├── CMakeLists.txt
├── LICENSE
├── README.md
├── dataset-scripts
├── .directory
├── dataset-concatenate.py
├── dataset-preprocessing.py
└── dataset-stats.py
├── joblibs
├── clf_ab.joblib
├── clf_bnb.joblib
├── clf_dt.joblib
├── clf_gnb.joblib
├── clf_rf.joblib
├── clf_svc.joblib
├── old-joblibs
│ ├── clf_ab.joblib
│ ├── clf_bnb.joblib
│ ├── clf_dt.joblib
│ ├── clf_gnb.joblib
│ ├── clf_rf.joblib
│ ├── clf_svc.joblib
│ └── scaler.joblib
└── scaler.joblib
├── jupyter-notebooks
├── .directory
├── .ipynb_checkpoints
│ └── formatter-checkpoint.ipynb
├── AdaBoost.csv
├── Bernoulli NB.csv
├── Decision Tree.csv
├── Gaussian NB.csv
├── Linear SVC.csv
├── Random Forest.csv
├── formatter.ipynb
├── results.txt
└── results_gs.txt
├── ml_classifiers.cc
├── ml_classifiers.h
├── ml_classifiers.py
└── tmp
├── timeouted_connections.txt
└── timeouted_connections_results.txt
/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required ( VERSION 3.4.3 )
2 | project ( ml_classifiers CXX )
3 |
4 | set (CMAKE_CXX_STANDARD 11)
5 | set (CMAKE_CXX_STANDARD_REQUIRED ON)
6 | set (CMAKE_CXX_EXTENSIONS OFF)
7 |
8 | set (CMAKE_INCLUDE_PATH ${CMAKE_INCLUDE_PATH} "/home/lnutimura/snort_src/boost_1_67_0")
9 | #set (CMAKE_INCLUDE_PATH ${CMAKE_INCLUDE_PATH} "/usr/include/python3.7")
10 |
11 | if ( APPLE )
12 | set ( CMAKE_MACOSX_RPATH OFF )
13 | endif ( APPLE )
14 |
15 | include ( FindPkgConfig )
16 | pkg_search_module ( SNORT3 REQUIRED snort>=3 )
17 |
18 | add_library (
19 | ml_classifiers MODULE
20 | ml_classifiers.cc
21 | ml_classifiers.h
22 | )
23 |
24 | if ( APPLE )
25 | set_target_properties (
26 | ml_classifiers
27 | PROPERTIES
28 | LINK_FLAGS "-undefined dynamic_lookup"
29 | )
30 | endif ( APPLE )
31 |
32 | set_target_properties (
33 | ml_classifiers
34 | PROPERTIES
35 | PREFIX ""
36 | )
37 |
38 | find_package ( Python3 COMPONENTS Interpreter Development )
39 | if ( Python3_FOUND )
40 | find_package ( Boost COMPONENTS python${Python3_VERSION_MAJOR}${Python3_VERSION_MINOR} )
41 | endif ( Python3_FOUND )
42 |
43 | message ( "[*] PYTHON_LIBRARY_DIRS: ${Python3_LIBRARY_DIRS}" )
44 | message ( "[*] PYTHON_LIBRARIES: ${Python3_LIBRARIES}" )
45 | message ( "[*] PYTHON_EXECUTABLE: ${Python3_EXECUTABLE}" )
46 | message ( "[*] PYTHON_INCLUDE_DIRS: ${Python3_INCLUDE_DIRS}" )
47 |
48 | message ( "[*] BOOST_LIBRARY_DIRS: ${Boost_LIBRARY_DIRS}" )
49 | message ( "[*] BOOST_LIBRARIES: ${Boost_LIBRARIES}" )
50 | message ( "[*] BOOST_INCLUDE_DIRS: ${Boost_INCLUDE_DIRS}" )
51 |
52 | include_directories ( ${Python3_INCLUDE_DIRS} ${Boost_INCLUDE_DIRS} )
53 | target_link_libraries ( ml_classifiers ${Python3_LIBRARIES} ${Boost_LIBRARIES} )
54 |
55 | target_include_directories (
56 | ml_classifiers PUBLIC
57 | ${SNORT3_INCLUDE_DIRS}
58 | )
59 |
60 | install (
61 | TARGETS ml_classifiers
62 | LIBRARY
63 | DESTINATION "${CMAKE_INSTALL_LIBDIR}/${CMAKE_PROJECT_NAME}/inspectors"
64 | )
65 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ml_classifiers
2 | **ml_classifiers** is a Snort 3 Machine Learning-based Inspector for Network Traffic Bi-directional Flow Classification.
3 |
4 | It employs several machine learning models previously trained on [**CICIDS2017**](https://www.unb.ca/cic/datasets/ids-2017.html) to classify bi-directional flows in real time, completely replacing the Snort 3's default signature-based (or rule-based) detection approach.
5 |
6 | **Trained classifiers:**
7 | * Gaussian/Bernoulli Naive Bayes;
8 | * Linear Support Vector Machine;
9 | * Decision Tree;
10 | * Random Forest;
11 | * AdaBoost.
12 |
13 | This project was developed for research purposes of my master's thesis.
14 |
--------------------------------------------------------------------------------
/dataset-scripts/.directory:
--------------------------------------------------------------------------------
1 | [Dolphin]
2 | PreviewsShown=false
3 | Timestamp=2019,11,4,19,24,31
4 | Version=4
5 |
--------------------------------------------------------------------------------
/dataset-scripts/dataset-concatenate.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 |
3 | # This script concatenates the content of every .csv in this
4 | # folder to a single file, called 'CIC-IDS-2017.csv'.
5 |
6 | import glob
7 | import subprocess
8 |
9 | if __name__ == '__main__':
10 | print('[*] Attempting to clean any output file previously created by this script...')
11 |
12 | sp = subprocess.Popen(['rm', 'CIC-IDS-2017.csv'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
13 | sp_output, sp_error = sp.communicate()
14 |
15 | if sp.returncode != 0:
16 | print('\t[*] No previous file was removed (Return code: {}).'.format(str(sp.returncode)))
17 | else:
18 | print('\t[*] Successfully removed a previous file (Return code: {}).'.format(str(sp.returncode)))
19 |
20 | input_files = [f for f in glob.glob('./*.csv', recursive=True)]
21 |
22 | print('[*] Creating the output file \'CIC-IDS-2017.csv\'...')
23 |
24 | try:
25 | out_f = open('CIC-IDS-2017.csv', 'w')
26 | except Exception as err:
27 | print('[*] Error! Couldn\'t create the output file.')
28 | print(err)
29 |
30 | for input_file in input_files:
31 | print('[*] Reading \'{}\'...'.format(input_file))
32 |
33 | try:
34 | in_f = open(input_file, 'r')
35 |
36 | for line in in_f:
37 | split_line = line.strip('\n').split(',')
38 | label = split_line[-1].strip()
39 |
40 | if label == 'Label': continue
41 | if label == 'BENIGN':
42 | split_line[-1] = '0'
43 | else:
44 | split_line[-1] = '1'
45 |
46 | new_line = ','.join(split_line)
47 |
48 | out_f.write(new_line + '\n')
49 | except Exception as err:
50 | print('[*] Error! Something went wrong.')
51 | print(err)
52 | finally:
53 | in_f.close()
54 | print('[*] Done!')
55 | out_f.close()
56 |
57 |
--------------------------------------------------------------------------------
/dataset-scripts/dataset-preprocessing.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 |
3 | import glob
4 | import time
5 | import numpy as np
6 |
7 | from sklearn.preprocessing import MinMaxScaler, StandardScaler
8 | from sklearn.model_selection import train_test_split, GridSearchCV
9 | from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, recall_score, accuracy_score
10 |
11 | from sklearn.svm import LinearSVC
12 | from sklearn.tree import DecisionTreeClassifier
13 | from sklearn.naive_bayes import BernoulliNB, GaussianNB, MultinomialNB
14 | from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
15 |
16 | from joblib import dump, load
17 | from imblearn.over_sampling import SMOTE
18 |
19 | if __name__ == '__main__':
20 | joblibs = [f[2:] for f in glob.glob('./*.joblib')]
21 |
22 | print('[*] Joblibs found:')
23 | print(joblibs)
24 | print()
25 |
26 | print('[*] Reading the contents of \'CIC-IDS-2017.csv\' into a numpy array...')
27 | dataset = np.genfromtxt('CIC-IDS-2017.csv', delimiter=',')
28 | filtered_dataset = dataset[~np.isnan(dataset).any(axis=1)]
29 | filtered_dataset = filtered_dataset[np.isfinite(filtered_dataset).all(axis=1)]
30 | print('\t[*] dataset numpy array shape: {}.'.format(str(dataset.shape)))
31 | print('\t[*] filtered_dataset numpy array shape: {}.'.format(str(filtered_dataset.shape)))
32 |
33 | print('[*] Splitting the dataset into \'features\' and \'labels\'...')
