├── README.md ├── Statistical table Excel files ├── Normal and Chi-squared tables zero margins.xls ├── Normal and Chi-squared tables.pdf └── Normal and Chi-squared tables.xls ├── images ├── cv1.pdf ├── cv2.pdf ├── cv3.pdf ├── cv4.pdf ├── cv5.pdf ├── cv6.pdf ├── cv7.pdf ├── equil.eps ├── equil.fig ├── equil.pdf ├── gamma.eps └── gamma.pdf ├── intcheatsheet.sty ├── steincoresummary.pdf └── steincoresummary.tex /README.md: -------------------------------------------------------------------------------- 1 | # Stein Core Summary 2 | 3 | This respository contains Luke Stein's summary notes from the Stanford graduate economics core as it was taught in 2006-7. 4 | 5 | Abbreviated sources are listed in parentheses after each topic, with fuller descriptions in the "References" section. Most of the content is copied verbatim (or only minimally rewritten) from the indicated sources; errors in the source materials are now in the good company of numerous additional errors I have presumably introduced in writing/compiling these notes. 6 | 7 | Formatting is largely through LaTeX's `extarticle` class, with some additions from the included `intcheetsheet.sty` package (and its dependencies). 8 | 9 | 10 | # Use, licensing, copyrights, etc. 11 | 12 | I (Luke Stein) am not sure exactly what legal rights (including copyrights) I have in this work, but I reserve those rights. 13 | 14 | Please do not distribute or otherwise make available any derivative works without my permission, with the following exception: 15 | you are welcome to use the `intcheetsheet.sty` package to emulate the style of my notes with your own summaries of other material. 16 | If you do produce your own notes in the style of mine, I would appreciate (though don't require) that they briefly acknowledge me by name and with a link to my website ([lukestein.com](http://lukestein.com)). 17 | Please also let me know; I'd love to see what you've done! 18 | -------------------------------------------------------------------------------- /Statistical table Excel files/Normal and Chi-squared tables zero margins.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/Statistical table Excel files/Normal and Chi-squared tables zero margins.xls -------------------------------------------------------------------------------- /Statistical table Excel files/Normal and Chi-squared tables.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/Statistical table Excel files/Normal and Chi-squared tables.pdf -------------------------------------------------------------------------------- /Statistical table Excel files/Normal and Chi-squared tables.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/Statistical table Excel files/Normal and Chi-squared tables.xls -------------------------------------------------------------------------------- /images/cv1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv1.pdf -------------------------------------------------------------------------------- /images/cv2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv2.pdf -------------------------------------------------------------------------------- /images/cv3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv3.pdf -------------------------------------------------------------------------------- /images/cv4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv4.pdf -------------------------------------------------------------------------------- /images/cv5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv5.pdf -------------------------------------------------------------------------------- /images/cv6.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv6.pdf -------------------------------------------------------------------------------- /images/cv7.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/cv7.pdf -------------------------------------------------------------------------------- /images/equil.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-2.0 EPSF-2.0 2 | %%Title: C:\Documents and Settings\AdminBain\Desktop\equil.fig 3 | %%Creator: fig2dev.exe Version 3.2 Patchlevel 5-alpha7 4 | %%CreationDate: Sun Mar 18 12:14:17 2007 5 | %%For: Administrator@LUKE-LAPTOP (LUKE-LAPTOP) 6 | %%BoundingBox: 0 0 143 104 7 | %Magnification: 1.0000 8 | %%EndComments 9 | /$F2psDict 200 dict def 10 | $F2psDict begin 11 | $F2psDict /mtrx matrix put 12 | /col-1 {0 setgray} bind def 13 | /col0 {0.000 0.000 0.000 srgb} bind def 14 | /col1 {0.000 0.000 1.000 srgb} bind def 15 | /col2 {0.000 1.000 0.000 srgb} bind def 16 | /col3 {0.000 1.000 1.000 srgb} bind def 17 | /col4 {1.000 0.000 0.000 srgb} bind def 18 | /col5 {1.000 0.000 1.000 srgb} bind def 19 | /col6 {1.000 1.000 0.000 srgb} bind def 20 | /col7 {1.000 1.000 1.000 srgb} bind def 21 | /col8 {0.000 0.000 0.560 srgb} bind def 22 | /col9 {0.000 0.000 0.690 srgb} bind def 23 | /col10 {0.000 0.000 0.820 srgb} bind def 24 | /col11 {0.530 0.810 1.000 srgb} bind def 25 | /col12 {0.000 0.560 0.000 srgb} bind def 26 | /col13 {0.000 0.690 0.000 srgb} bind def 27 | /col14 {0.000 0.820 0.000 srgb} bind def 28 | /col15 {0.000 0.560 0.560 srgb} bind def 29 | /col16 {0.000 0.690 0.690 srgb} bind def 30 | /col17 {0.000 0.820 0.820 srgb} bind def 31 | /col18 {0.560 0.000 0.000 srgb} bind def 32 | /col19 {0.690 0.000 0.000 srgb} bind def 33 | /col20 {0.820 0.000 0.000 srgb} bind def 34 | /col21 {0.560 0.000 0.560 srgb} bind def 35 | /col22 {0.690 0.000 0.690 srgb} bind def 36 | /col23 {0.820 0.000 0.820 srgb} bind def 37 | /col24 {0.500 0.190 0.000 srgb} bind def 38 | /col25 {0.630 0.250 0.000 srgb} bind def 39 | /col26 {0.750 0.380 0.000 srgb} bind def 40 | /col27 {1.000 0.500 0.500 srgb} bind def 41 | /col28 {1.000 0.630 0.630 srgb} bind def 42 | /col29 {1.000 0.750 0.750 srgb} bind def 43 | /col30 {1.000 0.880 0.880 srgb} bind def 44 | /col31 {1.000 0.840 0.000 srgb} bind def 45 | 46 | end 47 | save 48 | newpath 0 104 moveto 0 0 lineto 143 0 lineto 143 104 lineto closepath clip newpath 49 | -0.7 103.9 translate 50 | 1 -1 scale 51 | 52 | /cp {closepath} bind def 53 | /ef {eofill} bind def 54 | /gr {grestore} bind def 55 | /gs {gsave} bind def 56 | /sa {save} bind def 57 | /rs {restore} bind def 58 | /l {lineto} bind def 59 | /m {moveto} bind def 60 | /rm {rmoveto} bind def 61 | /n {newpath} bind def 62 | /s {stroke} bind def 63 | /sh {show} bind def 64 | /slc {setlinecap} bind def 65 | /slj {setlinejoin} bind def 66 | /slw {setlinewidth} bind def 67 | /srgb {setrgbcolor} bind def 68 | /rot {rotate} bind def 69 | /sc {scale} bind def 70 | /sd {setdash} bind def 71 | /ff {findfont} bind def 72 | /sf {setfont} bind def 73 | /scf {scalefont} bind def 74 | /sw {stringwidth} bind def 75 | /tr {translate} bind def 76 | /tnt {dup dup currentrgbcolor 77 | 4 -2 roll dup 1 exch sub 3 -1 roll mul add 78 | 4 -2 roll dup 1 exch sub 3 -1 roll mul add 79 | 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} 80 | bind def 81 | /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 82 | 4 -2 roll mul srgb} bind def 83 | /DrawEllipse { 84 | /endangle exch def 85 | /startangle exch def 86 | /yrad exch def 87 | /xrad exch def 88 | /y exch def 89 | /x exch def 90 | /savematrix mtrx currentmatrix def 91 | x y tr xrad yrad sc 0 0 1 startangle endangle arc 92 | closepath 93 | savematrix setmatrix 94 | } def 95 | 96 | /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def 97 | /$F2psEnd {$F2psEnteredState restore end} def 98 | 99 | $F2psBegin 100 | 10 setmiterlimit 101 | 0 slj 0 slc 102 | 0.06000 0.06000 sc 103 | % 104 | % Fig objects follow 105 | % 106 | % 107 | % here starts figure with depth 50 108 | % Ellipse 109 | 7.500 slw 110 | n 952 939 573 573 