.maximum(aa, self.xmin)
624 | aa = np.minimum(
625 | upp - self.albefa * (upp - xval), xval + self.move * (self.xmax - self.xmin)
626 | )
627 | beta = np.minimum(aa, self.xmax)
628 |
629 | return alfa, beta, factor
630 |
631 | def mmasubMat(self, xval, low, upp, f0val, df0dx, fval, dfdx, rho0, rhoi):
632 | """
633 | Calculations of p0, q0, P, Q and b.
634 | """
635 |
636 | xmami = self.xmax - self.xmin
637 | xmamiinv = 1.0 / xmami
638 | ux1 = upp - xval
639 | ux2 = ux1 * ux1
640 | xl1 = xval - low
641 | xl2 = xl1 * xl1
642 | p0 = np.maximum(df0dx, 0.0)
643 | q0 = np.maximum(-df0dx, 0.0)
644 | pq0 = 0.001 * (p0 + q0) + rho0 * xmamiinv
645 | p0 = p0 + pq0
646 | q0 = q0 + pq0
647 | p0 = p0 * ux2
648 | q0 = q0 * xl2
649 |
650 | P = np.maximum(dfdx, 0.0)
651 | Q = np.maximum(-dfdx, 0.0)
652 | PQ = 0.001 * (P + Q) + rhoi[:, np.newaxis] * xmamiinv[np.newaxis, :]
653 | P = ne.evaluate("ux2 * (P + PQ)")
654 | Q = ne.evaluate("xl2 * (Q + PQ)")
655 | ux1inv = ne.evaluate("1.0 / ux1")
656 | xl1inv = ne.evaluate("1.0 / xl1")
657 |
658 | local_b0 = np.dot(p0 * self.Mdiag, ux1inv) + np.dot(q0 * self.Mdiag, xl1inv)
659 | b0 = -self.comm.allreduce(local_b0, op=MPI.SUM) + f0val
660 |
661 | local_b = np.dot(P * self.Mdiag, ux1inv) + np.dot(Q * self.Mdiag, xl1inv)
662 | b = -self.comm.allreduce(local_b, op=MPI.SUM) + fval.T
663 |
664 | return p0, q0, P, Q, b0, b
665 |
666 | def calculate_initial_rho(self, dfdx, xmax, xmin):
667 | local_rho = np.dot(np.abs(dfdx), xmax - xmin)
668 | rho = 0.1 / self.volume * self.comm.allreduce(local_rho, op=MPI.SUM)
669 | if self.gcmma == False:
670 | if isinstance(rho, np.ndarray):
671 | rho.fill(1e-5)
672 | else:
673 | rho = 1e-5
674 | return rho
675 |
676 | def calculate_rho(self, rho, new_fval, fapp, x_inner, x_outer, low, upp):
677 | denom = np.dot(
678 | self.Mdiag,
679 | (
680 | (upp - low)
681 | * (x_inner - x_outer) ** 2
682 | / ((upp - x_inner) * (x_inner - low) * (self.xmax - self.xmin))
683 | ),
684 | )
685 | denom = self.comm.allreduce(denom, op=MPI.SUM)
686 | delta = (new_fval - fapp) / denom
687 |
688 | if not isinstance(fapp, np.ndarray):
689 | delta = np.array([delta])
690 | rho
691 |
692 | return np.where(
693 | delta > 0,
694 | np.minimum(1.1 * (rho + delta), 10.0 * rho),
695 | rho,
696 | )
697 |
698 | def convex_approximation(self, x_inner, p, q, b, low, upp):
699 | if len(p.shape) > 1:
700 | local_fapp = np.sum(
701 | self.Mdiag * p / (upp - x_inner) + self.Mdiag * q / (x_inner - low), 1
702 | )
703 | else:
704 | local_fapp = np.sum(
705 | self.Mdiag * p / (upp - x_inner) + self.Mdiag * q / (x_inner - low)
706 | )
707 | fapp = self.comm.allreduce(local_fapp, op=MPI.SUM) + b
708 | return fapp
709 |
710 | def condition_check(self, fapp, new_fval):
711 |
712 | if isinstance(fapp, np.ndarray):
713 | assert fapp.size == new_fval.size
714 | else:
715 | fapp = np.array([fapp])
716 | new_fval = np.array([new_fval])
717 |
718 | tolerance = 1e-8
719 |
720 | condition = False
721 | for fapp_i, new_fval_i in zip(fapp, new_fval):
722 | print(f"condition: fapp {fapp_i}, new_fval {new_fval_i}")
723 | if fapp_i + tolerance >= new_fval_i:
724 | condition = True
725 | else:
726 | return False
727 |
728 | return condition
729 |
730 | def mma(
731 | self,
732 | xval,
733 | xold1,
734 | xold2,
735 | low,
736 | upp,
737 | f0val,
738 | fval,
739 | df0dx,
740 | dfdx,
741 | iter,
742 | factor=[],
743 | eval_f=None,
744 | eval_g=None,
745 | ):
746 |
747 | # Calculation of the asymptotes low and upp
748 | low, upp = self.moveAsymp(xval, xold1, xold2, low, upp, iter)
749 |
750 | # Calculation of the bounds alfa and beta
751 | alfa, beta, factor = self.moveLim(iter, xval, xold1, xold2, low, upp, factor)
752 |
753 | rho0 = self.calculate_initial_rho(df0dx, self.xmax, self.xmin)
754 | rhoi = self.calculate_initial_rho(dfdx, self.xmax, self.xmin)
755 |
756 | inner_it_max = 100
757 | inner_it = 0
758 | # Apply Riesz map to the gradients
759 | df0dx /= self.Mdiag
760 | dfdx /= self.Mdiag
761 | while inner_it < inner_it_max:
762 | # generate subproblem
763 | p0, q0, P, Q, b0, b = self.mmasubMat(
764 | xval, low, upp, f0val, df0dx, fval, dfdx, rho0, rhoi
765 | )
766 | print(f"rho0: {rho0}, rhoi: {rhoi}")
767 |
768 | # solve the subproblem
769 | x_inner, y, z, lam = self.subsolvIP(alfa, beta, low, upp, p0, q0, P, Q, b)
770 |
771 | new_f0val = eval_f(x_inner)
772 | new_fval = eval_g(x_inner).flatten()
773 |
774 | f0app = self.convex_approximation(x_inner, p0, q0, b0, low, upp)
775 | fapp = self.convex_approximation(x_inner, P, Q, b, low, upp)
776 |
777 | assert fapp.size == new_fval.size
778 | if self.gcmma == False or (
779 | self.condition_check(f0app, new_f0val)
780 | and self.condition_check(fapp, new_fval)
781 | ):
782 | break
783 | else:
784 | rho0 = self.calculate_rho(
785 | rho0, new_f0val, f0app, x_inner, xval, low, upp
786 | )
787 | rhoi = self.calculate_rho(rhoi, new_fval, fapp, x_inner, xval, low, upp)
788 | print(f"Recalculating rho")
789 |
790 | inner_it += 1
791 |
792 | return (
793 | x_inner,
794 | y,
795 | z,
796 | lam,
797 | low,
798 | upp,
799 | factor,
800 | new_f0val,
801 | new_fval,
802 | )
803 |
--------------------------------------------------------------------------------