├── .gitignore
├── images
├── gmm.png
├── knn.png
├── lda.png
├── pca.png
├── svm.png
├── kmeans.gif
├── kmeans.png
├── adaboost.png
├── perceptron.gif
├── perceptron.png
├── adaboost-sketch.png
├── logistic_regression.gif
└── logistic_regression.png
├── src
├── em.py
├── pca.py
├── knn.py
├── utils.py
├── kmeans.py
├── multi_logistic_regression.py
├── perceptron.py
├── logistic_regression.py
├── gmm.py
├── lda.py
├── decision_tree.py
├── naive_bayes.py
├── hmm.py
├── adaboost.py
└── svm.py
├── README.md
└── LICENSE
/.gitignore:
--------------------------------------------------------------------------------
1 | .vscode
2 | __pycache__
3 | test_tool.ipynb
--------------------------------------------------------------------------------
/images/gmm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/gmm.png
--------------------------------------------------------------------------------
/images/knn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/knn.png
--------------------------------------------------------------------------------
/images/lda.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/lda.png
--------------------------------------------------------------------------------
/images/pca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/pca.png
--------------------------------------------------------------------------------
/images/svm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/svm.png
--------------------------------------------------------------------------------
/images/kmeans.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/kmeans.gif
--------------------------------------------------------------------------------
/images/kmeans.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/kmeans.png
--------------------------------------------------------------------------------
/images/adaboost.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/adaboost.png
--------------------------------------------------------------------------------
/images/perceptron.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/perceptron.gif
--------------------------------------------------------------------------------
/images/perceptron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/perceptron.png
--------------------------------------------------------------------------------
/images/adaboost-sketch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/adaboost-sketch.png
--------------------------------------------------------------------------------
/images/logistic_regression.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/logistic_regression.gif
--------------------------------------------------------------------------------
/images/logistic_regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luokn/ml/HEAD/images/logistic_regression.png
--------------------------------------------------------------------------------
/src/em.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : em.py
4 | # @Data : 2020/5/27
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 |
10 |
11 | class EM: # 三硬币模型
12 | """
13 | Expectation-maximization algorithm(期望最大算法)
14 | """
15 |
16 | def __init__(self, prob: list):
17 | self.prob = np.array(prob)
18 |
19 | def fit(self, X: np.ndarray, iterations=100):
20 | for _ in range(iterations):
21 | M = self._expect(X) # E步
22 | self._maximize(X, M) # M步
23 |
24 | def _expect(self, X: np.ndarray): # E步
25 | p1, p2, p3 = self.prob
26 | a = p1 * (p2**X) * ((1 - p2)**(1 - X))
27 | b = (1 - p1) * (p3**X) * ((1 - p3)**(1 - X))
28 | return a / (a + b)
29 |
30 | def _maximize(self, X: np.ndarray, M: np.ndarray): # M步
31 | self.prob[0] = np.sum(M) / len(X)
32 | self.prob[1] = np.sum(M * X) / np.sum(M)
33 | self.prob[2] = np.sum((1 - M) * X) / np.sum(1 - M)
34 |
35 |
36 | # EM算法与高斯混合模型可参见./gmm.py
37 |
38 | if __name__ == "__main__":
39 | x = np.array([1, 1, 0, 1, 0, 0, 1, 0, 1, 1])
40 |
41 | em = EM([0.5, 0.5, 0.5])
42 | em.fit(x)
43 | print(em.prob) # [0.5, 0.6, 0.6]
44 |
45 | em = EM([0.4, 0.6, 0.7])
46 | em.fit(x)
47 | print(em.prob) # [0.4064, 0.5368, 0.6432]
48 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
经典机器学习算法的极简实现
2 |
3 | [
](src/adaboost.py)
4 | [
](src/decision_tree.py)
5 | [
](src/em.py)
6 | [
](src/gmm.py)
7 | [
](src/kmeans.py)
8 | [
](src/knn.py)
9 | [
](src/lda.py)
10 | [
](src/logistic_regression.py)
11 | [
](src/naive_bayes.py)
12 | [
](src/pca.py)
13 | [
](src/perceptron.py)
14 | [
](src/svm.py)
15 | [
](src/multi_logistic_regression.py)
16 |
--------------------------------------------------------------------------------
/src/pca.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : pca.py
4 | # @Data : 2020/5/20
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | class PCA:
13 | """
14 | Principal Components Analysis(主成因分析)
15 | """
16 |
17 | def __init__(self, k: int):
18 | """
19 | Args:
20 | k (int): 主成因个数
21 | """
22 | self.k = k
23 |
24 | def __call__(self, X: np.ndarray):
25 | X_norm = X - X.mean(axis=0) # 去中心化
26 | L, V = np.linalg.eig(X_norm.T @ X_norm) # 对协方差矩阵进行特征值分解
27 | topk = np.argsort(L)[::-1][:self.k] # 找出前K大特征值对应的索引
28 | return X_norm @ V[:, topk] # 将去中心化的X乘以前K大特征值对应的特征向量
29 |
30 |
31 | def load_data(n_samples_per_class=200):
32 | X = np.concatenate([
33 | np.random.randn(n_samples_per_class, 2) + np.array([2, 0]),
34 | np.random.randn(n_samples_per_class, 2),
35 | np.random.randn(n_samples_per_class, 2) + np.array([-2, 0]),
36 | ])
37 | theta = np.pi / 4 # 逆时针旋转45°
38 | scale = np.diag([1.2, 0.5]) # 缩放矩阵
39 | rotate = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) # 旋转矩阵
40 | return X @ scale @ rotate.T
41 |
42 |
43 | if __name__ == "__main__":
44 | X = load_data()
45 |
46 | plt.figure(figsize=[15, 5])
47 | plt.subplot(1, 3, 1)
48 | plt.title("Ground Truth")
49 | plt.xlim(-5, 5)
50 | plt.ylim(-5, 5)
51 | for x in X.reshape(3, -1, 2):
52 | plt.scatter(x[:, 0], x[:, 1], marker=".")
53 |
54 | # 不降维
55 | Y = PCA(2)(X)
56 | plt.subplot(1, 3, 2)
57 | plt.title("PCA 2D")
58 | plt.xlim(-5, 5)
59 | plt.ylim(-5, 5)
60 | for y in Y.reshape(3, -1, 2):
61 | plt.scatter(y[:, 0], y[:, 1], marker=".")
62 |
63 | # 降为1维
64 | Z = PCA(1)(X)
65 | plt.subplot(1, 3, 3)
66 | plt.title("PCA 1D")
67 | plt.xlim(-5, 5)
68 | plt.ylim(-5, 5)
69 | for z in Z.reshape(3, -1):
70 | plt.scatter(z, np.zeros_like(z), marker=".")
71 |
72 | plt.show()
73 |
--------------------------------------------------------------------------------
/src/knn.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : knn.py
4 | # @Data : 2020/5/20
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 | from numpy import linalg as LA
11 |
12 |
13 | class KNN:
14 | """
15 | K nearest neighbor classifier(K近邻分类器)
16 | """
17 |
18 | def __init__(self, k: int):
19 | """
20 | Args:
21 | k (int): 分类近邻数
22 | """
23 | self.k, self.X, self.y = k, None, None
24 |
25 | def fit(self, X: np.ndarray, y: np.ndarray):
26 | self.X, self.y = X, y # 训练集X与Y,类别已知
27 |
28 | def __call__(self, X: np.ndarray):
29 | y_pred = np.zeros([len(X)], dtype=int) # X对应的类别
30 | for i, x in enumerate(X):
31 | dist = LA.norm(self.X - x, axis=1) # 计算x与所有已知类别点的距离
32 | topk = np.argsort(dist)[:self.k] # 取距离最小的k个点对应的索引
33 | y_pred[i] = np.bincount(self.y[topk]).argmax() # 取近邻点最多的类别作为x的类别
34 | return y_pred
35 |
36 |
37 | def load_data(n_samples_per_class=200, n_classes=5):
38 | X = np.concatenate([np.random.randn(n_samples_per_class, 2) + 3 * np.random.randn(2) for _ in range(n_classes)])
39 | y = np.concatenate([np.full(n_samples_per_class, label) for label in range(n_classes)])
40 |
41 | training_set, test_set = np.split(np.random.permutation(len(X)), [int(len(X) * 0.6)])
42 | return X, y, training_set, test_set
43 |
44 |
45 | if __name__ == "__main__":
46 | n_classes = 5
47 | X, y, training_set, test_set = load_data(n_classes=n_classes)
48 |
49 | plt.figure(figsize=[12, 6])
50 | plt.subplot(1, 2, 1)
51 | plt.title("Ground Truth")
52 | for label in range(n_classes):
53 | plt.scatter(X[y == label, 0], X[y == label, 1], label=f"class {label}", marker=".")
