├── README.md
├── Text_GCN_Tutorial.pdf
├── __init__.py
├── build_graph.py
├── data
├── corpus
│ └── ohsumed_3.txt
└── ohsumed_3.txt
├── figure
├── TextGCN.png
├── TextGCN.svg
└── ohsumed3_tsne.png
├── inits.py
├── layers.py
├── metrics.py
├── models.py
├── remove_words.py
├── train.py
├── tsne.py
└── utils.py
/README.md:
--------------------------------------------------------------------------------
1 | # Text GCN Tutorial
2 |
3 | This tutorial (currently under improvement) is based on the implementation of Text GCN in our paper:
4 |
5 | Liang Yao, Chengsheng Mao, Yuan Luo. "Graph Convolutional Networks for Text Classification." In 33rd AAAI Conference on Artificial Intelligence (AAAI-19)
6 |
7 |
8 |
9 | # Require
10 |
11 | Python 2.7 or 3.6
12 |
13 | Tensorflow >= 1.4.0
14 |
15 | # Example input data
16 | The Ohsumed corpus is from the MEDLINE database, which is a bibliographic database of important medical literature maintained by the National Library of Medicine
17 |
18 | In this tutorial, we created a subsample of the 2,762 unique diseases abstracts from 3 categories
19 | * C04: Neoplasms
20 | * C10: Nervous System Diseases
21 | * C14: Cardiovascular Diseases
22 |
23 | As we focus on single-label text classification, the documents belonging to multiple categories are excluded
24 |
25 | 1230 train (use 10% as validation), 1532 test
26 |
27 | 1. `/data/ohsumed_3.txt` indicates document names, training/test split, document labels. Each line is for a document.
28 |
29 | 2. `/data/corpus/ohsumed_3.txt` contains raw text of each document, each line is for the corresponding line in `/data/ohsumed_3.txt`
30 |
31 | # Reproduing Results
32 |
33 | 1. Run `python remove_words.py ohsumed_3`
34 |
35 | 2. Run `python build_graph.py ohsumed_3`
36 |
37 | 3. Run `python train.py ohsumed_3`
38 |
39 | # Example output
40 | ```
41 | 2019-04-04 22:58:26.244395: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
42 | Epoch: 0001 train_loss= 1.09856 train_acc= 0.41463 val_loss= 1.08209 val_acc= 0.48780 time= 29.13731
43 | Epoch: 0002 train_loss= 1.08044 train_acc= 0.49865 val_loss= 1.05469 val_acc= 0.47967 time= 23.00088
44 | Epoch: 0003 train_loss= 1.05075 train_acc= 0.49865 val_loss= 1.02113 val_acc= 0.47967 time= 21.82401
45 | Epoch: 0004 train_loss= 1.01430 train_acc= 0.49955 val_loss= 0.98582 val_acc= 0.48780 time= 21.42816
46 | Epoch: 0005 train_loss= 0.97174 train_acc= 0.50678 val_loss= 0.95375 val_acc= 0.51220 time= 21.44958
47 | Epoch: 0006 train_loss= 0.93406 train_acc= 0.51220 val_loss= 0.92789 val_acc= 0.55285 time= 24.01502
48 | ......
49 | Epoch: 0074 train_loss= 0.01921 train_acc= 0.99819 val_loss= 0.09674 val_acc= 0.96748 time= 24.01229
50 | Epoch: 0075 train_loss= 0.02093 train_acc= 0.99909 val_loss= 0.09715 val_acc= 0.96748 time= 24.08436
51 | Early stopping...
52 | Optimization Finished!
53 | Test set results: cost= 0.24295 accuracy= 0.92167 time= 7.60145
54 | 10456
55 | Test Precision, Recall and F1-Score...
56 | precision recall f1-score support
57 |
58 | 0 0.8882 0.8363 0.8614 342
59 | 1 0.9438 0.9517 0.9477 600
60 | 2 0.9174 0.9407 0.9289 590
61 |
62 | avg / total 0.9212 0.9217 0.9212 1532
63 |
64 | ```
65 | # Visualizing Documents
66 | Run `python tsne.py`
67 |
68 | # Example Visualization
69 |
70 |
71 |
72 |
--------------------------------------------------------------------------------
/Text_GCN_Tutorial.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luoyuanlab/text_gcn_tutorial/710847e7458872cba13003ffeb9a63ac2a6c9ccb/Text_GCN_Tutorial.pdf
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | from __future__ import division
3 |
--------------------------------------------------------------------------------
/build_graph.py:
--------------------------------------------------------------------------------
1 | import os
2 | import random
3 | import numpy as np
4 | import pickle as pkl
5 | import networkx as nx
6 | import scipy.sparse as sp
7 | from utils import *
8 | from math import log
9 | from sklearn import svm
10 | from nltk.corpus import wordnet as wn
11 | from nltk.wsd import lesk
12 |
13 | from sklearn.feature_extraction.text import TfidfVectorizer
14 | import sys
15 | from scipy.spatial.distance import cosine
16 |
17 | if len(sys.argv) != 2:
18 | sys.exit("Use: python build_graph.py ")
19 |
20 | # build corpus
21 | dataset = sys.argv[1]
22 |
23 | word_embeddings_dim = 300
24 | word_vector_map = {}
25 |
26 | # shulffing
27 | doc_name_list = []
28 | doc_train_list = []
29 | doc_test_list = []
30 |
31 | # train test split
32 | f = open('data/' + dataset + '.txt', 'r') # 3 columns, path, train/test, label
33 | lines = f.readlines()
34 | for line in lines:
35 | doc_name_list.append(line.strip())
36 | temp = line.split("\t")
37 | if temp[1].find('test') != -1:
38 | doc_test_list.append(line.strip())
39 | elif temp[1].find('train') != -1:
40 | doc_train_list.append(line.strip())
41 | f.close()
42 |
43 | doc_content_list = []
44 | f = open('data/corpus/' + dataset + '.clean.txt', 'r') # clean: after stop/rare words filtering
45 | lines = f.readlines()
46 | for line in lines:
47 | doc_content_list.append(line.strip())
48 | f.close()
49 |
50 | train_ids = []
51 | for train_name in doc_train_list:
52 | train_id = doc_name_list.index(train_name)
53 | train_ids.append(train_id)
54 | ## print(train_ids)
55 | random.shuffle(train_ids)
56 |
57 | # partial labeled data, if you only want 20% training set
58 | #train_ids = train_ids[:int(0.2 * len(train_ids))]
59 |
60 | # persisting the training set
61 | train_ids_str = '\n'.join(str(index) for index in train_ids)
62 | f = open('data/' + dataset + '.train.index', 'w')
63 | f.write(train_ids_str)
64 | f.close()
65 |
66 | # may not be necessary
67 | test_ids = []
68 | for test_name in doc_test_list:
69 | test_id = doc_name_list.index(test_name)
70 | test_ids.append(test_id)
71 | ## print(test_ids)
72 | random.shuffle(test_ids)
73 |
74 | test_ids_str = '\n'.join(str(index) for index in test_ids)
75 | f = open('data/' + dataset + '.test.index', 'w')
76 | f.write(test_ids_str)
77 | f.close()
78 |
79 | ids = train_ids + test_ids
80 | ## print(ids)
81 | print(len(ids))
82 |
83 | shuffle_doc_name_list = []
84 | shuffle_doc_words_list = []
85 | for id in ids:
86 | shuffle_doc_name_list.append(doc_name_list[int(id)])
87 | shuffle_doc_words_list.append(doc_content_list[int(id)])
88 | shuffle_doc_name_str = '\n'.join(shuffle_doc_name_list)
89 | shuffle_doc_words_str = '\n'.join(shuffle_doc_words_list) # content
90 |
91 | f = open('data/' + dataset + '_shuffle.txt', 'w')
92 | f.write(shuffle_doc_name_str)
93 | f.close()
94 |
95 | f = open('data/corpus/' + dataset + '_shuffle.txt', 'w')
96 | f.write(shuffle_doc_words_str)
97 | f.close()
98 |
99 | # build vocab using cleaned words and record freq.
100 | word_freq = {}
101 | word_set = set()
102 | for doc_words in shuffle_doc_words_list:
103 | words = doc_words.split()
104 | for word in words:
105 | word_set.add(word)
106 | if word in word_freq:
107 | word_freq[word] += 1
108 | else:
109 | word_freq[word] = 1
110 |
111 | vocab = list(word_set)
112 | vocab_size = len(vocab)
113 |
114 | word_doc_list = {}
115 |
116 | # keep doc occurrence list, for idf
117 | for i in range(len(shuffle_doc_words_list)):
118 | doc_words = shuffle_doc_words_list[i]
119 | words = doc_words.split()
120 | appeared = set()
121 | for word in words:
122 | if word in appeared:
123 | continue
124 | if word in word_doc_list:
125 | doc_list = word_doc_list[word]
126 | doc_list.append(i)
127 | word_doc_list[word] = doc_list
128 | else:
129 | word_doc_list[word] = [i]
130 | appeared.add(word)
131 |
132 | ## df
133 | word_doc_freq = {}
134 | for word, doc_list in word_doc_list.items():
135 | word_doc_freq[word] = len(doc_list)
136 |
137 | ## from word to id
138 | word_id_map = {}
139 | for i in range(vocab_size):
140 | word_id_map[vocab[i]] = i
141 |
142 | vocab_str = '\n'.join(vocab)
143 |
144 | f = open('data/corpus/' + dataset + '_vocab.txt', 'w')
145 | f.write(vocab_str)
146 | f.close()
147 |
148 | # get unique label list
149 | label_set = set()
150 | for doc_meta in shuffle_doc_name_list:
151 | temp = doc_meta.split('\t')
152 | label_set.add(temp[2])
153 | label_list = list(label_set)
154 |
155 | label_list_str = '\n'.join(label_list)
156 | f = open('data/corpus/' + dataset + '_labels.txt', 'w')
157 | f.write(label_list_str)
158 | f.close()
159 |
160 | # x: feature vectors of training docs, no initial features, one hot input
161 | # slect 90% training set
162 | train_size = len(train_ids)
163 | val_size = int(0.1 * train_size)
164 | real_train_size = train_size - val_size
165 | # different training rates
166 |
167 | real_train_doc_names = shuffle_doc_name_list[:real_train_size]
168 | real_train_doc_names_str = '\n'.join(real_train_doc_names)
169 |
170 | f = open('data/' + dataset + '.real_train.name', 'w')
171 | f.write(real_train_doc_names_str)
172 | f.close()
173 |
174 | ## not necessary if don't use preloaded embedding
175 | row_x = []
176 | col_x = []
177 | data_x = []
178 | for i in range(real_train_size):
179 | doc_vec = np.array([0.0 for k in range(word_embeddings_dim)])
180 | doc_words = shuffle_doc_words_list[i]
181 | words = doc_words.split()
182 | doc_len = len(words)
183 | for word in words:
184 | if word in word_vector_map:
185 | word_vector = word_vector_map[word]
186 | doc_vec = doc_vec #+ np.array(word_vector)
187 |
188 | for j in range(word_embeddings_dim):
189 | row_x.append(i)
190 | col_x.append(j)
191 | # np.random.uniform(-0.25, 0.25)
192 | data_x.append(doc_vec[j] / doc_len)
193 |
194 | # x = sp.csr_matrix((real_train_size, word_embeddings_dim), dtype=np.float32)
195 | x = sp.csr_matrix((data_x, (row_x, col_x)), shape=(
196 | real_train_size, word_embeddings_dim))
197 |
198 | y = []
199 | for i in range(real_train_size):
200 | doc_meta = shuffle_doc_name_list[i]
201 | temp = doc_meta.split('\t')
202 | label = temp[2]
203 | one_hot = [0 for l in range(len(label_list))]
204 | label_index = label_list.index(label)
205 | one_hot[label_index] = 1
206 | y.append(one_hot)
207 | y = np.array(y)
208 | ## print(y)
209 |
210 | # tx: feature vectors of test docs, no initial features
211 | test_size = len(test_ids)
212 |
213 | row_tx = []
214 | col_tx = []
215 | data_tx = []
216 | for i in range(test_size):
217 | doc_vec = np.array([0.0 for k in range(word_embeddings_dim)])
218 | doc_words = shuffle_doc_words_list[i + train_size]
219 | words = doc_words.split()
220 | doc_len = len(words)
221 | for word in words:
222 | if word in word_vector_map:
223 | word_vector = word_vector_map[word]
224 | doc_vec = doc_vec #+ np.array(word_vector)
225 |
226 | for j in range(word_embeddings_dim):
227 | row_tx.append(i)
228 | col_tx.append(j)
229 | data_tx.append(doc_vec[j] / doc_len) # doc_vec[j] / doc_len
230 |
231 | tx = sp.csr_matrix((data_tx, (row_tx, col_tx)),
232 | shape=(test_size, word_embeddings_dim))
233 |
234 | ty = []
235 | for i in range(test_size):
236 | doc_meta = shuffle_doc_name_list[i + train_size]
237 | temp = doc_meta.split('\t')
238 | label = temp[2]
239 | one_hot = [0 for l in range(len(label_list))]
240 | label_index = label_list.index(label)
241 | one_hot[label_index] = 1
242 | ty.append(one_hot)
243 | ty = np.array(ty)
244 | ## print(ty)
245 |
246 | # allx: the the feature vectors of both labeled and unlabeled training instances
247 | # (a superset of x) train+val+word list
248 | # unlabeled training instances -> words
249 |
250 | word_vectors = np.random.uniform(-0.01, 0.01,
251 | (vocab_size, word_embeddings_dim))
252 |
253 | row_allx = []
254 | col_allx = []
255 | data_allx = []
256 |
257 | for i in range(train_size):
258 | doc_vec = np.array([0.0 for k in range(word_embeddings_dim)])
259 | doc_words = shuffle_doc_words_list[i]
260 | words = doc_words.split()
261 | doc_len = len(words)
262 | for word in words:
263 | if word in word_vector_map:
264 | word_vector = word_vector_map[word]
265 | doc_vec = doc_vec #+ np.array(word_vector)
266 |
267 | for j in range(word_embeddings_dim):
268 | row_allx.append(int(i))
269 | col_allx.append(j)
270 | # np.random.uniform(-0.25, 0.25)
271 | data_allx.append(doc_vec[j] / doc_len) # doc_vec[j]/doc_len
272 |
273 | for i in range(vocab_size):
274 | for j in range(word_embeddings_dim):
275 | row_allx.append(int(i + train_size))
276 | col_allx.append(j)
277 | data_allx.append(word_vectors.item((i, j)))
278 |
279 |
280 | row_allx = np.array(row_allx)
281 | col_allx = np.array(col_allx)
282 | data_allx = np.array(data_allx)
283 |
284 |
285 | allx = sp.csr_matrix((data_allx, (row_allx, col_allx)),
286 | shape=(train_size + vocab_size, word_embeddings_dim))
287 |
288 | ally = []
289 | for i in range(train_size):
290 | doc_meta = shuffle_doc_name_list[i]
291 | temp = doc_meta.split('\t')
292 | label = temp[2]
293 | one_hot = [0 for l in range(len(label_list))]
294 | label_index = label_list.index(label)
295 | one_hot[label_index] = 1
296 | ally.append(one_hot)
297 |
298 | ## dummy label for vocab, not counted in loss and learning
299 | for i in range(vocab_size):
300 | one_hot = [0 for l in range(len(label_list))]
301 | ally.append(one_hot)
302 |
303 | ally = np.array(ally)
304 |
305 | print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
306 |
307 | '''
308 | Doc word heterogeneous graph
309 | '''
310 |
311 | # word co-occurence with context windows
312 | window_size = 20
313 | windows = []
314 |
315 | for doc_words in shuffle_doc_words_list:
316 | words = doc_words.split()
317 | length = len(words)
318 | if length <= window_size:
319 | windows.append(words)
320 | else:
321 | for j in range(length - window_size + 1):
322 | window = words[j: j + window_size]
323 | windows.append(window)
324 | # print(window)
325 |
326 |
327 | word_window_freq = {} # number of windows a word occurs in
328 | for window in windows:
329 | appeared = set()
330 | for i in range(len(window)):
331 | if window[i] in appeared:
332 | continue
333 | if window[i] in word_window_freq:
334 | word_window_freq[window[i]] += 1
335 | else:
336 | word_window_freq[window[i]] = 1
337 | appeared.add(window[i])
338 |
339 | ## number of windows a pair of words occur in
340 | word_pair_count = {}
341 | for window in windows:
342 | for i in range(1, len(window)):
343 | for j in range(0, i):
344 | word_i = window[i]
345 | word_i_id = word_id_map[word_i]
346 | word_j = window[j]
347 | word_j_id = word_id_map[word_j]
348 | if word_i_id == word_j_id:
349 | continue
350 | word_pair_str = str(word_i_id) + ',' + str(word_j_id)
351 | if word_pair_str in word_pair_count:
352 | word_pair_count[word_pair_str] += 1
353 | else:
354 | word_pair_count[word_pair_str] = 1
355 | # two orders
356 | word_pair_str = str(word_j_id) + ',' + str(word_i_id)
357 | if word_pair_str in word_pair_count:
358 | word_pair_count[word_pair_str] += 1
359 | else:
360 | word_pair_count[word_pair_str] = 1
361 |
362 |
363 | row = []
364 | col = []
365 | weight = []
366 |
367 | # pmi as weights
368 |
369 | num_window = len(windows)
370 |
371 | for key in word_pair_count:
372 | temp = key.split(',')
373 | i = int(temp[0])
374 | j = int(temp[1])
375 | count = word_pair_count[key]
376 | word_freq_i = word_window_freq[vocab[i]]
377 | word_freq_j = word_window_freq[vocab[j]]
378 | pmi = log((1.0 * count / num_window) /
379 | (1.0 * word_freq_i * word_freq_j/(num_window * num_window)))
380 | if pmi <= 0:
381 | continue
382 |
383 | row.append(train_size + i)
384 | col.append(train_size + j)
385 | weight.append(pmi)
386 |
387 |
388 | # doc word frequency, tf
389 | doc_word_freq = {}
390 |
391 | for doc_id in range(len(shuffle_doc_words_list)):
392 | doc_words = shuffle_doc_words_list[doc_id]
393 | words = doc_words.split()
394 | for word in words:
395 | word_id = word_id_map[word]
396 | doc_word_str = str(doc_id) + ',' + str(word_id)
397 | if doc_word_str in doc_word_freq:
398 | doc_word_freq[doc_word_str] += 1
399 | else:
400 | doc_word_freq[doc_word_str] = 1
401 | # tfidf
402 | for i in range(len(shuffle_doc_words_list)):
403 | doc_words = shuffle_doc_words_list[i]
404 | words = doc_words.split()
405 | doc_word_set = set()
406 | for word in words:
407 | if word in doc_word_set:
408 | continue
409 | j = word_id_map[word]
410 | key = str(i) + ',' + str(j)
411 | freq = doc_word_freq[key]
412 | if i < train_size:
413 | row.append(i)
414 | else:
415 | row.append(i + vocab_size)
416 | col.append(train_size + j)
417 | idf = log(1.0 * len(shuffle_doc_words_list) /
418 | word_doc_freq[vocab[j]])
419 | weight.append(freq * idf)
420 | doc_word_set.add(word)
421 |
422 | ## adjacent matrix
423 | node_size = train_size + vocab_size + test_size
424 | adj = sp.csr_matrix(
425 | (weight, (row, col)), shape=(node_size, node_size))
426 |
427 | # save objects as input for train.py
428 | f = open("data/ind.{}.x".format(dataset), 'wb')
429 | pkl.dump(x, f)
430 | f.close()
431 |
432 | f = open("data/ind.{}.y".format(dataset), 'wb')
433 | pkl.dump(y, f)
434 | f.close()
435 |
436 | f = open("data/ind.{}.tx".format(dataset), 'wb')
437 | pkl.dump(tx, f)
438 | f.close()
439 |
440 | f = open("data/ind.{}.ty".format(dataset), 'wb')
441 | pkl.dump(ty, f)
442 | f.close()
443 |
444 | f = open("data/ind.{}.allx".format(dataset), 'wb')
445 | pkl.dump(allx, f)
446 | f.close()
447 |
448 | f = open("data/ind.{}.ally".format(dataset), 'wb')
449 | pkl.dump(ally, f)
450 | f.close()
451 |
452 | f = open("data/ind.{}.adj".format(dataset), 'wb')
453 | pkl.dump(adj, f)
454 | f.close()
455 |
--------------------------------------------------------------------------------
/data/ohsumed_3.txt:
--------------------------------------------------------------------------------
1 | data/ohsumed_single_23/test/C04/0000014 test C04
2 | data/ohsumed_single_23/test/C04/0000108 test C04
3 | data/ohsumed_single_23/test/C04/0000140 test C04
4 | data/ohsumed_single_23/test/C04/0000143 test C04
5 | data/ohsumed_single_23/test/C04/0000145 test C04
6 | data/ohsumed_single_23/test/C04/0000146 test C04
7 | data/ohsumed_single_23/test/C04/0000159 test C04
8 | data/ohsumed_single_23/test/C04/0000175 test C04
9 | data/ohsumed_single_23/test/C04/0000179 test C04
10 | data/ohsumed_single_23/test/C04/0000181 test C04
11 | data/ohsumed_single_23/test/C04/0000188 test C04
12 | data/ohsumed_single_23/test/C04/0000189 test C04
13 | data/ohsumed_single_23/test/C04/0000191 test C04
14 | data/ohsumed_single_23/test/C04/0000199 test C04
15 | data/ohsumed_single_23/test/C04/0001051 test C04
16 | data/ohsumed_single_23/test/C04/0001083 test C04
17 | data/ohsumed_single_23/test/C04/0001084 test C04
18 | data/ohsumed_single_23/test/C04/0001110 test C04
19 | data/ohsumed_single_23/test/C04/0001147 test C04
20 | data/ohsumed_single_23/test/C04/0001160 test C04
21 | data/ohsumed_single_23/test/C04/0001163 test C04
22 | data/ohsumed_single_23/test/C04/0001175 test C04
23 | data/ohsumed_single_23/test/C04/0001190 test C04
24 | data/ohsumed_single_23/test/C04/0001191 test C04
25 | data/ohsumed_single_23/test/C04/0001194 test C04
26 | data/ohsumed_single_23/test/C04/0001254 test C04
27 | data/ohsumed_single_23/test/C04/0001321 test C04
28 | data/ohsumed_single_23/test/C04/0001393 test C04
29 | data/ohsumed_single_23/test/C04/0001457 test C04
30 | data/ohsumed_single_23/test/C04/0001458 test C04
31 | data/ohsumed_single_23/test/C04/0001461 test C04
32 | data/ohsumed_single_23/test/C04/0001462 test C04
33 | data/ohsumed_single_23/test/C04/0001465 test C04
34 | data/ohsumed_single_23/test/C04/0001466 test C04
35 | data/ohsumed_single_23/test/C04/0001467 test C04
36 | data/ohsumed_single_23/test/C04/0001483 test C04
37 | data/ohsumed_single_23/test/C04/0001484 test C04
38 | data/ohsumed_single_23/test/C04/0001508 test C04
39 | data/ohsumed_single_23/test/C04/0001518 test C04
40 | data/ohsumed_single_23/test/C04/0001529 test C04
41 | data/ohsumed_single_23/test/C04/0001570 test C04
42 | data/ohsumed_single_23/test/C04/0001644 test C04
43 | data/ohsumed_single_23/test/C04/0001646 test C04
44 | data/ohsumed_single_23/test/C04/0001647 test C04
45 | data/ohsumed_single_23/test/C04/0001648 test C04
46 | data/ohsumed_single_23/test/C04/0001649 test C04
47 | data/ohsumed_single_23/test/C04/0001651 test C04
48 | data/ohsumed_single_23/test/C04/0001669 test C04
49 | data/ohsumed_single_23/test/C04/0001696 test C04
50 | data/ohsumed_single_23/test/C04/0001847 test C04
51 | data/ohsumed_single_23/test/C04/0001873 test C04
52 | data/ohsumed_single_23/test/C04/0001885 test C04
53 | data/ohsumed_single_23/test/C04/0001920 test C04
54 | data/ohsumed_single_23/test/C04/0001988 test C04
55 | data/ohsumed_single_23/test/C04/0001997 test C04
56 | data/ohsumed_single_23/test/C04/0010030 test C04
57 | data/ohsumed_single_23/test/C04/0010142 test C04
58 | data/ohsumed_single_23/test/C04/0010143 test C04
59 | data/ohsumed_single_23/test/C04/0010159 test C04
60 | data/ohsumed_single_23/test/C04/0010167 test C04
61 | data/ohsumed_single_23/test/C04/0010168 test C04
62 | data/ohsumed_single_23/test/C04/0010321 test C04
63 | data/ohsumed_single_23/test/C04/0010330 test C04
64 | data/ohsumed_single_23/test/C04/0010375 test C04
65 | data/ohsumed_single_23/test/C04/0010376 test C04
66 | data/ohsumed_single_23/test/C04/0010390 test C04
67 | data/ohsumed_single_23/test/C04/0010391 test C04
68 | data/ohsumed_single_23/test/C04/0010393 test C04
69 | data/ohsumed_single_23/test/C04/0010530 test C04
70 | data/ohsumed_single_23/test/C04/0010534 test C04
71 | data/ohsumed_single_23/test/C04/0010535 test C04
72 | data/ohsumed_single_23/test/C04/0010536 test C04
73 | data/ohsumed_single_23/test/C04/0010538 test C04
74 | data/ohsumed_single_23/test/C04/0010541 test C04
75 | data/ohsumed_single_23/test/C04/0010566 test C04
76 | data/ohsumed_single_23/test/C04/0010587 test C04
77 | data/ohsumed_single_23/test/C04/0010590 test C04
78 | data/ohsumed_single_23/test/C04/0010594 test C04
79 | data/ohsumed_single_23/test/C04/0010603 test C04
80 | data/ohsumed_single_23/test/C04/0010604 test C04
81 | data/ohsumed_single_23/test/C04/0010605 test C04
82 | data/ohsumed_single_23/test/C04/0010607 test C04
83 | data/ohsumed_single_23/test/C04/0010608 test C04
84 | data/ohsumed_single_23/test/C04/0010670 test C04
85 | data/ohsumed_single_23/test/C04/0010674 test C04
86 | data/ohsumed_single_23/test/C04/0010696 test C04
87 | data/ohsumed_single_23/test/C04/0010704 test C04
88 | data/ohsumed_single_23/test/C04/0010731 test C04
89 | data/ohsumed_single_23/test/C04/0010738 test C04
90 | data/ohsumed_single_23/test/C04/0010801 test C04
91 | data/ohsumed_single_23/test/C04/0010864 test C04
92 | data/ohsumed_single_23/test/C04/0010865 test C04
93 | data/ohsumed_single_23/test/C04/0010866 test C04
94 | data/ohsumed_single_23/test/C04/0010868 test C04
95 | data/ohsumed_single_23/test/C04/0010874 test C04
96 | data/ohsumed_single_23/test/C04/0010884 test C04
97 | data/ohsumed_single_23/test/C04/0010886 test C04
98 | data/ohsumed_single_23/test/C04/0010887 test C04
99 | data/ohsumed_single_23/test/C04/0011049 test C04
100 | data/ohsumed_single_23/test/C04/0011066 test C04
101 | data/ohsumed_single_23/test/C04/0011068 test C04
102 | data/ohsumed_single_23/test/C04/0011079 test C04
103 | data/ohsumed_single_23/test/C04/0011081 test C04
104 | data/ohsumed_single_23/test/C04/0011086 test C04
105 | data/ohsumed_single_23/test/C04/0011087 test C04
106 | data/ohsumed_single_23/test/C04/0011090 test C04
107 | data/ohsumed_single_23/test/C04/0011091 test C04
108 | data/ohsumed_single_23/test/C04/0011092 test C04
109 | data/ohsumed_single_23/test/C04/0011093 test C04
110 | data/ohsumed_single_23/test/C04/0011095 test C04
111 | data/ohsumed_single_23/test/C04/0011096 test C04
112 | data/ohsumed_single_23/test/C04/0011155 test C04
113 | data/ohsumed_single_23/test/C04/0011157 test C04
114 | data/ohsumed_single_23/test/C04/0011159 test C04
115 | data/ohsumed_single_23/test/C04/0011182 test C04
116 | data/ohsumed_single_23/test/C04/0011184 test C04
117 | data/ohsumed_single_23/test/C04/0011185 test C04
118 | data/ohsumed_single_23/test/C04/0011186 test C04
119 | data/ohsumed_single_23/test/C04/0011188 test C04
120 | data/ohsumed_single_23/test/C04/0011429 test C04
121 | data/ohsumed_single_23/test/C04/0011444 test C04
122 | data/ohsumed_single_23/test/C04/0011456 test C04
123 | data/ohsumed_single_23/test/C04/0011467 test C04
124 | data/ohsumed_single_23/test/C04/0011471 test C04
125 | data/ohsumed_single_23/test/C04/0011543 test C04
126 | data/ohsumed_single_23/test/C04/0011546 test C04
127 | data/ohsumed_single_23/test/C04/0011547 test C04
128 | data/ohsumed_single_23/test/C04/0011550 test C04
129 | data/ohsumed_single_23/test/C04/0011556 test C04
130 | data/ohsumed_single_23/test/C04/0011559 test C04
131 | data/ohsumed_single_23/test/C04/0011560 test C04
132 | data/ohsumed_single_23/test/C04/0011583 test C04
133 | data/ohsumed_single_23/test/C04/0011601 test C04
134 | data/ohsumed_single_23/test/C04/0011616 test C04
135 | data/ohsumed_single_23/test/C04/0011629 test C04
136 | data/ohsumed_single_23/test/C04/0011673 test C04
137 | data/ohsumed_single_23/test/C04/0011681 test C04
138 | data/ohsumed_single_23/test/C04/0011716 test C04
139 | data/ohsumed_single_23/test/C04/0011731 test C04
140 | data/ohsumed_single_23/test/C04/0011740 test C04
141 | data/ohsumed_single_23/test/C04/0011789 test C04
142 | data/ohsumed_single_23/test/C04/0011808 test C04
143 | data/ohsumed_single_23/test/C04/0011821 test C04
144 | data/ohsumed_single_23/test/C04/0011827 test C04
145 | data/ohsumed_single_23/test/C04/0011831 test C04
146 | data/ohsumed_single_23/test/C04/0011844 test C04
147 | data/ohsumed_single_23/test/C04/0011849 test C04
148 | data/ohsumed_single_23/test/C04/0011879 test C04
149 | data/ohsumed_single_23/test/C04/0011881 test C04
150 | data/ohsumed_single_23/test/C04/0011885 test C04
151 | data/ohsumed_single_23/test/C04/0011966 test C04
152 | data/ohsumed_single_23/test/C04/0011969 test C04
153 | data/ohsumed_single_23/test/C04/0011970 test C04
154 | data/ohsumed_single_23/test/C04/0011972 test C04
155 | data/ohsumed_single_23/test/C04/0011973 test C04
156 | data/ohsumed_single_23/test/C04/0011974 test C04
157 | data/ohsumed_single_23/test/C04/0012050 test C04
158 | data/ohsumed_single_23/test/C04/0012055 test C04
159 | data/ohsumed_single_23/test/C04/0012083 test C04
160 | data/ohsumed_single_23/test/C04/0012123 test C04
161 | data/ohsumed_single_23/test/C04/0012127 test C04
162 | data/ohsumed_single_23/test/C04/0012139 test C04
163 | data/ohsumed_single_23/test/C04/0012152 test C04
164 | data/ohsumed_single_23/test/C04/0012185 test C04
165 | data/ohsumed_single_23/test/C04/0012186 test C04
166 | data/ohsumed_single_23/test/C04/0012188 test C04
167 | data/ohsumed_single_23/test/C04/0012203 test C04
168 | data/ohsumed_single_23/test/C04/0012205 test C04
169 | data/ohsumed_single_23/test/C04/0012288 test C04
170 | data/ohsumed_single_23/test/C04/0012292 test C04
171 | data/ohsumed_single_23/test/C04/0012317 test C04
172 | data/ohsumed_single_23/test/C04/0012329 test C04
173 | data/ohsumed_single_23/test/C04/0012332 test C04
174 | data/ohsumed_single_23/test/C04/0012334 test C04
175 | data/ohsumed_single_23/test/C04/0012335 test C04
176 | data/ohsumed_single_23/test/C04/0012342 test C04
177 | data/ohsumed_single_23/test/C04/0012364 test C04
178 | data/ohsumed_single_23/test/C04/0012368 test C04
179 | data/ohsumed_single_23/test/C04/0012369 test C04
180 | data/ohsumed_single_23/test/C04/0012373 test C04
181 | data/ohsumed_single_23/test/C04/0012376 test C04
182 | data/ohsumed_single_23/test/C04/0012377 test C04
183 | data/ohsumed_single_23/test/C04/0012378 test C04
184 | data/ohsumed_single_23/test/C04/0012380 test C04
185 | data/ohsumed_single_23/test/C04/0012384 test C04
186 | data/ohsumed_single_23/test/C04/0012385 test C04
187 | data/ohsumed_single_23/test/C04/0012386 test C04
188 | data/ohsumed_single_23/test/C04/0012388 test C04
189 | data/ohsumed_single_23/test/C04/0012392 test C04
190 | data/ohsumed_single_23/test/C04/0012393 test C04
191 | data/ohsumed_single_23/test/C04/0012394 test C04
192 | data/ohsumed_single_23/test/C04/0012399 test C04
193 | data/ohsumed_single_23/test/C04/0012401 test C04
194 | data/ohsumed_single_23/test/C04/0012402 test C04
195 | data/ohsumed_single_23/test/C04/0012403 test C04
196 | data/ohsumed_single_23/test/C04/0012405 test C04
197 | data/ohsumed_single_23/test/C04/0012407 test C04
198 | data/ohsumed_single_23/test/C04/0012408 test C04
199 | data/ohsumed_single_23/test/C04/0012410 test C04
200 | data/ohsumed_single_23/test/C04/0012411 test C04