0 360 DrawEllipse gs col0 s gr 111 | 112 | % Ellipse 113 | n 1466 939 573 573 0 360 DrawEllipse gs col0 s gr 114 | 115 | % Ellipse 116 | n 1196 872 1176 851 0 360 DrawEllipse gs col0 s gr 117 | 118 | % Ellipse 119 | n 1211 1095 239 239 0 360 DrawEllipse gs col0 s gr 120 | 121 | % Ellipse 122 | n 1211 1165 171 117 0 360 DrawEllipse gs col0 s gr 123 | 124 | /Helvetica-Narrow-Oblique ff 135.00 scf sf 125 | 539 683 m 126 | gs 1 -1 sc (WPBE) col0 sh gr 127 | /Helvetica-Narrow-Oblique ff 135.00 scf sf 128 | 1489 683 m 129 | gs 1 -1 sc (SPNE) col0 sh gr 130 | /Helvetica-Narrow-Oblique ff 135.00 scf sf 131 | 1018 244 m 132 | gs 1 -1 sc (MSNE) col0 sh gr 133 | /Helvetica-Narrow-Oblique ff 135.00 scf sf 134 | 1077 771 m 135 | gs 1 -1 sc (PBE) col0 sh gr 136 | /Helvetica-Narrow-Oblique ff 135.00 scf sf 137 | 1121 1013 m 138 | gs 1 -1 sc (SE) col0 sh gr 139 | /Helvetica-Narrow-Oblique ff 105.00 scf sf 140 | 1112 1184 m 141 | gs 1 -1 sc (EFT) col0 sh gr 142 | /Helvetica-Narrow-Oblique ff 105.00 scf sf 143 | 1103 1265 m 144 | gs 1 -1 sc (HPE) col0 sh gr 145 | % here ends figure; 146 | $F2psEnd 147 | rs 148 | showpage 149 | %%Trailer 150 | %EOF 151 | -------------------------------------------------------------------------------- /images/equil.fig: -------------------------------------------------------------------------------- 1 | #FIG 3.2 Produced by WinFIG version 1.74.0 2 | Portrait 3 | Flush left 4 | Metric 5 | A4 6 | 100.00 7 | Single 8 | -2 9 | 1200 2 10 | 1 3 0 1 0 7 50 0 -1 4.000 1 0.0000 952 939 573 573 952 939 1252 1427 11 | 1 3 0 1 0 7 50 0 -1 4.000 1 0.0000 1466 939 573 573 1466 939 1766 1427 12 | 1 1 0 1 0 7 50 0 -1 4.000 1 0.0000 1196 872 1176 851 1196 872 2371 1722 13 | 1 3 0 1 0 7 50 0 -1 4.000 1 0.0000 1211 1095 239 239 1211 1095 1386 1258 14 | 1 1 0 1 0 7 50 0 -1 4.000 1 0.0000 1211 1165 171 117 1211 1165 1381 1049 15 | 4 0 0 50 0 21 9 0.0000 4 154 416 539 683 WPBE\001 16 | 4 0 0 50 0 21 9 0.0000 4 154 372 1489 683 SPNE\001 17 | 4 0 0 50 0 21 9 0.0000 4 154 390 1018 244 MSNE\001 18 | 4 0 0 50 0 21 9 0.0000 4 154 276 1077 771 PBE\001 19 | 4 0 0 50 0 21 9 0.0000 4 154 184 1121 1013 SE\001 20 | 4 0 0 50 0 21 7 0.0000 4 119 197 1112 1184 EFT\001 21 | 4 0 0 50 0 21 7 0.0000 4 119 215 1103 1265 HPE\001 22 | -------------------------------------------------------------------------------- /images/equil.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/equil.pdf -------------------------------------------------------------------------------- /images/gamma.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-2.0 EPSF-2.0 2 | %%Title: E:/lstein/windowsmydocs/Current/Stanford/Metrics/Cheat sheet/gamma.eps 3 | %%Creator: gnuplot 4.0 patchlevel 0 4 | %%CreationDate: Thu Sep 21 11:02:20 2006 5 | %%DocumentFonts: (atend) 6 | %%BoundingBox: 50 50 590 428 7 | %%Orientation: Portrait 8 | %%EndComments 9 | /gnudict 256 dict def 10 | gnudict begin 11 | /Color true def 12 | /Solid true def 13 | /gnulinewidth 5.000 def 14 | /userlinewidth gnulinewidth def 15 | /vshift -80 def 16 | /dl {10.0 mul} def 17 | /hpt_ 31.5 def 18 | /vpt_ 31.5 def 19 | /hpt hpt_ def 20 | /vpt vpt_ def 21 | /Rounded false def 22 | /M {moveto} bind def 23 | /L {lineto} bind def 24 | /R {rmoveto} bind def 25 | /V {rlineto} bind def 26 | /N {newpath moveto} bind def 27 | /C {setrgbcolor} bind def 28 | /f {rlineto fill} bind def 29 | /vpt2 vpt 2 mul def 30 | /hpt2 hpt 2 mul def 31 | /Lshow { currentpoint stroke M 32 | 0 vshift R show } def 33 | /Rshow { currentpoint stroke M 34 | dup stringwidth pop neg vshift R show } def 35 | /Cshow { currentpoint stroke M 36 | dup stringwidth pop -2 div vshift R show } def 37 | /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def 38 | /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def 39 | /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } 40 | {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def 41 | /BL { stroke userlinewidth 2 mul setlinewidth 42 | Rounded { 1 setlinejoin 1 setlinecap } if } def 43 | /AL { stroke userlinewidth 2 div setlinewidth 44 | Rounded { 1 setlinejoin 1 setlinecap } if } def 45 | /UL { dup gnulinewidth mul /userlinewidth exch def 46 | dup 1 lt {pop 1} if 10 mul /udl exch def } def 47 | /PL { stroke userlinewidth setlinewidth 48 | Rounded { 1 setlinejoin 1 setlinecap } if } def 49 | /LTw { PL [] 1 setgray } def 50 | /LTb { BL [] 0 0 0 DL } def 51 | /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def 52 | /LT0 { PL [] 1 0 0 DL } def 53 | /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def 54 | /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def 55 | /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def 56 | /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def 57 | /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def 58 | /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def 59 | /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def 60 | /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def 61 | /Pnt { stroke [] 0 setdash 62 | gsave 1 setlinecap M 0 0 V stroke grestore } def 63 | /Dia { stroke [] 0 setdash 2 copy vpt add M 64 | hpt neg vpt neg V hpt vpt neg V 65 | hpt vpt V hpt neg vpt V closepath stroke 66 | Pnt } def 67 | /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V 68 | currentpoint stroke M 69 | hpt neg vpt neg R hpt2 0 V stroke 70 | } def 71 | /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 72 | 0 vpt2 neg V hpt2 0 V 0 vpt2 V 73 | hpt2 neg 0 V closepath stroke 74 | Pnt } def 75 | /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M 76 | hpt2 vpt2 neg V currentpoint stroke M 77 | hpt2 neg 0 R hpt2 vpt2 V stroke } def 78 | /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M 79 | hpt neg vpt -1.62 mul V 80 | hpt 2 mul 0 V 81 | hpt neg vpt 1.62 mul V closepath stroke 82 | Pnt } def 83 | /Star { 2 copy Pls Crs } def 84 | /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 85 | 0 vpt2 neg V hpt2 0 V 0 vpt2 V 86 | hpt2 neg 0 V closepath fill } def 87 | /TriUF { stroke [] 0 setdash vpt 1.12 mul add M 88 | hpt neg vpt -1.62 mul V 89 | hpt 2 mul 0 V 90 | hpt neg vpt 1.62 mul V closepath fill } def 91 | /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M 92 | hpt neg vpt 1.62 mul V 93 | hpt 2 mul 0 V 94 | hpt neg vpt -1.62 mul V closepath stroke 95 | Pnt } def 96 | /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M 97 | hpt neg vpt 1.62 mul V 98 | hpt 2 mul 0 V 99 | hpt neg vpt -1.62 mul V closepath fill} def 100 | /DiaF { stroke [] 0 setdash vpt add M 101 | hpt neg vpt neg V hpt vpt neg V 102 | hpt vpt V hpt neg vpt V closepath fill } def 103 | /Pent { stroke [] 0 setdash 2 copy gsave 104 | translate 0 hpt M 4 {72 rotate 0 hpt L} repeat 105 | closepath stroke grestore Pnt } def 106 | /PentF { stroke [] 0 setdash gsave 107 | translate 0 hpt M 4 {72 rotate 0 hpt L} repeat 108 | closepath fill grestore } def 109 | /Circle { stroke [] 0 setdash 2 copy 110 | hpt 0 360 arc stroke Pnt } def 111 | /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def 112 | /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def 113 | /C1 { BL [] 0 setdash 2 copy moveto 114 | 2 copy vpt 0 90 arc closepath fill 115 | vpt 0 360 arc closepath } bind def 116 | /C2 { BL [] 0 setdash 2 copy moveto 117 | 2 copy vpt 90 180 arc closepath fill 118 | vpt 0 360 arc closepath } bind def 119 | /C3 { BL [] 0 setdash 2 copy moveto 120 | 2 copy vpt 0 180 arc closepath fill 121 | vpt 0 360 arc closepath } bind def 122 | /C4 { BL [] 0 setdash 2 copy moveto 123 | 2 copy vpt 180 270 arc closepath fill 124 | vpt 0 360 arc closepath } bind def 125 | /C5 { BL [] 0 setdash 2 copy moveto 126 | 2 copy vpt 0 90 arc 127 | 2 