├── CoordConv.py
├── LICENSE
├── README.md
├── basic.py
├── criteria.py
├── dataloaders
├── __pycache__
│ ├── kitti_loader.cpython-36.pyc
│ ├── kitti_loader.cpython-38.pyc
│ ├── kitti_loader.cpython-39.pyc
│ ├── pose_estimator.cpython-36.pyc
│ ├── pose_estimator.cpython-38.pyc
│ ├── pose_estimator.cpython-39.pyc
│ ├── transforms.cpython-36.pyc
│ ├── transforms.cpython-38.pyc
│ └── transforms.cpython-39.pyc
├── calib_cam_to_cam.txt
├── kitti_loader.py
├── pose_estimator.py
└── transforms.py
├── demo.gif
├── download
├── rgb_train_downloader.sh
└── rgb_val_downloader.sh
├── helper.py
├── main.py
├── metrics.py
├── model.py
├── results.png
└── vis_utils.py
/CoordConv.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import numpy as np
4 |
5 | class AddCoordsNp():
6 | """Add coords to a tensor"""
7 | def __init__(self, x_dim=64, y_dim=64, with_r=False):
8 | self.x_dim = x_dim
9 | self.y_dim = y_dim
10 | self.with_r = with_r
11 |
12 | def call(self):
13 | """
14 | input_tensor: (batch, x_dim, y_dim, c)
15 | """
16 | #batch_size_tensor = np.shape(input_tensor)[0]
17 |
18 | xx_ones = np.ones([self.x_dim], dtype=np.int32)
19 | xx_ones = np.expand_dims(xx_ones, 1)
20 |
21 | #print(xx_ones.shape)
22 |
23 | xx_range = np.expand_dims(np.arange(self.y_dim), 0)
24 | #xx_range = np.expand_dims(xx_range, 1)
25 |
26 | #print(xx_range.shape)
27 |
28 | xx_channel = np.matmul(xx_ones, xx_range)
29 | xx_channel = np.expand_dims(xx_channel, -1)
30 |
31 | yy_ones = np.ones([self.y_dim], dtype=np.int32)
32 | yy_ones = np.expand_dims(yy_ones, 0)
33 |
34 | #print(yy_ones.shape)
35 |
36 | yy_range = np.expand_dims(np.arange(self.x_dim), 1)
37 | #yy_range = np.expand_dims(yy_range, -1)
38 |
39 | #print(yy_range.shape)
40 |
41 | yy_channel = np.matmul(yy_range, yy_ones)
42 | yy_channel = np.expand_dims(yy_channel, -1)
43 |
44 | xx_channel = xx_channel.astype('float32') / (self.y_dim - 1)
45 | yy_channel = yy_channel.astype('float32') / (self.x_dim - 1)
46 |
47 | xx_channel = xx_channel*2 - 1
48 | yy_channel = yy_channel*2 - 1
49 |
50 |
51 | #xx_channel = xx_channel.repeat(batch_size_tensor, axis=0)
52 | #yy_channel = yy_channel.repeat(batch_size_tensor, axis=0)
53 |
54 | ret = np.concatenate([xx_channel, yy_channel], axis=-1)
55 |
56 | if self.with_r:
57 | rr = np.sqrt( np.square(xx_channel-0.5) + np.square(yy_channel-0.5))
58 | ret = np.concatenate([ret, rr], axis=-1)
59 |
60 | return ret
61 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018 Fangchang Ma
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # A Concise but High-performing Network for Image Guided Depth Completion in Autonomous Driving
2 | This repository is the implementation of our paper [A Concise but High-performing Network for Image Guided Depth Completion in Autonomous Driving](https://www.sciencedirect.com/science/article/pii/S0950705124005112).
3 |
4 | ## Demo
5 |
6 |
7 |
8 |
9 | ## Results
10 |
11 |
12 |
13 |
14 | ## Dependent Environment
15 | You can refer to the following environment:
16 | + python=3.6.2
17 | + torch==1.9.0+cu111
18 | + torchvision==0.10.0+cu111
19 | ```bash
20 | pip install numpy matplotlib Pillow
21 | pip install scikit-image
22 | pip install opencv-contrib-python
23 | ```
24 |
25 | ## Data
26 | - Download the [KITTI Depth](http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion) Dataset from their website. Use the following scripts to extract corresponding RGB images from the raw dataset.
27 | ```bash
28 | ./download/rgb_train_downloader.sh
29 | ./download/rgb_val_downloader.sh
30 | ```
31 | The downloaded rgb files will be stored in the `../data/data_rgb` folder. The overall code, data, and results directory is structured as follows.
32 | ```
33 | ├── CHNet
34 | ├── data
35 | | ├── data_depth_annotated
36 | | | ├── train
37 | | | ├── val
38 | | ├── data_depth_velodyne
39 | | | ├── train
40 | | | ├── val
41 | | ├── depth_selection
42 | | | ├── test_depth_completion_anonymous
43 | | | ├── test_depth_prediction_anonymous
44 | | | ├── val_selection_cropped
45 | | └── data_rgb
46 | | | ├── train
47 | | | ├── val
48 | ├── results
49 | ```
50 |
51 | ## Train
52 | You can train the CHNet through the following command:
53 | ```
54 | python main.py -b 8 (8 is a example of batch size)
55 | ```
56 | ## Evalution
57 | You can evaluate the CHNet through the following command:
58 | ```
59 | python main.py -b 1 --evaluate [checkpoint-path]
60 | ```
61 | ## Test
62 | You can test the CHNet through the following command for online submission:
63 | ```
64 | python main.py -b 1 --evaluate [checkpoint-path] --test
65 | ```
66 |
67 | ## Acknowledgement
68 | Many thanks to these excellent opensource projects
69 | * [PENet](https://github.com/JUGGHM/PENet_ICRA2021)
70 | * [GuideNet](https://github.com/kakaxi314/GuideNet)
71 | * [self-supervised-depth-completion](https://github.com/fangchangma/self-supervised-depth-completion)
72 |
73 | ## Citation
74 | Please consider citing my work as follows if it is helpful for you.
75 | ```
76 | @article{liu2024concise,
77 | title={A concise but high-performing network for image guided depth completion in autonomous driving},
78 | author={Liu, Moyun and Chen, Bing and Chen, Youping and Xie, Jingming and Yao, Lei and Zhang, Yang and Zhou, Joey Tianyi},
79 | journal={Knowledge-Based Systems},
80 | pages={111877},
81 | year={2024},
82 | publisher={Elsevier}
83 | }
84 | ```
85 |
86 |
--------------------------------------------------------------------------------
/basic.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import math
5 |
6 | gks = 5
7 | pad = [i for i in range(gks*gks)]
8 | shift = torch.zeros(gks*gks, 4)
9 | for i in range(gks):
10 | for j in range(gks):
11 | top = i
12 | bottom = gks-1-i
13 | left = j
14 | right = gks-1-j
15 | pad[i*gks + j] = torch.nn.ZeroPad2d((left, right, top, bottom))
16 | #shift[i*gks + j, :] = torch.tensor([left, right, top, bottom])
17 | mid_pad = torch.nn.ZeroPad2d(((gks-1)/2, (gks-1)/2, (gks-1)/2, (gks-1)/2))
18 | zero_pad = pad[0]
19 |
20 | gks2 = 3 #guide kernel size
21 | pad2 = [i for i in range(gks2*gks2)]
22 | shift = torch.zeros(gks2*gks2, 4)
23 | for i in range(gks2):
24 | for j in range(gks2):
25 | top = i
26 | bottom = gks2-1-i
27 | left = j
28 | right = gks2-1-j
29 | pad2[i*gks2 + j] = torch.nn.ZeroPad2d((left, right, top, bottom))
30 |
31 | gks3 = 7 #guide kernel size
32 | pad3 = [i for i in range(gks3*gks3)]
33 | shift = torch.zeros(gks3*gks3, 4)
34 | for i in range(gks3):
35 | for j in range(gks3):
36 | top = i
37 | bottom = gks3-1-i
38 | left = j
39 | right = gks3-1-j
40 | pad3[i*gks3 + j] = torch.nn.ZeroPad2d((left, right, top, bottom))
41 |
42 | def weights_init(m):
43 | # Initialize filters with Gaussian random weights
44 | if isinstance(m, nn.Conv2d):
45 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
46 | m.weight.data.normal_(0, math.sqrt(2. / n))
47 | if m.bias is not None:
48 | m.bias.data.zero_()
49 | elif isinstance(m, nn.ConvTranspose2d):
50 | n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
51 | m.weight.data.normal_(0, math.sqrt(2. / n))
52 | if m.bias is not None:
53 | m.bias.data.zero_()
54 | elif isinstance(m, nn.BatchNorm2d):
55 | m.weight.data.fill_(1)
56 | m.bias.data.zero_()
57 |
58 | def convbnrelu(in_channels, out_channels, kernel_size=3,stride=1, padding=1):
59 | return nn.Sequential(
60 | nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False),
61 | nn.BatchNorm2d(out_channels),
62 | nn.ReLU(inplace=True)
63 | )
64 |
65 | def deconvbnrelu(in_channels, out_channels, kernel_size=5, stride=2, padding=2, output_padding=1):
66 | return nn.Sequential(
67 | nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, bias=False),
68 | nn.BatchNorm2d(out_channels),
69 | nn.ReLU(inplace=True)
70 | )
71 |
72 | def convbn(in_channels, out_channels, kernel_size=3,stride=1, padding=1):
73 | return nn.Sequential(
74 | nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False),
75 | nn.BatchNorm2d(out_channels)
76 | )
77 |
78 | def deconvbn(in_channels, out_channels, kernel_size=4, stride=2, padding=1, output_padding=0):
79 | return nn.Sequential(
80 | nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, bias=False),
81 | nn.BatchNorm2d(out_channels)
82 | )
83 |
84 | class BasicBlock(nn.Module):
85 | expansion = 1
86 | __constants__ = ['downsample']
87 |
88 | def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
89 | base_width=64, dilation=1, norm_layer=None):
90 | super(BasicBlock, self).__init__()
91 | if norm_layer is None:
92 | norm_layer = nn.BatchNorm2d
93 | #norm_layer = encoding.nn.BatchNorm2d
94 | if groups != 1 or base_width != 64:
95 | raise ValueError('BasicBlock only supports groups=1 and base_width=64')
96 | if dilation > 1:
97 | raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
98 | # Both self.conv1 and self.downsample layers downsample the input when stride != 1
99 | self.conv1 = conv3x3(inplanes, planes, stride)
100 | self.bn1 = norm_layer(planes)
101 | self.relu = nn.ReLU(inplace=True)
102 | self.conv2 = conv3x3(planes, planes)
103 | self.bn2 = norm_layer(planes)
104 | if stride != 1 or inplanes != planes:
105 | downsample = nn.Sequential(
106 | conv1x1(inplanes, planes, stride),
107 | norm_layer(planes),
108 | )
109 | self.downsample = downsample
110 | self.stride = stride
111 |
112 | def forward(self, x):
113 | identity = x
114 |
115 | out = self.conv1(x)
116 | out = self.bn1(out)
117 | out = self.relu(out)
118 |
119 | out = self.conv2(out)
120 | out = self.bn2(out)
121 |
122 | if self.downsample is not None:
123 | identity = self.downsample(x)
124 |
125 | out += identity
126 | out = self.relu(out)
127 |
128 | return out
129 |
130 | def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1, bias=False, padding=1):
131 | """3x3 convolution with padding"""
132 | if padding >= 1:
133 | padding = dilation
134 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
135 | padding=padding, groups=groups, bias=bias, dilation=dilation)
136 |
137 | def conv1x1(in_planes, out_planes, stride=1, groups=1, bias=False):
138 | """1x1 convolution"""
139 | return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, groups=groups, bias=bias)
140 |
141 | class SparseDownSampleClose(nn.Module):
142 | def __init__(self, stride):
143 | super(SparseDownSampleClose, self).__init__()
144 | self.pooling = nn.MaxPool2d(stride, stride)
145 | self.large_number = 600
146 | def forward(self, d, mask):
147 | encode_d = - (1-mask)*self.large_number - d
148 |
149 | d = - self.pooling(encode_d)
150 | mask_result = self.pooling(mask)
151 | d_result = d - (1-mask_result)*self.large_number
152 |
153 | return d_result, mask_result
154 |
155 | class CSPNGenerate(nn.Module):
156 | def __init__(self, in_channels, kernel_size):
157 | super(CSPNGenerate, self).__init__()
158 | self.kernel_size = kernel_size
159 | self.generate = convbn(in_channels, self.kernel_size * self.kernel_size - 1, kernel_size=3, stride=1, padding=1)
160 |
161 | def forward(self, feature):
162 |
163 | guide = self.generate(feature)
164 |
165 | #normalization
166 | guide_sum = torch.sum(guide.abs(), dim=1).unsqueeze(1)
167 | guide = torch.div(guide, guide_sum)
168 | guide_mid = (1 - torch.sum(guide, dim=1)).unsqueeze(1)
169 |
170 | #padding
171 | weight_pad = [i for i in range(self.kernel_size * self.kernel_size)]
172 | for t in range(self.kernel_size*self.kernel_size):
173 | zero_pad = 0
174 | if(self.kernel_size==3):
175 | zero_pad = pad2[t]
176 | elif(self.kernel_size==5):
177 | zero_pad = pad[t]
178 | elif(self.kernel_size==7):
179 | zero_pad = pad3[t]
180 | if(t < int((self.kernel_size*self.kernel_size-1)/2)):
181 | weight_pad[t] = zero_pad(guide[:, t:t+1, :, :])
182 | elif(t > int((self.kernel_size*self.kernel_size-1)/2)):
183 | weight_pad[t] = zero_pad(guide[:, t-1:t, :, :])
184 | else:
185 | weight_pad[t] = zero_pad(guide_mid)
186 |
187 | guide_weight = torch.cat([weight_pad[t] for t in range(self.kernel_size*self.kernel_size)], dim=1)
188 | return guide_weight
189 |
190 | class CSPN(nn.Module):
191 | def __init__(self, kernel_size):
192 | super(CSPN, self).__init__()
193 | self.kernel_size = kernel_size
194 |
195 | def forward(self, guide_weight, hn, h0):
196 |
197 | #CSPN
198 | half = int(0.5 * (self.kernel_size * self.kernel_size - 1))
199 | result_pad = [i for i in range(self.kernel_size * self.kernel_size)]
200 | for t in range(self.kernel_size*self.kernel_size):
201 | zero_pad = 0
202 | if(self.kernel_size==3):
203 | zero_pad = pad2[t]
204 | elif(self.kernel_size==5):
205 | zero_pad = pad[t]
206 | elif(self.kernel_size==7):
207 | zero_pad = pad3[t]
208 | if(t == half):
209 | result_pad[t] = zero_pad(h0)
210 | else:
211 | result_pad[t] = zero_pad(hn)
212 | guide_result = torch.cat([result_pad[t] for t in range(self.kernel_size*self.kernel_size)], dim=1)
213 | #guide_result = torch.cat([result0_pad, result1_pad, result2_pad, result3_pad,result4_pad, result5_pad, result6_pad, result7_pad, result8_pad], 1)
214 |
215 | guide_result = torch.sum((guide_weight.mul(guide_result)), dim=1)
216 | guide_result = guide_result[:, int((self.kernel_size-1)/2):-int((self.kernel_size-1)/2), int((self.kernel_size-1)/2):-int((self.kernel_size-1)/2)]
217 |
218 | return guide_result.unsqueeze(dim=1)
219 |
220 | class CSPNGenerateAccelerate(nn.Module):
221 | def __init__(self, in_channels, kernel_size):
222 | super(CSPNGenerateAccelerate, self).__init__()
223 | self.kernel_size = kernel_size
224 | self.generate = convbn(in_channels, self.kernel_size * self.kernel_size - 1, kernel_size=3, stride=1, padding=1)
225 |
226 | def forward(self, feature):
227 |
228 | guide = self.generate(feature)
229 |
230 | #normalization in standard CSPN
231 | #'''
232 | guide_sum = torch.sum(guide.abs(), dim=1).unsqueeze(1)
233 | guide = torch.div(guide, guide_sum)
234 | guide_mid = (1 - torch.sum(guide, dim=1)).unsqueeze(1)
235 | #'''
236 | #weight_pad = [i for i in range(self.kernel_size * self.kernel_size)]
237 |
238 | half1, half2 = torch.chunk(guide, 2, dim=1)
239 | output = torch.cat((half1, guide_mid, half2), dim=1)
240 | return output
241 |
242 | def kernel_trans(kernel, weight):
243 | kernel_size = int(math.sqrt(kernel.size()[1]))
244 | kernel = F.conv2d(kernel, weight, stride=1, padding=int((kernel_size-1)/2))
245 | return kernel
246 |
247 | class CSPNAccelerate(nn.Module):
248 | def __init__(self, kernel_size, dilation=1, padding=1, stride=1):
249 | super(CSPNAccelerate, self).__init__()
250 | self.kernel_size = kernel_size
251 | self.dilation = dilation
252 | self.padding = padding
253 | self.stride = stride
254 |
255 | def forward(self, kernel, input, input0): #with standard CSPN, an addition input0 port is added
256 | bs = input.size()[0]
257 | h, w = input.size()[2], input.size()[3]
258 | input_im2col = F.unfold(input, self.kernel_size, self.dilation, self.padding, self.stride)
259 | kernel = kernel.reshape(bs, self.kernel_size * self.kernel_size, h * w)
260 |
261 | # standard CSPN
262 | input0 = input0.view(bs, 1, h * w)
263 | mid_index = int((self.kernel_size*self.kernel_size-1)/2)
264 | input_im2col[:, mid_index:mid_index+1, :] = input0
265 |
266 | #print(input_im2col.size(), kernel.size())
267 | output = torch.einsum('ijk,ijk->ik', (input_im2col, kernel))
268 | return output.view(bs, 1, h, w)
269 |
270 | class GeometryFeature(nn.Module):
271 | def __init__(self):
272 | super(GeometryFeature, self).__init__()
273 |
274 | def forward(self, z, vnorm, unorm, h, w, ch, cw, fh, fw):
275 | x = z*(0.5*h*(vnorm+1)-ch)/fh
276 | y = z*(0.5*w*(unorm+1)-cw)/fw
277 | return torch.cat((x, y, z),1)
278 |
279 | class BasicBlockGeo(nn.Module):
280 | expansion = 1
281 | __constants__ = ['downsample']
282 |
283 | def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
284 | base_width=64, dilation=1, norm_layer=None, geoplanes=3):
285 | super(BasicBlockGeo, self).__init__()
286 |
287 | if norm_layer is None:
288 | norm_layer = nn.BatchNorm2d