201 | data/ohsumed_single_23/test/C04/0012413 test C04
202 | data/ohsumed_single_23/test/C04/0012415 test C04
203 | data/ohsumed_single_23/test/C04/0012416 test C04
204 | data/ohsumed_single_23/test/C04/0012417 test C04
205 | data/ohsumed_single_23/test/C04/0012418 test C04
206 | data/ohsumed_single_23/test/C04/0012421 test C04
207 | data/ohsumed_single_23/test/C04/0012422 test C04
208 | data/ohsumed_single_23/test/C04/0012427 test C04
209 | data/ohsumed_single_23/test/C04/0012434 test C04
210 | data/ohsumed_single_23/test/C04/0012435 test C04
211 | data/ohsumed_single_23/test/C04/0012436 test C04
212 | data/ohsumed_single_23/test/C04/0012437 test C04
213 | data/ohsumed_single_23/test/C04/0012438 test C04
214 | data/ohsumed_single_23/test/C04/0012441 test C04
215 | data/ohsumed_single_23/test/C04/0012443 test C04
216 | data/ohsumed_single_23/test/C04/0012444 test C04
217 | data/ohsumed_single_23/test/C04/0012447 test C04
218 | data/ohsumed_single_23/test/C04/0012453 test C04
219 | data/ohsumed_single_23/test/C04/0012455 test C04
220 | data/ohsumed_single_23/test/C04/0012457 test C04
221 | data/ohsumed_single_23/test/C04/0012567 test C04
222 | data/ohsumed_single_23/test/C04/0012573 test C04
223 | data/ohsumed_single_23/test/C04/0012622 test C04
224 | data/ohsumed_single_23/test/C04/0012634 test C04
225 | data/ohsumed_single_23/test/C04/0012637 test C04
226 | data/ohsumed_single_23/test/C04/0012638 test C04
227 | data/ohsumed_single_23/test/C04/0012678 test C04
228 | data/ohsumed_single_23/test/C04/0012682 test C04
229 | data/ohsumed_single_23/test/C04/0012695 test C04
230 | data/ohsumed_single_23/test/C04/0012696 test C04
231 | data/ohsumed_single_23/test/C04/0012699 test C04
232 | data/ohsumed_single_23/test/C04/0012706 test C04
233 | data/ohsumed_single_23/test/C04/0012710 test C04
234 | data/ohsumed_single_23/test/C04/0012796 test C04
235 | data/ohsumed_single_23/test/C04/0012802 test C04
236 | data/ohsumed_single_23/test/C04/0012803 test C04
237 | data/ohsumed_single_23/test/C04/0012826 test C04
238 | data/ohsumed_single_23/test/C04/0012842 test C04
239 | data/ohsumed_single_23/test/C04/0012896 test C04
240 | data/ohsumed_single_23/test/C04/0012910 test C04
241 | data/ohsumed_single_23/test/C04/0012912 test C04
242 | data/ohsumed_single_23/test/C04/0012916 test C04
243 | data/ohsumed_single_23/test/C04/0012950 test C04
244 | data/ohsumed_single_23/test/C04/0012952 test C04
245 | data/ohsumed_single_23/test/C04/0012965 test C04
246 | data/ohsumed_single_23/test/C04/0012982 test C04
247 | data/ohsumed_single_23/test/C04/0013065 test C04
248 | data/ohsumed_single_23/test/C04/0013111 test C04
249 | data/ohsumed_single_23/test/C04/0013112 test C04
250 | data/ohsumed_single_23/test/C04/0013185 test C04
251 | data/ohsumed_single_23/test/C04/0013194 test C04
252 | data/ohsumed_single_23/test/C04/0013201 test C04
253 | data/ohsumed_single_23/test/C04/0013202 test C04
254 | data/ohsumed_single_23/test/C04/0013208 test C04
255 | data/ohsumed_single_23/test/C04/0013211 test C04
256 | data/ohsumed_single_23/test/C04/0013239 test C04
257 | data/ohsumed_single_23/test/C04/0013263 test C04
258 | data/ohsumed_single_23/test/C04/0013265 test C04
259 | data/ohsumed_single_23/test/C04/0013266 test C04
260 | data/ohsumed_single_23/test/C04/0013267 test C04
261 | data/ohsumed_single_23/test/C04/0013269 test C04
262 | data/ohsumed_single_23/test/C04/0013271 test C04
263 | data/ohsumed_single_23/test/C04/0013272 test C04
264 | data/ohsumed_single_23/test/C04/0013273 test C04
265 | data/ohsumed_single_23/test/C04/0013274 test C04
266 | data/ohsumed_single_23/test/C04/0013275 test C04
267 | data/ohsumed_single_23/test/C04/0013276 test C04
268 | data/ohsumed_single_23/test/C04/0013277 test C04
269 | data/ohsumed_single_23/test/C04/0013286 test C04
270 | data/ohsumed_single_23/test/C04/0013310 test C04
271 | data/ohsumed_single_23/test/C04/0013314 test C04
272 | data/ohsumed_single_23/test/C04/0013315 test C04
273 | data/ohsumed_single_23/test/C04/0013329 test C04
274 | data/ohsumed_single_23/test/C04/0013474 test C04
275 | data/ohsumed_single_23/test/C04/0013520 test C04
276 | data/ohsumed_single_23/test/C04/0013522 test C04
277 | data/ohsumed_single_23/test/C04/0013524 test C04
278 | data/ohsumed_single_23/test/C04/0013616 test C04
279 | data/ohsumed_single_23/test/C04/0013723 test C04
280 | data/ohsumed_single_23/test/C04/0013770 test C04
281 | data/ohsumed_single_23/test/C04/0013839 test C04
282 | data/ohsumed_single_23/test/C04/0013840 test C04
283 | data/ohsumed_single_23/test/C04/0013841 test C04
284 | data/ohsumed_single_23/test/C04/0013853 test C04
285 | data/ohsumed_single_23/test/C04/0013863 test C04
286 | data/ohsumed_single_23/test/C04/0013872 test C04
287 | data/ohsumed_single_23/test/C04/0013893 test C04
288 | data/ohsumed_single_23/test/C04/0013896 test C04
289 | data/ohsumed_single_23/test/C04/0013908 test C04
290 | data/ohsumed_single_23/test/C04/0013962 test C04
291 | data/ohsumed_single_23/test/C04/0013966 test C04
292 | data/ohsumed_single_23/test/C04/0013967 test C04
293 | data/ohsumed_single_23/test/C04/0013969 test C04
294 | data/ohsumed_single_23/test/C04/0014014 test C04
295 | data/ohsumed_single_23/test/C04/0014184 test C04
296 | data/ohsumed_single_23/test/C04/0014185 test C04
297 | data/ohsumed_single_23/test/C04/0014189 test C04
298 | data/ohsumed_single_23/test/C04/0014190 test C04
299 | data/ohsumed_single_23/test/C04/0014194 test C04
300 | data/ohsumed_single_23/test/C04/0014205 test C04
301 | data/ohsumed_single_23/test/C04/0014206 test C04
302 | data/ohsumed_single_23/test/C04/0014225 test C04
303 | data/ohsumed_single_23/test/C04/0014283 test C04
304 | data/ohsumed_single_23/test/C04/0014296 test C04
305 | data/ohsumed_single_23/test/C04/0014300 test C04
306 | data/ohsumed_single_23/test/C04/0014335 test C04
307 | data/ohsumed_single_23/test/C04/0014422 test C04
308 | data/ohsumed_single_23/test/C04/0014425 test C04
309 | data/ohsumed_single_23/test/C04/0014426 test C04
310 | data/ohsumed_single_23/test/C04/0014428 test C04
311 | data/ohsumed_single_23/test/C04/0014429 test C04
312 | data/ohsumed_single_23/test/C04/0014433 test C04
313 | data/ohsumed_single_23/test/C04/0014497 test C04
314 | data/ohsumed_single_23/test/C04/0014502 test C04
315 | data/ohsumed_single_23/test/C04/0014503 test C04
316 | data/ohsumed_single_23/test/C04/0014527 test C04
317 | data/ohsumed_single_23/test/C04/0014552 test C04
318 | data/ohsumed_single_23/test/C04/0014553 test C04
319 | data/ohsumed_single_23/test/C04/0014561 test C04
320 | data/ohsumed_single_23/test/C04/0014575 test C04
321 | data/ohsumed_single_23/test/C04/0014646 test C04
322 | data/ohsumed_single_23/test/C04/0014653 test C04
323 | data/ohsumed_single_23/test/C04/0014665 test C04
324 | data/ohsumed_single_23/test/C04/0014687 test C04
325 | data/ohsumed_single_23/test/C04/0014708 test C04
326 | data/ohsumed_single_23/test/C04/0014835 test C04
327 | data/ohsumed_single_23/test/C04/0014839 test C04
328 | data/ohsumed_single_23/test/C04/0014840 test C04
329 | data/ohsumed_single_23/test/C04/0014841 test C04
330 | data/ohsumed_single_23/test/C04/0014869 test C04
331 | data/ohsumed_single_23/test/C04/0014984 test C04
332 | data/ohsumed_single_23/test/C04/0015116 test C04
333 | data/ohsumed_single_23/test/C04/0015240 test C04
334 | data/ohsumed_single_23/test/C04/0015248 test C04
335 | data/ohsumed_single_23/test/C04/0015259 test C04
336 | data/ohsumed_single_23/test/C04/0015260 test C04
337 | data/ohsumed_single_23/test/C04/0015266 test C04
338 | data/ohsumed_single_23/test/C04/0015285 test C04
339 | data/ohsumed_single_23/test/C04/0015375 test C04
340 | data/ohsumed_single_23/test/C04/0015389 test C04
341 | data/ohsumed_single_23/test/C04/0015481 test C04
342 | data/ohsumed_single_23/test/C04/0015515 test C04
343 | data/ohsumed_single_23/test/C04/0015611 test C04
344 | data/ohsumed_single_23/test/C04/0015613 test C04
345 | data/ohsumed_single_23/test/C04/0015614 test C04
346 | data/ohsumed_single_23/test/C04/0015616 test C04
347 | data/ohsumed_single_23/test/C04/0015617 test C04
348 | data/ohsumed_single_23/test/C04/0015623 test C04
349 | data/ohsumed_single_23/test/C04/0015624 test C04
350 | data/ohsumed_single_23/test/C04/0015626 test C04
351 | data/ohsumed_single_23/test/C04/0015630 test C04
352 | data/ohsumed_single_23/test/C04/0015635 test C04
353 | data/ohsumed_single_23/test/C04/0015636 test C04
354 | data/ohsumed_single_23/test/C04/0015637 test C04
355 | data/ohsumed_single_23/test/C04/0015640 test C04
356 | data/ohsumed_single_23/test/C04/0015644 test C04
357 | data/ohsumed_single_23/test/C04/0015646 test C04
358 | data/ohsumed_single_23/test/C04/0015647 test C04
359 | data/ohsumed_single_23/test/C04/0015650 test C04
360 | data/ohsumed_single_23/test/C04/0015651 test C04
361 | data/ohsumed_single_23/test/C04/0015652 test C04
362 | data/ohsumed_single_23/test/C04/0015653 test C04
363 | data/ohsumed_single_23/test/C04/0015656 test C04
364 | data/ohsumed_single_23/test/C04/0015657 test C04
365 | data/ohsumed_single_23/test/C04/0015659 test C04
366 | data/ohsumed_single_23/test/C04/0015660 test C04
367 | data/ohsumed_single_23/test/C04/0015661 test C04
368 | data/ohsumed_single_23/test/C04/0015662 test C04
369 | data/ohsumed_single_23/test/C04/0015663 test C04
370 | data/ohsumed_single_23/test/C04/0015665 test C04
371 | data/ohsumed_single_23/test/C04/0015666 test C04
372 | data/ohsumed_single_23/test/C04/0015667 test C04
373 | data/ohsumed_single_23/test/C04/0015669 test C04
374 | data/ohsumed_single_23/test/C04/0015670 test C04
375 | data/ohsumed_single_23/test/C04/0015671 test C04
376 | data/ohsumed_single_23/test/C04/0015675 test C04
377 | data/ohsumed_single_23/test/C04/0015681 test C04
378 | data/ohsumed_single_23/test/C04/0015683 test C04
379 | data/ohsumed_single_23/test/C04/0015686 test C04
380 | data/ohsumed_single_23/test/C04/0015690 test C04
381 | data/ohsumed_single_23/test/C04/0015693 test C04
382 | data/ohsumed_single_23/test/C04/0015782 test C04
383 | data/ohsumed_single_23/test/C04/0015784 test C04
384 | data/ohsumed_single_23/test/C04/0015786 test C04
385 | data/ohsumed_single_23/test/C04/0015788 test C04
386 | data/ohsumed_single_23/test/C04/0015795 test C04
387 | data/ohsumed_single_23/test/C04/0015824 test C04
388 | data/ohsumed_single_23/test/C04/0015871 test C04
389 | data/ohsumed_single_23/test/C04/0015879 test C04
390 | data/ohsumed_single_23/test/C04/0015930 test C04
391 | data/ohsumed_single_23/test/C04/0015963 test C04
392 | data/ohsumed_single_23/test/C04/0015978 test C04
393 | data/ohsumed_single_23/test/C04/0016000 test C04
394 | data/ohsumed_single_23/test/C04/0016015 test C04
395 | data/ohsumed_single_23/test/C04/0016027 test C04
396 | data/ohsumed_single_23/test/C04/0016028 test C04
397 | data/ohsumed_single_23/test/C04/0016034 test C04
398 | data/ohsumed_single_23/test/C04/0016096 test C04
399 | data/ohsumed_single_23/test/C04/0016104 test C04
400 | data/ohsumed_single_23/test/C04/0016120 test C04
401 | data/ohsumed_single_23/test/C04/0016128 test C04
402 | data/ohsumed_single_23/test/C04/0016133 test C04
403 | data/ohsumed_single_23/test/C04/0016135 test C04
404 | data/ohsumed_single_23/test/C04/0016140 test C04
405 | data/ohsumed_single_23/test/C04/0016180 test C04
406 | data/ohsumed_single_23/test/C04/0016181 test C04
407 | data/ohsumed_single_23/test/C04/0016185 test C04
408 | data/ohsumed_single_23/test/C04/0016195 test C04
409 | data/ohsumed_single_23/test/C04/0016196 test C04
410 | data/ohsumed_single_23/test/C04/0016227 test C04
411 | data/ohsumed_single_23/test/C04/0016244 test C04
412 | data/ohsumed_single_23/test/C04/0016246 test C04
413 | data/ohsumed_single_23/test/C04/0016247 test C04
414 | data/ohsumed_single_23/test/C04/0016248 test C04
415 | data/ohsumed_single_23/test/C04/0016250 test C04
416 | data/ohsumed_single_23/test/C04/0016251 test C04
417 | data/ohsumed_single_23/test/C04/0016255 test C04
418 | data/ohsumed_single_23/test/C04/0016281 test C04
419 | data/ohsumed_single_23/test/C04/0016293 test C04
420 | data/ohsumed_single_23/test/C04/0016295 test C04
421 | data/ohsumed_single_23/test/C04/0016411 test C04
422 | data/ohsumed_single_23/test/C04/0016413 test C04
423 | data/ohsumed_single_23/test/C04/0016414 test C04
424 | data/ohsumed_single_23/test/C04/0016415 test C04
425 | data/ohsumed_single_23/test/C04/0016416 test C04
426 | data/ohsumed_single_23/test/C04/0016417 test C04
427 | data/ohsumed_single_23/test/C04/0016418 test C04
428 | data/ohsumed_single_23/test/C04/0016420 test C04
429 | data/ohsumed_single_23/test/C04/0016476 test C04
430 | data/ohsumed_single_23/test/C04/0016479 test C04
431 | data/ohsumed_single_23/test/C04/0016516 test C04
432 | data/ohsumed_single_23/test/C04/0016517 test C04
433 | data/ohsumed_single_23/test/C04/0016518 test C04
434 | data/ohsumed_single_23/test/C04/0016528 test C04
435 | data/ohsumed_single_23/test/C04/0016552 test C04
436 | data/ohsumed_single_23/test/C04/0016587 test C04
437 | data/ohsumed_single_23/test/C04/0016603 test C04
438 | data/ohsumed_single_23/test/C04/0016612 test C04
439 | data/ohsumed_single_23/test/C04/0016615 test C04
440 | data/ohsumed_single_23/test/C04/0016623 test C04
441 | data/ohsumed_single_23/test/C04/0016624 test C04
442 | data/ohsumed_single_23/test/C04/0016654 test C04
443 | data/ohsumed_single_23/test/C04/0016668 test C04
444 | data/ohsumed_single_23/test/C04/0016680 test C04
445 | data/ohsumed_single_23/test/C04/0016687 test C04
446 | data/ohsumed_single_23/test/C04/0016706 test C04
447 | data/ohsumed_single_23/test/C04/0016710 test C04
448 | data/ohsumed_single_23/test/C04/0016712 test C04
449 | data/ohsumed_single_23/test/C04/0016743 test C04
450 | data/ohsumed_single_23/test/C04/0016763 test C04
451 | data/ohsumed_single_23/test/C04/0016784 test C04
452 | data/ohsumed_single_23/test/C04/0016794 test C04
453 | data/ohsumed_single_23/test/C04/0016799 test C04
454 | data/ohsumed_single_23/test/C04/0016800 test C04
455 | data/ohsumed_single_23/test/C04/0016826 test C04
456 | data/ohsumed_single_23/test/C04/0016832 test C04
457 | data/ohsumed_single_23/test/C04/0016836 test C04
458 | data/ohsumed_single_23/test/C04/0016837 test C04
459 | data/ohsumed_single_23/test/C04/0016842 test C04
460 | data/ohsumed_single_23/test/C04/0016843 test C04
461 | data/ohsumed_single_23/test/C04/0016846 test C04
462 | data/ohsumed_single_23/test/C04/0016939 test C04
463 | data/ohsumed_single_23/test/C04/0016946 test C04
464 | data/ohsumed_single_23/test/C04/0016963 test C04
465 | data/ohsumed_single_23/test/C04/0016966 test C04
466 | data/ohsumed_single_23/test/C04/0017006 test C04
467 | data/ohsumed_single_23/test/C04/0017030 test C04
468 | data/ohsumed_single_23/test/C04/0017032 test C04
469 | data/ohsumed_single_23/test/C04/0017049 test C04
470 | data/ohsumed_single_23/test/C04/0017052 test C04
471 | data/ohsumed_single_23/test/C04/0017057 test C04
472 | data/ohsumed_single_23/test/C04/0017075 test C04
473 | data/ohsumed_single_23/test/C04/0017170 test C04
474 | data/ohsumed_single_23/test/C04/0017193 test C04
475 | data/ohsumed_single_23/test/C04/0017194 test C04
476 | data/ohsumed_single_23/test/C04/0017195 test C04
477 | data/ohsumed_single_23/test/C04/0017205 test C04
478 | data/ohsumed_single_23/test/C04/0017227 test C04
479 | data/ohsumed_single_23/test/C04/0017231 test C04
480 | data/ohsumed_single_23/test/C04/0017232 test C04
481 | data/ohsumed_single_23/test/C04/0017233 test C04
482 | data/ohsumed_single_23/test/C04/0017241 test C04
483 | data/ohsumed_single_23/test/C04/0017251 test C04
484 | data/ohsumed_single_23/test/C04/0017314 test C04
485 | data/ohsumed_single_23/test/C04/0017322 test C04
486 | data/ohsumed_single_23/test/C04/0017325 test C04
487 | data/ohsumed_single_23/test/C04/0017391 test C04
488 | data/ohsumed_single_23/test/C04/0017402 test C04
489 | data/ohsumed_single_23/test/C04/0017428 test C04
490 | data/ohsumed_single_23/test/C04/0017451 test C04
491 | data/ohsumed_single_23/test/C04/0017455 test C04
492 | data/ohsumed_single_23/test/C04/0017463 test C04
493 | data/ohsumed_single_23/test/C04/0017476 test C04
494 | data/ohsumed_single_23/test/C04/0017483 test C04
495 | data/ohsumed_single_23/test/C04/0017486 test C04
496 | data/ohsumed_single_23/test/C04/0017539 test C04
497 | data/ohsumed_single_23/test/C04/0017556 test C04
498 | data/ohsumed_single_23/test/C04/0017567 test C04
499 | data/ohsumed_single_23/test/C04/0017605 test C04
500 | data/ohsumed_single_23/test/C04/0017612 test C04
501 | data/ohsumed_single_23/test/C04/0017613 test C04
502 | data/ohsumed_single_23/test/C04/0017647 test C04
503 | data/ohsumed_single_23/test/C04/0017724 test C04
504 | data/ohsumed_single_23/test/C04/0017747 test C04
505 | data/ohsumed_single_23/test/C04/0017751 test C04
506 | data/ohsumed_single_23/test/C04/0017759 test C04
507 | data/ohsumed_single_23/test/C04/0017899 test C04
508 | data/ohsumed_single_23/test/C04/0017901 test C04
509 | data/ohsumed_single_23/test/C04/0017903 test C04
510 | data/ohsumed_single_23/test/C04/0018017 test C04
511 | data/ohsumed_single_23/test/C04/0018029 test C04
512 | data/ohsumed_single_23/test/C04/0018033 test C04
513 | data/ohsumed_single_23/test/C04/0018038 test C04
514 | data/ohsumed_single_23/test/C04/0018147 test C04
515 | data/ohsumed_single_23/test/C04/0018148 test C04
516 | data/ohsumed_single_23/test/C04/0018165 test C04
517 | data/ohsumed_single_23/test/C04/0018167 test C04
518 | data/ohsumed_single_23/test/C04/0018187 test C04
519 | data/ohsumed_single_23/test/C04/0018196 test C04
520 | data/ohsumed_single_23/test/C04/0018226 test C04
521 | data/ohsumed_single_23/test/C04/0018228 test C04
522 | data/ohsumed_single_23/test/C04/0018231 test C04
523 | data/ohsumed_single_23/test/C04/0018232 test C04
524 | data/ohsumed_single_23/test/C04/0018274 test C04
525 | data/ohsumed_single_23/test/C04/0018350 test C04
526 | data/ohsumed_single_23/test/C04/0018426 test C04
527 | data/ohsumed_single_23/test/C04/0018434 test C04
528 | data/ohsumed_single_23/test/C04/0018490 test C04
529 | data/ohsumed_single_23/test/C04/0018518 test C04
530 | data/ohsumed_single_23/test/C04/0018667 test C04
531 | data/ohsumed_single_23/test/C04/0018689 test C04
532 | data/ohsumed_single_23/test/C04/0018697 test C04
533 | data/ohsumed_single_23/test/C04/0018704 test C04
534 | data/ohsumed_single_23/test/C04/0018705 test C04
535 | data/ohsumed_single_23/test/C04/0018720 test C04
536 | data/ohsumed_single_23/test/C04/0018737 test C04
537 | data/ohsumed_single_23/test/C04/0018765 test C04
538 | data/ohsumed_single_23/test/C04/0018910 test C04
539 | data/ohsumed_single_23/test/C04/0018922 test C04
540 | data/ohsumed_single_23/test/C04/0018925 test C04
541 | data/ohsumed_single_23/test/C04/0018932 test C04
542 | data/ohsumed_single_23/test/C04/0018933 test C04
543 | data/ohsumed_single_23/test/C04/0018957 test C04
544 | data/ohsumed_single_23/test/C04/0018982 test C04
545 | data/ohsumed_single_23/test/C04/0018984 test C04
546 | data/ohsumed_single_23/test/C04/0018986 test C04
547 | data/ohsumed_single_23/test/C04/0018988 test C04
548 | data/ohsumed_single_23/test/C04/0018989 test C04
549 | data/ohsumed_single_23/test/C04/0019000 test C04
550 | data/ohsumed_single_23/test/C04/0019008 test C04
551 | data/ohsumed_single_23/test/C04/0019010 test C04
552 | data/ohsumed_single_23/test/C04/0019037 test C04
553 | data/ohsumed_single_23/test/C04/0019052 test C04
554 | data/ohsumed_single_23/test/C04/0019063 test C04
555 | data/ohsumed_single_23/test/C04/0019149 test C04
556 | data/ohsumed_single_23/test/C04/0019154 test C04
557 | data/ohsumed_single_23/test/C04/0019159 test C04
558 | data/ohsumed_single_23/test/C04/0019167 test C04
559 | data/ohsumed_single_23/test/C04/0019185 test C04
560 | data/ohsumed_single_23/test/C04/0019195 test C04
561 | data/ohsumed_single_23/test/C04/0019208 test C04
562 | data/ohsumed_single_23/test/C04/0019240 test C04
563 | data/ohsumed_single_23/test/C04/0019246 test C04
564 | data/ohsumed_single_23/test/C04/0019297 test C04
565 | data/ohsumed_single_23/test/C04/0019319 test C04
566 | data/ohsumed_single_23/test/C04/0019342 test C04
567 | data/ohsumed_single_23/test/C04/0019348 test C04
568 | data/ohsumed_single_23/test/C04/0019351 test C04
569 | data/ohsumed_single_23/test/C04/0019408 test C04
570 | data/ohsumed_single_23/test/C04/0019416 test C04
571 | data/ohsumed_single_23/test/C04/0019421 test C04
572 | data/ohsumed_single_23/test/C04/0019422 test C04
573 | data/ohsumed_single_23/test/C04/0019423 test C04
574 | data/ohsumed_single_23/test/C04/0019428 test C04
575 | data/ohsumed_single_23/test/C04/0019429 test C04
576 | data/ohsumed_single_23/test/C04/0019430 test C04
577 | data/ohsumed_single_23/test/C04/0019431 test C04
578 | data/ohsumed_single_23/test/C04/0019438 test C04
579 | data/ohsumed_single_23/test/C04/0019453 test C04
580 | data/ohsumed_single_23/test/C04/0019472 test C04
581 | data/ohsumed_single_23/test/C04/0019474 test C04
582 | data/ohsumed_single_23/test/C04/0019493 test C04
583 | data/ohsumed_single_23/test/C04/0019524 test C04
584 | data/ohsumed_single_23/test/C04/0019547 test C04
585 | data/ohsumed_single_23/test/C04/0019583 test C04
586 | data/ohsumed_single_23/test/C04/0019635 test C04
587 | data/ohsumed_single_23/test/C04/0019648 test C04
588 | data/ohsumed_single_23/test/C04/0019675 test C04
589 | data/ohsumed_single_23/test/C04/0019682 test C04
590 | data/ohsumed_single_23/test/C04/0019705 test C04
591 | data/ohsumed_single_23/test/C04/0019728 test C04
592 | data/ohsumed_single_23/test/C04/0019769 test C04
593 | data/ohsumed_single_23/test/C04/0019789 test C04
594 | data/ohsumed_single_23/test/C04/0019839 test C04
595 | data/ohsumed_single_23/test/C04/0019896 test C04
596 | data/ohsumed_single_23/test/C04/0019901 test C04
597 | data/ohsumed_single_23/test/C04/0019946 test C04
598 | data/ohsumed_single_23/test/C04/0019956 test C04
599 | data/ohsumed_single_23/test/C04/0019962 test C04
600 | data/ohsumed_single_23/test/C04/0019963 test C04
601 | data/ohsumed_single_23/test/C10/0001120 test C10
602 | data/ohsumed_single_23/test/C10/0001128 test C10
603 | data/ohsumed_single_23/test/C10/0001132 test C10
604 | data/ohsumed_single_23/test/C10/0001133 test C10
605 | data/ohsumed_single_23/test/C10/0001165 test C10
606 | data/ohsumed_single_23/test/C10/0001168 test C10
607 | data/ohsumed_single_23/test/C10/0001170 test C10
608 | data/ohsumed_single_23/test/C10/0001178 test C10
609 | data/ohsumed_single_23/test/C10/0001180 test C10
610 | data/ohsumed_single_23/test/C10/0001185 test C10
611 | data/ohsumed_single_23/test/C10/0001238 test C10
612 | data/ohsumed_single_23/test/C10/0001488 test C10
613 | data/ohsumed_single_23/test/C10/0001493 test C10
614 | data/ohsumed_single_23/test/C10/0001504 test C10
615 | data/ohsumed_single_23/test/C10/0001522 test C10
616 | data/ohsumed_single_23/test/C10/0001539 test C10
617 | data/ohsumed_single_23/test/C10/0001543 test C10
618 | data/ohsumed_single_23/test/C10/0001545 test C10
619 | data/ohsumed_single_23/test/C10/0001547 test C10
620 | data/ohsumed_single_23/test/C10/0001548 test C10
621 | data/ohsumed_single_23/test/C10/0001549 test C10
622 | data/ohsumed_single_23/test/C10/0001551 test C10
623 | data/ohsumed_single_23/test/C10/0001590 test C10
624 | data/ohsumed_single_23/test/C10/0001612 test C10
625 | data/ohsumed_single_23/test/C10/0001614 test C10
626 | data/ohsumed_single_23/test/C10/0001616 test C10
627 | data/ohsumed_single_23/test/C10/0001622 test C10
628 | data/ohsumed_single_23/test/C10/0001626 test C10
629 | data/ohsumed_single_23/test/C10/0001627 test C10
630 | data/ohsumed_single_23/test/C10/0001630 test C10
631 | data/ohsumed_single_23/test/C10/0001632 test C10
632 | data/ohsumed_single_23/test/C10/0001635 test C10
633 | data/ohsumed_single_23/test/C10/0001636 test C10
634 | data/ohsumed_single_23/test/C10/0001637 test C10
635 | data/ohsumed_single_23/test/C10/0001900 test C10
636 | data/ohsumed_single_23/test/C10/0001924 test C10
637 | data/ohsumed_single_23/test/C10/0001930 test C10
638 | data/ohsumed_single_23/test/C10/0001958 test C10
639 | data/ohsumed_single_23/test/C10/0010097 test C10
640 | data/ohsumed_single_23/test/C10/0010100 test C10
641 | data/ohsumed_single_23/test/C10/0010108 test C10
642 | data/ohsumed_single_23/test/C10/0010110 test C10
643 | data/ohsumed_single_23/test/C10/0010111 test C10
644 | data/ohsumed_single_23/test/C10/0010112 test C10
645 | data/ohsumed_single_23/test/C10/0010347 test C10
646 | data/ohsumed_single_23/test/C10/0010348 test C10
647 | data/ohsumed_single_23/test/C10/0010349 test C10
648 | data/ohsumed_single_23/test/C10/0010350 test C10
649 | data/ohsumed_single_23/test/C10/0010361 test C10
650 | data/ohsumed_single_23/test/C10/0010579 test C10
651 | data/ohsumed_single_23/test/C10/0010584 test C10
652 | data/ohsumed_single_23/test/C10/0010588 test C10
653 | data/ohsumed_single_23/test/C10/0010592 test C10
654 | data/ohsumed_single_23/test/C10/0010598 test C10
655 | data/ohsumed_single_23/test/C10/0010631 test C10
656 | data/ohsumed_single_23/test/C10/0010682 test C10
657 | data/ohsumed_single_23/test/C10/0010683 test C10
658 | data/ohsumed_single_23/test/C10/0010684 test C10
659 | data/ohsumed_single_23/test/C10/0010685 test C10
660 | data/ohsumed_single_23/test/C10/0010686 test C10
661 | data/ohsumed_single_23/test/C10/0010687 test C10
662 | data/ohsumed_single_23/test/C10/0010688 test C10
663 | data/ohsumed_single_23/test/C10/0010689 test C10
664 | data/ohsumed_single_23/test/C10/0010690 test C10
665 | data/ohsumed_single_23/test/C10/0010692 test C10
666 | data/ohsumed_single_23/test/C10/0010694 test C10
667 | data/ohsumed_single_23/test/C10/0010712 test C10
668 | data/ohsumed_single_23/test/C10/0010797 test C10
669 | data/ohsumed_single_23/test/C10/0010830 test C10
670 | data/ohsumed_single_23/test/C10/0010834 test C10
671 | data/ohsumed_single_23/test/C10/0010836 test C10
672 | data/ohsumed_single_23/test/C10/0010901 test C10
673 | data/ohsumed_single_23/test/C10/0010935 test C10
674 | data/ohsumed_single_23/test/C10/0010937 test C10
675 | data/ohsumed_single_23/test/C10/0010943 test C10
676 | data/ohsumed_single_23/test/C10/0010946 test C10
677 | data/ohsumed_single_23/test/C10/0010949 test C10
678 | data/ohsumed_single_23/test/C10/0010979 test C10
679 | data/ohsumed_single_23/test/C10/0011074 test C10
680 | data/ohsumed_single_23/test/C10/0011253 test C10
681 | data/ohsumed_single_23/test/C10/0011324 test C10
682 | data/ohsumed_single_23/test/C10/0011325 test C10
683 | data/ohsumed_single_23/test/C10/0011327 test C10
684 | data/ohsumed_single_23/test/C10/0011328 test C10
685 | data/ohsumed_single_23/test/C10/0011329 test C10
686 | data/ohsumed_single_23/test/C10/0011330 test C10
687 | data/ohsumed_single_23/test/C10/0011331 test C10
688 | data/ohsumed_single_23/test/C10/0011354 test C10
689 | data/ohsumed_single_23/test/C10/0011361 test C10
690 | data/ohsumed_single_23/test/C10/0011526 test C10
691 | data/ohsumed_single_23/test/C10/0011606 test C10
692 | data/ohsumed_single_23/test/C10/0011615 test C10
693 | data/ohsumed_single_23/test/C10/0011621 test C10
694 | data/ohsumed_single_23/test/C10/0011645 test C10
695 | data/ohsumed_single_23/test/C10/0011654 test C10
696 | data/ohsumed_single_23/test/C10/0011697 test C10
697 | data/ohsumed_single_23/test/C10/0011702 test C10
698 | data/ohsumed_single_23/test/C10/0011705 test C10
699 | data/ohsumed_single_23/test/C10/0011706 test C10
700 | data/ohsumed_single_23/test/C10/0011711 test C10
701 | data/ohsumed_single_23/test/C10/0011715 test C10
702 | data/ohsumed_single_23/test/C10/0011871 test C10
703 | data/ohsumed_single_23/test/C10/0011897 test C10
704 | data/ohsumed_single_23/test/C10/0011989 test C10
705 | data/ohsumed_single_23/test/C10/0012009 test C10
706 | data/ohsumed_single_23/test/C10/0012011 test C10
707 | data/ohsumed_single_23/test/C10/0012230 test C10
708 | data/ohsumed_single_23/test/C10/0012279 test C10
709 | data/ohsumed_single_23/test/C10/0012398 test C10
710 | data/ohsumed_single_23/test/C10/0012473 test C10
711 | data/ohsumed_single_23/test/C10/0012474 test C10
712 | data/ohsumed_single_23/test/C10/0012475 test C10
713 | data/ohsumed_single_23/test/C10/0012477 test C10
714 | data/ohsumed_single_23/test/C10/0012478 test C10
715 | data/ohsumed_single_23/test/C10/0012479 test C10
716 | data/ohsumed_single_23/test/C10/0012481 test C10
717 | data/ohsumed_single_23/test/C10/0012482 test C10
718 | data/ohsumed_single_23/test/C10/0012483 test C10
