├── example.png
├── workflow.zip
├── __init__.py
├── pyproject.toml
├── .github
└── workflows
│ └── publish.yml
├── README.md
├── .gitignore
├── workflow.json
├── LICENSE
└── nodes.py
/example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lrzjason/ComfyUI-LoaderUtils/HEAD/example.png
--------------------------------------------------------------------------------
/workflow.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lrzjason/ComfyUI-LoaderUtils/HEAD/workflow.zip
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 | from .nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
2 |
3 | __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [project]
2 | name = "loaderutils"
3 | description = ""
4 | version = "1.0.4"
5 | license = {file = "LICENSE"}
6 |
7 | [project.urls]
8 | Repository = "https://github.com/lrzjason/ComfyUI-LoaderUtils"
9 | # Used by Comfy Registry https://comfyregistry.org
10 |
11 | [tool.comfy]
12 | PublisherId = "lrzjason"
13 | DisplayName = "ComfyUI-LoaderUtils"
14 | Icon = ""
15 |
--------------------------------------------------------------------------------
/.github/workflows/publish.yml:
--------------------------------------------------------------------------------
1 | name: Publish to Comfy registry
2 | on:
3 | workflow_dispatch:
4 | push:
5 | branches:
6 | - main
7 | - master
8 | paths:
9 | - "pyproject.toml"
10 |
11 | jobs:
12 | publish-node:
13 | name: Publish Custom Node to registry
14 | runs-on: ubuntu-latest
15 | # if this is a forked repository. Skipping the workflow.
16 | if: github.event.repository.fork == false
17 | steps:
18 | - name: Check out code
19 | uses: actions/checkout@v4
20 | - name: Publish Custom Node
21 | uses: Comfy-Org/publish-node-action@main
22 | with:
23 | ## Add your own personal access token to your Github Repository secrets and reference it here.
24 | personal_access_token: ${{ secrets.REGISTRY_ACCESS_TOKEN }}
25 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ComfyUI Loader Utils - Adjust Model Loading Order
2 |
3 | ## The Problem: Comfyui load models at the start at once
4 |
5 | Solution: Added an optional "Any" Parameter to loader node
6 |
7 | This custom loader module addresses these issues by:
8 |
9 | 1. **Flexible Node Connections**: Added an optional "any" parameter to all loader nodes, allowing them to connect to any output type
10 | 2. **Controlled Loading Order**: Users can strategically place loader nodes after other nodes, optimizing the model loading sequence
11 | 3. **Memory Management**: Enables better VRAM management by controlling when and which models are loaded
12 | 4. **Sequential Loading**: Models are loaded only when needed, in a controlled sequence
13 |
14 | ## Features
15 |
16 | - All standard ComfyUI loader nodes included with "_Any" suffix
17 | - Optional "any" parameter for flexible connections
18 | - Maintains all original functionality and parameters
19 | - Compatible with existing ComfyUI workflows
20 |
21 | ## Available Loader Nodes
22 |
23 | - `CheckpointLoader_Any` - Advanced checkpoint loading
24 | - `CheckpointLoaderSimple_Any` - Simple checkpoint loading
25 | - `DiffusersLoader_Any` - Diffusers model loading
26 | - `unCLIPCheckpointLoader_Any` - unCLIP checkpoint loading
27 | - `LoraLoader_Any` - LoRA model loading
28 | - `LoraLoaderModelOnly_Any` - LoRA model only loading
29 | - `VAELoader_Any` - VAE model loading
30 | - `ControlNetLoader_Any` - ControlNet model loading
31 | - `DiffControlNetLoader_Any` - Diffusion ControlNet loading
32 | - `UNETLoader_Any` - UNET model loading
33 | - `CLIPLoader_Any` - CLIP model loading
34 | - `DualCLIPLoader_Any` - Dual CLIP model loading
35 | - `CLIPVisionLoader_Any` - CLIP vision model loading
36 | - `StyleModelLoader_Any` - Style model loading
37 | - `GLIGENLoader_Any` - GLIGEN model loading
38 |
39 | ## Benefits for Low VRAM Users
40 |
41 | - **Reduced Memory Footprint**: Load models only when needed
42 | - **Flexible Sequencing**: Arrange loading order based on available memory
43 | - **Improved Workflow Stability**: More predictable memory usage
44 |
45 | ## Usage
46 |
47 | The "_Any" suffix nodes can be used exactly like their original counterparts, with the added benefit that they can accept connections from any node type via the optional "any" parameter. This enables better workflow design for memory-constrained environments.
48 |
49 | ## Example
50 |
51 | Here's an example workflow showing how the loader nodes with "any" parameter can be used to optimize memory management:
52 |
53 | 
54 |
55 | The workflow file is also available as `workflow.json` in this repository.