289 | #norm_layer = encoding.nn.BatchNorm2d
290 | if groups != 1 or base_width != 64:
291 | raise ValueError('BasicBlock only supports groups=1 and base_width=64')
292 | if dilation > 1:
293 | raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
294 | # Both self.conv1 and self.downsample layers downsample the input when stride != 1
295 | self.conv1 = conv3x3(inplanes + geoplanes, planes, stride)
296 | self.bn1 = norm_layer(planes)
297 | self.relu = nn.ReLU(inplace=True)
298 | self.conv2 = conv3x3(planes+geoplanes, planes)
299 | self.bn2 = norm_layer(planes)
300 | if stride != 1 or inplanes != planes:
301 | downsample = nn.Sequential(
302 | conv1x1(inplanes+geoplanes, planes, stride),
303 | norm_layer(planes),
304 | )
305 | self.downsample = downsample
306 | self.stride = stride
307 |
308 | def forward(self, x, g1=None, g2=None):
309 | identity = x
310 | if g1 is not None:
311 | x = torch.cat((x, g1), 1)
312 | out = self.conv1(x)
313 | out = self.bn1(out)
314 | out = self.relu(out)
315 |
316 | if g2 is not None:
317 | out = torch.cat((g2,out), 1)
318 | out = self.conv2(out)
319 | out = self.bn2(out)
320 |
321 | if self.downsample is not None:
322 | identity = self.downsample(x)
323 |
324 | out += identity
325 | out = self.relu(out)
326 |
327 | return out
--------------------------------------------------------------------------------
/criteria.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | loss_names = ['l1', 'l2']
5 |
6 | class MaskedMSELoss(nn.Module):
7 | def __init__(self):
8 | super(MaskedMSELoss, self).__init__()
9 |
10 | def forward(self, pred, target):
11 | assert pred.dim() == target.dim(), "inconsistent dimensions"
12 | valid_mask = (target > 0).detach()
13 | diff = target - pred
14 | diff = diff[valid_mask]
15 | self.loss = (diff**2).mean()
16 | return self.loss
17 |
18 | class MaskedL1Loss(nn.Module):
19 | def __init__(self):
20 | super(MaskedL1Loss, self).__init__()
21 |
22 | def forward(self, pred, target, weight=None):
23 | assert pred.dim() == target.dim(), "inconsistent dimensions"
24 | valid_mask = (target > 0).detach()
25 | diff = target - pred
26 | diff = diff[valid_mask]
27 | self.loss = diff.abs().mean()
28 | return self.loss
29 |
30 | # import torch
31 | # import torch.nn as nn
32 |
33 | # loss_names = ['l1', 'l2']
34 |
35 | # def cal_weight(lidar_weight, L1_ratio):
36 | # # lidar_weight = loss_ori / (loss_extra*L1_ratio + loss_lidar)
37 | # extra_weight = lidar_weight * L1_ratio
38 |
39 | # return extra_weight, lidar_weight
40 |
41 | # class MaskedMSELoss(nn.Module):
42 | # def __init__(self):
43 | # super(MaskedMSELoss, self).__init__()
44 |
45 | # def forward(self, pred, target, lidar_mask):
46 | # assert pred.dim() == target.dim(), "inconsistent dimensions"
47 | # lidar_weight = 1
48 |
49 | # valid_mask = (target > 0).detach()
50 | # extra_mask = (valid_mask.int() - (valid_mask * lidar_mask).int()).bool()
51 | # diff = target - pred
52 |
53 | # #############################
54 | # extra_num = (extra_mask > 0).sum()
55 | # lidar_num = (valid_mask * lidar_mask > 0).sum()
56 |
57 | # extra_diff = (diff[extra_mask]**2).sum()
58 | # lidar_diff = (diff[valid_mask * lidar_mask]**2).sum()
59 |
60 | # loss_extra = (extra_diff) / (extra_num + lidar_num)
61 | # loss_lidar = (lidar_diff) / (extra_num + lidar_num)
62 | # extra_diff_L1 = (diff[extra_mask]).abs().sum()
63 | # lidar_diff_L1 = (diff[valid_mask * lidar_mask]).abs().sum()
64 | # loss_extra_L1 = (extra_diff_L1) / (extra_num + lidar_num)
65 | # loss_lidar_L1 = (lidar_diff_L1) / (extra_num + lidar_num)
66 | # L1_ratio = (loss_extra_L1 / loss_lidar_L1).detach().item()
67 | # L2_ratio = (loss_extra / loss_lidar).detach().item()
68 | # num_ratio = (extra_num / lidar_num).detach().item()
69 | # #############################
70 |
71 | # diff = diff[valid_mask]
72 | # self.loss = (diff**2).mean()
73 |
74 | # return self.loss, L1_ratio, L2_ratio, num_ratio, loss_lidar.detach().item()
75 |
76 | # class MaskedL1Loss(nn.Module):
77 | # def __init__(self):
78 | # super(MaskedL1Loss, self).__init__()
79 |
80 | # def forward(self, pred, target, weight=None):
81 | # assert pred.dim() == target.dim(), "inconsistent dimensions"
82 | # valid_mask = (target > 0).detach()
83 | # diff = target - pred
84 | # diff = diff[valid_mask]
85 | # self.loss = diff.abs().mean()
86 | # return self.loss
--------------------------------------------------------------------------------
/dataloaders/__pycache__/kitti_loader.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/kitti_loader.cpython-36.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/kitti_loader.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/kitti_loader.cpython-38.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/kitti_loader.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/kitti_loader.cpython-39.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/pose_estimator.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/pose_estimator.cpython-36.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/pose_estimator.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/pose_estimator.cpython-38.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/pose_estimator.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/pose_estimator.cpython-39.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/transforms.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/transforms.cpython-36.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/transforms.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/transforms.cpython-38.pyc
--------------------------------------------------------------------------------
/dataloaders/__pycache__/transforms.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/dataloaders/__pycache__/transforms.cpython-39.pyc
--------------------------------------------------------------------------------
/dataloaders/calib_cam_to_cam.txt:
--------------------------------------------------------------------------------
1 | calib_time: 09-Jan-2012 13:57:47
2 | corner_dist: 9.950000e-02
3 | S_00: 1.392000e+03 5.120000e+02
4 | K_00: 9.842439e+02 0.000000e+00 6.900000e+02 0.000000e+00 9.808141e+02 2.331966e+02 0.000000e+00 0.000000e+00 1.000000e+00
5 | D_00: -3.728755e-01 2.037299e-01 2.219027e-03 1.383707e-03 -7.233722e-02
6 | R_00: 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
7 | T_00: 2.573699e-16 -1.059758e-16 1.614870e-16
8 | S_rect_00: 1.242000e+03 3.750000e+02
9 | R_rect_00: 9.999239e-01 9.837760e-03 -7.445048e-03 -9.869795e-03 9.999421e-01 -4.278459e-03 7.402527e-03 4.351614e-03 9.999631e-01
10 | P_rect_00: 7.215377e+02 0.000000e+00 6.095593e+02 0.000000e+00 0.000000e+00 7.215377e+02 1.728540e+02 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00
11 | S_01: 1.392000e+03 5.120000e+02
12 | K_01: 9.895267e+02 0.000000e+00 7.020000e+02 0.000000e+00 9.878386e+02 2.455590e+02 0.000000e+00 0.000000e+00 1.000000e+00
13 | D_01: -3.644661e-01 1.790019e-01 1.148107e-03 -6.298563e-04 -5.314062e-02
14 | R_01: 9.993513e-01 1.860866e-02 -3.083487e-02 -1.887662e-02 9.997863e-01 -8.421873e-03 3.067156e-02 8.998467e-03 9.994890e-01
15 | T_01: -5.370000e-01 4.822061e-03 -1.252488e-02
16 | S_rect_01: 1.242000e+03 3.750000e+02
17 | R_rect_01: 9.996878e-01 -8.976826e-03 2.331651e-02 8.876121e-03 9.999508e-01 4.418952e-03 -2.335503e-02 -4.210612e-03 9.997184e-01
18 | P_rect_01: 7.215377e+02 0.000000e+00 6.095593e+02 -3.875744e+02 0.000000e+00 7.215377e+02 1.728540e+02 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00
19 | S_02: 1.392000e+03 5.120000e+02
20 | K_02: 9.597910e+02 0.000000e+00 6.960217e+02 0.000000e+00 9.569251e+02 2.241806e+02 0.000000e+00 0.000000e+00 1.000000e+00
21 | D_02: -3.691481e-01 1.968681e-01 1.353473e-03 5.677587e-04 -6.770705e-02
22 | R_02: 9.999758e-01 -5.267463e-03 -4.552439e-03 5.251945e-03 9.999804e-01 -3.413835e-03 4.570332e-03 3.389843e-03 9.999838e-01
23 | T_02: 5.956621e-02 2.900141e-04 2.577209e-03
24 | S_rect_02: 1.242000e+03 3.750000e+02
25 | R_rect_02: 9.998817e-01 1.511453e-02 -2.841595e-03 -1.511724e-02 9.998853e-01 -9.338510e-04 2.827154e-03 9.766976e-04 9.999955e-01
26 | P_rect_02: 7.215377e+02 0.000000e+00 6.095593e+02 4.485728e+01 0.000000e+00 7.215377e+02 1.728540e+02 2.163791e-01 0.000000e+00 0.000000e+00 1.000000e+00 2.745884e-03
27 | S_03: 1.392000e+03 5.120000e+02
28 | K_03: 9.037596e+02 0.000000e+00 6.957519e+02 0.000000e+00 9.019653e+02 2.242509e+02 0.000000e+00 0.000000e+00 1.000000e+00
29 | D_03: -3.639558e-01 1.788651e-01 6.029694e-04 -3.922424e-04 -5.382460e-02
30 | R_03: 9.995599e-01 1.699522e-02 -2.431313e-02 -1.704422e-02 9.998531e-01 -1.809756e-03 2.427880e-02 2.223358e-03 9.997028e-01
31 | T_03: -4.731050e-01 5.551470e-03 -5.250882e-03
32 | S_rect_03: 1.242000e+03 3.750000e+02
33 | R_rect_03: 9.998321e-01 -7.193136e-03 1.685599e-02 7.232804e-03 9.999712e-01 -2.293585e-03 -1.683901e-02 2.415116e-03 9.998553e-01
34 | P_rect_03: 7.215377e+02 0.000000e+00 6.095593e+02 -3.395242e+02 0.000000e+00 7.215377e+02 1.728540e+02 2.199936e+00 0.000000e+00 0.000000e+00 1.000000e+00 2.729905e-03
35 |
--------------------------------------------------------------------------------
/dataloaders/kitti_loader.py:
--------------------------------------------------------------------------------
1 | import os
2 | import os.path
3 | import glob
4 | import fnmatch # pattern matching
5 | import numpy as np
6 | from numpy import linalg as LA
7 | from random import choice
8 | from PIL import Image
9 | import torch
10 | import torch.utils.data as data
11 | import cv2
12 | from dataloaders import transforms
13 | import CoordConv
14 |
15 | input_options = ['d', 'rgb', 'rgbd', 'g', 'gd']
16 |
17 | def load_calib():
18 | """
19 | Temporarily hardcoding the calibration matrix using calib file from 2011_09_26
20 | """
21 | calib = open("dataloaders/calib_cam_to_cam.txt", "r")
22 | lines = calib.readlines()
23 | P_rect_line = lines[25]
24 |
25 | Proj_str = P_rect_line.split(":")[1].split(" ")[1:]
26 | Proj = np.reshape(np.array([float(p) for p in Proj_str]),
27 | (3, 4)).astype(np.float32)
28 | K = Proj[:3, :3] # camera matrix
29 |
30 | # note: we will take the center crop of the images during augmentation
31 | # that changes the optical centers, but not focal lengths
32 | # K[0, 2] = K[0, 2] - 13 # from width = 1242 to 1216, with a 13-pixel cut on both sides
33 | # K[1, 2] = K[1, 2] - 11.5 # from width = 375 to 352, with a 11.5-pixel cut on both sides
34 | K[0, 2] = K[0, 2] - 13;
35 | K[1, 2] = K[1, 2] - 11.5;
36 | return K
37 |
38 |
39 | def get_paths_and_transform(split, args):
40 | assert (args.use_d or args.use_rgb
41 | or args.use_g), 'no proper input selected'
42 |
43 | if split == "train":
44 | transform = train_transform
45 | # transform = val_transform
46 | glob_d = os.path.join(
47 | args.data_folder,
48 | 'data_depth_velodyne/train/*_sync/proj_depth/velodyne_raw/image_0[2,3]/*.png'
49 | )
50 | glob_gt = os.path.join(
51 | args.data_folder,
52 | 'data_depth_annotated/train/*_sync/proj_depth/groundtruth/image_0[2,3]/*.png'
53 | )
54 |
55 | # def get_rgb_paths(p):
56 | # ps = p.split('/')
57 | # date_liststr = []
58 | # date_liststr.append(ps[-5][:10])
59 | # # pnew = '/'.join([args.data_folder] + ['data_rgb'] + ps[-6:-4] +
60 | # # ps[-2:-1] + ['data'] + ps[-1:])
61 | # pnew = '/'.join(date_liststr + ps[-5:-4] + ps[-2:-1] + ['data'] + ps[-1:])
62 | # pnew = os.path.join(args.data_folder_rgb, pnew)
63 | # return pnew
64 |
65 | def get_rgb_paths(p):
66 | ps = p.split('/')
67 | pnew = '/'.join([args.data_folder] + ['data_rgb'] + ps[-6:-4] +
68 | ps[-2:-1] + ['data'] + ps[-1:])
69 | return pnew
70 |
71 | elif split == "val":
72 | if args.val == "full":
73 | transform = val_transform
74 | glob_d = os.path.join(
75 | args.data_folder,
76 | 'data_depth_velodyne/val/*_sync/proj_depth/velodyne_raw/image_0[2,3]/*.png'
77 | )
78 | glob_gt = os.path.join(
79 | args.data_folder,
80 | 'data_depth_annotated/val/*_sync/proj_depth/groundtruth/image_0[2,3]/*.png'
81 | )
82 |
83 | # def get_rgb_paths(p):
84 | # ps = p.split('/')
85 | # date_liststr = []
86 | # date_liststr.append(ps[-5][:10])
87 | # # pnew = '/'.join(ps[:-7] +
88 | # # ['data_rgb']+ps[-6:-4]+ps[-2:-1]+['data']+ps[-1:])
89 | # pnew = '/'.join(date_liststr + ps[-5:-4] + ps[-2:-1] + ['data'] + ps[-1:])
90 | # pnew = os.path.join(args.data_folder_rgb, pnew)
91 | # return pnew
92 |
93 | def get_rgb_paths(p):
94 | ps = p.split('/')
95 | pnew = '/'.join(ps[:-7] +
96 | ['data_rgb']+ps[-6:-4]+ps[-2:-1]+['data']+ps[-1:])
97 | return pnew
98 |
99 | elif args.val == "select":
100 | # transform = no_transform
101 | transform = val_transform
102 | glob_d = os.path.join(
103 | args.data_folder,
104 | "depth_selection/val_selection_cropped/velodyne_raw/*.png")
105 | glob_gt = os.path.join(
106 | args.data_folder,
107 | "depth_selection/val_selection_cropped/groundtruth_depth/*.png"
108 | )
109 |
110 | def get_rgb_paths(p):
111 | return p.replace("groundtruth_depth", "image")
112 | elif split == "test_completion":
113 | transform = no_transform
114 | glob_d = os.path.join(
115 | args.data_folder,
116 | "depth_selection/test_depth_completion_anonymous/velodyne_raw/*.png"
117 | )
118 | glob_gt = None # "test_depth_completion_anonymous/"
119 | glob_rgb = os.path.join(
120 | args.data_folder,
121 | "depth_selection/test_depth_completion_anonymous/image/*.png")
122 | elif split == "test_prediction":
123 | transform = no_transform
124 | glob_d = None
125 | glob_gt = None # "test_depth_completion_anonymous/"
126 | glob_rgb = os.path.join(
127 | args.data_folder,
128 | "depth_selection/test_depth_prediction_anonymous/image/*.png")
129 | else:
130 | raise ValueError("Unrecognized split " + str(split))
131 |
132 | if glob_gt is not None:
133 | # train or val-full or val-select
134 | paths_d = sorted(glob.glob(glob_d))
135 | paths_gt = sorted(glob.glob(glob_gt))
136 | paths_rgb = [get_rgb_paths(p) for p in paths_gt]
137 | else:
138 | # test only has d or rgb
139 | paths_rgb = sorted(glob.glob(glob_rgb))
140 | paths_gt = [None] * len(paths_rgb)
141 | if split == "test_prediction":
142 | paths_d = [None] * len(
143 | paths_rgb) # test_prediction has no sparse depth
144 | else:
145 | paths_d = sorted(glob.glob(glob_d))
146 |
147 | if len(paths_d) == 0 and len(paths_rgb) == 0 and len(paths_gt) == 0:
148 | raise (RuntimeError("Found 0 images under {}".format(glob_gt)))
149 | if len(paths_d) == 0 and args.use_d:
150 | raise (RuntimeError("Requested sparse depth but none was found"))
151 | if len(paths_rgb) == 0 and args.use_rgb:
152 | raise (RuntimeError("Requested rgb images but none was found"))
153 | if len(paths_rgb) == 0 and args.use_g:
154 | raise (RuntimeError("Requested gray images but no rgb was found"))
155 | if len(paths_rgb) != len(paths_d) or len(paths_rgb) != len(paths_gt):
156 | print(len(paths_rgb), len(paths_d), len(paths_gt))
157 | # for i in range(999):
158 | # print("#####")
159 | # print(paths_rgb[i])
160 | # print(paths_d[i])
161 | # print(paths_gt[i])
162 | # raise (RuntimeError("Produced different sizes for datasets"))
163 | paths = {"rgb": paths_rgb, "d": paths_d, "gt": paths_gt}
164 | return paths, transform
165 |
166 |
167 | def rgb_read(filename):
168 | assert os.path.exists(filename), "file not found: {}".format(filename)
169 | img_file = Image.open(filename)
170 | # rgb_png = np.array(img_file, dtype=float) / 255.0 # scale pixels to the range [0,1]
171 | rgb_png = np.array(img_file, dtype='uint8') # in the range [0,255]
172 | img_file.close()
173 | return rgb_png
174 |
175 |
176 | def depth_read(filename):
177 | # loads depth map D from png file
178 | # and returns it as a numpy array,
179 | # for details see readme.txt
180 | assert os.path.exists(filename), "file not found: {}".format(filename)
181 | img_file = Image.open(filename)
182 | depth_png = np.array(img_file, dtype=int)
183 | img_file.close()
184 | # make sure we have a proper 16bit depth map here.. not 8bit!