719 | data/ohsumed_single_23/test/C10/0012484 test C10
720 | data/ohsumed_single_23/test/C10/0012485 test C10
721 | data/ohsumed_single_23/test/C10/0012486 test C10
722 | data/ohsumed_single_23/test/C10/0012489 test C10
723 | data/ohsumed_single_23/test/C10/0012490 test C10
724 | data/ohsumed_single_23/test/C10/0012491 test C10
725 | data/ohsumed_single_23/test/C10/0012503 test C10
726 | data/ohsumed_single_23/test/C10/0012591 test C10
727 | data/ohsumed_single_23/test/C10/0012624 test C10
728 | data/ohsumed_single_23/test/C10/0012658 test C10
729 | data/ohsumed_single_23/test/C10/0012660 test C10
730 | data/ohsumed_single_23/test/C10/0012663 test C10
731 | data/ohsumed_single_23/test/C10/0012664 test C10
732 | data/ohsumed_single_23/test/C10/0012677 test C10
733 | data/ohsumed_single_23/test/C10/0012722 test C10
734 | data/ohsumed_single_23/test/C10/0012733 test C10
735 | data/ohsumed_single_23/test/C10/0012747 test C10
736 | data/ohsumed_single_23/test/C10/0012827 test C10
737 | data/ohsumed_single_23/test/C10/0012851 test C10
738 | data/ohsumed_single_23/test/C10/0012853 test C10
739 | data/ohsumed_single_23/test/C10/0013006 test C10
740 | data/ohsumed_single_23/test/C10/0013088 test C10
741 | data/ohsumed_single_23/test/C10/0013113 test C10
742 | data/ohsumed_single_23/test/C10/0013142 test C10
743 | data/ohsumed_single_23/test/C10/0013145 test C10
744 | data/ohsumed_single_23/test/C10/0013213 test C10
745 | data/ohsumed_single_23/test/C10/0013217 test C10
746 | data/ohsumed_single_23/test/C10/0013262 test C10
747 | data/ohsumed_single_23/test/C10/0013292 test C10
748 | data/ohsumed_single_23/test/C10/0013299 test C10
749 | data/ohsumed_single_23/test/C10/0013669 test C10
750 | data/ohsumed_single_23/test/C10/0013671 test C10
751 | data/ohsumed_single_23/test/C10/0013676 test C10
752 | data/ohsumed_single_23/test/C10/0013716 test C10
753 | data/ohsumed_single_23/test/C10/0013717 test C10
754 | data/ohsumed_single_23/test/C10/0013796 test C10
755 | data/ohsumed_single_23/test/C10/0013798 test C10
756 | data/ohsumed_single_23/test/C10/0013807 test C10
757 | data/ohsumed_single_23/test/C10/0013877 test C10
758 | data/ohsumed_single_23/test/C10/0013938 test C10
759 | data/ohsumed_single_23/test/C10/0014002 test C10
760 | data/ohsumed_single_23/test/C10/0014116 test C10
761 | data/ohsumed_single_23/test/C10/0014117 test C10
762 | data/ohsumed_single_23/test/C10/0014118 test C10
763 | data/ohsumed_single_23/test/C10/0014120 test C10
764 | data/ohsumed_single_23/test/C10/0014122 test C10
765 | data/ohsumed_single_23/test/C10/0014226 test C10
766 | data/ohsumed_single_23/test/C10/0014274 test C10
767 | data/ohsumed_single_23/test/C10/0014276 test C10
768 | data/ohsumed_single_23/test/C10/0014279 test C10
769 | data/ohsumed_single_23/test/C10/0014303 test C10
770 | data/ohsumed_single_23/test/C10/0014319 test C10
771 | data/ohsumed_single_23/test/C10/0014382 test C10
772 | data/ohsumed_single_23/test/C10/0014406 test C10
773 | data/ohsumed_single_23/test/C10/0014491 test C10
774 | data/ohsumed_single_23/test/C10/0014501 test C10
775 | data/ohsumed_single_23/test/C10/0014523 test C10
776 | data/ohsumed_single_23/test/C10/0014651 test C10
777 | data/ohsumed_single_23/test/C10/0014855 test C10
778 | data/ohsumed_single_23/test/C10/0014857 test C10
779 | data/ohsumed_single_23/test/C10/0014858 test C10
780 | data/ohsumed_single_23/test/C10/0014862 test C10
781 | data/ohsumed_single_23/test/C10/0014867 test C10
782 | data/ohsumed_single_23/test/C10/0014930 test C10
783 | data/ohsumed_single_23/test/C10/0014932 test C10
784 | data/ohsumed_single_23/test/C10/0014952 test C10
785 | data/ohsumed_single_23/test/C10/0015031 test C10
786 | data/ohsumed_single_23/test/C10/0015043 test C10
787 | data/ohsumed_single_23/test/C10/0015069 test C10
788 | data/ohsumed_single_23/test/C10/0015102 test C10
789 | data/ohsumed_single_23/test/C10/0015106 test C10
790 | data/ohsumed_single_23/test/C10/0015107 test C10
791 | data/ohsumed_single_23/test/C10/0015177 test C10
792 | data/ohsumed_single_23/test/C10/0015182 test C10
793 | data/ohsumed_single_23/test/C10/0015185 test C10
794 | data/ohsumed_single_23/test/C10/0015189 test C10
795 | data/ohsumed_single_23/test/C10/0015258 test C10
796 | data/ohsumed_single_23/test/C10/0015263 test C10
797 | data/ohsumed_single_23/test/C10/0015331 test C10
798 | data/ohsumed_single_23/test/C10/0015340 test C10
799 | data/ohsumed_single_23/test/C10/0015345 test C10
800 | data/ohsumed_single_23/test/C10/0015352 test C10
801 | data/ohsumed_single_23/test/C10/0015396 test C10
802 | data/ohsumed_single_23/test/C10/0015399 test C10
803 | data/ohsumed_single_23/test/C10/0015407 test C10
804 | data/ohsumed_single_23/test/C10/0015490 test C10
805 | data/ohsumed_single_23/test/C10/0015491 test C10
806 | data/ohsumed_single_23/test/C10/0015496 test C10
807 | data/ohsumed_single_23/test/C10/0015497 test C10
808 | data/ohsumed_single_23/test/C10/0015498 test C10
809 | data/ohsumed_single_23/test/C10/0015499 test C10
810 | data/ohsumed_single_23/test/C10/0015501 test C10
811 | data/ohsumed_single_23/test/C10/0015607 test C10
812 | data/ohsumed_single_23/test/C10/0015758 test C10
813 | data/ohsumed_single_23/test/C10/0015812 test C10
814 | data/ohsumed_single_23/test/C10/0015813 test C10
815 | data/ohsumed_single_23/test/C10/0015815 test C10
816 | data/ohsumed_single_23/test/C10/0015816 test C10
817 | data/ohsumed_single_23/test/C10/0015872 test C10
818 | data/ohsumed_single_23/test/C10/0015999 test C10
819 | data/ohsumed_single_23/test/C10/0016086 test C10
820 | data/ohsumed_single_23/test/C10/0016087 test C10
821 | data/ohsumed_single_23/test/C10/0016088 test C10
822 | data/ohsumed_single_23/test/C10/0016189 test C10
823 | data/ohsumed_single_23/test/C10/0016259 test C10
824 | data/ohsumed_single_23/test/C10/0016291 test C10
825 | data/ohsumed_single_23/test/C10/0016311 test C10
826 | data/ohsumed_single_23/test/C10/0016313 test C10
827 | data/ohsumed_single_23/test/C10/0016315 test C10
828 | data/ohsumed_single_23/test/C10/0016318 test C10
829 | data/ohsumed_single_23/test/C10/0016355 test C10
830 | data/ohsumed_single_23/test/C10/0016358 test C10
831 | data/ohsumed_single_23/test/C10/0016360 test C10
832 | data/ohsumed_single_23/test/C10/0016364 test C10
833 | data/ohsumed_single_23/test/C10/0016369 test C10
834 | data/ohsumed_single_23/test/C10/0016372 test C10
835 | data/ohsumed_single_23/test/C10/0016601 test C10
836 | data/ohsumed_single_23/test/C10/0016734 test C10
837 | data/ohsumed_single_23/test/C10/0016736 test C10
838 | data/ohsumed_single_23/test/C10/0016737 test C10
839 | data/ohsumed_single_23/test/C10/0016738 test C10
840 | data/ohsumed_single_23/test/C10/0016805 test C10
841 | data/ohsumed_single_23/test/C10/0016864 test C10
842 | data/ohsumed_single_23/test/C10/0016866 test C10
843 | data/ohsumed_single_23/test/C10/0016868 test C10
844 | data/ohsumed_single_23/test/C10/0016869 test C10
845 | data/ohsumed_single_23/test/C10/0016873 test C10
846 | data/ohsumed_single_23/test/C10/0016875 test C10
847 | data/ohsumed_single_23/test/C10/0016876 test C10
848 | data/ohsumed_single_23/test/C10/0016878 test C10
849 | data/ohsumed_single_23/test/C10/0017206 test C10
850 | data/ohsumed_single_23/test/C10/0017207 test C10
851 | data/ohsumed_single_23/test/C10/0017212 test C10
852 | data/ohsumed_single_23/test/C10/0017217 test C10
853 | data/ohsumed_single_23/test/C10/0017221 test C10
854 | data/ohsumed_single_23/test/C10/0017224 test C10
855 | data/ohsumed_single_23/test/C10/0017228 test C10
856 | data/ohsumed_single_23/test/C10/0017236 test C10
857 | data/ohsumed_single_23/test/C10/0017259 test C10
858 | data/ohsumed_single_23/test/C10/0017369 test C10
859 | data/ohsumed_single_23/test/C10/0017396 test C10
860 | data/ohsumed_single_23/test/C10/0017400 test C10
861 | data/ohsumed_single_23/test/C10/0017438 test C10
862 | data/ohsumed_single_23/test/C10/0017470 test C10
863 | data/ohsumed_single_23/test/C10/0017601 test C10
864 | data/ohsumed_single_23/test/C10/0017609 test C10
865 | data/ohsumed_single_23/test/C10/0017615 test C10
866 | data/ohsumed_single_23/test/C10/0017616 test C10
867 | data/ohsumed_single_23/test/C10/0017667 test C10
868 | data/ohsumed_single_23/test/C10/0017699 test C10
869 | data/ohsumed_single_23/test/C10/0017714 test C10
870 | data/ohsumed_single_23/test/C10/0017715 test C10
871 | data/ohsumed_single_23/test/C10/0017770 test C10
872 | data/ohsumed_single_23/test/C10/0017775 test C10
873 | data/ohsumed_single_23/test/C10/0017824 test C10
874 | data/ohsumed_single_23/test/C10/0017835 test C10
875 | data/ohsumed_single_23/test/C10/0017884 test C10
876 | data/ohsumed_single_23/test/C10/0017940 test C10
877 | data/ohsumed_single_23/test/C10/0018013 test C10
878 | data/ohsumed_single_23/test/C10/0018022 test C10
879 | data/ohsumed_single_23/test/C10/0018036 test C10
880 | data/ohsumed_single_23/test/C10/0018037 test C10
881 | data/ohsumed_single_23/test/C10/0018124 test C10
882 | data/ohsumed_single_23/test/C10/0018299 test C10
883 | data/ohsumed_single_23/test/C10/0018312 test C10
884 | data/ohsumed_single_23/test/C10/0018317 test C10
885 | data/ohsumed_single_23/test/C10/0018353 test C10
886 | data/ohsumed_single_23/test/C10/0018356 test C10
887 | data/ohsumed_single_23/test/C10/0018357 test C10
888 | data/ohsumed_single_23/test/C10/0018362 test C10
889 | data/ohsumed_single_23/test/C10/0018363 test C10
890 | data/ohsumed_single_23/test/C10/0018459 test C10
891 | data/ohsumed_single_23/test/C10/0018460 test C10
892 | data/ohsumed_single_23/test/C10/0018471 test C10
893 | data/ohsumed_single_23/test/C10/0018573 test C10
894 | data/ohsumed_single_23/test/C10/0018702 test C10
895 | data/ohsumed_single_23/test/C10/0018712 test C10
896 | data/ohsumed_single_23/test/C10/0018714 test C10
897 | data/ohsumed_single_23/test/C10/0018719 test C10
898 | data/ohsumed_single_23/test/C10/0018727 test C10
899 | data/ohsumed_single_23/test/C10/0018858 test C10
900 | data/ohsumed_single_23/test/C10/0018868 test C10
901 | data/ohsumed_single_23/test/C10/0018873 test C10
902 | data/ohsumed_single_23/test/C10/0018964 test C10
903 | data/ohsumed_single_23/test/C10/0018970 test C10
904 | data/ohsumed_single_23/test/C10/0018971 test C10
905 | data/ohsumed_single_23/test/C10/0018972 test C10
906 | data/ohsumed_single_23/test/C10/0019069 test C10
907 | data/ohsumed_single_23/test/C10/0019070 test C10
908 | data/ohsumed_single_23/test/C10/0019073 test C10
909 | data/ohsumed_single_23/test/C10/0019076 test C10
910 | data/ohsumed_single_23/test/C10/0019080 test C10
911 | data/ohsumed_single_23/test/C10/0019081 test C10
912 | data/ohsumed_single_23/test/C10/0019083 test C10
913 | data/ohsumed_single_23/test/C10/0019085 test C10
914 | data/ohsumed_single_23/test/C10/0019236 test C10
915 | data/ohsumed_single_23/test/C10/0019301 test C10
916 | data/ohsumed_single_23/test/C10/0019311 test C10
917 | data/ohsumed_single_23/test/C10/0019377 test C10
918 | data/ohsumed_single_23/test/C10/0019387 test C10
919 | data/ohsumed_single_23/test/C10/0019388 test C10
920 | data/ohsumed_single_23/test/C10/0019393 test C10
921 | data/ohsumed_single_23/test/C10/0019396 test C10
922 | data/ohsumed_single_23/test/C10/0019409 test C10
923 | data/ohsumed_single_23/test/C10/0019496 test C10
924 | data/ohsumed_single_23/test/C10/0019528 test C10
925 | data/ohsumed_single_23/test/C10/0019586 test C10
926 | data/ohsumed_single_23/test/C10/0019592 test C10
927 | data/ohsumed_single_23/test/C10/0019599 test C10
928 | data/ohsumed_single_23/test/C10/0019602 test C10
929 | data/ohsumed_single_23/test/C10/0019610 test C10
930 | data/ohsumed_single_23/test/C10/0019614 test C10
931 | data/ohsumed_single_23/test/C10/0019639 test C10
932 | data/ohsumed_single_23/test/C10/0019655 test C10
933 | data/ohsumed_single_23/test/C10/0019735 test C10
934 | data/ohsumed_single_23/test/C10/0019736 test C10
935 | data/ohsumed_single_23/test/C10/0019737 test C10
936 | data/ohsumed_single_23/test/C10/0019738 test C10
937 | data/ohsumed_single_23/test/C10/0019739 test C10
938 | data/ohsumed_single_23/test/C10/0019778 test C10
939 | data/ohsumed_single_23/test/C10/0019792 test C10
940 | data/ohsumed_single_23/test/C10/0019955 test C10
941 | data/ohsumed_single_23/test/C10/0019958 test C10
942 | data/ohsumed_single_23/test/C10/0019990 test C10
943 | data/ohsumed_single_23/test/C14/0000001 test C14
944 | data/ohsumed_single_23/test/C14/0000119 test C14
945 | data/ohsumed_single_23/test/C14/0000151 test C14
946 | data/ohsumed_single_23/test/C14/0001114 test C14
947 | data/ohsumed_single_23/test/C14/0001141 test C14
948 | data/ohsumed_single_23/test/C14/0001142 test C14
949 | data/ohsumed_single_23/test/C14/0001143 test C14
950 | data/ohsumed_single_23/test/C14/0001146 test C14
951 | data/ohsumed_single_23/test/C14/0001189 test C14
952 | data/ohsumed_single_23/test/C14/0001320 test C14
953 | data/ohsumed_single_23/test/C14/0001360 test C14
954 | data/ohsumed_single_23/test/C14/0001434 test C14
955 | data/ohsumed_single_23/test/C14/0001436 test C14
956 | data/ohsumed_single_23/test/C14/0001437 test C14
957 | data/ohsumed_single_23/test/C14/0001474 test C14
958 | data/ohsumed_single_23/test/C14/0001475 test C14
959 | data/ohsumed_single_23/test/C14/0001476 test C14
960 | data/ohsumed_single_23/test/C14/0001481 test C14
961 | data/ohsumed_single_23/test/C14/0001490 test C14
962 | data/ohsumed_single_23/test/C14/0001558 test C14
963 | data/ohsumed_single_23/test/C14/0001565 test C14
964 | data/ohsumed_single_23/test/C14/0001571 test C14
965 | data/ohsumed_single_23/test/C14/0001819 test C14
966 | data/ohsumed_single_23/test/C14/0001935 test C14
967 | data/ohsumed_single_23/test/C14/0001944 test C14
968 | data/ohsumed_single_23/test/C14/0001945 test C14
969 | data/ohsumed_single_23/test/C14/0001960 test C14
970 | data/ohsumed_single_23/test/C14/0001971 test C14
971 | data/ohsumed_single_23/test/C14/0010202 test C14
972 | data/ohsumed_single_23/test/C14/0010205 test C14
973 | data/ohsumed_single_23/test/C14/0010207 test C14
974 | data/ohsumed_single_23/test/C14/0010208 test C14
975 | data/ohsumed_single_23/test/C14/0010286 test C14
976 | data/ohsumed_single_23/test/C14/0010314 test C14
977 | data/ohsumed_single_23/test/C14/0010351 test C14
978 | data/ohsumed_single_23/test/C14/0010372 test C14
979 | data/ohsumed_single_23/test/C14/0010461 test C14
980 | data/ohsumed_single_23/test/C14/0010647 test C14
981 | data/ohsumed_single_23/test/C14/0010656 test C14
982 | data/ohsumed_single_23/test/C14/0010664 test C14
983 | data/ohsumed_single_23/test/C14/0010665 test C14
984 | data/ohsumed_single_23/test/C14/0010821 test C14
985 | data/ohsumed_single_23/test/C14/0010823 test C14
986 | data/ohsumed_single_23/test/C14/0010831 test C14
987 | data/ohsumed_single_23/test/C14/0010847 test C14
988 | data/ohsumed_single_23/test/C14/0010910 test C14
989 | data/ohsumed_single_23/test/C14/0010917 test C14
990 | data/ohsumed_single_23/test/C14/0010931 test C14
991 | data/ohsumed_single_23/test/C14/0010940 test C14
992 | data/ohsumed_single_23/test/C14/0011031 test C14
993 | data/ohsumed_single_23/test/C14/0011032 test C14
994 | data/ohsumed_single_23/test/C14/0011033 test C14
995 | data/ohsumed_single_23/test/C14/0011035 test C14
996 | data/ohsumed_single_23/test/C14/0011036 test C14
997 | data/ohsumed_single_23/test/C14/0011037 test C14
998 | data/ohsumed_single_23/test/C14/0011040 test C14
999 | data/ohsumed_single_23/test/C14/0011043 test C14
1000 | data/ohsumed_single_23/test/C14/0011099 test C14
1001 | data/ohsumed_single_23/test/C14/0011105 test C14
1002 | data/ohsumed_single_23/test/C14/0011114 test C14
1003 | data/ohsumed_single_23/test/C14/0011123 test C14
1004 | data/ohsumed_single_23/test/C14/0011124 test C14
1005 | data/ohsumed_single_23/test/C14/0011125 test C14
1006 | data/ohsumed_single_23/test/C14/0011129 test C14
1007 | data/ohsumed_single_23/test/C14/0011131 test C14
1008 | data/ohsumed_single_23/test/C14/0011134 test C14
1009 | data/ohsumed_single_23/test/C14/0011137 test C14
1010 | data/ohsumed_single_23/test/C14/0011138 test C14
1011 | data/ohsumed_single_23/test/C14/0011140 test C14
1012 | data/ohsumed_single_23/test/C14/0011141 test C14
1013 | data/ohsumed_single_23/test/C14/0011142 test C14
1014 | data/ohsumed_single_23/test/C14/0011147 test C14
1015 | data/ohsumed_single_23/test/C14/0011148 test C14
1016 | data/ohsumed_single_23/test/C14/0011149 test C14
1017 | data/ohsumed_single_23/test/C14/0011150 test C14
1018 | data/ohsumed_single_23/test/C14/0011152 test C14
1019 | data/ohsumed_single_23/test/C14/0011190 test C14
1020 | data/ohsumed_single_23/test/C14/0011211 test C14
1021 | data/ohsumed_single_23/test/C14/0011225 test C14
1022 | data/ohsumed_single_23/test/C14/0011268 test C14
1023 | data/ohsumed_single_23/test/C14/0011319 test C14
1024 | data/ohsumed_single_23/test/C14/0011320 test C14
1025 | data/ohsumed_single_23/test/C14/0011349 test C14
1026 | data/ohsumed_single_23/test/C14/0011380 test C14
1027 | data/ohsumed_single_23/test/C14/0011384 test C14
1028 | data/ohsumed_single_23/test/C14/0011388 test C14
1029 | data/ohsumed_single_23/test/C14/0011390 test C14
1030 | data/ohsumed_single_23/test/C14/0011398 test C14
1031 | data/ohsumed_single_23/test/C14/0011399 test C14
1032 | data/ohsumed_single_23/test/C14/0011402 test C14
1033 | data/ohsumed_single_23/test/C14/0011405 test C14
1034 | data/ohsumed_single_23/test/C14/0011406 test C14
1035 | data/ohsumed_single_23/test/C14/0011407 test C14
1036 | data/ohsumed_single_23/test/C14/0011413 test C14
1037 | data/ohsumed_single_23/test/C14/0011500 test C14
1038 | data/ohsumed_single_23/test/C14/0011532 test C14
1039 | data/ohsumed_single_23/test/C14/0011537 test C14
1040 | data/ohsumed_single_23/test/C14/0011591 test C14
1041 | data/ohsumed_single_23/test/C14/0011639 test C14
1042 | data/ohsumed_single_23/test/C14/0011649 test C14
1043 | data/ohsumed_single_23/test/C14/0011732 test C14
1044 | data/ohsumed_single_23/test/C14/0011770 test C14
1045 | data/ohsumed_single_23/test/C14/0011880 test C14
1046 | data/ohsumed_single_23/test/C14/0011893 test C14
1047 | data/ohsumed_single_23/test/C14/0011902 test C14
1048 | data/ohsumed_single_23/test/C14/0011915 test C14
1049 | data/ohsumed_single_23/test/C14/0011916 test C14
1050 | data/ohsumed_single_23/test/C14/0011922 test C14
1051 | data/ohsumed_single_23/test/C14/0011924 test C14
1052 | data/ohsumed_single_23/test/C14/0011925 test C14
1053 | data/ohsumed_single_23/test/C14/0011926 test C14
1054 | data/ohsumed_single_23/test/C14/0011929 test C14
1055 | data/ohsumed_single_23/test/C14/0011935 test C14
1056 | data/ohsumed_single_23/test/C14/0011936 test C14
1057 | data/ohsumed_single_23/test/C14/0011937 test C14
1058 | data/ohsumed_single_23/test/C14/0011938 test C14
1059 | data/ohsumed_single_23/test/C14/0011939 test C14
1060 | data/ohsumed_single_23/test/C14/0011940 test C14
1061 | data/ohsumed_single_23/test/C14/0011942 test C14
1062 | data/ohsumed_single_23/test/C14/0011943 test C14
1063 | data/ohsumed_single_23/test/C14/0011944 test C14
1064 | data/ohsumed_single_23/test/C14/0011945 test C14
1065 | data/ohsumed_single_23/test/C14/0011946 test C14
1066 | data/ohsumed_single_23/test/C14/0011947 test C14
1067 | data/ohsumed_single_23/test/C14/0011948 test C14
1068 | data/ohsumed_single_23/test/C14/0011949 test C14
1069 | data/ohsumed_single_23/test/C14/0011950 test C14
1070 | data/ohsumed_single_23/test/C14/0011951 test C14
1071 | data/ohsumed_single_23/test/C14/0011952 test C14
1072 | data/ohsumed_single_23/test/C14/0011953 test C14
1073 | data/ohsumed_single_23/test/C14/0011954 test C14
1074 | data/ohsumed_single_23/test/C14/0011955 test C14
1075 | data/ohsumed_single_23/test/C14/0011956 test C14
1076 | data/ohsumed_single_23/test/C14/0011958 test C14
1077 | data/ohsumed_single_23/test/C14/0011959 test C14
1078 | data/ohsumed_single_23/test/C14/0011965 test C14
1079 | data/ohsumed_single_23/test/C14/0011980 test C14
1080 | data/ohsumed_single_23/test/C14/0012017 test C14
1081 | data/ohsumed_single_23/test/C14/0012051 test C14
1082 | data/ohsumed_single_23/test/C14/0012106 test C14
1083 | data/ohsumed_single_23/test/C14/0012147 test C14
1084 | data/ohsumed_single_23/test/C14/0012156 test C14
1085 | data/ohsumed_single_23/test/C14/0012166 test C14
1086 | data/ohsumed_single_23/test/C14/0012174 test C14
1087 | data/ohsumed_single_23/test/C14/0012191 test C14
1088 | data/ohsumed_single_23/test/C14/0012641 test C14
1089 | data/ohsumed_single_23/test/C14/0012642 test C14
1090 | data/ohsumed_single_23/test/C14/0012643 test C14
1091 | data/ohsumed_single_23/test/C14/0012644 test C14
1092 | data/ohsumed_single_23/test/C14/0012676 test C14
1093 | data/ohsumed_single_23/test/C14/0012687 test C14
1094 | data/ohsumed_single_23/test/C14/0012715 test C14
1095 | data/ohsumed_single_23/test/C14/0012768 test C14
1096 | data/ohsumed_single_23/test/C14/0012818 test C14
1097 | data/ohsumed_single_23/test/C14/0012875 test C14
1098 | data/ohsumed_single_23/test/C14/0012964 test C14
1099 | data/ohsumed_single_23/test/C14/0013016 test C14
1100 | data/ohsumed_single_23/test/C14/0013017 test C14
1101 | data/ohsumed_single_23/test/C14/0013018 test C14
1102 | data/ohsumed_single_23/test/C14/0013019 test C14
1103 | data/ohsumed_single_23/test/C14/0013021 test C14
1104 | data/ohsumed_single_23/test/C14/0013023 test C14
1105 | data/ohsumed_single_23/test/C14/0013025 test C14
1106 | data/ohsumed_single_23/test/C14/0013026 test C14
1107 | data/ohsumed_single_23/test/C14/0013027 test C14
1108 | data/ohsumed_single_23/test/C14/0013028 test C14
1109 | data/ohsumed_single_23/test/C14/0013058 test C14
1110 | data/ohsumed_single_23/test/C14/0013063 test C14
1111 | data/ohsumed_single_23/test/C14/0013066 test C14
1112 | data/ohsumed_single_23/test/C14/0013068 test C14
1113 | data/ohsumed_single_23/test/C14/0013138 test C14
1114 | data/ohsumed_single_23/test/C14/0013150 test C14
1115 | data/ohsumed_single_23/test/C14/0013165 test C14
1116 | data/ohsumed_single_23/test/C14/0013171 test C14
1117 | data/ohsumed_single_23/test/C14/0013206 test C14
1118 | data/ohsumed_single_23/test/C14/0013251 test C14
1119 | data/ohsumed_single_23/test/C14/0013294 test C14
1120 | data/ohsumed_single_23/test/C14/0013295 test C14
1121 | data/ohsumed_single_23/test/C14/0013396 test C14
1122 | data/ohsumed_single_23/test/C14/0013399 test C14
1123 | data/ohsumed_single_23/test/C14/0013402 test C14
1124 | data/ohsumed_single_23/test/C14/0013406 test C14
1125 | data/ohsumed_single_23/test/C14/0013410 test C14
1126 | data/ohsumed_single_23/test/C14/0013411 test C14
1127 | data/ohsumed_single_23/test/C14/0013412 test C14
1128 | data/ohsumed_single_23/test/C14/0013416 test C14
1129 | data/ohsumed_single_23/test/C14/0013420 test C14
1130 | data/ohsumed_single_23/test/C14/0013422 test C14
1131 | data/ohsumed_single_23/test/C14/0013425 test C14
1132 | data/ohsumed_single_23/test/C14/0013429 test C14
1133 | data/ohsumed_single_23/test/C14/0013431 test C14
1134 | data/ohsumed_single_23/test/C14/0013434 test C14
1135 | data/ohsumed_single_23/test/C14/0013435 test C14
1136 | data/ohsumed_single_23/test/C14/0013437 test C14
1137 | data/ohsumed_single_23/test/C14/0013438 test C14
1138 | data/ohsumed_single_23/test/C14/0013439 test C14
1139 | data/ohsumed_single_23/test/C14/0013441 test C14
1140 | data/ohsumed_single_23/test/C14/0013442 test C14
1141 | data/ohsumed_single_23/test/C14/0013444 test C14
1142 | data/ohsumed_single_23/test/C14/0013445 test C14
1143 | data/ohsumed_single_23/test/C14/0013447 test C14
1144 | data/ohsumed_single_23/test/C14/0013450 test C14
1145 | data/ohsumed_single_23/test/C14/0013451 test C14
1146 | data/ohsumed_single_23/test/C14/0013452 test C14
1147 | data/ohsumed_single_23/test/C14/0013453 test C14
1148 | data/ohsumed_single_23/test/C14/0013454 test C14
1149 | data/ohsumed_single_23/test/C14/0013458 test C14
1150 | data/ohsumed_single_23/test/C14/0013464 test C14
1151 | data/ohsumed_single_23/test/C14/0013465 test C14
1152 | data/ohsumed_single_23/test/C14/0013466 test C14
1153 | data/ohsumed_single_23/test/C14/0013468 test C14
1154 | data/ohsumed_single_23/test/C14/0013469 test C14
1155 | data/ohsumed_single_23/test/C14/0013470 test C14
1156 | data/ohsumed_single_23/test/C14/0013478 test C14
1157 | data/ohsumed_single_23/test/C14/0013480 test C14
1158 | data/ohsumed_single_23/test/C14/0013583 test C14
1159 | data/ohsumed_single_23/test/C14/0013585 test C14
1160 | data/ohsumed_single_23/test/C14/0013588 test C14
1161 | data/ohsumed_single_23/test/C14/0013589 test C14
1162 | data/ohsumed_single_23/test/C14/0013590 test C14
1163 | data/ohsumed_single_23/test/C14/0013622 test C14
1164 | data/ohsumed_single_23/test/C14/0013685 test C14
1165 | data/ohsumed_single_23/test/C14/0013699 test C14
1166 | data/ohsumed_single_23/test/C14/0013732 test C14
1167 | data/ohsumed_single_23/test/C14/0013800 test C14
1168 | data/ohsumed_single_23/test/C14/0013823 test C14
1169 | data/ohsumed_single_23/test/C14/0013825 test C14
1170 | data/ohsumed_single_23/test/C14/0013827 test C14
1171 | data/ohsumed_single_23/test/C14/0013828 test C14
1172 | data/ohsumed_single_23/test/C14/0013829 test C14
1173 | data/ohsumed_single_23/test/C14/0013830 test C14
1174 | data/ohsumed_single_23/test/C14/0013833 test C14
1175 | data/ohsumed_single_23/test/C14/0013834 test C14
1176 | data/ohsumed_single_23/test/C14/0013842 test C14
1177 | data/ohsumed_single_23/test/C14/0013991 test C14
1178 | data/ohsumed_single_23/test/C14/0013993 test C14
1179 | data/ohsumed_single_23/test/C14/0013994 test C14
1180 | data/ohsumed_single_23/test/C14/0014000 test C14
1181 | data/ohsumed_single_23/test/C14/0014005 test C14
1182 | data/ohsumed_single_23/test/C14/0014027 test C14
1183 | data/ohsumed_single_23/test/C14/0014033 test C14
1184 | data/ohsumed_single_23/test/C14/0014036 test C14
1185 | data/ohsumed_single_23/test/C14/0014039 test C14
1186 | data/ohsumed_single_23/test/C14/0014125 test C14
1187 | data/ohsumed_single_23/test/C14/0014128 test C14
1188 | data/ohsumed_single_23/test/C14/0014137 test C14
1189 | data/ohsumed_single_23/test/C14/0014138 test C14
1190 | data/ohsumed_single_23/test/C14/0014155 test C14
1191 | data/ohsumed_single_23/test/C14/0014316 test C14
1192 | data/ohsumed_single_23/test/C14/0014324 test C14
1193 | data/ohsumed_single_23/test/C14/0014341 test C14
1194 | data/ohsumed_single_23/test/C14/0014376 test C14
1195 | data/ohsumed_single_23/test/C14/0014395 test C14
1196 | data/ohsumed_single_23/test/C14/0014498 test C14
1197 | data/ohsumed_single_23/test/C14/0014540 test C14
1198 | data/ohsumed_single_23/test/C14/0014731 test C14
1199 | data/ohsumed_single_23/test/C14/0014732 test C14
1200 | data/ohsumed_single_23/test/C14/0014734 test C14
1201 | data/ohsumed_single_23/test/C14/0014735 test C14
1202 | data/ohsumed_single_23/test/C14/0014739 test C14
1203 | data/ohsumed_single_23/test/C14/0014751 test C14
1204 | data/ohsumed_single_23/test/C14/0014763 test C14
1205 | data/ohsumed_single_23/test/C14/0014790 test C14
1206 | data/ohsumed_single_23/test/C14/0014792 test C14
1207 | data/ohsumed_single_23/test/C14/0014795 test C14
1208 | data/ohsumed_single_23/test/C14/0014806 test C14
1209 | data/ohsumed_single_23/test/C14/0014812 test C14
1210 | data/ohsumed_single_23/test/C14/0014850 test C14
1211 | data/ohsumed_single_23/test/C14/0014873 test C14
1212 | data/ohsumed_single_23/test/C14/0014874 test C14
1213 | data/ohsumed_single_23/test/C14/0014880 test C14
1214 | data/ohsumed_single_23/test/C14/0014882 test C14
1215 | data/ohsumed_single_23/test/C14/0014884 test C14
1216 | data/ohsumed_single_23/test/C14/0014898 test C14
1217 | data/ohsumed_single_23/test/C14/0014902 test C14
1218 | data/ohsumed_single_23/test/C14/0014916 test C14
1219 | data/ohsumed_single_23/test/C14/0014929 test C14
1220 | data/ohsumed_single_23/test/C14/0014943 test C14
1221 | data/ohsumed_single_23/test/C14/0014963 test C14
1222 | data/ohsumed_single_23/test/C14/0014965 test C14
1223 | data/ohsumed_single_23/test/C14/0014966 test C14
1224 | data/ohsumed_single_23/test/C14/0015099 test C14
1225 | data/ohsumed_single_23/test/C14/0015147 test C14
1226 | data/ohsumed_single_23/test/C14/0015152 test C14
1227 | data/ohsumed_single_23/test/C14/0015153 test C14
1228 | data/ohsumed_single_23/test/C14/0015158 test C14
1229 | data/ohsumed_single_23/test/C14/0015176 test C14
1230 | data/ohsumed_single_23/test/C14/0015201 test C14
1231 | data/ohsumed_single_23/test/C14/0015203 test C14
1232 | data/ohsumed_single_23/test/C14/0015241 test C14