34 | dataset_features = filtered_dataset[:,:78]
35 | dataset_labels = filtered_dataset[:,78]
36 | print('\t[*] dataset_features numpy array shape: {}.'.format(str(dataset_features.shape)))
37 | print('\t[*] dataset_labels numpy array shape: {}.'.format(str(dataset_labels.shape)))
38 |
39 | print('[*] Splitting both \'features\' and \'labels\' into training and test sets...')
40 | training_features, test_features, training_labels, test_labels = train_test_split(dataset_features, dataset_labels, test_size=.33, random_state=12)
41 | print('\t[*] training_features numpy array shape: {}.'.format(str(training_features.shape)))
42 | print('\t[*] training_labels numpy array shape: {}.'.format(str(training_labels.shape)))
43 | print('\t[*] test_features numpy array shape: {}.'.format(str(test_features.shape)))
44 | print('\t[*] test_labels numpy array shape: {}.'.format(str(test_labels.shape)))
45 |
46 | print('[*] Applying the Synthetic Minority Over-sampling Technique (SMOTE) algorithm to the training set...')
47 | sm = SMOTE(random_state=12, ratio=1.0)
48 | train_x, train_y = sm.fit_sample(training_features, training_labels)
49 | print('\t[*] train_x numpy array shape: {}.'.format(str(train_x.shape)))
50 | print('\t[*] train_y numpy array shape: {}.'.format(str(train_y.shape)))
51 |
52 | print('[*] Applying the Min Max Scaler algorithm to the training set...')
53 | # Creates a new scaler to fit the training set and transform both training/test sets.
54 | # Default range is (0,1).
55 | scaler = MinMaxScaler()
56 | scaler.fit(train_x)
57 | train_x_adjusted = scaler.transform(train_x)
58 | test_features_adjusted = scaler.transform(test_features)
59 |
60 | # Saves the scaler for later use in the real-time intrusion detection step.
61 | dump(scaler, 'scaler.joblib')
62 |
63 | # Classifiers' names, joblists and constructors.
64 | clf_names = ['Linear SVC', 'AdaBoost', 'Decision Tree', 'Random Forest', 'Bernoulli NB', 'Gaussian NB']
65 | clf_joblibs = ['clf_svc.joblib', 'clf_ab.joblib', 'clf_dt.joblib', 'clf_rf.joblib', 'clf_bnb.joblib', 'clf_gnb.joblib']
66 | clf_constructors = [LinearSVC(dual=False), AdaBoostClassifier(), DecisionTreeClassifier(), RandomForestClassifier(), BernoulliNB(), GaussianNB()]
67 |
68 | # GridSearchCV related
69 | clf_best_estimators = []
70 | clf_parameters = [{'C': [0.1, 1, 10, 100]}, {'n_estimators': [10, 50, 100], 'learning_rate': [0.01, 0.05, 0.1, 1]}, {'max_depth': [None, 3], 'min_samples_split': np.linspace(0.1, 1.0, 10, endpoint=True), 'min_samples_leaf': np.linspace(0.1, 0.5, 5, endpoint=True), 'max_features': [0.1, 0.5, 1.0]}, {'n_estimators': [10, 50, 100], 'max_depth': [None, 3], 'min_samples_split': np.linspace(0.1, 1.0, 10, endpoint=True), 'min_samples_leaf': np.linspace(0.1, 0.5, 5, endpoint=True), 'max_features': [0.1, 0.5, 1.0]}]
71 |
72 | # GridSearchCV Parameters.
73 | # svc_parameters = {'C': [0.1, 1, 10, 100]}
74 | # ab_parameters = {'n_estimators': [10, 50, 100], 'learning_rate': [0.01, 0.05, 0.1, 1]}
75 | # dt_parameters = {'max_depth': [None, 3], 'min_samples_split': np.linspace(0.1, 1.0, 10, endpoint=True), 'min_samples_leaf': np.linspace(0.1, 0.5, 5, endpoint=True), 'max_features': [0.1, 0.5, 1.0]}
76 | # rf_parameters = {'n_estimators': [10, 50, 100], 'max_depth': [None, 3], 'min_samples_split': np.linspace(0.1, 1.0, 10, endpoint=True), 'min_samples_leaf': np.linspace(0.1, 0.5, 5, endpoint=True), 'max_features': [0.1, 0.5, 1.0]}
77 |
78 | results = []
79 | results_gs = []
80 |
81 | print('[*] Running GridSearchCV...')
82 | # GridSearchCV for Linear SVC, AdaBoost, DecisionTree, RandomForest.
83 | for i, clf in enumerate(clf_constructors[:-2]):
84 | print('\t[*] {}...'.format(clf_names[i]))
85 |
86 | start_time = time.time()
87 |
88 | grid = GridSearchCV(clf_constructors[i], clf_parameters[i], n_jobs=-1, verbose=3)
89 | grid.fit(train_x_adjusted, train_y)
90 |
91 | # results_gs consists of [index, best score, best parameters, fit time].
92 | results_gs.append([i, grid.best_score_, grid.best_params_, (time.time() - start_time)])
93 |
94 | clf_best_estimators.append(grid.best_estimator_)
95 |
96 | print('[*] Running fifteen rounds of training for all classifiers...')
97 | for t in range(15):
98 | print('\t[*] Round {}.'.format(t))
99 | print('\t[*] Splitting the dataset...')
100 | training_features, test_features, training_labels, test_labels = train_test_split(dataset_features, dataset_labels, test_size=.33)
101 | print('\t[*] Applying the SMOTE algorithm...')
102 | train_x, train_y = sm.fit_sample(training_features, training_labels)
103 | print('\t[*] Scaling the features...')
104 | scaler.fit(train_x)
105 | train_x_adjusted = scaler.transform(train_x)
106 | test_features_adjusted = scaler.transform(test_features)
107 |
108 | for i, clf in enumerate(clf_constructors):
109 | print('\t\t[*] {}...'.format(clf_names[i]))
110 | if i < 4:
111 | # For Linear SVC, AdaBoost, DecisionTree and RandomForest,
112 | # we load the best estimators according to GridSearchCV.
113 |
114 | clf = clf_best_estimators[i]
115 |
116 | start_time = time.time()
117 | clf.fit(train_x_adjusted, train_y)
118 | fit_time = time.time() - start_time
119 |
120 | start_time = time.time()
121 | predictions = clf.predict(test_features_adjusted)
122 | test_time = time.time() - start_time
123 |
124 | accuracy = accuracy_score(test_labels, predictions)
125 | c_matrix = confusion_matrix(test_labels, predictions)
126 | precision, recall, fscore, support = precision_recall_fscore_support(test_labels, predictions)
127 |
128 | results.append([t, i, clf_names[i], accuracy, precision, recall, fscore, support, c_matrix, fit_time, test_time])
129 |
130 | print('\t\t[*] Accuracy: {}'.format(accuracy))
131 | print('\t\t[*] Result: {}'.format(results[i]))
132 | else:
133 | start_time = time.time()
134 | clf.fit(train_x_adjusted, train_y)
135 | fit_time = time.time() - start_time
136 |
137 | start_time = time.time()
138 | predictions = clf.predict(test_features_adjusted)
139 | test_time = time.time() - start_time
140 |
141 | accuracy = accuracy_score(test_labels, predictions)
142 | c_matrix = confusion_matrix(test_labels, predictions)
143 | precision, recall, fscore, support = precision_recall_fscore_support(test_labels, predictions)
144 |
145 | results.append([t, i, clf_names[i], accuracy, precision, recall, fscore, support, c_matrix, fit_time, test_time])
146 |
147 | print('\t\t[*] Accuracy: {}'.format(accuracy))
148 | print('\t\t[*] Result: {}'.format(results[i]))
149 |
150 | # If it's the last round, we save the classifiers
151 | # for later use in the real-time intrusion detection.
152 | if t == 14:
153 | dump(clf, clf_joblibs[i])
154 |
155 | print('[*] Dumping results/results_gs to .txt files...')
156 | with open('results.txt', 'w') as f:
157 | for item in results:
158 | f.write('%s\n' % item)
159 |
160 | with open('results_gs.txt', 'w') as f:
161 | for item in results_gs:
162 | f.write('%s\n' % item)
163 |
164 | # Extra
165 | print('[*] Extra informations of the test set:')
166 | test_unique, test_counts = np.unique(test_labels, return_counts=True)
167 | print(dict(zip(test_unique, test_counts)))
168 |
169 |
--------------------------------------------------------------------------------
/dataset-scripts/dataset-stats.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 |
3 | # This script reads the CIC IDS 2017's CSV files
4 | # and counts the appearance of each label in the
5 | # dataset.