56 |
57 | ## Memory Management Benefits
58 |
59 | The key advantage of these loader nodes is that you can control WHEN models are loaded by connecting them strategically in your workflow. In the example above:
60 |
61 | 1. The UNETLoader_Any is connected after the CLIPTextEncode nodes, allowing them to run before the heavy UNET model is loaded
62 | 2. The VAELoader_Any is connected after sampling, allowing you to load the VAE only when needed for decoding
63 |
64 | Simply use these nodes in place of the standard loader nodes, and strategically connect them to control when models are loaded into memory.
65 |
66 | ## Contact
67 | - **Twitter**: [@Lrzjason](https://twitter.com/Lrzjason)
68 | - **Email**: lrzjason@gmail.com
69 | - **QQ Group**: 866612947
70 | - **Wechatid**: fkdeai
71 | - **Civitai**: [xiaozhijason](https://civitai.com/user/xiaozhijason)
72 |
73 | ## Sponsors me for more open source projects:
74 |
75 |
76 |
77 | |
78 | Buy me a coffee:
79 |
80 | |
81 |
82 | WeChat:
83 |
84 | |
85 |
86 |
87 |
88 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[codz]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py.cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # UV
98 | # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | #uv.lock
102 |
103 | # poetry
104 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105 | # This is especially recommended for binary packages to ensure reproducibility, and is more
106 | # commonly ignored for libraries.
107 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108 | #poetry.lock
109 | #poetry.toml
110 |
111 | # pdm
112 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
113 | # pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
114 | # https://pdm-project.org/en/latest/usage/project/#working-with-version-control
115 | #pdm.lock
116 | #pdm.toml
117 | .pdm-python
118 | .pdm-build/
119 |
120 | # pixi
121 | # Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
122 | #pixi.lock
123 | # Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
124 | # in the .venv directory. It is recommended not to include this directory in version control.
125 | .pixi
126 |
127 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
128 | __pypackages__/
129 |
130 | # Celery stuff
131 | celerybeat-schedule
132 | celerybeat.pid
133 |
134 | # SageMath parsed files
135 | *.sage.py
136 |
137 | # Environments
138 | .env
139 | .envrc
140 | .venv
141 | env/
142 | venv/
143 | ENV/
144 | env.bak/
145 | venv.bak/
146 |
147 | # Spyder project settings
148 | .spyderproject
149 | .spyproject
150 |
151 | # Rope project settings
152 | .ropeproject
153 |
154 | # mkdocs documentation
155 | /site
156 |
157 | # mypy
158 | .mypy_cache/
159 | .dmypy.json
160 | dmypy.json
161 |
162 | # Pyre type checker
163 | .pyre/
164 |
165 | # pytype static type analyzer
166 | .pytype/
167 |
168 | # Cython debug symbols
169 | cython_debug/
170 |
171 | # PyCharm
172 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
173 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
174 | # and can be added to the global gitignore or merged into this file. For a more nuclear
175 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
176 | #.idea/
177 |
178 | # Abstra
179 | # Abstra is an AI-powered process automation framework.
180 | # Ignore directories containing user credentials, local state, and settings.
181 | # Learn more at https://abstra.io/docs
182 | .abstra/
183 |
184 | # Visual Studio Code
185 | # Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
186 | # that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
187 | # and can be added to the global gitignore or merged into this file. However, if you prefer,
188 | # you could uncomment the following to ignore the entire vscode folder
189 | # .vscode/
190 |
191 | # Ruff stuff:
192 | .ruff_cache/
193 |
194 | # PyPI configuration file
195 | .pypirc
196 |
197 | # Cursor
198 | # Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