1233 | data/ohsumed_single_23/test/C14/0015288 test C14
1234 | data/ohsumed_single_23/test/C14/0015293 test C14
1235 | data/ohsumed_single_23/test/C14/0015295 test C14
1236 | data/ohsumed_single_23/test/C14/0015296 test C14
1237 | data/ohsumed_single_23/test/C14/0015297 test C14
1238 | data/ohsumed_single_23/test/C14/0015305 test C14
1239 | data/ohsumed_single_23/test/C14/0015306 test C14
1240 | data/ohsumed_single_23/test/C14/0015310 test C14
1241 | data/ohsumed_single_23/test/C14/0015312 test C14
1242 | data/ohsumed_single_23/test/C14/0015317 test C14
1243 | data/ohsumed_single_23/test/C14/0015321 test C14
1244 | data/ohsumed_single_23/test/C14/0015322 test C14
1245 | data/ohsumed_single_23/test/C14/0015323 test C14
1246 | data/ohsumed_single_23/test/C14/0015327 test C14
1247 | data/ohsumed_single_23/test/C14/0015328 test C14
1248 | data/ohsumed_single_23/test/C14/0015329 test C14
1249 | data/ohsumed_single_23/test/C14/0015363 test C14
1250 | data/ohsumed_single_23/test/C14/0015409 test C14
1251 | data/ohsumed_single_23/test/C14/0015431 test C14
1252 | data/ohsumed_single_23/test/C14/0015433 test C14
1253 | data/ohsumed_single_23/test/C14/0015435 test C14
1254 | data/ohsumed_single_23/test/C14/0015439 test C14
1255 | data/ohsumed_single_23/test/C14/0015522 test C14
1256 | data/ohsumed_single_23/test/C14/0015523 test C14
1257 | data/ohsumed_single_23/test/C14/0015525 test C14
1258 | data/ohsumed_single_23/test/C14/0015526 test C14
1259 | data/ohsumed_single_23/test/C14/0015527 test C14
1260 | data/ohsumed_single_23/test/C14/0015531 test C14
1261 | data/ohsumed_single_23/test/C14/0015534 test C14
1262 | data/ohsumed_single_23/test/C14/0015535 test C14
1263 | data/ohsumed_single_23/test/C14/0015537 test C14
1264 | data/ohsumed_single_23/test/C14/0015539 test C14
1265 | data/ohsumed_single_23/test/C14/0015701 test C14
1266 | data/ohsumed_single_23/test/C14/0015710 test C14
1267 | data/ohsumed_single_23/test/C14/0015711 test C14
1268 | data/ohsumed_single_23/test/C14/0015712 test C14
1269 | data/ohsumed_single_23/test/C14/0015721 test C14
1270 | data/ohsumed_single_23/test/C14/0015725 test C14
1271 | data/ohsumed_single_23/test/C14/0015729 test C14
1272 | data/ohsumed_single_23/test/C14/0015730 test C14
1273 | data/ohsumed_single_23/test/C14/0015731 test C14
1274 | data/ohsumed_single_23/test/C14/0015732 test C14
1275 | data/ohsumed_single_23/test/C14/0015733 test C14
1276 | data/ohsumed_single_23/test/C14/0015737 test C14
1277 | data/ohsumed_single_23/test/C14/0015738 test C14
1278 | data/ohsumed_single_23/test/C14/0015740 test C14
1279 | data/ohsumed_single_23/test/C14/0015741 test C14
1280 | data/ohsumed_single_23/test/C14/0015744 test C14
1281 | data/ohsumed_single_23/test/C14/0015747 test C14
1282 | data/ohsumed_single_23/test/C14/0015748 test C14
1283 | data/ohsumed_single_23/test/C14/0015750 test C14
1284 | data/ohsumed_single_23/test/C14/0015752 test C14
1285 | data/ohsumed_single_23/test/C14/0015753 test C14
1286 | data/ohsumed_single_23/test/C14/0015760 test C14
1287 | data/ohsumed_single_23/test/C14/0015761 test C14
1288 | data/ohsumed_single_23/test/C14/0015762 test C14
1289 | data/ohsumed_single_23/test/C14/0015763 test C14
1290 | data/ohsumed_single_23/test/C14/0015764 test C14
1291 | data/ohsumed_single_23/test/C14/0015765 test C14
1292 | data/ohsumed_single_23/test/C14/0015767 test C14
1293 | data/ohsumed_single_23/test/C14/0015898 test C14
1294 | data/ohsumed_single_23/test/C14/0015900 test C14
1295 | data/ohsumed_single_23/test/C14/0015901 test C14
1296 | data/ohsumed_single_23/test/C14/0015902 test C14
1297 | data/ohsumed_single_23/test/C14/0015906 test C14
1298 | data/ohsumed_single_23/test/C14/0015908 test C14
1299 | data/ohsumed_single_23/test/C14/0016003 test C14
1300 | data/ohsumed_single_23/test/C14/0016033 test C14
1301 | data/ohsumed_single_23/test/C14/0016036 test C14
1302 | data/ohsumed_single_23/test/C14/0016038 test C14
1303 | data/ohsumed_single_23/test/C14/0016039 test C14
1304 | data/ohsumed_single_23/test/C14/0016040 test C14
1305 | data/ohsumed_single_23/test/C14/0016041 test C14
1306 | data/ohsumed_single_23/test/C14/0016042 test C14
1307 | data/ohsumed_single_23/test/C14/0016045 test C14
1308 | data/ohsumed_single_23/test/C14/0016046 test C14
1309 | data/ohsumed_single_23/test/C14/0016047 test C14
1310 | data/ohsumed_single_23/test/C14/0016049 test C14
1311 | data/ohsumed_single_23/test/C14/0016053 test C14
1312 | data/ohsumed_single_23/test/C14/0016055 test C14
1313 | data/ohsumed_single_23/test/C14/0016059 test C14
1314 | data/ohsumed_single_23/test/C14/0016060 test C14
1315 | data/ohsumed_single_23/test/C14/0016078 test C14
1316 | data/ohsumed_single_23/test/C14/0016162 test C14
1317 | data/ohsumed_single_23/test/C14/0016163 test C14
1318 | data/ohsumed_single_23/test/C14/0016165 test C14
1319 | data/ohsumed_single_23/test/C14/0016166 test C14
1320 | data/ohsumed_single_23/test/C14/0016168 test C14
1321 | data/ohsumed_single_23/test/C14/0016171 test C14
1322 | data/ohsumed_single_23/test/C14/0016182 test C14
1323 | data/ohsumed_single_23/test/C14/0016184 test C14
1324 | data/ohsumed_single_23/test/C14/0016186 test C14
1325 | data/ohsumed_single_23/test/C14/0016188 test C14
1326 | data/ohsumed_single_23/test/C14/0016191 test C14
1327 | data/ohsumed_single_23/test/C14/0016238 test C14
1328 | data/ohsumed_single_23/test/C14/0016260 test C14
1329 | data/ohsumed_single_23/test/C14/0016263 test C14
1330 | data/ohsumed_single_23/test/C14/0016264 test C14
1331 | data/ohsumed_single_23/test/C14/0016373 test C14
1332 | data/ohsumed_single_23/test/C14/0016520 test C14
1333 | data/ohsumed_single_23/test/C14/0016651 test C14
1334 | data/ohsumed_single_23/test/C14/0016699 test C14
1335 | data/ohsumed_single_23/test/C14/0016747 test C14
1336 | data/ohsumed_single_23/test/C14/0016748 test C14
1337 | data/ohsumed_single_23/test/C14/0016750 test C14
1338 | data/ohsumed_single_23/test/C14/0016752 test C14
1339 | data/ohsumed_single_23/test/C14/0016755 test C14
1340 | data/ohsumed_single_23/test/C14/0016756 test C14
1341 | data/ohsumed_single_23/test/C14/0016769 test C14
1342 | data/ohsumed_single_23/test/C14/0016812 test C14
1343 | data/ohsumed_single_23/test/C14/0016822 test C14
1344 | data/ohsumed_single_23/test/C14/0016824 test C14
1345 | data/ohsumed_single_23/test/C14/0016922 test C14
1346 | data/ohsumed_single_23/test/C14/0016923 test C14
1347 | data/ohsumed_single_23/test/C14/0016924 test C14
1348 | data/ohsumed_single_23/test/C14/0017094 test C14
1349 | data/ohsumed_single_23/test/C14/0017119 test C14
1350 | data/ohsumed_single_23/test/C14/0017120 test C14
1351 | data/ohsumed_single_23/test/C14/0017122 test C14
1352 | data/ohsumed_single_23/test/C14/0017125 test C14
1353 | data/ohsumed_single_23/test/C14/0017129 test C14
1354 | data/ohsumed_single_23/test/C14/0017134 test C14
1355 | data/ohsumed_single_23/test/C14/0017135 test C14
1356 | data/ohsumed_single_23/test/C14/0017136 test C14
1357 | data/ohsumed_single_23/test/C14/0017141 test C14
1358 | data/ohsumed_single_23/test/C14/0017142 test C14
1359 | data/ohsumed_single_23/test/C14/0017146 test C14
1360 | data/ohsumed_single_23/test/C14/0017225 test C14
1361 | data/ohsumed_single_23/test/C14/0017226 test C14
1362 | data/ohsumed_single_23/test/C14/0017234 test C14
1363 | data/ohsumed_single_23/test/C14/0017238 test C14
1364 | data/ohsumed_single_23/test/C14/0017239 test C14
1365 | data/ohsumed_single_23/test/C14/0017281 test C14
1366 | data/ohsumed_single_23/test/C14/0017306 test C14
1367 | data/ohsumed_single_23/test/C14/0017377 test C14
1368 | data/ohsumed_single_23/test/C14/0017378 test C14
1369 | data/ohsumed_single_23/test/C14/0017382 test C14
1370 | data/ohsumed_single_23/test/C14/0017395 test C14
1371 | data/ohsumed_single_23/test/C14/0017398 test C14
1372 | data/ohsumed_single_23/test/C14/0017432 test C14
1373 | data/ohsumed_single_23/test/C14/0017440 test C14
1374 | data/ohsumed_single_23/test/C14/0017464 test C14
1375 | data/ohsumed_single_23/test/C14/0017479 test C14
1376 | data/ohsumed_single_23/test/C14/0017492 test C14
1377 | data/ohsumed_single_23/test/C14/0017493 test C14
1378 | data/ohsumed_single_23/test/C14/0017494 test C14
1379 | data/ohsumed_single_23/test/C14/0017496 test C14
1380 | data/ohsumed_single_23/test/C14/0017502 test C14
1381 | data/ohsumed_single_23/test/C14/0017503 test C14
1382 | data/ohsumed_single_23/test/C14/0017521 test C14
1383 | data/ohsumed_single_23/test/C14/0017522 test C14
1384 | data/ohsumed_single_23/test/C14/0017525 test C14
1385 | data/ohsumed_single_23/test/C14/0017526 test C14
1386 | data/ohsumed_single_23/test/C14/0017530 test C14
1387 | data/ohsumed_single_23/test/C14/0017533 test C14
1388 | data/ohsumed_single_23/test/C14/0017570 test C14
1389 | data/ohsumed_single_23/test/C14/0017596 test C14
1390 | data/ohsumed_single_23/test/C14/0017597 test C14
1391 | data/ohsumed_single_23/test/C14/0017690 test C14
1392 | data/ohsumed_single_23/test/C14/0017704 test C14
1393 | data/ohsumed_single_23/test/C14/0017712 test C14
1394 | data/ohsumed_single_23/test/C14/0017719 test C14
1395 | data/ohsumed_single_23/test/C14/0017744 test C14
1396 | data/ohsumed_single_23/test/C14/0017774 test C14
1397 | data/ohsumed_single_23/test/C14/0017778 test C14
1398 | data/ohsumed_single_23/test/C14/0017779 test C14
1399 | data/ohsumed_single_23/test/C14/0017781 test C14
1400 | data/ohsumed_single_23/test/C14/0017782 test C14
1401 | data/ohsumed_single_23/test/C14/0017786 test C14
1402 | data/ohsumed_single_23/test/C14/0017787 test C14
1403 | data/ohsumed_single_23/test/C14/0017788 test C14
1404 | data/ohsumed_single_23/test/C14/0017789 test C14
1405 | data/ohsumed_single_23/test/C14/0017791 test C14
1406 | data/ohsumed_single_23/test/C14/0017809 test C14
1407 | data/ohsumed_single_23/test/C14/0017820 test C14
1408 | data/ohsumed_single_23/test/C14/0017822 test C14
1409 | data/ohsumed_single_23/test/C14/0017852 test C14
1410 | data/ohsumed_single_23/test/C14/0017924 test C14
1411 | data/ohsumed_single_23/test/C14/0017981 test C14
1412 | data/ohsumed_single_23/test/C14/0018041 test C14
1413 | data/ohsumed_single_23/test/C14/0018046 test C14
1414 | data/ohsumed_single_23/test/C14/0018065 test C14
1415 | data/ohsumed_single_23/test/C14/0018108 test C14
1416 | data/ohsumed_single_23/test/C14/0018209 test C14
1417 | data/ohsumed_single_23/test/C14/0018219 test C14
1418 | data/ohsumed_single_23/test/C14/0018220 test C14
1419 | data/ohsumed_single_23/test/C14/0018223 test C14
1420 | data/ohsumed_single_23/test/C14/0018251 test C14
1421 | data/ohsumed_single_23/test/C14/0018255 test C14
1422 | data/ohsumed_single_23/test/C14/0018263 test C14
1423 | data/ohsumed_single_23/test/C14/0018269 test C14
1424 | data/ohsumed_single_23/test/C14/0018270 test C14
1425 | data/ohsumed_single_23/test/C14/0018271 test C14
1426 | data/ohsumed_single_23/test/C14/0018277 test C14
1427 | data/ohsumed_single_23/test/C14/0018300 test C14
1428 | data/ohsumed_single_23/test/C14/0018329 test C14
1429 | data/ohsumed_single_23/test/C14/0018330 test C14
1430 | data/ohsumed_single_23/test/C14/0018337 test C14
1431 | data/ohsumed_single_23/test/C14/0018467 test C14
1432 | data/ohsumed_single_23/test/C14/0018543 test C14
1433 | data/ohsumed_single_23/test/C14/0018568 test C14
1434 | data/ohsumed_single_23/test/C14/0018569 test C14
1435 | data/ohsumed_single_23/test/C14/0018596 test C14
1436 | data/ohsumed_single_23/test/C14/0018825 test C14
1437 | data/ohsumed_single_23/test/C14/0018826 test C14
1438 | data/ohsumed_single_23/test/C14/0018827 test C14
1439 | data/ohsumed_single_23/test/C14/0018828 test C14
1440 | data/ohsumed_single_23/test/C14/0018829 test C14
1441 | data/ohsumed_single_23/test/C14/0018830 test C14
1442 | data/ohsumed_single_23/test/C14/0018834 test C14
1443 | data/ohsumed_single_23/test/C14/0018867 test C14
1444 | data/ohsumed_single_23/test/C14/0018919 test C14
1445 | data/ohsumed_single_23/test/C14/0018936 test C14
1446 | data/ohsumed_single_23/test/C14/0018938 test C14
1447 | data/ohsumed_single_23/test/C14/0018939 test C14
1448 | data/ohsumed_single_23/test/C14/0018954 test C14
1449 | data/ohsumed_single_23/test/C14/0018961 test C14
1450 | data/ohsumed_single_23/test/C14/0018974 test C14
1451 | data/ohsumed_single_23/test/C14/0019025 test C14
1452 | data/ohsumed_single_23/test/C14/0019098 test C14
1453 | data/ohsumed_single_23/test/C14/0019099 test C14
1454 | data/ohsumed_single_23/test/C14/0019100 test C14
1455 | data/ohsumed_single_23/test/C14/0019101 test C14
1456 | data/ohsumed_single_23/test/C14/0019103 test C14
1457 | data/ohsumed_single_23/test/C14/0019104 test C14
1458 | data/ohsumed_single_23/test/C14/0019105 test C14
1459 | data/ohsumed_single_23/test/C14/0019109 test C14
1460 | data/ohsumed_single_23/test/C14/0019115 test C14
1461 | data/ohsumed_single_23/test/C14/0019116 test C14
1462 | data/ohsumed_single_23/test/C14/0019117 test C14
1463 | data/ohsumed_single_23/test/C14/0019118 test C14
1464 | data/ohsumed_single_23/test/C14/0019119 test C14
1465 | data/ohsumed_single_23/test/C14/0019120 test C14
1466 | data/ohsumed_single_23/test/C14/0019121 test C14
1467 | data/ohsumed_single_23/test/C14/0019122 test C14
1468 | data/ohsumed_single_23/test/C14/0019129 test C14
1469 | data/ohsumed_single_23/test/C14/0019137 test C14
1470 | data/ohsumed_single_23/test/C14/0019269 test C14
1471 | data/ohsumed_single_23/test/C14/0019275 test C14
1472 | data/ohsumed_single_23/test/C14/0019276 test C14
1473 | data/ohsumed_single_23/test/C14/0019277 test C14
1474 | data/ohsumed_single_23/test/C14/0019278 test C14
1475 | data/ohsumed_single_23/test/C14/0019280 test C14
1476 | data/ohsumed_single_23/test/C14/0019281 test C14
1477 | data/ohsumed_single_23/test/C14/0019284 test C14
1478 | data/ohsumed_single_23/test/C14/0019356 test C14
1479 | data/ohsumed_single_23/test/C14/0019358 test C14
1480 | data/ohsumed_single_23/test/C14/0019359 test C14
1481 | data/ohsumed_single_23/test/C14/0019360 test C14
1482 | data/ohsumed_single_23/test/C14/0019361 test C14
1483 | data/ohsumed_single_23/test/C14/0019362 test C14
1484 | data/ohsumed_single_23/test/C14/0019365 test C14
1485 | data/ohsumed_single_23/test/C14/0019367 test C14
1486 | data/ohsumed_single_23/test/C14/0019370 test C14
1487 | data/ohsumed_single_23/test/C14/0019404 test C14
1488 | data/ohsumed_single_23/test/C14/0019406 test C14
1489 | data/ohsumed_single_23/test/C14/0019450 test C14
1490 | data/ohsumed_single_23/test/C14/0019465 test C14
1491 | data/ohsumed_single_23/test/C14/0019477 test C14
1492 | data/ohsumed_single_23/test/C14/0019480 test C14
1493 | data/ohsumed_single_23/test/C14/0019481 test C14
1494 | data/ohsumed_single_23/test/C14/0019486 test C14
1495 | data/ohsumed_single_23/test/C14/0019491 test C14
1496 | data/ohsumed_single_23/test/C14/0019505 test C14
1497 | data/ohsumed_single_23/test/C14/0019511 test C14
1498 | data/ohsumed_single_23/test/C14/0019512 test C14
1499 | data/ohsumed_single_23/test/C14/0019513 test C14
1500 | data/ohsumed_single_23/test/C14/0019520 test C14
1501 | data/ohsumed_single_23/test/C14/0019521 test C14
1502 | data/ohsumed_single_23/test/C14/0019522 test C14
1503 | data/ohsumed_single_23/test/C14/0019525 test C14
1504 | data/ohsumed_single_23/test/C14/0019531 test C14
1505 | data/ohsumed_single_23/test/C14/0019650 test C14
1506 | data/ohsumed_single_23/test/C14/0019740 test C14
1507 | data/ohsumed_single_23/test/C14/0019750 test C14
1508 | data/ohsumed_single_23/test/C14/0019751 test C14
1509 | data/ohsumed_single_23/test/C14/0019831 test C14
1510 | data/ohsumed_single_23/test/C14/0019835 test C14
1511 | data/ohsumed_single_23/test/C14/0019846 test C14
1512 | data/ohsumed_single_23/test/C14/0019848 test C14
1513 | data/ohsumed_single_23/test/C14/0019849 test C14
1514 | data/ohsumed_single_23/test/C14/0019850 test C14
1515 | data/ohsumed_single_23/test/C14/0019851 test C14
1516 | data/ohsumed_single_23/test/C14/0019852 test C14
1517 | data/ohsumed_single_23/test/C14/0019853 test C14
1518 | data/ohsumed_single_23/test/C14/0019857 test C14
1519 | data/ohsumed_single_23/test/C14/0019858 test C14
1520 | data/ohsumed_single_23/test/C14/0019861 test C14
1521 | data/ohsumed_single_23/test/C14/0019866 test C14
1522 | data/ohsumed_single_23/test/C14/0019870 test C14
1523 | data/ohsumed_single_23/test/C14/0019872 test C14
1524 | data/ohsumed_single_23/test/C14/0019873 test C14
1525 | data/ohsumed_single_23/test/C14/0019874 test C14
1526 | data/ohsumed_single_23/test/C14/0019875 test C14
1527 | data/ohsumed_single_23/test/C14/0019877 test C14
1528 | data/ohsumed_single_23/test/C14/0019879 test C14
1529 | data/ohsumed_single_23/test/C14/0019880 test C14
1530 | data/ohsumed_single_23/test/C14/0019882 test C14
1531 | data/ohsumed_single_23/test/C14/0019883 test C14
1532 | data/ohsumed_single_23/test/C14/0019945 test C14
1533 | data/ohsumed_single_23/training/C04/0000024 training C04
1534 | data/ohsumed_single_23/training/C04/0000026 training C04
1535 | data/ohsumed_single_23/training/C04/0000028 training C04
1536 | data/ohsumed_single_23/training/C04/0000061 training C04
1537 | data/ohsumed_single_23/training/C04/0000080 training C04
1538 | data/ohsumed_single_23/training/C04/0000084 training C04
1539 | data/ohsumed_single_23/training/C04/0000098 training C04
1540 | data/ohsumed_single_23/training/C04/0000205 training C04
1541 | data/ohsumed_single_23/training/C04/0000206 training C04
1542 | data/ohsumed_single_23/training/C04/0000207 training C04
1543 | data/ohsumed_single_23/training/C04/0000208 training C04
1544 | data/ohsumed_single_23/training/C04/0000209 training C04
1545 | data/ohsumed_single_23/training/C04/0000210 training C04
1546 | data/ohsumed_single_23/training/C04/0000211 training C04
1547 | data/ohsumed_single_23/training/C04/0000212 training C04
1548 | data/ohsumed_single_23/training/C04/0000214 training C04
1549 | data/ohsumed_single_23/training/C04/0000217 training C04
1550 | data/ohsumed_single_23/training/C04/0000218 training C04
1551 | data/ohsumed_single_23/training/C04/0000221 training C04
1552 | data/ohsumed_single_23/training/C04/0000224 training C04
1553 | data/ohsumed_single_23/training/C04/0000225 training C04
1554 | data/ohsumed_single_23/training/C04/0000228 training C04
1555 | data/ohsumed_single_23/training/C04/0000229 training C04
1556 | data/ohsumed_single_23/training/C04/0000231 training C04
1557 | data/ohsumed_single_23/training/C04/0000232 training C04
1558 | data/ohsumed_single_23/training/C04/0000318 training C04
1559 | data/ohsumed_single_23/training/C04/0000386 training C04
1560 | data/ohsumed_single_23/training/C04/0000417 training C04
1561 | data/ohsumed_single_23/training/C04/0000431 training C04
1562 | data/ohsumed_single_23/training/C04/0000483 training C04
1563 | data/ohsumed_single_23/training/C04/0000495 training C04
1564 | data/ohsumed_single_23/training/C04/0000496 training C04
1565 | data/ohsumed_single_23/training/C04/0000601 training C04
1566 | data/ohsumed_single_23/training/C04/0000674 training C04
1567 | data/ohsumed_single_23/training/C04/0000679 training C04
1568 | data/ohsumed_single_23/training/C04/0000691 training C04
1569 | data/ohsumed_single_23/training/C04/0000791 training C04
1570 | data/ohsumed_single_23/training/C04/0000830 training C04
1571 | data/ohsumed_single_23/training/C04/0000844 training C04
1572 | data/ohsumed_single_23/training/C04/0000846 training C04
1573 | data/ohsumed_single_23/training/C04/0000854 training C04
1574 | data/ohsumed_single_23/training/C04/0000855 training C04
1575 | data/ohsumed_single_23/training/C04/0000857 training C04
1576 | data/ohsumed_single_23/training/C04/0000859 training C04
1577 | data/ohsumed_single_23/training/C04/0000967 training C04
1578 | data/ohsumed_single_23/training/C04/0000989 training C04
1579 | data/ohsumed_single_23/training/C04/0002009 training C04
1580 | data/ohsumed_single_23/training/C04/0002016 training C04
1581 | data/ohsumed_single_23/training/C04/0002029 training C04
1582 | data/ohsumed_single_23/training/C04/0002068 training C04
1583 | data/ohsumed_single_23/training/C04/0002074 training C04
1584 | data/ohsumed_single_23/training/C04/0002096 training C04
1585 | data/ohsumed_single_23/training/C04/0002097 training C04
1586 | data/ohsumed_single_23/training/C04/0002098 training C04
1587 | data/ohsumed_single_23/training/C04/0002099 training C04
1588 | data/ohsumed_single_23/training/C04/0002100 training C04
1589 | data/ohsumed_single_23/training/C04/0002101 training C04
1590 | data/ohsumed_single_23/training/C04/0002102 training C04
1591 | data/ohsumed_single_23/training/C04/0002103 training C04
1592 | data/ohsumed_single_23/training/C04/0002104 training C04
1593 | data/ohsumed_single_23/training/C04/0002105 training C04
1594 | data/ohsumed_single_23/training/C04/0002106 training C04
1595 | data/ohsumed_single_23/training/C04/0002107 training C04
1596 | data/ohsumed_single_23/training/C04/0002108 training C04
1597 | data/ohsumed_single_23/training/C04/0002109 training C04
1598 | data/ohsumed_single_23/training/C04/0002115 training C04
1599 | data/ohsumed_single_23/training/C04/0002130 training C04
1600 | data/ohsumed_single_23/training/C04/0002133 training C04
1601 | data/ohsumed_single_23/training/C04/0002136 training C04
1602 | data/ohsumed_single_23/training/C04/0002137 training C04
1603 | data/ohsumed_single_23/training/C04/0002149 training C04
1604 | data/ohsumed_single_23/training/C04/0002160 training C04
1605 | data/ohsumed_single_23/training/C04/0002198 training C04
1606 | data/ohsumed_single_23/training/C04/0002237 training C04
1607 | data/ohsumed_single_23/training/C04/0002249 training C04
1608 | data/ohsumed_single_23/training/C04/0002258 training C04
1609 | data/ohsumed_single_23/training/C04/0002377 training C04
1610 | data/ohsumed_single_23/training/C04/0002381 training C04
1611 | data/ohsumed_single_23/training/C04/0002387 training C04
1612 | data/ohsumed_single_23/training/C04/0002390 training C04
1613 | data/ohsumed_single_23/training/C04/0002397 training C04
1614 | data/ohsumed_single_23/training/C04/0002402 training C04
1615 | data/ohsumed_single_23/training/C04/0002423 training C04
1616 | data/ohsumed_single_23/training/C04/0002439 training C04
1617 | data/ohsumed_single_23/training/C04/0002503 training C04
1618 | data/ohsumed_single_23/training/C04/0002532 training C04
1619 | data/ohsumed_single_23/training/C04/0002550 training C04
1620 | data/ohsumed_single_23/training/C04/0002558 training C04
1621 | data/ohsumed_single_23/training/C04/0002567 training C04
1622 | data/ohsumed_single_23/training/C04/0002583 training C04
1623 | data/ohsumed_single_23/training/C04/0002595 training C04
1624 | data/ohsumed_single_23/training/C04/0002596 training C04
1625 | data/ohsumed_single_23/training/C04/0002642 training C04
1626 | data/ohsumed_single_23/training/C04/0002643 training C04
1627 | data/ohsumed_single_23/training/C04/0002647 training C04
1628 | data/ohsumed_single_23/training/C04/0002648 training C04
1629 | data/ohsumed_single_23/training/C04/0002658 training C04
1630 | data/ohsumed_single_23/training/C04/0002661 training C04
1631 | data/ohsumed_single_23/training/C04/0002663 training C04
1632 | data/ohsumed_single_23/training/C04/0002666 training C04
1633 | data/ohsumed_single_23/training/C04/0002873 training C04
1634 | data/ohsumed_single_23/training/C04/0002896 training C04
1635 | data/ohsumed_single_23/training/C04/0002899 training C04
1636 | data/ohsumed_single_23/training/C04/0002941 training C04
1637 | data/ohsumed_single_23/training/C04/0002958 training C04
1638 | data/ohsumed_single_23/training/C04/0002999 training C04
1639 | data/ohsumed_single_23/training/C04/0003004 training C04
1640 | data/ohsumed_single_23/training/C04/0003007 training C04
1641 | data/ohsumed_single_23/training/C04/0003009 training C04
1642 | data/ohsumed_single_23/training/C04/0003028 training C04
1643 | data/ohsumed_single_23/training/C04/0003277 training C04
1644 | data/ohsumed_single_23/training/C04/0003278 training C04
1645 | data/ohsumed_single_23/training/C04/0003281 training C04
1646 | data/ohsumed_single_23/training/C04/0003284 training C04
1647 | data/ohsumed_single_23/training/C04/0003289 training C04
1648 | data/ohsumed_single_23/training/C04/0003294 training C04
1649 | data/ohsumed_single_23/training/C04/0003296 training C04
1650 | data/ohsumed_single_23/training/C04/0003297 training C04
1651 | data/ohsumed_single_23/training/C04/0003354 training C04
1652 | data/ohsumed_single_23/training/C04/0003376 training C04
1653 | data/ohsumed_single_23/training/C04/0003382 training C04
1654 | data/ohsumed_single_23/training/C04/0003384 training C04
1655 | data/ohsumed_single_23/training/C04/0003385 training C04
1656 | data/ohsumed_single_23/training/C04/0003387 training C04
1657 | data/ohsumed_single_23/training/C04/0003388 training C04
1658 | data/ohsumed_single_23/training/C04/0003390 training C04
1659 | data/ohsumed_single_23/training/C04/0003392 training C04
1660 | data/ohsumed_single_23/training/C04/0003395 training C04
1661 | data/ohsumed_single_23/training/C04/0003396 training C04
1662 | data/ohsumed_single_23/training/C04/0003400 training C04
1663 | data/ohsumed_single_23/training/C04/0003402 training C04
1664 | data/ohsumed_single_23/training/C04/0003405 training C04
1665 | data/ohsumed_single_23/training/C04/0003406 training C04
1666 | data/ohsumed_single_23/training/C04/0003407 training C04
1667 | data/ohsumed_single_23/training/C04/0003409 training C04
1668 | data/ohsumed_single_23/training/C04/0003410 training C04
1669 | data/ohsumed_single_23/training/C04/0003420 training C04
1670 | data/ohsumed_single_23/training/C04/0003421 training C04
1671 | data/ohsumed_single_23/training/C04/0003423 training C04
1672 | data/ohsumed_single_23/training/C04/0003426 training C04
1673 | data/ohsumed_single_23/training/C04/0003430 training C04
1674 | data/ohsumed_single_23/training/C04/0003431 training C04
1675 | data/ohsumed_single_23/training/C04/0003432 training C04
1676 | data/ohsumed_single_23/training/C04/0003438 training C04
1677 | data/ohsumed_single_23/training/C04/0003640 training C04
1678 | data/ohsumed_single_23/training/C04/0003642 training C04
1679 | data/ohsumed_single_23/training/C04/0003781 training C04
1680 | data/ohsumed_single_23/training/C04/0003796 training C04
1681 | data/ohsumed_single_23/training/C04/0003801 training C04
1682 | data/ohsumed_single_23/training/C04/0003807 training C04
1683 | data/ohsumed_single_23/training/C04/0003808 training C04
1684 | data/ohsumed_single_23/training/C04/0003809 training C04
1685 | data/ohsumed_single_23/training/C04/0003832 training C04
1686 | data/ohsumed_single_23/training/C04/0003986 training C04
1687 | data/ohsumed_single_23/training/C04/0003997 training C04
1688 | data/ohsumed_single_23/training/C04/0004027 training C04
1689 | data/ohsumed_single_23/training/C04/0004227 training C04
1690 | data/ohsumed_single_23/training/C04/0004239 training C04
1691 | data/ohsumed_single_23/training/C04/0004295 training C04
1692 | data/ohsumed_single_23/training/C04/0004298 training C04
1693 | data/ohsumed_single_23/training/C04/0004307 training C04
1694 | data/ohsumed_single_23/training/C04/0004320 training C04
1695 | data/ohsumed_single_23/training/C04/0004321 training C04
1696 | data/ohsumed_single_23/training/C04/0004331 training C04
1697 | data/ohsumed_single_23/training/C04/0004346 training C04
1698 | data/ohsumed_single_23/training/C04/0004518 training C04
1699 | data/ohsumed_single_23/training/C04/0004524 training C04
1700 | data/ohsumed_single_23/training/C04/0004533 training C04
1701 | data/ohsumed_single_23/training/C04/0004577 training C04
1702 | data/ohsumed_single_23/training/C04/0004579 training C04
1703 | data/ohsumed_single_23/training/C04/0004581 training C04
1704 | data/ohsumed_single_23/training/C04/0004597 training C04
1705 | data/ohsumed_single_23/training/C04/0004603 training C04
1706 | data/ohsumed_single_23/training/C04/0004649 training C04
1707 | data/ohsumed_single_23/training/C04/0004699 training C04
1708 | data/ohsumed_single_23/training/C04/0004700 training C04
1709 | data/ohsumed_single_23/training/C04/0004799 training C04
1710 | data/ohsumed_single_23/training/C04/0004807 training C04
1711 | data/ohsumed_single_23/training/C04/0004808 training C04
1712 | data/ohsumed_single_23/training/C04/0004809 training C04
1713 | data/ohsumed_single_23/training/C04/0004810 training C04
1714 | data/ohsumed_single_23/training/C04/0004813 training C04