copy moveto 128 | 2 copy vpt 180 270 arc closepath fill 129 | vpt 0 360 arc } bind def 130 | /C6 { BL [] 0 setdash 2 copy moveto 131 | 2 copy vpt 90 270 arc closepath fill 132 | vpt 0 360 arc closepath } bind def 133 | /C7 { BL [] 0 setdash 2 copy moveto 134 | 2 copy vpt 0 270 arc closepath fill 135 | vpt 0 360 arc closepath } bind def 136 | /C8 { BL [] 0 setdash 2 copy moveto 137 | 2 copy vpt 270 360 arc closepath fill 138 | vpt 0 360 arc closepath } bind def 139 | /C9 { BL [] 0 setdash 2 copy moveto 140 | 2 copy vpt 270 450 arc closepath fill 141 | vpt 0 360 arc closepath } bind def 142 | /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 143 | 2 copy moveto 144 | 2 copy vpt 90 180 arc closepath fill 145 | vpt 0 360 arc closepath } bind def 146 | /C11 { BL [] 0 setdash 2 copy moveto 147 | 2 copy vpt 0 180 arc closepath fill 148 | 2 copy moveto 149 | 2 copy vpt 270 360 arc closepath fill 150 | vpt 0 360 arc closepath } bind def 151 | /C12 { BL [] 0 setdash 2 copy moveto 152 | 2 copy vpt 180 360 arc closepath fill 153 | vpt 0 360 arc closepath } bind def 154 | /C13 { BL [] 0 setdash 2 copy moveto 155 | 2 copy vpt 0 90 arc closepath fill 156 | 2 copy moveto 157 | 2 copy vpt 180 360 arc closepath fill 158 | vpt 0 360 arc closepath } bind def 159 | /C14 { BL [] 0 setdash 2 copy moveto 160 | 2 copy vpt 90 360 arc closepath fill 161 | vpt 0 360 arc } bind def 162 | /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill 163 | vpt 0 360 arc closepath } bind def 164 | /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto 165 | neg 0 rlineto closepath } bind def 166 | /Square { dup Rec } bind def 167 | /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def 168 | /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def 169 | /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def 170 | /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def 171 | /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def 172 | /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def 173 | /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill 174 | exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def 175 | /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def 176 | /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 177 | 2 copy vpt Square fill 178 | Bsquare } bind def 179 | /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def 180 | /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def 181 | /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill 182 | Bsquare } bind def 183 | /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill 184 | Bsquare } bind def 185 | /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def 186 | /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 187 | 2 copy vpt Square fill Bsquare } bind def 188 | /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 189 | 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def 190 | /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def 191 | /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def 192 | /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def 193 | /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def 194 | /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def 195 | /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def 196 | /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def 197 | /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def 198 | /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def 199 | /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def 200 | /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def 201 | /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def 202 | /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def 203 | /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def 204 | /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def 205 | /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def 206 | /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def 207 | /DiaE { stroke [] 0 setdash vpt add M 208 | hpt neg vpt neg V hpt vpt neg V 209 | hpt vpt V hpt neg vpt V closepath stroke } def 210 | /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 211 | 0 vpt2 neg V hpt2 0 V 0 vpt2 V 212 | hpt2 neg 0 V closepath stroke } def 213 | /TriUE { stroke [] 0 setdash vpt 1.12 mul add M 214 | hpt neg vpt -1.62 mul V 215 | hpt 2 mul 0 V 216 | hpt neg vpt 1.62 mul V closepath stroke } def 217 | /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M 218 | hpt neg vpt 1.62 mul V 219 | hpt 2 mul 0 V 220 | hpt neg vpt -1.62 mul V closepath stroke } def 221 | /PentE { stroke [] 0 setdash gsave 222 | translate 0 hpt M 4 {72 rotate 0 hpt L} repeat 223 | closepath stroke grestore } def 224 | /CircE { stroke [] 0 setdash 225 | hpt 0 360 arc stroke } def 226 | /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def 227 | /DiaW { stroke [] 0 setdash vpt add M 228 | hpt neg vpt neg V hpt vpt neg V 229 | hpt vpt V hpt neg vpt V Opaque stroke } def 230 | /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 231 | 0 vpt2 neg V hpt2 0 V 0 vpt2 V 232 | hpt2 neg 0 V Opaque stroke } def 233 | /TriUW { stroke [] 0 setdash vpt 1.12 mul add M 234 | hpt neg vpt -1.62 mul V 235 | hpt 2 mul 0 V 236 | hpt neg vpt 1.62 mul V Opaque stroke } def 237 | /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M 238 | hpt neg vpt 1.62 mul V 239 | hpt 2 mul 0 V 240 | hpt neg vpt -1.62 mul V Opaque stroke } def 241 | /PentW { stroke [] 0 setdash gsave 242 | translate 0 hpt M 4 {72 rotate 0 hpt L} repeat 243 | Opaque stroke grestore } def 244 | /CircW { stroke [] 0 setdash 245 | hpt 0 360 arc Opaque stroke } def 246 | /BoxFill { gsave Rec 1 setgray fill grestore } def 247 | /BoxColFill { 248 | gsave Rec 249 | /Fillden exch def 250 | currentrgbcolor 251 | /ColB exch def /ColG exch def /ColR exch def 252 | /ColR ColR Fillden mul Fillden sub 1 add def 253 | /ColG ColG Fillden mul Fillden sub 1 add def 254 | /ColB ColB Fillden mul Fillden sub 1 add def 255 | ColR ColG ColB setrgbcolor 256 | fill grestore } def 257 | % 258 | % PostScript Level 1 Pattern Fill routine 259 | % Usage: x y w h s a XX PatternFill 260 | % x,y = lower left corner of box to be filled 261 | % w,h = width and height of box 262 | % a = angle in degrees between lines and x-axis 263 | % XX = 0/1 for no/yes cross-hatch 264 | % 265 | /PatternFill { gsave /PFa [ 9 2 roll ] def 266 | PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate 267 | PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec 268 | gsave 1 setgray fill grestore clip 269 | currentlinewidth 0.5 mul setlinewidth 270 | /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 271 | 0 0 M PFa 5 get rotate PFs -2 div dup translate 272 | 0 1 PFs PFa 4 get div 1 add floor cvi 273 | { PFa 4 get mul 0 M 0 PFs V } for 274 | 0 PFa 6 get ne { 275 | 0 1 PFs PFa 4 get div 1 add floor cvi 276 | { PFa 4 get mul 0 2 1 roll M PFs 0 V } for 277 | } if 278 | stroke grestore } def 279 | % 280 | /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont 281 | dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall 282 | currentdict end definefont pop 283 | /MFshow { 284 | { dup 5 get 3 ge 285 | { 5 get 3 eq {gsave} {grestore} ifelse } 286 | {dup dup 0 get findfont exch 1 get scalefont setfont 287 | [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 288 | get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq 289 | {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 290 | get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div 291 | dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get 292 | show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop 293 | pop aload pop M} ifelse }ifelse }ifelse } 294 | ifelse } 295 | forall} bind def 296 | /MFwidth {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont 297 | setfont 6 get stringwidth pop add} {pop} ifelse} forall} bind def 298 | /MLshow { currentpoint stroke M 299 | 0 exch R MFshow } bind def 300 | /MRshow { currentpoint stroke M 301 | exch dup MFwidth neg 3 -1 roll R MFshow } def 302 | /MCshow { currentpoint stroke M 303 | exch dup MFwidth -2 div 3 -1 roll R MFshow } def 304 | end 305 | %%EndProlog 306 | gnudict begin 307 | gsave 308 | 50 50 translate 309 | 0.050 0.050 scale 310 | 0 setgray 311 | newpath 312 | (Helvetica) findfont 240 scalefont setfont 313 | 1.000 UL 314 | LTb 315 | 840 480 M 316 | 63 0 V 317 | 9489 0 R 318 | -63 0 V 319 | stroke 320 | 696 480 M 321 | [ [(Helvetica) 240.0 0.0 true true 0 (-20)] 322 | ] -80.0 MRshow 323 | 1.000 UL 324 | LTb 325 | 840 1329 M 326 | 63 0 V 327 | 9489 0 R 328 | -63 0 V 329 | stroke 330 | 696 1329 M 331 | [ [(Helvetica) 240.0 0.0 true true 0 (-15)] 332 | ] -80.0 MRshow 333 | 1.000 UL 334 | LTb 335 | 840 2178 M 336 | 63 0 V 337 | 9489 0 R 338 | -63 0 V 339 | stroke 340 | 696 2178 M 341 | [ [(Helvetica) 240.0 0.0 true true 0 (-10)] 342 | ] -80.0 MRshow 343 | 1.000 UL 344 | LTb 345 | 840 3027 M 346 | 63 0 V 347 | 9489 0 R 348 | -63 0 V 349 | stroke 350 | 696 3027 M 351 | [ [(Helvetica) 240.0 0.0 true true 0 (-5)] 352 | ] -80.0 MRshow 353 | 1.000 UL 354 | LTb 355 | 840 3876 M 356 | 63 0 V 357 | 9489 0 R 358 | -63 0 V 359 | stroke 360 | 696 3876 M 361 | [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] 362 | ] -80.0 MRshow 363 | 1.000 UL 364 | LTb 365 | 840 4725 M 366 | 63 0 V 367 | 9489 0 R 368 | -63 0 V 369 | stroke 370 | 696 4725 M 371 | [ [(Helvetica) 240.0 0.0 true true 0 ( 5)] 372 | ] -80.0 MRshow 373 | 1.000 UL 374 | LTb 375 | 840 5574 M 376 | 63 0 V 377 | 9489 0 R 378 | -63 0 V 379 | stroke 380 | 696 5574 M 381 | [ [(Helvetica) 240.0 0.0 true true 0 ( 10)] 382 | ] -80.0 MRshow 383 | 1.000 UL 384 | LTb 385 | 840 6423 M 386 | 63 0 V 387 | 9489 0 R 388 | -63 0 V 389 | stroke 390 | 696 6423 M 391 | [ [(Helvetica) 240.0 0.0 true true 0 ( 15)] 392 | ] -80.0 MRshow 393 | 1.000 UL 394 | LTb 395 | 840 7272 M 396 | 63 0 V 397 | 9489 0 R 398 | -63 0 V 399 | stroke 400 | 696 7272 M 401 | [ [(Helvetica) 240.0 0.0 true true 0 ( 20)] 402 | ] -80.0 MRshow 403 | 1.000 UL 404 | LTb 405 | 1795 480 M 406 | 0 63 V 407 | 0 6729 R 408 | 0 -63 V 409 | stroke 410 | 1795 240 M 411 | [ [(Helvetica) 240.0 0.0 true true 0 (-4)] 412 | ] -80.0 MCshow 413 | 1.000 UL 414 | LTb 415 | 3706 480 M 416 | 0 63 V 417 | 0 6729 R 418 | 0 -63 V 419 | stroke 420 | 3706 240 M 421 | [ [(Helvetica) 240.0 0.0 true true 0 (-2)] 422 | ] -80.0 MCshow 423 | 1.000 UL 424 | LTb 425 | 5616 480 M 426 | 0 63 V 427 | 0 6729 R 428 | 0 -63 V 429 | stroke 430 | 5616 240 M 431 | [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] 432 | ] -80.0 MCshow 433 | 1.000 UL 434 | LTb 435 | 7526 480 M 436 | 0 63 V 437 | 0 6729 R 438 | 0 -63 V 439 | stroke 440 | 7526 240 M 441 | [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] 442 | ] -80.0 MCshow 443 | 1.000 UL 444 | LTb 445 | 9437 480 M 446 | 0 63 V 447 | 0 6729 R 448 | 0 -63 V 449 | stroke 450 | 9437 240 M 451 | [ [(Helvetica) 240.0 0.0 true true 0 ( 4)] 452 | ] -80.0 MCshow 453 | 1.000 UL 454 | LTb 455 | 1.000 UL 456 | LTa 457 | 840 3876 M 458 | 9552 0 V 459 | 1.000 UL 460 | LTa 461 | 5616 480 M 462 | 0 6792 V 463 | 1.000 UL 464 | LTb 465 | 840 480 M 466 | 9552 0 V 467 | 0 6792 V 468 | -9552 0 V 469 | 840 480 L 470 | 1.000 UP 471 | 1.000 UL 472 | LT2 473 | LTb 474 | 9321 7089 M 475 | [ [(Helvetica) 240.0 0.0 true true 0 (gamma\(x\))] 476 | ] -80.0 MRshow 477 | LT2 478 | 9465 7089 M 479 | 639 0 V 480 | 840 976 M 481 | 1 483 V 482 | 0 345 V 483 | 0 258 V 484 | 0 363 V 485 | 0 241 V 486 | 0 173 V 487 | 0 129 V 488 | 1 181 V 489 | 0 121 V 490 | 1 86 V 491 | 0 65 V 492 | 1 90 V 493 | 0 61 V 494 | 1 43 V 495 | 1 32 V 496 | 1 45 V 497 | 2 31 V 498 | 1 21 V 499 | 2 16 V 500 | 3 23 V 501 | 3 15 V 502 | 3 11 V 503 | 3 8 V 504 | 6 11 V 505 | 6 8 V 506 | 6 5 V 507 | 6 4 V 508 | 12 6 V 509 | 12 3 V 510 | 12 3 V 511 | 12 2 V 512 | 3 0 V 513 | 2 1 V 514 | 3 0 V 515 | 3 0 V 516 | 3 1 V 517 | 3 0 V 518 | 3 0 V 519 | 3 1 V 520 | 3 0 V 521 | 3 0 V 522 | 3 0 V 523 | 3 1 V 524 | 3 0 V 525 | 3 0 V 526 | 3 0 V 527 | 3 0 V 528 | 3 1 V 529 | 3 0 V 530 | 3 0 V 531 | 3 0 V 532 | 3 0 V 533 | 3 0 V 534 | 3 0 V 535 | 3 1 V 536 | 3 0 V 537 | 3 0 V 538 | 3 0 V 539 | 3 0 V 540 | 3 0 V 541 | 3 0 V 542 | 3 0 V 543 | 3 0 V 544 | 3 0 V 545 | 3 1 V 546 | 3 0 V 547 | 3 0 V 548 | 3 0 V 549 | 3 0 V 550 | 3 0 V 551 | 3 0 V 552 | 3 0 V 553 | 3 0 V 554 | 3 0 V 555 | 3 0 V 556 | 3 0 V 557 | 3 0 V 558 | 3 0 V 559 | 3 0 V 560 | 3 0 V 561 | 3 1 V 562 | 3 0 V 563 | 3 0 V 564 | 3 0 V 565 | 3 0 V 566 | 3 0 V 567 | 3 0 V 568 | 3 0 V 569 | 3 0 V 570 | 3 0 V 571 | 3 0 V 572 | 3 0 V 573 | 3 0 V 574 | 3 0 V 575 | 3 0 V 576 | 3 0 V 577 | 3 0 V 578 | 3 0 V 579 | 3 0 V 580 | 2 0 V 581 | 3 0 V 582 | 3 0 V 583 | stroke 584 | 1147 3867 M 585 | 3 0 V 586 | 3 0 V 587 | 3 0 V 588 | 3 0 V 589 | 3 0 V 590 | 2 0 V 591 | 1 0 V 592 | 2 0 V 593 | 1 0 V 594 | 2 0 V 595 | 1 0 V 596 | 2 0 V 597 | 1 0 V 598 | 3 0 V 599 | 3 0 V 600 | 3 0 V 601 | 3 0 V 602 | 3 0 V 603 | 3 0 V 604 | 3 0 V 605 | 3 0 V 606 | 6 0 V 607 | 6 0 V 608 | 6 0 V 609 | 6 0 V 610 | 6 0 V 611 | 6 0 V 612 | 6 0 V 613 | 6 0 V 614 | 6 0 V 615 | 6 0 V 616 | 6 0 V 617 | 6 -1 V 618 | 6 0 V 619 | 6 0 V 620 | 6 0 V 621 | 6 0 V 622 | 6 0 V 623 | 6 0 V 624 | 6 0 V 625 | 6 0 V 626 | 6 0 V 627 | 6 0 V 628 | 6 -1 V 629 | 5 0 V 630 | 3 0 V 631 | 3 0 V 632 | 3 0 V 633 | 3 0 V 634 | 3 0 V 635 | 3 0 V 636 | 3 0 V 637 | 3 0 V 638 | 3 0 V 639 | 3 0 V 640 | 3 0 V 641 | 3 0 V 642 | 3 -1 V 643 | 3 0 V 644 | 3 0 V 645 | 3 0 V 646 | 3 0 V 647 | 3 0 V 648 | 3 0 V 649 | 3 0 V 650 | 3 0 V 651 | 3 0 V 652 | 3 0 V 653 | 3 -1 V 654 | 3 0 V 655 | 3 0 V 656 | 3 0 V 657 | 3 0 V 658 | 3 0 V 659 | 3 0 V 660 | 3 0 V 661 | 3 0 V 662 | 3 -1 V 663 | 3 0 V 664 | 3 0 V 665 | 3 0 V 666 | 3 0 V 667 | 3 0 V 668 | 3 0 V 669 | 3 -1 V 670 | 3 0 V 671 | 3 0 V 672 | 3 0 V 673 | 3 0 V 674 | 3 0 V 675 | 3 0 V 676 | 3 -1 V 677 | 3 0 V 678 | 3 0 V 679 | 3 0 V 680 | 3 0 V 681 | 3 -1 V 682 | 3 0 V 683 | 3 0 V 684 | 3 0 V 685 | 3 0 V 686 | 3 -1 V 687 | 3 0 V 688 | 3 0 V 689 | stroke 690 | 1518 3858 M 691 | 3 0 V 692 | 3 0 V 693 | 3 -1 V 694 | 3 0 V 695 | 3 0 V 696 | 3 0 V 697 | 2 -1 V 698 | 3 0 V 699 | 3 0 V 700 | 3 -1 V 701 | 3 0 V 702 | 3 0 V 703 | 3 0 V 704 | 3 -1 V 705 | 3 0 V 706 | 3 0 V 707 | 3 -1 V 708 | 3 0 V 709 | 3 0 V 710 | 3 -1 V 711 | 3 0 V 712 | 3 -1 V 713 | 3 0 V 714 | 3 0 V 715 | 3 -1 V 716 | 3 0 V 717 | 3 -1 V 718 | 3 0 V 719 | 3 -1 V 720 | 3 0 V 721 | 3 -1 V 722 | 3 0 V 723 | 3 -1 V 724 | 3 -1 V 725 | 3 0 V 726 | 3 -1 V 727 | 3 -1 V 728 | 3 0 V 729 | 3 -1 V 730 | 3 -1 V 731 | 3 -1 V 732 | 3 0 V 733 | 3 -1 V 734 | 3 -1 V 735 | 3 -1 V 736 | 1 0 V 737 | 2 -1 V 738 | 1 0 V 739 | 2 -1 V 740 | 1 0 V 741 | 2 -1 V 742 | 1 -1 V 743 | 2 0 V 744 | 1 -1 V 745 | 2 0 V 746 | 1 -1 V 747 | 2 0 V 748 | 1 -1 V 749 | 2 -1 V 750 | 1 0 V 751 | 2 -1 V 752 | 1 -1 V 753 | 2 0 V 754 | 1 -1 V 755 | 2 -1 V 756 | 1 -1 V 757 | 2 0 V 758 | 1 -1 V 759 | 2 -1 V 760 | 1 -1 V 761 | 2 -1 V 762 | 1 -1 V 763 | 2 -1 V 764 | 1 -1 V 765 | 2 -1 V 766 | 1 -1 V 767 | 2 -1 V 768 | 1 -1 V 769 | 2 -1 V 770 | 1 -1 V 771 | 2 -1 V 772 | 1 -2 V 773 | 2 -1 V 774 | 1 -1 V 775 | 2 -2 V 776 | 1 -1 V 777 | 2 -2 V 778 | 1 -1 V 779 | 2 -2 V 780 | 1 -2 V 781 | 2 -1 V 782 | 1 -2 V 783 | 2 -2 V 784 | 1 -2 V 785 | 2 -2 V 786 | 1 -2 V 787 | 2 -2 V 788 | 1 -3 V 789 | 2 -2 V 790 | 1 -3 V 791 | 2 -3 V 792 | 1 -3 V 