199 | # exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
200 | # refer to https://docs.cursor.com/context/ignore-files
201 | .cursorignore
202 | .cursorindexingignore
203 |
204 | # Marimo
205 | marimo/_static/
206 | marimo/_lsp/
207 | __marimo__/
208 |
--------------------------------------------------------------------------------
/workflow.json:
--------------------------------------------------------------------------------
1 | {
2 | "id": "92112d97-bb64-4b44-86f2-ea5691ef8f6e",
3 | "revision": 0,
4 | "last_node_id": 31,
5 | "last_link_id": 59,
6 | "nodes": [
7 | {
8 | "id": 13,
9 | "type": "EmptySD3LatentImage",
10 | "pos": [
11 | 530,
12 | 620
13 | ],
14 | "size": [
15 | 315,
16 | 106
17 | ],
18 | "flags": {},
19 | "order": 0,
20 | "mode": 0,
21 | "inputs": [],
22 | "outputs": [
23 | {
24 | "name": "LATENT",
25 | "type": "LATENT",
26 | "slot_index": 0,
27 | "links": [
28 | 17
29 | ]
30 | }
31 | ],
32 | "properties": {
33 | "Node name for S&R": "EmptySD3LatentImage"
34 | },
35 | "widgets_values": [
36 | 1024,
37 | 1024,
38 | 1
39 | ]
40 | },
41 | {
42 | "id": 7,
43 | "type": "CLIPTextEncode",
44 | "pos": [
45 | 420,
46 | 400
47 | ],
48 | "size": [
49 | 425.27801513671875,
50 | 180.6060791015625
51 | ],
52 | "flags": {},
53 | "order": 3,
54 | "mode": 0,
55 | "inputs": [
56 | {
57 | "name": "clip",
58 | "type": "CLIP",
59 | "link": 44
60 | }
61 | ],
62 | "outputs": [
63 | {
64 | "name": "CONDITIONING",
65 | "type": "CONDITIONING",
66 | "slot_index": 0,
67 | "links": [
68 | 6
69 | ]
70 | }
71 | ],
72 | "title": "CLIP Text Encode (Negative Prompt)",
73 | "properties": {
74 | "Node name for S&R": "CLIPTextEncode"
75 | },
76 | "widgets_values": [
77 | "blurry ugly bad"
78 | ],
79 | "color": "#322",
80 | "bgcolor": "#533"
81 | },
82 | {
83 | "id": 8,
84 | "type": "VAEDecode",
85 | "pos": [
86 | 1826.5691087769542,
87 | 192.4670427207268
88 | ],
89 | "size": [
90 | 210,
91 | 46
92 | ],
93 | "flags": {},
94 | "order": 7,
95 | "mode": 0,
96 | "inputs": [
97 | {
98 | "name": "samples",
99 | "type": "LATENT",
100 | "link": 51
101 | },
102 | {
103 | "name": "vae",
104 | "type": "VAE",
105 | "link": 56
106 | }
107 | ],
108 | "outputs": [
109 | {
110 | "name": "IMAGE",
111 | "type": "IMAGE",
112 | "slot_index": 0,
113 | "links": [
114 | 57
115 | ]
116 | }
117 | ],
118 | "properties": {
119 | "Node name for S&R": "VAEDecode"
120 | },
121 | "widgets_values": []
122 | },
123 | {
124 | "id": 6,
125 | "type": "CLIPTextEncode",
126 | "pos": [
127 | 420,
128 | 190
129 | ],
130 | "size": [
131 | 423.83001708984375,
132 | 177.11770629882812
133 | ],
134 | "flags": {},
135 | "order": 2,
136 | "mode": 0,
137 | "inputs": [
138 | {
139 | "name": "clip",
140 | "type": "CLIP",
141 | "link": 43
142 | }
143 | ],
144 | "outputs": [
145 | {
146 | "name": "CONDITIONING",
147 | "type": "CONDITIONING",
148 | "slot_index": 0,
149 | "links": [
150 | 4,
151 | 58
152 | ]
153 | }
154 | ],
155 | "title": "CLIP Text Encode (Positive Prompt)",
156 | "properties": {
157 | "Node name for S&R": "CLIPTextEncode"
158 | },
159 | "widgets_values": [
160 | "cute anime style girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron, it is a postcard held by a hand in front of a beautiful realistic city at sunset and there is cursive writing that says \"ZImage, Now in ComfyUI\""
161 | ],
162 | "color": "#232",
163 | "bgcolor": "#353"
164 | },
165 | {
166 | "id": 31,
167 | "type": "UNETLoader_Any",
168 | "pos": [
169 | 870.373060989916,
170 | 44.22078072939189
171 | ],
172 | "size": [
173 | 270,
174 | 82
175 | ],
176 | "flags": {},
177 | "order": 4,
178 | "mode": 0,
179 | "inputs": [
180 | {
181 | "name": "any",
182 | "shape": 7,
183 | "type": "*",
184 | "link": 58
185 | }
186 | ],
187 | "outputs": [
188 | {
189 | "name": "MODEL",
190 | "type": "MODEL",
191 | "links": [
192 | 59
193 | ]
194 | }
195 | ],
196 | "properties": {
197 | "Node name for S&R": "UNETLoader_Any"
198 | },
199 | "widgets_values": [
200 | "z_image_turbo_bf16.safetensors",