1715 | data/ohsumed_single_23/training/C04/0004814 training C04
1716 | data/ohsumed_single_23/training/C04/0004819 training C04
1717 | data/ohsumed_single_23/training/C04/0004823 training C04
1718 | data/ohsumed_single_23/training/C04/0004824 training C04
1719 | data/ohsumed_single_23/training/C04/0004825 training C04
1720 | data/ohsumed_single_23/training/C04/0004828 training C04
1721 | data/ohsumed_single_23/training/C04/0004836 training C04
1722 | data/ohsumed_single_23/training/C04/0004838 training C04
1723 | data/ohsumed_single_23/training/C04/0004855 training C04
1724 | data/ohsumed_single_23/training/C04/0004859 training C04
1725 | data/ohsumed_single_23/training/C04/0004862 training C04
1726 | data/ohsumed_single_23/training/C04/0004867 training C04
1727 | data/ohsumed_single_23/training/C04/0004906 training C04
1728 | data/ohsumed_single_23/training/C04/0004913 training C04
1729 | data/ohsumed_single_23/training/C04/0004914 training C04
1730 | data/ohsumed_single_23/training/C04/0004915 training C04
1731 | data/ohsumed_single_23/training/C04/0004936 training C04
1732 | data/ohsumed_single_23/training/C04/0004952 training C04
1733 | data/ohsumed_single_23/training/C04/0004956 training C04
1734 | data/ohsumed_single_23/training/C04/0004970 training C04
1735 | data/ohsumed_single_23/training/C04/0004971 training C04
1736 | data/ohsumed_single_23/training/C04/0004972 training C04
1737 | data/ohsumed_single_23/training/C04/0004974 training C04
1738 | data/ohsumed_single_23/training/C04/0004975 training C04
1739 | data/ohsumed_single_23/training/C04/0004976 training C04
1740 | data/ohsumed_single_23/training/C04/0004977 training C04
1741 | data/ohsumed_single_23/training/C04/0004979 training C04
1742 | data/ohsumed_single_23/training/C04/0004983 training C04
1743 | data/ohsumed_single_23/training/C04/0005100 training C04
1744 | data/ohsumed_single_23/training/C04/0005157 training C04
1745 | data/ohsumed_single_23/training/C04/0005213 training C04
1746 | data/ohsumed_single_23/training/C04/0005217 training C04
1747 | data/ohsumed_single_23/training/C04/0005221 training C04
1748 | data/ohsumed_single_23/training/C04/0005223 training C04
1749 | data/ohsumed_single_23/training/C04/0005246 training C04
1750 | data/ohsumed_single_23/training/C04/0005291 training C04
1751 | data/ohsumed_single_23/training/C04/0005296 training C04
1752 | data/ohsumed_single_23/training/C04/0005395 training C04
1753 | data/ohsumed_single_23/training/C04/0005396 training C04
1754 | data/ohsumed_single_23/training/C04/0005409 training C04
1755 | data/ohsumed_single_23/training/C04/0005437 training C04
1756 | data/ohsumed_single_23/training/C04/0005451 training C04
1757 | data/ohsumed_single_23/training/C04/0005458 training C04
1758 | data/ohsumed_single_23/training/C04/0005459 training C04
1759 | data/ohsumed_single_23/training/C04/0005499 training C04
1760 | data/ohsumed_single_23/training/C04/0005516 training C04
1761 | data/ohsumed_single_23/training/C04/0005517 training C04
1762 | data/ohsumed_single_23/training/C04/0005538 training C04
1763 | data/ohsumed_single_23/training/C04/0005576 training C04
1764 | data/ohsumed_single_23/training/C04/0005655 training C04
1765 | data/ohsumed_single_23/training/C04/0005731 training C04
1766 | data/ohsumed_single_23/training/C04/0005739 training C04
1767 | data/ohsumed_single_23/training/C04/0005745 training C04
1768 | data/ohsumed_single_23/training/C04/0005755 training C04
1769 | data/ohsumed_single_23/training/C04/0005759 training C04
1770 | data/ohsumed_single_23/training/C04/0005774 training C04
1771 | data/ohsumed_single_23/training/C04/0005775 training C04
1772 | data/ohsumed_single_23/training/C04/0005776 training C04
1773 | data/ohsumed_single_23/training/C04/0005805 training C04
1774 | data/ohsumed_single_23/training/C04/0005812 training C04
1775 | data/ohsumed_single_23/training/C04/0005813 training C04
1776 | data/ohsumed_single_23/training/C04/0005822 training C04
1777 | data/ohsumed_single_23/training/C04/0005862 training C04
1778 | data/ohsumed_single_23/training/C04/0005868 training C04
1779 | data/ohsumed_single_23/training/C04/0005903 training C04
1780 | data/ohsumed_single_23/training/C04/0005996 training C04
1781 | data/ohsumed_single_23/training/C04/0006005 training C04
1782 | data/ohsumed_single_23/training/C04/0006022 training C04
1783 | data/ohsumed_single_23/training/C04/0006049 training C04
1784 | data/ohsumed_single_23/training/C04/0006053 training C04
1785 | data/ohsumed_single_23/training/C04/0006065 training C04
1786 | data/ohsumed_single_23/training/C04/0006159 training C04
1787 | data/ohsumed_single_23/training/C04/0006246 training C04
1788 | data/ohsumed_single_23/training/C04/0006252 training C04
1789 | data/ohsumed_single_23/training/C04/0006264 training C04
1790 | data/ohsumed_single_23/training/C04/0006265 training C04
1791 | data/ohsumed_single_23/training/C04/0006303 training C04
1792 | data/ohsumed_single_23/training/C04/0006304 training C04
1793 | data/ohsumed_single_23/training/C04/0006313 training C04
1794 | data/ohsumed_single_23/training/C04/0006314 training C04
1795 | data/ohsumed_single_23/training/C04/0006336 training C04
1796 | data/ohsumed_single_23/training/C04/0006342 training C04
1797 | data/ohsumed_single_23/training/C04/0006468 training C04
1798 | data/ohsumed_single_23/training/C04/0006479 training C04
1799 | data/ohsumed_single_23/training/C04/0006484 training C04
1800 | data/ohsumed_single_23/training/C04/0006489 training C04
1801 | data/ohsumed_single_23/training/C04/0006565 training C04
1802 | data/ohsumed_single_23/training/C04/0006574 training C04
1803 | data/ohsumed_single_23/training/C04/0006648 training C04
1804 | data/ohsumed_single_23/training/C04/0006697 training C04
1805 | data/ohsumed_single_23/training/C04/0006762 training C04
1806 | data/ohsumed_single_23/training/C04/0006839 training C04
1807 | data/ohsumed_single_23/training/C04/0006840 training C04
1808 | data/ohsumed_single_23/training/C04/0006867 training C04
1809 | data/ohsumed_single_23/training/C04/0006872 training C04
1810 | data/ohsumed_single_23/training/C04/0006912 training C04
1811 | data/ohsumed_single_23/training/C04/0006974 training C04
1812 | data/ohsumed_single_23/training/C04/0006977 training C04
1813 | data/ohsumed_single_23/training/C04/0006985 training C04
1814 | data/ohsumed_single_23/training/C04/0007023 training C04
1815 | data/ohsumed_single_23/training/C04/0007026 training C04
1816 | data/ohsumed_single_23/training/C04/0007049 training C04
1817 | data/ohsumed_single_23/training/C04/0007053 training C04
1818 | data/ohsumed_single_23/training/C04/0007067 training C04
1819 | data/ohsumed_single_23/training/C04/0007111 training C04
1820 | data/ohsumed_single_23/training/C04/0007153 training C04
1821 | data/ohsumed_single_23/training/C04/0007161 training C04
1822 | data/ohsumed_single_23/training/C04/0007175 training C04
1823 | data/ohsumed_single_23/training/C04/0007187 training C04
1824 | data/ohsumed_single_23/training/C04/0007189 training C04
1825 | data/ohsumed_single_23/training/C04/0007204 training C04
1826 | data/ohsumed_single_23/training/C04/0007208 training C04
1827 | data/ohsumed_single_23/training/C04/0007228 training C04
1828 | data/ohsumed_single_23/training/C04/0007360 training C04
1829 | data/ohsumed_single_23/training/C04/0007362 training C04
1830 | data/ohsumed_single_23/training/C04/0007370 training C04
1831 | data/ohsumed_single_23/training/C04/0007426 training C04
1832 | data/ohsumed_single_23/training/C04/0007427 training C04
1833 | data/ohsumed_single_23/training/C04/0007428 training C04
1834 | data/ohsumed_single_23/training/C04/0007437 training C04
1835 | data/ohsumed_single_23/training/C04/0007445 training C04
1836 | data/ohsumed_single_23/training/C04/0007446 training C04
1837 | data/ohsumed_single_23/training/C04/0007451 training C04
1838 | data/ohsumed_single_23/training/C04/0007454 training C04
1839 | data/ohsumed_single_23/training/C04/0007458 training C04
1840 | data/ohsumed_single_23/training/C04/0007462 training C04
1841 | data/ohsumed_single_23/training/C04/0007478 training C04
1842 | data/ohsumed_single_23/training/C04/0007493 training C04
1843 | data/ohsumed_single_23/training/C04/0007494 training C04
1844 | data/ohsumed_single_23/training/C04/0007503 training C04
1845 | data/ohsumed_single_23/training/C04/0007505 training C04
1846 | data/ohsumed_single_23/training/C04/0007506 training C04
1847 | data/ohsumed_single_23/training/C04/0007512 training C04
1848 | data/ohsumed_single_23/training/C04/0007533 training C04
1849 | data/ohsumed_single_23/training/C04/0007538 training C04
1850 | data/ohsumed_single_23/training/C04/0007545 training C04
1851 | data/ohsumed_single_23/training/C04/0007574 training C04
1852 | data/ohsumed_single_23/training/C04/0007578 training C04
1853 | data/ohsumed_single_23/training/C04/0007663 training C04
1854 | data/ohsumed_single_23/training/C04/0007697 training C04
1855 | data/ohsumed_single_23/training/C04/0007698 training C04
1856 | data/ohsumed_single_23/training/C04/0007765 training C04
1857 | data/ohsumed_single_23/training/C04/0007766 training C04
1858 | data/ohsumed_single_23/training/C04/0007768 training C04
1859 | data/ohsumed_single_23/training/C04/0007769 training C04
1860 | data/ohsumed_single_23/training/C04/0007771 training C04
1861 | data/ohsumed_single_23/training/C04/0007772 training C04
1862 | data/ohsumed_single_23/training/C04/0007774 training C04
1863 | data/ohsumed_single_23/training/C04/0007775 training C04
1864 | data/ohsumed_single_23/training/C04/0007778 training C04
1865 | data/ohsumed_single_23/training/C04/0007782 training C04
1866 | data/ohsumed_single_23/training/C04/0007783 training C04
1867 | data/ohsumed_single_23/training/C04/0007790 training C04
1868 | data/ohsumed_single_23/training/C04/0007792 training C04
1869 | data/ohsumed_single_23/training/C04/0007793 training C04
1870 | data/ohsumed_single_23/training/C04/0007794 training C04
1871 | data/ohsumed_single_23/training/C04/0007902 training C04
1872 | data/ohsumed_single_23/training/C04/0008008 training C04
1873 | data/ohsumed_single_23/training/C04/0008099 training C04
1874 | data/ohsumed_single_23/training/C04/0008102 training C04
1875 | data/ohsumed_single_23/training/C04/0008124 training C04
1876 | data/ohsumed_single_23/training/C04/0008126 training C04
1877 | data/ohsumed_single_23/training/C04/0008187 training C04
1878 | data/ohsumed_single_23/training/C04/0008190 training C04
1879 | data/ohsumed_single_23/training/C04/0008194 training C04
1880 | data/ohsumed_single_23/training/C04/0008198 training C04
1881 | data/ohsumed_single_23/training/C04/0008225 training C04
1882 | data/ohsumed_single_23/training/C04/0008236 training C04
1883 | data/ohsumed_single_23/training/C04/0008238 training C04
1884 | data/ohsumed_single_23/training/C04/0008281 training C04
1885 | data/ohsumed_single_23/training/C04/0008285 training C04
1886 | data/ohsumed_single_23/training/C04/0008324 training C04
1887 | data/ohsumed_single_23/training/C04/0008351 training C04
1888 | data/ohsumed_single_23/training/C04/0008406 training C04
1889 | data/ohsumed_single_23/training/C04/0008466 training C04
1890 | data/ohsumed_single_23/training/C04/0008476 training C04
1891 | data/ohsumed_single_23/training/C04/0008479 training C04
1892 | data/ohsumed_single_23/training/C04/0008482 training C04
1893 | data/ohsumed_single_23/training/C04/0008485 training C04
1894 | data/ohsumed_single_23/training/C04/0008486 training C04
1895 | data/ohsumed_single_23/training/C04/0008488 training C04
1896 | data/ohsumed_single_23/training/C04/0008490 training C04
1897 | data/ohsumed_single_23/training/C04/0008491 training C04
1898 | data/ohsumed_single_23/training/C04/0008493 training C04
1899 | data/ohsumed_single_23/training/C04/0008505 training C04
1900 | data/ohsumed_single_23/training/C04/0008582 training C04
1901 | data/ohsumed_single_23/training/C04/0008672 training C04
1902 | data/ohsumed_single_23/training/C04/0008674 training C04
1903 | data/ohsumed_single_23/training/C04/0008681 training C04
1904 | data/ohsumed_single_23/training/C04/0008685 training C04
1905 | data/ohsumed_single_23/training/C04/0008786 training C04
1906 | data/ohsumed_single_23/training/C04/0008788 training C04
1907 | data/ohsumed_single_23/training/C04/0008789 training C04
1908 | data/ohsumed_single_23/training/C04/0008791 training C04
1909 | data/ohsumed_single_23/training/C04/0008793 training C04
1910 | data/ohsumed_single_23/training/C04/0008796 training C04
1911 | data/ohsumed_single_23/training/C04/0008797 training C04
1912 | data/ohsumed_single_23/training/C04/0008798 training C04
1913 | data/ohsumed_single_23/training/C04/0008799 training C04
1914 | data/ohsumed_single_23/training/C04/0008801 training C04
1915 | data/ohsumed_single_23/training/C04/0008803 training C04
1916 | data/ohsumed_single_23/training/C04/0008808 training C04
1917 | data/ohsumed_single_23/training/C04/0008809 training C04
1918 | data/ohsumed_single_23/training/C04/0008814 training C04
1919 | data/ohsumed_single_23/training/C04/0008817 training C04
1920 | data/ohsumed_single_23/training/C04/0008860 training C04
1921 | data/ohsumed_single_23/training/C04/0008885 training C04
1922 | data/ohsumed_single_23/training/C04/0008892 training C04
1923 | data/ohsumed_single_23/training/C04/0008933 training C04
1924 | data/ohsumed_single_23/training/C04/0008942 training C04
1925 | data/ohsumed_single_23/training/C04/0008943 training C04
1926 | data/ohsumed_single_23/training/C04/0008946 training C04
1927 | data/ohsumed_single_23/training/C04/0008948 training C04
1928 | data/ohsumed_single_23/training/C04/0008949 training C04
1929 | data/ohsumed_single_23/training/C04/0008951 training C04
1930 | data/ohsumed_single_23/training/C04/0008953 training C04
1931 | data/ohsumed_single_23/training/C04/0008960 training C04
1932 | data/ohsumed_single_23/training/C04/0009059 training C04
1933 | data/ohsumed_single_23/training/C04/0009061 training C04
1934 | data/ohsumed_single_23/training/C04/0009073 training C04
1935 | data/ohsumed_single_23/training/C04/0009106 training C04
1936 | data/ohsumed_single_23/training/C04/0009113 training C04
1937 | data/ohsumed_single_23/training/C04/0009124 training C04
1938 | data/ohsumed_single_23/training/C04/0009125 training C04
1939 | data/ohsumed_single_23/training/C04/0009176 training C04
1940 | data/ohsumed_single_23/training/C04/0009182 training C04
1941 | data/ohsumed_single_23/training/C04/0009200 training C04
1942 | data/ohsumed_single_23/training/C04/0009242 training C04
1943 | data/ohsumed_single_23/training/C04/0009251 training C04
1944 | data/ohsumed_single_23/training/C04/0009253 training C04
1945 | data/ohsumed_single_23/training/C04/0009304 training C04
1946 | data/ohsumed_single_23/training/C04/0009323 training C04
1947 | data/ohsumed_single_23/training/C04/0009356 training C04
1948 | data/ohsumed_single_23/training/C04/0009360 training C04
1949 | data/ohsumed_single_23/training/C04/0009363 training C04
1950 | data/ohsumed_single_23/training/C04/0009438 training C04
1951 | data/ohsumed_single_23/training/C04/0009443 training C04
1952 | data/ohsumed_single_23/training/C04/0009628 training C04
1953 | data/ohsumed_single_23/training/C04/0009633 training C04
1954 | data/ohsumed_single_23/training/C04/0009634 training C04
1955 | data/ohsumed_single_23/training/C04/0009643 training C04
1956 | data/ohsumed_single_23/training/C04/0009677 training C04
1957 | data/ohsumed_single_23/training/C04/0009718 training C04
1958 | data/ohsumed_single_23/training/C04/0009738 training C04
1959 | data/ohsumed_single_23/training/C04/0009746 training C04
1960 | data/ohsumed_single_23/training/C04/0009779 training C04
1961 | data/ohsumed_single_23/training/C04/0009796 training C04
1962 | data/ohsumed_single_23/training/C04/0009797 training C04
1963 | data/ohsumed_single_23/training/C10/0000005 training C10
1964 | data/ohsumed_single_23/training/C10/0000007 training C10
1965 | data/ohsumed_single_23/training/C10/0000008 training C10
1966 | data/ohsumed_single_23/training/C10/0000009 training C10
1967 | data/ohsumed_single_23/training/C10/0000263 training C10
1968 | data/ohsumed_single_23/training/C10/0000265 training C10
1969 | data/ohsumed_single_23/training/C10/0000491 training C10
1970 | data/ohsumed_single_23/training/C10/0000610 training C10
1971 | data/ohsumed_single_23/training/C10/0000614 training C10
1972 | data/ohsumed_single_23/training/C10/0000682 training C10
1973 | data/ohsumed_single_23/training/C10/0000960 training C10
1974 | data/ohsumed_single_23/training/C10/0002072 training C10
1975 | data/ohsumed_single_23/training/C10/0002180 training C10
1976 | data/ohsumed_single_23/training/C10/0002189 training C10
1977 | data/ohsumed_single_23/training/C10/0002195 training C10
1978 | data/ohsumed_single_23/training/C10/0002490 training C10
1979 | data/ohsumed_single_23/training/C10/0002502 training C10
1980 | data/ohsumed_single_23/training/C10/0002609 training C10
1981 | data/ohsumed_single_23/training/C10/0002610 training C10
1982 | data/ohsumed_single_23/training/C10/0002614 training C10
1983 | data/ohsumed_single_23/training/C10/0002720 training C10
1984 | data/ohsumed_single_23/training/C10/0002766 training C10
1985 | data/ohsumed_single_23/training/C10/0002832 training C10
1986 | data/ohsumed_single_23/training/C10/0002842 training C10
1987 | data/ohsumed_single_23/training/C10/0002851 training C10
1988 | data/ohsumed_single_23/training/C10/0002859 training C10
1989 | data/ohsumed_single_23/training/C10/0002862 training C10
1990 | data/ohsumed_single_23/training/C10/0002904 training C10
1991 | data/ohsumed_single_23/training/C10/0002968 training C10
1992 | data/ohsumed_single_23/training/C10/0003015 training C10
1993 | data/ohsumed_single_23/training/C10/0003023 training C10
1994 | data/ohsumed_single_23/training/C10/0003046 training C10
1995 | data/ohsumed_single_23/training/C10/0003047 training C10
1996 | data/ohsumed_single_23/training/C10/0003049 training C10
1997 | data/ohsumed_single_23/training/C10/0003050 training C10
1998 | data/ohsumed_single_23/training/C10/0003053 training C10
1999 | data/ohsumed_single_23/training/C10/0003054 training C10
2000 | data/ohsumed_single_23/training/C10/0003117 training C10
2001 | data/ohsumed_single_23/training/C10/0003209 training C10
2002 | data/ohsumed_single_23/training/C10/0003217 training C10
2003 | data/ohsumed_single_23/training/C10/0003235 training C10
2004 | data/ohsumed_single_23/training/C10/0003315 training C10
2005 | data/ohsumed_single_23/training/C10/0003588 training C10
2006 | data/ohsumed_single_23/training/C10/0003619 training C10
2007 | data/ohsumed_single_23/training/C10/0003655 training C10
2008 | data/ohsumed_single_23/training/C10/0003656 training C10
2009 | data/ohsumed_single_23/training/C10/0003888 training C10
2010 | data/ohsumed_single_23/training/C10/0003889 training C10
2011 | data/ohsumed_single_23/training/C10/0003891 training C10
2012 | data/ohsumed_single_23/training/C10/0003892 training C10
2013 | data/ohsumed_single_23/training/C10/0003893 training C10
2014 | data/ohsumed_single_23/training/C10/0003894 training C10
2015 | data/ohsumed_single_23/training/C10/0003895 training C10
2016 | data/ohsumed_single_23/training/C10/0003897 training C10
2017 | data/ohsumed_single_23/training/C10/0003925 training C10
2018 | data/ohsumed_single_23/training/C10/0003972 training C10
2019 | data/ohsumed_single_23/training/C10/0004100 training C10
2020 | data/ohsumed_single_23/training/C10/0004102 training C10
2021 | data/ohsumed_single_23/training/C10/0004103 training C10
2022 | data/ohsumed_single_23/training/C10/0004105 training C10
2023 | data/ohsumed_single_23/training/C10/0004106 training C10
2024 | data/ohsumed_single_23/training/C10/0004107 training C10
2025 | data/ohsumed_single_23/training/C10/0004128 training C10
2026 | data/ohsumed_single_23/training/C10/0004135 training C10
2027 | data/ohsumed_single_23/training/C10/0004488 training C10
2028 | data/ohsumed_single_23/training/C10/0004495 training C10
2029 | data/ohsumed_single_23/training/C10/0004709 training C10
2030 | data/ohsumed_single_23/training/C10/0004756 training C10
2031 | data/ohsumed_single_23/training/C10/0004761 training C10
2032 | data/ohsumed_single_23/training/C10/0004780 training C10
2033 | data/ohsumed_single_23/training/C10/0004782 training C10
2034 | data/ohsumed_single_23/training/C10/0004834 training C10
2035 | data/ohsumed_single_23/training/C10/0004835 training C10
2036 | data/ohsumed_single_23/training/C10/0004837 training C10
2037 | data/ohsumed_single_23/training/C10/0004839 training C10
2038 | data/ohsumed_single_23/training/C10/0004840 training C10
2039 | data/ohsumed_single_23/training/C10/0004987 training C10
2040 | data/ohsumed_single_23/training/C10/0005244 training C10
2041 | data/ohsumed_single_23/training/C10/0005283 training C10
2042 | data/ohsumed_single_23/training/C10/0005287 training C10
2043 | data/ohsumed_single_23/training/C10/0005324 training C10
2044 | data/ohsumed_single_23/training/C10/0005355 training C10
2045 | data/ohsumed_single_23/training/C10/0005356 training C10
2046 | data/ohsumed_single_23/training/C10/0005360 training C10
2047 | data/ohsumed_single_23/training/C10/0005361 training C10
2048 | data/ohsumed_single_23/training/C10/0005362 training C10
2049 | data/ohsumed_single_23/training/C10/0005367 training C10
2050 | data/ohsumed_single_23/training/C10/0005428 training C10
2051 | data/ohsumed_single_23/training/C10/0005461 training C10
2052 | data/ohsumed_single_23/training/C10/0005471 training C10
2053 | data/ohsumed_single_23/training/C10/0005487 training C10
2054 | data/ohsumed_single_23/training/C10/0005491 training C10
2055 | data/ohsumed_single_23/training/C10/0005492 training C10
2056 | data/ohsumed_single_23/training/C10/0005493 training C10
2057 | data/ohsumed_single_23/training/C10/0005500 training C10
2058 | data/ohsumed_single_23/training/C10/0005581 training C10
2059 | data/ohsumed_single_23/training/C10/0005582 training C10
2060 | data/ohsumed_single_23/training/C10/0005613 training C10
2061 | data/ohsumed_single_23/training/C10/0005674 training C10
2062 | data/ohsumed_single_23/training/C10/0005677 training C10
2063 | data/ohsumed_single_23/training/C10/0005748 training C10
2064 | data/ohsumed_single_23/training/C10/0005847 training C10
2065 | data/ohsumed_single_23/training/C10/0006085 training C10
2066 | data/ohsumed_single_23/training/C10/0006094 training C10
2067 | data/ohsumed_single_23/training/C10/0006097 training C10
2068 | data/ohsumed_single_23/training/C10/0006101 training C10
2069 | data/ohsumed_single_23/training/C10/0006103 training C10
2070 | data/ohsumed_single_23/training/C10/0006105 training C10
2071 | data/ohsumed_single_23/training/C10/0006107 training C10
2072 | data/ohsumed_single_23/training/C10/0006108 training C10
2073 | data/ohsumed_single_23/training/C10/0006109 training C10
2074 | data/ohsumed_single_23/training/C10/0006112 training C10
2075 | data/ohsumed_single_23/training/C10/0006115 training C10
2076 | data/ohsumed_single_23/training/C10/0006125 training C10
2077 | data/ohsumed_single_23/training/C10/0006130 training C10
2078 | data/ohsumed_single_23/training/C10/0006326 training C10
2079 | data/ohsumed_single_23/training/C10/0006378 training C10
2080 | data/ohsumed_single_23/training/C10/0006592 training C10
2081 | data/ohsumed_single_23/training/C10/0006602 training C10
2082 | data/ohsumed_single_23/training/C10/0006611 training C10
2083 | data/ohsumed_single_23/training/C10/0006627 training C10
2084 | data/ohsumed_single_23/training/C10/0006654 training C10
2085 | data/ohsumed_single_23/training/C10/0006687 training C10
2086 | data/ohsumed_single_23/training/C10/0006773 training C10
2087 | data/ohsumed_single_23/training/C10/0006778 training C10
2088 | data/ohsumed_single_23/training/C10/0006799 training C10
2089 | data/ohsumed_single_23/training/C10/0006802 training C10
2090 | data/ohsumed_single_23/training/C10/0006805 training C10
2091 | data/ohsumed_single_23/training/C10/0006830 training C10
2092 | data/ohsumed_single_23/training/C10/0006915 training C10
2093 | data/ohsumed_single_23/training/C10/0006916 training C10
2094 | data/ohsumed_single_23/training/C10/0006945 training C10
2095 | data/ohsumed_single_23/training/C10/0006961 training C10
2096 | data/ohsumed_single_23/training/C10/0006991 training C10
2097 | data/ohsumed_single_23/training/C10/0006992 training C10
2098 | data/ohsumed_single_23/training/C10/0006999 training C10
2099 | data/ohsumed_single_23/training/C10/0007025 training C10
2100 | data/ohsumed_single_23/training/C10/0007030 training C10
2101 | data/ohsumed_single_23/training/C10/0007032 training C10
2102 | data/ohsumed_single_23/training/C10/0007064 training C10
2103 | data/ohsumed_single_23/training/C10/0007217 training C10
2104 | data/ohsumed_single_23/training/C10/0007222 training C10
2105 | data/ohsumed_single_23/training/C10/0007444 training C10
2106 | data/ohsumed_single_23/training/C10/0007482 training C10
2107 | data/ohsumed_single_23/training/C10/0007525 training C10
2108 | data/ohsumed_single_23/training/C10/0007529 training C10
2109 | data/ohsumed_single_23/training/C10/0007559 training C10
2110 | data/ohsumed_single_23/training/C10/0007604 training C10
2111 | data/ohsumed_single_23/training/C10/0007606 training C10
2112 | data/ohsumed_single_23/training/C10/0007607 training C10
2113 | data/ohsumed_single_23/training/C10/0007612 training C10
2114 | data/ohsumed_single_23/training/C10/0007684 training C10
2115 | data/ohsumed_single_23/training/C10/0007749 training C10
2116 | data/ohsumed_single_23/training/C10/0007754 training C10
2117 | data/ohsumed_single_23/training/C10/0007760 training C10
2118 | data/ohsumed_single_23/training/C10/0007761 training C10
2119 | data/ohsumed_single_23/training/C10/0007763 training C10
2120 | data/ohsumed_single_23/training/C10/0007822 training C10
2121 | data/ohsumed_single_23/training/C10/0007832 training C10
2122 | data/ohsumed_single_23/training/C10/0007852 training C10
2123 | data/ohsumed_single_23/training/C10/0007877 training C10
2124 | data/ohsumed_single_23/training/C10/0007890 training C10
2125 | data/ohsumed_single_23/training/C10/0007914 training C10
2126 | data/ohsumed_single_23/training/C10/0007915 training C10
2127 | data/ohsumed_single_23/training/C10/0007916 training C10
2128 | data/ohsumed_single_23/training/C10/0007917 training C10
2129 | data/ohsumed_single_23/training/C10/0007919 training C10
2130 | data/ohsumed_single_23/training/C10/0007920 training C10
2131 | data/ohsumed_single_23/training/C10/0008048 training C10
2132 | data/ohsumed_single_23/training/C10/0008142 training C10
2133 | data/ohsumed_single_23/training/C10/0008149 training C10
2134 | data/ohsumed_single_23/training/C10/0008150 training C10
2135 | data/ohsumed_single_23/training/C10/0008251 training C10
2136 | data/ohsumed_single_23/training/C10/0008253 training C10
2137 | data/ohsumed_single_23/training/C10/0008258 training C10
2138 | data/ohsumed_single_23/training/C10/0008263 training C10
2139 | data/ohsumed_single_23/training/C10/0008347 training C10
2140 | data/ohsumed_single_23/training/C10/0008353 training C10
2141 | data/ohsumed_single_23/training/C10/0008354 training C10
2142 | data/ohsumed_single_23/training/C10/0008355 training C10
2143 | data/ohsumed_single_23/training/C10/0008360 training C10
2144 | data/ohsumed_single_23/training/C10/0008362 training C10
2145 | data/ohsumed_single_23/training/C10/0008363 training C10
2146 | data/ohsumed_single_23/training/C10/0008382 training C10
2147 | data/ohsumed_single_23/training/C10/0008391 training C10
2148 | data/ohsumed_single_23/training/C10/0008615 training C10
2149 | data/ohsumed_single_23/training/C10/0008639 training C10
2150 | data/ohsumed_single_23/training/C10/0008711 training C10
2151 | data/ohsumed_single_23/training/C10/0008712 training C10
2152 | data/ohsumed_single_23/training/C10/0008824 training C10
2153 | data/ohsumed_single_23/training/C10/0009007 training C10
2154 | data/ohsumed_single_23/training/C10/0009009 training C10
2155 | data/ohsumed_single_23/training/C10/0009010 training C10
2156 | data/ohsumed_single_23/training/C10/0009015 training C10
2157 | data/ohsumed_single_23/training/C10/0009016 training C10
2158 | data/ohsumed_single_23/training/C10/0009018 training C10
2159 | data/ohsumed_single_23/training/C10/0009030 training C10