6 |
7 | import glob
8 |
9 | # Function that exports the labels' count to a
10 | # text file (dataset-label-count.txt).
11 | def exportDictionary(label_dict):
12 | file = open('dataset-stats.txt', 'w')
13 |
14 | # Sums all the labels' count.
15 | totalLabelCount = 0
16 | totalNonBenignCount = 0
17 |
18 | for key, value in label_dict.items():
19 | totalLabelCount += value
20 | if key != 'BENIGN':
21 | totalNonBenignCount += value
22 |
23 | # Displays everything in a nice format.
24 | file.write('Detailed count:\n\n')
25 |
26 | for key, value in label_dict.items():
27 | file.write('{}: {} ({})\n'.format(key, value, str((value / totalLabelCount) * 100)))
28 |
29 | file.write('\nSummary count:\n\n')
30 | file.write('BENIGN: {} ({})\n'.format(label_dict['BENIGN'], str((label_dict['BENIGN'] / totalLabelCount) * 100)))
31 | file.write('NON-BENIGN: {} ({})\n'.format(totalNonBenignCount, str((totalNonBenignCount / totalLabelCount) * 100)))
32 |
33 | file.close()
34 |
35 | if __name__ == '__main__':
36 | # Dictionary used to store and count the appearance
37 | # of each label in the dataset.
38 | label_dict = {}
39 |
40 | # List of .txt/.csv files to read.
41 | # (Ignores the 'CIC-IDS-2017.csv').
42 | input_files = [f for f in glob.glob('./*.csv', recursive=True) if 'CIC-IDS-2017.csv' not in f]
43 |
44 | if input_files:
45 | for input_file in input_files:
46 | print('[*] Reading \'{}\'...'.format(input_file))
47 | try:
48 | file = open(input_file)
49 |
50 | for line in file:
51 | parameters_list = line.strip('\n').split(',')
52 | label = parameters_list[-1].strip()
53 |
54 | if label == 'Label': continue
55 |
56 | if label in label_dict: label_dict[label] += 1
57 | else: label_dict[label] = 1
58 | except Exception as err:
59 | print('[*] Error! Something went wrong.')
60 | print(err)
61 | finally:
62 | file.close()
63 |
64 | # Once every file is read,
65 | # we're ready to export the dictionary.
66 | exportDictionary(label_dict)
67 | print('[*] Done.')
68 | else:
69 | print('[*] Sorry, couldn\'t find any file with the {} extension.'.format(extension))
70 |
--------------------------------------------------------------------------------
/joblibs/clf_ab.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/clf_ab.joblib
--------------------------------------------------------------------------------
/joblibs/clf_bnb.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/clf_bnb.joblib
--------------------------------------------------------------------------------
/joblibs/clf_dt.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/clf_dt.joblib
--------------------------------------------------------------------------------
/joblibs/clf_gnb.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/clf_gnb.joblib
--------------------------------------------------------------------------------
/joblibs/clf_rf.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/clf_rf.joblib
--------------------------------------------------------------------------------
/joblibs/clf_svc.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/clf_svc.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/clf_ab.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/clf_ab.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/clf_bnb.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/clf_bnb.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/clf_dt.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/clf_dt.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/clf_gnb.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/clf_gnb.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/clf_rf.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/clf_rf.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/clf_svc.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/clf_svc.joblib
--------------------------------------------------------------------------------
/joblibs/old-joblibs/scaler.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/old-joblibs/scaler.joblib
--------------------------------------------------------------------------------
/joblibs/scaler.joblib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/joblibs/scaler.joblib
--------------------------------------------------------------------------------
/jupyter-notebooks/.directory:
--------------------------------------------------------------------------------
1 | [Dolphin]
2 | Timestamp=2019,12,7,18,31,37
3 | Version=4
4 | ViewMode=1
5 |
--------------------------------------------------------------------------------
/jupyter-notebooks/.ipynb_checkpoints/formatter-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 2
6 | }
7 |
--------------------------------------------------------------------------------
/jupyter-notebooks/AdaBoost.csv:
--------------------------------------------------------------------------------
1 | 0.9874389198456922, 0.94634743, 0.99228297, 0.96877098, 2170.4828226566315, 8.368554830551147
2 | 0.9875160737248179, 0.94822799, 0.99068203, 0.96899023, 2021.4549748897552, 8.379628419876099
3 | 0.9888491213030433, 0.95269072, 0.99259574, 0.97223393, 1183.9737057685852, 8.326764583587646
4 | 0.9868259751393056, 0.94553405, 0.99025397, 0.96737746, 1351.4775865077972, 8.26123571395874
5 | 0.9861444492070296, 0.93920794, 0.99375655, 0.96571256, 1039.438570022583, 8.261409521102905
6 | 0.9878911273039006, 0.9482926, 0.99272972, 0.9700025, 1033.9353158473969, 8.277140855789185
7 | 0.9879554222031719, 0.94852758, 0.99279426, 0.97015623, 1030.2138278484344, 8.251977443695068
8 | 0.9871581654522075, 0.94407479, 0.99360168, 0.96820529, 1057.754732131958, 8.27647852897644
9 | 0.988953064723532, 0.95331044, 0.99251864, 0.97251952, 1044.905187368393, 8.272042751312256
10 | 0.9882447492498928, 0.94917847, 0.99345444, 0.97081189, 1037.5659914016724, 8.253598690032959
11 | 0.9879232747535363, 0.94999111, 0.99069095, 0.96991425, 1372.2912945747375, 8.263375759124756
12 | 0.9875192884697814, 0.94919483, 0.98946135, 0.96890991, 1352.4101054668427, 8.286378622055054
13 | 0.98924882126018, 0.95450091, 0.99264329, 0.97319852, 1029.670860528946, 8.267982721328735
14 | 0.988421560222889, 0.9533663, 0.98976895, 0.97122664, 1189.5021209716797, 8.284527778625488
15 | 0.9895970852978997, 0.95675324, 0.99198598, 0.97405111, 1037.7235596179962, 8.359991788864136
16 |
--------------------------------------------------------------------------------
/jupyter-notebooks/Bernoulli NB.csv:
--------------------------------------------------------------------------------
1 | 0.6659858551221604, 0.34780878, 0.80117447, 0.48504713, 2.096623659133911, 0.5233948230743408
2 | 0.665899057008144, 0.34849001, 0.80153594, 0.48577559, 2.1381096839904785, 0.5739712715148926
3 | 0.6654629232747535, 0.3477979, 0.80082596, 0.48497266, 2.4364984035491943, 0.529186487197876
4 | 0.6661733819117017, 0.34902415, 0.80033139, 0.48607237, 2.2666473388671875, 0.5278220176696777
5 | 0.6662998285469353, 0.348026, 0.80097909, 0.48522248, 2.446922779083252, 0.5214099884033203
6 | 0.6659783540505787, 0.34896893, 0.8014584, 0.48622642, 2.2786309719085693, 0.5249361991882324
7 | 0.6661208744106301, 0.34909544, 0.80176611, 0.48640585, 1.9353320598602295, 0.5233690738677979