201 | "default"
202 | ]
203 | },
204 | {
205 | "id": 18,
206 | "type": "CLIPLoader",
207 | "pos": [
208 | 71.06591455854638,
209 | 187.51018103026595
210 | ],
211 | "size": [
212 | 270,
213 | 106
214 | ],
215 | "flags": {},
216 | "order": 1,
217 | "mode": 0,
218 | "inputs": [],
219 | "outputs": [
220 | {
221 | "name": "CLIP",
222 | "type": "CLIP",
223 | "links": [
224 | 43,
225 | 44
226 | ]
227 | }
228 | ],
229 | "properties": {
230 | "Node name for S&R": "CLIPLoader"
231 | },
232 | "widgets_values": [
233 | "qwen_3_4b.safetensors",
234 | "lumina2",
235 | "default"
236 | ]
237 | },
238 | {
239 | "id": 3,
240 | "type": "KSampler",
241 | "pos": [
242 | 1173.4596288445618,
243 | 191.58377677523364
244 | ],
245 | "size": [
246 | 315,
247 | 474
248 | ],
249 | "flags": {},
250 | "order": 5,
251 | "mode": 0,
252 | "inputs": [
253 | {
254 | "name": "model",
255 | "type": "MODEL",
256 | "link": 59
257 | },
258 | {
259 | "name": "positive",
260 | "type": "CONDITIONING",
261 | "link": 4
262 | },
263 | {
264 | "name": "negative",
265 | "type": "CONDITIONING",
266 | "link": 6
267 | },
268 | {
269 | "name": "latent_image",
270 | "type": "LATENT",
271 | "link": 17
272 | }
273 | ],
274 | "outputs": [
275 | {
276 | "name": "LATENT",
277 | "type": "LATENT",
278 | "slot_index": 0,
279 | "links": [
280 | 51,
281 | 55
282 | ]
283 | }
284 | ],
285 | "properties": {
286 | "Node name for S&R": "KSampler"
287 | },
288 | "widgets_values": [
289 | 804224263771352,
290 | "fixed",
291 | 9,
292 | 1,
293 | "euler",
294 | "simple",
295 | 1
296 | ]
297 | },
298 | {
299 | "id": 29,
300 | "type": "VAELoader_Any",
301 | "pos": [
302 | 1523.6789375434823,
303 | 297.7258811414354
304 | ],
305 | "size": [
306 | 270,
307 | 58
308 | ],
309 | "flags": {},
310 | "order": 6,
311 | "mode": 0,
312 | "inputs": [
313 | {
314 | "name": "any",
315 | "shape": 7,
316 | "type": "*",
317 | "link": 55
318 | }
319 | ],
320 | "outputs": [
321 | {
322 | "name": "VAE",
323 | "type": "VAE",
324 | "links": [
325 | 56
326 | ]
327 | }
328 | ],
329 | "properties": {
330 | "Node name for S&R": "VAELoader_Any"
331 | },
332 | "widgets_values": [
333 | "ae.safetensors"
334 | ]
335 | },
336 | {
337 | "id": 30,
338 | "type": "PreviewImage",
339 | "pos": [
340 | 2063.0748519590647,
341 | 197.21731342238334
342 | ],
343 | "size": [
344 | 366.7024979539101,
345 | 459.3014762944291
346 | ],
347 | "flags": {},
348 | "order": 8,
349 | "mode": 0,
350 | "inputs": [
351 | {
352 | "name": "images",
353 | "type": "IMAGE",
354 | "link": 57
355 | }
356 | ],
357 | "outputs": [],
358 | "properties": {
359 | "Node name for S&R": "PreviewImage"
360 | },
361 | "widgets_values": []
362 | }
363 | ],
364 | "links": [
365 | [
366 | 4,
367 | 6,
368 | 0,
369 | 3,
370 | 1,
371 | "CONDITIONING"
372 | ],
373 | [
374 | 6,
375 | 7,
376 | 0,
377 | 3,
378 | 2,
379 | "CONDITIONING"
380 | ],
381 | [
382 | 17,
383 | 13,
384 | 0,
385 | 3,
386 | 3,
387 | "LATENT"
388 | ],
389 | [
390 | 43,
391 | 18,
392 | 0,
393 | 6,
394 | 0,
395 | "CLIP"
396 | ],
397 | [
398 | 44,
399 | 18,
400 | 0,
401 | 7,
402 | 0,
403 | "CLIP"
404 | ],
405 | [
406 | 51,
407 | 3,
408 | 0,
409 | 8,
410 | 0,
411 | "LATENT"
412 | ],
413 | [
414 | 55,
415 | 3,
416 | 0,
417 | 29,
418 | 0,
419 | "*"
420 | ],
421 | [
422 | 56,
423 | 29,
424 | 0,
425 | 8,
426 | 1,
427 | "VAE"
428 | ],
429 | [
430 | 57,
431 | 8,
432 | 0,
433 | 30,
434 | 0,
435 | "IMAGE"
436 | ],
437 | [
438 | 58,
439 | 6,
440 | 0,
441 | 31,
442 | 0,
443 | "*"
444 | ],
445 | [
446 | 59,
447 | 31,
448 | 0,
449 | 3,
450 | 0,
451 | "MODEL"
452 | ]
453 | ],
454 | "groups": [],
455 | "config": {},
456 | "extra": {
457 | "ds": {
458 | "scale": 0.5730855330116982,
459 | "offset": [
460 | 297.7596222557897,
461 | 269.5194773903112
462 | ]
463 | },
464 | "frontendVersion": "1.33.10"
465 | },
466 | "version": 0.4
467 | }
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/nodes.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 | import torch
3 |
4 |