54 | plt.legend()
55 |
56 | knn = KNN(k=10)
57 | knn.fit(X[training_set], y[training_set])
58 | y_pred = knn(X)
59 | acc = np.sum(y_pred[test_set] == y[test_set]) / len(y_pred[test_set])
60 | print(f"Accuracy = {100 * acc:.2f}%")
61 |
62 | plt.subplot(1, 2, 2)
63 | plt.title("Prediction")
64 | for label in range(n_classes):
65 | plt.scatter(X[y_pred == label, 0], X[y_pred == label, 1], label=f"class {label}", marker=".")
66 | plt.legend()
67 |
68 | plt.show()
69 |
--------------------------------------------------------------------------------
/src/utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : utils.py
4 | # @Data : 2022/05/18
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | from typing import List, Optional
9 |
10 | import numpy as np
11 | from matplotlib import pyplot as plt
12 | from sklearn import metrics
13 |
14 |
15 | def plot_roc_curve(
16 | title: str,
17 | y_truth: np.ndarray,
18 | y_score: np.ndarray,
19 | classes: List[str],
20 | out_file: Optional[str] = None,
21 | show_fig: bool = False,
22 | ):
23 | """
24 | Plot ROC curve for multi-class classification.
25 |
26 | Args:
27 | title (str): Title of the plot.
28 | y_truth (np.ndarray): Ground truth labels.
29 | y_score (np.ndarray): Predicted scores.
30 | classes (List[str]): List of class names.
31 | out_file (Optional[str], optional): Path to save the plot. Defaults to None. Defaults to None.
32 | show_fig (bool, optional): Whether to show the plot. Defaults to False.
33 | """
34 | plt.figure(figsize=[8, 8], dpi=200)
35 | plt.title(title)
36 | plt.xlim([0, 1])
37 | plt.ylim([0, 1])
38 | plt.xlabel("FPR")
39 | plt.ylabel("TPR")
40 |
41 | # Plot the diagonal line.
42 | plt.plot([0, 1], [0, 1], "k-.", lw=1)
43 |
44 | # Plot the ROC curve for each class.
45 | fpr_all, tpr_all = [], []
46 | for i, name in enumerate(classes):
47 | fpr, tpr, _ = metrics.roc_curve(y_truth[:, i], y_score[:, i])
48 | fpr_all += [fpr]
49 | tpr_all += [tpr]
50 | auc = metrics.auc(fpr, tpr)
51 | plt.plot(fpr, tpr, lw=1, label=f"ROC curve of class {name} (AUC = {auc:0.3f})")
52 |
53 | # Plot the micro-average ROC curve.
54 | micro_fpr, micro_tpr, _ = metrics.roc_curve(y_truth.reshape(-1), y_score.reshape(-1))
55 | micro_auc = metrics.auc(micro_fpr, micro_tpr)
56 | plt.plot(micro_fpr, micro_tpr, "--", lw=1, label=f"Micro-average ROC curve (AUC = {micro_auc:0.3f})")
57 |
58 | # Plot the macro-average ROC curve.
59 | macro_fpr = np.unique(np.concatenate(fpr_all))
60 | macro_tpr = sum((np.interp(macro_fpr, fpr, tpr) for fpr, tpr in zip(fpr_all, tpr_all))) / len(classes)
61 | macro_auc = metrics.auc(macro_fpr, macro_tpr)
62 | plt.plot(macro_fpr, macro_tpr, "--", lw=1, label=f"Macro-average ROC curve (AUC = {macro_auc:0.3f})")
63 |
64 | plt.legend()
65 | if out_file is not None:
66 | plt.savefig(out_file)
67 | print(f"Save ROC curve to {out_file}")
68 | if show_fig:
69 | plt.show()
70 |
--------------------------------------------------------------------------------
/src/kmeans.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : kmeans.py
4 | # @Data : 2020/5/21
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import random
9 |
10 | import numpy as np
11 | from matplotlib import pyplot as plt
12 |
13 |
14 | class KMeans:
15 | """
16 | K-means clustering(K均值聚类)
17 | """
18 |
19 | def __init__(self, n_clusters: int, iterations=100, eps=1e-3):
20 | """
21 | Args:
22 | n_clusters (int): 聚类类别数.
23 | iterations (int, optional): 迭代次数, 默认为100.
24 | eps (float, optional): 中心点最小更新量, 默认为1e-3.
25 | """
26 | self.n_clusters, self.iterations, self.eps, self.centers = n_clusters, iterations, eps, None
27 |
28 | def fit(self, X: np.ndarray):
29 | """
30 | Args:
31 | X (np.ndarray): 输入
32 | """
33 | # 随机选择k个点作为中心点
34 | self.centers = X[random.sample(range(len(X)), self.n_clusters)]
35 |
36 | for _ in range(self.iterations):
37 | y_pred = self(X)
38 |
39 | # 各类别的均值作为新的中心点,
40 | centers = np.stack([
41 | # 存在元素属于类别i则计算类别i所有点的均值,否则随机选择一个点作为类别i的均值
42 | np.mean(X[y_pred == i], axis=0) if np.any(y_pred == i) else random.choice(X)
43 | for i in range(self.n_clusters)
44 | ])
45 |
46 | # 中心点最大更新值小于eps则停止迭代
47 | if np.abs(self.centers - centers).max() < self.eps:
48 | break
49 |
50 | # 将更新后的均值作为各类别中心点
51 | self.centers = centers
52 |
53 | def __call__(self, X: np.ndarray):
54 | return np.array([np.argmin(np.linalg.norm(self.centers - x, axis=1)) for x in X]) # 每一点类别为最近的中心点类别
55 |
56 |
57 | def load_data(n_samples_per_class=200, n_classes=5):
58 | X = np.concatenate([np.random.randn(n_samples_per_class, 2) + 3 * np.random.randn(2) for _ in range(n_classes)])
59 | y = np.concatenate([np.full(n_samples_per_class, label) for label in range(n_classes)])
60 | return X, y
61 |
62 |
63 | if __name__ == "__main__":
64 | n_classes = 5
65 | X, y = load_data(n_classes=n_classes)
66 |
67 | plt.figure(figsize=[12, 6])
68 | plt.subplot(1, 2, 1)
69 | plt.title("Ground Truth")
70 | for label in range(n_classes):
71 | plt.scatter(X[y == label, 0], X[y == label, 1], marker=".")
72 |
73 | kmeans = KMeans(n_clusters=n_classes)
74 | kmeans.fit(X)
75 | y_pred = kmeans(X)
76 |
77 | plt.subplot(1, 2, 2)
78 | plt.title("Clustering")
79 | for label in range(n_classes):
80 | plt.scatter(X[y_pred == label, 0], X[y_pred == label, 1], marker=".")