8 | 0.6660640805829404, 0.34853359, 0.80184816, 0.48587526, 2.298161506652832, 0.5705170631408691
9 | 0.6669599228461208, 0.34933793, 0.80113173, 0.48652426, 2.431907892227173, 0.5227527618408203
10 | 0.6657522503214744, 0.34802923, 0.79990851, 0.48502899, 2.2881264686584473, 0.5196497440338135
11 | 0.6653332618945563, 0.34744285, 0.80072531, 0.48460895, 2.4275100231170654, 0.5212483406066895
12 | 0.6664991427346764, 0.34848021, 0.8012594, 0.48571528, 2.2822823524475098, 0.5224814414978027
13 | 0.6661219459922846, 0.3482361, 0.80069861, 0.48537512, 2.0796308517456055, 0.5262131690979004
14 | 0.6661326618088298, 0.34928241, 0.80074684, 0.48639943, 2.1042163372039795, 0.5246832370758057
15 | 0.6656911701671667, 0.34819525, 0.8010758, 0.4854047, 2.081385850906372, 0.5245161056518555
16 |
--------------------------------------------------------------------------------
/jupyter-notebooks/Decision Tree.csv:
--------------------------------------------------------------------------------
1 | 0.9261605229318474, 0.73061654, 0.98834258, 0.84015894, 44.56497287750244, 0.12401485443115234
2 | 0.9260490784397771, 0.73078966, 0.98855936, 0.84035173, 38.674792528152466, 0.12355828285217285
3 | 0.9260726532361766, 0.73072678, 0.98832426, 0.8402252, 35.07924032211304, 0.12334680557250977
4 | 0.9260105015002144, 0.73102631, 0.98866766, 0.84054731, 29.95108413696289, 0.12130856513977051
5 | 0.92587441063009, 0.7298222, 0.98836994, 0.83964337, 29.447593688964844, 0.12233114242553711
6 | 0.9261937419631376, 0.73161441, 0.98829583, 0.8408014, 30.155953645706177, 0.12353777885437012
7 | 0.9263984140591514, 0.73212122, 0.98840343, 0.84117496, 29.897309064865112, 0.11911535263061523
8 | 0.9263426918131161, 0.73138061, 0.98890232, 0.84086631, 30.665919065475464, 0.1221456527709961
9 | 0.9262708958422632, 0.73148499, 0.98849774, 0.84078897, 30.510152578353882, 0.12217044830322266
10 | 0.9261648092584654, 0.73098217, 0.98861879, 0.84050047, 30.580723762512207, 0.12112069129943848
11 | 0.9261262323189027, 0.73060259, 0.98855865, 0.84022777, 29.631062507629395, 0.1201019287109375
12 | 0.9264509215602229, 0.73154633, 0.98857267, 0.8408566, 29.609118461608887, 0.12054562568664551
13 | 0.9259676382340334, 0.73035373, 0.98845269, 0.84002492, 29.696049213409424, 0.12069129943847656
14 | 0.9263009001285898, 0.73202452, 0.98861829, 0.84118891, 29.41314196586609, 0.1203773021697998
15 | 0.9263641234462066, 0.73169493, 0.98827296, 0.84084629, 29.930074453353882, 0.12349128723144531
16 |
--------------------------------------------------------------------------------
/jupyter-notebooks/Gaussian NB.csv:
--------------------------------------------------------------------------------
1 | 0.4732972567509644, 0.26961592, 0.98451135, 0.42330621, 2.496795654296875, 0.7585709095001221
2 | 0.457038148306901, 0.26377753, 0.98141849, 0.41579983, 2.585611581802368, 0.7920031547546387
3 | 0.4306161594513502, 0.25455734, 0.98266346, 0.40436468, 3.14081072807312, 0.7507762908935547
4 | 0.4422428204029147, 0.25888009, 0.98113269, 0.40966629, 2.956317186355591, 0.8061532974243164
5 | 0.44031397342477496, 0.25779372, 0.98478432, 0.40862014, 3.144662857055664, 0.7535772323608398
6 | 0.5076371624517788, 0.28362489, 0.98089515, 0.44001877, 3.007310152053833, 0.8049867153167725
7 | 0.4357651093013288, 0.25690277, 0.98352353, 0.40739207, 2.45505428314209, 0.7455010414123535
8 | 0.44290934419202743, 0.25912776, 0.98484551, 0.41029951, 3.0701005458831787, 0.9877808094024658
9 | 0.48655057865409346, 0.2748076, 0.98056478, 0.42930155, 3.099947690963745, 0.7558448314666748
10 | 0.444683883411916, 0.25930834, 0.98146333, 0.4102312, 3.0286731719970703, 0.8023295402526855
11 | 0.4247524646378054, 0.25328797, 0.98945302, 0.40332869, 3.098311185836792, 0.7614588737487793
12 | 0.47161273039005575, 0.26878594, 0.98133246, 0.42198942, 2.9440484046936035, 0.8076584339141846
13 | 0.4436519502786112, 0.25894622, 0.98251283, 0.40986931, 2.395132541656494, 0.7494006156921387
14 | 0.4571549507072439, 0.26454553, 0.98284874, 0.41688221, 2.4253673553466797, 0.7559788227081299
15 | 0.4547321045863695, 0.26288379, 0.98134235, 0.41468184, 2.4351279735565186, 0.8076331615447998
16 |
--------------------------------------------------------------------------------
/jupyter-notebooks/Linear SVC.csv:
--------------------------------------------------------------------------------
1 | 0.9112751821688813, 0.70039387, 0.95786739, 0.80914204, 411.7389039993286, 0.08142900466918945
2 | 0.9122813973424775, 0.70373259, 0.95761194, 0.81127391, 548.8340351581573, 0.07720232009887695
3 | 0.9120735105015002, 0.70298812, 0.9574868, 0.81073413, 699.7636241912842, 0.08191847801208496
4 | 0.911533433347621, 0.7024271, 0.95686541, 0.81013828, 369.1318430900574, 0.07701587677001953
5 | 0.9115055722246035, 0.70116845, 0.95728366, 0.80945008, 569.7234733104706, 0.07672691345214844
6 | 0.9116834547792542, 0.70255617, 0.95759005, 0.81048379, 296.09825348854065, 0.07705140113830566
7 | 0.9119824260608659, 0.70311727, 0.95825997, 0.81109711, 357.66516947746277, 0.07636523246765137
8 | 0.9116063009001286, 0.7016824, 0.95818495, 0.81011475, 316.24880743026733, 0.07690143585205078
9 | 0.9116598799828547, 0.70220942, 0.95750585, 0.81022286, 350.92709827423096, 0.07699728012084961
10 | 0.9118313330475782, 0.70260783, 0.95702368, 0.81031522, 515.4708218574524, 0.07662487030029297
11 | 0.9113994856408059, 0.70106234, 0.957294, 0.80938307, 493.23327445983887, 0.08440446853637695
12 | 0.9113962708958423, 0.70093711, 0.95790535, 0.809518, 465.1130328178406, 0.08160400390625
13 | 0.9115623660522932, 0.7015666, 0.95760902, 0.8098317, 444.4584126472473, 0.0774388313293457
14 | 0.911531290184312, 0.70245614, 0.95745836, 0.81037005, 388.62764835357666, 0.0774238109588623
15 | 0.9115720102871839, 0.70182236, 0.9575616, 0.8099851, 345.0412871837616, 0.08224225044250488
16 |
--------------------------------------------------------------------------------
/jupyter-notebooks/Random Forest.csv:
--------------------------------------------------------------------------------
1 | 0.9386980282897557, 0.77710737, 0.96440013, 0.86068243, 1458.4946258068085, 4.42433762550354
2 | 0.9289723531933133, 0.74529043, 0.97113171, 0.84335333, 1260.5495026111603, 4.42354154586792
3 | 0.9386680240034291, 0.77742684, 0.96421547, 0.86080475, 861.8964004516602, 4.361448526382446
4 | 0.9386487355336477, 0.77785762, 0.96437865, 0.86113382, 730.3741946220398, 4.355270624160767
5 | 0.938300471495928, 0.77646888, 0.96299227, 0.85973007, 738.3053982257843, 4.3427574634552
6 | 0.926430561508787, 0.74072019, 0.96459408, 0.83796203, 732.3003907203674, 4.344332695007324
7 | 0.9298328332618946, 0.74874306, 0.96950875, 0.84494362, 728.4759392738342, 4.343808174133301
8 | 0.9395992284612087, 0.78031151, 0.96465406, 0.86274558, 754.4640500545502, 4.364483594894409
9 | 0.9391513073296185, 0.77908009, 0.96455193, 0.8619516, 733.7280304431915, 4.340607166290283
10 | 0.9286808829832833, 0.74540653, 0.96829053, 0.84235435, 733.6966254711151, 4.337875604629517
11 | 0.9274603514787827, 0.74266403, 0.96532148, 0.83947965, 905.353193283081, 4.391338348388672
12 | 0.9388201885983712, 0.7777724, 0.96423509, 0.86102436, 897.5508694648743, 4.378940582275391