5 | import os
6 | import sys
7 | import json
8 | import hashlib
9 | import inspect
10 | import traceback
11 | import math
12 | import time
13 | import random
14 | import logging
15 |
16 | from PIL import Image, ImageOps, ImageSequence
17 | from PIL.PngImagePlugin import PngInfo
18 |
19 | import numpy as np
20 | import safetensors.torch
21 |
22 | sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
23 |
24 | import comfy.sd
25 | import comfy.utils
26 | import comfy.controlnet
27 |
28 | import comfy.clip_vision
29 |
30 | import comfy.model_management
31 |
32 | import folder_paths
33 | from comfy.comfy_types.node_typing import IO
34 |
35 | def before_node_execution():
36 | comfy.model_management.throw_exception_if_processing_interrupted()
37 |
38 | def interrupt_processing(value=True):
39 | comfy.model_management.interrupt_current_processing(value)
40 |
41 | MAX_RESOLUTION=16384
42 |
43 |
44 | class CheckpointLoader_Any:
45 | @classmethod
46 | def INPUT_TYPES(s):
47 | return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
48 | "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )},
49 | "optional": {"any": (IO.ANY, {})}}
50 | RETURN_TYPES = ("MODEL", "CLIP", "VAE")
51 | FUNCTION = "load_checkpoint"
52 |
53 | CATEGORY = "advanced/loaders"
54 | DEPRECATED = True
55 |
56 | def load_checkpoint(self, config_name, ckpt_name, any=None):
57 | config_path = folder_paths.get_full_path("configs", config_name)
58 | ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
59 | return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
60 |
61 |
62 | class CheckpointLoaderSimple_Any:
63 | @classmethod
64 | def INPUT_TYPES(s):
65 | return {
66 | "required": {
67 | "ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
68 | },
69 | "optional": {"any": (IO.ANY, {})}
70 | }
71 | RETURN_TYPES = ("MODEL", "CLIP", "VAE")
72 | OUTPUT_TOOLTIPS = ("The model used for denoising latents.",
73 | "The CLIP model used for encoding text prompts.",
74 | "The VAE model used for encoding and decoding images to and from latent space.")
75 | FUNCTION = "load_checkpoint"
76 |
77 | CATEGORY = "loaders"
78 | DESCRIPTION = "Loads a diffusion model checkpoint, diffusion models are used to denoise latents."
79 |
80 | def load_checkpoint(self, ckpt_name, any=None):
81 | ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
82 | out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
83 | return out[:3]
84 |
85 |
86 | class unCLIPCheckpointLoader_Any:
87 | @classmethod
88 | def INPUT_TYPES(s):
89 | return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
90 | },
91 | "optional": {"any": (IO.ANY, {})}}
92 | RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
93 | FUNCTION = "load_checkpoint"
94 |
95 | CATEGORY = "loaders"
96 |
97 | def load_checkpoint(self, ckpt_name, any=None, output_vae=True, output_clip=True):
98 | ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
99 | out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
100 | return out
101 |
102 |
103 | class LoraLoader_Any:
104 | def __init__(self):
105 | self.loaded_lora = None
106 |
107 | @classmethod
108 | def INPUT_TYPES(s):
109 | return {
110 | "required": {
111 | "model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
112 | "clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}),
113 | "lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
114 | "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
115 | "strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the CLIP model. This value can be negative."}),
116 | },
117 | "optional": {"any": (IO.ANY, {})}
118 | }
119 |
120 | RETURN_TYPES = ("MODEL", "CLIP")
121 | OUTPUT_TOOLTIPS = ("The modified diffusion model.", "The modified CLIP model.")
122 | FUNCTION = "load_lora"
123 |
124 | CATEGORY = "loaders"
125 | DESCRIPTION = "LoRAs are used to modify diffusion and CLIP models, altering the way in which latents are denoised such as applying styles. Multiple LoRA nodes can be linked together."