81 |
82 | plt.scatter(kmeans.centers[:, 0], kmeans.centers[:, 1], marker="*")
83 |
84 | plt.show()
85 |
--------------------------------------------------------------------------------
/src/multi_logistic_regression.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | from sklearn.datasets import load_iris
4 |
5 |
6 | def create_data(batchsize: int = 149, train_rate: int = 0.8):
7 | batchsize = min(batchsize, 149)
8 | train_batch = int(train_rate * batchsize)
9 | iris = load_iris()
10 | X = iris.data
11 | y = np.reshape(iris.target, (-1, 1))
12 | shuffle_idxs = np.arange(batchsize)
13 | random.shuffle(shuffle_idxs)
14 | X = X[shuffle_idxs]
15 | y = y[shuffle_idxs]
16 | X_train = X[:train_batch]
17 | y_train = y[:train_batch]
18 | X_test = X[train_batch:]
19 | y_test = y[train_batch:]
20 | return X_train, y_train, X_test, y_test
21 |
22 |
23 | class MultiLogisticRegression:
24 | def __init__(self, input_dim: int, output_dim: int, lr: float) -> None:
25 | self.i_d = input_dim
26 | self.o_d = output_dim
27 | self.lr = lr
28 | self.weight = np.zeros((input_dim + 1, output_dim))
29 | pass
30 | def fit(self, X_pad: np.ndarray, Y_unfold: np.ndarray):
31 | pred = self.softmax(X_pad @ self.weight)
32 | err = pred - Y_unfold
33 | grad = X_pad.T @ err
34 | self.weight -= self.lr * grad
35 |
36 | def train(self, X: np.ndarray, Y: np.ndarray, iter: int, batch_size: int):
37 | B = len(X)
38 | shuffle_idxs = np.arange(B)
39 | X_pad = self.pad(X)
40 | Y_unfold = np.eye(self.o_d)[np.round(np.reshape(Y, (-1,)).astype(np.int32))]
41 | for _ in range(iter):
42 | random.shuffle(shuffle_idxs)
43 | X_pad_shuffle = X_pad[shuffle_idxs]
44 | Y_unfold_shuffle = Y_unfold[shuffle_idxs]
45 | for i in range(B // batch_size):
46 | x_batch = X_pad_shuffle[batch_size * i : batch_size * (i + 1)]
47 | y_batch = Y_unfold_shuffle[batch_size * i : batch_size * (i + 1)]
48 | self.fit(x_batch, y_batch)
49 | if batch_size * (B // batch_size) < B:
50 | x_batch = X_pad_shuffle[batch_size * (i + 1) :]
51 | y_batch = Y_unfold_shuffle[batch_size * (i + 1) :]
52 | self.fit(x_batch, y_batch)
53 |
54 | def __call__(self, X: np.ndarray):
55 | pred = self.softmax(self.pad(X) @ self.weight)
56 | return np.reshape(np.argmax(pred, axis=1), (-1, 1))
57 |
58 | @staticmethod
59 | def pad(X: np.ndarray):
60 | return np.concatenate((X, np.ones((X.shape[0], 1))), axis=1)
61 |
62 | @staticmethod
63 | def softmax(Y_unfold: np.ndarray):
64 | Y_exp = np.exp(Y_unfold)
65 | return Y_exp / np.reshape(np.sum(Y_exp, axis=1), (-1, 1)) # numpy 广播用法
66 |
67 |
68 | if __name__ == "__main__":
69 | X_train, y_train, X_test, y_test = create_data()
70 | model = MultiLogisticRegression(4, 3, 1e-2)
71 | model.train(X_train, y_train, iter=100, batch_size=32)
72 | pred = model(X_test)
73 | mistakes = np.sum(np.where(np.abs(pred - y_test) > 0.5, 1, 0))
74 | print("Accuracy:{}%".format(100 * (1 - mistakes / len(pred))))
75 |
--------------------------------------------------------------------------------
/src/perceptron.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : perceptron.py
4 | # @Data : 2020/5/20
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | class Perceptron:
13 | """
14 | Perceptron classifier(感知机分类器)
15 | """
16 |
17 | def __init__(self, input_dim: int, lr=5e-4):
18 | """
19 | Args:
20 | input_dim (int): 输入特征维度
21 | """
22 | self.weights = np.random.randn(input_dim + 1) # 权重
23 | self.lr = lr # 学习率
24 |
25 | def fit(self, X: np.ndarray, y: np.ndarray):
26 | for x, y in zip(pad(X), y):
27 | if y * (x @ self.weights) <= 0: # 分类错误, y 与 wx + b 符号不同
28 | neg_grad = x * y # 计算weights的负梯度
29 | self.weights += self.lr * neg_grad # 沿负梯度方向更新weights
30 |
31 | def __call__(self, X: np.ndarray) -> np.ndarray:
32 | y_pred = pad(X) @ self.weights
33 | return np.where(y_pred > 0, 1, -1)
34 |
35 |
36 | def pad(x):
37 | return np.concatenate([x, np.ones([len(x), 1])], axis=1)
38 |
39 |
40 | def load_data(n_samples_per_class=500):
41 | X = np.concatenate([
42 | np.random.randn(n_samples_per_class, 2) + np.array([1, -1]),
43 | np.random.randn(n_samples_per_class, 2) + np.array([-1, 1]),
44 | ])
45 | y = np.array([-1] * n_samples_per_class + [1] * n_samples_per_class)
46 |
47 | training_set, test_set = np.split(np.random.permutation(len(X)), [int(len(X) * 0.6)])
48 | return X, y, training_set, test_set
49 |
50 |
51 | def train_perceptron(model, X, y, epochs=100):
52 | indices = np.arange(len(X))
53 | for _ in range(epochs):
54 | np.random.shuffle(indices)
55 | model.fit(X[indices], y[indices])
56 |
57 |
58 | if __name__ == "__main__":
59 | X, y, training_set, test_set = load_data()
60 |
61 | plt.figure(figsize=[12, 6])
62 | plt.subplot(1, 2, 1)
63 | plt.title("Ground Truth")
64 | plt.xlim(-4, 4)
65 | plt.ylim(-4, 4)
66 | plt.scatter(X[y == -1, 0], X[y == -1, 1], marker=".")
67 | plt.scatter(X[y == +1, 0], X[y == +1, 1], marker=".")
68 |
69 | perceptron = Perceptron(input_dim=2)
70 | train_perceptron(perceptron, X[training_set], y[training_set])
71 | y_pred = perceptron(X)
72 | acc = np.sum(y_pred[test_set] == y[test_set]) / len(test_set)
73 | print(f"Accuracy = {100 * acc:.2f}%")
74 |
75 | plt.subplot(1, 2, 2)
76 | plt.title("Prediction")
77 | plt.xlim(-4, 4)
78 | plt.ylim(-4, 4)
79 | plt.scatter(X[y_pred == -1, 0], X[y_pred == -1, 1], marker=".")
80 | plt.scatter(X[y_pred == +1, 0], X[y_pred == +1, 1], marker=".")