185 | assert np.max(depth_png) > 255, \
186 | "np.max(depth_png)={}, path={}".format(np.max(depth_png), filename)
187 |
188 | depth = depth_png.astype(np.float) / 256.
189 | # depth[depth_png == 0] = -1.
190 | depth = np.expand_dims(depth, -1)
191 | return depth
192 |
193 | def drop_depth_measurements(depth, prob_keep):
194 | mask = np.random.binomial(1, prob_keep, depth.shape)
195 | depth *= mask
196 | return depth
197 |
198 | def train_transform(rgb, sparse, target, position, args):
199 | # s = np.random.uniform(1.0, 1.5) # random scaling
200 | # angle = np.random.uniform(-5.0, 5.0) # random rotation degrees
201 | oheight = args.val_h
202 | owidth = args.val_w
203 |
204 | do_flip = np.random.uniform(0.0, 1.0) < 0.5 # random horizontal flip
205 |
206 | transforms_list = [
207 | # transforms.Rotate(angle),
208 | # transforms.Resize(s),
209 | transforms.BottomCrop((oheight, owidth)),
210 | transforms.HorizontalFlip(do_flip)
211 | ]
212 |
213 | # if small_training == True:
214 | # transforms_list.append(transforms.RandomCrop((rheight, rwidth)))
215 |
216 | transform_geometric = transforms.Compose(transforms_list)
217 |
218 | if sparse is not None:
219 | sparse = transform_geometric(sparse)
220 | target = transform_geometric(target)
221 | if rgb is not None:
222 | brightness = np.random.uniform(max(0, 1 - args.jitter),
223 | 1 + args.jitter)
224 | contrast = np.random.uniform(max(0, 1 - args.jitter), 1 + args.jitter)
225 | saturation = np.random.uniform(max(0, 1 - args.jitter),
226 | 1 + args.jitter)
227 | transform_rgb = transforms.Compose([
228 | transforms.ColorJitter(brightness, contrast, saturation, 0),
229 | transform_geometric
230 | ])
231 | rgb = transform_rgb(rgb)
232 | # sparse = drop_depth_measurements(sparse, 0.9)
233 |
234 | if position is not None:
235 | bottom_crop_only = transforms.Compose([transforms.BottomCrop((oheight, owidth))])
236 | position = bottom_crop_only(position)
237 |
238 | # random crop
239 | #if small_training == True:
240 | if args.not_random_crop == False:
241 | h = oheight
242 | w = owidth
243 | rheight = args.random_crop_height
244 | rwidth = args.random_crop_width
245 | # randomlize
246 | i = np.random.randint(0, h - rheight + 1)
247 | j = np.random.randint(0, w - rwidth + 1)
248 |
249 | if rgb is not None:
250 | if rgb.ndim == 3:
251 | rgb = rgb[i:i + rheight, j:j + rwidth, :]
252 | elif rgb.ndim == 2:
253 | rgb = rgb[i:i + rheight, j:j + rwidth]
254 |
255 | if sparse is not None:
256 | if sparse.ndim == 3:
257 | sparse = sparse[i:i + rheight, j:j + rwidth, :]
258 | elif sparse.ndim == 2:
259 | sparse = sparse[i:i + rheight, j:j + rwidth]
260 |
261 | if target is not None:
262 | if target.ndim == 3:
263 | target = target[i:i + rheight, j:j + rwidth, :]
264 | elif target.ndim == 2:
265 | target = target[i:i + rheight, j:j + rwidth]
266 |
267 | if position is not None:
268 | if position.ndim == 3:
269 | position = position[i:i + rheight, j:j + rwidth, :]
270 | elif position.ndim == 2:
271 | position = position[i:i + rheight, j:j + rwidth]
272 |
273 | return rgb, sparse, target, position
274 |
275 | def val_transform(rgb, sparse, target, position, args):
276 | oheight = args.val_h
277 | owidth = args.val_w
278 |
279 | transform = transforms.Compose([
280 | transforms.BottomCrop((oheight, owidth)),
281 | ])
282 | if rgb is not None:
283 | rgb = transform(rgb)
284 | if sparse is not None:
285 | sparse = transform(sparse)
286 | if target is not None:
287 | target = transform(target)
288 | if position is not None:
289 | position = transform(position)
290 |
291 | return rgb, sparse, target, position
292 |
293 |
294 | def no_transform(rgb, sparse, target, position, args):
295 | return rgb, sparse, target, position
296 |
297 |
298 | to_tensor = transforms.ToTensor()
299 | to_float_tensor = lambda x: to_tensor(x).float()
300 |
301 |
302 | def handle_gray(rgb, args):
303 | if rgb is None:
304 | return None, None
305 | if not args.use_g:
306 | return rgb, None
307 | else:
308 | img = np.array(Image.fromarray(rgb).convert('L'))
309 | img = np.expand_dims(img, -1)
310 | if not args.use_rgb:
311 | rgb_ret = None
312 | else:
313 | rgb_ret = rgb
314 | return rgb_ret, img
315 |
316 |
317 | def get_rgb_near(path, args):
318 | assert path is not None, "path is None"
319 |
320 | def extract_frame_id(filename):
321 | head, tail = os.path.split(filename)
322 | number_string = tail[0:tail.find('.')]
323 | number = int(number_string)
324 | return head, number
325 |
326 | def get_nearby_filename(filename, new_id):
327 | head, _ = os.path.split(filename)
328 | new_filename = os.path.join(head, '%010d.png' % new_id)
329 | return new_filename
330 |
331 | head, number = extract_frame_id(path)
332 | count = 0
333 | max_frame_diff = 3
334 | candidates = [
335 | i - max_frame_diff for i in range(max_frame_diff * 2 + 1)
336 | if i - max_frame_diff != 0
337 | ]
338 | while True:
339 | random_offset = choice(candidates)
340 | path_near = get_nearby_filename(path, number + random_offset)
341 | if os.path.exists(path_near):
342 | break
343 | assert count < 20, "cannot find a nearby frame in 20 trials for {}".format(path_near)
344 |
345 | return rgb_read(path_near)
346 |
347 |
348 | class KittiDepth(data.Dataset):
349 | """A data loader for the Kitti dataset
350 | """
351 |
352 | def __init__(self, split, args):
353 | self.args = args
354 | self.split = split
355 | paths, transform = get_paths_and_transform(split, args)
356 | self.paths = paths
357 | self.transform = transform
358 | self.K = load_calib()
359 | self.threshold_translation = 0.1
360 |
361 | def __getraw__(self, index):
362 | rgb = rgb_read(self.paths['rgb'][index]) if \
363 | (self.paths['rgb'][index] is not None and (self.args.use_rgb or self.args.use_g)) else None
364 | sparse = depth_read(self.paths['d'][index]) if \
365 | (self.paths['d'][index] is not None and self.args.use_d) else None
366 | target = depth_read(self.paths['gt'][index]) if \
367 | self.paths['gt'][index] is not None else None
368 | return rgb, sparse, target
369 |
370 | def __getitem__(self, index):
371 | rgb, sparse, target = self.__getraw__(index)
372 | position = CoordConv.AddCoordsNp(self.args.val_h, self.args.val_w)
373 | position = position.call()
374 | rgb, sparse, target, position = self.transform(rgb, sparse, target, position, self.args)
375 |
376 | rgb, gray = handle_gray(rgb, self.args)
377 | # candidates = {"rgb": rgb, "d": sparse, "gt": target, \
378 | # "g": gray, "r_mat": r_mat, "t_vec": t_vec, "rgb_near": rgb_near}
379 | candidates = {"rgb": rgb, "d": sparse, "gt": target, \
380 | "g": gray, 'position': position, 'K': self.K}
381 |
382 | items = {
383 | key: to_float_tensor(val)
384 | for key, val in candidates.items() if val is not None
385 | }
386 |
387 | return items
388 |
389 | def __len__(self):
390 | return len(self.paths['gt'])
--------------------------------------------------------------------------------
/dataloaders/pose_estimator.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import numpy as np
3 |
4 |
5 | def rgb2gray(rgb):
6 | return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])
7 |
8 |
9 | def convert_2d_to_3d(u, v, z, K):
10 | v0 = K[1][2]
11 | u0 = K[0][2]
12 | fy = K[1][1]
13 | fx = K[0][0]
14 | x = (u - u0) * z / fx
15 | y = (v - v0) * z / fy
16 | return (x, y, z)
17 |
18 |
19 | def feature_match(img1, img2):
20 | r''' Find features on both images and match them pairwise
21 | '''
22 | max_n_features = 1000
23 | # max_n_features = 500
24 | use_flann = False # better not use flann
25 |
26 | detector = cv2.xfeatures2d.SIFT_create(max_n_features)
27 |
28 | # find the keypoints and descriptors with SIFT
29 | kp1, des1 = detector.detectAndCompute(img1, None)
30 | kp2, des2 = detector.detectAndCompute(img2, None)
31 | if (des1 is None) or (des2 is None):
32 | return [], []
33 | des1 = des1.astype(np.float32)
34 | des2 = des2.astype(np.float32)
35 |
36 | if use_flann:
37 | # FLANN parameters
38 | FLANN_INDEX_KDTREE = 0
39 | index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
40 | search_params = dict(checks=50)
41 | flann = cv2.FlannBasedMatcher(index_params, search_params)
42 | matches = flann.knnMatch(des1, des2, k=2)
43 | else:
44 | matcher = cv2.DescriptorMatcher().create('BruteForce')
45 | matches = matcher.knnMatch(des1, des2, k=2)
46 |
47 | good = []
48 | pts1 = []
49 | pts2 = []
50 | # ratio test as per Lowe's paper
51 | for i, (m, n) in enumerate(matches):
52 | if m.distance < 0.8 * n.distance:
53 | good.append(m)
54 | pts2.append(kp2[m.trainIdx].pt)
55 | pts1.append(kp1[m.queryIdx].pt)
56 |
57 | pts1 = np.int32(pts1)
58 | pts2 = np.int32(pts2)
59 | return pts1, pts2
60 |
61 |
62 | def get_pose_pnp(rgb_curr, rgb_near, depth_curr, K):
63 | gray_curr = rgb2gray(rgb_curr).astype(np.uint8)
64 | gray_near = rgb2gray(rgb_near).astype(np.uint8)
65 | height, width = gray_curr.shape
66 |
67 | pts2d_curr, pts2d_near = feature_match(gray_curr,
68 | gray_near) # feature matching
69 |
70 | # dilation of depth
71 | kernel = np.ones((4, 4), np.uint8)
72 | depth_curr_dilated = cv2.dilate(depth_curr, kernel)
73 |
74 | # extract 3d pts
75 | pts3d_curr = []
76 | pts2d_near_filtered = [
77 | ] # keep only feature points with depth in the current frame
78 | for i, pt2d in enumerate(pts2d_curr):
79 | # print(pt2d)
80 | u, v = pt2d[0], pt2d[1]
81 | z = depth_curr_dilated[v, u]
82 | if z > 0:
83 | xyz_curr = convert_2d_to_3d(u, v, z, K)
84 | pts3d_curr.append(xyz_curr)
85 | pts2d_near_filtered.append(pts2d_near[i])
86 |
87 | # the minimal number of points accepted by solvePnP is 4:
88 | if len(pts3d_curr) >= 4 and len(pts2d_near_filtered) >= 4:
89 | pts3d_curr = np.expand_dims(np.array(pts3d_curr).astype(np.float32),
90 | axis=1)
91 | pts2d_near_filtered = np.expand_dims(
92 | np.array(pts2d_near_filtered).astype(np.float32), axis=1)
93 |
94 | # ransac
95 | ret = cv2.solvePnPRansac(pts3d_curr,
96 | pts2d_near_filtered,
97 | K,
98 | distCoeffs=None)
99 | success = ret[0]
100 | rotation_vector = ret[1]
101 | translation_vector = ret[2]
102 | return (success, rotation_vector, translation_vector)
103 | else:
104 | return (0, None, None)
105 |
--------------------------------------------------------------------------------
/dataloaders/transforms.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | import torch
3 | import math
4 | import random
5 |
6 | from PIL import Image, ImageOps, ImageEnhance
7 | try:
8 | import accimage
9 | except ImportError:
10 | accimage = None
11 |
12 | import numpy as np
13 | import numbers
14 | import types
15 | import collections
16 | import warnings
17 |
18 | import scipy.ndimage.interpolation as itpl
19 | import skimage.transform
20 |
21 |
22 | def _is_numpy_image(img):
23 | return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
24 |
25 |
26 | def _is_pil_image(img):
27 | if accimage is not None:
28 | return isinstance(img, (Image.Image, accimage.Image))
29 | else:
30 | return isinstance(img, Image.Image)
31 |
32 |
33 | def _is_tensor_image(img):
34 | return torch.is_tensor(img) and img.ndimension() == 3
35 |
36 |
37 | def adjust_brightness(img, brightness_factor):
38 | """Adjust brightness of an Image.
39 | Args:
40 | img (PIL Image): PIL Image to be adjusted.
41 | brightness_factor (float): How much to adjust the brightness. Can be
42 | any non negative number. 0 gives a black image, 1 gives the
43 | original image while 2 increases the brightness by a factor of 2.
44 | Returns:
45 | PIL Image: Brightness adjusted image.
46 | """
47 | if not _is_pil_image(img):
48 | raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
49 |
50 | enhancer = ImageEnhance.Brightness(img)
51 | img = enhancer.enhance(brightness_factor)
52 | return img
53 |
54 |
55 | def adjust_contrast(img, contrast_factor):
56 | """Adjust contrast of an Image.
57 | Args:
58 | img (PIL Image): PIL Image to be adjusted.
59 | contrast_factor (float): How much to adjust the contrast. Can be any
60 | non negative number. 0 gives a solid gray image, 1 gives the
61 | original image while 2 increases the contrast by a factor of 2.
62 | Returns:
63 | PIL Image: Contrast adjusted image.