126 |
127 | def load_lora(self, model, clip, lora_name, strength_model, strength_clip, any=None):
128 | if strength_model == 0 and strength_clip == 0:
129 | return (model, clip)
130 |
131 | lora_path = folder_paths.get_full_path_or_raise("loras", lora_name)
132 | lora = None
133 | if self.loaded_lora is not None:
134 | if self.loaded_lora[0] == lora_path:
135 | lora = self.loaded_lora[1]
136 | else:
137 | self.loaded_lora = None
138 |
139 | if lora is None:
140 | lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
141 | self.loaded_lora = (lora_path, lora)
142 |
143 | new_model, new_clip = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
144 | return (new_model, new_clip)
145 |
146 |
147 | class LoraLoaderModelOnly_Any(LoraLoader_Any):
148 | @classmethod
149 | def INPUT_TYPES(s):
150 | return {
151 | "required": {
152 | "model": ("MODEL",),
153 | "lora_name": (folder_paths.get_filename_list("loras"), ),
154 | "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
155 | },
156 | "optional": {"any": (IO.ANY, {})}
157 | }
158 |
159 | RETURN_TYPES = ("MODEL",)
160 | FUNCTION = "load_lora_model_only"
161 |
162 | def load_lora_model_only(self, model, lora_name, strength_model, any=None):
163 | return (self.load_lora(model, None, lora_name, strength_model, 0, any)[0],)
164 |
165 |
166 | class VAELoader_Any:
167 | video_taes = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"]
168 | image_taes = ["taesd", "taesdxl", "taesd3", "taef1"]
169 | @staticmethod
170 | def vae_list(s):
171 | vaes = folder_paths.get_filename_list("vae")
172 | approx_vaes = folder_paths.get_filename_list("vae_approx")
173 | sdxl_taesd_enc = False
174 | sdxl_taesd_dec = False
175 | sd1_taesd_enc = False
176 | sd1_taesd_dec = False
177 | sd3_taesd_enc = False
178 | sd3_taesd_dec = False
179 | f1_taesd_enc = False
180 | f1_taesd_dec = False
181 |
182 | for v in approx_vaes:
183 | if v.startswith("taesd_decoder."):
184 | sd1_taesd_dec = True
185 | elif v.startswith("taesd_encoder."):
186 | sd1_taesd_enc = True
187 | elif v.startswith("taesdxl_decoder."):
188 | sdxl_taesd_dec = True
189 | elif v.startswith("taesdxl_encoder."):
190 | sdxl_taesd_enc = True
191 | elif v.startswith("taesd3_decoder."):
192 | sd3_taesd_dec = True
193 | elif v.startswith("taesd3_encoder."):
194 | sd3_taesd_enc = True
195 | elif v.startswith("taef1_encoder."):
196 | f1_taesd_dec = True
197 | elif v.startswith("taef1_decoder."):
198 | f1_taesd_enc = True
199 | else:
200 | for tae in s.video_taes:
201 | if v.startswith(tae):
202 | vaes.append(v)
203 |
204 | if sd1_taesd_dec and sd1_taesd_enc:
205 | vaes.append("taesd")
206 | if sdxl_taesd_dec and sdxl_taesd_enc:
207 | vaes.append("taesdxl")
208 | if sd3_taesd_dec and sd3_taesd_enc:
209 | vaes.append("taesd3")
210 | if f1_taesd_dec and f1_taesd_enc:
211 | vaes.append("taef1")
212 | vaes.append("pixel_space")
213 | return vaes
214 |
215 | @staticmethod
216 | def load_taesd(name):
217 | sd = {}
218 | approx_vaes = folder_paths.get_filename_list("vae_approx")
219 |
220 | encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
221 | decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
222 |
223 | enc = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", encoder))
224 | for k in enc:
225 | sd["taesd_encoder.{}".format(k)] = enc[k]
226 |
227 | dec = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", decoder))
228 | for k in dec:
229 | sd["taesd_decoder.{}".format(k)] = dec[k]
230 |
231 | if name == "taesd":
232 | sd["vae_scale"] = torch.tensor(0.18215)
233 | sd["vae_shift"] = torch.tensor(0.0)
234 | elif name == "taesdxl":
235 | sd["vae_scale"] = torch.tensor(0.13025)
236 | sd["vae_shift"] = torch.tensor(0.0)
237 | elif name == "taesd3":
238 | sd["vae_scale"] = torch.tensor(1.5305)
239 | sd["vae_shift"] = torch.tensor(0.0609)
240 | elif name == "taef1":
241 | sd["vae_scale"] = torch.tensor(0.3611)
242 | sd["vae_shift"] = torch.tensor(0.1159)
243 | return sd
244 |
245 | @classmethod
246 | def INPUT_TYPES(s):
247 | return {"required": { "vae_name": (s.vae_list(s), )}, "optional": {"any": (IO.ANY, {})}}
248 | RETURN_TYPES = ("VAE",)
249 | FUNCTION = "load_vae"
250 |
251 | CATEGORY = "loaders"
252 |
253 | #TODO: scale factor?