81 |
82 | w = perceptron.weights
83 | a, b = -w[0] / w[1], -w[2] / w[1]
84 | line_x = np.linspace(-4, 4, 400)
85 | line_y = a * line_x + b
86 | plt.plot(line_x, line_y, lw=1)
87 |
88 | plt.fill_between(line_x, np.full(400, -4), line_y, alpha=0.1)
89 | plt.fill_between(line_x, np.full(400, +4), line_y, alpha=0.1)
90 |
91 | plt.show()
92 |
--------------------------------------------------------------------------------
/src/logistic_regression.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : logistic_regression.py
4 | # @Data : 2020/5/21
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | class LogisticRegression:
13 | """
14 | Logistic regression classifier(逻辑斯蒂回归分类器)
15 | """
16 |
17 | def __init__(self, input_dim: int, lr=5e-4):
18 | """
19 | Args:
20 | input_dim (int): 特征维度
21 | lr (float): 学习率, 默认为5e-4
22 | """
23 | self.weights = np.random.randn(input_dim + 1) # 随机初始化参数
24 | self.lr = lr # 学习率
25 |
26 | def fit(self, X: np.ndarray, y: np.ndarray):
27 | X_pad = pad(X) # 为X填充1作为偏置
28 | pred = sigmoid(X_pad @ self.weights) # 计算预测值
29 | grad = X_pad.T @ (pred - y) / len(pred) # 计算梯度
30 | self.weights -= self.lr * grad # 沿负梯度更新参数
31 |
32 | def __call__(self, X: np.ndarray) -> np.ndarray:
33 | y_pred = sigmoid(pad(X) @ self.weights) # 计算预测值
34 | return np.where(y_pred > 0.5, 1, 0) # 将(0, 1)之间分布的概率转化为{0, 1}标签
35 |
36 |
37 | def pad(x):
38 | return np.concatenate([x, np.ones([len(x), 1])], axis=1)
39 |
40 |
41 | def sigmoid(x):
42 | return 1 / (1 + np.exp(-x))
43 |
44 |
45 | def load_data(n_samples_per_class=500):
46 | X = np.concatenate([
47 | np.random.randn(n_samples_per_class, 2) + np.array([1, -1]),
48 | np.random.randn(n_samples_per_class, 2) + np.array([-1, 1]),
49 | ])
50 | y = np.array([0] * n_samples_per_class + [1] * n_samples_per_class)
51 |
52 | training_set, test_set = np.split(np.random.permutation(len(X)), [int(len(X) * 0.6)])
53 | return X, y, training_set, test_set
54 |
55 |
56 | def train_logistic_regression(model, X, y, epochs=100, batch_size=32):
57 | indices = np.arange(len(X))
58 | for _ in range(epochs):
59 | np.random.shuffle(indices)
60 | for i in range(batch_size, len(X) + 1, batch_size):
61 | model.fit(X[indices[i - batch_size:i]], y[indices[i - batch_size:i]])
62 |
63 |
64 | if __name__ == "__main__":
65 | X, y, training_set, test_set = load_data()
66 |
67 | plt.figure(figsize=[12, 6])
68 | plt.subplot(1, 2, 1)
69 | plt.title("Ground Truth")
70 | plt.xlim(-4, 4)
71 | plt.ylim(-4, 4)
72 | plt.scatter(X[y == 0, 0], X[y == 0, 1], marker=".")
73 | plt.scatter(X[y == 1, 0], X[y == 1, 1], marker=".")
74 |
75 | logistic_regression = LogisticRegression(2)
76 | train_logistic_regression(logistic_regression, X, y, epochs=500)
77 | y_pred = logistic_regression(X)
78 | acc = np.sum(y_pred[test_set] == y[test_set]) / len(test_set)
79 | print(f"Accuracy = {100 * acc:.2f}%")
80 |
81 | plt.subplot(1, 2, 2)
82 | plt.title("Prediction")
83 | plt.xlim(-4, 4)
84 | plt.ylim(-4, 4)
85 | plt.scatter(X[y_pred == 0, 0], X[y_pred == 0, 1], marker=".")
86 | plt.scatter(X[y_pred == 1, 0], X[y_pred == 1, 1], marker=".")
87 |
88 | w = logistic_regression.weights
89 | a, b = -w[0] / w[1], -w[2] / w[1]
90 | line_x = np.linspace(-4, 4, 400)
91 | line_y = a * line_x + b
92 | plt.plot(line_x, line_y, lw=1)
93 |
94 | plt.fill_between(line_x, np.full(400, -4), line_y, alpha=0.1)
95 | plt.fill_between(line_x, np.full(400, +4), line_y, alpha=0.1)
96 |
97 | plt.show()
98 |
--------------------------------------------------------------------------------
/src/gmm.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : gmm.py
4 | # @Data : 2020/5/31
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import random
9 |
10 | import numpy as np
11 | from matplotlib import pyplot as plt
12 | from scipy.stats import multivariate_normal
13 |
14 |
15 | class GMM:
16 | """
17 | Gaussian mixture model(高斯混合模型)
18 | """
19 |
20 | def __init__(self, n_components: int, iterations=100, cov_reg=1e-06):
21 | """
22 | Args:
23 | n_components (int): 聚类类别数
24 | """
25 | self.n_components, self.iterations, self.cov_reg = n_components, iterations, cov_reg
26 | self.weights = np.full(self.n_components, 1 / self.n_components)
27 | self.means, self.covs = None, None
28 |
29 | def fit(self, X: np.ndarray):
30 | """
31 | Args:
32 | X (np.ndarray): 输入
33 | iterations (int, optional): 迭代次数. Defaults to 100.
34 | cov_reg (float, optional): 防止协方差矩阵奇异的微小变量. Defaults to 1e-06.
35 | """
36 | # 随机选择n_components个点作为高斯分布中心
37 | self.means = np.array(X[random.sample(range(X.shape[0]), self.n_components)])
38 |
39 | # 初始高斯分布协方差均为单位矩阵
40 | self.covs = np.stack([np.eye(X.shape[1]) for _ in range(self.n_components)])
41 | for _ in range(self.iterations):
42 | G = self.expect(X) # E步
43 | self.maximize(X, G) # M步
44 |
45 | def __call__(self, X: np.ndarray):
46 | G = self.expect(X)
47 | return np.argmax(G, axis=1)
48 |
49 | def expect(self, X: np.ndarray): # E步
50 | C = np.zeros([X.shape[0], self.n_components])
51 | for k, mean, cov in zip(range(self.n_components), self.means, self.covs):
52 | dist = multivariate_normal(mean=mean, cov=cov)
53 | C[:, k] = self.weights[k] * dist.pdf(X)
54 | S = np.sum(C, axis=1, keepdims=True)
55 | S[S == 0] = self.n_components
56 | return C / S
57 |
58 | def maximize(self, X: np.ndarray, G: np.ndarray): # M步
59 | N = np.sum(G, axis=0)
60 | for k in range(self.n_components):
61 | G_k = G[:, k].reshape(-1, 1)
62 | self.means[k] = np.sum(G_k * X, axis=0) / N[k]
63 | X_norm = X - self.means[k]
64 | self.covs[k] = (G_k * X_norm).T @ X_norm / N[k]
65 | self.weights = N / X.shape[0]
66 | self.covs += self.cov_reg * np.eye(X.shape[1]) # 添加微小量防止奇异
67 |
68 |
69 | def load_data(n_samples_per_class=500):
70 | X = np.concatenate([
71 | np.random.multivariate_normal(mean=[4, 0], cov=[[2, 0], [0, 2]], size=[n_samples_per_class]),
72 | np.random.multivariate_normal(mean=[0, 4], cov=[[2, 0], [0, 2]], size=[n_samples_per_class]),
73 | ])
74 | y = np.array([0] * n_samples_per_class + [1] * n_samples_per_class)
75 | return X, y
76 |
77 |
78 | if __name__ == "__main__":
79 | X, y = load_data()
80 | plt.figure(figsize=[15, 7])
81 | plt.subplot(1, 2, 1)
82 | plt.title("Ground Truth")
83 | plt.scatter(X[y == 0, 0], X[y == 0, 1], marker=".")
84 | plt.scatter(X[y == 1, 0], X[y == 1, 1], marker=".")
85 |
86 | gmm = GMM(2)
87 | gmm.fit(X)
88 | y_pred = gmm(X)
89 |
90 | plt.subplot(1, 2, 2)
91 | plt.title("Prediction")
92 | plt.scatter(X[y_pred == 0, 0], X[y_pred == 0, 1], marker=".")
93 | plt.scatter(X[y_pred == 1, 0], X[y_pred == 1, 1], marker=".")