64 | """
65 | if not _is_pil_image(img):
66 | raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
67 |
68 | enhancer = ImageEnhance.Contrast(img)
69 | img = enhancer.enhance(contrast_factor)
70 | return img
71 |
72 |
73 | def adjust_saturation(img, saturation_factor):
74 | """Adjust color saturation of an image.
75 | Args:
76 | img (PIL Image): PIL Image to be adjusted.
77 | saturation_factor (float): How much to adjust the saturation. 0 will
78 | give a black and white image, 1 will give the original image while
79 | 2 will enhance the saturation by a factor of 2.
80 | Returns:
81 | PIL Image: Saturation adjusted image.
82 | """
83 | if not _is_pil_image(img):
84 | raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
85 |
86 | enhancer = ImageEnhance.Color(img)
87 | img = enhancer.enhance(saturation_factor)
88 | return img
89 |
90 |
91 | def adjust_hue(img, hue_factor):
92 | """Adjust hue of an image.
93 | The image hue is adjusted by converting the image to HSV and
94 | cyclically shifting the intensities in the hue channel (H).
95 | The image is then converted back to original image mode.
96 | `hue_factor` is the amount of shift in H channel and must be in the
97 | interval `[-0.5, 0.5]`.
98 | See https://en.wikipedia.org/wiki/Hue for more details on Hue.
99 | Args:
100 | img (PIL Image): PIL Image to be adjusted.
101 | hue_factor (float): How much to shift the hue channel. Should be in
102 | [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
103 | HSV space in positive and negative direction respectively.
104 | 0 means no shift. Therefore, both -0.5 and 0.5 will give an image
105 | with complementary colors while 0 gives the original image.
106 | Returns:
107 | PIL Image: Hue adjusted image.
108 | """
109 | if not (-0.5 <= hue_factor <= 0.5):
110 | raise ValueError(
111 | 'hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
112 |
113 | if not _is_pil_image(img):
114 | raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
115 |
116 | input_mode = img.mode
117 | if input_mode in {'L', '1', 'I', 'F'}:
118 | return img
119 |
120 | h, s, v = img.convert('HSV').split()
121 |
122 | np_h = np.array(h, dtype=np.uint8)
123 | # uint8 addition take cares of rotation across boundaries
124 | with np.errstate(over='ignore'):
125 | np_h += np.uint8(hue_factor * 255)
126 | h = Image.fromarray(np_h, 'L')
127 |
128 | img = Image.merge('HSV', (h, s, v)).convert(input_mode)
129 | return img
130 |
131 |
132 | def adjust_gamma(img, gamma, gain=1):
133 | """Perform gamma correction on an image.
134 | Also known as Power Law Transform. Intensities in RGB mode are adjusted
135 | based on the following equation:
136 | I_out = 255 * gain * ((I_in / 255) ** gamma)
137 | See https://en.wikipedia.org/wiki/Gamma_correction for more details.
138 | Args:
139 | img (PIL Image): PIL Image to be adjusted.
140 | gamma (float): Non negative real number. gamma larger than 1 make the
141 | shadows darker, while gamma smaller than 1 make dark regions
142 | lighter.
143 | gain (float): The constant multiplier.
144 | """
145 | if not _is_pil_image(img):
146 | raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
147 |
148 | if gamma < 0:
149 | raise ValueError('Gamma should be a non-negative real number')
150 |
151 | input_mode = img.mode
152 | img = img.convert('RGB')
153 |
154 | np_img = np.array(img, dtype=np.float32)
155 | np_img = 255 * gain * ((np_img / 255)**gamma)
156 | np_img = np.uint8(np.clip(np_img, 0, 255))
157 |
158 | img = Image.fromarray(np_img, 'RGB').convert(input_mode)
159 | return img
160 |
161 |
162 | class Compose(object):
163 | """Composes several transforms together.
164 | Args:
165 | transforms (list of ``Transform`` objects): list of transforms to compose.
166 | Example:
167 | >>> transforms.Compose([
168 | >>> transforms.CenterCrop(10),
169 | >>> transforms.ToTensor(),
170 | >>> ])
171 | """
172 | def __init__(self, transforms):
173 | self.transforms = transforms
174 |
175 | def __call__(self, img):
176 | for t in self.transforms:
177 | img = t(img)
178 | return img
179 |
180 |
181 | class ToTensor(object):
182 | """Convert a ``numpy.ndarray`` to tensor.
183 | Converts a numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
184 | """
185 | def __call__(self, img):
186 | """Convert a ``numpy.ndarray`` to tensor.
187 | Args:
188 | img (numpy.ndarray): Image to be converted to tensor.
189 | Returns:
190 | Tensor: Converted image.
191 | """
192 | if not (_is_numpy_image(img)):
193 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
194 |
195 | if isinstance(img, np.ndarray):
196 | # handle numpy array
197 | if img.ndim == 3:
198 | img = torch.from_numpy(img.transpose((2, 0, 1)).copy())
199 | elif img.ndim == 2:
200 | img = torch.from_numpy(img.copy())
201 | else:
202 | raise RuntimeError(
203 | 'img should be ndarray with 2 or 3 dimensions. Got {}'.
204 | format(img.ndim))
205 |
206 | return img
207 |
208 |
209 | class NormalizeNumpyArray(object):
210 | """Normalize a ``numpy.ndarray`` with mean and standard deviation.
211 | Given mean: ``(M1,...,Mn)`` and std: ``(M1,..,Mn)`` for ``n`` channels, this transform
212 | will normalize each channel of the input ``numpy.ndarray`` i.e.
213 | ``input[channel] = (input[channel] - mean[channel]) / std[channel]``
214 | Args:
215 | mean (sequence): Sequence of means for each channel.
216 | std (sequence): Sequence of standard deviations for each channel.
217 | """
218 | def __init__(self, mean, std):
219 | self.mean = mean
220 | self.std = std
221 |
222 | def __call__(self, img):
223 | """
224 | Args:
225 | img (numpy.ndarray): Image of size (H, W, C) to be normalized.
226 | Returns:
227 | Tensor: Normalized image.
228 | """
229 | if not (_is_numpy_image(img)):
230 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
231 | # TODO: make efficient
232 | print(img.shape)
233 | for i in range(3):
234 | img[:, :, i] = (img[:, :, i] - self.mean[i]) / self.std[i]
235 | return img
236 |
237 |
238 | class NormalizeTensor(object):
239 | """Normalize an tensor image with mean and standard deviation.
240 | Given mean: ``(M1,...,Mn)`` and std: ``(M1,..,Mn)`` for ``n`` channels, this transform
241 | will normalize each channel of the input ``torch.*Tensor`` i.e.
242 | ``input[channel] = (input[channel] - mean[channel]) / std[channel]``
243 | Args:
244 | mean (sequence): Sequence of means for each channel.
245 | std (sequence): Sequence of standard deviations for each channel.
246 | """
247 | def __init__(self, mean, std):
248 | self.mean = mean
249 | self.std = std
250 |
251 | def __call__(self, tensor):
252 | """
253 | Args:
254 | tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
255 | Returns:
256 | Tensor: Normalized Tensor image.
257 | """
258 | if not _is_tensor_image(tensor):
259 | raise TypeError('tensor is not a torch image.')
260 | # TODO: make efficient
261 | for t, m, s in zip(tensor, self.mean, self.std):
262 | t.sub_(m).div_(s)
263 | return tensor
264 |
265 |
266 | class Rotate(object):
267 | """Rotates the given ``numpy.ndarray``.
268 | Args:
269 | angle (float): The rotation angle in degrees.
270 | """
271 | def __init__(self, angle):
272 | self.angle = angle
273 |
274 | def __call__(self, img):
275 | """
276 | Args:
277 | img (numpy.ndarray (C x H x W)): Image to be rotated.
278 | Returns:
279 | img (numpy.ndarray (C x H x W)): Rotated image.
280 | """
281 |
282 | # order=0 means nearest-neighbor type interpolation
283 | return skimage.transform.rotate(img, self.angle, resize=False, order=0)
284 |
285 |
286 | class Resize(object):
287 | """Resize the the given ``numpy.ndarray`` to the given size.
288 | Args:
289 | size (sequence or int): Desired output size. If size is a sequence like
290 | (h, w), output size will be matched to this. If size is an int,
291 | smaller edge of the image will be matched to this number.
292 | i.e, if height > width, then image will be rescaled to
293 | (size * height / width, size)
294 | interpolation (int, optional): Desired interpolation. Default is
295 | ``PIL.Image.BILINEAR``
296 | """
297 | def __init__(self, size, interpolation='nearest'):
298 | assert isinstance(size, float)
299 | self.size = size
300 | self.interpolation = interpolation
301 |
302 | def __call__(self, img):
303 | """
304 | Args:
305 | img (numpy.ndarray (C x H x W)): Image to be scaled.
306 | Returns:
307 | img (numpy.ndarray (C x H x W)): Rescaled image.
308 | """
309 | if img.ndim == 3:
310 | return skimage.transform.rescale(img, self.size, order=0)
311 | elif img.ndim == 2:
312 | return skimage.transform.rescale(img, self.size, order=0)
313 | else:
314 | RuntimeError(
315 | 'img should be ndarray with 2 or 3 dimensions. Got {}'.format(
316 | img.ndim))
317 |
318 |
319 | class CenterCrop(object):
320 | """Crops the given ``numpy.ndarray`` at the center.
321 | Args:
322 | size (sequence or int): Desired output size of the crop. If size is an
323 | int instead of sequence like (h, w), a square crop (size, size) is
324 | made.
325 | """
326 | def __init__(self, size):
327 | if isinstance(size, numbers.Number):
328 | self.size = (int(size), int(size))
329 | else:
330 | self.size = size
331 |
332 | @staticmethod
333 | def get_params(img, output_size):
334 | """Get parameters for ``crop`` for center crop.
335 | Args:
336 | img (numpy.ndarray (C x H x W)): Image to be cropped.
337 | output_size (tuple): Expected output size of the crop.
338 | Returns:
339 | tuple: params (i, j, h, w) to be passed to ``crop`` for center crop.
340 | """
341 | h = img.shape[0]
342 | w = img.shape[1]
343 | th, tw = output_size
344 | i = int(round((h - th) / 2.))
345 | j = int(round((w - tw) / 2.))
346 |
347 | # # randomized cropping
348 | # i = np.random.randint(i-3, i+4)
349 | # j = np.random.randint(j-3, j+4)
350 |
351 | return i, j, th, tw
352 |
353 | def __call__(self, img):
354 | """
355 | Args:
356 | img (numpy.ndarray (C x H x W)): Image to be cropped.
357 | Returns:
358 | img (numpy.ndarray (C x H x W)): Cropped image.
359 | """
360 | i, j, h, w = self.get_params(img, self.size)
361 | """
362 | i: Upper pixel coordinate.
363 | j: Left pixel coordinate.
364 | h: Height of the cropped image.
365 | w: Width of the cropped image.
366 | """
367 | if not (_is_numpy_image(img)):
368 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
369 | if img.ndim == 3:
370 | return img[i:i + h, j:j + w, :]
371 | elif img.ndim == 2:
372 | return img[i:i + h, j:j + w]
373 | else:
374 | raise RuntimeError(
375 | 'img should be ndarray with 2 or 3 dimensions. Got {}'.format(
376 | img.ndim))
377 |
378 |
379 | class BottomCrop(object):
380 | """Crops the given ``numpy.ndarray`` at the bottom.
381 | Args:
382 | size (sequence or int): Desired output size of the crop. If size is an
383 | int instead of sequence like (h, w), a square crop (size, size) is
384 | made.
385 | """
386 | def __init__(self, size):
387 | if isinstance(size, numbers.Number):
388 | self.size = (int(size), int(size))
389 | else:
390 | self.size = size
391 |
392 | @staticmethod
393 | def get_params(img, output_size):
394 | """Get parameters for ``crop`` for bottom crop.
395 | Args:
396 | img (numpy.ndarray (C x H x W)): Image to be cropped.
397 | output_size (tuple): Expected output size of the crop.
398 | Returns:
399 | tuple: params (i, j, h, w) to be passed to ``crop`` for bottom crop.
400 | """
401 | h = img.shape[0]
402 | w = img.shape[1]
403 | th, tw = output_size
404 | i = h - th
405 | j = int(round((w - tw) / 2.))
406 |
407 | # randomized left and right cropping
408 | # i = np.random.randint(i-3, i+4)
409 | # j = np.random.randint(j-1, j+1)
410 |
411 | return i, j, th, tw
412 |
413 | def __call__(self, img):
414 | """
415 | Args:
416 | img (numpy.ndarray (C x H x W)): Image to be cropped.
417 | Returns:
418 | img (numpy.ndarray (C x H x W)): Cropped image.
419 | """
420 | i, j, h, w = self.get_params(img, self.size)
421 | """
422 | i: Upper pixel coordinate.
423 | j: Left pixel coordinate.
424 | h: Height of the cropped image.
425 | w: Width of the cropped image.
426 | """
427 | if not (_is_numpy_image(img)):
428 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
429 | if img.ndim == 3:
430 | return img[i:i + h, j:j + w, :]
431 | elif img.ndim == 2:
432 | return img[i:i + h, j:j + w]
433 | else:
434 | raise RuntimeError(
435 | 'img should be ndarray with 2 or 3 dimensions. Got {}'.format(
436 | img.ndim))
437 |
438 |
439 | class RandomCrop(object):
440 | """Crops the given ``numpy.ndarray`` at the bottom.
441 | Args:
442 | size (sequence or int): Desired output size of the crop. If size is an
443 | int instead of sequence like (h, w), a square crop (size, size) is
444 | made.
445 | """
446 | def __init__(self, size):
447 | if isinstance(size, numbers.Number):
448 | self.size = (int(size), int(size))
449 | else:
450 | self.size = size
451 |
452 | @staticmethod
453 | def get_params(img, output_size):
454 | """Get parameters for ``crop`` for bottom crop.
455 | Args:
456 | img (numpy.ndarray (C x H x W)): Image to be cropped.
457 | output_size (tuple): Expected output size of the crop.
458 | Returns:
459 | tuple: params (i, j, h, w) to be passed to ``crop`` for bottom crop.
460 | """
461 | h = img.shape[0]
462 | w = img.shape[1]
463 | th, tw = output_size
464 |
465 | # randomized left and right cropping
466 | i = np.random.randint(0, h-th+1)
467 | j = np.random.randint(0, w-tw+1)
468 |
469 | return i, j, th, tw
470 |
471 | def __call__(self, img):
472 | """
473 | Args:
474 | img (numpy.ndarray (C x H x W)): Image to be cropped.
475 | Returns:
476 | img (numpy.ndarray (C x H x W)): Cropped image.
477 | """
478 | i, j, h, w = self.get_params(img, self.size)
479 | """
480 | i: Upper pixel coordinate.
481 | j: Left pixel coordinate.
482 | h: Height of the cropped image.
483 | w: Width of the cropped image.
484 | """
485 | if not (_is_numpy_image(img)):
486 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
487 | if img.ndim == 3:
488 | return img[i:i + h, j:j + w, :]
489 | elif img.ndim == 2:
490 | return img[i:i + h, j:j + w]
491 | else:
492 | raise RuntimeError(
493 | 'img should be ndarray with 2 or 3 dimensions. Got {}'.format(
494 | img.ndim))
495 |
496 |
497 | class Crop(object):
498 | """Crops the given ``numpy.ndarray`` at the center.
499 | Args:
500 | size (sequence or int): Desired output size of the crop. If size is an
501 | int instead of sequence like (h, w), a square crop (size, size) is
502 | made.
503 | """
504 | def __init__(self, crop):
505 | self.crop = crop
506 |
507 | @staticmethod
508 | def get_params(img, crop):
509 | """Get parameters for ``crop`` for center crop.
510 | Args:
511 | img (numpy.ndarray (C x H x W)): Image to be cropped.
512 | output_size (tuple): Expected output size of the crop.
513 | Returns:
514 | tuple: params (i, j, h, w) to be passed to ``crop`` for center crop.
515 | """
516 | x_l, x_r, y_b, y_t = crop
517 | h = img.shape[0]
518 | w = img.shape[1]
519 | assert x_l >= 0 and x_l < w
520 | assert x_r >= 0 and x_r < w
521 | assert y_b >= 0 and y_b < h
522 | assert y_t >= 0 and y_t < h
523 | assert x_l < x_r and y_b < y_t
524 |
525 | return x_l, x_r, y_b, y_t
526 |
527 | def __call__(self, img):
528 | """
529 | Args:
530 | img (numpy.ndarray (C x H x W)): Image to be cropped.
531 | Returns:
532 | img (numpy.ndarray (C x H x W)): Cropped image.
533 | """
534 | x_l, x_r, y_b, y_t = self.get_params(img, self.crop)
535 | """
536 | i: Upper pixel coordinate.
537 | j: Left pixel coordinate.
538 | h: Height of the cropped image.
539 | w: Width of the cropped image.