13 | 0.9250096442348907, 0.73384362, 0.9707094, 0.835819, 728.3350808620453, 4.346201181411743
14 | 0.939103086155165, 0.77940441, 0.96455225, 0.86215018, 731.6788067817688, 4.344741106033325
15 | 0.9388769824260609, 0.77847461, 0.96368645, 0.86123545, 721.5761070251465, 4.362285375595093
16 |
--------------------------------------------------------------------------------
/jupyter-notebooks/formatter.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 7,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import re\n",
10 | "import ast\n",
11 | "import numpy as np"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 8,
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "# This script fixes the formatting of the results.txt file, created after 30+ hours of training.\n",
21 | "# It basically creates .csv files for each machine learning technique with useful informations. \n",
22 | "\n",
23 | "# Dictionary used to store the results of each machine learning technique.\n",
24 | "results_dict = {'Linear SVC': [], 'AdaBoost': [], 'Decision Tree': [], 'Random Forest': [], 'Bernoulli NB': [], 'Gaussian NB': []}\n",
25 | "\n",
26 | "with open('results.txt', 'r') as f:\n",
27 | " for line in f:\n",
28 | " # Removes the newline character.\n",
29 | " line = line.strip('\\n')\n",
30 | " \n",
31 | " # Adjusts the precision, recall and f-score arrays.\n",
32 | " # e.g. array([0.98869048, 0.70039387]), array([0.89989186, 0.95786739]), array([0.94220358, 0.80914204])\n",
33 | " # => 0.98869048, 0.70039387, 0.89989186, 0.95786739, 0.94220358, 0.80914204.\n",
34 | " res_line = re.sub(r\"array\\(\\[(\\d\\.\\d+)\\s*,\\s*(\\d\\.\\d+)\\s*\\]\\)\", \"\\g<1>, \\g<2>\", line)\n",
35 | " \n",
36 | " # Adjusts the support array.\n",
37 | " # e.g. array([749969, 183231]) => 749969, 183231.\n",
38 | " res_line = re.sub(r\"array\\(\\[(\\d+)\\s*,\\s*(\\d+)\\]\\)\", \"\\g<1>, \\g<2>\", res_line)\n",
39 | " \n",
40 | " # Adjusts the confusion matrix array.\n",
41 | " # e.g. array([[674891, 75078], [ 7720, 175511]]) => 674891, 75078, 7720, 175511.\n",
42 | " res_line = re.sub(r\"array\\(\\[\\[(\\d+)\\s*,\\s*(\\d+)\\]\\s*,\\s*\\[\\s+(\\d+),\\s+(\\d+)\\]\\]\\)\", \"\\g<1>, \\g<2>, \\g<3>, \\g<4>\", res_line)\n",
43 | " \n",
44 | " # Replaces the ' by \".\n",
45 | " res_line = res_line.replace('\\'', '\\\"')\n",
46 | " \n",
47 | " # Converts the string representation of an array to a literal array.\n",
48 | " res_array = ast.literal_eval(res_line)\n",
49 | " \n",
50 | " # Accuracy.\n",
51 | " acc = res_array[3]\n",
52 | " \n",
53 | " # Precision.\n",
54 | " pre_normal = res_array[4]\n",
55 | " pre_attack = res_array[5]\n",
56 | " \n",
57 | " # Recall.\n",
58 | " rec_normal = res_array[6]\n",
59 | " rec_attack = res_array[7]\n",
60 | " \n",
61 | " # F-Score.\n",
62 | " fsc_normal = res_array[8]\n",
63 | " fsc_attack = res_array[9]\n",
64 | " \n",
65 | " # Support.\n",
66 | " sup_normal = res_array[10]\n",
67 | " sup_attack = res_array[11]\n",
68 | " \n",
69 | " # Fit and test times.\n",
70 | " fit_time = res_array[16]\n",
71 | " tst_time = res_array[17]\n",
72 | " \n",
73 | " # Weighted precision, recall and f-score.\n",
74 | " # UPDATE: I'm not using the weighted version of these metrics anymore.\n",
75 | " # Instead, I'm analyzing the classifers based on the metrics obtained in the minority class (attacks).\n",
76 | " # pre_weighted = (pre_normal * sup_normal + pre_attack * sup_attack) / (sup_normal + sup_attack)\n",
77 | " # rec_weighted = (rec_normal * sup_normal + rec_attack * sup_attack) / (sup_normal + sup_attack)\n",
78 | " # fsc_weighted = (fsc_normal * sup_normal + fsc_attack * sup_attack) / (sup_normal + sup_attack)\n",
79 | " \n",
80 | " # Dump the results to results_dict.\n",
81 | " results_dict[res_array[2]].append([acc, pre_attack, rec_attack, fsc_attack, fit_time, tst_time])\n",
82 | " \n",
83 | "# Creates the .csv files.\n",
84 | "for key, values in results_dict.items():\n",
85 | " with open(key + '.csv', 'w') as f:\n",
86 | " for value in values:\n",
87 | " value = [str(x) for x in value]\n",
88 | " csv_value = ', '.join(value)\n",
89 | " f.write(csv_value + '\\n')\n",
90 | " "
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": null,
96 | "metadata": {},
97 | "outputs": [],
98 | "source": []
99 | }
100 | ],
101 | "metadata": {
102 | "kernelspec": {
103 | "display_name": "Python 3",
104 | "language": "python",
105 | "name": "python3"
106 | },
107 | "language_info": {
108 | "codemirror_mode": {
109 | "name": "ipython",
110 | "version": 3
111 | },
112 | "file_extension": ".py",
113 | "mimetype": "text/x-python",
114 | "name": "python",
115 | "nbconvert_exporter": "python",
116 | "pygments_lexer": "ipython3",
117 | "version": "3.7.4"
118 | }
119 | },
120 | "nbformat": 4,
121 | "nbformat_minor": 2
122 | }
123 |
--------------------------------------------------------------------------------
/jupyter-notebooks/results.txt:
--------------------------------------------------------------------------------
1 | [0, 0, 'Linear SVC', 0.9112751821688813, array([0.98869048, 0.70039387]), array([0.89989186, 0.95786739]), array([0.94220358, 0.80914204]), array([749969, 183231]), array([[674891, 75078], [ 7720, 175511]]), 411.7389039993286, 0.08142900466918945]
2 | [0, 1, 'AdaBoost', 0.9874389198456922, array([0.99809196, 0.94634743]), array([0.98625543, 0.99228297]), array([0.99213839, 0.96877098]), array([749969, 183231]), array([[739661, 10308], [ 1414, 181817]]), 2170.4828226566315, 8.368554830551147]
3 | [0, 2, 'Decision Tree', 0.9261605229318474, array([0.99688327, 0.73061654]), array([0.91096832, 0.98834258]), array([0.95199132, 0.84015894]), array([749969, 183231]), array([[683198, 66771], [ 2136, 181095]]), 44.56497287750244, 0.12401485443115234]
4 | [0, 3, 'Random Forest', 0.9386980282897557, array([0.99075811, 0.77710737]), array([0.93241854, 0.96440013]), array([0.96070346, 0.86068243]), array([749969, 183231]), array([[699285, 50684], [ 6523, 176708]]), 1458.4946258068085, 4.42433762550354]
5 | [0, 4, 'Bernoulli NB', 0.6659858551221604, array([0.92872445, 0.34780878]), array([0.63295683, 0.80117447]), array([0.75283285, 0.48504713]), array([749969, 183231]), array([[474698, 275271], [ 36431, 146800]]), 2.096623659133911, 0.5233948230743408]
6 | [0, 5, 'Gaussian NB', 0.4732972567509644, array([0.98925513, 0.26961592]), array([0.3483984 , 0.98451135]), array([0.51531267, 0.42330621]), array([749969, 183231]), array([[261288, 488681], [ 2838, 180393]]), 2.496795654296875, 0.7585709095001221]
7 | [1, 0, 'Linear SVC', 0.9122813973424775, array([0.98860047, 0.70373259]), array([0.90116869, 0.95761194]), array([0.94286203, 0.81127391]), array([749469, 183731]), array([[675398, 74071], [ 7788, 175943]]), 548.8340351581573, 0.07720232009887695]
8 | [1, 1, 'AdaBoost', 0.9875160737248179, array([0.99769037, 0.94822799]), array([0.98673995, 0.99068203]), array([0.99218494, 0.96899023]), array([749469, 183731]), array([[739531, 9938], [ 1712, 182019]]), 2021.4549748897552, 8.379628419876099]
9 | [1, 2, 'Decision Tree', 0.9260490784397771, array([0.99692987, 0.73078966]), array([0.91072479, 0.98855936]), array([0.95187957, 0.84035173]), array([749469, 183731]), array([[682560, 66909], [ 2102, 181629]]), 38.674792528152466, 0.12355828285217285]