94 |
95 | plt.show()
96 |
--------------------------------------------------------------------------------
/src/lda.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : lda.py
4 | # @Data : 2020/5/31
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 | from numpy import linalg as LA
11 |
12 |
13 | class LDA:
14 | """
15 | Linear Discriminant Analysis(线性判别分析)
16 | """
17 |
18 | def __init__(self, k: int):
19 | """
20 | Args:
21 | k (int): 降维维度
22 | """
23 | self.k, self.W = k, None
24 |
25 | def fit(self, X: np.ndarray, Y: np.ndarray):
26 | assert self.k <= X.shape[1] - 1 # S_W^{-2} S_B 最多只有N - 1个非0特征值
27 | S_W = np.zeros([X.shape[1], X.shape[1]]) # 类内(within-class)散度矩阵
28 | S_B = np.zeros_like(S_W) # 类间(between-class)散度矩阵
29 | M = np.mean(X, axis=0) # 全部样本均值
30 | for Xi in (X[Y == i] for i in np.unique(Y)):
31 | Mi = np.mean(Xi, axis=0)
32 | S_W += (Xi - Mi).T @ (Xi - Mi)
33 | S_B += len(Xi) * (Mi - M).reshape(-1, 1) @ (Mi - M).reshape(1, -1)
34 | L, V = LA.eig(LA.inv(S_W) @ S_B) # 计算 S_W^{-1} S_B 的特征值与特征向量
35 | topk = np.argsort(L)[::-1][:self.k] # 按照特征值降序排列,取前K大特征值
36 | self.W = V[:, topk] # 选择topk对应的特征向量
37 |
38 | def __call__(self, X: np.ndarray):
39 | return X @ self.W
40 |
41 |
42 | class PCA:
43 | """
44 | Principal Components Analysis(主成因分析)
45 | """
46 |
47 | def __init__(self, k: int):
48 | """
49 | Args:
50 | k (int): 主成因个数
51 | """
52 | self.k = k
53 |
54 | def __call__(self, X: np.ndarray):
55 | X_norm = X - X.mean(axis=0) # 去中心化
56 | L, V = np.linalg.eig(X_norm.T @ X_norm) # 对协方差矩阵进行特征值分解
57 | topk = np.argsort(L)[::-1][:self.k] # 找出前K大特征值对应的索引
58 | return X_norm @ V[:, topk] # 将去中心化的X乘以前K大特征值对应的特征向量
59 |
60 |
61 | def load_data(n_samlpes_per_class=500):
62 | theta = np.pi / 4
63 | scale = np.array([[2, 0], [0, 0.5]]) # 缩放
64 | rotate = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) # 旋转
65 | X = np.concatenate([
66 | np.random.randn(n_samlpes_per_class, 2) + np.array([0, -2]),
67 | np.random.randn(n_samlpes_per_class, 2) + np.array([0, +2]),
68 | ])
69 | X = X @ scale @ rotate # 对数据进行缩放和旋转
70 | y = np.array([0] * n_samlpes_per_class + [1] * n_samlpes_per_class)
71 | return X, y
72 |
73 |
74 | if __name__ == "__main__":
75 | X, y = load_data()
76 |
77 | plt.figure(figsize=[18, 6])
78 | plt.subplot(1, 3, 1)
79 | plt.title("Ground Truth")
80 | plt.xlim(-5, 5)
81 | plt.ylim(-5, 5)
82 | plt.scatter(X[y == 0, 0], X[y == 0, 1], marker=".")
83 | plt.scatter(X[y == 1, 0], X[y == 1, 1], marker=".")
84 |
85 | lda = LDA(1)
86 | lda.fit(X, y)
87 | Z = lda(X)
88 |
89 | plt.subplot(1, 3, 2)
90 | plt.title("LDA")
91 | plt.xlim(-5, 5)
92 | plt.ylim(-5, 5)
93 | plt.scatter(Z[y == 0, 0], np.zeros([500]), marker=".")
94 | plt.scatter(Z[y == 1, 0], np.zeros([500]), marker=".")
95 |
96 | # 和PCA对比
97 | pca = PCA(1)
98 | Z = pca(X)
99 | plt.subplot(1, 3, 3)
100 | plt.title("PCA")
101 | plt.xlim(-5, 5)
102 | plt.ylim(-5, 5)
103 | plt.scatter(Z[y == 0, 0], np.zeros([500]), marker=".")
104 | plt.scatter(Z[y == 1, 0], np.zeros([500]), marker=".")
105 |
106 | plt.show()
107 |
--------------------------------------------------------------------------------
/src/decision_tree.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : decision_tree.py
4 | # @Data : 2020/5/23
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 |
10 |
11 | class DecisionTree:
12 | """
13 | Decision tree classifier(决策树分类器, ID3生成算法)
14 | """
15 |
16 | def __init__(self):
17 | self.rate, self.root = None, None
18 |
19 | def fit(self, X: np.ndarray, y: np.ndarray, rate: float = 0.95):
20 | self.rate = rate
21 | self.root = self.build_tree(X, y, np.arange(X.shape[0]), np.arange(X.shape[1]))
22 |
23 | def __call__(self, X: np.ndarray):
24 | return np.array([self.predict(self.root, x) for x in X])
25 |
26 | def predict(self, node, x: np.ndarray):
27 | if isinstance(node, dict): # 如果节点是树(字典)类型
28 | col, trees = node["col"], node["trees"]
29 | # 根据值进行下一次递归
30 | return self.predict(trees[x[col]], x)
31 | return node # 如果节点是叶子类型则直接返回该值
32 |
33 | def build_tree(self, X: np.ndarray, y: np.ndarray, rows: np.ndarray, cols: np.ndarray):
34 | cats = np.bincount(y[rows])
35 |
36 | # 无特征可分或者满足一定的单一性
37 | if len(cols) == 0 or np.max(cats) / len(rows) > self.rate:
38 | return np.argmax(cats) # 返回最单一的类别
39 |
40 | # 最大信息增益特征
41 | k = np.argmax([self.calc_info_gain(X, y, rows, f) for f in cols])
42 | col = cols[k]
43 | cols = np.delete(cols, k) # 除去选择的特征
44 |
45 | # 为选择的特征创建子树
46 | trees = {
47 | value: self.build_tree(X, y, rows[X[rows, col] == value], cols)
48 | for value in np.unique(X[rows, col]).tolist() # 为该特征的每一个取值都建立子树
49 | }
50 | return {"col": col, "trees": trees}
51 |
52 | @staticmethod
53 | def calc_exp_ent(y: np.ndarray, rows: np.ndarray): # 计算经验熵
54 | prob = np.bincount(y[rows]) / len(rows)
55 | prob = prob[prob.nonzero()] # 除去0概率
56 | return np.sum(-prob * np.log(prob)) # 经验熵
57 |
58 | @classmethod
59 | def calc_cnd_ent(cls, X: np.ndarray, y: np.ndarray, rows: np.ndarray, col: int): # 计算条件熵
60 | ent = 0 # 经验条件熵
61 | for value in np.unique(X[rows, col]):
62 | indices_ = rows[X[rows, col] == value]
63 | ent += len(indices_) / len(rows) * cls.calc_exp_ent(y, indices_)
64 | return ent # 条件熵
65 |
66 | @classmethod
67 | def calc_info_gain(cls, X: np.ndarray, y: np.ndarray, rows: np.ndarray, col: int): # 计算信息增益
68 | exp_ent = cls.calc_exp_ent(y, rows) # 经验熵
69 | cnd_ent = cls.calc_cnd_ent(X, y, rows, col) # 经验条件熵
70 | return exp_ent - cnd_ent # 信息增益
71 |
72 |
73 | def load_data():
74 | X = np.array([
75 | [0, 0, 0],
76 | [0, 0, 0],
77 | [0, 0, 1],
78 | [0, 0, 1],
79 | [0, 1, 0],
80 | [0, 1, 0],
81 | [0, 1, 1],
82 | [0, 1, 1],
83 | [1, 0, 0],
84 | [1, 0, 0],
85 | [1, 0, 1],
86 | [1, 0, 1],
87 | [1, 1, 0],
88 | [1, 1, 0],
89 | [1, 1, 1],
90 | [1, 1, 1],
91 | ])
92 | y = np.where(X.sum(axis=1) >= 2, 1, 0)
93 | return X, y
94 |
95 |
96 | if __name__ == "__main__":
97 | X, y = load_data()
98 | decision_tree = DecisionTree()
99 | decision_tree.fit(X, y, rate=0.95)
100 | y_pred = decision_tree(X)
101 |
102 | print(decision_tree.root)
103 | print(y)
104 | print(y_pred)
105 |
106 | acc = np.sum(y_pred == y) / len(y_pred)
107 | print(f"Accuracy = {100 * acc:.2f}%")
108 |
--------------------------------------------------------------------------------
/src/naive_bayes.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : naive_bayes.py
4 | # @Data : 2020/5/22
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 |
10 |
11 | class NaiveBayesClassifier:
12 | """
13 | Naive Bayes classifier(朴素贝叶斯分类器)
14 | """
15 |
16 | def __init__(self):
17 | self.P_prior, self.P_cond = None, None
18 |