540 | """
541 | if not (_is_numpy_image(img)):
542 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
543 | if img.ndim == 3:
544 | return img[y_b:y_t, x_l:x_r, :]
545 | elif img.ndim == 2:
546 | return img[y_b:y_t, x_l:x_r]
547 | else:
548 | raise RuntimeError(
549 | 'img should be ndarray with 2 or 3 dimensions. Got {}'.format(
550 | img.ndim))
551 |
552 |
553 | class Lambda(object):
554 | """Apply a user-defined lambda as a transform.
555 | Args:
556 | lambd (function): Lambda/function to be used for transform.
557 | """
558 | def __init__(self, lambd):
559 | assert isinstance(lambd, types.LambdaType)
560 | self.lambd = lambd
561 |
562 | def __call__(self, img):
563 | return self.lambd(img)
564 |
565 |
566 | class HorizontalFlip(object):
567 | """Horizontally flip the given ``numpy.ndarray``.
568 | Args:
569 | do_flip (boolean): whether or not do horizontal flip.
570 | """
571 | def __init__(self, do_flip):
572 | self.do_flip = do_flip
573 |
574 | def __call__(self, img):
575 | """
576 | Args:
577 | img (numpy.ndarray (C x H x W)): Image to be flipped.
578 | Returns:
579 | img (numpy.ndarray (C x H x W)): flipped image.
580 | """
581 | if not (_is_numpy_image(img)):
582 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
583 |
584 | if self.do_flip:
585 | return np.fliplr(img)
586 | else:
587 | return img
588 |
589 |
590 | class ColorJitter(object):
591 | """Randomly change the brightness, contrast and saturation of an image.
592 | Args:
593 | brightness (float): How much to jitter brightness. brightness_factor
594 | is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
595 | contrast (float): How much to jitter contrast. contrast_factor
596 | is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
597 | saturation (float): How much to jitter saturation. saturation_factor
598 | is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
599 | hue(float): How much to jitter hue. hue_factor is chosen uniformly from
600 | [-hue, hue]. Should be >=0 and <= 0.5.
601 | """
602 | def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
603 | transforms = []
604 | transforms.append(
605 | Lambda(lambda img: adjust_brightness(img, brightness)))
606 | transforms.append(Lambda(lambda img: adjust_contrast(img, contrast)))
607 | transforms.append(
608 | Lambda(lambda img: adjust_saturation(img, saturation)))
609 | transforms.append(Lambda(lambda img: adjust_hue(img, hue)))
610 | np.random.shuffle(transforms)
611 | self.transform = Compose(transforms)
612 |
613 | def __call__(self, img):
614 | """
615 | Args:
616 | img (numpy.ndarray (C x H x W)): Input image.
617 | Returns:
618 | img (numpy.ndarray (C x H x W)): Color jittered image.
619 | """
620 | if not (_is_numpy_image(img)):
621 | raise TypeError('img should be ndarray. Got {}'.format(type(img)))
622 |
623 | pil = Image.fromarray(img)
624 | return np.array(self.transform(pil))
--------------------------------------------------------------------------------
/demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/demo.gif
--------------------------------------------------------------------------------
/download/rgb_train_downloader.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | files=(
4 | # 2011_09_26_calib.zip
5 | 2011_09_26_drive_0001
6 | # 2011_09_26_drive_0002
7 | # 2011_09_26_drive_0005
8 | 2011_09_26_drive_0009
9 | 2011_09_26_drive_0011
10 | # 2011_09_26_drive_0013
11 | 2011_09_26_drive_0014
12 | 2011_09_26_drive_0015
13 | 2011_09_26_drive_0017
14 | 2011_09_26_drive_0018
15 | 2011_09_26_drive_0019
16 | # 2011_09_26_drive_0020
17 | 2011_09_26_drive_0022
18 | # 2011_09_26_drive_0023
19 | 2011_09_26_drive_0027
20 | 2011_09_26_drive_0028
21 | 2011_09_26_drive_0029
22 | 2011_09_26_drive_0032
23 | 2011_09_26_drive_0035
24 | # 2011_09_26_drive_0036
25 | 2011_09_26_drive_0039
26 | 2011_09_26_drive_0046
27 | 2011_09_26_drive_0048
28 | 2011_09_26_drive_0051
29 | 2011_09_26_drive_0052
30 | 2011_09_26_drive_0056
31 | 2011_09_26_drive_0057
32 | 2011_09_26_drive_0059
33 | 2011_09_26_drive_0060
34 | 2011_09_26_drive_0061
35 | 2011_09_26_drive_0064
36 | 2011_09_26_drive_0070
37 | # 2011_09_26_drive_0079
38 | 2011_09_26_drive_0084
39 | 2011_09_26_drive_0086
40 | 2011_09_26_drive_0087
41 | 2011_09_26_drive_0091
42 | 2011_09_26_drive_0093
43 | # 2011_09_26_drive_0095
44 | 2011_09_26_drive_0096
45 | 2011_09_26_drive_0101
46 | 2011_09_26_drive_0104
47 | 2011_09_26_drive_0106
48 | # 2011_09_26_drive_0113
49 | 2011_09_26_drive_0117
50 | # 2011_09_26_drive_0119
51 | # 2011_09_28_calib.zip
52 | 2011_09_28_drive_0001
53 | 2011_09_28_drive_0002
54 | 2011_09_28_drive_0016
55 | 2011_09_28_drive_0021
56 | 2011_09_28_drive_0034
57 | 2011_09_28_drive_0035
58 | # 2011_09_28_drive_0037
59 | 2011_09_28_drive_0038
60 | 2011_09_28_drive_0039
61 | 2011_09_28_drive_0043
62 | 2011_09_28_drive_0045
63 | 2011_09_28_drive_0047
64 | 2011_09_28_drive_0053
65 | 2011_09_28_drive_0054
66 | 2011_09_28_drive_0057
67 | 2011_09_28_drive_0065
68 | 2011_09_28_drive_0066
69 | 2011_09_28_drive_0068
70 | 2011_09_28_drive_0070
71 | 2011_09_28_drive_0071
72 | 2011_09_28_drive_0075
73 | 2011_09_28_drive_0077
74 | 2011_09_28_drive_0078
75 | 2011_09_28_drive_0080
76 | 2011_09_28_drive_0082
77 | 2011_09_28_drive_0086
78 | 2011_09_28_drive_0087
79 | 2011_09_28_drive_0089
80 | 2011_09_28_drive_0090
81 | 2011_09_28_drive_0094
82 | 2011_09_28_drive_0095
83 | 2011_09_28_drive_0096
84 | 2011_09_28_drive_0098
85 | 2011_09_28_drive_0100
86 | 2011_09_28_drive_0102
87 | 2011_09_28_drive_0103
88 | 2011_09_28_drive_0104
89 | 2011_09_28_drive_0106
90 | 2011_09_28_drive_0108
91 | 2011_09_28_drive_0110
92 | 2011_09_28_drive_0113
93 | 2011_09_28_drive_0117
94 | 2011_09_28_drive_0119
95 | 2011_09_28_drive_0121
96 | 2011_09_28_drive_0122
97 | 2011_09_28_drive_0125
98 | 2011_09_28_drive_0126
99 | 2011_09_28_drive_0128
100 | 2011_09_28_drive_0132
101 | 2011_09_28_drive_0134
102 | 2011_09_28_drive_0135
103 | 2011_09_28_drive_0136
104 | 2011_09_28_drive_0138
105 | 2011_09_28_drive_0141
106 | 2011_09_28_drive_0143
107 | 2011_09_28_drive_0145
108 | 2011_09_28_drive_0146
109 | 2011_09_28_drive_0149
110 | 2011_09_28_drive_0153
111 | 2011_09_28_drive_0154
112 | 2011_09_28_drive_0155
113 | 2011_09_28_drive_0156
114 | 2011_09_28_drive_0160
115 | 2011_09_28_drive_0161
116 | 2011_09_28_drive_0162
117 | 2011_09_28_drive_0165
118 | 2011_09_28_drive_0166
119 | 2011_09_28_drive_0167
120 | 2011_09_28_drive_0168
121 | 2011_09_28_drive_0171
122 | 2011_09_28_drive_0174
123 | 2011_09_28_drive_0177
124 | 2011_09_28_drive_0179
125 | 2011_09_28_drive_0183
126 | 2011_09_28_drive_0184
127 | 2011_09_28_drive_0185
128 | 2011_09_28_drive_0186
129 | 2011_09_28_drive_0187
130 | 2011_09_28_drive_0191
131 | 2011_09_28_drive_0192
132 | 2011_09_28_drive_0195
133 | 2011_09_28_drive_0198
134 | 2011_09_28_drive_0199
135 | 2011_09_28_drive_0201
136 | 2011_09_28_drive_0204
137 | 2011_09_28_drive_0205
138 | 2011_09_28_drive_0208
139 | 2011_09_28_drive_0209
140 | 2011_09_28_drive_0214
141 | 2011_09_28_drive_0216
142 | 2011_09_28_drive_0220
143 | 2011_09_28_drive_0222
144 | # 2011_09_28_drive_0225
145 | # 2011_09_29_calib.zip
146 | 2011_09_29_drive_0004
147 | # 2011_09_29_drive_0026
148 | 2011_09_29_drive_0071
149 | # 2011_09_29_drive_0108
150 | # 2011_09_30_calib.zip
151 | # 2011_09_30_drive_0016
152 | 2011_09_30_drive_0018
153 | 2011_09_30_drive_0020
154 | 2011_09_30_drive_0027
155 | 2011_09_30_drive_0028
156 | 2011_09_30_drive_0033
157 | 2011_09_30_drive_0034
158 | # 2011_09_30_drive_0072
159 | # 2011_10_03_calib.zip
160 | 2011_10_03_drive_0027
161 | 2011_10_03_drive_0034
162 | 2011_10_03_drive_0042
163 | # 2011_10_03_drive_0047
164 | # 2011_10_03_drive_0058
165 | )
166 |
167 | basedir='../data/data_rgb/train/'
168 | mkdir -p $basedir
169 | echo "Saving to "$basedir
170 | for i in ${files[@]}; do
171 | datadate="${i%%_drive_*}"
172 | echo $datadate
173 | shortname=$i'_sync.zip'
174 | fullname=$i'/'$i'_sync.zip'
175 | rm -f $shortname # remove zip file
176 | echo "Downloading: "$shortname
177 |
178 | wget 's3.eu-central-1.amazonaws.com/avg-kitti/raw_data/'$fullname
179 | unzip -o $shortname
180 | mv $datadate'/'$i'_sync' $basedir$i'_sync'
181 | rmdir $datadate
182 | rm -rf $basedir$i'_sync/image_00' $basedir$i'_sync/image_01' $basedir$i'_sync/velodyne_points' $basedir$i'_sync/oxts'
183 | rm $shortname # remove zip file
184 | done
185 |
186 |
187 |
--------------------------------------------------------------------------------
/download/rgb_val_downloader.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | files=(
4 | # 2011_09_26_calib.zip
5 | # 2011_09_26_drive_0001
6 | 2011_09_26_drive_0002
7 | 2011_09_26_drive_0005
8 | # 2011_09_26_drive_0009
9 | # 2011_09_26_drive_0011
10 | 2011_09_26_drive_0013
11 | # 2011_09_26_drive_0014
12 | # 2011_09_26_drive_0015
13 | # 2011_09_26_drive_0017
14 | # 2011_09_26_drive_0018
15 | # 2011_09_26_drive_0019
16 | 2011_09_26_drive_0020
17 | # 2011_09_26_drive_0022
18 | 2011_09_26_drive_0023
19 | # 2011_09_26_drive_0027
20 | # 2011_09_26_drive_0028
21 | # 2011_09_26_drive_0029
22 | # 2011_09_26_drive_0032
23 | # 2011_09_26_drive_0035
24 | 2011_09_26_drive_0036
25 | # 2011_09_26_drive_0039
26 | # 2011_09_26_drive_0046
27 | # 2011_09_26_drive_0048
28 | # 2011_09_26_drive_0051
29 | # 2011_09_26_drive_0052
30 | # 2011_09_26_drive_0056
31 | # 2011_09_26_drive_0057
32 | # 2011_09_26_drive_0059
33 | # 2011_09_26_drive_0060
34 | # 2011_09_26_drive_0061
35 | # 2011_09_26_drive_0064
36 | # 2011_09_26_drive_0070
37 | 2011_09_26_drive_0079
38 | # 2011_09_26_drive_0084
39 | # 2011_09_26_drive_0086
40 | # 2011_09_26_drive_0087
41 | # 2011_09_26_drive_0091
42 | # 2011_09_26_drive_0093
43 | 2011_09_26_drive_0095
44 | # 2011_09_26_drive_0096
45 | # 2011_09_26_drive_0101
46 | # 2011_09_26_drive_0104
47 | # 2011_09_26_drive_0106
48 | 2011_09_26_drive_0113
49 | # 2011_09_26_drive_0117
50 | 2011_09_26_drive_0119
51 | # 2011_09_28_calib.zip
52 | # 2011_09_28_drive_0001
53 | # 2011_09_28_drive_0002
54 | # 2011_09_28_drive_0016
55 | # 2011_09_28_drive_0021
56 | # 2011_09_28_drive_0034
57 | # 2011_09_28_drive_0035
58 | 2011_09_28_drive_0037
59 | # 2011_09_28_drive_0038
60 | # 2011_09_28_drive_0039
61 | # 2011_09_28_drive_0043
62 | # 2011_09_28_drive_0045
63 | # 2011_09_28_drive_0047
64 | # 2011_09_28_drive_0053
65 | # 2011_09_28_drive_0054
66 | # 2011_09_28_drive_0057
67 | # 2011_09_28_drive_0065
68 | # 2011_09_28_drive_0066
69 | # 2011_09_28_drive_0068
70 | # 2011_09_28_drive_0070
71 | # 2011_09_28_drive_0071
72 | # 2011_09_28_drive_0075
73 | # 2011_09_28_drive_0077
74 | # 2011_09_28_drive_0078
75 | # 2011_09_28_drive_0080
76 | # 2011_09_28_drive_0082
77 | # 2011_09_28_drive_0086
78 | # 2011_09_28_drive_0087
79 | # 2011_09_28_drive_0089
80 | # 2011_09_28_drive_0090
81 | # 2011_09_28_drive_0094
82 | # 2011_09_28_drive_0095
83 | # 2011_09_28_drive_0096
84 | # 2011_09_28_drive_0098
85 | # 2011_09_28_drive_0100
86 | # 2011_09_28_drive_0102
87 | # 2011_09_28_drive_0103
88 | # 2011_09_28_drive_0104
89 | # 2011_09_28_drive_0106
90 | # 2011_09_28_drive_0108
91 | # 2011_09_28_drive_0110
92 | # 2011_09_28_drive_0113
93 | # 2011_09_28_drive_0117
94 | # 2011_09_28_drive_0119
95 | # 2011_09_28_drive_0121
96 | # 2011_09_28_drive_0122
97 | # 2011_09_28_drive_0125
98 | # 2011_09_28_drive_0126
99 | # 2011_09_28_drive_0128
100 | # 2011_09_28_drive_0132
101 | # 2011_09_28_drive_0134
102 | # 2011_09_28_drive_0135
103 | # 2011_09_28_drive_0136
104 | # 2011_09_28_drive_0138
105 | # 2011_09_28_drive_0141
106 | # 2011_09_28_drive_0143
107 | # 2011_09_28_drive_0145
108 | # 2011_09_28_drive_0146
109 | # 2011_09_28_drive_0149
110 | # 2011_09_28_drive_0153
111 | # 2011_09_28_drive_0154
112 | # 2011_09_28_drive_0155
113 | # 2011_09_28_drive_0156
114 | # 2011_09_28_drive_0160
115 | # 2011_09_28_drive_0161
116 | # 2011_09_28_drive_0162
117 | # 2011_09_28_drive_0165
118 | # 2011_09_28_drive_0166
119 | # 2011_09_28_drive_0167
120 | # 2011_09_28_drive_0168
121 | # 2011_09_28_drive_0171
122 | # 2011_09_28_drive_0174
123 | # 2011_09_28_drive_0177
124 | # 2011_09_28_drive_0179
125 | # 2011_09_28_drive_0183
126 | # 2011_09_28_drive_0184
127 | # 2011_09_28_drive_0185
128 | # 2011_09_28_drive_0186
129 | # 2011_09_28_drive_0187
130 | # 2011_09_28_drive_0191
131 | # 2011_09_28_drive_0192
132 | # 2011_09_28_drive_0195
133 | # 2011_09_28_drive_0198
134 | # 2011_09_28_drive_0199
135 | # 2011_09_28_drive_0201
136 | # 2011_09_28_drive_0204
137 | # 2011_09_28_drive_0205
138 | # 2011_09_28_drive_0208
139 | # 2011_09_28_drive_0209
140 | # 2011_09_28_drive_0214
141 | # 2011_09_28_drive_0216
142 | # 2011_09_28_drive_0220
143 | # 2011_09_28_drive_0222
144 | 2011_09_28_drive_0225
145 | # 2011_09_29_calib.zip
146 | # 2011_09_29_drive_0004
147 | 2011_09_29_drive_0026
148 | # 2011_09_29_drive_0071
149 | 2011_09_29_drive_0108
150 | # 2011_09_30_calib.zip
151 | 2011_09_30_drive_0016
152 | # 2011_09_30_drive_0018
153 | # 2011_09_30_drive_0020
154 | # 2011_09_30_drive_0027
155 | # 2011_09_30_drive_0028
156 | # 2011_09_30_drive_0033
157 | # 2011_09_30_drive_0034
158 | 2011_09_30_drive_0072
159 | # 2011_10_03_calib.zip
160 | # 2011_10_03_drive_0027
161 | # 2011_10_03_drive_0034
162 | # 2011_10_03_drive_0042
163 | 2011_10_03_drive_0047
164 | 2011_10_03_drive_0058
165 | )
166 |
167 | basedir='../data/data_rgb/val/'
168 | mkdir -p $basedir
169 | echo "Saving to "$basedir
170 | for i in ${files[@]}; do
171 | datadate="${i%%_drive_*}"
172 | echo $datadate
173 | shortname=$i'_sync.zip'
174 | fullname=$i'/'$i'_sync.zip'
175 | rm -f $shortname # remove zip file
176 | echo "Downloading: "$shortname
177 |
178 | wget 's3.eu-central-1.amazonaws.com/avg-kitti/raw_data/'$fullname
179 | unzip -o $shortname
180 | mv $datadate'/'$i'_sync' $basedir$i'_sync'
181 | rmdir $datadate
182 | rm -rf $basedir$i'_sync/image_00' $basedir$i'_sync/image_01' $basedir$i'_sync/velodyne_points' $basedir$i'_sync/oxts'
183 | rm $shortname # remove zip file
184 | done
185 |
186 |
187 |
--------------------------------------------------------------------------------
/helper.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os, time
3 | import shutil
4 | import torch
5 | import csv
6 | import vis_utils
7 | from metrics import Result
8 |
9 | fieldnames = [
10 | 'epoch', 'rmse', 'photo', 'mae', 'irmse', 'imae', 'mse', 'absrel', 'lg10',
11 | 'silog', 'squared_rel', 'delta1', 'delta2', 'delta3', 'data_time',
12 | 'gpu_time'
13 | ]
14 |
15 |
16 | class logger:
17 | def __init__(self, args, prepare=True):
18 | self.args = args
19 | output_directory = get_folder_name(args)
20 | self.output_directory = output_directory
21 | self.best_result = Result()
22 | self.best_result.set_to_worst()
23 |
24 | if not prepare:
25 | return
26 | if not os.path.exists(output_directory):
27 | os.makedirs(output_directory)
28 | self.train_csv = os.path.join(output_directory, 'train.csv')
29 | self.val_csv = os.path.join(output_directory, 'val.csv')
30 | self.best_txt = os.path.join(output_directory, 'best.txt')
31 |
32 | # backup the source code
33 | if args.resume == '':
34 | print("=> creating source code backup ...")