10 | [1, 3, 'Random Forest', 0.9289723531933133, array([0.99235508, 0.74529043]), array([0.91863706, 0.97113171]), array([0.95407421, 0.84335333]), array([749469, 183731]), array([[688490, 60979], [ 5304, 178427]]), 1260.5495026111603, 4.42354154586792]
11 | [1, 4, 'Bernoulli NB', 0.665899057008144, array([0.92858794, 0.34849001]), array([0.63264791, 0.80153594]), array([0.75256947, 0.48577559]), array([749469, 183731]), array([[474150, 275319], [ 36464, 147267]]), 2.1381096839904785, 0.5739712715148926]
12 | [1, 5, 'Gaussian NB', 0.457038148306901, array([0.98632239, 0.26377753]), array([0.32848724, 0.98141849]), array([0.49283837, 0.41579983]), array([749469, 183731]), array([[246191, 503278], [ 3414, 180317]]), 2.585611581802368, 0.7920031547546387]
13 | [2, 0, 'Linear SVC', 0.9120735105015002, array([0.98857891, 0.70298812]), array([0.9009547, 0.9574868]), array([0.94273509, 0.81073413]), array([749657, 183543]), array([[675407, 74250], [ 7803, 175740]]), 699.7636241912842, 0.08191847801208496]
14 | [2, 1, 'AdaBoost', 0.9888491213030433, array([0.99816839, 0.95269072]), array([0.98793181, 0.99259574]), array([0.99302372, 0.97223393]), array([749657, 183543]), array([[740610, 9047], [ 1359, 182184]]), 1183.9737057685852, 8.326764583587646]
15 | [2, 2, 'Decision Tree', 0.9260726532361766, array([0.99687132, 0.73072678]), array([0.91083122, 0.98832426]), array([0.95191101, 0.8402252 ]), array([749657, 183543]), array([[682811, 66846], [ 2143, 181400]]), 35.07924032211304, 0.12334680557250977]
16 | [2, 3, 'Random Forest', 0.9386680240034291, array([0.99069106, 0.77742684]), array([0.93241309, 0.96421547]), array([0.96066904, 0.86080475]), array([749657, 183543]), array([[698990, 50667], [ 6568, 176975]]), 861.8964004516602, 4.361448526382446]
17 | [2, 4, 'Bernoulli NB', 0.6654629232747535, array([0.92840117, 0.3477979 ]), array([0.63232118, 0.80082596]), array([0.75227695, 0.48497266]), array([749657, 183543]), array([[474024, 275633], [ 36557, 146986]]), 2.4364984035491943, 0.529186487197876]
18 | [2, 5, 'Gaussian NB', 0.4306161594513502, array([0.98583713, 0.25455734]), array([0.29545512, 0.98266346]), array([0.45465135, 0.40436468]), array([749657, 183543]), array([[221490, 528167], [ 3182, 180361]]), 3.14081072807312, 0.7507762908935547]
19 | [3, 0, 'Linear SVC', 0.911533433347621, array([0.98836541, 0.7024271 ]), array([0.90039446, 0.95686541]), array([0.94233127, 0.81013828]), array([749125, 184075]), array([[674508, 74617], [ 7940, 176135]]), 369.1318430900574, 0.07701587677001953]
20 | [3, 1, 'AdaBoost', 0.9868259751393056, array([0.99757705, 0.94553405]), array([0.98598365, 0.99025397]), array([0.99174647, 0.96737746]), array([749125, 184075]), array([[738625, 10500], [ 1794, 182281]]), 1351.4775865077972, 8.26123571395874]
21 | [3, 2, 'Decision Tree', 0.9260105015002144, array([0.99695141, 0.73102631]), array([0.91061438, 0.98866766]), array([0.95182907, 0.84054731]), array([749125, 184075]), array([[682164, 66961], [ 2086, 181989]]), 29.95108413696289, 0.12130856513977051]
22 | [3, 3, 'Random Forest', 0.9386487355336477, array([0.99069911, 0.77785762]), array([0.93232638, 0.96437865]), array([0.9606268 , 0.86113382]), array([749125, 184075]), array([[698429, 50696], [ 6557, 177518]]), 730.3741946220398, 4.355270624160767]
23 | [3, 4, 'Bernoulli NB', 0.6661733819117017, array([0.92808928, 0.34902415]), array([0.63320808, 0.80033139]), array([0.75280167, 0.48607237]), array([749125, 184075]), array([[474352, 274773], [ 36754, 147321]]), 2.2666473388671875, 0.5278220176696777]
24 | [3, 5, 'Gaussian NB', 0.4422428204029147, array([0.98525716, 0.25888009]), array([0.3098268 , 0.98113269]), array([0.47141202, 0.40966629]), array([749125, 184075]), array([[232099, 517026], [ 3473, 180602]]), 2.956317186355591, 0.8061532974243164]
25 | [4, 0, 'Linear SVC', 0.9115055722246035, array([0.98854092, 0.70116845]), array([0.90032108, 0.95728366]), array([0.94237083, 0.80945008]), array([749968, 183232]), array([[675212, 74756], [ 7827, 175405]]), 569.7234733104706, 0.07672691345214844]
26 | [4, 1, 'AdaBoost', 0.9861444492070296, array([0.99845264, 0.93920794]), array([0.98428466, 0.99375655]), array([0.99131803, 0.96571256]), array([749968, 183232]), array([[738182, 11786], [ 1144, 182088]]), 1039.438570022583, 8.261409521102905]
27 | [4, 2, 'Decision Tree', 0.92587441063009, array([0.99688931, 0.7298222 ]), array([0.91060552, 0.98836994]), array([0.95179593, 0.83964337]), array([749968, 183232]), array([[682925, 67043], [ 2131, 181101]]), 29.447593688964844, 0.12233114242553711]
28 | [4, 3, 'Random Forest', 0.938300471495928, array([0.99039453, 0.77646888]), array([0.93226778, 0.96299227]), array([0.9604525 , 0.85973007]), array([749968, 183232]), array([[699171, 50797], [ 6781, 176451]]), 738.3053982257843, 4.3427574634552]
29 | [4, 4, 'Bernoulli NB', 0.6662998285469353, array([0.92870479, 0.348026 ]), array([0.63339502, 0.80097909]), array([0.75313624, 0.48522248]), array([749968, 183232]), array([[475026, 274942], [ 36467, 146765]]), 2.446922779083252, 0.5214099884033203]
30 | [4, 5, 'Gaussian NB', 0.44031397342477496, array([0.9880469 , 0.25779372]), array([0.30728911, 0.98478432]), array([0.46878347, 0.40862014]), array([749968, 183232]), array([[230457, 519511], [ 2788, 180444]]), 3.144662857055664, 0.7535772323608398]
31 | [5, 0, 'Linear SVC', 0.9116834547792542, array([0.98856169, 0.70255617]), array([0.90040619, 0.95759005]), array([0.94242689, 0.81048379]), array([749163, 184037]), array([[674551, 74612], [ 7805, 176232]]), 296.09825348854065, 0.07705140113830566]
32 | [5, 1, 'AdaBoost', 0.9878911273039006, array([0.99819321, 0.9482926 ]), array([0.98670249, 0.99272972]), array([0.99241459, 0.9700025 ]), array([749163, 184037]), array([[739201, 9962], [ 1338, 182699]]), 1033.9353158473969, 8.277140855789185]
33 | [5, 2, 'Decision Tree', 0.9261937419631376, array([0.99685361, 0.73161441]), array([0.91093794, 0.98829583]), array([0.95196121, 0.8408014 ]), array([749163, 184037]), array([[682441, 66722], [ 2154, 181883]]), 30.155953645706177, 0.12353777885437012]
34 | [5, 3, 'Random Forest', 0.926430561508787, array([0.99060472, 0.74072019]), array([0.91705543, 0.96459408]), array([0.95241224, 0.83796203]), array([749163, 184037]), array([[687024, 62139], [ 6516, 177521]]), 732.3003907203674, 4.344332695007324]
35 | [5, 4, 'Bernoulli NB', 0.6659783540505787, array([0.92842956, 0.34896893]), array([0.63269676, 0.8014584 ]), array([0.75255201, 0.48622642]), array([749163, 184037]), array([[473993, 275170], [ 36539, 147498]]), 2.2786309719085693, 0.5249361991882324]
36 | [5, 5, 'Gaussian NB', 0.5076371624517788, array([0.98815052, 0.28362489]), array([0.39137811, 0.98089515]), array([0.56068497, 0.44001877]), array([749163, 184037]), array([[293206, 455957], [ 3516, 180521]]), 3.007310152053833, 0.8049867153167725]
37 | [6, 0, 'Linear SVC', 0.9119824260608659, array([0.9887442 , 0.70311727]), array([0.90061534, 0.95825997]), array([0.94262439, 0.81109711]), array([749180, 184020]), array([[674723, 74457], [ 7681, 176339]]), 357.66516947746277, 0.07636523246765137]