254 | def load_vae(self, vae_name, any=None):
255 | if vae_name == "pixel_space":
256 | sd = {}
257 | sd["pixel_space_vae"] = torch.tensor(1.0)
258 | elif vae_name in self.image_taes:
259 | sd = self.load_taesd(vae_name)
260 | else:
261 | if os.path.splitext(vae_name)[0] in self.video_taes:
262 | vae_path = folder_paths.get_full_path_or_raise("vae_approx", vae_name)
263 | else:
264 | vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
265 | sd = comfy.utils.load_torch_file(vae_path)
266 | vae = comfy.sd.VAE(sd=sd)
267 | vae.throw_exception_if_invalid()
268 | return (vae,)
269 |
270 |
271 | class ControlNetLoader_Any:
272 | @classmethod
273 | def INPUT_TYPES(s):
274 | return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}, "optional": {"any": (IO.ANY, {})}}
275 |
276 | RETURN_TYPES = ("CONTROL_NET",)
277 | FUNCTION = "load_controlnet"
278 |
279 | CATEGORY = "loaders"
280 |
281 | def load_controlnet(self, control_net_name, any=None):
282 | controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
283 | controlnet = comfy.controlnet.load_controlnet(controlnet_path)
284 | if controlnet is None:
285 | raise RuntimeError("ERROR: controlnet file is invalid and does not contain a valid controlnet model.")
286 | return (controlnet,)
287 |
288 |
289 | class DiffControlNetLoader_Any:
290 | @classmethod
291 | def INPUT_TYPES(s):
292 | return {"required": { "model": ("MODEL",),
293 | "control_net_name": (folder_paths.get_filename_list("controlnet"), )},
294 | "optional": {"any": (IO.ANY, {})}}
295 |
296 | RETURN_TYPES = ("CONTROL_NET",)
297 | FUNCTION = "load_controlnet"
298 |
299 | CATEGORY = "loaders"
300 |
301 | def load_controlnet(self, model, control_net_name, any=None):
302 | controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
303 | controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
304 | return (controlnet,)
305 |
306 | class UNETLoader_Any:
307 | @classmethod
308 | def INPUT_TYPES(s):
309 | return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
310 | "weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],)
311 | },
312 | "optional": {"any": (IO.ANY, {})}
313 | }
314 | RETURN_TYPES = ("MODEL",)
315 | FUNCTION = "load_unet"
316 |
317 | CATEGORY = "advanced/loaders"
318 |
319 | def load_unet(self, unet_name, weight_dtype, any=None):
320 | model_options = {}
321 | if weight_dtype == "fp8_e4m3fn":
322 | model_options["dtype"] = torch.float8_e4m3fn
323 | elif weight_dtype == "fp8_e4m3fn_fast":
324 | model_options["dtype"] = torch.float8_e4m3fn
325 | model_options["fp8_optimizations"] = True
326 | elif weight_dtype == "fp8_e5m2":
327 | model_options["dtype"] = torch.float8_e5m2
328 |
329 | unet_path = folder_paths.get_full_path_or_raise("diffusion_models", unet_name)
330 | model = comfy.sd.load_diffusion_model(unet_path, model_options=model_options)
331 | return (model,)
332 |
333 | class CLIPLoader_Any:
334 | @classmethod
335 | def INPUT_TYPES(s):
336 | return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
337 | "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "cosmos", "lumina2", "wan", "hidream", "omnigen2"], ),
338 | },
339 | "optional": {
340 | "device": (["default", "cpu"], {"advanced": True}),
341 | "any": (IO.ANY, {})
342 | }}
343 | RETURN_TYPES = ("CLIP",)
344 | FUNCTION = "load_clip"
345 |
346 | CATEGORY = "advanced/loaders"
347 |
348 | DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 xxl/ clip-g / clip-l\nstable_audio: t5 base\nmochi: t5 xxl\ncosmos: old t5 xxl\nlumina2: gemma 2 2B\nwan: umt5 xxl\n hidream: llama-3.1 (Recommend) or t5\nomnigen2: qwen vl 2.5 3B"
349 |
350 | def load_clip(self, clip_name, type, any=None, device="default"):
351 | clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION)
352 |
353 | model_options = {}
354 | if device == "cpu":
355 | model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
356 |
357 | clip_path = folder_paths.get_full_path_or_raise("text_encoders", clip_name)
358 | clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
359 | return (clip,)
360 |
361 |
362 | class DualCLIPLoader_Any:
363 | @classmethod
364 | def INPUT_TYPES(s):
365 | return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