35 | backup_directory = os.path.join(output_directory, "code_backup")
36 | self.backup_directory = backup_directory
37 | backup_source_code(backup_directory)
38 | # create new csv files with only header
39 | with open(self.train_csv, 'w') as csvfile:
40 | writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
41 | writer.writeheader()
42 | with open(self.val_csv, 'w') as csvfile:
43 | writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
44 | writer.writeheader()
45 | print("=> finished creating source code backup.")
46 |
47 | def conditional_print(self, split, i, epoch, lr, n_set, blk_avg_meter,
48 | avg_meter):
49 | if (i + 1) % self.args.print_freq == 0:
50 | avg = avg_meter.average()
51 | blk_avg = blk_avg_meter.average()
52 | print('=> output: {}'.format(self.output_directory))
53 | print(
54 | '{split} Epoch: {0} [{1}/{2}]\tlr={lr} '
55 | 't_Data={blk_avg.data_time:.3f}({average.data_time:.3f}) '
56 | 't_GPU={blk_avg.gpu_time:.3f}({average.gpu_time:.3f})\n\t'
57 | 'RMSE={blk_avg.rmse:.2f}({average.rmse:.2f}) '
58 | 'MAE={blk_avg.mae:.2f}({average.mae:.2f}) '
59 | 'iRMSE={blk_avg.irmse:.2f}({average.irmse:.2f}) '
60 | 'iMAE={blk_avg.imae:.2f}({average.imae:.2f})\n\t'
61 | 'silog={blk_avg.silog:.2f}({average.silog:.2f}) '
62 | 'squared_rel={blk_avg.squared_rel:.2f}({average.squared_rel:.2f}) '
63 | 'Delta1={blk_avg.delta1:.3f}({average.delta1:.3f}) '
64 | 'REL={blk_avg.absrel:.3f}({average.absrel:.3f})\n\t'
65 | 'Lg10={blk_avg.lg10:.3f}({average.lg10:.3f}) '
66 | 'Photometric={blk_avg.photometric:.3f}({average.photometric:.3f}) '
67 | .format(epoch,
68 | i + 1,
69 | n_set,
70 | lr=lr,
71 | blk_avg=blk_avg,
72 | average=avg,
73 | split=split.capitalize()))
74 | blk_avg_meter.reset(False)
75 |
76 | def conditional_save_info(self, split, average_meter, epoch):
77 | avg = average_meter.average()
78 | if split == "train":
79 | csvfile_name = self.train_csv
80 | elif split == "val":
81 | csvfile_name = self.val_csv
82 | elif split == "eval":
83 | eval_filename = os.path.join(self.output_directory, 'eval.txt')
84 | self.save_single_txt(eval_filename, avg, epoch)
85 | return avg
86 | elif "test" in split:
87 | return avg
88 | else:
89 | raise ValueError("wrong split provided to logger")
90 | with open(csvfile_name, 'a') as csvfile:
91 | writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
92 | writer.writerow({
93 | 'epoch': epoch,
94 | 'rmse': avg.rmse,
95 | 'photo': avg.photometric,
96 | 'mae': avg.mae,
97 | 'irmse': avg.irmse,
98 | 'imae': avg.imae,
99 | 'mse': avg.mse,
100 | 'silog': avg.silog,
101 | 'squared_rel': avg.squared_rel,
102 | 'absrel': avg.absrel,
103 | 'lg10': avg.lg10,
104 | 'delta1': avg.delta1,
105 | 'delta2': avg.delta2,
106 | 'delta3': avg.delta3,
107 | 'gpu_time': avg.gpu_time,
108 | 'data_time': avg.data_time
109 | })
110 | return avg
111 |
112 | def save_single_txt(self, filename, result, epoch):
113 | with open(filename, 'w') as txtfile:
114 | txtfile.write(
115 | ("rank_metric={}\n" + "epoch={}\n" + "rmse={:.3f}\n" +
116 | "mae={:.3f}\n" + "silog={:.3f}\n" + "squared_rel={:.3f}\n" +
117 | "irmse={:.3f}\n" + "imae={:.3f}\n" + "mse={:.3f}\n" +
118 | "absrel={:.3f}\n" + "lg10={:.3f}\n" + "delta1={:.3f}\n" +
119 | "t_gpu={:.4f}").format(self.args.rank_metric, epoch,
120 | result.rmse, result.mae, result.silog,
121 | result.squared_rel, result.irmse,
122 | result.imae, result.mse, result.absrel,
123 | result.lg10, result.delta1,
124 | result.gpu_time))
125 |
126 | def save_best_txt(self, result, epoch):
127 | self.save_single_txt(self.best_txt, result, epoch)
128 |
129 | def _get_img_comparison_name(self, mode, epoch, is_best=False):
130 | if mode == 'eval':
131 | return self.output_directory + '/comparison_eval.png'
132 | if mode == 'val':
133 | if is_best:
134 | return self.output_directory + '/comparison_best.png'
135 | else:
136 | return self.output_directory + '/comparison_' + str(epoch) + '.png'
137 |
138 | def conditional_save_img_comparison(self, mode, i, ele, pred, epoch, predrgb=None, predg=None, extra=None, extra2=None, extrargb=None):
139 | # save 8 images for visualization
140 | if mode == 'val' or mode == 'eval':
141 | skip = 100
142 | if i == 0:
143 | self.img_merge = vis_utils.merge_into_row(ele, pred, predrgb, predg, extra, extra2, extrargb)
144 | elif i % skip == 0 and i < 8 * skip:
145 | row = vis_utils.merge_into_row(ele, pred, predrgb, predg, extra, extra2, extrargb)
146 | self.img_merge = vis_utils.add_row(self.img_merge, row)
147 | elif i == 8 * skip:
148 | filename = self._get_img_comparison_name(mode, epoch)
149 | vis_utils.save_image(self.img_merge, filename)
150 |
151 | def save_img_comparison_as_best(self, mode, epoch):
152 | if mode == 'val':
153 | filename = self._get_img_comparison_name(mode, epoch, is_best=True)
154 | vis_utils.save_image(self.img_merge, filename)
155 |
156 | def get_ranking_error(self, result):
157 | return getattr(result, self.args.rank_metric)
158 |
159 | def rank_conditional_save_best(self, mode, result, epoch):
160 | error = self.get_ranking_error(result)
161 | best_error = self.get_ranking_error(self.best_result)
162 | is_best = error < best_error
163 | if is_best and mode == "val":
164 | self.old_best_result = self.best_result
165 | self.best_result = result
166 | self.save_best_txt(result, epoch)
167 | return is_best
168 |
169 | def conditional_save_pred(self, mode, i, pred, epoch):
170 | if ("test" in mode or mode == "eval") and self.args.save_pred:
171 |
172 | # save images for visualization/ testing
173 | image_folder = os.path.join(self.output_directory,
174 | mode + "_output")
175 | if not os.path.exists(image_folder):
176 | os.makedirs(image_folder)
177 | img = torch.squeeze(pred.data.cpu()).numpy()
178 | filename = os.path.join(image_folder, '{0:010d}.png'.format(i))
179 | vis_utils.save_depth_as_uint16png(img, filename)
180 |
181 | def conditional_summarize(self, mode, avg, is_best):
182 | print("\n*\nSummary of ", mode, "round")
183 | print(''
184 | 'RMSE={average.rmse:.3f}\n'
185 | 'MAE={average.mae:.3f}\n'
186 | 'Photo={average.photometric:.3f}\n'
187 | 'iRMSE={average.irmse:.3f}\n'
188 | 'iMAE={average.imae:.3f}\n'
189 | 'squared_rel={average.squared_rel}\n'
190 | 'silog={average.silog}\n'
191 | 'Delta1={average.delta1:.3f}\n'
192 | 'REL={average.absrel:.3f}\n'
193 | 'Lg10={average.lg10:.3f}\n'
194 | 't_GPU={time:.3f}'.format(average=avg, time=avg.gpu_time))
195 | if is_best and mode == "val":
196 | print("New best model by %s (was %.3f)" %
197 | (self.args.rank_metric,
198 | self.get_ranking_error(self.old_best_result)))
199 | elif mode == "val":
200 | print("(best %s is %.3f)" %
201 | (self.args.rank_metric,
202 | self.get_ranking_error(self.best_result)))
203 | print("*\n")
204 |
205 |
206 | ignore_hidden = shutil.ignore_patterns(".", "..", ".git*", "*pycache*",
207 | "*build", "*.fuse*", "*_drive_*")
208 |
209 |
210 | def backup_source_code(backup_directory):
211 | if os.path.exists(backup_directory):
212 | shutil.rmtree(backup_directory)
213 | shutil.copytree('.', backup_directory, ignore=ignore_hidden)
214 |
215 |
216 | def adjust_learning_rate(lr_init, optimizer, epoch, args):
217 | """Sets the learning rate to the initial LR decayed by 10 every 5 epochs"""
218 | #lr = lr_init * (0.5**(epoch // 5))
219 | #'''
220 | lr = lr_init
221 | if (epoch >= 10):
222 | lr = lr_init * 0.5
223 | if (epoch >= 15):
224 | lr = lr_init * 0.1
225 | if (epoch >= 20):
226 | lr = lr_init * 0.01
227 | #'''
228 |
229 | for param_group in optimizer.param_groups:
230 | param_group['lr'] = lr
231 | return lr
232 |
233 | def save_checkpoint(state, is_best, epoch, output_directory):
234 | checkpoint_filename = os.path.join(output_directory,
235 | 'checkpoint-' + str(epoch) + '.pth.tar')
236 | torch.save(state, checkpoint_filename)
237 | if is_best:
238 | best_filename = os.path.join(output_directory, 'model_best.pth.tar')
239 | shutil.copyfile(checkpoint_filename, best_filename)
240 | if epoch > 0:
241 | prev_checkpoint_filename = os.path.join(
242 | output_directory, 'checkpoint-' + str(epoch - 1) + '.pth.tar')
243 | # if os.path.exists(prev_checkpoint_filename):
244 | # os.remove(prev_checkpoint_filename)
245 |
246 |
247 | def get_folder_name(args):
248 | current_time = time.strftime('%Y-%m-%d@%H-%M')
249 | return os.path.join(args.result,
250 | 'input={}.criterion={}.lr={}.bs={}.wd={}.jitter={}.time={}'.