793 | 1 -3 V 794 | 2 -3 V 795 | stroke 796 | 1740 3763 M 797 | 1 -3 V 798 | 2 -4 V 799 | 1 -3 V 800 | 2 -4 V 801 | 1 -5 V 802 | 1 -2 V 803 | 1 -2 V 804 | 1 -3 V 805 | 0 -2 V 806 | 1 -3 V 807 | 1 -2 V 808 | 1 -3 V 809 | 0 -3 V 810 | 1 -3 V 811 | 1 -3 V 812 | 1 -3 V 813 | 0 -3 V 814 | 1 -4 V 815 | 1 -3 V 816 | 1 -4 V 817 | 0 -4 V 818 | 1 -4 V 819 | 1 -4 V 820 | 1 -4 V 821 | 0 -5 V 822 | 1 -5 V 823 | 1 -5 V 824 | 1 -5 V 825 | 0 -5 V 826 | 1 -6 V 827 | 1 -6 V 828 | 1 -7 V 829 | 0 -6 V 830 | 1 -8 V 831 | 1 -7 V 832 | 1 -8 V 833 | 0 -9 V 834 | 1 -9 V 835 | 1 -10 V 836 | 1 -10 V 837 | 0 -11 V 838 | 1 -12 V 839 | 1 -13 V 840 | 1 -14 V 841 | 0 -15 V 842 | 1 -8 V 843 | 0 -8 V 844 | 0 -9 V 845 | 1 -9 V 846 | 0 -10 V 847 | 1 -10 V 848 | 0 -10 V 849 | 0 -11 V 850 | 1 -12 V 851 | 0 -12 V 852 | 0 -13 V 853 | 1 -14 V 854 | 0 -14 V 855 | 1 -15 V 856 | 0 -16 V 857 | 0 -18 V 858 | 1 -18 V 859 | 0 -19 V 860 | 0 -21 V 861 | 1 -22 V 862 | 0 -24 V 863 | 0 -26 V 864 | 1 -28 V 865 | 0 -30 V 866 | 1 -33 V 867 | 0 -36 V 868 | 0 -39 V 869 | 1 -43 V 870 | 0 -48 V 871 | 0 -53 V 872 | 1 -59 V 873 | 0 -66 V 874 | 0 -37 V 875 | 1 -39 V 876 | 0 -42 V 877 | 0 -44 V 878 | 0 -48 V 879 | 0 -52 V 880 | 1 -55 V 881 | 0 -61 V 882 | 0 -65 V 883 | 0 -72 V 884 | 0 -78 V 885 | 0 -87 V 886 | 1 -95 V 887 | 0 -106 V 888 | 0 -118 V 889 | 0 -133 V 890 | 0 -151 V 891 | 1 -173 V 892 | 0 -199 V 893 | 0 -232 V 894 | 0 -131 V 895 | 0 -143 V 896 | 4 6311 R 897 | 1 -431 V 898 | 0 -323 V 899 | 1 -453 V 900 | 1 -302 V 901 | stroke 902 | 1800 5396 M 903 | 0 -216 V 904 | 1 -161 V 905 | 2 -227 V 906 | 1 -150 V 907 | 2 -108 V 908 | 1 -81 V 909 | 3 -113 V 910 | 3 -76 V 911 | 3 -53 V 912 | 3 -41 V 913 | 6 -56 V 914 | 6 -38 V 915 | 6 -27 V 916 | 6 -20 V 917 | 12 -28 V 918 | 12 -18 V 919 | 12 -14 V 920 | 12 -9 V 921 | 1 -2 V 922 | 2 -1 V 923 | 1 -1 V 924 | 2 0 V 925 | 1 -1 V 926 | 2 -1 V 927 | 1 -1 V 928 | 2 -1 V 929 | 1 -1 V 930 | 2 -1 V 931 | 1 0 V 932 | 2 -1 V 933 | 1 -1 V 934 | 2 -1 V 935 | 1 0 V 936 | 2 -1 V 937 | 1 -1 V 938 | 2 0 V 939 | 1 -1 V 940 | 2 -1 V 941 | 1 0 V 942 | 2 -1 V 943 | 1 0 V 944 | 2 -1 V 945 | 3 -1 V 946 | 3 -1 V 947 | 2 -1 V 948 | 3 -1 V 949 | 3 -1 V 950 | 3 -1 V 951 | 3 0 V 952 | 3 -1 V 953 | 3 -1 V 954 | 3 -1 V 955 | 3 0 V 956 | 3 -1 V 957 | 3 0 V 958 | 3 -1 V 959 | 3 -1 V 960 | 3 0 V 961 | 3 -1 V 962 | 3 0 V 963 | 3 -1 V 964 | 3 0 V 965 | 3 -1 V 966 | 3 0 V 967 | 3 0 V 968 | 3 -1 V 969 | 3 0 V 970 | 3 -1 V 971 | 3 0 V 972 | 3 0 V 973 | 3 -1 V 974 | 3 0 V 975 | 3 0 V 976 | 3 0 V 977 | 3 -1 V 978 | 3 0 V 979 | 3 0 V 980 | 3 -1 V 981 | 3 0 V 982 | 3 0 V 983 | 3 0 V 984 | 3 0 V 985 | 3 -1 V 986 | 3 0 V 987 | 3 0 V 988 | 3 0 V 989 | 3 0 V 990 | 3 0 V 991 | 3 -1 V 992 | 3 0 V 993 | 3 0 V 994 | 3 0 V 995 | 3 0 V 996 | 3 0 V 997 | 3 0 V 998 | 3 0 V 999 | 3 -1 V 1000 | 3 0 V 1001 | 3 0 V 1002 | 3 0 V 1003 | 3 0 V 1004 | 3 0 V 1005 | 3 0 V 1006 | 3 0 V 1007 | stroke 1008 | 2112 3918 M 1009 | 3 0 V 1010 | 3 0 V 1011 | 3 0 V 1012 | 3 0 V 1013 | 3 0 V 1014 | 3 0 V 1015 | 1 0 V 1016 | 2 0 V 1017 | 1 0 V 1018 | 1 0 V 1019 | 2 0 V 1020 | 1 0 V 1021 | 2 0 V 1022 | 1 0 V 1023 | 1 0 V 1024 | 1 0 V 1025 | 1 0 V 1026 | 1 0 V 1027 | 1 0 V 1028 | 1 0 V 1029 | 2 0 V 1030 | 1 0 V 1031 | 2 0 V 1032 | 1 0 V 1033 | 6 0 V 1034 | 6 0 V 1035 | 6 0 V 1036 | 6 0 V 1037 | 6 0 V 1038 | 6 0 V 1039 | 6 0 V 1040 | 6 0 V 1041 | 6 1 V 1042 | 6 0 V 1043 | 6 0 V 1044 | 6 0 V 1045 | 6 1 V 1046 | 6 0 V 1047 | 6 0 V 1048 | 6 0 V 1049 | 6 1 V 1050 | 6 0 V 1051 | 6 0 V 1052 | 6 1 V 1053 | 6 0 V 1054 | 6 1 V 1055 | 6 0 V 1056 | 6 1 V 1057 | 6 0 V 1058 | 6 1 V 1059 | 6 0 V 1060 | 6 1 V 1061 | 6 0 V 1062 | 6 1 V 1063 | 5 1 V 1064 | 6 0 V 1065 | 6 1 V 1066 | 6 1 V 1067 | 6 1 V 1068 | 6 0 V 1069 | 6 1 V 1070 | 6 1 V 1071 | 6 1 V 1072 | 6 1 V 1073 | 3 0 V 1074 | 3 1 V 1075 | 3 0 V 1076 | 3 1 V 1077 | 3 1 V 1078 | 3 0 V 1079 | 3 1 V 1080 | 3 0 V 1081 | 3 1 V 1082 | 3 0 V 1083 | 3 1 V 1084 | 3 1 V 1085 | 3 0 V 1086 | 3 1 V 1087 | 3 1 V 1088 | 3 0 V 1089 | 3 1 V 1090 | 3 1 V 1091 | 3 0 V 1092 | 3 1 V 1093 | 3 1 V 1094 | 3 1 V 1095 | 3 1 V 1096 | 3 0 V 1097 | 3 1 V 1098 | 3 1 V 1099 | 3 1 V 1100 | 3 1 V 1101 | 3 1 V 1102 | 3 1 V 1103 | 3 1 V 1104 | 3 1 V 1105 | 3 1 V 1106 | 3 1 V 1107 | 3 1 V 1108 | 3 1 V 1109 | 3 1 V 1110 | 3 2 V 1111 | 3 1 V 1112 | 3 1 V 1113 | stroke 1114 | 2512 3967 M 1115 | 3 1 V 1116 | 3 2 V 1117 | 3 1 V 1118 | 3 1 V 1119 | 3 2 V 1120 | 3 1 V 1121 | 2 2 V 1122 | 3 1 V 1123 | 3 2 V 1124 | 3 2 V 1125 | 3 1 V 1126 | 3 2 V 1127 | 3 2 V 1128 | 3 2 V 1129 | 3 2 V 1130 | 3 2 V 1131 | 3 2 V 1132 | 3 2 V 1133 | 3 3 V 1134 | 3 2 V 1135 | 3 2 V 1136 | 3 3 V 1137 | 3 2 V 1138 | 3 3 V 1139 | 3 3 V 1140 | 3 3 V 1141 | 3 3 V 1142 | 3 3 V 1143 | 3 3 V 1144 | 3 3 V 1145 | 3 4 V 1146 | 3 4 V 1147 | 3 4 V 1148 | 3 4 V 1149 | 3 4 V 1150 | 3 4 V 1151 | 3 5 V 1152 | 3 5 V 1153 | 3 5 V 1154 | 3 5 V 1155 | 1 3 V 1156 | 2 3 V 1157 | 1 3 V 1158 | 2 3 V 1159 | 1 3 V 1160 | 2 3 V 1161 | 1 3 V 1162 | 2 4 V 1163 | 1 3 V 1164 | 2 4 V 1165 | 1 3 V 1166 | 2 4 V 1167 | 1 4 V 1168 | 2 4 V 1169 | 1 4 V 1170 | 2 4 V 1171 | 1 5 V 1172 | 2 4 V 1173 | 1 5 V 1174 | 2 5 V 1175 | 1 5 V 1176 | 2 5 V 1177 | 1 6 V 1178 | 2 5 V 1179 | 1 6 V 1180 | 2 6 V 1181 | 1 6 V 1182 | 2 7 V 1183 | 1 6 V 1184 | 2 7 V 1185 | 1 8 V 1186 | 2 7 V 1187 | 1 8 V 1188 | 2 9 V 1189 | 1 8 V 1190 | 2 9 V 1191 | 1 10 V 1192 | 2 10 V 1193 | 1 10 V 1194 | 2 11 V 1195 | 1 12 V 1196 | 2 12 V 1197 | 1 13 V 1198 | 2 13 V 1199 | 1 14 V 1200 | 2 15 V 1201 | 1 16 V 1202 | 2 18 V 1203 | 1 18 V 1204 | 2 19 V 1205 | 1 21 V 1206 | 2 22 V 1207 | 0 12 V 1208 | 1 12 V 1209 | 1 13 V 1210 | 1 13 V 1211 | 0 13 V 1212 | 1 14 V 1213 | 1 15 V 1214 | 1 15 V 1215 | 0 16 V 1216 | 1 17 V 1217 | 1 18 V 1218 | 1 18 V 1219 | stroke 1220 | 2718 4666 M 1221 | 0 19 V 1222 | 1 20 V 1223 | 1 21 V 1224 | 1 22 V 1225 | 0 23 V 1226 | 1 25 V 1227 | 1 25 V 1228 | 1 27 V 1229 | 0 29 V 1230 | 1 31 V 1231 | 1 32 V 1232 | 1 34 V 1233 | 0 37 V 1234 | 1 38 V 1235 | 1 42 V 1236 | 1 45 V 1237 | 0 47 V 1238 | 1 52 V 1239 | 1 56 V 1240 | 0 60 V 1241 | 1 66 V 1242 | 1 71 V 1243 | 1 78 V 1244 | 0 87 V 1245 | 1 46 V 1246 | 0 49 V 1247 | 1 51 V 1248 | 0 55 V 1249 | 0 57 V 1250 | 1 61 V 1251 | 0 65 V 1252 | 0 68 V 1253 | 1 73 V 1254 | 0 78 V 1255 | 1 83 V 1256 | 0 90 V 1257 | 0 95 V 1258 | 1 104 V 1259 | 0 111 V 1260 | 0 121 V 1261 | 1 131 V 1262 | 0 143 V 1263 | 2759 821 M 1264 | 2 431 V 1265 | 1 324 V 1266 | 3 452 V 1267 | 3 302 V 1268 | 3 215 V 1269 | 3 162 V 1270 | 6 226 V 1271 | 6 150 V 1272 | 6 108 V 1273 | 6 80 V 1274 | 12 112 V 1275 | 12 75 V 1276 | 12 53 V 1277 | 12 39 V 1278 | 24 55 V 1279 | 24 35 V 1280 | 24 25 V 1281 | 23 18 V 1282 | 3 2 V 1283 | 3 1 V 1284 | 3 2 V 1285 | 3 2 V 1286 | 3 1 V 1287 | 3 2 V 1288 | 3 1 V 1289 | 3 2 V 1290 | 3 1 V 1291 | 3 1 V 1292 | 3 2 V 1293 | 3 1 V 1294 | 3 1 V 1295 | 3 1 V 1296 | 3 1 V 1297 | 3 1 V 1298 | 3 1 V 1299 | 3 1 V 1300 | 3 1 V 1301 | 3 1 V 1302 | 3 1 V 1303 | 3 1 V 1304 | 3 1 V 1305 | 3 1 V 1306 | 3 0 V 1307 | 3 1 V 1308 | 3 1 V 1309 | 3 0 V 1310 | 3 1 V 1311 | 3 1 V 1312 | 3 0 V 1313 | 3 1 V 1314 | 3 0 V 1315 | 3 1 V 1316 | 3 0 V 1317 | 3 1 V 1318 | 3 0 V 1319 | 3 1 V 1320 | 3 0 V 1321 | 3 1 V 1322 | 3 0 V 1323 | 3 0 V 1324 | 3 1 V 1325 | stroke 1326 | 3070 3723 M 1327 | 3 0 V 1328 | 3 0 V 1329 | 3 0 V 1330 | 3 1 V 1331 | 3 0 V 1332 | 3 0 V 1333 | 3 0 V 1334 | 3 0 V 1335 | 3 1 V 1336 | 3 0 V 1337 | 3 0 V 1338 | 3 0 V 1339 | 3 0 V 1340 | 3 0 V 1341 | 3 0 V 1342 | 3 0 V 1343 | 3 0 V 1344 | 3 0 V 1345 | 3 0 V 1346 | 2 0 V 1347 | 3 0 V 1348 | 6 0 V 1349 | 6 0 V 1350 | 6 -1 V 1351 | 6 0 V 1352 | 6 0 V 1353 | 6 -1 V 1354 | 6 0 V 1355 | 6 -1 V 1356 | 6 0 V 1357 | 6 -1 V 1358 | 6 -1 V 1359 | 6 -1 V 1360 | 6 0 V 1361 | 6 -1 V 1362 | 6 -1 V 1363 | 6 -2 V 1364 | 6 -1 V 1365 | 6 -1 V 1366 | 6 -1 V 1367 | 6 -1 V 1368 | 3 -1 V 1369 | 3 -1 V 1370 | 3 -1 V 1371 | 3 0 V 1372 | 3 -1 V 1373 | 3 -1 V 1374 | 3 -1 V 1375 | 3 -1 V 1376 | 3 -1 V 1377 | 3 0 V 1378 | 3 -1 V 1379 | 3 -1 V 1380 | 3 -1 V 1381 | 3 -1 V 1382 | 3 -1 V 1383 | 3 -1 V 1384 | 3 -1 V 1385 | 3 -1 V 1386 | 3 -1 V 1387 | 3 -1 V 1388 | 3 -2 V 1389 | 3 -1 V 1390 | 3 -1 V 1391 | 3 -1 V 1392 | 3 -1 V 1393 | 2 -2 V 1394 | 3 -1 V 1395 | 3 -1 V 1396 | 3 -2 V 1397 | 3 -1 V 1398 | 3 -1 V 1399 | 3 -2 V 1400 | 3 -1 V 1401 | 3 -2 V 1402 | 3 -1 V 1403 | 3 -2 V 1404 | 3 -2 V 1405 | 3 -1 V 1406 | 3 -2 V 1407 | 3 -2 V 1408 | 3 -2 V 1409 | 3 -1 V 1410 | 3 -2 V 1411 | 3 -2 V 1412 | 3 -2 V 1413 | 3 -2 V 1414 | 3 -2 V 1415 | 3 -2 V 1416 | 3 -2 V 1417 | 3 -2 V 1418 | 3 -3 V 1419 | 3 -2 V 1420 | 3 -2 V 1421 | 3 -3 V 1422 | 3 -2 V 1423 | 3 -3 V 1424 | 3 -2 V 1425 | 3 -3 V 1426 | 3 -3 V 1427 | 3 -2 V 1428 | 3 -3 V 1429 | 3 -3 V 1430 | 3 -3 V 1431 | stroke 1432 | 3440 3611 M 1433 | 3 -3 V 1434 | 3 -3 V 1435 | 3 -4 V 1436 | 3 -3 V 1437 | 3 -3 V 1438 | 3 -4 V 1439 | 3 -3 V 1440 | 3 -4 V 1441 | 3 -4 V 1442 | 3 -4 V 1443 | 3 -4 V 1444 | 3 -4 V 1445 | 3 -4 V 1446 | 3 -5 V 1447 | 3 -4 V 1448 | 3 -5 V 1449 | 3 -4 V 1450 | 3 -5 V 1451 | 3 -5 V 1452 | 3 -6 V 1453 | 3 -5 V 1454 | 3 -6 V 1455 | 3 -5 V 1456 | 3 -6 V 1457 | 3 -6 V 1458 | 3 -7 V 1459 | 3 -6 V 1460 | 3 -7 V 1461 | 3 -7 V 1462 | 2 -7 V 1463 | 3 -8 V 1464 | 3 -8 V 1465 | 3 -8 V 1466 | 3 -8 V 1467 | 3 -9 V 1468 | 3 -9 V 1469 | 3 -9 V 1470 | 3 -10 V 1471 | 3 -11 V 1472 | 3 -10 V 1473 | 3 -11 V 1474 | 2 -6 V 1475 | 1 -6 V 1476 | 2 -6 V 1477 | 1 -6 V 1478 | 2 -6 V 1479 | 1 -7 V 1480 | 2 -6 V 1481 | 1 -7 V 1482 | 2 -7 V 1483 | 1 -7 V 1484 | 2 -7 V 1485 | 1 -8 V 1486 | 2 -7 V 1487 | 1 -8 V 1488 | 2 -8 V 1489 | 1 -8 V 1490 | 2 -9 V 1491 | 1 -8 V 1492 | 2 -9 V 1493 | 1 -9 V 1494 | 2 -9 V 1495 | 1 -10 V 1496 | 2 -10 V 1497 | 1 -10 V 1498 | 2 -10 V 1499 | 1 -11 V 1500 | 2 -11 V 1501 | 1 -11 V 1502 | 2 -12 V 1503 | 1 -12 V 1504 | 2 -13 V 1505 | 1 -13 V 1506 | 2 -13 V 1507 | 1 -13 V 1508 | 2 -15 V 1509 | 1 -14 V 1510 | 2 -15 V 1511 | 1 -16 V 1512 | 2 -16 V 1513 | 1 -17 V 1514 | 2 -17 V 1515 | 1 -19 V 1516 | 1 -18 V 1517 | 2 -20 V 1518 | 1 -20 V 1519 | 2 -21 V 1520 | 1 -22 V 1521 | 2 -23 V 1522 | 1 -24 V 1523 | 2 -25 V 1524 | 1 -26 V 1525 | 2 -27 V 1526 | 1 -28 V 1527 | 2 -30 V 1528 | 1 -32 V 1529 | 2 -33 V 1530 | 1 -34 V 1531 | 2 -37 V 1532 | 1 -38 V 1533 | 2 -41 V 1534 | 1 -42 V 1535 | 2 -46 V 1536 | 1 -48 V 1537 | stroke 1538 | 3656 2300 M 1539 | 2 -51 V 1540 | 1 -27 V 1541 | 0 -28 V 1542 | 1 -28 V 1543 | 1 -30 V 1544 | 1 -31 V 1545 | 0 -31 V 1546 | 1 -33 V 1547 | 1 -34 V 1548 | 1 -35 V 1549 | 0 -37 V 1550 | 1 -37 V 1551 | 1 -40 V 1552 | 1 -41 V 1553 | 0 -42 V 1554 | 1 -44 V 1555 | 1 -46 V 1556 | 1 -49 V 1557 | 0 -50 V 1558 | 1 -52 V 1559 | 1 -55 V 1560 | 1 -57 V 1561 | 0 -60 V 1562 | 1 -63 V 1563 | 1 -66 V 1564 | 0 -70 V 1565 | 1 -73 V 1566 | 1 -77 V 1567 | 1 -82 V 1568 | 0 -86 V 1569 | 1 -91 V 1570 | 1 -97 V 1571 | 1 -103 V 1572 | 53 6122 R 1573 | 6 -452 V 1574 | 6 -322 V 1575 | 6 -241 V 1576 | 12 -338 V 1577 | 12 -224 V 1578 | 12 -159 V 1579 | 12 -119 V 1580 | 2 -13 V 1581 | 1 -12 V 1582 | 2 -12 V 1583 | 1 -12 V 1584 | 2 -11 V 1585 | 1 -11 V 1586 | 2 -11 V 1587 | 1 -10 V 1588 | 2 -10 V 1589 | 1 -10 V 1590 | 2 -10 V 1591 | 1 -9 V 1592 | 2 -9 V 1593 | 1 -8 V 1594 | 2 -9 V 1595 | 1 -8 V 1596 | 1 -8 V 1597 | 2 -8 V 1598 | 1 -8 V 1599 | 2 -7 V 1600 | 1 -8 V 1601 | 2 -7 V 1602 | 1 -7 V 1603 | 2 -6 V 1604 | 3 -14 V 1605 | 3 -12 V 1606 | 3 -12 V 1607 | 3 -11 V 1608 | 3 -11 V 1609 | 3 -11 V 1610 | 3 -10 V 1611 | 3 -9 V 1612 | 3 -9 V 1613 | 3 -9 V 1614 | 3 -9 V 1615 | 3 -8 V 1616 | 3 -8 V 1617 | 3 -7 V 1618 | 3 -7 V 1619 | 3 -7 V 1620 | 3 -7 V 1621 | 3 -6 V 1622 | 3 -7 V 1623 | 3 -6 V 1624 | 3 -5 V 1625 | 3 -6 V 1626 | 3 -5 V 1627 | 3 -6 V 1628 | 3 -5 V 1629 | 3 -5 V 1630 | 3 -4 V 1631 | 3 -5 V 1632 | 3 -4 V 1633 | 2 -4 V 1634 | 3 -4 V 1635 | 3 -4 V 1636 | 3 -4 V 1637 | 3 -4 V 1638 | 3 -3 V 1639 | 3 -4 V 1640 | 3 -3 V 1641 | 3 -4 V 1642 | 3 -3 V 1643 | stroke 1644 | 3953 4335 M 1645 | 3 -3 V 1646 | 3 -3 V 1647 | 3 -2 V 1648 | 3 -3 V 1649 | 3 -3 V 1650 | 3 -2 V 1651 | 3 -3 V 1652 | 3 -2 V 1653 | 3 -3 V 1654 | 3 -2 V 1655 | 3 -2 V 1656 | 3 -2 V 1657 | 3 -2 V 1658 | 3 -2 V 1659 | 3 -2 V 1660 | 3 -2 V 1661 | 3 -2 V 1662 | 3 -1 V 1663 | 3 -2 V 1664 | 3 -1 V 1665 | 3 -2 V 1666 | 3 -1 V 1667 | 3 -2 V 1668 | 3 -1 V 1669 | 3 -1 V 1670 | 3 -2 V 1671 | 3 -1 V 1672 | 3 -1 V 1673 | 3 -1 V 1674 | 3 -1 V 1675 | 3 -1 V 1676 | 3 -1 V 1677 | 3 -1 V 1678 | 3 0 V 1679 | 3 -1 V 1680 | 3 -1 V 1681 | 3 -1 V 1682 | 3 0 V 1683 | 3 -1 V 1684 | 3 0 V 1685 | 3 -1 V 1686 | 3 0 V 1687 | 3 -1 V 1688 | 3 0 V 1689 | 3 -1 V 1690 | 3 0 V 1691 | 3 0 V 1692 | 3 0 V 1693 | 3 -1 V 1694 | 1 0 V 1695 | 2 0 V 1696 | 1 0 V 1697 | 2 0 V 1698 | 1 0 V 1699 | 2 0 V 1700 | 1 0 V 1701 | 2 0 V 1702 | 3 0 V 1703 | 3 0 V 1704 | 3 0 V 1705 | 3 0 V 1706 | 2 0 V 1707 | 3 1 V 1708 | 3 0 V 1709 | 3 0 V 1710 | 6 1 V 1711 | 6 0 V 1712 | 6 1 V 1713 | 6 1 V 1714 | 6 2 V 1715 | 6 1 V 1716 | 6 2 V 1717 | 6 1 V 1718 | 6 2 V 1719 | 6 2 V 1720 | 6 2 V 1721 | 6 3 V 1722 | 6 2 V 1723 | 6 3 V 1724 | 6 3 V 1725 | 6 3 V 1726 | 6 3 V 1727 | 6 3 V 1728 | 6 4 V 1729 | 6 3 V 1730 | 6 4 V 1731 | 6 5 V 1732 | 6 4 V 1733 | 6 5 V 1734 | 6 4 V 1735 | 6 5 V 1736 | 6 6 V 1737 | 6 5 V 1738 | 3 3 V 1739 | 3 3 V 1740 | 3 3 V 1741 | 3 3 V 1742 | 3 4 V 1743 | 3 3 V 1744 | 2 3 V 1745 | 3 4 V 1746 | 3 3 V 1747 | 3 4 V 1748 | 3 3 V 1749 | stroke 1750 | 4335 4384 M 1751 | 3 4 V 1752 | 3 4 V 1753 | 3 4 V 1754 | 3 4 V 1755 | 3 4 V 1756 | 3 4 V 1757 | 3 5 V 1758 | 3 4 V 1759 | 3 5 V 1760 | 3 4 V 1761 | 3 5 V 1762 | 3 5 V 1763 | 3 5 V 1764 | 3 5 V 1765 | 3 6 V 1766 | 3 5 V 1767 | 3 6 V 1768 | 3 5 V 1769 | 3 6 V 1770 | 3 6 V 1771 | 3 6 V 1772 | 3 7 V 1773 | 3 6 V 1774 | 3 7 V 1775 | 3 7 V 1776 | 3 7 V 1777 | 3 7 V 1778 | 3 7 V 1779 | 3 8 V 1780 | 3 8 V 1781 | 3 8 V 1782 | 3 8 V 1783 | 3 9 V 1784 | 3 8 V 1785 | 3 9 V 1786 | 3 10 V 1787 | 3 9 V 1788 | 3 10 V 1789 | 3 10 V 1790 | 3 11 V 1791 | 3 11 V 1792 | 3 11 V 1793 | 3 11 V 1794 | 3 12 V 1795 | 3 13 V 1796 | 3 12 V 1797 | 3 14 V 1798 | 3 13 V 1799 | 3 14 V 1800 | 3 15 V 1801 | 3 15 V 1802 | 3 16 V 1803 | 3 16 V 1804 | 3 17 V 1805 | 3 18 V 1806 | 3 18 V 1807 | 3 19 V 1808 | 3 20 V 1809 | 3 20 V 1810 | 3 22 V 1811 | 3 22 V 1812 | 3 23 V 1813 | 2 25 V 1814 | 3 25 V 1815 | 3 27 V 1816 | 3 28 V 1817 | 3 29 V 1818 | 3 31 V 1819 | 3 33 V 1820 | 2 17 V 1821 | 1 17 V 1822 | 2 18 V 1823 | 1 18 V 1824 | 2 18 V 1825 | 1 20 V 1826 | 2 19 V 1827 | 1 21 V 1828 | 2 21 V 1829 | 1 21 V 1830 | 2 22 V 1831 | 1 23 V 1832 | 2 24 V 1833 | 1 24 V 1834 | 2 25 V 1835 | 1 26 V 1836 | 2 26 V 1837 | 1 28 V 1838 | 2 28 V 1839 | 1 29 V 1840 | 2 31 V 1841 | 1 31 V 1842 | 2 33 V 1843 | 1 33 V 1844 | 2 35 V 1845 | 1 36 V 1846 | 2 38 V 1847 | 1 39 V 1848 | 2 41 V 1849 | 1 42 V 1850 | 2 44 V 1851 | 1 46 V 1852 | 2 48 V 1853 | 1 50 V 1854 | 2 52 V 1855 | stroke 1856 | 4594 6236 M 1857 | 1 54 V 1858 | 2 57 V 1859 | 1 60 V 1860 | 2 63 V 1861 | 1 66 V 1862 | 2 69 V 1863 | 1 73 V 1864 | 2 77 V 1865 | 1 81 V 1866 | 2 86 V 1867 | 1 91 V 1868 | 2 96 V 1869 | 1 103 V 1870 | 4721 1072 M 1871 | 11 450 V 1872 | 12 320 V 1873 | 12 239 V 1874 | 24 333 V 1875 | 24 219 V 1876 | 24 155 V 1877 | 24 114 V 1878 | 3 12 V 1879 | 3 11 V 1880 | 3 12 V 1881 | 3 11 V 1882 | 3 10 V 1883 | 3 10 V 1884 | 3 10 V 1885 | 3 10 V 1886 | 3 9 V 1887 | 3 9 V 1888 | 3 9 V 1889 | 3 9 V 1890 | 3 8 V 1891 | 3 8 V 1892 | 3 8 V 1893 | 3 7 V 1894 | 3 7 V 1895 | 3 8 V 1896 | 3 6 V 1897 | 3 7 V 1898 | 3 7 V 1899 | 3 6 V 1900 | 2 6 V 1901 | 3 6 V 1902 | 3 6 V 1903 | 3 6 V 1904 | 3 