2160 | data/ohsumed_single_23/training/C10/0009034 training C10
2161 | data/ohsumed_single_23/training/C10/0009145 training C10
2162 | data/ohsumed_single_23/training/C10/0009219 training C10
2163 | data/ohsumed_single_23/training/C10/0009237 training C10
2164 | data/ohsumed_single_23/training/C10/0009261 training C10
2165 | data/ohsumed_single_23/training/C10/0009273 training C10
2166 | data/ohsumed_single_23/training/C10/0009332 training C10
2167 | data/ohsumed_single_23/training/C10/0009337 training C10
2168 | data/ohsumed_single_23/training/C10/0009340 training C10
2169 | data/ohsumed_single_23/training/C10/0009367 training C10
2170 | data/ohsumed_single_23/training/C10/0009370 training C10
2171 | data/ohsumed_single_23/training/C10/0009374 training C10
2172 | data/ohsumed_single_23/training/C10/0009375 training C10
2173 | data/ohsumed_single_23/training/C10/0009377 training C10
2174 | data/ohsumed_single_23/training/C10/0009442 training C10
2175 | data/ohsumed_single_23/training/C10/0009616 training C10
2176 | data/ohsumed_single_23/training/C10/0009698 training C10
2177 | data/ohsumed_single_23/training/C10/0009776 training C10
2178 | data/ohsumed_single_23/training/C14/0000035 training C14
2179 | data/ohsumed_single_23/training/C14/0000038 training C14
2180 | data/ohsumed_single_23/training/C14/0000039 training C14
2181 | data/ohsumed_single_23/training/C14/0000042 training C14
2182 | data/ohsumed_single_23/training/C14/0000043 training C14
2183 | data/ohsumed_single_23/training/C14/0000044 training C14
2184 | data/ohsumed_single_23/training/C14/0000045 training C14
2185 | data/ohsumed_single_23/training/C14/0000046 training C14
2186 | data/ohsumed_single_23/training/C14/0000047 training C14
2187 | data/ohsumed_single_23/training/C14/0000048 training C14
2188 | data/ohsumed_single_23/training/C14/0000051 training C14
2189 | data/ohsumed_single_23/training/C14/0000055 training C14
2190 | data/ohsumed_single_23/training/C14/0000056 training C14
2191 | data/ohsumed_single_23/training/C14/0000241 training C14
2192 | data/ohsumed_single_23/training/C14/0000243 training C14
2193 | data/ohsumed_single_23/training/C14/0000244 training C14
2194 | data/ohsumed_single_23/training/C14/0000248 training C14
2195 | data/ohsumed_single_23/training/C14/0000249 training C14
2196 | data/ohsumed_single_23/training/C14/0000253 training C14
2197 | data/ohsumed_single_23/training/C14/0000254 training C14
2198 | data/ohsumed_single_23/training/C14/0000257 training C14
2199 | data/ohsumed_single_23/training/C14/0000275 training C14
2200 | data/ohsumed_single_23/training/C14/0000361 training C14
2201 | data/ohsumed_single_23/training/C14/0000366 training C14
2202 | data/ohsumed_single_23/training/C14/0000369 training C14
2203 | data/ohsumed_single_23/training/C14/0000371 training C14
2204 | data/ohsumed_single_23/training/C14/0000383 training C14
2205 | data/ohsumed_single_23/training/C14/0000390 training C14
2206 | data/ohsumed_single_23/training/C14/0000393 training C14
2207 | data/ohsumed_single_23/training/C14/0000398 training C14
2208 | data/ohsumed_single_23/training/C14/0000405 training C14
2209 | data/ohsumed_single_23/training/C14/0000595 training C14
2210 | data/ohsumed_single_23/training/C14/0000695 training C14
2211 | data/ohsumed_single_23/training/C14/0000696 training C14
2212 | data/ohsumed_single_23/training/C14/0000699 training C14
2213 | data/ohsumed_single_23/training/C14/0000701 training C14
2214 | data/ohsumed_single_23/training/C14/0000705 training C14
2215 | data/ohsumed_single_23/training/C14/0000712 training C14
2216 | data/ohsumed_single_23/training/C14/0000716 training C14
2217 | data/ohsumed_single_23/training/C14/0000717 training C14
2218 | data/ohsumed_single_23/training/C14/0000771 training C14
2219 | data/ohsumed_single_23/training/C14/0000773 training C14
2220 | data/ohsumed_single_23/training/C14/0000783 training C14
2221 | data/ohsumed_single_23/training/C14/0000784 training C14
2222 | data/ohsumed_single_23/training/C14/0000790 training C14
2223 | data/ohsumed_single_23/training/C14/0000837 training C14
2224 | data/ohsumed_single_23/training/C14/0000913 training C14
2225 | data/ohsumed_single_23/training/C14/0000914 training C14
2226 | data/ohsumed_single_23/training/C14/0000915 training C14
2227 | data/ohsumed_single_23/training/C14/0000916 training C14
2228 | data/ohsumed_single_23/training/C14/0000917 training C14
2229 | data/ohsumed_single_23/training/C14/0000919 training C14
2230 | data/ohsumed_single_23/training/C14/0000920 training C14
2231 | data/ohsumed_single_23/training/C14/0000921 training C14
2232 | data/ohsumed_single_23/training/C14/0000923 training C14
2233 | data/ohsumed_single_23/training/C14/0000928 training C14
2234 | data/ohsumed_single_23/training/C14/0000929 training C14
2235 | data/ohsumed_single_23/training/C14/0000930 training C14
2236 | data/ohsumed_single_23/training/C14/0000931 training C14
2237 | data/ohsumed_single_23/training/C14/0000932 training C14
2238 | data/ohsumed_single_23/training/C14/0000935 training C14
2239 | data/ohsumed_single_23/training/C14/0000963 training C14
2240 | data/ohsumed_single_23/training/C14/0000990 training C14
2241 | data/ohsumed_single_23/training/C14/0000993 training C14
2242 | data/ohsumed_single_23/training/C14/0002007 training C14
2243 | data/ohsumed_single_23/training/C14/0002013 training C14
2244 | data/ohsumed_single_23/training/C14/0002014 training C14
2245 | data/ohsumed_single_23/training/C14/0002015 training C14
2246 | data/ohsumed_single_23/training/C14/0002018 training C14
2247 | data/ohsumed_single_23/training/C14/0002019 training C14
2248 | data/ohsumed_single_23/training/C14/0002021 training C14
2249 | data/ohsumed_single_23/training/C14/0002023 training C14
2250 | data/ohsumed_single_23/training/C14/0002124 training C14
2251 | data/ohsumed_single_23/training/C14/0002155 training C14
2252 | data/ohsumed_single_23/training/C14/0002179 training C14
2253 | data/ohsumed_single_23/training/C14/0002191 training C14
2254 | data/ohsumed_single_23/training/C14/0002197 training C14
2255 | data/ohsumed_single_23/training/C14/0002259 training C14
2256 | data/ohsumed_single_23/training/C14/0002276 training C14
2257 | data/ohsumed_single_23/training/C14/0002279 training C14
2258 | data/ohsumed_single_23/training/C14/0002281 training C14
2259 | data/ohsumed_single_23/training/C14/0002282 training C14
2260 | data/ohsumed_single_23/training/C14/0002284 training C14
2261 | data/ohsumed_single_23/training/C14/0002289 training C14
2262 | data/ohsumed_single_23/training/C14/0002290 training C14
2263 | data/ohsumed_single_23/training/C14/0002291 training C14
2264 | data/ohsumed_single_23/training/C14/0002293 training C14
2265 | data/ohsumed_single_23/training/C14/0002294 training C14
2266 | data/ohsumed_single_23/training/C14/0002297 training C14
2267 | data/ohsumed_single_23/training/C14/0002299 training C14
2268 | data/ohsumed_single_23/training/C14/0002300 training C14
2269 | data/ohsumed_single_23/training/C14/0002301 training C14
2270 | data/ohsumed_single_23/training/C14/0002302 training C14
2271 | data/ohsumed_single_23/training/C14/0002303 training C14
2272 | data/ohsumed_single_23/training/C14/0002304 training C14
2273 | data/ohsumed_single_23/training/C14/0002305 training C14
2274 | data/ohsumed_single_23/training/C14/0002306 training C14
2275 | data/ohsumed_single_23/training/C14/0002308 training C14
2276 | data/ohsumed_single_23/training/C14/0002313 training C14
2277 | data/ohsumed_single_23/training/C14/0002314 training C14
2278 | data/ohsumed_single_23/training/C14/0002315 training C14
2279 | data/ohsumed_single_23/training/C14/0002316 training C14
2280 | data/ohsumed_single_23/training/C14/0002317 training C14
2281 | data/ohsumed_single_23/training/C14/0002318 training C14
2282 | data/ohsumed_single_23/training/C14/0002319 training C14
2283 | data/ohsumed_single_23/training/C14/0002320 training C14
2284 | data/ohsumed_single_23/training/C14/0002322 training C14
2285 | data/ohsumed_single_23/training/C14/0002326 training C14
2286 | data/ohsumed_single_23/training/C14/0002330 training C14
2287 | data/ohsumed_single_23/training/C14/0002331 training C14
2288 | data/ohsumed_single_23/training/C14/0002336 training C14
2289 | data/ohsumed_single_23/training/C14/0002337 training C14
2290 | data/ohsumed_single_23/training/C14/0002338 training C14
2291 | data/ohsumed_single_23/training/C14/0002339 training C14
2292 | data/ohsumed_single_23/training/C14/0002340 training C14
2293 | data/ohsumed_single_23/training/C14/0002341 training C14
2294 | data/ohsumed_single_23/training/C14/0002342 training C14
2295 | data/ohsumed_single_23/training/C14/0002343 training C14
2296 | data/ohsumed_single_23/training/C14/0002344 training C14
2297 | data/ohsumed_single_23/training/C14/0002345 training C14
2298 | data/ohsumed_single_23/training/C14/0002347 training C14
2299 | data/ohsumed_single_23/training/C14/0002348 training C14
2300 | data/ohsumed_single_23/training/C14/0002349 training C14
2301 | data/ohsumed_single_23/training/C14/0002351 training C14
2302 | data/ohsumed_single_23/training/C14/0002352 training C14
2303 | data/ohsumed_single_23/training/C14/0002353 training C14
2304 | data/ohsumed_single_23/training/C14/0002355 training C14
2305 | data/ohsumed_single_23/training/C14/0002356 training C14
2306 | data/ohsumed_single_23/training/C14/0002358 training C14
2307 | data/ohsumed_single_23/training/C14/0002360 training C14
2308 | data/ohsumed_single_23/training/C14/0002362 training C14
2309 | data/ohsumed_single_23/training/C14/0002364 training C14
2310 | data/ohsumed_single_23/training/C14/0002365 training C14
2311 | data/ohsumed_single_23/training/C14/0002368 training C14
2312 | data/ohsumed_single_23/training/C14/0002369 training C14
2313 | data/ohsumed_single_23/training/C14/0002370 training C14
2314 | data/ohsumed_single_23/training/C14/0002371 training C14
2315 | data/ohsumed_single_23/training/C14/0002373 training C14
2316 | data/ohsumed_single_23/training/C14/0002374 training C14
2317 | data/ohsumed_single_23/training/C14/0002375 training C14
2318 | data/ohsumed_single_23/training/C14/0002448 training C14
2319 | data/ohsumed_single_23/training/C14/0002459 training C14
2320 | data/ohsumed_single_23/training/C14/0002476 training C14
2321 | data/ohsumed_single_23/training/C14/0002477 training C14
2322 | data/ohsumed_single_23/training/C14/0002478 training C14
2323 | data/ohsumed_single_23/training/C14/0002508 training C14
2324 | data/ohsumed_single_23/training/C14/0002511 training C14
2325 | data/ohsumed_single_23/training/C14/0002568 training C14
2326 | data/ohsumed_single_23/training/C14/0002591 training C14
2327 | data/ohsumed_single_23/training/C14/0002597 training C14
2328 | data/ohsumed_single_23/training/C14/0002693 training C14
2329 | data/ohsumed_single_23/training/C14/0002697 training C14
2330 | data/ohsumed_single_23/training/C14/0002699 training C14
2331 | data/ohsumed_single_23/training/C14/0002702 training C14
2332 | data/ohsumed_single_23/training/C14/0002719 training C14
2333 | data/ohsumed_single_23/training/C14/0002725 training C14
2334 | data/ohsumed_single_23/training/C14/0002727 training C14
2335 | data/ohsumed_single_23/training/C14/0002729 training C14
2336 | data/ohsumed_single_23/training/C14/0002732 training C14
2337 | data/ohsumed_single_23/training/C14/0002734 training C14
2338 | data/ohsumed_single_23/training/C14/0002736 training C14
2339 | data/ohsumed_single_23/training/C14/0002739 training C14
2340 | data/ohsumed_single_23/training/C14/0002740 training C14
2341 | data/ohsumed_single_23/training/C14/0002742 training C14
2342 | data/ohsumed_single_23/training/C14/0002748 training C14
2343 | data/ohsumed_single_23/training/C14/0002749 training C14
2344 | data/ohsumed_single_23/training/C14/0002772 training C14
2345 | data/ohsumed_single_23/training/C14/0002827 training C14
2346 | data/ohsumed_single_23/training/C14/0002940 training C14
2347 | data/ohsumed_single_23/training/C14/0002944 training C14
2348 | data/ohsumed_single_23/training/C14/0002945 training C14
2349 | data/ohsumed_single_23/training/C14/0002952 training C14
2350 | data/ohsumed_single_23/training/C14/0002959 training C14
2351 | data/ohsumed_single_23/training/C14/0002961 training C14
2352 | data/ohsumed_single_23/training/C14/0002964 training C14
2353 | data/ohsumed_single_23/training/C14/0002998 training C14
2354 | data/ohsumed_single_23/training/C14/0003037 training C14
2355 | data/ohsumed_single_23/training/C14/0003120 training C14
2356 | data/ohsumed_single_23/training/C14/0003121 training C14
2357 | data/ohsumed_single_23/training/C14/0003124 training C14
2358 | data/ohsumed_single_23/training/C14/0003125 training C14
2359 | data/ohsumed_single_23/training/C14/0003126 training C14
2360 | data/ohsumed_single_23/training/C14/0003130 training C14
2361 | data/ohsumed_single_23/training/C14/0003131 training C14
2362 | data/ohsumed_single_23/training/C14/0003134 training C14
2363 | data/ohsumed_single_23/training/C14/0003140 training C14
2364 | data/ohsumed_single_23/training/C14/0003141 training C14
2365 | data/ohsumed_single_23/training/C14/0003143 training C14
2366 | data/ohsumed_single_23/training/C14/0003144 training C14
2367 | data/ohsumed_single_23/training/C14/0003145 training C14
2368 | data/ohsumed_single_23/training/C14/0003146 training C14
2369 | data/ohsumed_single_23/training/C14/0003147 training C14
2370 | data/ohsumed_single_23/training/C14/0003149 training C14
2371 | data/ohsumed_single_23/training/C14/0003150 training C14
2372 | data/ohsumed_single_23/training/C14/0003151 training C14
2373 | data/ohsumed_single_23/training/C14/0003152 training C14
2374 | data/ohsumed_single_23/training/C14/0003153 training C14
2375 | data/ohsumed_single_23/training/C14/0003154 training C14
2376 | data/ohsumed_single_23/training/C14/0003155 training C14
2377 | data/ohsumed_single_23/training/C14/0003157 training C14
2378 | data/ohsumed_single_23/training/C14/0003163 training C14
2379 | data/ohsumed_single_23/training/C14/0003169 training C14
2380 | data/ohsumed_single_23/training/C14/0003171 training C14
2381 | data/ohsumed_single_23/training/C14/0003194 training C14
2382 | data/ohsumed_single_23/training/C14/0003195 training C14
2383 | data/ohsumed_single_23/training/C14/0003197 training C14
2384 | data/ohsumed_single_23/training/C14/0003201 training C14
2385 | data/ohsumed_single_23/training/C14/0003255 training C14
2386 | data/ohsumed_single_23/training/C14/0003262 training C14
2387 | data/ohsumed_single_23/training/C14/0003341 training C14
2388 | data/ohsumed_single_23/training/C14/0003344 training C14
2389 | data/ohsumed_single_23/training/C14/0003345 training C14
2390 | data/ohsumed_single_23/training/C14/0003441 training C14
2391 | data/ohsumed_single_23/training/C14/0003442 training C14
2392 | data/ohsumed_single_23/training/C14/0003444 training C14
2393 | data/ohsumed_single_23/training/C14/0003445 training C14
2394 | data/ohsumed_single_23/training/C14/0003447 training C14
2395 | data/ohsumed_single_23/training/C14/0003450 training C14
2396 | data/ohsumed_single_23/training/C14/0003452 training C14
2397 | data/ohsumed_single_23/training/C14/0003454 training C14
2398 | data/ohsumed_single_23/training/C14/0003459 training C14
2399 | data/ohsumed_single_23/training/C14/0003481 training C14
2400 | data/ohsumed_single_23/training/C14/0003487 training C14
2401 | data/ohsumed_single_23/training/C14/0003488 training C14
2402 | data/ohsumed_single_23/training/C14/0003490 training C14
2403 | data/ohsumed_single_23/training/C14/0003495 training C14
2404 | data/ohsumed_single_23/training/C14/0003501 training C14
2405 | data/ohsumed_single_23/training/C14/0003502 training C14
2406 | data/ohsumed_single_23/training/C14/0003503 training C14
2407 | data/ohsumed_single_23/training/C14/0003504 training C14
2408 | data/ohsumed_single_23/training/C14/0003505 training C14
2409 | data/ohsumed_single_23/training/C14/0003507 training C14
2410 | data/ohsumed_single_23/training/C14/0003511 training C14
2411 | data/ohsumed_single_23/training/C14/0003512 training C14
2412 | data/ohsumed_single_23/training/C14/0003513 training C14
2413 | data/ohsumed_single_23/training/C14/0003514 training C14
2414 | data/ohsumed_single_23/training/C14/0003516 training C14
2415 | data/ohsumed_single_23/training/C14/0003518 training C14
2416 | data/ohsumed_single_23/training/C14/0003520 training C14
2417 | data/ohsumed_single_23/training/C14/0003540 training C14
2418 | data/ohsumed_single_23/training/C14/0003542 training C14
2419 | data/ohsumed_single_23/training/C14/0003545 training C14
2420 | data/ohsumed_single_23/training/C14/0003546 training C14
2421 | data/ohsumed_single_23/training/C14/0003547 training C14
2422 | data/ohsumed_single_23/training/C14/0003550 training C14
2423 | data/ohsumed_single_23/training/C14/0003554 training C14
2424 | data/ohsumed_single_23/training/C14/0003555 training C14
2425 | data/ohsumed_single_23/training/C14/0003557 training C14
2426 | data/ohsumed_single_23/training/C14/0003558 training C14
2427 | data/ohsumed_single_23/training/C14/0003559 training C14
2428 | data/ohsumed_single_23/training/C14/0003560 training C14
2429 | data/ohsumed_single_23/training/C14/0003561 training C14
2430 | data/ohsumed_single_23/training/C14/0003562 training C14
2431 | data/ohsumed_single_23/training/C14/0003563 training C14
2432 | data/ohsumed_single_23/training/C14/0003565 training C14
2433 | data/ohsumed_single_23/training/C14/0003567 training C14
2434 | data/ohsumed_single_23/training/C14/0003676 training C14
2435 | data/ohsumed_single_23/training/C14/0003679 training C14
2436 | data/ohsumed_single_23/training/C14/0003699 training C14
2437 | data/ohsumed_single_23/training/C14/0003705 training C14
2438 | data/ohsumed_single_23/training/C14/0003729 training C14
2439 | data/ohsumed_single_23/training/C14/0003730 training C14
2440 | data/ohsumed_single_23/training/C14/0003733 training C14
2441 | data/ohsumed_single_23/training/C14/0003734 training C14
2442 | data/ohsumed_single_23/training/C14/0003747 training C14
2443 | data/ohsumed_single_23/training/C14/0003751 training C14
2444 | data/ohsumed_single_23/training/C14/0003779 training C14
2445 | data/ohsumed_single_23/training/C14/0003804 training C14
2446 | data/ohsumed_single_23/training/C14/0004028 training C14
2447 | data/ohsumed_single_23/training/C14/0004053 training C14
2448 | data/ohsumed_single_23/training/C14/0004078 training C14
2449 | data/ohsumed_single_23/training/C14/0004081 training C14
2450 | data/ohsumed_single_23/training/C14/0004083 training C14
2451 | data/ohsumed_single_23/training/C14/0004088 training C14
2452 | data/ohsumed_single_23/training/C14/0004109 training C14
2453 | data/ohsumed_single_23/training/C14/0004111 training C14
2454 | data/ohsumed_single_23/training/C14/0004118 training C14
2455 | data/ohsumed_single_23/training/C14/0004137 training C14
2456 | data/ohsumed_single_23/training/C14/0004167 training C14
2457 | data/ohsumed_single_23/training/C14/0004190 training C14
2458 | data/ohsumed_single_23/training/C14/0004194 training C14
2459 | data/ohsumed_single_23/training/C14/0004196 training C14
2460 | data/ohsumed_single_23/training/C14/0004197 training C14
2461 | data/ohsumed_single_23/training/C14/0004206 training C14
2462 | data/ohsumed_single_23/training/C14/0004214 training C14
2463 | data/ohsumed_single_23/training/C14/0004265 training C14
2464 | data/ohsumed_single_23/training/C14/0004286 training C14
2465 | data/ohsumed_single_23/training/C14/0004383 training C14
2466 | data/ohsumed_single_23/training/C14/0004384 training C14
2467 | data/ohsumed_single_23/training/C14/0004389 training C14
2468 | data/ohsumed_single_23/training/C14/0004391 training C14
2469 | data/ohsumed_single_23/training/C14/0004392 training C14
2470 | data/ohsumed_single_23/training/C14/0004394 training C14
2471 | data/ohsumed_single_23/training/C14/0004396 training C14
2472 | data/ohsumed_single_23/training/C14/0004401 training C14
2473 | data/ohsumed_single_23/training/C14/0004402 training C14
2474 | data/ohsumed_single_23/training/C14/0004403 training C14
2475 | data/ohsumed_single_23/training/C14/0004404 training C14
2476 | data/ohsumed_single_23/training/C14/0004405 training C14
2477 | data/ohsumed_single_23/training/C14/0004407 training C14
2478 | data/ohsumed_single_23/training/C14/0004408 training C14
2479 | data/ohsumed_single_23/training/C14/0004412 training C14
2480 | data/ohsumed_single_23/training/C14/0004413 training C14
2481 | data/ohsumed_single_23/training/C14/0004419 training C14
2482 | data/ohsumed_single_23/training/C14/0004422 training C14
2483 | data/ohsumed_single_23/training/C14/0004424 training C14
2484 | data/ohsumed_single_23/training/C14/0004431 training C14
2485 | data/ohsumed_single_23/training/C14/0004432 training C14
2486 | data/ohsumed_single_23/training/C14/0004433 training C14
2487 | data/ohsumed_single_23/training/C14/0004434 training C14
2488 | data/ohsumed_single_23/training/C14/0004506 training C14
2489 | data/ohsumed_single_23/training/C14/0004536 training C14
2490 | data/ohsumed_single_23/training/C14/0004683 training C14
2491 | data/ohsumed_single_23/training/C14/0004783 training C14
2492 | data/ohsumed_single_23/training/C14/0004851 training C14
2493 | data/ohsumed_single_23/training/C14/0004896 training C14
2494 | data/ohsumed_single_23/training/C14/0004928 training C14
2495 | data/ohsumed_single_23/training/C14/0005056 training C14
2496 | data/ohsumed_single_23/training/C14/0005102 training C14
2497 | data/ohsumed_single_23/training/C14/0005124 training C14
2498 | data/ohsumed_single_23/training/C14/0005125 training C14
2499 | data/ohsumed_single_23/training/C14/0005134 training C14
2500 | data/ohsumed_single_23/training/C14/0005162 training C14
2501 | data/ohsumed_single_23/training/C14/0005163 training C14
2502 | data/ohsumed_single_23/training/C14/0005229 training C14
2503 | data/ohsumed_single_23/training/C14/0005233 training C14
2504 | data/ohsumed_single_23/training/C14/0005235 training C14
2505 | data/ohsumed_single_23/training/C14/0005236 training C14
2506 | data/ohsumed_single_23/training/C14/0005237 training C14
2507 | data/ohsumed_single_23/training/C14/0005330 training C14
2508 | data/ohsumed_single_23/training/C14/0005390 training C14
2509 | data/ohsumed_single_23/training/C14/0005392 training C14
2510 | data/ohsumed_single_23/training/C14/0005434 training C14
2511 | data/ohsumed_single_23/training/C14/0005435 training C14
2512 | data/ohsumed_single_23/training/C14/0005467 training C14
2513 | data/ohsumed_single_23/training/C14/0005469 training C14
2514 | data/ohsumed_single_23/training/C14/0005886 training C14
2515 | data/ohsumed_single_23/training/C14/0006047 training C14
2516 | data/ohsumed_single_23/training/C14/0006070 training C14
2517 | data/ohsumed_single_23/training/C14/0006082 training C14
2518 | data/ohsumed_single_23/training/C14/0006086 training C14
2519 | data/ohsumed_single_23/training/C14/0006092 training C14
2520 | data/ohsumed_single_23/training/C14/0006099 training C14
2521 | data/ohsumed_single_23/training/C14/0006166 training C14
2522 | data/ohsumed_single_23/training/C14/0006170 training C14
2523 | data/ohsumed_single_23/training/C14/0006173 training C14
2524 | data/ohsumed_single_23/training/C14/0006178 training C14
2525 | data/ohsumed_single_23/training/C14/0006179 training C14
2526 | data/ohsumed_single_23/training/C14/0006180 training C14
2527 | data/ohsumed_single_23/training/C14/0006181 training C14
2528 | data/ohsumed_single_23/training/C14/0006182 training C14
2529 | data/ohsumed_single_23/training/C14/0006184 training C14
2530 | data/ohsumed_single_23/training/C14/0006187 training C14
2531 | data/ohsumed_single_23/training/C14/0006189 training C14
2532 | data/ohsumed_single_23/training/C14/0006190 training C14
2533 | data/ohsumed_single_23/training/C14/0006193 training C14
2534 | data/ohsumed_single_23/training/C14/0006195 training C14
2535 | data/ohsumed_single_23/training/C14/0006203 training C14
2536 | data/ohsumed_single_23/training/C14/0006207 training C14
2537 | data/ohsumed_single_23/training/C14/0006208 training C14
2538 | data/ohsumed_single_23/training/C14/0006209 training C14
2539 | data/ohsumed_single_23/training/C14/0006210 training C14
2540 | data/ohsumed_single_23/training/C14/0006212 training C14
2541 | data/ohsumed_single_23/training/C14/0006214 training C14
2542 | data/ohsumed_single_23/training/C14/0006215 training C14
2543 | data/ohsumed_single_23/training/C14/0006216 training C14
2544 | data/ohsumed_single_23/training/C14/0006217 training C14
2545 | data/ohsumed_single_23/training/C14/0006222 training C14
2546 | data/ohsumed_single_23/training/C14/0006224 training C14
2547 | data/ohsumed_single_23/training/C14/0006225 training C14
2548 | data/ohsumed_single_23/training/C14/0006226 training C14
2549 | data/ohsumed_single_23/training/C14/0006228 training C14
2550 | data/ohsumed_single_23/training/C14/0006229 training C14
2551 | data/ohsumed_single_23/training/C14/0006231 training C14
2552 | data/ohsumed_single_23/training/C14/0006232 training C14
2553 | data/ohsumed_single_23/training/C14/0006234 training C14
2554 | data/ohsumed_single_23/training/C14/0006235 training C14
2555 | data/ohsumed_single_23/training/C14/0006237 training C14
2556 | data/ohsumed_single_23/training/C14/0006241 training C14
2557 | data/ohsumed_single_23/training/C14/0006242 training C14
2558 | data/ohsumed_single_23/training/C14/0006243 training C14
2559 | data/ohsumed_single_23/training/C14/0006245 training C14
2560 | data/ohsumed_single_23/training/C14/0006274 training C14
2561 | data/ohsumed_single_23/training/C14/0006389 training C14
2562 | data/ohsumed_single_23/training/C14/0006390 training C14
2563 | data/ohsumed_single_23/training/C14/0006403 training C14
2564 | data/ohsumed_single_23/training/C14/0006492 training C14
2565 | data/ohsumed_single_23/training/C14/0006501 training C14
2566 | data/ohsumed_single_23/training/C14/0006503 training C14
2567 | data/ohsumed_single_23/training/C14/0006514 training C14
2568 | data/ohsumed_single_23/training/C14/0006515 training C14
2569 | data/ohsumed_single_23/training/C14/0006525 training C14
2570 | data/ohsumed_single_23/training/C14/0006567 training C14
2571 | data/ohsumed_single_23/training/C14/0006571 training C14
2572 | data/ohsumed_single_23/training/C14/0006616 training C14
2573 | data/ohsumed_single_23/training/C14/0006622 training C14
2574 | data/ohsumed_single_23/training/C14/0006624 training C14
2575 | data/ohsumed_single_23/training/C14/0006639 training C14
2576 | data/ohsumed_single_23/training/C14/0006650 training C14
2577 | data/ohsumed_single_23/training/C14/0006665 training C14
2578 | data/ohsumed_single_23/training/C14/0006677 training C14
2579 | data/ohsumed_single_23/training/C14/0006731 training C14
2580 | data/ohsumed_single_23/training/C14/0006752 training C14
2581 | data/ohsumed_single_23/training/C14/0006779 training C14
2582 | data/ohsumed_single_23/training/C14/0006780 training C14
2583 | data/ohsumed_single_23/training/C14/0006808 training C14
2584 | data/ohsumed_single_23/training/C14/0006844 training C14
2585 | data/ohsumed_single_23/training/C14/0006852 training C14
2586 | data/ohsumed_single_23/training/C14/0006862 training C14
2587 | data/ohsumed_single_23/training/C14/0006865 training C14
2588 | data/ohsumed_single_23/training/C14/0006879 training C14
2589 | data/ohsumed_single_23/training/C14/0006882 training C14
2590 | data/ohsumed_single_23/training/C14/0006892 training C14
2591 | data/ohsumed_single_23/training/C14/0006894 training C14
2592 | data/ohsumed_single_23/training/C14/0006917 training C14
2593 | data/ohsumed_single_23/training/C14/0006978 training C14
2594 | data/ohsumed_single_23/training/C14/0007106 training C14
2595 | data/ohsumed_single_23/training/C14/0007116 training C14
2596 | data/ohsumed_single_23/training/C14/0007119 training C14
2597 | data/ohsumed_single_23/training/C14/0007120 training C14
2598 | data/ohsumed_single_23/training/C14/0007124 training C14
2599 | data/ohsumed_single_23/training/C14/0007125 training C14
2600 | data/ohsumed_single_23/training/C14/0007126 training C14
2601 | data/ohsumed_single_23/training/C14/0007127 training C14
2602 | data/ohsumed_single_23/training/C14/0007129 training C14
2603 | data/ohsumed_single_23/training/C14/0007131 training C14
2604 | data/ohsumed_single_23/training/C14/0007132 training C14
2605 | data/ohsumed_single_23/training/C14/0007133 training C14