251 | format(args.input, args.criterion, \
252 | args.lr, args.batch_size, args.weight_decay, \
253 | args.jitter, current_time
254 | ))
255 |
256 |
257 | avgpool = torch.nn.AvgPool2d(kernel_size=2, stride=2).cuda()
258 |
259 |
260 | def multiscale(img):
261 | img1 = avgpool(img)
262 | img2 = avgpool(img1)
263 | img3 = avgpool(img2)
264 | img4 = avgpool(img3)
265 | img5 = avgpool(img4)
266 | return img5, img4, img3, img2, img1
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 |
4 | import torch
5 | import torch.nn.parallel
6 | import torch.optim
7 | import torch.utils.data
8 | import time
9 |
10 | from dataloaders.kitti_loader import load_calib, input_options, KittiDepth
11 | from metrics import AverageMeter, Result
12 | import criteria
13 | import helper
14 | import vis_utils
15 |
16 | import matplotlib.pyplot as plt
17 |
18 | from model import CHNet
19 |
20 | import matplotlib
21 |
22 | matplotlib.use('AGG')
23 |
24 | parser = argparse.ArgumentParser(description='CHNet')
25 | parser.add_argument('--workers',
26 | default=4,
27 | type=int,
28 | metavar='N',
29 | help='number of data loading workers (default: 4)')
30 | parser.add_argument('--epochs',
31 | default=100,
32 | type=int,
33 | metavar='N',
34 | help='number of total epochs to run (default: 100)')
35 | parser.add_argument('--start-epoch',
36 | default=0,
37 | type=int,
38 | metavar='N',
39 | help='manual epoch number (useful on restarts)')
40 | parser.add_argument('--start-epoch-bias',
41 | default=0,
42 | type=int,
43 | metavar='N',
44 | help='manual epoch number bias(useful on restarts)')
45 | parser.add_argument('-c',
46 | '--criterion',
47 | metavar='LOSS',
48 | default='l2',
49 | choices=criteria.loss_names,
50 | help='loss function: | '.join(criteria.loss_names) +
51 | ' (default: l2)')
52 | parser.add_argument('-b',
53 | '--batch-size',
54 | default=1,
55 | type=int,
56 | help='mini-batch size (default: 1)')
57 | parser.add_argument('--lr',
58 | '--learning-rate',
59 | default=1e-3,
60 | type=float,
61 | metavar='LR',
62 | help='initial learning rate (default 1e-5)')
63 | parser.add_argument('--weight-decay',
64 | '--wd',
65 | default=1e-6,
66 | type=float,
67 | metavar='W',
68 | help='weight decay (default: 0)')
69 | parser.add_argument('--print-freq',
70 | '-p',
71 | default=10,
72 | type=int,
73 | metavar='N',
74 | help='print frequency (default: 10)')
75 | parser.add_argument('--resume',
76 | default='',
77 | type=str,
78 | metavar='PATH',
79 | help='path to latest checkpoint (default: none)')
80 | parser.add_argument('--data-folder',
81 | default='../../data',
82 | type=str,
83 | metavar='PATH',
84 | help='data folder (default: none)')
85 | parser.add_argument('--data-folder-rgb',
86 | default='../data/data_rgb',
87 | type=str,
88 | metavar='PATH',
89 | help='data folder rgb (default: none)')
90 | parser.add_argument('--data-folder-save',
91 | default='submit_test/',
92 | type=str,
93 | metavar='PATH',
94 | help='data folder test results(default: none)')
95 | parser.add_argument('-i',
96 | '--input',
97 | type=str,
98 | default='rgbd',
99 | choices=input_options,
100 | help='input: | '.join(input_options))
101 | parser.add_argument('--val',
102 | type=str,
103 | default="select",
104 | choices=["select", "full"],
105 | help='full or select validation set')
106 | parser.add_argument('--jitter',
107 | type=float,
108 | default=0.1,
109 | help='color jitter for images')
110 | parser.add_argument('--rank-metric',
111 | type=str,
112 | default='rmse',
113 | choices=[m for m in dir(Result()) if not m.startswith('_')],
114 | help='metrics for which best result is saved')
115 |
116 | parser.add_argument('-e', '--evaluate', default='', type=str, metavar='PATH')
117 | parser.add_argument('--test', action="store_true", default=False,
118 | help='save result kitti test dataset for submission')
119 | parser.add_argument('--cpu', action="store_true", default=False, help='run on cpu')
120 |
121 | #random cropping
122 | parser.add_argument('--not-random-crop', action="store_true", default=False,
123 | help='prohibit random cropping')
124 | parser.add_argument('-he', '--random-crop-height', default=320, type=int, metavar='N',
125 | help='random crop height')
126 | parser.add_argument('-w', '--random-crop-width', default=1216, type=int, metavar='N',
127 | help='random crop height')
128 |
129 |
130 | args = parser.parse_args()
131 | args.result = os.path.join('..', 'results')
132 | args.use_rgb = ('rgb' in args.input)
133 | args.use_d = 'd' in args.input
134 | args.use_g = 'g' in args.input
135 | args.val_h = 352
136 | args.val_w = 1216
137 | print(args)
138 |
139 | cuda = torch.cuda.is_available() and not args.cpu
140 | if cuda:
141 | import torch.backends.cudnn as cudnn
142 | cudnn.benchmark = True
143 | device = torch.device("cuda")
144 | else:
145 | device = torch.device("cpu")
146 | print("=> using '{}' for computation.".format(device))
147 |
148 | # define loss functions
149 | depth_criterion = criteria.MaskedMSELoss() if (
150 | args.criterion == 'l2') else criteria.MaskedL1Loss()
151 |
152 | #multi batch
153 | multi_batch_size = 1
154 |
155 | def iterate(mode, args, loader, model, optimizer, logger, epoch):
156 | # actual_epoch = epoch - args.start_epoch + args.start_epoch_bias
157 |
158 | block_average_meter = AverageMeter()
159 | block_average_meter.reset(False)
160 | average_meter = AverageMeter()
161 | meters = [block_average_meter, average_meter]
162 |
163 | # switch to appropriate mode
164 | assert mode in ["train", "val", "eval", "test_prediction", "test_completion"], \
165 | "unsupported mode: {}".format(mode)
166 | if mode == 'train':
167 | model.train()
168 | lr = helper.adjust_learning_rate(args.lr, optimizer, epoch, args)
169 | else:
170 | model.eval()
171 | lr = 0
172 |
173 | torch.cuda.empty_cache()
174 | for i, batch_data in enumerate(loader):
175 | dstart = time.time()
176 | batch_data = {
177 | key: val.to(device)
178 | for key, val in batch_data.items() if val is not None
179 | }
180 |
181 | gt = batch_data[
182 | 'gt'] if mode != 'test_prediction' and mode != 'test_completion' else None
183 | data_time = time.time() - dstart
184 |
185 | pred = None
186 | start = None
187 | gpu_time = 0
188 |
189 | torch.cuda.synchronize()
190 | start = time.time()
191 | pred, pred_ob, pred_unob = model(batch_data)
192 |
193 | if(args.evaluate):
194 | torch.cuda.synchronize()
195 | gpu_time = time.time() - start
196 | #'''
197 |
198 | depth_loss, photometric_loss, smooth_loss, mask = 0, 0, 0, None
199 |
200 | if mode == 'train':
201 | depth_loss = depth_criterion(pred, gt)
202 |
203 | loss = depth_loss
204 |
205 | if i % multi_batch_size == 0:
206 | optimizer.zero_grad()
207 | loss.backward()
208 |
209 | if i % multi_batch_size == (multi_batch_size-1) or i==(len(loader)-1):
210 | optimizer.step()
211 | print("loss:", loss, " epoch:", epoch, " ", i, "/", len(loader))
212 | # print(mode)
213 | if mode == "test_completion":
214 | str_i = str(i)
215 | path_i = str_i.zfill(10) + '.png'
216 | path = os.path.join(args.data_folder_save, path_i)
217 | vis_utils.save_depth_as_uint16png_upload(pred, path)
218 |
219 | if(not args.evaluate):
220 | gpu_time = time.time() - start
221 | # measure accuracy and record loss
222 | with torch.no_grad():
223 | mini_batch_size = next(iter(batch_data.values())).size(0)
224 | result = Result()
225 | if mode != 'test_prediction' and mode != 'test_completion':
226 | result.evaluate(pred.data, gt.data, photometric_loss)
227 | [
228 | m.update(result, gpu_time, data_time, mini_batch_size)
229 | for m in meters
230 | ]
231 |
232 | if mode != 'train':
233 | logger.conditional_print(mode, i, epoch, lr, len(loader),
234 | block_average_meter, average_meter)
235 | logger.conditional_save_img_comparison(mode, i, batch_data, pred,
236 | epoch)
237 | logger.conditional_save_pred(mode, i, pred, epoch)
238 |
239 | avg = logger.conditional_save_info(mode, average_meter, epoch)
240 | is_best = logger.rank_conditional_save_best(mode, avg, epoch)
241 | if is_best and not (mode == "train"):
242 | logger.save_img_comparison_as_best(mode, epoch)
243 | logger.conditional_summarize(mode, avg, is_best)
244 |
245 | return avg, is_best
246 |
247 | def main():
248 | global args
249 | checkpoint = None
250 | is_eval = False
251 | if args.evaluate:
252 | args_new = args
253 | if os.path.isfile(args.evaluate):
254 | print("=> loading checkpoint '{}' ... ".format(args.evaluate),
255 | end='')
256 | checkpoint = torch.load(args.evaluate, map_location=device)
257 | #args = checkpoint['args']
258 | args.start_epoch = checkpoint['epoch'] + 1
259 | args.data_folder = args_new.data_folder
260 | args.val = args_new.val
261 | is_eval = True
262 |
263 | print("Completed.")
264 | else:
265 | is_eval = True
266 | print("No model found at '{}'".format(args.evaluate))
267 | #return
268 |
269 | elif args.resume: # optionally resume from a checkpoint
270 | args_new = args
271 | if os.path.isfile(args.resume):
272 | print("=> loading checkpoint '{}' ... ".format(args.resume),
273 | end='')
274 | checkpoint = torch.load(args.resume, map_location=device)
275 |
276 | args.start_epoch = checkpoint['epoch'] + 1
277 | args.data_folder = args_new.data_folder
278 | args.val = args_new.val
279 | print("Completed. Resuming from epoch {}.".format(
280 | checkpoint['epoch']))
281 | else:
282 | print("No checkpoint found at '{}'".format(args.resume))
283 | return
284 |
285 | print("=> creating model and optimizer ... ", end='')
286 |
287 | model = CHNet().to(device)
288 |
289 | model_named_params = None
290 | optimizer = None
291 |
292 | if checkpoint is not None:
293 | model.load_state_dict(checkpoint['model'], strict=True)
294 | #optimizer.load_state_dict(checkpoint['optimizer'])
295 | print("=> checkpoint state loaded.")
296 |
297 | logger = helper.logger(args)
298 | if checkpoint is not None:
299 | logger.best_result = checkpoint['best_result']
300 | del checkpoint
301 | print("=> logger created.")
302 |
303 | test_dataset = None
304 | test_loader = None
305 | if (args.test):
306 | test_dataset = KittiDepth('test_completion', args)
307 | test_loader = torch.utils.data.DataLoader(
308 | test_dataset,
309 | batch_size=1,
310 | shuffle=False,
311 | num_workers=1,
312 | pin_memory=True)
313 | iterate("test_completion", args, test_loader, model, None, logger, 0)
314 | return
315 |
316 | val_dataset = KittiDepth('val', args)
317 | val_loader = torch.utils.data.DataLoader(
318 | val_dataset,
319 | batch_size=1,
320 | shuffle=False,
321 | num_workers=2,
322 | pin_memory=True) # set batch size to be 1 for validation
323 | print("\t==> val_loader size:{}".format(len(val_loader)))
324 |
325 | if is_eval == True:
326 | for p in model.parameters():
327 | p.requires_grad = False
328 |
329 | result, is_best = iterate("val", args, val_loader, model, None, logger,
330 | args.start_epoch - 1)
331 | return
332 |
333 | else:
334 | model_named_params = [
335 | p for _, p in model.named_parameters() if p.requires_grad
336 | ]
337 | optimizer = torch.optim.Adam(model_named_params, lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.99))
338 | print("completed.")
339 |
340 | model = torch.nn.DataParallel(model)
341 |
342 | # Data loading code
343 | print("=> creating data loaders ... ")
344 | if not is_eval:
345 | train_dataset = KittiDepth('train', args)
346 | train_loader = torch.utils.data.DataLoader(train_dataset,
347 | batch_size=args.batch_size,
348 | shuffle=True,
349 | num_workers=args.workers,
350 | pin_memory=True,
351 | sampler=None)
352 | print("\t==> train_loader size:{}".format(len(train_loader)))
353 |
354 | print("=> starting main loop ...")
355 | for epoch in range(args.start_epoch, args.epochs):
356 | print("=> starting training epoch {} ..".format(epoch))
357 | iterate("train", args, train_loader, model, optimizer, logger, epoch) # train for one epochstate
358 |
359 | # validation memory reset
360 | for p in model.parameters():
361 | p.requires_grad = False
362 | result, is_best = iterate("val", args, val_loader, model, None, logger, epoch) # evaluate on validation set
363 |
364 | for p in model.parameters():
365 | p.requires_grad = True
366 |
367 | helper.save_checkpoint({ # save checkpoint
368 | 'epoch': epoch,
369 | 'model': model.module.state_dict(),
370 | 'best_result': logger.best_result,
371 | 'optimizer' : optimizer.state_dict(),
372 | 'args' : args,
373 | }, is_best, epoch, logger.output_directory)
374 |
375 |
376 | if __name__ == '__main__':
377 | main()
--------------------------------------------------------------------------------
/metrics.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import math
3 | import numpy as np
4 |
5 | lg_e_10 = math.log(10)
6 |
7 |
8 | def log10(x):
9 | """Convert a new tensor with the base-10 logarithm of the elements of x. """
10 | return torch.log(x) / lg_e_10
11 |
12 |
13 | class Result(object):
14 | def __init__(self):
15 | self.irmse = 0
16 | self.imae = 0
17 | self.mse = 0
18 | self.rmse = 0
19 | self.mae = 0
20 | self.absrel = 0
21 | self.squared_rel = 0
22 | self.lg10 = 0
23 | self.delta1 = 0
24 | self.delta2 = 0
25 | self.delta3 = 0
26 | self.data_time = 0
27 | self.gpu_time = 0
28 | self.silog = 0 # Scale invariant logarithmic error [log(m)*100]
29 | self.photometric = 0
30 |
31 | def set_to_worst(self):
32 | self.irmse = np.inf
33 | self.imae = np.inf
34 | self.mse = np.inf
35 | self.rmse = np.inf
36 | self.mae = np.inf
37 | self.absrel = np.inf
38 | self.squared_rel = np.inf
39 | self.lg10 = np.inf
40 | self.silog = np.inf
41 | self.delta1 = 0
42 | self.delta2 = 0
43 | self.delta3 = 0
44 | self.data_time = 0
45 | self.gpu_time = 0
46 |
47 | def update(self, irmse, imae, mse, rmse, mae, absrel, squared_rel, lg10, \
48 | delta1, delta2, delta3, gpu_time, data_time, silog, photometric=0):
49 | self.irmse = irmse
50 | self.imae = imae
51 | self.mse = mse
52 | self.rmse = rmse
53 | self.mae = mae
54 | self.absrel = absrel
55 | self.squared_rel = squared_rel
56 | self.lg10 = lg10
57 | self.delta1 = delta1
58 | self.delta2 = delta2
59 | self.delta3 = delta3
60 | self.data_time = data_time
61 | self.gpu_time = gpu_time
62 | self.silog = silog
63 | self.photometric = photometric
64 |
65 | def evaluate(self, output, target, photometric=0):
66 | valid_mask = target > 0.1
67 | # valid_mask = (valid_mask.int() - (valid_mask * lidar_mask).int()).bool()
68 | # valid_mask = valid_mask * lidar_mask
69 |
70 | # convert from meters to mm
71 | output_mm = 1e3 * output[valid_mask]
72 | target_mm = 1e3 * target[valid_mask]
73 |
74 | abs_diff = (output_mm - target_mm).abs()
75 |
76 | self.mse = float((torch.pow(abs_diff, 2)).mean())
77 | self.rmse = math.sqrt(self.mse)
78 | self.mae = float(abs_diff.mean())
79 | self.lg10 = float((log10(output_mm) - log10(target_mm)).abs().mean())
80 | self.absrel = float((abs_diff / target_mm).mean())
81 | self.squared_rel = float(((abs_diff / target_mm)**2).mean())
82 |
83 | maxRatio = torch.max(output_mm / target_mm, target_mm / output_mm)
84 | self.delta1 = float((maxRatio < 1.25).float().mean())
85 | self.delta2 = float((maxRatio < 1.25**2).float().mean())
86 | self.delta3 = float((maxRatio < 1.25**3).float().mean())
87 | self.data_time = 0
88 | self.gpu_time = 0
89 |
90 | # silog uses meters
91 | err_log = torch.log(target[valid_mask]) - torch.log(output[valid_mask])
92 | normalized_squared_log = (err_log**2).mean()
93 | log_mean = err_log.mean()
94 | self.silog = math.sqrt(normalized_squared_log -
95 | log_mean * log_mean) * 100
96 |
97 | # convert from meters to km
98 | inv_output_km = (1e-3 * output[valid_mask])**(-1)
99 | inv_target_km = (1e-3 * target[valid_mask])**(-1)
100 | abs_inv_diff = (inv_output_km - inv_target_km).abs()
101 | self.irmse = math.sqrt((torch.pow(abs_inv_diff, 2)).mean())
102 | self.imae = float(abs_inv_diff.mean())
103 |
104 | self.photometric = float(photometric)
105 |
106 |
107 | class AverageMeter(object):
108 | def __init__(self):
109 | self.reset(time_stable=True)
110 |
111 | def reset(self, time_stable):
112 | self.count = 0.0
113 | self.sum_irmse = 0
114 | self.sum_imae = 0
115 | self.sum_mse = 0
116 | self.sum_rmse = 0
117 | self.sum_mae = 0
118 | self.sum_absrel = 0
119 | self.sum_squared_rel = 0
120 | self.sum_lg10 = 0
121 | self.sum_delta1 = 0
122 | self.sum_delta2 = 0
123 | self.sum_delta3 = 0
124 | self.sum_data_time = 0
125 | self.sum_gpu_time = 0
126 | self.sum_photometric = 0
127 | self.sum_silog = 0
128 | self.time_stable = time_stable
129 | self.time_stable_counter_init = 10
130 | self.time_stable_counter = self.time_stable_counter_init
131 |
132 | def update(self, result, gpu_time, data_time, n=1):
133 | self.count += n
134 | self.sum_irmse += n * result.irmse