5 V 1905 | 3 5 V 1906 | 3 6 V 1907 | 3 5 V 1908 | 3 5 V 1909 | 3 4 V 1910 | 3 5 V 1911 | 3 4 V 1912 | 3 5 V 1913 | 3 4 V 1914 | 3 4 V 1915 | 3 4 V 1916 | 3 4 V 1917 | 3 4 V 1918 | 6 7 V 1919 | 6 7 V 1920 | 6 7 V 1921 | 6 6 V 1922 | 6 6 V 1923 | 6 5 V 1924 | 6 5 V 1925 | 6 5 V 1926 | 6 4 V 1927 | 6 5 V 1928 | 6 4 V 1929 | 6 3 V 1930 | 6 4 V 1931 | 6 3 V 1932 | 6 3 V 1933 | 6 2 V 1934 | 6 3 V 1935 | 6 2 V 1936 | 6 2 V 1937 | 6 1 V 1938 | 6 2 V 1939 | 6 1 V 1940 | 6 1 V 1941 | 6 1 V 1942 | 5 1 V 1943 | 6 0 V 1944 | 6 0 V 1945 | 6 0 V 1946 | 3 0 V 1947 | 3 0 V 1948 | 3 0 V 1949 | 3 -1 V 1950 | 3 0 V 1951 | 3 0 V 1952 | 3 -1 V 1953 | 3 0 V 1954 | 3 -1 V 1955 | 3 0 V 1956 | 3 -1 V 1957 | 3 -1 V 1958 | 3 0 V 1959 | 3 -1 V 1960 | 3 -1 V 1961 | stroke 1962 | 5183 3267 M 1963 | 3 -1 V 1964 | 3 -1 V 1965 | 3 -1 V 1966 | 3 -1 V 1967 | 3 -1 V 1968 | 3 -1 V 1969 | 3 -1 V 1970 | 3 -2 V 1971 | 3 -1 V 1972 | 3 -1 V 1973 | 3 -2 V 1974 | 3 -2 V 1975 | 3 -1 V 1976 | 3 -2 V 1977 | 3 -2 V 1978 | 3 -1 V 1979 | 3 -2 V 1980 | 3 -2 V 1981 | 3 -2 V 1982 | 3 -2 V 1983 | 3 -2 V 1984 | 3 -2 V 1985 | 3 -3 V 1986 | 3 -2 V 1987 | 3 -3 V 1988 | 3 -2 V 1989 | 3 -3 V 1990 | 3 -2 V 1991 | 3 -3 V 1992 | 3 -3 V 1993 | 3 -3 V 1994 | 3 -3 V 1995 | 3 -3 V 1996 | 3 -3 V 1997 | 3 -3 V 1998 | 3 -4 V 1999 | 3 -3 V 2000 | 3 -4 V 2001 | 3 -3 V 2002 | 3 -4 V 2003 | 3 -4 V 2004 | 3 -4 V 2005 | 3 -4 V 2006 | 3 -4 V 2007 | 3 -4 V 2008 | 2 -5 V 2009 | 3 -4 V 2010 | 3 -5 V 2011 | 3 -5 V 2012 | 3 -5 V 2013 | 3 -5 V 2014 | 3 -5 V 2015 | 3 -5 V 2016 | 3 -6 V 2017 | 3 -5 V 2018 | 3 -6 V 2019 | 3 -6 V 2020 | 3 -6 V 2021 | 3 -7 V 2022 | 3 -6 V 2023 | 3 -7 V 2024 | 3 -7 V 2025 | 3 -7 V 2026 | 3 -7 V 2027 | 3 -7 V 2028 | 3 -8 V 2029 | 3 -8 V 2030 | 3 -8 V 2031 | 3 -8 V 2032 | 3 -9 V 2033 | 3 -9 V 2034 | 3 -9 V 2035 | 3 -10 V 2036 | 3 -9 V 2037 | 3 -11 V 2038 | 3 -10 V 2039 | 3 -11 V 2040 | 3 -11 V 2041 | 3 -11 V 2042 | 3 -12 V 2043 | 3 -12 V 2044 | 3 -13 V 2045 | 3 -13 V 2046 | 3 -14 V 2047 | 3 -14 V 2048 | 3 -14 V 2049 | 3 -16 V 2050 | 3 -15 V 2051 | 3 -16 V 2052 | 3 -17 V 2053 | 3 -18 V 2054 | 3 -18 V 2055 | 3 -19 V 2056 | 3 -20 V 2057 | 3 -20 V 2058 | 3 -22 V 2059 | 3 -22 V 2060 | 1 -12 V 2061 | 2 -12 V 2062 | 1 -12 V 2063 | 2 -12 V 2064 | 1 -13 V 2065 | 2 -13 V 2066 | 1 -13 V 2067 | stroke 2068 | 5483 2530 M 2069 | 2 -13 V 2070 | 1 -14 V 2071 | 2 -14 V 2072 | 1 -15 V 2073 | 2 -15 V 2074 | 1 -15 V 2075 | 2 -16 V 2076 | 1 -16 V 2077 | 2 -16 V 2078 | 1 -17 V 2079 | 2 -17 V 2080 | 1 -18 V 2081 | 2 -18 V 2082 | 1 -19 V 2083 | 2 -19 V 2084 | 1 -20 V 2085 | 2 -20 V 2086 | 1 -21 V 2087 | 2 -22 V 2088 | 1 -22 V 2089 | 2 -23 V 2090 | 1 -23 V 2091 | 1 -25 V 2092 | 2 -25 V 2093 | 1 -26 V 2094 | 2 -26 V 2095 | 1 -28 V 2096 | 2 -28 V 2097 | 1 -29 V 2098 | 2 -31 V 2099 | 1 -31 V 2100 | 2 -33 V 2101 | 1 -34 V 2102 | 2 -35 V 2103 | 1 -36 V 2104 | 2 -37 V 2105 | 1 -40 V 2106 | 2 -40 V 2107 | 1 -43 V 2108 | 2 -44 V 2109 | 1 -46 V 2110 | 2 -47 V 2111 | 1 -50 V 2112 | 2 -53 V 2113 | 1 -54 V 2114 | 2 -57 V 2115 | 1 -60 V 2116 | 2 -63 V 2117 | 1 -66 V 2118 | 2 -69 V 2119 | 1 -73 V 2120 | 2 -77 V 2121 | 1 -82 V 2122 | 2 -86 V 2123 | 1 -91 V 2124 | 99 6610 R 2125 | 12 -677 V 2126 | 12 -451 V 2127 | 12 -322 V 2128 | 12 -241 V 2129 | 23 -336 V 2130 | 24 -223 V 2131 | 24 -158 V 2132 | 24 -118 V 2133 | 3 -13 V 2134 | 3 -12 V 2135 | 3 -12 V 2136 | 3 -12 V 2137 | 3 -11 V 2138 | 3 -11 V 2139 | 3 -11 V 2140 | 3 -10 V 2141 | 3 -10 V 2142 | 3 -9 V 2143 | 3 -10 V 2144 | 3 -9 V 2145 | 3 -9 V 2146 | 3 -9 V 2147 | 3 -8 V 2148 | 3 -8 V 2149 | 3 -8 V 2150 | 3 -8 V 2151 | 3 -8 V 2152 | 3 -7 V 2153 | 3 -8 V 2154 | 3 -7 V 2155 | 3 -7 V 2156 | 3 -6 V 2157 | 3 -7 V 2158 | 3 -6 V 2159 | 3 -7 V 2160 | 3 -6 V 2161 | 3 -6 V 2162 | 3 -6 V 2163 | 3 -5 V 2164 | 3 -6 V 2165 | 3 -6 V 2166 | 3 -5 V 2167 | 3 -5 V 2168 | 3 -5 V 2169 | 2 -5 V 2170 | 3 -5 V 2171 | 3 -5 V 2172 | 3 -5 V 2173 | stroke 2174 | 5926 4343 M 2175 | 3 -5 V 2176 | 3 -4 V 2177 | 3 -5 V 2178 | 3 -4 V 2179 | 3 -4 V 2180 | 3 -4 V 2181 | 3 -5 V 2182 | 3 -4 V 2183 | 3 -4 V 2184 | 3 -4 V 2185 | 3 -3 V 2186 | 3 -4 V 2187 | 3 -4 V 2188 | 3 -3 V 2189 | 3 -4 V 2190 | 3 -3 V 2191 | 3 -4 V 2192 | 3 -3 V 2193 | 3 -4 V 2194 | 3 -3 V 2195 | 3 -3 V 2196 | 3 -3 V 2197 | 3 -3 V 2198 | 3 -3 V 2199 | 6 -6 V 2200 | 6 -6 V 2201 | 6 -6 V 2202 | 6 -5 V 2203 | 6 -5 V 2204 | 6 -5 V 2205 | 6 -5 V 2206 | 6 -5 V 2207 | 6 -4 V 2208 | 6 -5 V 2209 | 6 -4 V 2210 | 6 -4 V 2211 | 6 -4 V 2212 | 6 -4 V 2213 | 6 -4 V 2214 | 6 -4 V 2215 | 6 -4 V 2216 | 6 -3 V 2217 | 6 -4 V 2218 | 5 -3 V 2219 | 6 -3 V 2220 | 6 -3 V 2221 | 6 -4 V 2222 | 6 -3 V 2223 | 6 -3 V 2224 | 6 -2 V 2225 | 6 -3 V 2226 | 6 -3 V 2227 | 6 -3 V 2228 | 6 -2 V 2229 | 6 -3 V 2230 | 6 -2 V 2231 | 6 -3 V 2232 | 6 -2 V 2233 | 6 -2 V 2234 | 6 -2 V 2235 | 6 -3 V 2236 | 6 -2 V 2237 | 6 -2 V 2238 | 6 -2 V 2239 | 6 -2 V 2240 | 6 -2 V 2241 | 6 -2 V 2242 | 6 -2 V 2243 | 6 -1 V 2244 | 6 -2 V 2245 | 6 -2 V 2246 | 6 -2 V 2247 | 6 -1 V 2248 | 6 -2 V 2249 | 6 -1 V 2250 | 6 -2 V 2251 | 5 -2 V 2252 | 6 -1 V 2253 | 6 -1 V 2254 | 6 -2 V 2255 | 6 -1 V 2256 | 6 -2 V 2257 | 6 -1 V 2258 | 6 -1 V 2259 | 6 -2 V 2260 | 6 -1 V 2261 | 6 -1 V 2262 | 6 -1 V 2263 | 6 -1 V 2264 | 6 -2 V 2265 | 6 -1 V 2266 | 6 -1 V 2267 | 6 -1 V 2268 | 6 -1 V 2269 | 6 -1 V 2270 | 6 -1 V 2271 | 6 -1 V 2272 | 6 -1 V 2273 | 6 -1 V 2274 | 6 -1 V 2275 | 6 -1 V 2276 | 6 -1 V 2277 | 6 -1 V 2278 | 6 -1 V 2279 | stroke 2280 | 6476 4057 M 2281 | 6 0 V 2282 | 6 -1 V 2283 | 6 -1 V 2284 | 6 -1 V 2285 | 6 -1 V 2286 | 6 0 V 2287 | 5 -1 V 2288 | 6 -1 V 2289 | 6 -1 V 2290 | 6 0 V 2291 | 6 -1 V 2292 | 6 -1 V 2293 | 6 0 V 2294 | 6 -1 V 2295 | 6 -1 V 2296 | 6 0 V 2297 | 6 -1 V 2298 | 6 0 V 2299 | 6 -1 V 2300 | 6 -1 V 2301 | 6 0 V 2302 | 6 -1 V 2303 | 6 0 V 2304 | 6 -1 V 2305 | 6 0 V 2306 | 6 -1 V 2307 | 6 0 V 2308 | 6 -1 V 2309 | 6 0 V 2310 | 6 -1 V 2311 | 6 0 V 2312 | 6 0 V 2313 | 6 -1 V 2314 | 6 0 V 2315 | 6 -1 V 2316 | 6 0 V 2317 | 6 0 V 2318 | 6 -1 V 2319 | 6 0 V 2320 | 5 -1 V 2321 | 6 0 V 2322 | 6 0 V 2323 | 6 -1 V 2324 | 6 0 V 2325 | 6 0 V 2326 | 6 -1 V 2327 | 6 0 V 2328 | 6 0 V 2329 | 6 0 V 2330 | 6 -1 V 2331 | 6 0 V 2332 | 6 0 V 2333 | 6 0 V 2334 | 6 -1 V 2335 | 6 0 V 2336 | 6 0 V 2337 | 6 0 V 2338 | 6 -1 V 2339 | 6 0 V 2340 | 6 0 V 2341 | 6 0 V 2342 | 6 0 V 2343 | 6 0 V 2344 | 6 -1 V 2345 | 6 0 V 2346 | 6 0 V 2347 | 6 0 V 2348 | 6 0 V 2349 | 6 0 V 2350 | 6 0 V 2351 | 6 -1 V 2352 | 6 0 V 2353 | 5 0 V 2354 | 6 0 V 2355 | 6 0 V 2356 | 6 0 V 2357 | 6 0 V 2358 | 6 0 V 2359 | 6 0 V 2360 | 6 0 V 2361 | 6 0 V 2362 | 6 0 V 2363 | 6 0 V 2364 | 6 -1 V 2365 | 3 0 V 2366 | 3 0 V 2367 | 3 0 V 2368 | 3 0 V 2369 | 3 0 V 2370 | 3 0 V 2371 | 3 0 V 2372 | 3 0 V 2373 | 2 0 V 2374 | 1 0 V 2375 | 2 0 V 2376 | 1 0 V 2377 | 2 0 V 2378 | 1 0 V 2379 | 1 0 V 2380 | 2 0 V 2381 | 3 0 V 2382 | 3 0 V 2383 | 3 0 V 2384 | 3 0 V 2385 | stroke 2386 | 7025 4026 M 2387 | 6 0 V 2388 | 6 0 V 2389 | 6 0 V 2390 | 6 0 V 2391 | 6 1 V 2392 | 6 0 V 2393 | 6 0 V 2394 | 6 0 V 2395 | 6 0 V 2396 | 6 0 V 2397 | 6 0 V 2398 | 6 0 V 2399 | 12 0 V 2400 | 11 0 V 2401 | 12 0 V 2402 | 12 1 V 2403 | 24 0 V 2404 | 24 1 V 2405 | 24 1 V 2406 | 24 0 V 2407 | 24 1 V 2408 | 24 1 V 2409 | 23 1 V 2410 | 24 1 V 2411 | 12 1 V 2412 | 12 0 V 2413 | 12 1 V 2414 | 12 1 V 2415 | 12 0 V 2416 | 12 1 V 2417 | 12 1 V 2418 | 12 0 V 2419 | 12 1 V 2420 | 12 1 V 2421 | 12 1 V 2422 | 12 0 V 2423 | 12 1 V 2424 | 12 1 V 2425 | 11 1 V 2426 | 12 1 V 2427 | 12 1 V 2428 | 12 1 V 2429 | 12 1 V 2430 | 12 1 V 2431 | 12 1 V 2432 | 12 1 V 2433 | 12 1 V 2434 | 12 1 V 2435 | 12 1 V 2436 | 12 1 V 2437 | 12 1 V 2438 | 12 1 V 2439 | 12 1 V 2440 | 12 2 V 2441 | 12 1 V 2442 | 11 1 V 2443 | 12 1 V 2444 | 12 2 V 2445 | 12 1 V 2446 | 12 1 V 2447 | 12 2 V 2448 | 12 1 V 