366 | "clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
367 | "type": (["sdxl", "sd3", "flux", "hidream", "hunyuan_image"], ),
368 | },
369 | "optional": {
370 | "device": (["default", "cpu"], {"advanced": True}),
371 | "any": (IO.ANY, {})
372 | }}
373 | RETURN_TYPES = ("CLIP",)
374 | FUNCTION = "load_clip"
375 |
376 | CATEGORY = "advanced/loaders"
377 |
378 | DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small"
379 |
380 | def load_clip(self, clip_name1, clip_name2, type, any=None, device="default"):
381 | clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION)
382 |
383 | clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
384 | clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
385 |
386 | model_options = {}
387 | if device == "cpu":
388 | model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
389 |
390 | clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
391 | return (clip,)
392 |
393 |
394 | class CLIPVisionLoader_Any:
395 | @classmethod
396 | def INPUT_TYPES(s):
397 | return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
398 | },
399 | "optional": {"any": (IO.ANY, {})}}
400 | RETURN_TYPES = ("CLIP_VISION",)
401 | FUNCTION = "load_clip"
402 |
403 | CATEGORY = "loaders"
404 |
405 | def load_clip(self, clip_name, any=None):
406 | clip_path = folder_paths.get_full_path_or_raise("clip_vision", clip_name)
407 | clip_vision = comfy.clip_vision.load(clip_path)
408 | return (clip_vision,)
409 |
410 |
411 | class StyleModelLoader_Any:
412 | @classmethod
413 | def INPUT_TYPES(s):
414 | return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}, "optional": {"any": (IO.ANY, {})}}
415 |
416 | RETURN_TYPES = ("STYLE_MODEL",)
417 | FUNCTION = "load_style_model"
418 |
419 | CATEGORY = "loaders"
420 |
421 | def load_style_model(self, style_model_name, any=None):
422 | style_model_path = folder_paths.get_full_path_or_raise("style_models", style_model_name)
423 | style_model = comfy.sd.load_style_model(style_model_path)
424 | return (style_model,)
425 |
426 |
427 | class GLIGENLoader_Any:
428 | @classmethod
429 | def INPUT_TYPES(s):
430 | return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), ), }, "optional": {"any": (IO.ANY, {})}}
431 |
432 | RETURN_TYPES = ("GLIGEN",)
433 | FUNCTION = "load_gligen"
434 |
435 | CATEGORY = "loaders"
436 |
437 | def load_gligen(self, gligen_name, any=None):
438 | gligen_path = folder_paths.get_full_path_or_raise("gligen", gligen_name)
439 | gligen = comfy.sd.load_gligen(gligen_path)
440 | return (gligen,)
441 |
442 |
443 |
444 | NODE_CLASS_MAPPINGS = {
445 | "CheckpointLoader_Any": CheckpointLoader_Any,
446 | "CheckpointLoaderSimple_Any": CheckpointLoaderSimple_Any,
447 | "unCLIPCheckpointLoader_Any": unCLIPCheckpointLoader_Any,
448 | "LoraLoader_Any": LoraLoader_Any,
449 | "LoraLoaderModelOnly_Any": LoraLoaderModelOnly_Any,
450 | "VAELoader_Any": VAELoader_Any,
451 | "ControlNetLoader_Any": ControlNetLoader_Any,
452 | "DiffControlNetLoader_Any": DiffControlNetLoader_Any,
453 | "UNETLoader_Any": UNETLoader_Any,
454 | "CLIPLoader_Any": CLIPLoader_Any,
455 | "DualCLIPLoader_Any": DualCLIPLoader_Any,
456 | "CLIPVisionLoader_Any": CLIPVisionLoader_Any,
457 | "StyleModelLoader_Any": StyleModelLoader_Any,
458 | "GLIGENLoader_Any": GLIGENLoader_Any,
459 | }
460 |
461 | NODE_DISPLAY_NAME_MAPPINGS = {
462 | "CheckpointLoader_Any": "Load Checkpoint With Config (Any)",
463 | "CheckpointLoaderSimple_Any": "Load Checkpoint (Any)",
464 | "unCLIPCheckpointLoader_Any": "Load unCLIP Checkpoint (Any)",
465 | "LoraLoader_Any": "Load LoRA (Any)",
466 | "LoraLoaderModelOnly_Any": "Load LoRA for Model Only (Any)",
467 | "VAELoader_Any": "Load VAE (Any)",
468 | "ControlNetLoader_Any": "Load ControlNet Model (Any)",
469 | "DiffControlNetLoader_Any": "Load ControlNet Model (diff) (Any)",
470 | "UNETLoader_Any": "Load Diffusion Model (Any)",
471 | "CLIPLoader_Any": "Load CLIP (Any)",
472 | "DualCLIPLoader_Any": "Load Dual CLIP (Any)",
473 | "CLIPVisionLoader_Any": "Load CLIP Vision (Any)",
474 | "StyleModelLoader_Any": "Load Style Model (Any)",
475 | "GLIGENLoader_Any": "Load GLIGEN (Any)",
476 | }
--------------------------------------------------------------------------------