135 | self.sum_imae += n * result.imae
136 | self.sum_mse += n * result.mse
137 | self.sum_rmse += n * result.rmse
138 | self.sum_mae += n * result.mae
139 | self.sum_absrel += n * result.absrel
140 | self.sum_squared_rel += n * result.squared_rel
141 | self.sum_lg10 += n * result.lg10
142 | self.sum_delta1 += n * result.delta1
143 | self.sum_delta2 += n * result.delta2
144 | self.sum_delta3 += n * result.delta3
145 | self.sum_data_time += n * data_time
146 | if self.time_stable == True and self.time_stable_counter > 0:
147 | self.time_stable_counter = self.time_stable_counter - 1
148 | else:
149 | self.sum_gpu_time += n * gpu_time
150 | self.sum_silog += n * result.silog
151 | self.sum_photometric += n * result.photometric
152 |
153 | def average(self):
154 | avg = Result()
155 | if self.time_stable == True:
156 | if self.count > 0 and self.count - self.time_stable_counter_init > 0:
157 | avg.update(
158 | self.sum_irmse / self.count, self.sum_imae / self.count,
159 | self.sum_mse / self.count, self.sum_rmse / self.count,
160 | self.sum_mae / self.count, self.sum_absrel / self.count,
161 | self.sum_squared_rel / self.count, self.sum_lg10 / self.count,
162 | self.sum_delta1 / self.count, self.sum_delta2 / self.count,
163 | self.sum_delta3 / self.count, self.sum_gpu_time / (self.count - self.time_stable_counter_init),
164 | self.sum_data_time / self.count, self.sum_silog / self.count,
165 | self.sum_photometric / self.count)
166 | elif self.count > 0:
167 | avg.update(
168 | self.sum_irmse / self.count, self.sum_imae / self.count,
169 | self.sum_mse / self.count, self.sum_rmse / self.count,
170 | self.sum_mae / self.count, self.sum_absrel / self.count,
171 | self.sum_squared_rel / self.count, self.sum_lg10 / self.count,
172 | self.sum_delta1 / self.count, self.sum_delta2 / self.count,
173 | self.sum_delta3 / self.count, 0,
174 | self.sum_data_time / self.count, self.sum_silog / self.count,
175 | self.sum_photometric / self.count)
176 | elif self.count > 0:
177 | avg.update(
178 | self.sum_irmse / self.count, self.sum_imae / self.count,
179 | self.sum_mse / self.count, self.sum_rmse / self.count,
180 | self.sum_mae / self.count, self.sum_absrel / self.count,
181 | self.sum_squared_rel / self.count, self.sum_lg10 / self.count,
182 | self.sum_delta1 / self.count, self.sum_delta2 / self.count,
183 | self.sum_delta3 / self.count, self.sum_gpu_time / self.count,
184 | self.sum_data_time / self.count, self.sum_silog / self.count,
185 | self.sum_photometric / self.count)
186 | return avg
--------------------------------------------------------------------------------
/model.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from scipy.stats import truncnorm
4 | import math
5 |
6 | expansion = 1
7 |
8 | def Conv1x1(in_planes, out_planes, stride=1):
9 | """1x1 convolution"""
10 | return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
11 |
12 |
13 | def Conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
14 | """3x3 convolution with padding"""
15 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
16 | padding=dilation, groups=groups, bias=False, dilation=dilation)
17 |
18 |
19 | class Basic2d(nn.Module):
20 | def __init__(self, in_channels, out_channels, norm_layer=None, kernel_size=3, padding=1):
21 | super().__init__()
22 | if norm_layer:
23 | conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
24 | stride=1, padding=padding, bias=False)
25 | else:
26 | conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
27 | stride=1, padding=padding, bias=True)
28 | self.conv = nn.Sequential(conv, )
29 | if norm_layer:
30 | self.conv.add_module('bn', norm_layer(out_channels))
31 | self.conv.add_module('relu', nn.ReLU(inplace=True))
32 |
33 | def forward(self, x):
34 | out = self.conv(x)
35 | return out
36 |
37 |
38 | class Basic2dTrans(nn.Module):
39 | def __init__(self, in_channels, out_channels, norm_layer=None):
40 | super().__init__()
41 | if norm_layer is None:
42 | norm_layer = nn.BatchNorm2d
43 | self.conv = nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3,
44 | stride=2, padding=1, output_padding=1, bias=False)
45 | self.bn = norm_layer(out_channels)
46 | self.relu = nn.ReLU(inplace=True)
47 |
48 | def forward(self, x):
49 | out = self.conv(x)
50 | out = self.bn(out)
51 | out = self.relu(out)
52 | return out
53 |
54 |
55 | class FastGuide(nn.Module):
56 | def __init__(self, input_planes, norm_layer=None):
57 | super().__init__()
58 | if norm_layer is None:
59 | norm_layer = nn.BatchNorm2d
60 | self.expansion_ratio = 3
61 | self.conv1 = Basic2d(input_planes, input_planes, None)
62 | self.weight_expansion = Basic2d(input_planes, input_planes * self.expansion_ratio, norm_layer, kernel_size=1, padding=0)
63 |
64 | self.conv2 = Basic2d(input_planes, input_planes, norm_layer, kernel_size=1, padding=0)
65 | self.conv3 = Basic2d(input_planes, input_planes)
66 |
67 | def forward(self, input, weight):
68 | weight = self.conv1(weight)
69 | weight = self.weight_expansion(weight)
70 |
71 | kernels = torch.chunk(weight, self.expansion_ratio, 1)
72 | splits = []
73 |
74 | for i in range(self.expansion_ratio):
75 | splits.append(input*kernels[i])
76 | out = sum(splits)
77 | out = self.conv2(out)
78 |
79 | avg_out = torch.mean(weight, dim=1, keepdim=True)
80 | out = self.conv3(out * avg_out)
81 |
82 | return out
83 |
84 |
85 | class BasicBlock(nn.Module):
86 | __constants__ = ['downsample']
87 |
88 | def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None, act=True):
89 | super().__init__()
90 | if norm_layer is None:
91 | norm_layer = nn.BatchNorm2d
92 | self.conv1 = Conv3x3(inplanes, planes, stride)
93 | self.bn1 = norm_layer(planes)
94 | self.relu = nn.ReLU(inplace=True)
95 | self.conv2 = Conv3x3(planes, planes)
96 | self.bn2 = norm_layer(planes)
97 | self.downsample = downsample
98 | self.stride = stride
99 | self.act = act
100 |
101 | def forward(self, x):
102 | identity = x
103 | out = self.conv1(x)
104 | out = self.bn1(out)
105 | out = self.relu(out)
106 | out = self.conv2(out)
107 | out = self.bn2(out)
108 | if self.downsample is not None:
109 | identity = self.downsample(x)
110 | out += identity
111 | if self.act:
112 | out = self.relu(out)
113 | return out
114 |
115 |
116 | class CHNet(nn.Module):
117 | def __init__(self, block=BasicBlock, bc=16, img_layers=[2, 2, 2, 2, 2],
118 | depth_layers=[2, 2, 2, 2, 2], norm_layer=nn.BatchNorm2d):
119 | super().__init__()
120 | self._norm_layer = norm_layer
121 |
122 | self.conv_img = Basic2d(3, bc * 2, norm_layer=norm_layer, kernel_size=5, padding=2)
123 | in_channels = bc * 2
124 | self.inplanes = in_channels
125 | self.layer1_img = self._make_layer(block, in_channels * 2, img_layers[0], stride=2)
126 |
127 | self.guide1 = FastGuide(in_channels * 2, norm_layer)
128 | self.inplanes = in_channels * 2 * expansion
129 | self.layer2_img = self._make_layer(block, in_channels * 4, img_layers[1], stride=2)
130 |
131 | self.guide2 = FastGuide(in_channels * 4, norm_layer)
132 | self.inplanes = in_channels * 4 * expansion
133 | self.layer3_img = self._make_layer(block, in_channels * 8, img_layers[2], stride=2)
134 |
135 | self.guide3 = FastGuide(in_channels * 8, norm_layer)
136 | self.inplanes = in_channels * 8 * expansion
137 | self.layer4_img = self._make_layer(block, in_channels * 8, img_layers[3], stride=2)
138 |
139 | self.guide4 = FastGuide(in_channels * 8, norm_layer)
140 |
141 | self.conv_lidar = Basic2d(1, bc * 2, norm_layer=None, kernel_size=5, padding=2)
142 |
143 | self.inplanes = in_channels
144 | self.layer1_lidar = self._make_layer(block, in_channels * 2, depth_layers[0], stride=2)
145 | self.inplanes = in_channels * 2 * expansion
146 | self.layer2_lidar = self._make_layer(block, in_channels * 4, depth_layers[1], stride=2)
147 | self.inplanes = in_channels * 4 * expansion
148 | self.layer3_lidar = self._make_layer(block, in_channels * 8, depth_layers[2], stride=2)
149 | self.inplanes = in_channels * 8 * expansion
150 | self.layer4_lidar = self._make_layer(block, in_channels * 8, depth_layers[3], stride=2)
151 |
152 | self.layer1d = Basic2dTrans(in_channels * 2, in_channels, norm_layer)
153 | self.layer2d = Basic2dTrans(in_channels * 4, in_channels * 2, norm_layer)
154 | self.layer3d = Basic2dTrans(in_channels * 8, in_channels * 4, norm_layer)
155 | self.layer4d = Basic2dTrans(in_channels * 8, in_channels * 8, norm_layer)
156 |
157 | self.conv_ob = nn.Sequential(block(bc * 2, bc * 2, norm_layer=norm_layer, act=False),
158 | nn.Conv2d(bc * 2, 1, kernel_size=3, stride=1, padding=1))
159 | self.conv_unob = nn.Sequential(block(bc * 2, bc * 2, norm_layer=norm_layer, act=False),
160 | nn.Conv2d(bc * 2, 1, kernel_size=3, stride=1, padding=1))
161 | self.ref = block(bc * 2, bc * 2, norm_layer=norm_layer, act=False)
162 |
163 | self._initialize_weights()
164 |
165 | def forward(self, x):
166 | img = x['rgb']
167 | lidar = x['d']
168 |
169 | lidar_mask = (lidar > 0).detach()
170 |
171 | c0_img = self.conv_img(img)
172 | c0_lidar = self.conv_lidar(lidar)
173 |
174 | c1_img = self.layer1_img(c0_img)
175 | c1_lidar = self.layer1_lidar(c0_lidar)
176 | c1_lidar = self.guide1(c1_lidar, c1_img)
177 |
178 | c2_img = self.layer2_img(c1_img)
179 | c2_lidar = self.layer2_lidar(c1_lidar)
180 | c2_lidar = self.guide2(c2_lidar, c2_img)
181 |
182 | c3_img = self.layer3_img(c2_img)
183 | c3_lidar = self.layer3_lidar(c2_lidar)
184 | c3_lidar = self.guide3(c3_lidar, c3_img)
185 |
186 | c4_img = self.layer4_img(c3_img)
187 | c4_lidar = self.layer4_lidar(c3_lidar)
188 | c4_lidar = self.guide4(c4_lidar, c4_img)
189 |
190 | de2 = self.layer4d(c4_lidar)
191 | de2 = de2 + c3_lidar
192 |
193 | de3 = self.layer3d(de2)
194 | de3 = de3 + c2_lidar
195 |
196 | de4 = self.layer2d(de3)
197 | de4 = de4 + c1_lidar
198 |
199 | de5 = self.layer1d(de4)
200 | de5 = de5 + c0_lidar
201 |
202 | output = self.ref(de5)
203 |
204 | output_ob = self.conv_ob(output)
205 | output_unob = self.conv_unob(output)
206 |
207 | output = lidar_mask * output_ob + ~lidar_mask * output_unob
208 |
209 | return output, output_ob, output_unob
210 |
211 |
212 | def _make_layer(self, block, planes, blocks, stride=1):
213 | norm_layer = self._norm_layer
214 | downsample = None
215 | if stride != 1 or self.inplanes != planes * expansion:
216 | downsample = nn.Sequential(
217 | Conv1x1(self.inplanes, planes * expansion, stride),
218 | norm_layer(planes * expansion),
219 | )
220 |
221 | layers = []
222 | layers.append(block(self.inplanes, planes, stride, downsample, norm_layer))
223 | self.inplanes = planes * expansion
224 | for _ in range(1, blocks):
225 | layers.append(block(self.inplanes, planes, norm_layer=norm_layer))
226 |
227 | return nn.Sequential(*layers)
228 |
229 | def _initialize_weights(self):
230 | def truncated_normal_(num, mean=0., std=1.):
231 | lower = -2 * std
232 | upper = 2 * std
233 | X = truncnorm((lower - mean) / std, (upper - mean) / std, loc=mean, scale=std)
234 | samples = X.rvs(num)
235 | output = torch.from_numpy(samples)
236 | return output
237 |
238 | for m in self.modules():
239 | if isinstance(m, nn.Conv2d):
240 | n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
241 | data = truncated_normal_(m.weight.nelement(), mean=0, std=math.sqrt(1.3 * 2. / n))
242 | data = data.type_as(m.weight.data)
243 | m.weight.data = data.view_as(m.weight.data)
244 | if m.bias is not None:
245 | nn.init.zeros_(m.bias)
--------------------------------------------------------------------------------
/results.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lmomoy/CHNet/a4c9ad267f87cafe9fd95e5e3a70e91a882d94f3/results.png
--------------------------------------------------------------------------------
/vis_utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | if not ("DISPLAY" in os.environ):
3 | import matplotlib as mpl
4 | mpl.use('Agg')
5 | import matplotlib.pyplot as plt
6 | from PIL import Image
7 | import numpy as np
8 | import cv2
9 |
10 | cmap = plt.cm.jet
11 | cmap2 = plt.cm.nipy_spectral
12 |
13 | def validcrop(img):
14 | ratio = 256/1216
15 | h = img.size()[2]
16 | w = img.size()[3]
17 | return img[:, :, h-int(ratio*w):, :]
18 |
19 | def depth_colorize(depth):
20 | depth = (depth - np.min(depth)) / (np.max(depth) - np.min(depth))
21 | depth = 255 * cmap(depth)[:, :, :3] # H, W, C
22 | return depth.astype('uint8')
23 |
24 | def feature_colorize(feature):
25 | feature = (feature - np.min(feature)) / ((np.max(feature) - np.min(feature)))
26 | feature = 255 * cmap2(feature)[:, :, :3]
27 | return feature.astype('uint8')
28 |
29 | def mask_vis(mask):
30 | mask = (mask - np.min(mask)) / (np.max(mask) - np.min(mask))
31 | mask = 255 * mask
32 | return mask.astype('uint8')
33 |
34 | def merge_into_row(ele, pred, predrgb=None, predg=None, extra=None, extra2=None, extrargb=None):
35 | def preprocess_depth(x):
36 | y = np.squeeze(x.data.cpu().numpy())
37 | return depth_colorize(y)
38 |
39 | # if is gray, transforms to rgb
40 | img_list = []
41 | if 'rgb' in ele:
42 | rgb = np.squeeze(ele['rgb'][0, ...].data.cpu().numpy())
43 | rgb = np.transpose(rgb, (1, 2, 0))
44 | img_list.append(rgb)
45 | elif 'g' in ele:
46 | g = np.squeeze(ele['g'][0, ...].data.cpu().numpy())
47 | g = np.array(Image.fromarray(g).convert('RGB'))
48 | img_list.append(g)
49 | if 'd' in ele:
50 | img_list.append(preprocess_depth(ele['d'][0, ...]))
51 | img_list.append(preprocess_depth(pred[0, ...]))
52 | if extrargb is not None:
53 | img_list.append(preprocess_depth(extrargb[0, ...]))
54 | if predrgb is not None:
55 | predrgb = np.squeeze(ele['rgb'][0, ...].data.cpu().numpy())
56 | predrgb = np.transpose(predrgb, (1, 2, 0))
57 | #predrgb = predrgb.astype('uint8')
58 | img_list.append(predrgb)
59 | if predg is not None:
60 | predg = np.squeeze(predg[0, ...].data.cpu().numpy())
61 | predg = mask_vis(predg)
62 | predg = np.array(Image.fromarray(predg).convert('RGB'))
63 | #predg = predg.astype('uint8')
64 | img_list.append(predg)
65 | if extra is not None:
66 | extra = np.squeeze(extra[0, ...].data.cpu().numpy())
67 | extra = mask_vis(extra)
68 | extra = np.array(Image.fromarray(extra).convert('RGB'))
69 | img_list.append(extra)
70 | if extra2 is not None:
71 | extra2 = np.squeeze(extra2[0, ...].data.cpu().numpy())
72 | extra2 = mask_vis(extra2)
73 | extra2 = np.array(Image.fromarray(extra2).convert('RGB'))
74 | img_list.append(extra2)
75 | if 'gt' in ele:
76 | img_list.append(preprocess_depth(ele['gt'][0, ...]))
77 |
78 | img_merge = np.hstack(img_list)
79 | return img_merge.astype('uint8')
80 |
81 |
82 | def add_row(img_merge, row):
83 | return np.vstack([img_merge, row])
84 |
85 |
86 | def save_image(img_merge, filename):
87 | image_to_write = cv2.cvtColor(img_merge, cv2.COLOR_RGB2BGR)
88 | cv2.imwrite(filename, image_to_write)
89 |
90 | def save_image_torch(rgb, filename):
91 | #torch2numpy
92 | rgb = validcrop(rgb)
93 | rgb = np.squeeze(rgb[0, ...].data.cpu().numpy())
94 | #print(rgb.size())
95 | rgb = np.transpose(rgb, (1, 2, 0))
96 | rgb = rgb.astype('uint8')
97 | image_to_write = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
98 | cv2.imwrite(filename, image_to_write)
99 |
100 | def save_depth_as_uint16png(img, filename):
101 | #from tensor
102 | img = np.squeeze(img.data.cpu().numpy())
103 | img = (img * 256).astype('uint16')
104 | cv2.imwrite(filename, img)
105 |
106 | def save_depth_as_uint16png_upload(img, filename):
107 | #from tensor
108 | img = np.squeeze(img.data.cpu().numpy())
109 | img = (img * 256.0).astype('uint16')
110 | img_buffer = img.tobytes()
111 | imgsave = Image.new("I", img.T.shape)
112 | imgsave.frombytes(img_buffer, 'raw', "I;16")
113 | imgsave.save(filename)
114 |
115 | def save_depth_as_uint8colored(img, filename):
116 | #from tensor
117 | img = validcrop(img)
118 | img = np.squeeze(img.data.cpu().numpy())
119 | img = depth_colorize(img)
120 | img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
121 | cv2.imwrite(filename, img)
122 |
123 | def save_mask_as_uint8colored(img, filename, colored=True, normalized=True):
124 | img = validcrop(img)
125 | img = np.squeeze(img.data.cpu().numpy())
126 | if(normalized==False):
127 | img = (img - np.min(img)) / (np.max(img) - np.min(img))
128 | if(colored==True):
129 | img = 255 * cmap(img)[:, :, :3]
130 | else:
131 | img = 255 * img
132 | img = img.astype('uint8')
133 | img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
134 | cv2.imwrite(filename, img)
135 |
136 | def save_feature_as_uint8colored(img, filename):
137 | img = validcrop(img)
138 | img = np.squeeze(img.data.cpu().numpy())
139 | img = feature_colorize(img)
140 | img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
141 | cv2.imwrite(filename, img)
142 |
--------------------------------------------------------------------------------