19 | def fit(self, X: np.ndarray, y: np.ndarray):
20 | # 计算X的各个特征与标签Y有多少类别
21 | x_categories, y_categories = np.max(X, axis=0) + 1, np.max(y) + 1
22 | self.x_categories, self.y_categories = x_categories, y_categories
23 | # 先验概率, prior_prob[i] = P(Y = i),标签类别的取值概率
24 | self.P_prior = self.estimate_prob(y, y_categories)
25 | # 条件概率, cond_prob[i][j,k] = P(X_i = a_{ij} | Y = k),标签类别为k的条件下i特征取a_{ij}的概率
26 | self.P_cond = [np.zeros([n, y_categories]) for n in x_categories]
27 | self.X_prior = [np.zeros((n,)) for n in x_categories]
28 | for i, n in enumerate(x_categories):
29 | for k in range(y_categories):
30 | self.P_cond[i][:, k] = self.estimate_prob(X[y == k, i], n)
31 | self.X_prior[i] = np.sum(self.P_prior * self.P_cond[i], axis=1)
32 |
33 | def __call__(self, X: np.ndarray) -> np.ndarray:
34 | y_pred = np.zeros([len(X)], dtype=int)
35 | for i, x in enumerate(X):
36 | # 先验概率的对数,加上条件概率的对数
37 | P = np.log(self.P_prior) + np.sum(
38 | np.array(
39 | [np.log(p_cond[x[ii]]) for ii, p_cond in enumerate(self.P_cond)]
40 | ),
41 | axis=0,
42 | )
43 | y_pred[i] = np.argmax(P)
44 | return y_pred
45 |
46 | def predict_prob(self, X: np.ndarray):
47 | P = np.zeros([len(X), len(self.P_cond)])
48 | for i, x in enumerate(X):
49 | P_log = np.log(self.P_prior) + np.sum(
50 | np.array(
51 | [np.log(p_cond[x[ii]]) for ii, p_cond in enumerate(self.P_cond)]
52 | ),
53 | axis=0,
54 | )
55 | x_log = np.sum(
56 | np.log(
57 | np.array(
58 | [prior_x[x[ii]] for ii, prior_x in enumerate(self.X_prior)]
59 | )
60 | )
61 | )
62 | P[i] = np.exp(P_log - x_log)
63 | return P
64 |
65 | @staticmethod
66 | def estimate_prob(x: np.ndarray, n: int):
67 | return (np.bincount(x, minlength=n) + 1) / (len(x) + n) # 使用贝叶斯估计
68 |
69 |
70 | def load_data():
71 | # 参照李航《统计学习方法(第一版)》第四章例4.1
72 | X = np.array(
73 | [
74 | [0, 0],
75 | [0, 1],
76 | [0, 1],
77 | [0, 0],
78 | [0, 0],
79 | [1, 0],
80 | [1, 1],
81 | [1, 1],
82 | [1, 2],
83 | [1, 2],
84 | [2, 2],
85 | [2, 1],
86 | [2, 1],
87 | [2, 2],
88 | [2, 2],
89 | ],
90 | dtype=int,
91 | )
92 | y = np.array([0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], dtype=int)
93 | return X, y
94 |
95 |
96 | if __name__ == "__main__":
97 | X, y = load_data()
98 | naive_bayes = NaiveBayesClassifier()
99 | naive_bayes.fit(X, y)
100 | pred = naive_bayes(X)
101 |
102 | print(naive_bayes.P_prior) # 先验概率
103 | print(naive_bayes.P_cond[0]) # 条件概率
104 | print(naive_bayes.P_cond[1]) # 条件概率
105 | acc = np.sum(pred == y) / len(pred)
106 | print(f"Accuracy = {100 * acc:.2f}%")
107 | print(naive_bayes.predict_prob([[1, 0]])) # 输出 [[1, 0]]的概率
108 |
--------------------------------------------------------------------------------
/src/hmm.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 |
4 |
5 | class HMM:
6 | """
7 | hmm 主要可以由以下三个问题组成:
8 | 1. 给定模型参数和观测序列, 计算该观测序列出现的概率. (前向算法)
9 | 2. 给定模型参数和观测序列, 计算最有可能出现的状态序列. (Viterbi 算法)
10 | 3. 根据观测序列推测最有可能出现的模型参数. (EM 算法)
11 | """
12 |
13 | def __init__(self, s_num: int, y_num: int) -> None:
14 | self.P = np.ones((s_num, s_num)) / s_num
15 | self.Q = np.ones((s_num, y_num)) / y_num
16 | self.pi = np.ones((s_num,)) / s_num
17 |
18 | def forward(self, y: np.ndarray):
19 | return forward(y, self.P, self.Q, self.pi)
20 |
21 | def backward(self, y: np.ndarray):
22 | return backward(y, self.P, self.Q)
23 |
24 | def viterbi(self, y: np.ndarray):
25 | return viterbi(y, self.P, self.Q, self.pi)
26 |
27 | def fit(self, y: np.ndarray, iter: int = 100):
28 | for _ in range(iter):
29 | self.em_step(y)
30 |
31 | def em_step(self, y: np.ndarray):
32 | alpha = self.forward(y)
33 | beta = self.backward(y)
34 |
35 | gamma = alpha / np.sum(alpha[-1]) * beta
36 |
37 | ksi = np.zeros((len(y) - 1, len(self.P), len(self.P)))
38 |
39 | for t in range(len(y) - 1):
40 | ksi[t] = (
41 | np.reshape(alpha[t], (-1, 1))
42 | * self.P
43 | * self.Q[:, int(y[t + 1])]
44 | * beta[t + 1]
45 | ) / np.sum(alpha[-1])
46 |
47 | self.pi = gamma[0]
48 | self.P = np.sum(ksi, axis=0) / np.reshape(
49 | np.sum(gamma, axis=0) - gamma[-1], (-1, 1)
50 | )
51 |
52 | self.Q = np.zeros_like(self.Q)
53 | for j in range(self.Q.shape[1]):
54 | self.Q[:, j] = np.sum(np.reshape(y == j, (-1, 1)) * gamma, axis=0)
55 | self.Q /= np.reshape(np.sum(gamma, axis=0), (-1, 1))
56 |
57 |
58 | def forward(y: np.ndarray, P: np.ndarray, Q: np.ndarray, pi: np.ndarray):
59 | n = len(y)
60 | alpha = np.zeros((n, P.shape[1]))
61 | alpha[0] = pi * Q[:, int(y[0])]
62 | for i in range(1, n):
63 | alpha[i] = (
64 | np.sum(np.reshape(alpha[i - 1], (-1, 1)) * P, axis=0) * Q[:, int(y[i])]
65 | )
66 | return alpha
67 |
68 |
69 | def backward(y: np.ndarray, P: np.ndarray, Q: np.ndarray):
70 | n = len(y)
71 | beta = np.ones((n, P.shape[1]))
72 | for i in range(-2, -n - 1, -1):
73 | beta[i] = np.sum(beta[i + 1] * P * Q[:, int(y[i + 1])], axis=1)
74 | return beta
75 |
76 |
77 | def viterbi(y: np.ndarray, P: np.ndarray, Q: np.ndarray, pi: np.ndarray):
78 | n = len(y)
79 | A = np.zeros((n, len(pi)))
80 | gamma = pi * Q[:, int(y[0])]
81 | for i in range(1, n):
82 | A[i] = np.argmax(np.reshape(gamma, (-1, 1)) * P, axis=0)
83 | gamma = np.max(np.reshape(gamma, (-1, 1)) * P, axis=0) * Q[:, int(y[i])]
84 | ans = np.zeros((n,))
85 | ans[-1] = np.argmax(gamma)
86 | for i in range(-2, -n - 1, -1):
87 | ans[i] = A[i + 1][int(ans[i + 1])]
88 | return ans
89 |
90 |
91 | def generate_data(P: np.ndarray, Q: np.ndarray, pi: np.ndarray, T: int):
92 | s = np.zeros((T,))
93 | y = np.zeros((T,))
94 | s[0] = random_choose(pi)
95 | y[0] = random_choose(Q[int(s[0])])
96 | for i in range(1, T):
97 | s[i] = random_choose(P[int(s[i - 1])])
98 | y[i] = random_choose(Q[int(s[i])])
99 | return s, y
100 |
101 |
102 | def random_choose(probs: np.ndarray):
103 | x = random.random()
104 | prob = probs.copy()
105 | if x < prob[0]:
106 | return 0
107 | for i in range(1, len(prob)):
108 | prob[i] += prob[i - 1]
109 | if x < prob[i]:
110 | return i
111 | return len(prob) - 1
112 |
113 |
114 | if __name__ == "__main__":
115 | P = np.array([[0.3, 0.7], [0.6, 0.4]])
116 | Q = np.array([[0.9, 0.1], [0.1, 0.9]])
117 | pi = np.array([0.5, 0.5])
118 | hmm = HMM(2, 2)
119 | hmm.P = P
120 | s, y = generate_data(P, Q, pi, 5)
121 | hmm.fit(y, 20)
122 | print(hmm.Q)
123 |
--------------------------------------------------------------------------------
/src/adaboost.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : adaboost.py
4 | # @Data : 2020/5/27
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | class AdaBoost:
13 |
14 | def __init__(self, n_estimators: int, lr: float = 1e-2, eps: float = 1e-5):
15 | """
16 | Args:
17 | n_estimators (int): 弱分类器个数.