2449 | 12 2 V 2450 | 12 1 V 2451 | 12 2 V 2452 | 12 1 V 2453 | 12 2 V 2454 | 12 1 V 2455 | 12 2 V 2456 | 12 2 V 2457 | 12 1 V 2458 | 11 2 V 2459 | 12 2 V 2460 | 12 1 V 2461 | 12 2 V 2462 | 12 2 V 2463 | 12 2 V 2464 | 12 2 V 2465 | 12 2 V 2466 | 12 2 V 2467 | 12 2 V 2468 | 12 2 V 2469 | 12 2 V 2470 | 12 2 V 2471 | 12 2 V 2472 | 12 2 V 2473 | 12 2 V 2474 | 12 3 V 2475 | 11 2 V 2476 | 12 2 V 2477 | 12 3 V 2478 | 12 2 V 2479 | 12 3 V 2480 | 12 2 V 2481 | 12 3 V 2482 | 12 2 V 2483 | 12 3 V 2484 | 12 3 V 2485 | 12 2 V 2486 | 12 3 V 2487 | 12 3 V 2488 | 12 3 V 2489 | 12 3 V 2490 | 12 3 V 2491 | stroke 2492 | 8291 4161 M 2493 | 12 3 V 2494 | 11 3 V 2495 | 12 3 V 2496 | 12 3 V 2497 | 12 3 V 2498 | 12 4 V 2499 | 12 3 V 2500 | 12 3 V 2501 | 12 4 V 2502 | 12 3 V 2503 | 12 4 V 2504 | 12 3 V 2505 | 12 4 V 2506 | 12 4 V 2507 | 12 4 V 2508 | 12 4 V 2509 | 12 4 V 2510 | 11 4 V 2511 | 12 4 V 2512 | 12 4 V 2513 | 12 4 V 2514 | 12 4 V 2515 | 12 5 V 2516 | 12 4 V 2517 | 12 5 V 2518 | 12 4 V 2519 | 12 5 V 2520 | 12 5 V 2521 | 12 5 V 2522 | 12 4 V 2523 | 12 5 V 2524 | 12 6 V 2525 | 12 5 V 2526 | 12 5 V 2527 | 11 5 V 2528 | 12 6 V 2529 | 12 5 V 2530 | 12 6 V 2531 | 12 6 V 2532 | 12 6 V 2533 | 12 6 V 2534 | 12 6 V 2535 | 12 6 V 2536 | 12 6 V 2537 | 12 6 V 2538 | 12 7 V 2539 | 12 6 V 2540 | 12 7 V 2541 | 12 7 V 2542 | 12 7 V 2543 | 12 7 V 2544 | 11 7 V 2545 | 12 8 V 2546 | 12 7 V 2547 | 12 8 V 2548 | 12 7 V 2549 | 12 8 V 2550 | 12 8 V 2551 | 12 8 V 2552 | 12 9 V 2553 | 12 8 V 2554 | 12 9 V 2555 | 12 8 V 2556 | 12 9 V 2557 | 12 9 V 2558 | 12 9 V 2559 | 12 10 V 2560 | 11 9 V 2561 | 12 10 V 2562 | 12 10 V 2563 | 12 10 V 2564 | 12 10 V 2565 | 12 11 V 2566 | 12 10 V 2567 | 12 11 V 2568 | 12 11 V 2569 | 12 11 V 2570 | 12 12 V 2571 | 12 11 V 2572 | 12 12 V 2573 | 12 12 V 2574 | 12 12 V 2575 | 12 13 V 2576 | 12 13 V 2577 | 11 13 V 2578 | 12 13 V 2579 | 12 13 V 2580 | 12 14 V 2581 | 12 14 V 2582 | 12 14 V 2583 | 12 14 V 2584 | 12 15 V 2585 | 12 15 V 2586 | 12 15 V 2587 | 12 16 V 2588 | 12 16 V 2589 | 12 16 V 2590 | 12 16 V 2591 | 12 17 V 2592 | 12 17 V 2593 | 12 18 V 2594 | 11 17 V 2595 | 12 18 V 2596 | 12 19 V 2597 | stroke 2598 | 9532 5033 M 2599 | 12 19 V 2600 | 12 19 V 2601 | 12 19 V 2602 | 12 20 V 2603 | 12 20 V 2604 | 12 21 V 2605 | 12 21 V 2606 | 12 21 V 2607 | 12 22 V 2608 | 12 22 V 2609 | 12 23 V 2610 | 12 23 V 2611 | 12 23 V 2612 | 11 24 V 2613 | 12 25 V 2614 | 12 25 V 2615 | 12 25 V 2616 | 12 26 V 2617 | 12 26 V 2618 | 12 27 V 2619 | 12 28 V 2620 | 12 28 V 2621 | 12 28 V 2622 | 12 29 V 2623 | 12 30 V 2624 | 12 30 V 2625 | 12 31 V 2626 | 12 31 V 2627 | 12 32 V 2628 | 12 33 V 2629 | 11 33 V 2630 | 12 34 V 2631 | 12 35 V 2632 | 12 35 V 2633 | 12 36 V 2634 | 12 37 V 2635 | 12 37 V 2636 | 12 38 V 2637 | 12 39 V 2638 | 12 40 V 2639 | 12 41 V 2640 | 12 41 V 2641 | 12 42 V 2642 | 12 43 V 2643 | 12 44 V 2644 | 12 45 V 2645 | 12 46 V 2646 | 11 46 V 2647 | 12 48 V 2648 | 12 48 V 2649 | 12 50 V 2650 | 12 50 V 2651 | 12 52 V 2652 | 12 52 V 2653 | 12 54 V 2654 | 12 55 V 2655 | 12 56 V 2656 | 12 57 V 2657 | 12 58 V 2658 | 12 59 V 2659 | 12 61 V 2660 | 12 62 V 2661 | 1.000 UL 2662 | LTb 2663 | 840 480 M 2664 | 9552 0 V 2665 | 0 6792 V 2666 | -9552 0 V 2667 | 840 480 L 2668 | 1.000 UP 2669 | stroke 2670 | grestore 2671 | end 2672 | showpage 2673 | %%Trailer 2674 | %%DocumentFonts: Helvetica 2675 | -------------------------------------------------------------------------------- /images/gamma.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/images/gamma.pdf -------------------------------------------------------------------------------- /intcheatsheet.sty: -------------------------------------------------------------------------------- 1 | %%%%%%%%%%%%% Luke's "cheatsheet" style 2 | 3 | 4 | \usepackage{multicol} % For more than two column output 5 | \usepackage[latin1]{inputenc} 6 | \usepackage{amsmath} % default AMC math environments 7 | \usepackage{amsfonts} % default AMS math fonts 8 | \usepackage{amssymb} % default AMS symbols 9 | \RequirePackage[top=.5in, left=.3in, right=.3in, bottom=.5in, foot=.3in]{geometry} % shrink margins 10 | %\RequirePackage[margin=.3in]{geometry} % shrink margins 11 | %\usepackage[normalmargins]{savetrees} % shrinks things a bit 12 | 13 | \usepackage{makeidx} % for index 14 | \makeindex 15 | 16 | \usepackage[all]{xy} % for drawing diagrams in math mode. 17 | 18 | \usepackage[perpage,symbol*]{footmisc} % for getting symbols on footnotes, instead of numbers. 19 | 20 | \usepackage{ifpdf} % allows us to check whether using pdf output 21 | 22 | \ifpdf % We are running PDF 23 | \usepackage[pdftex, pdfpagelabels, pdfpagemode="None", pdfauthor="Luke Stein", hyperfootnotes=false]{hyperref} % turns references to hyperlinks; also tells PDFLatex about paper size 24 | \usepackage[pdftex]{graphicx} % for graphics support 25 | \usepackage{epstopdf} % convert eps graphics to pdf on the fly; NB: may require pdfLaTeX to run with --shell-escape flag 26 | 27 | \else % We are not running PDF 28 | \usepackage[hyperfootnotes=false]{hyperref} % turns references to hyperlinks 29 | \usepackage{graphicx} % for graphics support 30 | \fi 31 | 32 | %\graphicspath{{figures/}} 33 | 34 | % Shortcuts for "blackboard-style" symbols for reals 35 | \newcommand{\R}{\ensuremath{\mathbb{R}}} 36 | \newcommand{\Z}{\ensuremath{\mathbb{Z}}} 37 | \newcommand{\Q}{\ensuremath{\mathbb{Q}}} 38 | 39 | % Preferred emptyset symbol 40 | \renewcommand{\emptyset}{\varnothing} 41 | 42 | % Preferred epsilon symbol 43 | \renewcommand{\epsilon}{\varepsilon} 44 | 45 | % Shortcuts for non-italicized operators: expected value (E), variance (Var), normal (n), gamma (gamma), uniform (Unif), rank (rank), Cov (Cov) 46 | \DeclareMathOperator{\E}{E} 47 | \DeclareMathOperator{\Var}{Var} 48 | \DeclareMathOperator{\n}{N} 49 | \DeclareMathOperator{\gammanoital}{gamma} 50 | \DeclareMathOperator{\unifnoital}{Unif} 51 | \DeclareMathOperator{\Cov}{Cov} 52 | \DeclareMathOperator{\rank}{rank} 53 | \DeclareMathOperator{\Avar}{Avar} 54 | \DeclareMathOperator*{\plim}{plim} 55 | 56 | % Define \independent as the statistical independence symbol 57 | \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} 58 | \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} 59 | \newcommand{\independentm}{\ensuremath{\independent\!\!_{\text{m}}}} 60 | 61 | % New math operators: argmax and argmin 62 | \DeclareMathOperator*{\argmax}{argmax} 63 | \DeclareMathOperator*{\argmin}{argmin} 64 | 65 | % \pref as a shortcut for preference (and ensure math mode) 66 | \newcommand{\pref}{\ensuremath{\succsim}} 67 | 68 | % Sometimes forget to use \nabla for gradient 69 | \newcommand{\grad}{\ensuremath{\nabla}} 70 | 71 | % Table of contents customizatoin 72 | \usepackage{tocloft} 73 | \renewcommand{\cftsecleader}{\cftdotfill{\cftdotsep}} 74 | \renewcommand{\cftsubsecleader}{\cftdotfill{\cftdotsep}} 75 | \setlength{\cftsubsecindent}{0em} 76 | \setlength{\cftbeforesubsecskip}{0.5em} 77 | \setlength{\cftsubsubsecindent}{2.3em} 78 | \setlength{\cftsubsubsecnumwidth}{1.0em} 79 | 80 | % Define abs and norm per AMS recommendations 81 | \providecommand{\abs}[1]{\lvert#1\rvert} 82 | \providecommand{\norm}[1]{\lVert#1\rVert} 83 | 84 | % Item list to get section headers and add things to TOC 85 | \newcommand{\litem}[2]{\item[#1]\addcontentsline{toc}{subsubsection}{#1}\index{#1}{\tiny{(#2)}}} 86 | -------------------------------------------------------------------------------- /steincoresummary.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lukestein/steincoresummary/f00ecac8c24c9397b861abbaa43e0366ed42708c/steincoresummary.pdf --------------------------------------------------------------------------------