2606 | data/ohsumed_single_23/training/C14/0007135 training C14
2607 | data/ohsumed_single_23/training/C14/0007136 training C14
2608 | data/ohsumed_single_23/training/C14/0007137 training C14
2609 | data/ohsumed_single_23/training/C14/0007144 training C14
2610 | data/ohsumed_single_23/training/C14/0007145 training C14
2611 | data/ohsumed_single_23/training/C14/0007150 training C14
2612 | data/ohsumed_single_23/training/C14/0007151 training C14
2613 | data/ohsumed_single_23/training/C14/0007183 training C14
2614 | data/ohsumed_single_23/training/C14/0007185 training C14
2615 | data/ohsumed_single_23/training/C14/0007197 training C14
2616 | data/ohsumed_single_23/training/C14/0007307 training C14
2617 | data/ohsumed_single_23/training/C14/0007340 training C14
2618 | data/ohsumed_single_23/training/C14/0007343 training C14
2619 | data/ohsumed_single_23/training/C14/0007346 training C14
2620 | data/ohsumed_single_23/training/C14/0007348 training C14
2621 | data/ohsumed_single_23/training/C14/0007474 training C14
2622 | data/ohsumed_single_23/training/C14/0007477 training C14
2623 | data/ohsumed_single_23/training/C14/0007508 training C14
2624 | data/ohsumed_single_23/training/C14/0007542 training C14
2625 | data/ohsumed_single_23/training/C14/0007564 training C14
2626 | data/ohsumed_single_23/training/C14/0007566 training C14
2627 | data/ohsumed_single_23/training/C14/0007569 training C14
2628 | data/ohsumed_single_23/training/C14/0007570 training C14
2629 | data/ohsumed_single_23/training/C14/0007618 training C14
2630 | data/ohsumed_single_23/training/C14/0007619 training C14
2631 | data/ohsumed_single_23/training/C14/0007620 training C14
2632 | data/ohsumed_single_23/training/C14/0007625 training C14
2633 | data/ohsumed_single_23/training/C14/0007671 training C14
2634 | data/ohsumed_single_23/training/C14/0007672 training C14
2635 | data/ohsumed_single_23/training/C14/0007721 training C14
2636 | data/ohsumed_single_23/training/C14/0007722 training C14
2637 | data/ohsumed_single_23/training/C14/0007724 training C14
2638 | data/ohsumed_single_23/training/C14/0007727 training C14
2639 | data/ohsumed_single_23/training/C14/0007730 training C14
2640 | data/ohsumed_single_23/training/C14/0007733 training C14
2641 | data/ohsumed_single_23/training/C14/0007734 training C14
2642 | data/ohsumed_single_23/training/C14/0007735 training C14
2643 | data/ohsumed_single_23/training/C14/0007737 training C14
2644 | data/ohsumed_single_23/training/C14/0007739 training C14
2645 | data/ohsumed_single_23/training/C14/0007740 training C14
2646 | data/ohsumed_single_23/training/C14/0007745 training C14
2647 | data/ohsumed_single_23/training/C14/0007779 training C14
2648 | data/ohsumed_single_23/training/C14/0007796 training C14
2649 | data/ohsumed_single_23/training/C14/0007803 training C14
2650 | data/ohsumed_single_23/training/C14/0007810 training C14
2651 | data/ohsumed_single_23/training/C14/0007812 training C14
2652 | data/ohsumed_single_23/training/C14/0007813 training C14
2653 | data/ohsumed_single_23/training/C14/0007875 training C14
2654 | data/ohsumed_single_23/training/C14/0007885 training C14
2655 | data/ohsumed_single_23/training/C14/0007987 training C14
2656 | data/ohsumed_single_23/training/C14/0008027 training C14
2657 | data/ohsumed_single_23/training/C14/0008028 training C14
2658 | data/ohsumed_single_23/training/C14/0008032 training C14
2659 | data/ohsumed_single_23/training/C14/0008035 training C14
2660 | data/ohsumed_single_23/training/C14/0008036 training C14
2661 | data/ohsumed_single_23/training/C14/0008039 training C14
2662 | data/ohsumed_single_23/training/C14/0008040 training C14
2663 | data/ohsumed_single_23/training/C14/0008042 training C14
2664 | data/ohsumed_single_23/training/C14/0008050 training C14
2665 | data/ohsumed_single_23/training/C14/0008215 training C14
2666 | data/ohsumed_single_23/training/C14/0008265 training C14
2667 | data/ohsumed_single_23/training/C14/0008292 training C14
2668 | data/ohsumed_single_23/training/C14/0008300 training C14
2669 | data/ohsumed_single_23/training/C14/0008301 training C14
2670 | data/ohsumed_single_23/training/C14/0008304 training C14
2671 | data/ohsumed_single_23/training/C14/0008356 training C14
2672 | data/ohsumed_single_23/training/C14/0008534 training C14
2673 | data/ohsumed_single_23/training/C14/0008538 training C14
2674 | data/ohsumed_single_23/training/C14/0008542 training C14
2675 | data/ohsumed_single_23/training/C14/0008545 training C14
2676 | data/ohsumed_single_23/training/C14/0008547 training C14
2677 | data/ohsumed_single_23/training/C14/0008550 training C14
2678 | data/ohsumed_single_23/training/C14/0008553 training C14
2679 | data/ohsumed_single_23/training/C14/0008556 training C14
2680 | data/ohsumed_single_23/training/C14/0008557 training C14
2681 | data/ohsumed_single_23/training/C14/0008558 training C14
2682 | data/ohsumed_single_23/training/C14/0008559 training C14
2683 | data/ohsumed_single_23/training/C14/0008560 training C14
2684 | data/ohsumed_single_23/training/C14/0008561 training C14
2685 | data/ohsumed_single_23/training/C14/0008562 training C14
2686 | data/ohsumed_single_23/training/C14/0008563 training C14
2687 | data/ohsumed_single_23/training/C14/0008564 training C14
2688 | data/ohsumed_single_23/training/C14/0008565 training C14
2689 | data/ohsumed_single_23/training/C14/0008566 training C14
2690 | data/ohsumed_single_23/training/C14/0008567 training C14
2691 | data/ohsumed_single_23/training/C14/0008573 training C14
2692 | data/ohsumed_single_23/training/C14/0008575 training C14
2693 | data/ohsumed_single_23/training/C14/0008596 training C14
2694 | data/ohsumed_single_23/training/C14/0008617 training C14
2695 | data/ohsumed_single_23/training/C14/0008670 training C14
2696 | data/ohsumed_single_23/training/C14/0008710 training C14
2697 | data/ohsumed_single_23/training/C14/0008823 training C14
2698 | data/ohsumed_single_23/training/C14/0008826 training C14
2699 | data/ohsumed_single_23/training/C14/0008827 training C14
2700 | data/ohsumed_single_23/training/C14/0008834 training C14
2701 | data/ohsumed_single_23/training/C14/0008997 training C14
2702 | data/ohsumed_single_23/training/C14/0009035 training C14
2703 | data/ohsumed_single_23/training/C14/0009132 training C14
2704 | data/ohsumed_single_23/training/C14/0009144 training C14
2705 | data/ohsumed_single_23/training/C14/0009150 training C14
2706 | data/ohsumed_single_23/training/C14/0009151 training C14
2707 | data/ohsumed_single_23/training/C14/0009152 training C14
2708 | data/ohsumed_single_23/training/C14/0009154 training C14
2709 | data/ohsumed_single_23/training/C14/0009157 training C14
2710 | data/ohsumed_single_23/training/C14/0009158 training C14
2711 | data/ohsumed_single_23/training/C14/0009160 training C14
2712 | data/ohsumed_single_23/training/C14/0009161 training C14
2713 | data/ohsumed_single_23/training/C14/0009162 training C14
2714 | data/ohsumed_single_23/training/C14/0009164 training C14
2715 | data/ohsumed_single_23/training/C14/0009165 training C14
2716 | data/ohsumed_single_23/training/C14/0009192 training C14
2717 | data/ohsumed_single_23/training/C14/0009229 training C14
2718 | data/ohsumed_single_23/training/C14/0009247 training C14
2719 | data/ohsumed_single_23/training/C14/0009276 training C14
2720 | data/ohsumed_single_23/training/C14/0009348 training C14
2721 | data/ohsumed_single_23/training/C14/0009423 training C14
2722 | data/ohsumed_single_23/training/C14/0009435 training C14
2723 | data/ohsumed_single_23/training/C14/0009437 training C14
2724 | data/ohsumed_single_23/training/C14/0009449 training C14
2725 | data/ohsumed_single_23/training/C14/0009484 training C14
2726 | data/ohsumed_single_23/training/C14/0009490 training C14
2727 | data/ohsumed_single_23/training/C14/0009492 training C14
2728 | data/ohsumed_single_23/training/C14/0009493 training C14
2729 | data/ohsumed_single_23/training/C14/0009498 training C14
2730 | data/ohsumed_single_23/training/C14/0009519 training C14
2731 | data/ohsumed_single_23/training/C14/0009523 training C14
2732 | data/ohsumed_single_23/training/C14/0009524 training C14
2733 | data/ohsumed_single_23/training/C14/0009526 training C14
2734 | data/ohsumed_single_23/training/C14/0009528 training C14
2735 | data/ohsumed_single_23/training/C14/0009529 training C14
2736 | data/ohsumed_single_23/training/C14/0009534 training C14
2737 | data/ohsumed_single_23/training/C14/0009536 training C14
2738 | data/ohsumed_single_23/training/C14/0009537 training C14
2739 | data/ohsumed_single_23/training/C14/0009558 training C14
2740 | data/ohsumed_single_23/training/C14/0009567 training C14
2741 | data/ohsumed_single_23/training/C14/0009570 training C14
2742 | data/ohsumed_single_23/training/C14/0009579 training C14
2743 | data/ohsumed_single_23/training/C14/0009580 training C14
2744 | data/ohsumed_single_23/training/C14/0009592 training C14
2745 | data/ohsumed_single_23/training/C14/0009610 training C14
2746 | data/ohsumed_single_23/training/C14/0009648 training C14
2747 | data/ohsumed_single_23/training/C14/0009655 training C14
2748 | data/ohsumed_single_23/training/C14/0009758 training C14
2749 | data/ohsumed_single_23/training/C14/0009802 training C14
2750 | data/ohsumed_single_23/training/C14/0009803 training C14
2751 | data/ohsumed_single_23/training/C14/0009805 training C14
2752 | data/ohsumed_single_23/training/C14/0009807 training C14
2753 | data/ohsumed_single_23/training/C14/0009815 training C14
2754 | data/ohsumed_single_23/training/C14/0009817 training C14
2755 | data/ohsumed_single_23/training/C14/0009818 training C14
2756 | data/ohsumed_single_23/training/C14/0009819 training C14
2757 | data/ohsumed_single_23/training/C14/0009823 training C14
2758 | data/ohsumed_single_23/training/C14/0009863 training C14
2759 | data/ohsumed_single_23/training/C14/0009872 training C14
2760 | data/ohsumed_single_23/training/C14/0009874 training C14
2761 | data/ohsumed_single_23/training/C14/0009886 training C14
2762 | data/ohsumed_single_23/training/C14/0009894 training C14
--------------------------------------------------------------------------------
/figure/TextGCN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luoyuanlab/text_gcn_tutorial/710847e7458872cba13003ffeb9a63ac2a6c9ccb/figure/TextGCN.png
--------------------------------------------------------------------------------
/figure/ohsumed3_tsne.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luoyuanlab/text_gcn_tutorial/710847e7458872cba13003ffeb9a63ac2a6c9ccb/figure/ohsumed3_tsne.png
--------------------------------------------------------------------------------
/inits.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 |
4 |
5 | def uniform(shape, scale=0.05, name=None):
6 | """Uniform init."""
7 | initial = tf.random_uniform(shape, minval=-scale, maxval=scale, dtype=tf.float32)
8 | return tf.Variable(initial, name=name)
9 |
10 |
11 | def glorot(shape, name=None):
12 | """Glorot & Bengio (AISTATS 2010) init."""
13 | init_range = np.sqrt(6.0/(shape[0]+shape[1]))
14 | initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
15 | return tf.Variable(initial, name=name)
16 |
17 | def weight_variable_glorot(input_dim, output_dim, name=""):
18 | """Create a weight variable with Glorot & Bengio (AISTATS 2010)
19 | initialization.
20 | """
21 | init_range = np.sqrt(6.0 / (input_dim + output_dim))
22 | initial = tf.random_uniform([input_dim, output_dim], minval=-init_range,
23 | maxval=init_range, dtype=tf.float32)
24 | return tf.Variable(initial, name=name)
25 |
26 |
27 | def zeros(shape, name=None):
28 | """All zeros."""
29 | initial = tf.zeros(shape, dtype=tf.float32)
30 | return tf.Variable(initial, name=name)
31 |
32 |
33 | def ones(shape, name=None):
34 | """All ones."""
35 | initial = tf.ones(shape, dtype=tf.float32)
36 | return tf.Variable(initial, name=name)
--------------------------------------------------------------------------------
/layers.py:
--------------------------------------------------------------------------------
1 | from inits import *
2 | import tensorflow as tf
3 |
4 | flags = tf.app.flags
5 | FLAGS = flags.FLAGS
6 |
7 | # global unique layer ID dictionary for layer name assignment
8 | _LAYER_UIDS = {}
9 |
10 |
11 | def get_layer_uid(layer_name=''):
12 | """Helper function, assigns unique layer IDs."""
13 | if layer_name not in _LAYER_UIDS:
14 | _LAYER_UIDS[layer_name] = 1
15 | return 1
16 | else:
17 | _LAYER_UIDS[layer_name] += 1
18 | return _LAYER_UIDS[layer_name]
19 |
20 |
21 | def sparse_dropout(x, keep_prob, noise_shape):
22 | """Dropout for sparse tensors."""
23 | random_tensor = keep_prob
24 | random_tensor += tf.random_uniform(noise_shape)
25 | dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
26 | pre_out = tf.sparse_retain(x, dropout_mask)
27 | return pre_out * (1./keep_prob)
28 |
29 | def dropout_sparse(x, keep_prob, num_nonzero_elems):
30 | """Dropout for sparse tensors. Currently fails for very large sparse tensors (>1M elements)
31 | """
32 | noise_shape = [num_nonzero_elems]
33 | random_tensor = keep_prob
34 | random_tensor += tf.random_uniform(noise_shape)
35 | dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
36 | pre_out = tf.sparse_retain(x, dropout_mask)
37 | return pre_out * (1./keep_prob)
38 |
39 |
40 | def dot(x, y, sparse=False):
41 | """Wrapper for tf.matmul (sparse vs dense)."""
42 | if sparse:
43 | res = tf.sparse_tensor_dense_matmul(x, y)
44 | else:
45 | res = tf.matmul(x, y)
46 | return res
47 |
48 |
49 | class Layer(object):
50 | """Base layer class. Defines basic API for all layer objects.
51 | Implementation inspired by keras (http://keras.io).
52 |
53 | # Properties
54 | name: String, defines the variable scope of the layer.
55 | logging: Boolean, switches Tensorflow histogram logging on/off
56 |
57 | # Methods
58 | _call(inputs): Defines computation graph of layer
59 | (i.e. takes input, returns output)
60 | __call__(inputs): Wrapper for _call()
61 | _log_vars(): Log all variables
62 | """
63 |
64 | def __init__(self, edge_type=(), num_types=-1, **kwargs):
65 | self.edge_type = edge_type
66 | self.num_types = num_types
67 |
68 | allowed_kwargs = {'name', 'logging'}
69 | for kwarg in kwargs.keys():
70 | assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
71 | name = kwargs.get('name')
72 | if not name:
73 | layer = self.__class__.__name__.lower()
74 | name = layer + '_' + str(get_layer_uid(layer))
75 | self.name = name
76 | self.vars = {}
77 | logging = kwargs.get('logging', False)
78 | self.logging = logging
79 | self.sparse_inputs = False
80 |
81 | def _call(self, inputs):
82 | return inputs
83 |
84 | def __call__(self, inputs):
85 | with tf.name_scope(self.name):
86 | if self.logging and not self.sparse_inputs:
87 | tf.summary.histogram(self.name + '/inputs', inputs)
88 | outputs = self._call(inputs)
89 | if self.logging:
90 | tf.summary.histogram(self.name + '/outputs', outputs)
91 | return outputs
92 |
93 | def _log_vars(self):
94 | for var in self.vars:
95 | tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])
96 |
97 |
98 | class Dense(Layer):
99 | """Dense layer."""
100 | def __init__(self, input_dim, output_dim, placeholders, dropout=0., sparse_inputs=False,
101 | act=tf.nn.relu, bias=False, featureless=False, **kwargs):
102 | super(Dense, self).__init__(**kwargs)
103 |
104 | if dropout:
105 | self.dropout = placeholders['dropout']
106 | else:
107 | self.dropout = 0.
108 |
109 | self.act = act
110 | self.sparse_inputs = sparse_inputs
111 | self.featureless = featureless
112 | self.bias = bias
113 |
114 | # helper variable for sparse dropout
115 | self.num_features_nonzero = placeholders['num_features_nonzero']
116 |
117 | with tf.variable_scope(self.name + '_vars'):
118 | self.vars['weights'] = glorot([input_dim, output_dim],
119 | name='weights')
120 | if self.bias:
121 | self.vars['bias'] = zeros([output_dim], name='bias')
122 |
123 | if self.logging:
124 | self._log_vars()
125 |
126 | def _call(self, inputs):
127 | x = inputs
128 |
129 | # dropout
130 | if self.sparse_inputs:
131 | x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero)
132 | else:
133 | x = tf.nn.dropout(x, 1-self.dropout)
134 |
135 | # transform
136 | output = dot(x, self.vars['weights'], sparse=self.sparse_inputs)
137 |
138 | # bias
139 | if self.bias:
140 | output += self.vars['bias']
141 |
142 | return self.act(output)
143 |
144 |
145 | class GraphConvolution(Layer):
146 | """Graph convolution layer."""
147 | def __init__(self, input_dim, output_dim, placeholders, dropout=0.,
148 | sparse_inputs=False, act=tf.nn.relu, bias=False,
149 | featureless=False, **kwargs):
150 | super(GraphConvolution, self).__init__(**kwargs)
151 |
152 | if dropout:
153 | self.dropout = placeholders['dropout']
154 | else:
155 | self.dropout = 0.
156 |
157 | self.act = act
158 | self.support = placeholders['support']
159 | self.sparse_inputs = sparse_inputs
160 | self.featureless = featureless
161 | self.bias = bias
162 |
163 | # helper variable for sparse dropout
164 | self.num_features_nonzero = placeholders['num_features_nonzero']
165 |
166 | with tf.variable_scope(self.name + '_vars'):
167 | for i in range(len(self.support)):
168 | self.vars['weights_' + str(i)] = glorot([input_dim, output_dim],
169 | name='weights_' + str(i))
170 | if self.bias:
171 | self.vars['bias'] = zeros([output_dim], name='bias')
172 |
173 | if self.logging:
174 | self._log_vars()
175 |
176 | def _call(self, inputs):
177 | x = inputs
178 |
179 | # dropout
180 | if self.sparse_inputs:
181 | x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero)
182 | else:
183 | x = tf.nn.dropout(x, 1-self.dropout)
184 |
185 | # convolve
186 | supports = list()
187 | for i in range(len(self.support)):
188 | if not self.featureless:
189 | pre_sup = dot(x, self.vars['weights_' + str(i)],
190 | sparse=self.sparse_inputs)
191 | else:
192 | pre_sup = self.vars['weights_' + str(i)]
193 | support = dot(self.support[i], pre_sup, sparse=True)
194 | supports.append(support)
195 | output = tf.add_n(supports) # get AXW
196 |
197 | # bias
198 | if self.bias:
199 | output += self.vars['bias']
200 | self.embedding = output #output
201 | return self.act(output)
202 |
203 |
--------------------------------------------------------------------------------
/metrics.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 |
3 | def masked_softmax_cross_entropy(preds, labels, mask):
4 | """Softmax cross-entropy loss with masking."""
5 | print(preds)
6 | loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
7 | #loss = tf.losses.hinge_loss(logits=preds, labels=labels)
8 | mask = tf.cast(mask, dtype=tf.float32)
9 | mask /= tf.reduce_mean(mask)
10 | loss *= mask
11 | return tf.reduce_mean(loss)
12 |
13 |
14 | def masked_accuracy(preds, labels, mask):
15 | """Accuracy with masking."""
16 | correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
17 |
18 | accuracy_all = tf.cast(correct_prediction, tf.float32)
19 | mask = tf.cast(mask, dtype=tf.float32)
20 | mask /= tf.reduce_mean(mask)
21 | accuracy_all *= mask
22 | return tf.reduce_mean(accuracy_all)
23 |
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | from layers import *
2 | from metrics import *
3 | import tensorflow as tf
4 | from collections import defaultdict
5 |
6 | flags = tf.app.flags
7 | FLAGS = flags.FLAGS
8 |
9 |
10 | class Model(object):
11 | def __init__(self, **kwargs):
12 | allowed_kwargs = {'name', 'logging'}
13 | for kwarg in kwargs.keys():
14 | assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
15 | name = kwargs.get('name')
16 | if not name:
17 | name = self.__class__.__name__.lower()
18 | self.name = name
19 |
20 | logging = kwargs.get('logging', False)
21 | self.logging = logging
22 |
23 | self.vars = {}
24 | self.placeholders = {}
25 |
26 | self.layers = []
27 | self.activations = []
28 |
29 | self.inputs = None
30 | self.outputs = None
31 |
32 | self.loss = 0
33 | self.accuracy = 0
34 | self.optimizer = None
35 | self.opt_op = None
36 |
37 | def _build(self):
38 | raise NotImplementedError
39 |
40 | def build(self):
41 | """ Wrapper for _build() """
42 | with tf.variable_scope(self.name):
43 | self._build()
44 |
45 | # Build sequential layer model
46 | self.activations.append(self.inputs)
47 | for layer in self.layers:
48 | hidden = layer(self.activations[-1])
49 | self.activations.append(hidden)
50 | self.outputs = self.activations[-1]
51 |
52 | # Store model variables for easy access
53 | variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
54 | self.vars = {var.name: var for var in variables}
55 |
56 | # Build metrics
57 | self._loss()
58 | self._accuracy()
59 |
60 | self.opt_op = self.optimizer.minimize(self.loss)
61 |
62 | def predict(self):
63 | pass
64 |
65 | def _loss(self):
66 | raise NotImplementedError
67 |
68 | def _accuracy(self):
69 | raise NotImplementedError
70 |
71 | def save(self, sess=None):
72 | if not sess:
73 | raise AttributeError("TensorFlow session not provided.")
74 | saver = tf.train.Saver(self.vars)
75 | save_path = saver.save(sess, "tmp/%s.ckpt" % self.name)
76 | print("Model saved in file: %s" % save_path)
77 |
78 | def load(self, sess=None):
79 | if not sess:
80 | raise AttributeError("TensorFlow session not provided.")
81 | saver = tf.train.Saver(self.vars)
82 | save_path = "tmp/%s.ckpt" % self.name
83 | saver.restore(sess, save_path)
84 | print("Model restored from file: %s" % save_path)
85 |
86 |
87 |
88 | class GCN(Model):
89 | def __init__(self, placeholders, input_dim, **kwargs):
90 | super(GCN, self).__init__(**kwargs)
91 |
92 | self.inputs = placeholders['features']
93 | self.input_dim = input_dim
94 | # self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions
95 | self.output_dim = placeholders['labels'].get_shape().as_list()[1]
96 | self.placeholders = placeholders
97 |
98 | self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
99 |
100 | self.build()
101 |
102 | def _loss(self):
103 | # Weight decay loss
104 | for var in self.layers[0].vars.values():
105 | self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var)
106 |
107 | # Cross entropy error
108 | self.loss += masked_softmax_cross_entropy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask'])
109 |
110 | def _accuracy(self):
111 | self.accuracy = masked_accuracy(self.outputs, self.placeholders['labels'],
112 | self.placeholders['labels_mask'])
113 | self.pred = tf.argmax(self.outputs, 1)
114 | self.labels = tf.argmax(self.placeholders['labels'], 1)
115 |
116 |
117 | def _build(self):
118 |
119 | self.layers.append(GraphConvolution(input_dim=self.input_dim,
120 | output_dim=FLAGS.hidden1,
121 | placeholders=self.placeholders,
122 | act=tf.nn.relu,
123 | dropout=True,
124 | sparse_inputs=True,
125 | featureless=False,
126 | logging=self.logging))
127 |
128 | self.layers.append(GraphConvolution(input_dim=FLAGS.hidden1,
129 | output_dim=self.output_dim,
130 | placeholders=self.placeholders,
131 | act=lambda x: x, #
132 | dropout=True,
133 | logging=self.logging))
134 |
135 |
136 |
137 | def predict(self):
138 |
139 | return tf.nn.softmax(self.outputs)
140 |
141 |
142 | class RGCN(Model):
143 | def __init__(self, placeholders, num_feat, nonzero_feat, edge_types, **kwargs):
144 | super(RGCN, self).__init__(**kwargs)
145 | self.edge_types = edge_types
146 | self.num_edge_types = sum(self.edge_types.values())
147 | self.num_obj_types = max([i for i, _ in self.edge_types]) + 1
148 | self.inputs = {i: placeholders['feat_%d' % i] for i, _ in self.edge_types}
149 | self.input_dim = num_feat
150 | self.output_dim = placeholders['labels'].get_shape().as_list()[1]
151 | self.nonzero_feat = nonzero_feat
152 | self.placeholders = placeholders
153 | self.dropout = placeholders['dropout']
154 | self.adj_mats = {et: [
155 | placeholders['adj_mats_%d,%d,%d' % (et[0], et[1], k)] for k in range(n)]
156 | for et, n in self.edge_types.items()}
157 | print(self.adj_mats)
158 | self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
159 | self.build()
160 |
161 | def _build(self):
162 | self.hidden1 = defaultdict(list)
163 | for i, j in self.edge_types:
164 | self.hidden1[i].append(GraphConvolutionSparseMulti(
165 | input_dim=self.input_dim, output_dim=FLAGS.hidden1,
166 | edge_type=(i,j), num_types=self.edge_types[i,j],
167 | adj_mats=self.adj_mats, nonzero_feat=self.nonzero_feat,
168 | act=lambda x: x, dropout=self.dropout,
169 | logging=self.logging)(self.inputs[j]))
170 |
171 | for i, hid1 in self.hidden1.items():
172 | self.hidden1[i] = tf.nn.relu(tf.add_n(hid1))
173 |
174 | self.embeddings_reltyp = defaultdict(list)
175 | for i, j in self.edge_types:
176 | # i, j identity, featureless = True
177 | self.embeddings_reltyp[i].append(GraphConvolutionMulti(
178 | input_dim=FLAGS.hidden1, output_dim=self.output_dim,
179 | edge_type=(i,j), num_types=self.edge_types[i,j],
180 | adj_mats=self.adj_mats, act=lambda x: x,
181 | dropout=self.dropout, logging=self.logging)(self.hidden1[j]))
182 |
183 | self.embeddings = [None] * self.num_obj_types
184 | for i, embeds in self.embeddings_reltyp.items():
185 | # self.embeddings[i] = tf.nn.relu(tf.add_n(embeds))
186 | self.embeddings[i] = tf.add_n(embeds)
187 |
188 |
189 | def _loss(self):
190 |
191 | # Cross entropy error
192 | self.loss += masked_softmax_cross_entropy(self.embeddings[0], self.placeholders['labels'], self.placeholders['labels_mask'])
193 |
194 | def _accuracy(self):
195 | self.accuracy = masked_accuracy(self.embeddings[0], self.placeholders['labels'],
196 | self.placeholders['labels_mask'])
197 | self.pred = tf.argmax(self.embeddings[0], 1)
198 | self.labels = tf.argmax(self.placeholders['labels'], 1)
199 |
200 |
--------------------------------------------------------------------------------
/remove_words.py:
--------------------------------------------------------------------------------
1 | from nltk.corpus import stopwords
2 | import nltk
3 | from nltk.wsd import lesk
4 | from nltk.corpus import wordnet as wn
5 | from utils import clean_str, loadWord2Vec
6 | import sys
7 |
8 | if len(sys.argv) != 2:
9 | sys.exit("Use: python remove_words.py ")
10 |
11 | dataset = sys.argv[1]
12 |
13 | # nltk.download('stopwords')
14 | stop_words = set(stopwords.words('english'))
15 | print(stop_words)
16 |
17 | doc_content_list = []
18 | f = open('data/corpus/' + dataset + '.txt', 'rb')
19 | for line in f.readlines():
20 | doc_content_list.append(line.strip().decode('latin1'))
21 | f.close()
22 |
23 |
24 | word_freq = {} # to remove rare words
25 |
26 | for doc_content in doc_content_list:
27 | temp = clean_str(doc_content)
28 | words = temp.split()
29 | for word in words:
30 | if word in word_freq:
31 | word_freq[word] += 1
32 | else:
33 | word_freq[word] = 1
34 |
35 | clean_docs = []
36 | for doc_content in doc_content_list:
37 | temp = clean_str(doc_content)
38 | words = temp.split()
39 | doc_words = []
40 | for word in words:
41 | if dataset == 'mr':
42 | doc_words.append(word)
43 | elif word not in stop_words and word_freq[word] >= 5:
44 | doc_words.append(word)
45 |
46 | doc_str = ' '.join(doc_words).strip()
47 | clean_docs.append(doc_str)
48 |
49 | clean_corpus_str = '\n'.join(clean_docs)
50 |
51 | f = open('data/corpus/' + dataset + '.clean.txt', 'w')
52 | f.write(clean_corpus_str)
53 | f.close()
54 |
55 | min_len = 10000
56 | aver_len = 0
57 | max_len = 0
58 |
59 | f = open('data/corpus/' + dataset + '.clean.txt', 'r')
60 | lines = f.readlines()
61 | for line in lines:
62 | line = line.strip()
63 | temp = line.split()
64 | aver_len = aver_len + len(temp)
65 | if len(temp) < min_len:
66 | min_len = len(temp)
67 | if len(temp) > max_len:
68 | max_len = len(temp)
69 | f.close()
70 | aver_len = 1.0 * aver_len / len(lines)
71 | print('min_len : ' + str(min_len))
72 | print('max_len : ' + str(max_len))
73 | print('average_len : ' + str(aver_len))
74 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | from __future__ import print_function
3 |
4 | import time
5 | import tensorflow as tf
6 |
7 | from sklearn import metrics
8 | from utils import *
9 | from models import GCN
10 | import random
11 | import os
12 | import sys
13 |
14 | if len(sys.argv) != 2:
15 | sys.exit("Use: python train.py ")
16 |
17 | dataset = sys.argv[1]
18 |
19 | # Set random seed
20 | seed = random.randint(1, 200)
21 | tf.set_random_seed(seed)
22 |
23 | # Settings, default not using GPU
24 | os.environ["CUDA_VISIBLE_DEVICES"] = ""
25 |
26 | flags = tf.app.flags
27 | FLAGS = flags.FLAGS
28 | # 'cora', 'citeseer', 'pubmed'
29 | flags.DEFINE_string('dataset', dataset, 'Dataset string.')