18 | lr (float, optional): 学习率, 默认为1e-2.
19 | eps (float, optional): 误差下限, 默认为1e-5.
20 | """
21 | self.estimators = [] # 弱分类器及其权重
22 | self.n_estimators, self.lr, self.eps = n_estimators, lr, eps
23 |
24 | def fit(self, X: np.ndarray, y: np.ndarray):
25 | """
26 | Args:
27 | X (np.ndarray): 样本特征.
28 | Y (np.ndarray): 样本标签.
29 | """
30 | weights = np.full(len(X), 1 / len(X)) # 样本权重
31 | for _ in range(self.n_estimators):
32 | estimator = WeakEstimator(lr=self.lr)
33 |
34 | # 带权重训练弱分类器
35 | error = estimator.fit(X, y, weights=weights)
36 |
37 | # 误差达到下限,则提前停止迭代
38 | if error < self.eps:
39 | break
40 |
41 | # 更新弱分类器权重
42 | alpha = np.log((1 - error) / error) / 2
43 |
44 | # 更新样本权重
45 | weights *= np.exp(-alpha * y * estimator(X))
46 | weights /= np.sum(weights) # 除以规范化因子
47 |
48 | # 添加此弱分类器及其权重
49 | self.estimators += [(alpha, estimator)]
50 |
51 | def __call__(self, X: np.ndarray) -> np.ndarray:
52 | y_pred = sum((alpha * estimator(X) for alpha, estimator in self.estimators))
53 | return np.where(y_pred > 0, 1, -1)
54 |
55 |
56 | class WeakEstimator: # 弱分类器, 一阶决策树
57 |
58 | def __init__(self, lr: float = 1e-3):
59 | # 学习率、符号{-1,1}、划分特征、划分阈值
60 | self.lr, self.sign, self.feature, self.threshold, = lr, 1, None, None
61 |
62 | def fit(self, X: np.ndarray, y: np.ndarray, weights: np.ndarray):
63 | min_error = np.inf # 最小带权误差
64 | for feature, x in enumerate(X.T):
65 | for threshold in np.arange(np.min(x) - self.lr, np.max(x) + self.lr, self.lr):
66 | # 取分类错误的样本权重求和
67 | pos_error = np.sum(weights[np.where(x > threshold, 1, -1) != y])
68 | if pos_error < min_error:
69 | min_error, self.feature, self.threshold, self.sign = pos_error, feature, threshold, 1
70 |
71 | neg_error = 1 - pos_error
72 | if neg_error < min_error:
73 | min_error, self.feature, self.threshold, self.sign = neg_error, feature, threshold, -1
74 | return min_error
75 |
76 | def __call__(self, X: np.ndarray) -> np.ndarray:
77 | return np.where(X[:, self.feature] > self.threshold, self.sign, -self.sign)
78 |
79 |
80 | def load_data(n_samples_per_class=500):
81 | X = np.concatenate([
82 | np.random.randn(n_samples_per_class, 2) + np.array([1, -1]),
83 | np.random.randn(n_samples_per_class, 2) + np.array([-1, 1]),
84 | ])
85 | y = np.array([1] * n_samples_per_class + [-1] * n_samples_per_class)
86 |
87 | training_set, test_set = np.split(np.random.permutation(len(X)), [int(len(X) * 0.8)])
88 | return X, y, training_set, test_set
89 |
90 |
91 | if __name__ == "__main__":
92 | X, y, training_set, test_set = load_data()
93 |
94 | plt.figure("AdaBoost", figsize=[12, 6])
95 | plt.subplot(1, 2, 1)
96 | plt.title("Ground Truth")
97 | plt.xlim(-4, 4)
98 | plt.ylim(-4, 4)
99 | plt.scatter(X[y == -1, 0], X[y == -1, 1], marker=".")
100 | plt.scatter(X[y == +1, 0], X[y == +1, 1], marker=".")
101 |
102 | adaboost = AdaBoost(n_estimators=20)
103 | adaboost.fit(X[training_set], y[training_set])
104 | y_pred = adaboost(X)
105 | acc = np.sum(y_pred[test_set] == y[test_set]) / len(test_set)
106 | print(f"Accuracy = {100 * acc:.2f}%")
107 |
108 | plt.subplot(1, 2, 2)
109 | plt.title("Prediction")
110 | plt.xlim(-4, 4)
111 | plt.ylim(-4, 4)
112 | plt.scatter(X[y_pred == -1, 0], X[y_pred == -1, 1], marker=".")
113 | plt.scatter(X[y_pred == +1, 0], X[y_pred == +1, 1], marker=".")
114 |
115 | plt.show()
116 |
--------------------------------------------------------------------------------
/src/svm.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | # @File : svm.py
4 | # @Data : 2020/5/23
5 | # @Author : Luo Kun
6 | # @Contact: luokun485@gmail.com
7 |
8 | import numpy as np
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | class LinearKernel: # 线性核函数
13 |
14 | def __call__(self, a: np.ndarray, b: np.ndarray):
15 | return np.sum(a * b, axis=-1)
16 |
17 |
18 | class PolyKernel: # 多项式核函数
19 |
20 | def __call__(self, a: np.ndarray, b: np.ndarray):
21 | return (np.sum(a * b, axis=-1) + 1)**2
22 |
23 |
24 | class RBFKernel: # 高斯核函数
25 |
26 | def __init__(self, sigma):
27 | self.divisor = 2 * sigma**2
28 |
29 | def __call__(self, a: np.ndarray, b: np.ndarray):
30 | return np.exp(-np.sum((a - b)**2, axis=-1) / self.divisor)
31 |
32 |
33 | class SVM:
34 | """
35 | Support Vector Machines(支持向量机)
36 | """
37 |
38 | def __init__(self, kernel="linear", C=1.0, iterations=100, tol=1e-3, sigma=1.0):
39 | """
40 | Args:
41 | kernel (str, optional): 核函数. Defaults to 'linear'.
42 | C (float, optional): 惩罚因子. Defaults to 1.0.
43 | iterations (int, optional): 最大迭代次数. Defaults to 100.
44 | tol (float, optional): 绝对误差限. Defaults to 1e-3.
45 | sigma (float, optional): 高斯核函数的sigma. Defaults to 1.0.
46 | """
47 | assert kernel in ["linear", "poly", "rbf"]
48 |
49 | if kernel == "linear":
50 | self.K = LinearKernel() # 线性核函数
51 | elif kernel == "poly":
52 | self.K = PolyKernel() # 多项式核函数
53 | elif kernel == "rbf":
54 | self.K = RBFKernel(sigma) # 径向基核函数
55 |
56 | self.C, self.iterations, self.tol, self.alpha, self.b = C, iterations, tol, None, 0.0
57 |
58 | self.X, self.y = None, None
59 |
60 | def fit(self, X: np.ndarray, y: np.ndarray):
61 | self.X, self.y = X, y
62 |
63 | # 拉格朗日乘子
64 | self.alpha = np.ones([len(X)])
65 | for _ in range(self.iterations):
66 | # 此次迭代缓存的误差
67 | E = np.array([self.__E(i) for i in range(len(X))])
68 |
69 | # 外层循环,寻找第一个alpha
70 | for i1 in range(len(X)):
71 |
72 | # 计算误差(不使用E缓存)
73 | E1 = self.__E(i1)
74 | if E1 == 0 or self.__satisfy_kkt(i1):
75 | # 误差为0或满足KKT条件
76 | continue
77 |
78 | # 大于0则选择最小,小于0选择最大的
79 | i2 = np.argmin(E) if E1 > 0 else np.argmax(E) # 内层循环,寻找第二个alpha
80 | if i1 == i2:
81 | continue
82 | E2 = self.__E(i2)
83 | x1, x2, y1, y2 = X[i1], X[i2], y[i1], y[i2]
84 | alpha1, alpha2 = self.alpha[i1], self.alpha[i2]
85 | k11, k22, k12 = self.K(x1, x1), self.K(x2, x2), self.K(x1, x2)
86 |
87 | # 计算剪切范围
88 | if y1 * y2 < 0:
89 | L = max(0, alpha2 - alpha1)
90 | H = min(self.C, self.C + alpha2 - alpha1)
91 | else:
92 | L = max(0, alpha1 + alpha2 - self.C)
93 | H = min(self.C, alpha1 + alpha2)
94 | if L == H:
95 | continue
96 | eta = k11 + k22 - 2 * k12
97 | if eta <= 0:
98 | continue
99 |
100 | # 计算新alpha
101 | alpha2_new = np.clip(alpha2 + y2 * (E1 - E2) / eta, L, H)
102 | alpha1_new = alpha1 + y1 * y2 * (alpha2 - alpha2_new)
103 |
104 | # 计算新b
105 | alpha2_delta, alpha1_delta = alpha2_new - alpha2, alpha1_new - alpha1
106 | b1_new = -E1 - y1 * k11 * alpha1_delta - y2 * k12 * alpha2_delta + self.b
107 | b2_new = -E2 - y1 * k12 * alpha1_delta - y2 * k22 * alpha2_delta + self.b
108 |
109 | # 更新参数
110 | self.alpha[i1] = alpha1_new
111 | self.alpha[i2] = alpha2_new
112 | if 0 < alpha1_new < self.C:
113 | self.b = b1_new
114 | elif 0 < alpha2_new < self.C:
115 | self.b = b2_new
116 | else:
117 | self.b = (b1_new + b2_new) / 2
118 |
119 | # 更新误差缓存
120 | E[i1] = self.__E(i1)
121 | E[i2] = self.__E(i2)
122 |
123 | def __call__(self, X: np.ndarray):
124 | y_pred = np.array([self.__g(x) for x in X])
125 | return np.where(y_pred > 0, 1, -1) # 将(-\infinity, \infinity)之间的分布转为{-1, +1}标签
126 |
127 | @property
128 | def support_vectors(self): # 支持向量
129 | return self.X[self.alpha > 0]
130 |
131 | def __g(self, x): # g(x) =\sum_{i=0}^N alpha_i y_i \kappa(x_i, x)
132 | return np.sum(self.alpha * self.y * self.K(self.X, x)) + self.b
133 |
134 | def __E(self, i): # E_i = g(x_i) - y_i
135 | return self.__g(self.X[i]) - self.y[i]
136 |
137 | def __satisfy_kkt(self, i): # 是否满足KKT条件
138 | g_i, y_i = self.__g(self.X[i]), self.y[i]
139 | if np.abs(self.alpha[i]) < self.tol:
140 | return g_i * y_i >= 1
141 | if np.abs(self.alpha[i]) > self.C - self.tol:
142 | return g_i * y_i <= 1
143 | return np.abs(g_i * y_i - 1) < self.tol
144 |
145 |
146 | def load_data(n_samples_per_class=500):
147 | assert n_samples_per_class % 10 == 0, "n_samples_per_class must be divisible by 10"
148 |
149 | # 随机生成数据
150 | X_neg = np.random.randn(n_samples_per_class // 10, 10, 2)
151 | X_pos = np.random.randn(n_samples_per_class, 2)
152 |
153 | # 将负样本放置到圆环区域
154 | for i, theta in enumerate(np.linspace(0, 2 * np.pi, len(X_neg))):
155 | X_neg[i] += 5 * np.array([np.cos(theta), np.sin(theta)])
156 |
157 | X = np.concatenate([X_neg.reshape(-1, 2), X_pos])
158 | y = np.array([-1] * n_samples_per_class + [1] * n_samples_per_class)
159 |
160 | # 打乱索引,拆分训练集和测试集
161 | training_set, test_set = np.split(np.random.permutation(len(X)), [int(len(X) * 0.6)])
162 | return X, y, training_set, test_set
163 |
164 |
165 | if __name__ == "__main__":
166 | X, y, training_set, test_set = load_data()
167 |
168 | plt.figure(figsize=[15, 5])
169 | plt.subplot(1, 3, 1)
170 | plt.title("Ground Truth")
171 | plt.xlim(-8, 8)
172 | plt.ylim(-8, 8)
173 | plt.scatter(X[y == -1, 0], X[y == -1, 1], marker=".")
174 | plt.scatter(X[y == +1, 0], X[y == +1, 1], marker=".")
175 |
176 | svm = SVM(kernel="rbf", C=100, sigma=5)
177 | svm.fit(X[training_set], y[training_set])
178 | y_pred = svm(X)
179 | acc = np.sum(y_pred[test_set] == y[test_set]) / len(test_set)
180 | print(f"Accuracy = {100 * acc:.2f}%")
181 |
182 | plt.subplot(1, 3, 2)
183 | plt.title("Prediction")
184 | plt.xlim(-8, 8)
185 | plt.ylim(-8, 8)
186 | plt.scatter(X[y_pred == -1, 0], X[y_pred == -1, 1], marker=".")
187 | plt.scatter(X[y_pred == +1, 0], X[y_pred == +1, 1], marker=".")
188 |
189 | vectors = svm.support_vectors
190 | plt.subplot(1, 3, 3)
191 | plt.title("Support vectors")
192 | plt.xlim(-8, 8)
193 | plt.ylim(-8, 8)
194 | plt.scatter(X[y_pred == -1, 0], X[y_pred == -1, 1], marker=".")
195 | plt.scatter(X[y_pred == +1, 0], X[y_pred == +1, 1], marker=".")
196 | plt.scatter(vectors[:, 0], vectors[:, 1], marker=".")
197 |
198 | plt.show()
199 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------