38 | [6, 1, 'AdaBoost', 0.9879554222031719, array([0.99820954, 0.94852758]), array([0.98676687, 0.99279426]), array([0.99245522, 0.97015623]), array([749180, 184020]), array([[739266, 9914], [ 1326, 182694]]), 1030.2138278484344, 8.251977443695068]
39 | [6, 2, 'Decision Tree', 0.9263984140591514, array([0.99688359, 0.73212122]), array([0.91116821, 0.98840343]), array([0.95210061, 0.84117496]), array([749180, 184020]), array([[682629, 66551], [ 2134, 181886]]), 29.897309064865112, 0.11911535263061523]
40 | [6, 3, 'Random Forest', 0.9298328332618946, array([0.99192571, 0.74874306]), array([0.9200873 , 0.96950875]), array([0.95465694, 0.84494362]), array([749180, 184020]), array([[689311, 59869], [ 5611, 178409]]), 728.4759392738342, 4.343808174133301]
41 | [6, 4, 'Bernoulli NB', 0.6661208744106301, array([0.92855128, 0.34909544]), array([0.63280253, 0.80176611]), array([0.75266682, 0.48640585]), array([749180, 184020]), array([[474083, 275097], [ 36479, 147541]]), 1.9353320598602295, 0.5233690738677979]
42 | [6, 5, 'Gaussian NB', 0.4357651093013288, array([0.98674246, 0.25690277]), array([0.30122 , 0.98352353]), array([0.46154538, 0.40739207]), array([749180, 184020]), array([[225668, 523512], [ 3032, 180988]]), 2.45505428314209, 0.7455010414123535]
43 | [7, 0, 'Linear SVC', 0.9116063009001286, array([0.98874751, 0.7016824 ]), array([0.90019451, 0.95818495]), array([0.94239535, 0.81011475]), array([749558, 183642]), array([[674748, 74810], [ 7679, 175963]]), 316.24880743026733, 0.07690143585205078]
44 | [7, 1, 'AdaBoost', 0.9871581654522075, array([0.998412 , 0.94407479]), array([0.9855795 , 0.99360168]), array([0.99195425, 0.96820529]), array([749558, 183642]), array([[738749, 10809], [ 1175, 182467]]), 1057.754732131958, 8.27647852897644]
45 | [7, 2, 'Decision Tree', 0.9263426918131161, array([0.99702437, 0.73138061]), array([0.91101556, 0.98890232]), array([0.95208145, 0.84086631]), array([749558, 183642]), array([[682859, 66699], [ 2038, 181604]]), 30.665919065475464, 0.1221456527709961]
46 | [7, 3, 'Random Forest', 0.9395992284612087, array([0.99080821, 0.78031151]), array([0.93346079, 0.96465406]), array([0.96127996, 0.86274558]), array([749558, 183642]), array([[699683, 49875], [ 6491, 177151]]), 754.4640500545502, 4.364483594894409]
47 | [7, 4, 'Bernoulli NB', 0.6660640805829404, array([0.92874779, 0.34853359]), array([0.63279693, 0.80184816]), array([0.7527274 , 0.48587526]), array([749558, 183642]), array([[474318, 275240], [ 36389, 147253]]), 2.298161506652832, 0.5705170631408691]
48 | [7, 5, 'Gaussian NB', 0.44290934419202743, array([0.98816988, 0.25912776]), array([0.31013477, 0.98484551]), array([0.47210158, 0.41029951]), array([749558, 183642]), array([[232464, 517094], [ 2783, 180859]]), 3.0701005458831787, 0.9877808094024658]
49 | [8, 0, 'Linear SVC', 0.9116598799828547, array([0.9885583 , 0.70220942]), array([0.90041633, 0.95750585]), array([0.94243091, 0.81022286]), array([749410, 183790]), array([[674781, 74629], [ 7810, 175980]]), 350.92709827423096, 0.07699728012084961]
50 | [8, 1, 'AdaBoost', 0.988953064723532, array([0.99814653, 0.95331044]), array([0.98807862, 0.99251864]), array([0.99308706, 0.97251952]), array([749410, 183790]), array([[740476, 8934], [ 1375, 182415]]), 1044.905187368393, 8.272042751312256]
51 | [8, 2, 'Decision Tree', 0.9262708958422632, array([0.99691312, 0.73148499]), array([0.91100999, 0.98849774]), array([0.95202769, 0.84078897]), array([749410, 183790]), array([[682720, 66690], [ 2114, 181676]]), 30.510152578353882, 0.12217044830322266]
52 | [8, 3, 'Random Forest', 0.9391513073296185, array([0.99076746, 0.77908009]), array([0.9329219 , 0.96455193]), array([0.96097497, 0.8619516 ]), array([749410, 183790]), array([[699141, 50269], [ 6515, 177275]]), 733.7280304431915, 4.340607166290283]
53 | [8, 4, 'Bernoulli NB', 0.6669599228461208, array([0.9285738 , 0.34933793]), array([0.63405479, 0.80113173]), array([0.75355932, 0.48652426]), array([749410, 183790]), array([[475167, 274243], [ 36550, 147240]]), 2.431907892227173, 0.5227527618408203]
54 | [8, 5, 'Gaussian NB', 0.48655057865409346, array([0.98712343, 0.2748076 ]), array([0.36539544, 0.98056478]), array([0.53336099, 0.42930155]), array([749410, 183790]), array([[273831, 475579], [ 3572, 180218]]), 3.099947690963745, 0.7558448314666748]
55 | [9, 0, 'Linear SVC', 0.9118313330475782, array([0.98844626, 0.70260783]), array([0.90075964, 0.95702368]), array([0.94256798, 0.81031522]), array([749564, 183636]), array([[675177, 74387], [ 7892, 175744]]), 515.4708218574524, 0.07662487030029297]
56 | [9, 1, 'AdaBoost', 0.9882447492498928, array([0.99837786, 0.94917847]), array([0.98696842, 0.99345444]), array([0.99264036, 0.97081189]), array([749564, 183636]), array([[739796, 9768], [ 1202, 182434]]), 1037.5659914016724, 8.253598690032959]
57 | [9, 2, 'Decision Tree', 0.9261648092584654, array([0.9969482 , 0.73098217]), array([0.91086418, 0.98861879]), array([0.95196405, 0.84050047]), array([749564, 183636]), array([[682751, 66813], [ 2090, 181546]]), 30.580723762512207, 0.12112069129943848]
58 | [9, 3, 'Random Forest', 0.9286808829832833, array([0.99161742, 0.74540653]), array([0.9189769 , 0.96829053]), array([0.95391627, 0.84235435]), array([749564, 183636]), array([[688832, 60732], [ 5823, 177813]]), 733.6966254711151, 4.337875604629517]
59 | [9, 4, 'Bernoulli NB', 0.6657522503214744, array([0.9281125 , 0.34802923]), array([0.63288525, 0.79990851]), array([0.75258111, 0.48502899]), array([749564, 183636]), array([[474388, 275176], [ 36744, 146892]]), 2.2881264686584473, 0.5196497440338135]
60 | [9, 5, 'Gaussian NB', 0.444683883411916, array([0.98570655, 0.25930834]), array([0.31317806, 0.98146333]), array([0.47533347, 0.4102312 ]), array([749564, 183636]), array([[234747, 514817], [ 3404, 180232]]), 3.0286731719970703, 0.8023295402526855]
61 | [10, 0, 'Linear SVC', 0.9113994856408059, array([0.98853122, 0.70106234]), array([0.90017604, 0.957294 ]), array([0.94228697, 0.80938307]), array([749830, 183370]), array([[674979, 74851], [ 7831, 175539]]), 493.23327445983887, 0.08440446853637695]
62 | [10, 1, 'AdaBoost', 0.9879232747535363, array([0.99769938, 0.94999111]), array([0.98724644, 0.99069095]), array([0.99244539, 0.96991425]), array([749830, 183370]), array([[740267, 9563], [ 1707, 181663]]), 1372.2912945747375, 8.263375759124756]
63 | [10, 2, 'Decision Tree', 0.9261262323189027, array([0.99693762, 0.73060259]), array([0.91085846, 0.98855865]), array([0.95195611, 0.84022777]), array([749830, 183370]), array([[682989, 66841], [ 2098, 181272]]), 29.631062507629395, 0.1201019287109375]
64 | [10, 3, 'Random Forest', 0.9274603514787827, array([0.99084844, 0.74266403]), array([0.91820146, 0.96532148]), array([0.95314269, 0.83947965]), array([749830, 183370]), array([[688495, 61335], [ 6359, 177011]]), 905.353193283081, 4.391338348388672]
65 | [10, 4, 'Bernoulli NB', 0.6653332618945563, array([0.92843531, 0.34744285]), array([0.6322233 , 0.80072531]), array([0.75221888, 0.48460895]), array([749830, 183370]), array([[474060, 275770], [ 36541, 146829]]), 2.4275100231170654, 0.5212483406066895]
66 | [10, 5, 'Gaussian NB', 0.4247524646378054, array([0.9910825 , 0.25328797]), array([0.28665564, 0.98945302]), array([0.4446911 , 0.40332869]), array([749830, 183370]), array([[214943, 534887], [ 1934, 181436]]), 3.098311185836792, 0.7614588737487793]