30 | # 'gcn', 'gcn_cheby', 'dense'
31 | flags.DEFINE_string('model', 'gcn', 'Model string.')
32 | flags.DEFINE_float('learning_rate', 0.02, 'Initial learning rate.')
33 | flags.DEFINE_integer('epochs', 200, 'Number of epochs to train.')
34 | flags.DEFINE_integer('hidden1', 200, 'Number of units in hidden layer 1.')
35 | flags.DEFINE_float('dropout', 0.5, 'Dropout rate (1 - keep probability).')
36 | flags.DEFINE_float('weight_decay', 0,
37 | 'Weight for L2 loss on embedding matrix.') # 5e-4
38 | flags.DEFINE_integer('early_stopping', 10,
39 | 'Tolerance for early stopping (# of epochs).')
40 | flags.DEFINE_integer('max_degree', 3, 'Maximum Chebyshev polynomial degree.')
41 |
42 | # Load data
43 | adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, train_size, test_size = load_corpus(
44 | FLAGS.dataset)
45 | # print(adj)
46 | features = sp.identity(features.shape[0]) # featureless
47 |
48 | print(adj.shape)
49 | print(features.shape)
50 |
51 | # Some preprocessing
52 | features = preprocess_features(features)
53 | if FLAGS.model == 'gcn':
54 | support = [preprocess_adj(adj)]
55 | num_supports = 1 # list size 1, different from Kipf
56 | else:
57 | raise ValueError('Invalid argument for model: ' + str(FLAGS.model))
58 |
59 | # Define placeholders
60 | placeholders = {
61 | 'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
62 | 'features': tf.sparse_placeholder(tf.float32, shape=tf.constant(features[2], dtype=tf.int64)),
63 | 'labels': tf.placeholder(tf.float32, shape=(None, y_train.shape[1])),
64 | 'labels_mask': tf.placeholder(tf.int32),
65 | 'dropout': tf.placeholder_with_default(0., shape=()),
66 | # helper variable for sparse dropout
67 | 'num_features_nonzero': tf.placeholder(tf.int32),
68 | }
69 |
70 | # Create model
71 | print(features[2][1]) # dim, note there is sparse_to_tuple in preprocess_features
72 | model = GCN(placeholders, input_dim=features[2][1], logging=True)
73 |
74 | # Initialize session
75 | session_conf = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
76 | sess = tf.Session(config=session_conf)
77 |
78 |
79 | # Define model evaluation function
80 | def evaluate(features, support, labels, mask, placeholders):
81 | t_test = time.time()
82 | feed_dict_val = construct_feed_dict(
83 | features, support, labels, mask, placeholders)
84 | outs_val = sess.run([model.loss, model.accuracy, model.pred, model.labels], feed_dict=feed_dict_val)
85 | return outs_val[0], outs_val[1], outs_val[2], outs_val[3], (time.time() - t_test)
86 |
87 |
88 | # Init variables, models.py call layers.py then call init.py
89 | sess.run(tf.global_variables_initializer())
90 |
91 | cost_val = []
92 |
93 | # Train model
94 | for epoch in range(FLAGS.epochs):
95 |
96 | t = time.time()
97 | # Construct feed dictionary, same input for every epoch as we input full batch
98 | feed_dict = construct_feed_dict(
99 | features, support, y_train, train_mask, placeholders)
100 | feed_dict.update({placeholders['dropout']: FLAGS.dropout}) # update dropout for train, different from test 0
101 | # to inductive
102 | # Training step
103 | outs = sess.run([model.opt_op, model.loss, model.accuracy,
104 | model.layers[0].embedding], feed_dict=feed_dict)
105 |
106 | # Validation
107 | cost, acc, pred, labels, duration = evaluate(
108 | features, support, y_val, val_mask, placeholders)
109 | cost_val.append(cost)
110 |
111 | print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(outs[1]),
112 | "train_acc=", "{:.5f}".format(
113 | outs[2]), "val_loss=", "{:.5f}".format(cost),
114 | "val_acc=", "{:.5f}".format(acc), "time=", "{:.5f}".format(time.time() - t))
115 |
116 | if epoch > FLAGS.early_stopping and cost_val[-1] > np.mean(cost_val[-(FLAGS.early_stopping+1):-1]):
117 | print("Early stopping...")
118 | break
119 |
120 | print("Optimization Finished!")
121 |
122 | # Testing
123 | test_cost, test_acc, pred, labels, test_duration = evaluate(
124 | features, support, y_test, test_mask, placeholders)
125 | print("Test set results:", "cost=", "{:.5f}".format(test_cost),
126 | "accuracy=", "{:.5f}".format(test_acc), "time=", "{:.5f}".format(test_duration))
127 |
128 | test_pred = []
129 | test_labels = []
130 | print(len(test_mask))
131 | for i in range(len(test_mask)):
132 | if test_mask[i]:
133 | test_pred.append(pred[i])
134 | test_labels.append(labels[i])
135 |
136 | print("Test Precision, Recall and F1-Score...")
137 | print(metrics.classification_report(test_labels, test_pred, digits=4))
138 | print("Macro average Test Precision, Recall and F1-Score...")
139 | print(metrics.precision_recall_fscore_support(test_labels, test_pred, average='macro'))
140 | print("Micro average Test Precision, Recall and F1-Score...")
141 | print(metrics.precision_recall_fscore_support(test_labels, test_pred, average='micro'))
142 |
143 | # doc and word embeddings
144 | print('embeddings:')
145 | word_embeddings = outs[3][train_size: adj.shape[0] - test_size]
146 | train_doc_embeddings = outs[3][:train_size] # include val docs
147 | test_doc_embeddings = outs[3][adj.shape[0] - test_size:]
148 |
149 | print(len(word_embeddings), len(train_doc_embeddings),
150 | len(test_doc_embeddings))
151 | ## print(word_embeddings)
152 |
153 | f = open('data/corpus/' + dataset + '_vocab.txt', 'r')
154 | words = f.readlines()
155 | f.close()
156 |
157 | vocab_size = len(words)
158 | word_vectors = []
159 | for i in range(vocab_size):
160 | word = words[i].strip()
161 | word_vector = word_embeddings[i]
162 | word_vector_str = ' '.join([str(x) for x in word_vector])
163 | word_vectors.append(word + ' ' + word_vector_str)
164 |
165 | word_embeddings_str = '\n'.join(word_vectors)
166 | f = open('data/' + dataset + '_word_vectors.txt', 'w')
167 | f.write(word_embeddings_str)
168 | f.close()
169 |
170 | doc_vectors = []
171 | doc_id = 0
172 | for i in range(train_size):
173 | doc_vector = train_doc_embeddings[i]
174 | doc_vector_str = ' '.join([str(x) for x in doc_vector])
175 | doc_vectors.append('doc_' + str(doc_id) + ' ' + doc_vector_str)
176 | doc_id += 1
177 |
178 | for i in range(test_size):
179 | doc_vector = test_doc_embeddings[i]
180 | doc_vector_str = ' '.join([str(x) for x in doc_vector])
181 | doc_vectors.append('doc_' + str(doc_id) + ' ' + doc_vector_str)
182 | doc_id += 1
183 |
184 | doc_embeddings_str = '\n'.join(doc_vectors)
185 | f = open('data/' + dataset + '_doc_vectors.txt', 'w')
186 | f.write(doc_embeddings_str)
187 | f.close()
188 |
--------------------------------------------------------------------------------
/tsne.py:
--------------------------------------------------------------------------------
1 | from matplotlib.backends.backend_pdf import PdfPages
2 | from sklearn.manifold import TSNE
3 | from matplotlib import pyplot as plt
4 | import numpy as np
5 |
6 | f = open('data/ohsumed_3.train.index', 'r')
7 | lines = f.readlines()
8 | f.close()
9 | train_size = len(lines)
10 |
11 |
12 | f = open('data/ohsumed_3_shuffle.txt', 'r')
13 | lines = f.readlines()
14 | f.close()
15 |
16 | target_names = set()
17 | labels = []
18 | for line in lines:
19 | line = line.strip()
20 | temp = line.split('\t')
21 | labels.append(temp[2])
22 | target_names.add(temp[2])
23 |
24 | target_names = list(target_names)
25 |
26 | f = open('data/ohsumed_3_doc_vectors.txt', 'r')
27 | lines = f.readlines()
28 | f.close()
29 |
30 | docs = []
31 | for line in lines:
32 | temp = line.strip().split()
33 | values_str_list = temp[1:]
34 | values = [float(x) for x in values_str_list]
35 | docs.append(values)
36 |
37 | fea = docs[train_size:] # int(train_size * 0.9)
38 | label = labels[train_size:] # int(train_size * 0.9)
39 | label = np.array(label)
40 |
41 | fea = TSNE(n_components=2).fit_transform(fea)
42 | pdf = PdfPages('ohsumed_3_gcn_doc_train.pdf')
43 | cls = np.unique(label)
44 |
45 | # cls=range(10)
46 | fea_num = [fea[label == i] for i in cls]
47 | for i, f in enumerate(fea_num):
48 | if cls[i] in range(10):
49 | plt.scatter(f[:, 0], f[:, 1], label=cls[i], marker='+')
50 | else:
51 | plt.scatter(f[:, 0], f[:, 1], label=cls[i])
52 | plt.legend()
53 | # plt.legend(ncol=2, )
54 | # plt.legend(ncol=5,loc='upper center',bbox_to_anchor=(0.48, -0.08),fontsize=11)
55 | # plt.ylim([-20,35])
56 | # plt.title(md_file)
57 | plt.tight_layout()
58 | pdf.savefig()
59 | plt.show()
60 | pdf.close()
61 |
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pickle as pkl
3 | import networkx as nx
4 | import scipy.sparse as sp
5 | from scipy.sparse.linalg.eigen.arpack import eigsh
6 | import sys
7 | import re
8 | from nltk.corpus import wordnet as wn
9 | from sklearn.feature_extraction.text import TfidfVectorizer
10 |
11 | def parse_index_file(filename):
12 | """Parse index file."""
13 | index = []
14 | for line in open(filename):
15 | index.append(int(line.strip()))
16 | return index
17 |
18 |
19 | def sample_mask(idx, l):
20 | """Create mask."""
21 | mask = np.zeros(l)
22 | mask[idx] = 1
23 | return np.array(mask, dtype=np.bool)
24 |
25 |
26 | def load_data(dataset_str):
27 | """
28 | Loads input data from gcn/data directory
29 |
30 | ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object;
31 | ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object;
32 | ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances
33 | (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
34 | ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object;
35 | ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object;
36 | ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
37 | ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict
38 | object;
39 | ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object.
40 |
41 | All objects above must be saved using python pickle module.
42 |
43 | :param dataset_str: Dataset name
44 | :return: All data input files loaded (as well the training/test data).
45 | """
46 | names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
47 | objects = []
48 | for i in range(len(names)):
49 | with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
50 | if sys.version_info > (3, 0):
51 | objects.append(pkl.load(f, encoding='latin1'))
52 | else:
53 | objects.append(pkl.load(f))
54 |
55 | x, y, tx, ty, allx, ally, graph = tuple(objects)
56 | test_idx_reorder = parse_index_file(
57 | "data/ind.{}.test.index".format(dataset_str))
58 | test_idx_range = np.sort(test_idx_reorder)
59 | print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
60 |
61 | if dataset_str == 'citeseer':
62 | # Fix citeseer dataset (there are some isolated nodes in the graph)
63 | # Find isolated nodes, add them as zero-vecs into the right position
64 | test_idx_range_full = range(
65 | min(test_idx_reorder), max(test_idx_reorder)+1)
66 | tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
67 | tx_extended[test_idx_range-min(test_idx_range), :] = tx
68 | tx = tx_extended
69 | ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
70 | ty_extended[test_idx_range-min(test_idx_range), :] = ty
71 | ty = ty_extended
72 |
73 | features = sp.vstack((allx, tx)).tolil()
74 | features[test_idx_reorder, :] = features[test_idx_range, :]
75 | adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
76 |
77 | labels = np.vstack((ally, ty))
78 | labels[test_idx_reorder, :] = labels[test_idx_range, :]
79 | # print(len(labels))
80 |
81 | idx_test = test_idx_range.tolist()
82 | # print(idx_test)
83 | idx_train = range(len(y))
84 | idx_val = range(len(y), len(y)+500)
85 |
86 | train_mask = sample_mask(idx_train, labels.shape[0])
87 | val_mask = sample_mask(idx_val, labels.shape[0])
88 | test_mask = sample_mask(idx_test, labels.shape[0])
89 |
90 | y_train = np.zeros(labels.shape)
91 | y_val = np.zeros(labels.shape)
92 | y_test = np.zeros(labels.shape)
93 | y_train[train_mask, :] = labels[train_mask, :]
94 | y_val[val_mask, :] = labels[val_mask, :]
95 | y_test[test_mask, :] = labels[test_mask, :]
96 |
97 | return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
98 |
99 |
100 | def load_corpus(dataset_str):
101 | """
102 | Loads input corpus from gcn/data directory
103 |
104 | ind.dataset_str.x => the feature vectors of the training docs as scipy.sparse.csr.csr_matrix object;
105 | ind.dataset_str.tx => the feature vectors of the test docs as scipy.sparse.csr.csr_matrix object;
106 | ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training docs/words
107 | (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
108 | ind.dataset_str.y => the one-hot labels of the labeled training docs as numpy.ndarray object;
109 | ind.dataset_str.ty => the one-hot labels of the test docs as numpy.ndarray object;
110 | ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
111 | ind.dataset_str.adj => adjacency matrix of word/doc nodes as scipy.sparse.csr.csr_matrix object;
112 | ind.dataset_str.train.index => the indices of training docs in original doc list.
113 |
114 | All objects above must be saved using python pickle module.
115 |
116 | :param dataset_str: Dataset name
117 | :return: All data input files loaded (as well the training/test data).
118 | """
119 |
120 | names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'adj']
121 | objects = []
122 | for i in range(len(names)):
123 | with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
124 | if sys.version_info > (3, 0):
125 | objects.append(pkl.load(f, encoding='latin1'))
126 | else:
127 | objects.append(pkl.load(f))
128 |
129 | x, y, tx, ty, allx, ally, adj = tuple(objects)
130 | print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
131 |
132 | features = sp.vstack((allx, tx)).tolil()
133 | labels = np.vstack((ally, ty))
134 | print(len(labels))
135 |
136 | train_idx_orig = parse_index_file(
137 | "data/{}.train.index".format(dataset_str))
138 | train_size = len(train_idx_orig)
139 |
140 | val_size = train_size - x.shape[0]
141 | test_size = tx.shape[0]
142 |
143 | idx_train = range(len(y))
144 | idx_val = range(len(y), len(y) + val_size)
145 | idx_test = range(allx.shape[0], allx.shape[0] + test_size)
146 |
147 | train_mask = sample_mask(idx_train, labels.shape[0])
148 | val_mask = sample_mask(idx_val, labels.shape[0])
149 | test_mask = sample_mask(idx_test, labels.shape[0])
150 |
151 | y_train = np.zeros(labels.shape)
152 | y_val = np.zeros(labels.shape)
153 | y_test = np.zeros(labels.shape)
154 | y_train[train_mask, :] = labels[train_mask, :]
155 | y_val[val_mask, :] = labels[val_mask, :]
156 | y_test[test_mask, :] = labels[test_mask, :]
157 |
158 | adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
159 |
160 | return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, train_size, test_size
161 |
162 |
163 | def load_corpus_multimodal(dataset_str):
164 | """
165 | Loads input corpus from gcn/data directory
166 |
167 | ind.dataset_str.x => the feature vectors of the training docs as scipy.sparse.csr.csr_matrix object;
168 | ind.dataset_str.tx => the feature vectors of the test docs as scipy.sparse.csr.csr_matrix object;
169 | ind.dataset_str.allx => the feature vectors of both training and val docs
170 | (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
171 | ind.dataset_str.y => the one-hot labels of the labeled training docs as numpy.ndarray object;
172 | ind.dataset_str.ty => the one-hot labels of the test docs as numpy.ndarray object;
173 | ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
174 | ind.dataset_str.word_adj => adjacency matrix of word nodes as scipy.sparse.csr.csr_matrix object;
175 | ind.dataset_str.doc_adj => adjacency matrix of doc nodes as scipy.sparse.csr.csr_matrix object;
176 | ind.dataset_str.doc_word_adj => adjacency matrix for doc and word nodes as scipy.sparse.csr.csr_matrix object;
177 |
178 | All objects above must be saved using python pickle module.
179 |
180 | :param dataset_str: Dataset name
181 | :return: All data input files loaded (as well the training/test data).
182 | """
183 |
184 | names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'word_adj', 'doc_adj', 'doc_word_adj', 'word_feat']
185 | objects = []
186 | for i in range(len(names)):
187 | with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
188 | if sys.version_info > (3, 0):
189 | objects.append(pkl.load(f, encoding='latin1'))
190 | else:
191 | objects.append(pkl.load(f))
192 |
193 | x, y, tx, ty, allx, ally, word_adj, doc_adj, doc_word_adj, word_feat = tuple(objects)
194 | print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
195 |
196 | labels = np.vstack((ally, ty))
197 | print(len(labels))
198 |
199 | train_idx_orig = parse_index_file(
200 | "data/{}.train.index".format(dataset_str))
201 | train_size = len(train_idx_orig)
202 |
203 | val_size = train_size - x.shape[0]
204 | test_size = tx.shape[0]
205 |
206 | idx_train = range(len(y))
207 | idx_val = range(len(y), len(y) + val_size)
208 | idx_test = range(allx.shape[0], allx.shape[0] + test_size)
209 |
210 | train_mask = sample_mask(idx_train, labels.shape[0])
211 | val_mask = sample_mask(idx_val, labels.shape[0])
212 | test_mask = sample_mask(idx_test, labels.shape[0])
213 |
214 | y_train = np.zeros(labels.shape)
215 | y_val = np.zeros(labels.shape)
216 | y_test = np.zeros(labels.shape)
217 | y_train[train_mask, :] = labels[train_mask, :]
218 | y_val[val_mask, :] = labels[val_mask, :]
219 | y_test[test_mask, :] = labels[test_mask, :]
220 |
221 | #word_adj = preprocess_graph(word_adj)
222 | #doc_adj = preprocess_graph(doc_adj)
223 | #doc_word_adj = preprocess_graph(doc_word_adj)
224 | #adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
225 |
226 | return word_adj, doc_adj, doc_word_adj, word_feat, y_train, y_val, y_test, train_mask, val_mask, test_mask, train_size, test_size
227 |
228 | def load_corpus_kg(dataset_str):
229 | """
230 | Loads input corpus from gcn/data directory
231 |
232 | ind.dataset_str.x => the feature vectors of the training docs as scipy.sparse.csr.csr_matrix object;
233 | ind.dataset_str.tx => the feature vectors of the test docs as scipy.sparse.csr.csr_matrix object;
234 | ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training docs/words
235 | (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
236 | ind.dataset_str.y => the one-hot labels of the labeled training docs as numpy.ndarray object;
237 | ind.dataset_str.ty => the one-hot labels of the test docs as numpy.ndarray object;
238 | ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
239 | ind.dataset_str.adj => adjacency matrix of word/doc nodes as scipy.sparse.csr.csr_matrix object;
240 | ind.dataset_str.train.index => the indices of training docs in original doc list.
241 | ind.dataset_str.word_entity_adj => adjacency matrix for word and entity nodes as scipy.sparse.csr.csr_matrix object;
242 | ind.dataset_str.entity_adj_list => adjacency matrix list for knowledge graph triples (one for each relation)
243 | as a list of scipy.sparse.csr.csr_matrix objects;
244 |
245 | All objects above must be saved using python pickle module.
246 |
247 | :param dataset_str: Dataset name
248 | :return: All data input files loaded (as well the training/test data).
249 | """
250 |
251 | names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'adj', 'word_entity_adj', 'entity_adj_list']
252 | objects = []
253 | for i in range(len(names)):
254 | with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
255 | if sys.version_info > (3, 0):
256 | objects.append(pkl.load(f, encoding='latin1'))
257 | else:
258 | objects.append(pkl.load(f))
259 |
260 | x, y, tx, ty, allx, ally, adj, word_entity_adj, entity_adj_list = tuple(objects)
261 | print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
262 |
263 | labels = np.vstack((ally, ty))
264 | print(len(labels))
265 |
266 | train_idx_orig = parse_index_file(
267 | "data/{}.train.index".format(dataset_str))
268 | train_size = len(train_idx_orig)
269 |
270 | val_size = train_size - x.shape[0]
271 | test_size = tx.shape[0]
272 |
273 | idx_train = range(len(y))
274 | idx_val = range(len(y), len(y) + val_size)
275 | idx_test = range(allx.shape[0], allx.shape[0] + test_size)
276 |
277 | train_mask = sample_mask(idx_train, labels.shape[0])
278 | val_mask = sample_mask(idx_val, labels.shape[0])
279 | test_mask = sample_mask(idx_test, labels.shape[0])
280 |
281 | y_train = np.zeros(labels.shape)
282 | y_val = np.zeros(labels.shape)
283 | y_test = np.zeros(labels.shape)
284 | y_train[train_mask, :] = labels[train_mask, :]
285 | y_val[val_mask, :] = labels[val_mask, :]
286 | y_test[test_mask, :] = labels[test_mask, :]
287 | print(y_train.shape)
288 |
289 | return adj, word_entity_adj, entity_adj_list, y_train, y_val, y_test, train_mask, val_mask, test_mask, train_size, test_size
290 |
291 | def sparse_to_tuple(sparse_mx):
292 | """Convert sparse matrix to tuple representation."""
293 | def to_tuple(mx):
294 | if not sp.isspmatrix_coo(mx):
295 | mx = mx.tocoo()
296 | coords = np.vstack((mx.row, mx.col)).transpose()
297 | values = mx.data
298 | shape = mx.shape
299 | return coords, values, shape
300 |
301 | if isinstance(sparse_mx, list):
302 |
303 | for i in range(len(sparse_mx)):
304 | sparse_mx[i] = to_tuple(sparse_mx[i])
305 | else:
306 | sparse_mx = to_tuple(sparse_mx)
307 |
308 | return sparse_mx
309 |
310 | def preprocess_features(features):
311 | """Row-normalize feature matrix and convert to tuple representation"""
312 | rowsum = np.array(features.sum(1))
313 | r_inv = np.power(rowsum, -1).flatten()
314 | r_inv[np.isinf(r_inv)] = 0.
315 | r_mat_inv = sp.diags(r_inv)
316 | features = r_mat_inv.dot(features)
317 | return sparse_to_tuple(features)
318 |
319 |
320 | def normalize_adj(adj, symmetric=True):
321 | if symmetric:
322 | d = sp.diags(np.power(np.array(adj.sum(1)), -0.5).flatten())
323 | a_norm = adj.dot(d).transpose().dot(d).tocsr()
324 | else:
325 | d = sp.diags(np.power(np.array(adj.sum(1)), -1).flatten())
326 | a_norm = d.dot(adj).tocsr()
327 | return a_norm
328 |
329 | def preprocess_adj(adj):
330 | """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
331 | adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0]))
332 | return sparse_to_tuple(adj_normalized)
333 |
334 | def preprocess_graph(adj, symmetric=True):
335 | # this function has bugs, return none, decagon defines and do this immediatly. here we load from pkl
336 | adj = sp.coo_matrix(adj)
337 | if adj.shape[0] == adj.shape[1]:
338 | if symmetric == True:
339 | adj_ = adj + sp.eye(adj.shape[0])
340 | rowsum = np.array(adj_.sum(1))
341 | degree_inv_sqrt = np.power(rowsum, -0.5).flatten()
342 | degree_inv_sqrt[np.isinf(degree_inv_sqrt)] = 0.
343 | degree_mat_inv_sqrt = sp.diags(degree_inv_sqrt)
344 | adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
345 | else:
346 | degree_inv_sqrt = np.power(np.array(adj.sum(1)), -1).flatten()
347 | degree_inv_sqrt[np.isinf(degree_inv_sqrt)] = 0.
348 | degree_mat_inv_sqrt = sp.diags(degree_inv_sqrt)
349 | adj_normalized = degree_mat_inv_sqrt.dot(adj).tocsr()
350 | else:
351 | rowsum = np.array(adj.sum(1))
352 | rowdegree_inv = np.power(rowsum, -0.5).flatten()
353 | rowdegree_inv[np.isinf(rowdegree_inv)] = 0.
354 | rowdegree_mat_inv = sp.diags(rowdegree_inv)
355 |
356 | colsum = np.array(adj.sum(0))
357 | coldegree_inv = np.power(colsum, -0.5).flatten()
358 | coldegree_inv[np.isinf(coldegree_inv)] = 0.
359 | coldegree_mat_inv = sp.diags(coldegree_inv)
360 |
361 | adj_normalized = rowdegree_mat_inv.dot(adj).dot(coldegree_mat_inv).tocoo()
362 | return sparse_to_tuple(adj_normalized)
363 |
364 | def construct_feed_dict(features, support, labels, labels_mask, placeholders):
365 | """Construct feed dictionary."""
366 | feed_dict = dict()
367 | feed_dict.update({placeholders['labels']: labels})
368 | feed_dict.update({placeholders['labels_mask']: labels_mask})
369 | feed_dict.update({placeholders['features']: features})
370 | feed_dict.update({placeholders['support'][i]: support[i]
371 | for i in range(len(support))})
372 | feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
373 | return feed_dict
374 |
375 | def build_feed_dict(labels, labels_mask, adj, edge_types, feat, placeholders):
376 | """Construct feed dictionary."""
377 | feed_dict = dict()
378 | feed_dict.update({
379 | placeholders['adj_mats_%d,%d,%d' % (i,j,k)]: adj[i,j][k]
380 | for i, j in edge_types for k in range(edge_types[i,j])})
381 | #print(adj[1,1][0])
382 | feed_dict.update({placeholders['feat_%d' % i]: feat[i] for i, _ in edge_types})
383 | feed_dict.update({placeholders['labels']: labels})
384 | feed_dict.update({placeholders['labels_mask']: labels_mask})
385 | return feed_dict
386 |
387 | def chebyshev_polynomials(adj, k):
388 | """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
389 | print("Calculating Chebyshev polynomials up to order {}...".format(k))
390 |
391 | adj_normalized = normalize_adj(adj)
392 | laplacian = sp.eye(adj.shape[0]) - adj_normalized
393 | largest_eigval, _ = eigsh(laplacian, 1, which='LM')
394 | scaled_laplacian = (
395 | 2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0])
396 |
397 | t_k = list()
398 | t_k.append(sp.eye(adj.shape[0]))
399 | t_k.append(scaled_laplacian)
400 |
401 | def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
402 | s_lap = sp.csr_matrix(scaled_lap, copy=True)
403 | return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two
404 |
405 | for i in range(2, k+1):
406 | t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian))
407 |
408 | return sparse_to_tuple(t_k)
409 |
410 |
411 | def loadWord2Vec(filename):
412 | """Read Word Vectors"""
413 | vocab = []
414 | embd = []
415 | word_vector_map = {}
416 | file = open(filename, 'r')
417 | for line in file.readlines():
418 | row = line.strip().split(' ')
419 | if(len(row) > 2):
420 | vocab.append(row[0])
421 | vector = row[1:]
422 | length = len(vector)
423 | for i in range(length):
424 | vector[i] = float(vector[i])
425 | embd.append(vector)
426 | word_vector_map[row[0]] = vector
427 | print('Loaded Word Vectors!')
428 | file.close()
429 | return vocab, embd, word_vector_map
430 |
431 | def clean_str(string):
432 | """
433 | Tokenization/string cleaning for all datasets except for SST.
434 | Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
435 | """
436 | string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
437 | string = re.sub(r"\'s", " \'s", string)
438 | string = re.sub(r"\'ve", " \'ve", string)
439 | string = re.sub(r"n\'t", " n\'t", string)
440 | string = re.sub(r"\'re", " \'re", string)
441 | string = re.sub(r"\'d", " \'d", string)
442 | string = re.sub(r"\'ll", " \'ll", string)
443 | string = re.sub(r",", " , ", string)
444 | string = re.sub(r"!", " ! ", string)
445 | string = re.sub(r"\(", " \( ", string)
446 | string = re.sub(r"\)", " \) ", string)
447 | string = re.sub(r"\?", " \? ", string)
448 | string = re.sub(r"\s{2,}", " ", string)
449 | return string.strip().lower()
450 |
451 | def word_synonyms(word):
452 | '''
453 | look up synonyms given a word
454 | '''
455 | synonyms = []
456 | for syn in wn.synsets(word):
457 | for l in syn.lemmas():
458 | synonyms.append(l.name())
459 | return synonyms
460 |
461 | def synonimize(word, pos=None):
462 | """ Get synonyms of the word / lemma """
463 | try:
464 | # map part of speech tags to wordnet
465 | pos = {'NN': wn.NOUN,'JJ':wn.ADJ,'VB':wn.VERB,'RB':wn.ADV}[pos[:2]]
466 | except:
467 | # or just return the original word
468 | print("OUCH {} {}".format(word, pos))
469 | return [word]
470 |
471 | synsets = wn.synsets(word, pos)
472 | synonyms = []
473 | for synset in synsets:
474 | for sim in synset.similar_tos():
475 | synonyms += sim.lemma_names()
476 |
477 | # return list of synonyms or just the original word
478 | return synonyms or [word]
479 |
480 |
481 | def wordnet_id_synset_dict():
482 | '''
483 | synset to number mapping
484 | '''
485 |
486 | f = open('data/WN18/wordnet-mlj12-definitions.txt', 'r')
487 | lines = f.readlines()
488 | f.close()
489 |
490 | synset_id_dict = {}
491 |
492 | count = 0
493 | for line in lines:
494 | temp = line.strip().split('\t')
495 | #print(temp[0], temp[1])
496 | # n, v, a, r
497 | if temp[1].find('_NN_') != -1 or temp[1].find('_JJ_') != -1 or temp[1].find('_VB_') != -1 or temp[1].find('_RB_') != -1:
498 | count += 1
499 | wordnet_str = temp[1][2:]
500 | num_start = wordnet_str.rfind('_')
501 | num = wordnet_str[num_start + 1:]
502 | if len(num) == 1:
503 | num = '0' + num
504 | # print(num)
505 | pos_start = wordnet_str[:num_start].rfind('_')
506 | pos = wordnet_str[:num_start][pos_start + 1:]
507 | if pos == 'NN':
508 | pos = 'n'
509 | elif pos == 'JJ':
510 | pos = 'a'
511 | elif pos == 'VB':
512 | pos = 'v'
513 | elif pos == 'RB':
514 | pos = 'r'
515 | # print(pos)
516 | name = wordnet_str[:pos_start]
517 | # print(name)
518 | new_str = name + '.' + pos + '.' + num
519 | # print(new_str, temp[0])
520 | synset_id_dict[new_str] = temp[0]
521 |
522 | # print(wordnet_str)
523 | # if wordnet_str.find('10') != -1:
524 | # print(wordnet_str, num, pos, name)
525 | else:
526 | print(temp[1])
527 | print(count)
528 |
529 | return synset_id_dict
530 |
531 |
532 | def wordnet_id_num_dict():
533 | ''' number to id mapping'''
534 |
535 | f = open('data/WN18/entity2id.txt', 'r')
536 | lines = f.readlines()
537 | f.close()
538 |
539 | id_num_dict = {}
540 | for line in lines:
541 | temp = line.strip().split('\t')
542 | if len(temp) == 2:
543 | #print(temp[0], temp[1])
544 | id_num_dict[temp[0]] = temp[1]
545 | return id_num_dict
546 |
547 | def wordnet_defs():
548 | ''' id to definitions '''
549 |
550 | f = open('data/WN18/wordnet-mlj12-definitions.txt', 'r')
551 | lines = f.readlines()
552 | f.close()
553 |
554 | number_def_dict = {}
555 | for line in lines:
556 | temp = line.strip().split('\t')
557 |
558 | number_def_dict[temp[0]] = temp[2]
559 | id_num_dict = wordnet_id_num_dict()
560 |
561 | id_def_dict = {}
562 | for num in id_num_dict:
563 | entity_id = id_num_dict[num]
564 | definition = number_def_dict[num]
565 | id_def_dict[entity_id] = definition
566 |
567 | def_docs = []
568 | for i in range(len(id_def_dict)):
569 | def_docs.append(id_def_dict[str(i)])
570 |
571 | tfidf_vec = TfidfVectorizer()
572 | tfidf_matrix = tfidf_vec.fit_transform(def_docs)
573 | return tfidf_matrix
574 |
575 |
576 | def read_triples(file_path):
577 | '''read train, val or test triples'''
578 | f = open(file_path, 'r')
579 | lines = f.readlines()
580 | f.close()
581 |
582 | triple_list = []
583 | for line in lines:
584 | line = line.strip()
585 | temp = line.split()
586 | if len(temp) == 3:
587 | #print(temp[0], temp[1], temp[2])
588 | triple_list.append(line)
589 |
590 | return triple_list
--------------------------------------------------------------------------------