67 | [11, 0, 'Linear SVC', 0.9113962708958423, array([0.98868779, 0.70093711]), array([0.90001867, 0.95790535]), array([0.94227186, 0.809518 ]), array([749780, 183420]), array([[674816, 74964], [ 7721, 175699]]), 465.1130328178406, 0.08160400390625]
68 | [11, 1, 'AdaBoost', 0.9875192884697814, array([0.99739488, 0.94919483]), array([0.9870442 , 0.98946135]), array([0.99219254, 0.96890991]), array([749780, 183420]), array([[740066, 9714], [ 1933, 181487]]), 1352.4101054668427, 8.286378622055054]
69 | [11, 2, 'Decision Tree', 0.9264509215602229, array([0.99694165, 0.73154633]), array([0.91125397, 0.98857267]), array([0.9521739, 0.8408566]), array([749780, 183420]), array([[683240, 66540], [ 2096, 181324]]), 29.609118461608887, 0.12054562568664551]
70 | [11, 3, 'Random Forest', 0.9388201885983712, array([0.99070567, 0.7777724 ]), array([0.9326029 , 0.96423509]), array([0.96077665, 0.86102436]), array([749780, 183420]), array([[699247, 50533], [ 6560, 176860]]), 897.5508694648743, 4.378940582275391]
71 | [11, 4, 'Bernoulli NB', 0.6664991427346764, array([0.92872798, 0.34848021]), array([0.6335325, 0.8012594]), array([0.75324105, 0.48571528]), array([749780, 183420]), array([[475010, 274770], [ 36453, 146967]]), 2.2822823524475098, 0.5224814414978027]
72 | [11, 5, 'Gaussian NB', 0.47161273039005575, array([0.98700752, 0.26878594]), array([0.3469191 , 0.98133246]), array([0.5133892 , 0.42198942]), array([749780, 183420]), array([[260113, 489667], [ 3424, 179996]]), 2.9440484046936035, 0.8076584339141846]
73 | [12, 0, 'Linear SVC', 0.9115623660522932, array([0.9886059, 0.7015666]), array([0.90029132, 0.95760902]), array([0.94238406, 0.8098317 ]), array([749694, 183506]), array([[674943, 74751], [ 7779, 175727]]), 444.4584126472473, 0.0774388313293457]
74 | [12, 1, 'AdaBoost', 0.98924882126018, array([0.99818148, 0.95450091]), array([0.98841794, 0.99264329]), array([0.99327572, 0.97319852]), array([749694, 183506]), array([[741011, 8683], [ 1350, 182156]]), 1029.670860528946, 8.267982721328735]
75 | [12, 2, 'Decision Tree', 0.9259676382340334, array([0.99690587, 0.73035373]), array([0.91067289, 0.98845269]), array([0.95184028, 0.84002492]), array([749694, 183506]), array([[682726, 66968], [ 2119, 181387]]), 29.696049213409424, 0.12069129943847656]
76 | [12, 3, 'Random Forest', 0.9250096442348907, array([0.99221537, 0.73384362]), array([0.91382351, 0.9707094 ]), array([0.95140738, 0.835819 ]), array([749694, 183506]), array([[685088, 64606], [ 5375, 178131]]), 728.3350808620453, 4.346201181411743]
77 | [12, 4, 'Bernoulli NB', 0.6661219459922846, array([0.92846567, 0.3482361 ]), array([0.633181 , 0.80069861]), array([0.75290632, 0.48537512]), array([749694, 183506]), array([[474692, 275002], [ 36573, 146933]]), 2.0796308517456055, 0.5262131690979004]
78 | [12, 5, 'Gaussian NB', 0.4436519502786112, array([0.9864558 , 0.25894622]), array([0.31175253, 0.98251283]), array([0.47377618, 0.40986931]), array([749694, 183506]), array([[233719, 515975], [ 3209, 180297]]), 2.395132541656494, 0.7494006156921387]
79 | [13, 0, 'Linear SVC', 0.911531290184312, array([0.98850858, 0.70245614]), array([0.90023326, 0.95745836]), array([0.94230803, 0.81037005]), array([748957, 184243]), array([[674236, 74721], [ 7838, 176405]]), 388.62764835357666, 0.0774238109588623]
80 | [13, 1, 'AdaBoost', 0.988421560222889, array([0.9974593, 0.9533663]), array([0.9880901 , 0.98976895]), array([0.9927526 , 0.97122664]), array([748957, 184243]), array([[740037, 8920], [ 1885, 182358]]), 1189.5021209716797, 8.284527778625488]
81 | [13, 2, 'Decision Tree', 0.9263009001285898, array([0.99693589, 0.73202452]), array([0.91097086, 0.98861829]), array([0.9520167 , 0.84118891]), array([748957, 184243]), array([[682278, 66679], [ 2097, 182146]]), 29.41314196586609, 0.1203773021697998]
82 | [13, 3, 'Random Forest', 0.939103086155165, array([0.99073867, 0.77940441]), array([0.93284261, 0.96455225]), array([0.96091936, 0.86215018]), array([748957, 184243]), array([[698659, 50298], [ 6531, 177712]]), 731.6788067817688, 4.344741106033325]
83 | [13, 4, 'Bernoulli NB', 0.6661326618088298, array([0.92813235, 0.34928241]), array([0.63301765, 0.80074684]), array([0.75268124, 0.48639943]), array([748957, 184243]), array([[474103, 274854], [ 36711, 147532]]), 2.1042163372039795, 0.5246832370758057]
84 | [13, 5, 'Gaussian NB', 0.4571549507072439, array([0.98729362, 0.26454553]), array([0.32783458, 0.98284874]), array([0.49222423, 0.41688221]), array([748957, 184243]), array([[245534, 503423], [ 3160, 181083]]), 2.4253673553466797, 0.7559788227081299]
85 | [14, 0, 'Linear SVC', 0.9115720102871839, array([0.98858028, 0.70182236]), array([0.90030179, 0.9575616 ]), array([0.94237815, 0.8099851 ]), array([749522, 183678]), array([[674796, 74726], [ 7795, 175883]]), 345.0412871837616, 0.08224225044250488]
86 | [14, 1, 'AdaBoost', 0.9895970852978997, array([0.9980182 , 0.95675324]), array([0.98901166, 0.99198598]), array([0.99349452, 0.97405111]), array([749522, 183678]), array([[741286, 8236], [ 1472, 182206]]), 1037.7235596179962, 8.359991788864136]
87 | [14, 2, 'Decision Tree', 0.9263641234462066, array([0.99685599, 0.73169493]), array([0.91119273, 0.98827296]), array([0.95210141, 0.84084629]), array([749522, 183678]), array([[682959, 66563], [ 2154, 181524]]), 29.930074453353882, 0.12349128723144531]
88 | [14, 3, 'Random Forest', 0.9388769824260609, array([0.99055003, 0.77847461]), array([0.93279717, 0.96368645]), array([0.96080652, 0.86123545]), array([749522, 183678]), array([[699152, 50370], [ 6670, 177008]]), 721.5761070251465, 4.362285375595093]
89 | [14, 4, 'Bernoulli NB', 0.6656911701671667, array([0.92844399, 0.34819525]), array([0.63251379, 0.8010758 ]), array([0.7524273, 0.4854047]), array([749522, 183678]), array([[474083, 275439], [ 36538, 147140]]), 2.081385850906372, 0.5245161056518555]
90 | [14, 5, 'Gaussian NB', 0.4547321045863695, array([0.98615533, 0.26288379]), array([0.3256809 , 0.98134235]), array([0.48965252, 0.41468184]), array([749522, 183678]), array([[244105, 505417], [ 3427, 180251]]), 2.4351279735565186, 0.8076331615447998]
91 |
--------------------------------------------------------------------------------
/jupyter-notebooks/results_gs.txt:
--------------------------------------------------------------------------------
1 | [0, 0.9294448397500967, {'C': 100}, 1861.9709231853485]
2 | [1, 0.9906322415670135, {'learning_rate': 1, 'n_estimators': 100}, 11682.068260908127]
3 | [2, 0.9497529284921641, {'max_depth': None, 'max_features': 1.0, 'min_samples_leaf': 0.1, 'min_samples_split': 0.1}, 3445.209409236908]
4 | [3, 0.9498137026298448, {'max_depth': None, 'max_features': 0.5, 'min_samples_leaf': 0.1, 'min_samples_split': 0.2, 'n_estimators': 100}, 102302.89634490013]
5 |
--------------------------------------------------------------------------------
/ml_classifiers.cc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lnutimura/ml_classifiers/d873b05952dacc1d8f6100234d5ae4ff3e2660b0/ml_classifiers.cc
--------------------------------------------------------------------------------
/ml_classifiers.h:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | #include