├── LICENSE
├── README.md
├── _gitattributes
├── _gitignore
├── data
├── __init__.py
├── coco.py
├── coco_labels.txt
├── config.py
├── example.jpg
├── scripts
│ ├── COCO2014.sh
│ ├── VOC2007.sh
│ └── VOC2012.sh
└── voc0712.py
├── demo
├── __init__.py
├── demo.ipynb
└── live.py
├── doc
├── SSD.jpg
├── detection_example.png
├── detection_example2.png
├── detection_examples.png
└── ssd.png
├── eval_refinedet.py
├── eval_refinedet.sh
├── layers
├── __init__.py
├── box_utils.py
├── functions
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-36.pyc
│ │ ├── detection.cpython-36.pyc
│ │ ├── detection_refinedet.cpython-36.pyc
│ │ └── prior_box.cpython-36.pyc
│ ├── detection.py
│ ├── detection_refinedet.py
│ └── prior_box.py
└── modules
│ ├── __init__.py
│ ├── __pycache__
│ ├── __init__.cpython-36.pyc
│ ├── l2norm.cpython-36.pyc
│ ├── multibox_loss.cpython-36.pyc
│ └── refinedet_multibox_loss.cpython-36.pyc
│ ├── l2norm.py
│ ├── multibox_loss.py
│ └── refinedet_multibox_loss.py
├── models
└── refinedet.py
├── train_refinedet.py
├── train_refinedet320.sh
├── train_refinedet512.sh
└── utils
├── __init__.py
├── augmentations.py
├── logging.py
└── osutils.py
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2017 Max deGroot, Ellis Brown
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | A higher performance [PyTorch](http://pytorch.org/) implementation of [Single-Shot Refinement Neural Network for Object Detection](https://arxiv.org/abs/1711.06897 ). The official and original Caffe code can be found [here](https://github.com/sfzhang15/RefineDet).
2 |
3 | ### Table of Contents
4 | - Performance
5 | - Installation
6 | - Datasets
7 | - Train
8 | - Evaluate
9 | - Future Work
10 | - Reference
11 |
12 |
13 |
14 |
15 |
16 |
17 | ## Performance
18 |
19 | #### VOC2007 Test
20 |
21 | ##### mAP (*Single Scale Test*)
22 |
23 | | Arch | Paper | Caffe Version | Our PyTorch Version |
24 | |:-:|:-:|:-:|:-:|
25 | | RefineDet320 | 80.0% | 79.52% | 79.81% |
26 | | RefineDet512 | 81.8% | 81.85% | 80.50% |
27 |
28 | ## Installation
29 | - Install [PyTorch](http://pytorch.org/) by selecting your environment on the website and running the appropriate command.
30 | * Note: You should use at least PyTorch0.4.0
31 | - Clone this repository.
32 | * Note: We currently only support Python 3+.
33 | - Then download the dataset by following the [instructions](#datasets) below.
34 | - We now support [Visdom](https://github.com/facebookresearch/visdom) for real-time loss visualization during training!
35 | * To use Visdom in the browser:
36 | ```Shell
37 | # First install Python server and client
38 | pip install visdom
39 | # Start the server (probably in a screen or tmux)
40 | python -m visdom.server
41 | ```
42 | * Then (during training) navigate to http://localhost:8097/ (see the Train section below for training details).
43 | - Note: For training, we currently support [VOC](http://host.robots.ox.ac.uk/pascal/VOC/) and [COCO](http://mscoco.org/), and aim to add [ImageNet](http://www.image-net.org/) support soon.
44 |
45 | ## Datasets
46 | To make things easy, we provide bash scripts to handle the dataset downloads and setup for you. We also provide simple dataset loaders that inherit `torch.utils.data.Dataset`, making them fully compatible with the `torchvision.datasets` [API](http://pytorch.org/docs/torchvision/datasets.html).
47 |
48 |
49 | ### COCO
50 | Microsoft COCO: Common Objects in Context
51 |
52 | ##### Download COCO 2014
53 | ```Shell
54 | # specify a directory for dataset to be downloaded into, else default is ~/data/
55 | sh data/scripts/COCO2014.sh
56 | ```
57 |
58 | ### VOC Dataset
59 | PASCAL VOC: Visual Object Classes
60 |
61 | ##### Download VOC2007 trainval & test
62 | ```Shell
63 | # specify a directory for dataset to be downloaded into, else default is ~/data/
64 | sh data/scripts/VOC2007.sh #
65 | ```
66 |
67 | ##### Download VOC2012 trainval
68 | ```Shell
69 | # specify a directory for dataset to be downloaded into, else default is ~/data/
70 | sh data/scripts/VOC2012.sh #
71 | ```
72 |
73 | ## Training RefineDet
74 | - First download the fc-reduced [VGG-16](https://arxiv.org/abs/1409.1556) PyTorch base network weights at: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
75 | - By default, we assume you have downloaded the file in the `RefineDet.PyTorch/weights` dir:
76 |
77 | ```Shell
78 | mkdir weights
79 | cd weights
80 | wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
81 | ```
82 |
83 | - To train RefineDet320 or RefineDet512 using the train scripts `train_refinedet320.sh` and `train_refinedet512.sh`. You can manually change them as you want.
84 |
85 | ```Shell
86 | ./train_refinedet320.sh #./train_refinedet512.sh
87 | ```
88 |
89 | - Note:
90 | * For training, an NVIDIA GPU is strongly recommended for speed.
91 | * For instructions on Visdom usage/installation, see the Installation section.
92 | * You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see `train_refinedet.py` for options)
93 |
94 | ## Evaluation
95 | To evaluate a trained network:
96 |
97 | ```Shell
98 | ./eval_refinedet.sh
99 | ```
100 |
101 | You can specify the parameters listed in the `eval_refinedet.py` file by flagging them or manually changing them.
102 |
103 | ## TODO
104 | We have accumulated the following to-do list, which we hope to complete in the near future
105 | - Still to come:
106 | * [ ] Support for multi-scale testing
107 |
108 | ## References
109 | - [Original Implementation (CAFFE)](https://github.com/sfzhang15/RefineDet)
110 | - A list of other great SSD ports that were sources of inspiration:
111 | * [amdegroot/ssd.pytorch](https://github.com/amdegroot/ssd.pytorch)
112 | * [lzx1413/PytorchSSD](https://github.com/lzx1413/PytorchSSD)
113 |
--------------------------------------------------------------------------------
/_gitattributes:
--------------------------------------------------------------------------------
1 | *.ipynb linguist-language=Python
2 | .ipynb_checkpoints/* linguist-documentation
3 | dev.ipynb linguist-documentation
4 |
--------------------------------------------------------------------------------
/_gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 | local_settings.py
55 |
56 | # Flask stuff:
57 | instance/
58 | .webassets-cache
59 |
60 | # Scrapy stuff:
61 | .scrapy
62 |
63 | # Sphinx documentation
64 | docs/_build/
65 |
66 | # PyBuilder
67 | target/
68 |
69 | # IPython Notebook
70 | .ipynb_checkpoints
71 |
72 | # pyenv
73 | .python-version
74 |
75 | # celery beat schedule file
76 | celerybeat-schedule
77 |
78 | # dotenv
79 | .env
80 |
81 | # virtualenv
82 | venv/
83 | ENV/
84 |
85 | # Spyder project settings
86 | .spyderproject
87 |
88 | # Rope project settings
89 | .ropeproject
90 |
91 | # atom remote-sync package
92 | .remote-sync.json
93 |
94 | # weights
95 | weights/
96 |
97 | #DS_Store
98 | .DS_Store
99 |
100 | # dev stuff
101 | eval/
102 | eval.ipynb
103 | dev.ipynb
104 | .vscode/
105 |
106 | # not ready
107 | videos/
108 | templates/
109 | data/ssd_dataloader.py
110 | data/datasets/
111 | doc/visualize.py
112 | read_results.py
113 | ssd300_120000/
114 | demos/live
115 | webdemo.py
116 | test_data_aug.py
117 |
118 | # attributes
119 |
120 | # pycharm
121 | .idea/
122 |
123 | # temp checkout soln
124 | data/datasets/
125 | data/ssd_dataloader.py
126 |
127 | # pylint
128 | .pylintrc
--------------------------------------------------------------------------------
/data/__init__.py:
--------------------------------------------------------------------------------
1 | from .voc0712 import VOCDetection, VOCAnnotationTransform, VOC_CLASSES, VOC_ROOT
2 |
3 | #from .coco import COCODetection, COCOAnnotationTransform, COCO_CLASSES, COCO_ROOT, get_label_map
4 | from .config import *
5 | import torch
6 | import cv2
7 | import numpy as np
8 |
9 | def detection_collate(batch):
10 | """Custom collate fn for dealing with batches of images that have a different
11 | number of associated object annotations (bounding boxes).
12 |
13 | Arguments:
14 | batch: (tuple) A tuple of tensor images and lists of annotations
15 |
16 | Return:
17 | A tuple containing:
18 | 1) (tensor) batch of images stacked on their 0 dim
19 | 2) (list of tensors) annotations for a given image are stacked on
20 | 0 dim
21 | """
22 | targets = []
23 | imgs = []
24 | for sample in batch:
25 | imgs.append(sample[0])
26 | targets.append(torch.FloatTensor(sample[1]))
27 | return torch.stack(imgs, 0), targets
28 |
29 |
30 | def base_transform(image, size, mean):
31 | x = cv2.resize(image, (size, size)).astype(np.float32)
32 | x -= mean
33 | x = x.astype(np.float32)
34 | return x
35 |
36 |
37 | class BaseTransform:
38 | def __init__(self, size, mean):
39 | self.size = size
40 | self.mean = np.array(mean, dtype=np.float32)
41 |
42 | def __call__(self, image, boxes=None, labels=None):
43 | return base_transform(image, self.size, self.mean), boxes, labels
44 |
--------------------------------------------------------------------------------
/data/coco.py:
--------------------------------------------------------------------------------
1 | from .config import HOME
2 | import os
3 | import os.path as osp
4 | import sys
5 | import torch
6 | import torch.utils.data as data
7 | import torchvision.transforms as transforms
8 | import cv2
9 | import numpy as np
10 |
11 | COCO_ROOT = osp.join(HOME, 'data/coco/')
12 | IMAGES = 'images'
13 | ANNOTATIONS = 'annotations'
14 | COCO_API = 'PythonAPI'
15 | INSTANCES_SET = 'instances_{}.json'
16 | COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
17 | 'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant',
18 | 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
19 | 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
20 | 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
21 | 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
22 | 'kite', 'baseball bat', 'baseball glove', 'skateboard',
23 | 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
24 | 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
25 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
26 | 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
27 | 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
28 | 'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink',
29 | 'refrigerator', 'book', 'clock', 'vase', 'scissors',
30 | 'teddy bear', 'hair drier', 'toothbrush')
31 |
32 |
33 | def get_label_map(label_file):
34 | label_map = {}
35 | labels = open(label_file, 'r')
36 | for line in labels:
37 | ids = line.split(',')
38 | label_map[int(ids[0])] = int(ids[1])
39 | return label_map
40 |
41 |
42 | class COCOAnnotationTransform(object):
43 | """Transforms a COCO annotation into a Tensor of bbox coords and label index
44 | Initilized with a dictionary lookup of classnames to indexes
45 | """
46 | def __init__(self):
47 | self.label_map = get_label_map(osp.join(COCO_ROOT, 'coco_labels.txt'))
48 |
49 | def __call__(self, target, width, height):
50 | """
51 | Args:
52 | target (dict): COCO target json annotation as a python dict
53 | height (int): height
54 | width (int): width
55 | Returns:
56 | a list containing lists of bounding boxes [bbox coords, class idx]
57 | """
58 | scale = np.array([width, height, width, height])
59 | res = []
60 | for obj in target:
61 | if 'bbox' in obj:
62 | bbox = obj['bbox']
63 | bbox[2] += bbox[0]
64 | bbox[3] += bbox[1]
65 | label_idx = self.label_map[obj['category_id']] - 1
66 | final_box = list(np.array(bbox)/scale)
67 | final_box.append(label_idx)
68 | res += [final_box] # [xmin, ymin, xmax, ymax, label_idx]
69 | else:
70 | print("no bbox problem!")
71 |
72 | return res # [[xmin, ymin, xmax, ymax, label_idx], ... ]
73 |
74 |
75 | class COCODetection(data.Dataset):
76 | """`MS Coco Detection `_ Dataset.
77 | Args:
78 | root (string): Root directory where images are downloaded to.
79 | set_name (string): Name of the specific set of COCO images.
80 | transform (callable, optional): A function/transform that augments the
81 | raw images`
82 | target_transform (callable, optional): A function/transform that takes
83 | in the target (bbox) and transforms it.
84 | """
85 |
86 | def __init__(self, root, image_set='trainval35k', transform=None,
87 | target_transform=COCOAnnotationTransform(), dataset_name='MS COCO'):
88 | sys.path.append(osp.join(root, COCO_API))
89 | from pycocotools.coco import COCO
90 | self.root = osp.join(root, IMAGES, image_set)
91 | self.coco = COCO(osp.join(root, ANNOTATIONS,
92 | INSTANCES_SET.format(image_set)))
93 | self.ids = list(self.coco.imgToAnns.keys())
94 | self.transform = transform
95 | self.target_transform = target_transform
96 | self.name = dataset_name
97 |
98 | def __getitem__(self, index):
99 | """
100 | Args:
101 | index (int): Index
102 | Returns:
103 | tuple: Tuple (image, target).
104 | target is the object returned by ``coco.loadAnns``.
105 | """
106 | im, gt, h, w = self.pull_item(index)
107 | return im, gt
108 |
109 | def __len__(self):
110 | return len(self.ids)
111 |
112 | def pull_item(self, index):
113 | """
114 | Args:
115 | index (int): Index
116 | Returns:
117 | tuple: Tuple (image, target, height, width).
118 | target is the object returned by ``coco.loadAnns``.
119 | """
120 | img_id = self.ids[index]
121 | target = self.coco.imgToAnns[img_id]
122 | ann_ids = self.coco.getAnnIds(imgIds=img_id)
123 |
124 | target = self.coco.loadAnns(ann_ids)
125 | path = osp.join(self.root, self.coco.loadImgs(img_id)[0]['file_name'])
126 | assert osp.exists(path), 'Image path does not exist: {}'.format(path)
127 | img = cv2.imread(osp.join(self.root, path))
128 | height, width, _ = img.shape
129 | if self.target_transform is not None:
130 | target = self.target_transform(target, width, height)
131 | if self.transform is not None:
132 | target = np.array(target)
133 | img, boxes, labels = self.transform(img, target[:, :4],
134 | target[:, 4])
135 | # to rgb
136 | img = img[:, :, (2, 1, 0)]
137 |
138 | target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
139 | return torch.from_numpy(img).permute(2, 0, 1), target, height, width
140 |
141 | def pull_image(self, index):
142 | '''Returns the original image object at index in PIL form
143 |
144 | Note: not using self.__getitem__(), as any transformations passed in
145 | could mess up this functionality.
146 |
147 | Argument:
148 | index (int): index of img to show
149 | Return:
150 | cv2 img
151 | '''
152 | img_id = self.ids[index]
153 | path = self.coco.loadImgs(img_id)[0]['file_name']
154 | return cv2.imread(osp.join(self.root, path), cv2.IMREAD_COLOR)
155 |
156 | def pull_anno(self, index):
157 | '''Returns the original annotation of image at index
158 |
159 | Note: not using self.__getitem__(), as any transformations passed in
160 | could mess up this functionality.
161 |
162 | Argument:
163 | index (int): index of img to get annotation of
164 | Return:
165 | list: [img_id, [(label, bbox coords),...]]
166 | eg: ('001718', [('dog', (96, 13, 438, 332))])
167 | '''
168 | img_id = self.ids[index]
169 | ann_ids = self.coco.getAnnIds(imgIds=img_id)
170 | return self.coco.loadAnns(ann_ids)
171 |
172 | def __repr__(self):
173 | fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
174 | fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
175 | fmt_str += ' Root Location: {}\n'.format(self.root)
176 | tmp = ' Transforms (if any): '
177 | fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
178 | tmp = ' Target Transforms (if any): '
179 | fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
180 | return fmt_str
181 |
--------------------------------------------------------------------------------
/data/coco_labels.txt:
--------------------------------------------------------------------------------
1 | 1,1,person
2 | 2,2,bicycle
3 | 3,3,car
4 | 4,4,motorcycle
5 | 5,5,airplane
6 | 6,6,bus
7 | 7,7,train
8 | 8,8,truck
9 | 9,9,boat
10 | 10,10,traffic light
11 | 11,11,fire hydrant
12 | 13,12,stop sign
13 | 14,13,parking meter
14 | 15,14,bench
15 | 16,15,bird
16 | 17,16,cat
17 | 18,17,dog
18 | 19,18,horse
19 | 20,19,sheep
20 | 21,20,cow
21 | 22,21,elephant
22 | 23,22,bear
23 | 24,23,zebra
24 | 25,24,giraffe
25 | 27,25,backpack
26 | 28,26,umbrella
27 | 31,27,handbag
28 | 32,28,tie
29 | 33,29,suitcase
30 | 34,30,frisbee
31 | 35,31,skis
32 | 36,32,snowboard
33 | 37,33,sports ball
34 | 38,34,kite
35 | 39,35,baseball bat
36 | 40,36,baseball glove
37 | 41,37,skateboard
38 | 42,38,surfboard
39 | 43,39,tennis racket
40 | 44,40,bottle
41 | 46,41,wine glass
42 | 47,42,cup
43 | 48,43,fork
44 | 49,44,knife
45 | 50,45,spoon
46 | 51,46,bowl
47 | 52,47,banana
48 | 53,48,apple
49 | 54,49,sandwich
50 | 55,50,orange
51 | 56,51,broccoli
52 | 57,52,carrot
53 | 58,53,hot dog
54 | 59,54,pizza
55 | 60,55,donut
56 | 61,56,cake
57 | 62,57,chair
58 | 63,58,couch
59 | 64,59,potted plant
60 | 65,60,bed
61 | 67,61,dining table
62 | 70,62,toilet
63 | 72,63,tv
64 | 73,64,laptop
65 | 74,65,mouse
66 | 75,66,remote
67 | 76,67,keyboard
68 | 77,68,cell phone
69 | 78,69,microwave
70 | 79,70,oven
71 | 80,71,toaster
72 | 81,72,sink
73 | 82,73,refrigerator
74 | 84,74,book
75 | 85,75,clock
76 | 86,76,vase
77 | 87,77,scissors
78 | 88,78,teddy bear
79 | 89,79,hair drier
80 | 90,80,toothbrush
81 |
--------------------------------------------------------------------------------
/data/config.py:
--------------------------------------------------------------------------------
1 | # config.py
2 | import os.path
3 |
4 | # gets home dir cross platform
5 | # HOME = os.path.expanduser("~")
6 | HOME = '/data'
7 |
8 | # for making bounding boxes pretty
9 | COLORS = ((255, 0, 0, 128), (0, 255, 0, 128), (0, 0, 255, 128),
10 | (0, 255, 255, 128), (255, 0, 255, 128), (255, 255, 0, 128))
11 |
12 | MEANS = (104, 117, 123)
13 |
14 | # SSD CONFIGS
15 | voc = {
16 | '300': {
17 | 'num_classes': 21,
18 | 'lr_steps': (80000, 100000, 120000),
19 | 'max_iter': 120000,
20 | 'feature_maps': [38, 19, 10, 5, 3, 1],
21 | 'min_dim': 300,
22 | 'steps': [8, 16, 32, 64, 100, 300],
23 | 'min_sizes': [30, 60, 111, 162, 213, 264],
24 | 'max_sizes': [60, 111, 162, 213, 264, 315],
25 | 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
26 | 'variance': [0.1, 0.2],
27 | 'clip': True,
28 | 'name': 'VOC_300',
29 | },
30 | '512': {
31 | 'num_classes': 21,
32 | 'lr_steps': (80000, 100000, 120000),
33 | 'max_iter': 120000,
34 | 'feature_maps': [64, 32, 16, 8, 4, 2, 1],
35 | 'min_dim': 512,
36 | 'steps': [8, 16, 32, 64, 128, 256, 512],
37 | 'min_sizes': [20, 51, 133, 215, 296, 378, 460],
38 | 'max_sizes': [51, 133, 215, 296, 378, 460, 542],
39 | 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]],
40 | 'variance': [0.1, 0.2],
41 | 'clip': True,
42 | 'name': 'VOC_512',
43 | }
44 | }
45 |
46 | coco = {
47 | 'num_classes': 201,
48 | 'lr_steps': (280000, 360000, 400000),
49 | 'max_iter': 400000,
50 | 'feature_maps': [38, 19, 10, 5, 3, 1],
51 | 'min_dim': 300,
52 | 'steps': [8, 16, 32, 64, 100, 300],
53 | 'min_sizes': [21, 45, 99, 153, 207, 261],
54 | 'max_sizes': [45, 99, 153, 207, 261, 315],
55 | 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
56 | 'variance': [0.1, 0.2],
57 | 'clip': True,
58 | 'name': 'COCO',
59 | }
60 |
61 | # RefineDet CONFIGS
62 | voc_refinedet = {
63 | '320': {
64 | 'num_classes': 21,
65 | 'lr_steps': (80000, 100000, 120000),
66 | 'max_iter': 120000,
67 | 'feature_maps': [40, 20, 10, 5],
68 | 'min_dim': 320,
69 | 'steps': [8, 16, 32, 64],
70 | 'min_sizes': [32, 64, 128, 256],
71 | 'max_sizes': [],
72 | 'aspect_ratios': [[2], [2], [2], [2]],
73 | 'variance': [0.1, 0.2],
74 | 'clip': True,
75 | 'name': 'RefineDet_VOC_320',
76 | },
77 | '512': {
78 | 'num_classes': 21,
79 | 'lr_steps': (80000, 100000, 120000),
80 | 'max_iter': 120000,
81 | 'feature_maps': [64, 32, 16, 8],
82 | 'min_dim': 512,
83 | 'steps': [8, 16, 32, 64],
84 | 'min_sizes': [32, 64, 128, 256],
85 | 'max_sizes': [],
86 | 'aspect_ratios': [[2], [2], [2], [2]],
87 | 'variance': [0.1, 0.2],
88 | 'clip': True,
89 | 'name': 'RefineDet_VOC_320',
90 | }
91 | }
92 |
93 | coco_refinedet = {
94 | 'num_classes': 201,
95 | 'lr_steps': (280000, 360000, 400000),
96 | 'max_iter': 400000,
97 | 'feature_maps': [38, 19, 10, 5, 3, 1],
98 | 'min_dim': 300,
99 | 'steps': [8, 16, 32, 64, 100, 300],
100 | 'min_sizes': [21, 45, 99, 153, 207, 261],
101 | 'max_sizes': [45, 99, 153, 207, 261, 315],
102 | 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
103 | 'variance': [0.1, 0.2],
104 | 'clip': True,
105 | 'name': 'COCO',
106 | }
107 |
--------------------------------------------------------------------------------
/data/example.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/data/example.jpg
--------------------------------------------------------------------------------
/data/scripts/COCO2014.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | start=`date +%s`
4 |
5 | # handle optional download dir
6 | if [ -z "$1" ]
7 | then
8 | # navigate to ~/data
9 | echo "navigating to ~/data/ ..."
10 | mkdir -p ~/data
11 | cd ~/data/
12 | mkdir -p ./coco
13 | cd ./coco
14 | mkdir -p ./images
15 | mkdir -p ./annotations
16 | else
17 | # check if specified dir is valid
18 | if [ ! -d $1 ]; then
19 | echo $1 " is not a valid directory"
20 | exit 0
21 | fi
22 | echo "navigating to " $1 " ..."
23 | cd $1
24 | fi
25 |
26 | if [ ! -d images ]
27 | then
28 | mkdir -p ./images
29 | fi
30 |
31 | # Download the image data.
32 | cd ./images
33 | echo "Downloading MSCOCO train images ..."
34 | curl -LO http://images.cocodataset.org/zips/train2014.zip
35 | echo "Downloading MSCOCO val images ..."
36 | curl -LO http://images.cocodataset.org/zips/val2014.zip
37 |
38 | cd ../
39 | if [ ! -d annotations]
40 | then
41 | mkdir -p ./annotations
42 | fi
43 |
44 | # Download the annotation data.
45 | cd ./annotations
46 | echo "Downloading MSCOCO train/val annotations ..."
47 | curl -LO http://images.cocodataset.org/annotations/annotations_trainval2014.zip
48 | echo "Finished downloading. Now extracting ..."
49 |
50 | # Unzip data
51 | echo "Extracting train images ..."
52 | unzip ../images/train2014.zip -d ../images
53 | echo "Extracting val images ..."
54 | unzip ../images/val2014.zip -d ../images
55 | echo "Extracting annotations ..."
56 | unzip ./annotations_trainval2014.zip
57 |
58 | echo "Removing zip files ..."
59 | rm ../images/train2014.zip
60 | rm ../images/val2014.zip
61 | rm ./annotations_trainval2014.zip
62 |
63 | echo "Creating trainval35k dataset..."
64 |
65 | # Download annotations json
66 | echo "Downloading trainval35k annotations from S3"
67 | curl -LO https://s3.amazonaws.com/amdegroot-datasets/instances_trainval35k.json.zip
68 |
69 | # combine train and val
70 | echo "Combining train and val images"
71 | mkdir ../images/trainval35k
72 | cd ../images/train2014
73 | find -maxdepth 1 -name '*.jpg' -exec cp -t ../trainval35k {} + # dir too large for cp
74 | cd ../val2014
75 | find -maxdepth 1 -name '*.jpg' -exec cp -t ../trainval35k {} +
76 |
77 |
78 | end=`date +%s`
79 | runtime=$((end-start))
80 |
81 | echo "Completed in " $runtime " seconds"
82 |
--------------------------------------------------------------------------------
/data/scripts/VOC2007.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Ellis Brown
3 |
4 | start=`date +%s`
5 |
6 | # handle optional download dir
7 | if [ -z "$1" ]
8 | then
9 | # navigate to ~/data
10 | echo "navigating to ~/data/ ..."
11 | mkdir -p ~/data
12 | cd ~/data/
13 | else
14 | # check if is valid directory
15 | if [ ! -d $1 ]; then
16 | echo $1 "is not a valid directory"
17 | exit 0
18 | fi
19 | echo "navigating to" $1 "..."
20 | cd $1
21 | fi
22 |
23 | echo "Downloading VOC2007 trainval ..."
24 | # Download the data.
25 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
26 | echo "Downloading VOC2007 test data ..."
27 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
28 | echo "Done downloading."
29 |
30 | # Extract data
31 | echo "Extracting trainval ..."
32 | tar -xvf VOCtrainval_06-Nov-2007.tar
33 | echo "Extracting test ..."
34 | tar -xvf VOCtest_06-Nov-2007.tar
35 | echo "removing tars ..."
36 | rm VOCtrainval_06-Nov-2007.tar
37 | rm VOCtest_06-Nov-2007.tar
38 |
39 | end=`date +%s`
40 | runtime=$((end-start))
41 |
42 | echo "Completed in" $runtime "seconds"
--------------------------------------------------------------------------------
/data/scripts/VOC2012.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Ellis Brown
3 |
4 | start=`date +%s`
5 |
6 | # handle optional download dir
7 | if [ -z "$1" ]
8 | then
9 | # navigate to ~/data
10 | echo "navigating to ~/data/ ..."
11 | mkdir -p ~/data
12 | cd ~/data/
13 | else
14 | # check if is valid directory
15 | if [ ! -d $1 ]; then
16 | echo $1 "is not a valid directory"
17 | exit 0
18 | fi
19 | echo "navigating to" $1 "..."
20 | cd $1
21 | fi
22 |
23 | echo "Downloading VOC2012 trainval ..."
24 | # Download the data.
25 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
26 | echo "Done downloading."
27 |
28 |
29 | # Extract data
30 | echo "Extracting trainval ..."
31 | tar -xvf VOCtrainval_11-May-2012.tar
32 | echo "removing tar ..."
33 | rm VOCtrainval_11-May-2012.tar
34 |
35 | end=`date +%s`
36 | runtime=$((end-start))
37 |
38 | echo "Completed in" $runtime "seconds"
--------------------------------------------------------------------------------
/data/voc0712.py:
--------------------------------------------------------------------------------
1 | """VOC Dataset Classes
2 |
3 | Original author: Francisco Massa
4 | https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py
5 |
6 | Updated by: Ellis Brown, Max deGroot
7 | """
8 | from .config import HOME
9 | import os.path as osp
10 | import sys
11 | import torch
12 | import torch.utils.data as data
13 | import cv2
14 | import numpy as np
15 | if sys.version_info[0] == 2:
16 | import xml.etree.cElementTree as ET
17 | else:
18 | import xml.etree.ElementTree as ET
19 |
20 | VOC_CLASSES = ( # always index 0
21 | 'aeroplane', 'bicycle', 'bird', 'boat',
22 | 'bottle', 'bus', 'car', 'cat', 'chair',
23 | 'cow', 'diningtable', 'dog', 'horse',
24 | 'motorbike', 'person', 'pottedplant',
25 | 'sheep', 'sofa', 'train', 'tvmonitor')
26 |
27 | # note: if you used our download scripts, this should be right
28 | VOC_ROOT = osp.join(HOME, "datasets/VOCdevkit/")
29 |
30 |
31 | class VOCAnnotationTransform(object):
32 | """Transforms a VOC annotation into a Tensor of bbox coords and label index
33 | Initilized with a dictionary lookup of classnames to indexes
34 |
35 | Arguments:
36 | class_to_ind (dict, optional): dictionary lookup of classnames -> indexes
37 | (default: alphabetic indexing of VOC's 20 classes)
38 | keep_difficult (bool, optional): keep difficult instances or not
39 | (default: False)
40 | height (int): height
41 | width (int): width
42 | """
43 |
44 | def __init__(self, class_to_ind=None, keep_difficult=False):
45 | self.class_to_ind = class_to_ind or dict(
46 | zip(VOC_CLASSES, range(len(VOC_CLASSES))))
47 | self.keep_difficult = keep_difficult
48 |
49 | def __call__(self, target, width, height):
50 | """
51 | Arguments:
52 | target (annotation) : the target annotation to be made usable
53 | will be an ET.Element
54 | Returns:
55 | a list containing lists of bounding boxes [bbox coords, class name]
56 | """
57 | res = []
58 | for obj in target.iter('object'):
59 | difficult = int(obj.find('difficult').text) == 1
60 | if not self.keep_difficult and difficult:
61 | continue
62 | name = obj.find('name').text.lower().strip()
63 | bbox = obj.find('bndbox')
64 |
65 | pts = ['xmin', 'ymin', 'xmax', 'ymax']
66 | bndbox = []
67 | for i, pt in enumerate(pts):
68 | cur_pt = int(bbox.find(pt).text) - 1
69 | # scale height or width
70 | cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height
71 | bndbox.append(cur_pt)
72 | label_idx = self.class_to_ind[name]
73 | bndbox.append(label_idx)
74 | res += [bndbox] # [xmin, ymin, xmax, ymax, label_ind]
75 | # img_id = target.find('filename').text[:-4]
76 |
77 | return res # [[xmin, ymin, xmax, ymax, label_ind], ... ]
78 |
79 |
80 | class VOCDetection(data.Dataset):
81 | """VOC Detection Dataset Object
82 |
83 | input is image, target is annotation
84 |
85 | Arguments:
86 | root (string): filepath to VOCdevkit folder.
87 | image_set (string): imageset to use (eg. 'train', 'val', 'test')
88 | transform (callable, optional): transformation to perform on the
89 | input image
90 | target_transform (callable, optional): transformation to perform on the
91 | target `annotation`
92 | (eg: take in caption string, return tensor of word indices)
93 | dataset_name (string, optional): which dataset to load
94 | (default: 'VOC2007')
95 | """
96 |
97 | def __init__(self, root,
98 | image_sets=[('2007', 'trainval'), ('2012', 'trainval')],
99 | transform=None, target_transform=VOCAnnotationTransform(),
100 | dataset_name='VOC0712'):
101 | self.root = root
102 | self.image_set = image_sets
103 | self.transform = transform
104 | self.target_transform = target_transform
105 | self.name = dataset_name
106 | self._annopath = osp.join('%s', 'Annotations', '%s.xml')
107 | self._imgpath = osp.join('%s', 'JPEGImages', '%s.jpg')
108 | self.ids = list()
109 | for (year, name) in image_sets:
110 | rootpath = osp.join(self.root, 'VOC' + year)
111 | for line in open(osp.join(rootpath, 'ImageSets', 'Main', name + '.txt')):
112 | self.ids.append((rootpath, line.strip()))
113 |
114 | def __getitem__(self, index):
115 | im, gt, h, w = self.pull_item(index)
116 |
117 | return im, gt
118 |
119 | def __len__(self):
120 | return len(self.ids)
121 |
122 | def pull_item(self, index):
123 | img_id = self.ids[index]
124 |
125 | target = ET.parse(self._annopath % img_id).getroot()
126 | img = cv2.imread(self._imgpath % img_id)
127 | height, width, channels = img.shape
128 |
129 | if self.target_transform is not None:
130 | target = self.target_transform(target, width, height)
131 |
132 | if self.transform is not None:
133 | target = np.array(target)
134 | img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
135 | # to rgb
136 | img = img[:, :, (2, 1, 0)]
137 | # img = img.transpose(2, 0, 1)
138 | target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
139 | return torch.from_numpy(img).permute(2, 0, 1), target, height, width
140 | # return torch.from_numpy(img), target, height, width
141 |
142 | def pull_image(self, index):
143 | '''Returns the original image object at index in PIL form
144 |
145 | Note: not using self.__getitem__(), as any transformations passed in
146 | could mess up this functionality.
147 |
148 | Argument:
149 | index (int): index of img to show
150 | Return:
151 | PIL img
152 | '''
153 | img_id = self.ids[index]
154 | return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
155 |
156 | def pull_anno(self, index):
157 | '''Returns the original annotation of image at index
158 |
159 | Note: not using self.__getitem__(), as any transformations passed in
160 | could mess up this functionality.
161 |
162 | Argument:
163 | index (int): index of img to get annotation of
164 | Return:
165 | list: [img_id, [(label, bbox coords),...]]
166 | eg: ('001718', [('dog', (96, 13, 438, 332))])
167 | '''
168 | img_id = self.ids[index]
169 | anno = ET.parse(self._annopath % img_id).getroot()
170 | gt = self.target_transform(anno, 1, 1)
171 | return img_id[1], gt
172 |
173 | def pull_tensor(self, index):
174 | '''Returns the original image at an index in tensor form
175 |
176 | Note: not using self.__getitem__(), as any transformations passed in
177 | could mess up this functionality.
178 |
179 | Argument:
180 | index (int): index of img to show
181 | Return:
182 | tensorized version of img, squeezed
183 | '''
184 | return torch.Tensor(self.pull_image(index)).unsqueeze_(0)
185 |
--------------------------------------------------------------------------------
/demo/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/demo/__init__.py
--------------------------------------------------------------------------------
/demo/live.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import torch
3 | from torch.autograd import Variable
4 | import cv2
5 | import time
6 | from imutils.video import FPS, WebcamVideoStream
7 | import argparse
8 |
9 | parser = argparse.ArgumentParser(description='Single Shot MultiBox Detection')
10 | parser.add_argument('--weights', default='weights/ssd_300_VOC0712.pth',
11 | type=str, help='Trained state_dict file path')
12 | parser.add_argument('--cuda', default=False, type=bool,
13 | help='Use cuda in live demo')
14 | args = parser.parse_args()
15 |
16 | COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
17 | FONT = cv2.FONT_HERSHEY_SIMPLEX
18 |
19 |
20 | def cv2_demo(net, transform):
21 | def predict(frame):
22 | height, width = frame.shape[:2]
23 | x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1)
24 | x = Variable(x.unsqueeze(0))
25 | y = net(x) # forward pass
26 | detections = y.data
27 | # scale each detection back up to the image
28 | scale = torch.Tensor([width, height, width, height])
29 | for i in range(detections.size(1)):
30 | j = 0
31 | while detections[0, i, j, 0] >= 0.6:
32 | pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
33 | cv2.rectangle(frame,
34 | (int(pt[0]), int(pt[1])),
35 | (int(pt[2]), int(pt[3])),
36 | COLORS[i % 3], 2)
37 | cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])),
38 | FONT, 2, (255, 255, 255), 2, cv2.LINE_AA)
39 | j += 1
40 | return frame
41 |
42 | # start video stream thread, allow buffer to fill
43 | print("[INFO] starting threaded video stream...")
44 | stream = WebcamVideoStream(src=0).start() # default camera
45 | time.sleep(1.0)
46 | # start fps timer
47 | # loop over frames from the video file stream
48 | while True:
49 | # grab next frame
50 | frame = stream.read()
51 | key = cv2.waitKey(1) & 0xFF
52 |
53 | # update FPS counter
54 | fps.update()
55 | frame = predict(frame)
56 |
57 | # keybindings for display
58 | if key == ord('p'): # pause
59 | while True:
60 | key2 = cv2.waitKey(1) or 0xff
61 | cv2.imshow('frame', frame)
62 | if key2 == ord('p'): # resume
63 | break
64 | cv2.imshow('frame', frame)
65 | if key == 27: # exit
66 | break
67 |
68 |
69 | if __name__ == '__main__':
70 | import sys
71 | from os import path
72 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
73 |
74 | from data import BaseTransform, VOC_CLASSES as labelmap
75 | from ssd import build_ssd
76 |
77 | net = build_ssd('test', 300, 21) # initialize SSD
78 | net.load_state_dict(torch.load(args.weights))
79 | transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0))
80 |
81 | fps = FPS().start()
82 | cv2_demo(net.eval(), transform)
83 | # stop the timer and display FPS information
84 | fps.stop()
85 |
86 | print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
87 | print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
88 |
89 | # cleanup
90 | cv2.destroyAllWindows()
91 | stream.stop()
92 |
--------------------------------------------------------------------------------
/doc/SSD.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/doc/SSD.jpg
--------------------------------------------------------------------------------
/doc/detection_example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/doc/detection_example.png
--------------------------------------------------------------------------------
/doc/detection_example2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/doc/detection_example2.png
--------------------------------------------------------------------------------
/doc/detection_examples.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/doc/detection_examples.png
--------------------------------------------------------------------------------
/doc/ssd.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/doc/ssd.png
--------------------------------------------------------------------------------
/eval_refinedet.py:
--------------------------------------------------------------------------------
1 | """Adapted from:
2 | @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch
3 | @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn
4 | Licensed under The MIT License [see LICENSE for details]
5 | """
6 |
7 | from __future__ import print_function
8 | import torch
9 | import torch.nn as nn
10 | import torch.backends.cudnn as cudnn
11 | from torch.autograd import Variable
12 | from data import VOC_ROOT, VOCAnnotationTransform, VOCDetection, BaseTransform
13 | from data import VOC_CLASSES as labelmap
14 | import torch.utils.data as data
15 |
16 | from models.refinedet import build_refinedet
17 |
18 | import sys
19 | import os
20 | import time
21 | import argparse
22 | import numpy as np
23 | import pickle
24 | import cv2
25 |
26 | if sys.version_info[0] == 2:
27 | import xml.etree.cElementTree as ET
28 | else:
29 | import xml.etree.ElementTree as ET
30 |
31 |
32 | def str2bool(v):
33 | return v.lower() in ("yes", "true", "t", "1")
34 |
35 |
36 | parser = argparse.ArgumentParser(
37 | description='Single Shot MultiBox Detector Evaluation')
38 | parser.add_argument('--trained_model',
39 | default='weights/ssd300_mAP_77.43_v2.pth', type=str,
40 | help='Trained state_dict file path to open')
41 | parser.add_argument('--save_folder', default='eval/', type=str,
42 | help='File path to save results')
43 | parser.add_argument('--confidence_threshold', default=0.01, type=float,
44 | help='Detection confidence threshold')
45 | parser.add_argument('--top_k', default=5, type=int,
46 | help='Further restrict the number of predictions to parse')
47 | parser.add_argument('--cuda', default=True, type=str2bool,
48 | help='Use cuda to train model')
49 | parser.add_argument('--voc_root', default=VOC_ROOT,
50 | help='Location of VOC root directory')
51 | parser.add_argument('--cleanup', default=True, type=str2bool,
52 | help='Cleanup and remove results files following eval')
53 | parser.add_argument('--input_size', default='320', choices=['320', '512'],
54 | type=str, help='RefineDet320 or RefineDet512')
55 |
56 | args = parser.parse_args()
57 |
58 | if not os.path.exists(args.save_folder):
59 | os.mkdir(args.save_folder)
60 |
61 | if torch.cuda.is_available():
62 | if args.cuda:
63 | torch.set_default_tensor_type('torch.cuda.FloatTensor')
64 | if not args.cuda:
65 | print("WARNING: It looks like you have a CUDA device, but aren't using \
66 | CUDA. Run with --cuda for optimal eval speed.")
67 | torch.set_default_tensor_type('torch.FloatTensor')
68 | else:
69 | torch.set_default_tensor_type('torch.FloatTensor')
70 |
71 | annopath = os.path.join(args.voc_root, 'VOC2007', 'Annotations', '%s.xml')
72 | imgpath = os.path.join(args.voc_root, 'VOC2007', 'JPEGImages', '%s.jpg')
73 | imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets',
74 | 'Main', '{:s}.txt')
75 | YEAR = '2007'
76 | devkit_path = args.voc_root + 'VOC' + YEAR
77 | dataset_mean = (104, 117, 123)
78 | set_type = 'test'
79 |
80 |
81 | class Timer(object):
82 | """A simple timer."""
83 | def __init__(self):
84 | self.total_time = 0.
85 | self.calls = 0
86 | self.start_time = 0.
87 | self.diff = 0.
88 | self.average_time = 0.
89 |
90 | def tic(self):
91 | # using time.time instead of time.clock because time time.clock
92 | # does not normalize for multithreading
93 | self.start_time = time.time()
94 |
95 | def toc(self, average=True):
96 | self.diff = time.time() - self.start_time
97 | self.total_time += self.diff
98 | self.calls += 1
99 | self.average_time = self.total_time / self.calls
100 | if average:
101 | return self.average_time
102 | else:
103 | return self.diff
104 |
105 |
106 | def parse_rec(filename):
107 | """ Parse a PASCAL VOC xml file """
108 | tree = ET.parse(filename)
109 | objects = []
110 | for obj in tree.findall('object'):
111 | obj_struct = {}
112 | obj_struct['name'] = obj.find('name').text
113 | obj_struct['pose'] = obj.find('pose').text
114 | obj_struct['truncated'] = int(obj.find('truncated').text)
115 | obj_struct['difficult'] = int(obj.find('difficult').text)
116 | bbox = obj.find('bndbox')
117 | obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1,
118 | int(bbox.find('ymin').text) - 1,
119 | int(bbox.find('xmax').text) - 1,
120 | int(bbox.find('ymax').text) - 1]
121 | objects.append(obj_struct)
122 |
123 | return objects
124 |
125 |
126 | def get_output_dir(name, phase):
127 | """Return the directory where experimental artifacts are placed.
128 | If the directory does not exist, it is created.
129 | A canonical path is built using the name from an imdb and a network
130 | (if not None).
131 | """
132 | filedir = os.path.join(name, phase)
133 | if not os.path.exists(filedir):
134 | os.makedirs(filedir)
135 | return filedir
136 |
137 |
138 | def get_voc_results_file_template(image_set, cls):
139 | # VOCdevkit/VOC2007/results/det_test_aeroplane.txt
140 | filename = 'det_' + image_set + '_%s.txt' % (cls)
141 | filedir = os.path.join(devkit_path, 'results')
142 | if not os.path.exists(filedir):
143 | os.makedirs(filedir)
144 | path = os.path.join(filedir, filename)
145 | return path
146 |
147 |
148 | def write_voc_results_file(all_boxes, dataset):
149 | for cls_ind, cls in enumerate(labelmap):
150 | print('Writing {:s} VOC results file'.format(cls))
151 | filename = get_voc_results_file_template(set_type, cls)
152 | with open(filename, 'wt') as f:
153 | for im_ind, index in enumerate(dataset.ids):
154 | dets = all_boxes[cls_ind+1][im_ind]
155 | if dets == []:
156 | continue
157 | # the VOCdevkit expects 1-based indices
158 | for k in range(dets.shape[0]):
159 | f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
160 | format(index[1], dets[k, -1],
161 | dets[k, 0] + 1, dets[k, 1] + 1,
162 | dets[k, 2] + 1, dets[k, 3] + 1))
163 |
164 |
165 | def do_python_eval(output_dir='output', use_07=True):
166 | cachedir = os.path.join(devkit_path, 'annotations_cache')
167 | aps = []
168 | # The PASCAL VOC metric changed in 2010
169 | use_07_metric = use_07
170 | print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
171 | if not os.path.isdir(output_dir):
172 | os.mkdir(output_dir)
173 | for i, cls in enumerate(labelmap):
174 | filename = get_voc_results_file_template(set_type, cls)
175 | rec, prec, ap = voc_eval(
176 | filename, annopath, imgsetpath.format(set_type), cls, cachedir,
177 | ovthresh=0.5, use_07_metric=use_07_metric)
178 | aps += [ap]
179 | print('AP for {} = {:.4f}'.format(cls, ap))
180 | with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
181 | pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
182 | print('Mean AP = {:.4f}'.format(np.mean(aps)))
183 | print('~~~~~~~~')
184 | print('Results:')
185 | for ap in aps:
186 | print('{:.3f}'.format(ap))
187 | print('{:.3f}'.format(np.mean(aps)))
188 | print('~~~~~~~~')
189 | print('')
190 | print('--------------------------------------------------------------')
191 | print('Results computed with the **unofficial** Python eval code.')
192 | print('Results should be very close to the official MATLAB eval code.')
193 | print('--------------------------------------------------------------')
194 |
195 |
196 | def voc_ap(rec, prec, use_07_metric=True):
197 | """ ap = voc_ap(rec, prec, [use_07_metric])
198 | Compute VOC AP given precision and recall.
199 | If use_07_metric is true, uses the
200 | VOC 07 11 point method (default:True).
201 | """
202 | if use_07_metric:
203 | # 11 point metric
204 | ap = 0.
205 | for t in np.arange(0., 1.1, 0.1):
206 | if np.sum(rec >= t) == 0:
207 | p = 0
208 | else:
209 | p = np.max(prec[rec >= t])
210 | ap = ap + p / 11.
211 | else:
212 | # correct AP calculation
213 | # first append sentinel values at the end
214 | mrec = np.concatenate(([0.], rec, [1.]))
215 | mpre = np.concatenate(([0.], prec, [0.]))
216 |
217 | # compute the precision envelope
218 | for i in range(mpre.size - 1, 0, -1):
219 | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
220 |
221 | # to calculate area under PR curve, look for points
222 | # where X axis (recall) changes value
223 | i = np.where(mrec[1:] != mrec[:-1])[0]
224 |
225 | # and sum (\Delta recall) * prec
226 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
227 | return ap
228 |
229 |
230 | def voc_eval(detpath,
231 | annopath,
232 | imagesetfile,
233 | classname,
234 | cachedir,
235 | ovthresh=0.5,
236 | use_07_metric=True):
237 | """rec, prec, ap = voc_eval(detpath,
238 | annopath,
239 | imagesetfile,
240 | classname,
241 | [ovthresh],
242 | [use_07_metric])
243 | Top level function that does the PASCAL VOC evaluation.
244 | detpath: Path to detections
245 | detpath.format(classname) should produce the detection results file.
246 | annopath: Path to annotations
247 | annopath.format(imagename) should be the xml annotations file.
248 | imagesetfile: Text file containing the list of images, one image per line.
249 | classname: Category name (duh)
250 | cachedir: Directory for caching the annotations
251 | [ovthresh]: Overlap threshold (default = 0.5)
252 | [use_07_metric]: Whether to use VOC07's 11 point AP computation
253 | (default True)
254 | """
255 | # assumes detections are in detpath.format(classname)
256 | # assumes annotations are in annopath.format(imagename)
257 | # assumes imagesetfile is a text file with each line an image name
258 | # cachedir caches the annotations in a pickle file
259 | # first load gt
260 | if not os.path.isdir(cachedir):
261 | os.mkdir(cachedir)
262 | cachefile = os.path.join(cachedir, 'annots.pkl')
263 | # read list of images
264 | with open(imagesetfile, 'r') as f:
265 | lines = f.readlines()
266 | imagenames = [x.strip() for x in lines]
267 | if not os.path.isfile(cachefile):
268 | # load annots
269 | recs = {}
270 | for i, imagename in enumerate(imagenames):
271 | recs[imagename] = parse_rec(annopath % (imagename))
272 | if i % 100 == 0:
273 | print('Reading annotation for {:d}/{:d}'.format(
274 | i + 1, len(imagenames)))
275 | # save
276 | print('Saving cached annotations to {:s}'.format(cachefile))
277 | with open(cachefile, 'wb') as f:
278 | pickle.dump(recs, f)
279 | else:
280 | # load
281 | with open(cachefile, 'rb') as f:
282 | recs = pickle.load(f)
283 |
284 | # extract gt objects for this class
285 | class_recs = {}
286 | npos = 0
287 | for imagename in imagenames:
288 | R = [obj for obj in recs[imagename] if obj['name'] == classname]
289 | bbox = np.array([x['bbox'] for x in R])
290 | difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
291 | det = [False] * len(R)
292 | npos = npos + sum(~difficult)
293 | class_recs[imagename] = {'bbox': bbox,
294 | 'difficult': difficult,
295 | 'det': det}
296 |
297 | # read dets
298 | detfile = detpath.format(classname)
299 | with open(detfile, 'r') as f:
300 | lines = f.readlines()
301 | if any(lines) == 1:
302 |
303 | splitlines = [x.strip().split(' ') for x in lines]
304 | image_ids = [x[0] for x in splitlines]
305 | confidence = np.array([float(x[1]) for x in splitlines])
306 | BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
307 |
308 | # sort by confidence
309 | sorted_ind = np.argsort(-confidence)
310 | sorted_scores = np.sort(-confidence)
311 | BB = BB[sorted_ind, :]
312 | image_ids = [image_ids[x] for x in sorted_ind]
313 |
314 | # go down dets and mark TPs and FPs
315 | nd = len(image_ids)
316 | tp = np.zeros(nd)
317 | fp = np.zeros(nd)
318 | for d in range(nd):
319 | R = class_recs[image_ids[d]]
320 | bb = BB[d, :].astype(float)
321 | ovmax = -np.inf
322 | BBGT = R['bbox'].astype(float)
323 | if BBGT.size > 0:
324 | # compute overlaps
325 | # intersection
326 | ixmin = np.maximum(BBGT[:, 0], bb[0])
327 | iymin = np.maximum(BBGT[:, 1], bb[1])
328 | ixmax = np.minimum(BBGT[:, 2], bb[2])
329 | iymax = np.minimum(BBGT[:, 3], bb[3])
330 | iw = np.maximum(ixmax - ixmin, 0.)
331 | ih = np.maximum(iymax - iymin, 0.)
332 | inters = iw * ih
333 | uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
334 | (BBGT[:, 2] - BBGT[:, 0]) *
335 | (BBGT[:, 3] - BBGT[:, 1]) - inters)
336 | overlaps = inters / uni
337 | ovmax = np.max(overlaps)
338 | jmax = np.argmax(overlaps)
339 |
340 | if ovmax > ovthresh:
341 | if not R['difficult'][jmax]:
342 | if not R['det'][jmax]:
343 | tp[d] = 1.
344 | R['det'][jmax] = 1
345 | else:
346 | fp[d] = 1.
347 | else:
348 | fp[d] = 1.
349 |
350 | # compute precision recall
351 | fp = np.cumsum(fp)
352 | tp = np.cumsum(tp)
353 | rec = tp / float(npos)
354 | # avoid divide by zero in case the first detection matches a difficult
355 | # ground truth
356 | prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
357 | ap = voc_ap(rec, prec, use_07_metric)
358 | else:
359 | rec = -1.
360 | prec = -1.
361 | ap = -1.
362 |
363 | return rec, prec, ap
364 |
365 |
366 | def test_net(save_folder, net, cuda, dataset, transform, top_k,
367 | im_size=300, thresh=0.05):
368 | num_images = len(dataset)
369 | # all detections are collected into:
370 | # all_boxes[cls][image] = N x 5 array of detections in
371 | # (x1, y1, x2, y2, score)
372 | all_boxes = [[[] for _ in range(num_images)]
373 | for _ in range(len(labelmap)+1)]
374 |
375 | # timers
376 | _t = {'im_detect': Timer(), 'misc': Timer()}
377 | output_dir = get_output_dir('ssd300_120000', set_type)
378 | det_file = os.path.join(output_dir, 'detections.pkl')
379 |
380 | for i in range(num_images):
381 | im, gt, h, w = dataset.pull_item(i)
382 |
383 | x = Variable(im.unsqueeze(0))
384 | if args.cuda:
385 | x = x.cuda()
386 | _t['im_detect'].tic()
387 | detections = net(x).data
388 | detect_time = _t['im_detect'].toc(average=False)
389 |
390 | # skip j = 0, because it's the background class
391 | for j in range(1, detections.size(1)):
392 | dets = detections[0, j, :]
393 | mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t()
394 | dets = torch.masked_select(dets, mask).view(-1, 5)
395 | if dets.size(0) == 0:
396 | continue
397 | boxes = dets[:, 1:]
398 | boxes[:, 0] *= w
399 | boxes[:, 2] *= w
400 | boxes[:, 1] *= h
401 | boxes[:, 3] *= h
402 | scores = dets[:, 0].cpu().numpy()
403 | cls_dets = np.hstack((boxes.cpu().numpy(),
404 | scores[:, np.newaxis])).astype(np.float32,
405 | copy=False)
406 | all_boxes[j][i] = cls_dets
407 |
408 | print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1,
409 | num_images, detect_time))
410 |
411 | with open(det_file, 'wb') as f:
412 | pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
413 |
414 | print('Evaluating detections')
415 | evaluate_detections(all_boxes, output_dir, dataset)
416 |
417 |
418 | def evaluate_detections(box_list, output_dir, dataset):
419 | write_voc_results_file(box_list, dataset)
420 | do_python_eval(output_dir)
421 |
422 |
423 | if __name__ == '__main__':
424 | # load net
425 | num_classes = len(labelmap) + 1 # +1 for background
426 | net = build_refinedet('test', int(args.input_size), num_classes) # initialize SSD
427 | net.load_state_dict(torch.load(args.trained_model))
428 | net.eval()
429 | print('Finished loading model!')
430 | # load data
431 | dataset = VOCDetection(args.voc_root, [('2007', set_type)],
432 | BaseTransform(int(args.input_size), dataset_mean),
433 | VOCAnnotationTransform())
434 | if args.cuda:
435 | net = net.cuda()
436 | cudnn.benchmark = True
437 | # evaluation
438 | test_net(args.save_folder, net, args.cuda, dataset,
439 | BaseTransform(net.size, dataset_mean), args.top_k, int(args.input_size),
440 | thresh=args.confidence_threshold)
441 |
--------------------------------------------------------------------------------
/eval_refinedet.sh:
--------------------------------------------------------------------------------
1 | CUDA_VISIBLE_DEVICES=2 python eval_refinedet.py --trained_model weights/refinedet_testVOC.pth --save_folder eval_refinedet/
2 |
--------------------------------------------------------------------------------
/layers/__init__.py:
--------------------------------------------------------------------------------
1 | from .functions import *
2 | from .modules import *
3 |
--------------------------------------------------------------------------------
/layers/box_utils.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 |
4 |
5 | def point_form(boxes):
6 | """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
7 | representation for comparison to point form ground truth data.
8 | Args:
9 | boxes: (tensor) center-size default boxes from priorbox layers.
10 | Return:
11 | boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
12 | """
13 | return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, # xmin, ymin
14 | boxes[:, :2] + boxes[:, 2:]/2), 1) # xmax, ymax
15 |
16 |
17 | def center_size(boxes):
18 | """ Convert prior_boxes to (cx, cy, w, h)
19 | representation for comparison to center-size form ground truth data.
20 | Args:
21 | boxes: (tensor) point_form boxes
22 | Return:
23 | boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
24 | """
25 | return torch.cat([(boxes[:, 2:] + boxes[:, :2])/2, # cx, cy
26 | boxes[:, 2:] - boxes[:, :2]], 1) # w, h
27 |
28 |
29 | def intersect(box_a, box_b):
30 | """ We resize both tensors to [A,B,2] without new malloc:
31 | [A,2] -> [A,1,2] -> [A,B,2]
32 | [B,2] -> [1,B,2] -> [A,B,2]
33 | Then we compute the area of intersect between box_a and box_b.
34 | Args:
35 | box_a: (tensor) bounding boxes, Shape: [A,4].
36 | box_b: (tensor) bounding boxes, Shape: [B,4].
37 | Return:
38 | (tensor) intersection area, Shape: [A,B].
39 | """
40 | A = box_a.size(0)
41 | B = box_b.size(0)
42 | max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
43 | box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
44 | min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
45 | box_b[:, :2].unsqueeze(0).expand(A, B, 2))
46 | inter = torch.clamp((max_xy - min_xy), min=0)
47 | return inter[:, :, 0] * inter[:, :, 1]
48 |
49 |
50 | def jaccard(box_a, box_b):
51 | """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
52 | is simply the intersection over union of two boxes. Here we operate on
53 | ground truth boxes and default boxes.
54 | E.g.:
55 | A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
56 | Args:
57 | box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
58 | box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
59 | Return:
60 | jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
61 | """
62 | inter = intersect(box_a, box_b)
63 | area_a = ((box_a[:, 2]-box_a[:, 0]) *
64 | (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
65 | area_b = ((box_b[:, 2]-box_b[:, 0]) *
66 | (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
67 | union = area_a + area_b - inter
68 | return inter / union # [A,B]
69 |
70 | def match(threshold, truths, priors, variances, labels, loc_t, conf_t, idx):
71 | """Match each prior box with the ground truth box of the highest jaccard
72 | overlap, encode the bounding boxes, then return the matched indices
73 | corresponding to both confidence and location preds.
74 | Args:
75 | threshold: (float) The overlap threshold used when mathing boxes.
76 | truths: (tensor) Ground truth boxes, Shape: [num_obj, num_priors].
77 | priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
78 | variances: (tensor) Variances corresponding to each prior coord,
79 | Shape: [num_priors, 4].
80 | labels: (tensor) All the class labels for the image, Shape: [num_obj].
81 | loc_t: (tensor) Tensor to be filled w/ endcoded location targets.
82 | conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
83 | idx: (int) current batch index
84 | Return:
85 | The matched indices corresponding to 1)location and 2)confidence preds.
86 | """
87 | # jaccard index
88 | overlaps = jaccard(
89 | truths,
90 | point_form(priors)
91 | )
92 | # (Bipartite Matching)
93 | # [1,num_objects] best prior for each ground truth
94 | best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
95 | # [1,num_priors] best ground truth for each prior
96 | best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
97 | best_truth_idx.squeeze_(0)
98 | best_truth_overlap.squeeze_(0)
99 | best_prior_idx.squeeze_(1)
100 | best_prior_overlap.squeeze_(1)
101 | best_truth_overlap.index_fill_(0, best_prior_idx, 2) # ensure best prior
102 | # TODO refactor: index best_prior_idx with long tensor
103 | # ensure every gt matches with its prior of max overlap
104 | for j in range(best_prior_idx.size(0)):
105 | best_truth_idx[best_prior_idx[j]] = j
106 | matches = truths[best_truth_idx] # Shape: [num_priors,4]
107 | conf = labels[best_truth_idx] + 1 # Shape: [num_priors]
108 | conf[best_truth_overlap < threshold] = 0 # label as background
109 | loc = encode(matches, priors, variances)
110 | loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
111 | conf_t[idx] = conf # [num_priors] top class label for each prior
112 |
113 | def refine_match(threshold, truths, priors, variances, labels, loc_t, conf_t, idx, arm_loc=None):
114 | """Match each arm bbox with the ground truth box of the highest jaccard
115 | overlap, encode the bounding boxes, then return the matched indices
116 | corresponding to both confidence and location preds.
117 | Args:
118 | threshold: (float) The overlap threshold used when mathing boxes.
119 | truths: (tensor) Ground truth boxes, Shape: [num_obj, num_priors].
120 | priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
121 | variances: (tensor) Variances corresponding to each prior coord,
122 | Shape: [num_priors, 4].
123 | labels: (tensor) All the class labels for the image, Shape: [num_obj].
124 | loc_t: (tensor) Tensor to be filled w/ endcoded location targets.
125 | conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
126 | idx: (int) current batch index
127 | Return:
128 | The matched indices corresponding to 1)location and 2)confidence preds.
129 | """
130 |
131 | # jaccard index
132 | if arm_loc is None:
133 | overlaps = jaccard(truths, point_form(priors))
134 | else:
135 | decode_arm = decode(arm_loc, priors=priors, variances=variances)
136 | overlaps = jaccard(truths, decode_arm)
137 | # (Bipartite Matching)
138 | # [1,num_objects] best prior for each ground truth
139 | best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
140 | # [1,num_priors] best ground truth for each prior
141 | best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
142 | best_truth_idx.squeeze_(0)
143 | best_truth_overlap.squeeze_(0)
144 | best_prior_idx.squeeze_(1)
145 | best_prior_overlap.squeeze_(1)
146 | best_truth_overlap.index_fill_(0, best_prior_idx, 2) # ensure best prior
147 | # TODO refactor: index best_prior_idx with long tensor
148 | # ensure every gt matches with its prior of max overlap
149 | for j in range(best_prior_idx.size(0)):
150 | best_truth_idx[best_prior_idx[j]] = j
151 | matches = truths[best_truth_idx] # Shape: [num_priors,4]
152 | if arm_loc is None:
153 | conf = labels[best_truth_idx] # Shape: [num_priors]
154 | loc = encode(matches, priors, variances)
155 | else:
156 | conf = labels[best_truth_idx] + 1 # Shape: [num_priors]
157 | loc = encode(matches, center_size(decode_arm), variances)
158 | conf[best_truth_overlap < threshold] = 0 # label as background
159 | loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
160 | conf_t[idx] = conf # [num_priors] top class label for each prior
161 |
162 | def encode(matched, priors, variances):
163 | """Encode the variances from the priorbox layers into the ground truth boxes
164 | we have matched (based on jaccard overlap) with the prior boxes.
165 | Args:
166 | matched: (tensor) Coords of ground truth for each prior in point-form
167 | Shape: [num_priors, 4].
168 | priors: (tensor) Prior boxes in center-offset form
169 | Shape: [num_priors,4].
170 | variances: (list[float]) Variances of priorboxes
171 | Return:
172 | encoded boxes (tensor), Shape: [num_priors, 4]
173 | """
174 |
175 | # dist b/t match center and prior's center
176 | g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2]
177 | # encode variance
178 | g_cxcy /= (variances[0] * priors[:, 2:])
179 | # match wh / prior wh
180 | g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
181 | g_wh = torch.log(g_wh + 1e-5) / variances[1]
182 | # return target for smooth_l1_loss
183 | return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
184 |
185 |
186 | # Adapted from https://github.com/Hakuyume/chainer-ssd
187 | def decode(loc, priors, variances):
188 | """Decode locations from predictions using priors to undo
189 | the encoding we did for offset regression at train time.
190 | Args:
191 | loc (tensor): location predictions for loc layers,
192 | Shape: [num_priors,4]
193 | priors (tensor): Prior boxes in center-offset form.
194 | Shape: [num_priors,4].
195 | variances: (list[float]) Variances of priorboxes
196 | Return:
197 | decoded bounding box predictions
198 | """
199 |
200 | boxes = torch.cat((
201 | priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
202 | priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
203 | boxes[:, :2] -= boxes[:, 2:] / 2
204 | boxes[:, 2:] += boxes[:, :2]
205 | return boxes
206 |
207 |
208 | def log_sum_exp(x):
209 | """Utility function for computing log_sum_exp while determining
210 | This will be used to determine unaveraged confidence loss across
211 | all examples in a batch.
212 | Args:
213 | x (Variable(tensor)): conf_preds from conf layers
214 | """
215 | x_max = x.data.max()
216 | return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max
217 |
218 |
219 | # Original author: Francisco Massa:
220 | # https://github.com/fmassa/object-detection.torch
221 | # Ported to PyTorch by Max deGroot (02/01/2017)
222 | def nms(boxes, scores, overlap=0.5, top_k=200):
223 | """Apply non-maximum suppression at test time to avoid detecting too many
224 | overlapping bounding boxes for a given object.
225 | Args:
226 | boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
227 | scores: (tensor) The class predscores for the img, Shape:[num_priors].
228 | overlap: (float) The overlap thresh for suppressing unnecessary boxes.
229 | top_k: (int) The Maximum number of box preds to consider.
230 | Return:
231 | The indices of the kept boxes with respect to num_priors.
232 | """
233 |
234 | keep = scores.new(scores.size(0)).zero_().long()
235 | if boxes.numel() == 0:
236 | return keep
237 | x1 = boxes[:, 0]
238 | y1 = boxes[:, 1]
239 | x2 = boxes[:, 2]
240 | y2 = boxes[:, 3]
241 | area = torch.mul(x2 - x1, y2 - y1)
242 | v, idx = scores.sort(0) # sort in ascending order
243 | # I = I[v >= 0.01]
244 | idx = idx[-top_k:] # indices of the top-k largest vals
245 | xx1 = boxes.new()
246 | yy1 = boxes.new()
247 | xx2 = boxes.new()
248 | yy2 = boxes.new()
249 | w = boxes.new()
250 | h = boxes.new()
251 |
252 | # keep = torch.Tensor()
253 | count = 0
254 | while idx.numel() > 0:
255 | i = idx[-1] # index of current largest val
256 | # keep.append(i)
257 | keep[count] = i
258 | count += 1
259 | if idx.size(0) == 1:
260 | break
261 | idx = idx[:-1] # remove kept element from view
262 | # load bboxes of next highest vals
263 | torch.index_select(x1, 0, idx, out=xx1)
264 | torch.index_select(y1, 0, idx, out=yy1)
265 | torch.index_select(x2, 0, idx, out=xx2)
266 | torch.index_select(y2, 0, idx, out=yy2)
267 | # store element-wise max with next highest score
268 | xx1 = torch.clamp(xx1, min=x1[i])
269 | yy1 = torch.clamp(yy1, min=y1[i])
270 | xx2 = torch.clamp(xx2, max=x2[i])
271 | yy2 = torch.clamp(yy2, max=y2[i])
272 | w.resize_as_(xx2)
273 | h.resize_as_(yy2)
274 | w = xx2 - xx1
275 | h = yy2 - yy1
276 | # check sizes of xx1 and xx2.. after each iteration
277 | w = torch.clamp(w, min=0.0)
278 | h = torch.clamp(h, min=0.0)
279 | inter = w*h
280 | # IoU = i / (area(a) + area(b) - i)
281 | rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
282 | union = (rem_areas - inter) + area[i]
283 | IoU = inter/union # store result in iou
284 | # keep only elements with an IoU <= overlap
285 | idx = idx[IoU.le(overlap)]
286 | return keep, count
287 |
--------------------------------------------------------------------------------
/layers/functions/__init__.py:
--------------------------------------------------------------------------------
1 | from .detection import Detect
2 | from .prior_box import PriorBox
3 | from .detection_refinedet import Detect_RefineDet
4 |
5 |
6 | __all__ = ['Detect', 'PriorBox', 'Detect_RefineDet']
7 |
--------------------------------------------------------------------------------
/layers/functions/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/functions/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/functions/__pycache__/detection.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/functions/__pycache__/detection.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/functions/__pycache__/detection_refinedet.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/functions/__pycache__/detection_refinedet.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/functions/__pycache__/prior_box.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/functions/__pycache__/prior_box.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/functions/detection.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.autograd import Function
3 | from ..box_utils import decode, nms
4 | from data import voc as cfg
5 |
6 |
7 | class Detect(Function):
8 | """At test time, Detect is the final layer of SSD. Decode location preds,
9 | apply non-maximum suppression to location predictions based on conf
10 | scores and threshold to a top_k number of output predictions for both
11 | confidence score and locations.
12 | """
13 | def __init__(self, num_classes, size, bkg_label, top_k, conf_thresh, nms_thresh):
14 | self.num_classes = num_classes
15 | self.background_label = bkg_label
16 | self.top_k = top_k
17 | # Parameters used in nms.
18 | self.nms_thresh = nms_thresh
19 | if nms_thresh <= 0:
20 | raise ValueError('nms_threshold must be non negative.')
21 | self.conf_thresh = conf_thresh
22 | self.variance = cfg[str(size)]['variance']
23 |
24 | def forward(self, loc_data, conf_data, prior_data):
25 | """
26 | Args:
27 | loc_data: (tensor) Loc preds from loc layers
28 | Shape: [batch,num_priors*4]
29 | conf_data: (tensor) Shape: Conf preds from conf layers
30 | Shape: [batch*num_priors,num_classes]
31 | prior_data: (tensor) Prior boxes and variances from priorbox layers
32 | Shape: [1,num_priors,4]
33 | """
34 | num = loc_data.size(0) # batch size
35 | num_priors = prior_data.size(0)
36 | output = torch.zeros(num, self.num_classes, self.top_k, 5)
37 | conf_preds = conf_data.view(num, num_priors,
38 | self.num_classes).transpose(2, 1)
39 |
40 | # Decode predictions into bboxes.
41 | for i in range(num):
42 | decoded_boxes = decode(loc_data[i], prior_data, self.variance)
43 | # For each class, perform nms
44 | conf_scores = conf_preds[i].clone()
45 | #print(decoded_boxes, conf_scores)
46 | for cl in range(1, self.num_classes):
47 | c_mask = conf_scores[cl].gt(self.conf_thresh)
48 | scores = conf_scores[cl][c_mask]
49 | #print(scores.dim())
50 | if scores.size(0) == 0:
51 | continue
52 | l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
53 | boxes = decoded_boxes[l_mask].view(-1, 4)
54 | # idx of highest scoring and non-overlapping boxes per class
55 | #print(boxes, scores)
56 | ids, count = nms(boxes, scores, self.nms_thresh, self.top_k)
57 | output[i, cl, :count] = \
58 | torch.cat((scores[ids[:count]].unsqueeze(1),
59 | boxes[ids[:count]]), 1)
60 | flt = output.contiguous().view(num, -1, 5)
61 | _, idx = flt[:, :, 0].sort(1, descending=True)
62 | _, rank = idx.sort(1)
63 | flt[(rank < self.top_k).unsqueeze(-1).expand_as(flt)].fill_(0)
64 | return output
65 |
--------------------------------------------------------------------------------
/layers/functions/detection_refinedet.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.autograd import Function
3 | from ..box_utils import decode, nms, center_size
4 | from data import voc_refinedet as cfg
5 |
6 |
7 | class Detect_RefineDet(Function):
8 | """At test time, Detect is the final layer of SSD. Decode location preds,
9 | apply non-maximum suppression to location predictions based on conf
10 | scores and threshold to a top_k number of output predictions for both
11 | confidence score and locations.
12 | """
13 | def __init__(self, num_classes, size, bkg_label, top_k, conf_thresh, nms_thresh,
14 | objectness_thre, keep_top_k):
15 | self.num_classes = num_classes
16 | self.background_label = bkg_label
17 | self.top_k = top_k
18 | self.keep_top_k = keep_top_k
19 | # Parameters used in nms.
20 | self.nms_thresh = nms_thresh
21 | if nms_thresh <= 0:
22 | raise ValueError('nms_threshold must be non negative.')
23 | self.conf_thresh = conf_thresh
24 | self.objectness_thre = objectness_thre
25 | self.variance = cfg[str(size)]['variance']
26 |
27 | def forward(self, arm_loc_data, arm_conf_data, odm_loc_data, odm_conf_data, prior_data):
28 | """
29 | Args:
30 | loc_data: (tensor) Loc preds from loc layers
31 | Shape: [batch,num_priors*4]
32 | conf_data: (tensor) Shape: Conf preds from conf layers
33 | Shape: [batch*num_priors,num_classes]
34 | prior_data: (tensor) Prior boxes and variances from priorbox layers
35 | Shape: [1,num_priors,4]
36 | """
37 | loc_data = odm_loc_data
38 | conf_data = odm_conf_data
39 |
40 | arm_object_conf = arm_conf_data.data[:, :, 1:]
41 | no_object_index = arm_object_conf <= self.objectness_thre
42 | conf_data[no_object_index.expand_as(conf_data)] = 0
43 |
44 | num = loc_data.size(0) # batch size
45 | num_priors = prior_data.size(0)
46 | output = torch.zeros(num, self.num_classes, self.top_k, 5)
47 | conf_preds = conf_data.view(num, num_priors,
48 | self.num_classes).transpose(2, 1)
49 |
50 | # Decode predictions into bboxes.
51 | for i in range(num):
52 | default = decode(arm_loc_data[i], prior_data, self.variance)
53 | default = center_size(default)
54 | decoded_boxes = decode(loc_data[i], default, self.variance)
55 | # For each class, perform nms
56 | conf_scores = conf_preds[i].clone()
57 | #print(decoded_boxes, conf_scores)
58 | for cl in range(1, self.num_classes):
59 | c_mask = conf_scores[cl].gt(self.conf_thresh)
60 | scores = conf_scores[cl][c_mask]
61 | #print(scores.dim())
62 | if scores.size(0) == 0:
63 | continue
64 | l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
65 | boxes = decoded_boxes[l_mask].view(-1, 4)
66 | # idx of highest scoring and non-overlapping boxes per class
67 | #print(boxes, scores)
68 | ids, count = nms(boxes, scores, self.nms_thresh, self.top_k)
69 | output[i, cl, :count] = \
70 | torch.cat((scores[ids[:count]].unsqueeze(1),
71 | boxes[ids[:count]]), 1)
72 | flt = output.contiguous().view(num, -1, 5)
73 | _, idx = flt[:, :, 0].sort(1, descending=True)
74 | _, rank = idx.sort(1)
75 | flt[(rank < self.keep_top_k).unsqueeze(-1).expand_as(flt)].fill_(0)
76 | return output
77 |
--------------------------------------------------------------------------------
/layers/functions/prior_box.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | from math import sqrt as sqrt
3 | from itertools import product as product
4 | import torch
5 |
6 |
7 | class PriorBox(object):
8 | """Compute priorbox coordinates in center-offset form for each source
9 | feature map.
10 | """
11 | def __init__(self, cfg):
12 | super(PriorBox, self).__init__()
13 | self.image_size = cfg['min_dim']
14 | # number of priors for feature map location (either 4 or 6)
15 | self.num_priors = len(cfg['aspect_ratios'])
16 | self.variance = cfg['variance'] or [0.1]
17 | self.feature_maps = cfg['feature_maps']
18 | self.min_sizes = cfg['min_sizes']
19 | self.max_sizes = cfg['max_sizes']
20 | self.steps = cfg['steps']
21 | self.aspect_ratios = cfg['aspect_ratios']
22 | self.clip = cfg['clip']
23 | self.version = cfg['name']
24 | for v in self.variance:
25 | if v <= 0:
26 | raise ValueError('Variances must be greater than 0')
27 |
28 | def forward(self):
29 | mean = []
30 | for k, f in enumerate(self.feature_maps):
31 | for i, j in product(range(f), repeat=2):
32 | f_k = self.image_size / self.steps[k]
33 | # unit center x,y
34 | cx = (j + 0.5) / f_k
35 | cy = (i + 0.5) / f_k
36 |
37 | # aspect_ratio: 1
38 | # rel size: min_size
39 | s_k = self.min_sizes[k]/self.image_size
40 | mean += [cx, cy, s_k, s_k]
41 |
42 | # aspect_ratio: 1
43 | # rel size: sqrt(s_k * s_(k+1))
44 | if self.max_sizes:
45 | s_k_prime = sqrt(s_k * (self.max_sizes[k]/self.image_size))
46 | mean += [cx, cy, s_k_prime, s_k_prime]
47 |
48 | # rest of aspect ratios
49 | for ar in self.aspect_ratios[k]:
50 | mean += [cx, cy, s_k*sqrt(ar), s_k/sqrt(ar)]
51 | mean += [cx, cy, s_k/sqrt(ar), s_k*sqrt(ar)]
52 | # back to torch land
53 | output = torch.Tensor(mean).view(-1, 4)
54 | if self.clip:
55 | output.clamp_(max=1, min=0)
56 | return output
57 |
--------------------------------------------------------------------------------
/layers/modules/__init__.py:
--------------------------------------------------------------------------------
1 | from .l2norm import L2Norm
2 | from .multibox_loss import MultiBoxLoss
3 | from .refinedet_multibox_loss import RefineDetMultiBoxLoss
4 |
5 | __all__ = ['L2Norm', 'MultiBoxLoss', 'RefineDetMultiBoxLoss']
6 |
--------------------------------------------------------------------------------
/layers/modules/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/modules/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/modules/__pycache__/l2norm.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/modules/__pycache__/l2norm.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/modules/__pycache__/multibox_loss.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/modules/__pycache__/multibox_loss.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/modules/__pycache__/refinedet_multibox_loss.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luuuyi/RefineDet.PyTorch/0e4b24ce07245fcb8c48292326a731729cc5746a/layers/modules/__pycache__/refinedet_multibox_loss.cpython-36.pyc
--------------------------------------------------------------------------------
/layers/modules/l2norm.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from torch.autograd import Function
4 | #from torch.autograd import Variable
5 | import torch.nn.init as init
6 |
7 | class L2Norm(nn.Module):
8 | def __init__(self,n_channels, scale):
9 | super(L2Norm,self).__init__()
10 | self.n_channels = n_channels
11 | self.gamma = scale or None
12 | self.eps = 1e-10
13 | self.weight = nn.Parameter(torch.Tensor(self.n_channels))
14 | self.reset_parameters()
15 |
16 | def reset_parameters(self):
17 | init.constant_(self.weight,self.gamma)
18 |
19 | def forward(self, x):
20 | norm = x.pow(2).sum(dim=1, keepdim=True).sqrt()+self.eps
21 | #x /= norm
22 | x = torch.div(x,norm)
23 | out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
24 | return out
25 |
--------------------------------------------------------------------------------
/layers/modules/multibox_loss.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | from torch.autograd import Variable
6 | from data import coco as cfg
7 | from ..box_utils import match, log_sum_exp
8 |
9 |
10 | class MultiBoxLoss(nn.Module):
11 | """SSD Weighted Loss Function
12 | Compute Targets:
13 | 1) Produce Confidence Target Indices by matching ground truth boxes
14 | with (default) 'priorboxes' that have jaccard index > threshold parameter
15 | (default threshold: 0.5).
16 | 2) Produce localization target by 'encoding' variance into offsets of ground
17 | truth boxes and their matched 'priorboxes'.
18 | 3) Hard negative mining to filter the excessive number of negative examples
19 | that comes with using a large number of default bounding boxes.
20 | (default negative:positive ratio 3:1)
21 | Objective Loss:
22 | L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
23 | Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss
24 | weighted by α which is set to 1 by cross val.
25 | Args:
26 | c: class confidences,
27 | l: predicted boxes,
28 | g: ground truth boxes
29 | N: number of matched default boxes
30 | See: https://arxiv.org/pdf/1512.02325.pdf for more details.
31 | """
32 |
33 | def __init__(self, num_classes, overlap_thresh, prior_for_matching,
34 | bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
35 | use_gpu=True):
36 | super(MultiBoxLoss, self).__init__()
37 | self.use_gpu = use_gpu
38 | self.num_classes = num_classes
39 | self.threshold = overlap_thresh
40 | self.background_label = bkg_label
41 | self.encode_target = encode_target
42 | self.use_prior_for_matching = prior_for_matching
43 | self.do_neg_mining = neg_mining
44 | self.negpos_ratio = neg_pos
45 | self.neg_overlap = neg_overlap
46 | self.variance = cfg['variance']
47 |
48 | def forward(self, predictions, targets):
49 | """Multibox Loss
50 | Args:
51 | predictions (tuple): A tuple containing loc preds, conf preds,
52 | and prior boxes from SSD net.
53 | conf shape: torch.size(batch_size,num_priors,num_classes)
54 | loc shape: torch.size(batch_size,num_priors,4)
55 | priors shape: torch.size(num_priors,4)
56 |
57 | targets (tensor): Ground truth boxes and labels for a batch,
58 | shape: [batch_size,num_objs,5] (last idx is the label).
59 | """
60 | loc_data, conf_data, priors = predictions
61 | num = loc_data.size(0)
62 | priors = priors[:loc_data.size(1), :]
63 | num_priors = (priors.size(0))
64 | num_classes = self.num_classes
65 | print(loc_data.size(), conf_data.size(), priors.size())
66 |
67 | # match priors (default boxes) and ground truth boxes
68 | loc_t = torch.Tensor(num, num_priors, 4)
69 | conf_t = torch.LongTensor(num, num_priors)
70 | for idx in range(num):
71 | truths = targets[idx][:, :-1].data
72 | labels = targets[idx][:, -1].data
73 | defaults = priors.data
74 | match(self.threshold, truths, defaults, self.variance, labels,
75 | loc_t, conf_t, idx)
76 | if self.use_gpu:
77 | loc_t = loc_t.cuda()
78 | conf_t = conf_t.cuda()
79 | # wrap targets
80 | #loc_t = Variable(loc_t, requires_grad=False)
81 | #conf_t = Variable(conf_t, requires_grad=False)
82 | loc_t.requires_grad = False
83 | conf_t.requires_grad = False
84 | print(loc_t.size(), conf_t.size())
85 |
86 | pos = conf_t > 0
87 | print(pos.size())
88 | #num_pos = pos.sum(dim=1, keepdim=True)
89 |
90 | # Localization Loss (Smooth L1)
91 | # Shape: [batch,num_priors,4]
92 | pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data)
93 | loc_p = loc_data[pos_idx].view(-1, 4)
94 | loc_t = loc_t[pos_idx].view(-1, 4)
95 | loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum')
96 |
97 | # Compute max conf across batch for hard negative mining
98 | batch_conf = conf_data.view(-1, self.num_classes)
99 | loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1))
100 | print(loss_c.size())
101 |
102 | # Hard Negative Mining
103 | loss_c[pos.view(-1,1)] = 0 # filter out pos boxes for now
104 | loss_c = loss_c.view(num, -1)
105 | _, loss_idx = loss_c.sort(1, descending=True)
106 | _, idx_rank = loss_idx.sort(1)
107 | num_pos = pos.long().sum(1, keepdim=True)
108 | num_neg = torch.clamp(self.negpos_ratio*num_pos, max=pos.size(1)-1)
109 | neg = idx_rank < num_neg.expand_as(idx_rank)
110 | print(num_pos.size(), num_neg.size(), neg.size())
111 |
112 | # Confidence Loss Including Positive and Negative Examples
113 | pos_idx = pos.unsqueeze(2).expand_as(conf_data)
114 | neg_idx = neg.unsqueeze(2).expand_as(conf_data)
115 | conf_p = conf_data[(pos_idx+neg_idx).gt(0)].view(-1, self.num_classes)
116 | targets_weighted = conf_t[(pos+neg).gt(0)]
117 | print(pos_idx.size(), neg_idx.size(), conf_p.size(), targets_weighted.size())
118 | loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum')
119 |
120 | # Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
121 |
122 | N = num_pos.data.sum().float()
123 | #N = max(num_pos.data.sum().float(), 1)
124 | loss_l /= N
125 | loss_c /= N
126 | #print(N, loss_l, loss_c)
127 | return loss_l, loss_c
128 |
--------------------------------------------------------------------------------
/layers/modules/refinedet_multibox_loss.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | from torch.autograd import Variable
6 | from data import coco as cfg
7 | from ..box_utils import match, log_sum_exp, refine_match
8 |
9 |
10 | class RefineDetMultiBoxLoss(nn.Module):
11 | """SSD Weighted Loss Function
12 | Compute Targets:
13 | 1) Produce Confidence Target Indices by matching ground truth boxes
14 | with (default) 'priorboxes' that have jaccard index > threshold parameter
15 | (default threshold: 0.5).
16 | 2) Produce localization target by 'encoding' variance into offsets of ground
17 | truth boxes and their matched 'priorboxes'.
18 | 3) Hard negative mining to filter the excessive number of negative examples
19 | that comes with using a large number of default bounding boxes.
20 | (default negative:positive ratio 3:1)
21 | Objective Loss:
22 | L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
23 | Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss
24 | weighted by α which is set to 1 by cross val.
25 | Args:
26 | c: class confidences,
27 | l: predicted boxes,
28 | g: ground truth boxes
29 | N: number of matched default boxes
30 | See: https://arxiv.org/pdf/1512.02325.pdf for more details.
31 | """
32 |
33 | def __init__(self, num_classes, overlap_thresh, prior_for_matching,
34 | bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
35 | use_gpu=True, theta=0.01, use_ARM=False):
36 | super(RefineDetMultiBoxLoss, self).__init__()
37 | self.use_gpu = use_gpu
38 | self.num_classes = num_classes
39 | self.threshold = overlap_thresh
40 | self.background_label = bkg_label
41 | self.encode_target = encode_target
42 | self.use_prior_for_matching = prior_for_matching
43 | self.do_neg_mining = neg_mining
44 | self.negpos_ratio = neg_pos
45 | self.neg_overlap = neg_overlap
46 | self.variance = cfg['variance']
47 | self.theta = theta
48 | self.use_ARM = use_ARM
49 |
50 | def forward(self, predictions, targets):
51 | """Multibox Loss
52 | Args:
53 | predictions (tuple): A tuple containing loc preds, conf preds,
54 | and prior boxes from SSD net.
55 | conf shape: torch.size(batch_size,num_priors,num_classes)
56 | loc shape: torch.size(batch_size,num_priors,4)
57 | priors shape: torch.size(num_priors,4)
58 |
59 | targets (tensor): Ground truth boxes and labels for a batch,
60 | shape: [batch_size,num_objs,5] (last idx is the label).
61 | """
62 | arm_loc_data, arm_conf_data, odm_loc_data, odm_conf_data, priors = predictions
63 | #print(arm_loc_data.size(), arm_conf_data.size(),
64 | # odm_loc_data.size(), odm_conf_data.size(), priors.size())
65 | #input()
66 | if self.use_ARM:
67 | loc_data, conf_data = odm_loc_data, odm_conf_data
68 | else:
69 | loc_data, conf_data = arm_loc_data, arm_conf_data
70 | num = loc_data.size(0)
71 | priors = priors[:loc_data.size(1), :]
72 | num_priors = (priors.size(0))
73 | num_classes = self.num_classes
74 | #print(loc_data.size(), conf_data.size(), priors.size())
75 |
76 | # match priors (default boxes) and ground truth boxes
77 | loc_t = torch.Tensor(num, num_priors, 4)
78 | conf_t = torch.LongTensor(num, num_priors)
79 | for idx in range(num):
80 | truths = targets[idx][:, :-1].data
81 | labels = targets[idx][:, -1].data
82 | if num_classes == 2:
83 | labels = labels >= 0
84 | defaults = priors.data
85 | if self.use_ARM:
86 | refine_match(self.threshold, truths, defaults, self.variance, labels,
87 | loc_t, conf_t, idx, arm_loc_data[idx].data)
88 | else:
89 | refine_match(self.threshold, truths, defaults, self.variance, labels,
90 | loc_t, conf_t, idx)
91 | if self.use_gpu:
92 | loc_t = loc_t.cuda()
93 | conf_t = conf_t.cuda()
94 | # wrap targets
95 | #loc_t = Variable(loc_t, requires_grad=False)
96 | #conf_t = Variable(conf_t, requires_grad=False)
97 | loc_t.requires_grad = False
98 | conf_t.requires_grad = False
99 | #print(loc_t.size(), conf_t.size())
100 |
101 | if self.use_ARM:
102 | P = F.softmax(arm_conf_data, 2)
103 | arm_conf_tmp = P[:,:,1]
104 | object_score_index = arm_conf_tmp <= self.theta
105 | pos = conf_t > 0
106 | pos[object_score_index.data] = 0
107 | else:
108 | pos = conf_t > 0
109 | #print(pos.size())
110 | #num_pos = pos.sum(dim=1, keepdim=True)
111 |
112 | # Localization Loss (Smooth L1)
113 | # Shape: [batch,num_priors,4]
114 | pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data)
115 | loc_p = loc_data[pos_idx].view(-1, 4)
116 | loc_t = loc_t[pos_idx].view(-1, 4)
117 | loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum')
118 |
119 | # Compute max conf across batch for hard negative mining
120 | batch_conf = conf_data.view(-1, self.num_classes)
121 | loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1))
122 | #print(loss_c.size())
123 |
124 | # Hard Negative Mining
125 | loss_c[pos.view(-1,1)] = 0 # filter out pos boxes for now
126 | loss_c = loss_c.view(num, -1)
127 | _, loss_idx = loss_c.sort(1, descending=True)
128 | _, idx_rank = loss_idx.sort(1)
129 | num_pos = pos.long().sum(1, keepdim=True)
130 | num_neg = torch.clamp(self.negpos_ratio*num_pos, max=pos.size(1)-1)
131 | neg = idx_rank < num_neg.expand_as(idx_rank)
132 | #print(num_pos.size(), num_neg.size(), neg.size())
133 |
134 | # Confidence Loss Including Positive and Negative Examples
135 | pos_idx = pos.unsqueeze(2).expand_as(conf_data)
136 | neg_idx = neg.unsqueeze(2).expand_as(conf_data)
137 | conf_p = conf_data[(pos_idx+neg_idx).gt(0)].view(-1, self.num_classes)
138 | targets_weighted = conf_t[(pos+neg).gt(0)]
139 | #print(pos_idx.size(), neg_idx.size(), conf_p.size(), targets_weighted.size())
140 | loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum')
141 |
142 | # Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
143 |
144 | N = num_pos.data.sum().float()
145 | #N = max(num_pos.data.sum().float(), 1)
146 | loss_l /= N
147 | loss_c /= N
148 | #print(N, loss_l, loss_c)
149 | return loss_l, loss_c
150 |
--------------------------------------------------------------------------------
/models/refinedet.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | from layers import *
6 | from data import voc_refinedet, coco_refinedet
7 | import os
8 |
9 |
10 | class RefineDet(nn.Module):
11 | """Single Shot Multibox Architecture
12 | The network is composed of a base VGG network followed by the
13 | added multibox conv layers. Each multibox layer branches into
14 | 1) conv2d for class conf scores
15 | 2) conv2d for localization predictions
16 | 3) associated priorbox layer to produce default bounding
17 | boxes specific to the layer's feature map size.
18 | See: https://arxiv.org/pdf/1512.02325.pdf for more details.
19 |
20 | Args:
21 | phase: (string) Can be "test" or "train"
22 | size: input image size
23 | base: VGG16 layers for input, size of either 300 or 500
24 | extras: extra layers that feed to multibox loc and conf layers
25 | head: "multibox head" consists of loc and conf conv layers
26 | """
27 |
28 | def __init__(self, phase, size, base, extras, ARM, ODM, TCB, num_classes):
29 | super(RefineDet, self).__init__()
30 | self.phase = phase
31 | self.num_classes = num_classes
32 | self.cfg = (coco_refinedet, voc_refinedet)[num_classes == 21]
33 | self.priorbox = PriorBox(self.cfg[str(size)])
34 | with torch.no_grad():
35 | self.priors = self.priorbox.forward()
36 | self.size = size
37 |
38 | # SSD network
39 | self.vgg = nn.ModuleList(base)
40 | # Layer learns to scale the l2 normalized features from conv4_3
41 | self.conv4_3_L2Norm = L2Norm(512, 10)
42 | self.conv5_3_L2Norm = L2Norm(512, 8)
43 | self.extras = nn.ModuleList(extras)
44 |
45 | self.arm_loc = nn.ModuleList(ARM[0])
46 | self.arm_conf = nn.ModuleList(ARM[1])
47 | self.odm_loc = nn.ModuleList(ODM[0])
48 | self.odm_conf = nn.ModuleList(ODM[1])
49 | #self.tcb = nn.ModuleList(TCB)
50 | self.tcb0 = nn.ModuleList(TCB[0])
51 | self.tcb1 = nn.ModuleList(TCB[1])
52 | self.tcb2 = nn.ModuleList(TCB[2])
53 |
54 | if phase == 'test':
55 | self.softmax = nn.Softmax(dim=-1)
56 | self.detect = Detect_RefineDet(num_classes, self.size, 0, 1000, 0.01, 0.45, 0.01, 500)
57 |
58 | def forward(self, x):
59 | """Applies network layers and ops on input image(s) x.
60 |
61 | Args:
62 | x: input image or batch of images. Shape: [batch,3,300,300].
63 |
64 | Return:
65 | Depending on phase:
66 | test:
67 | Variable(tensor) of output class label predictions,
68 | confidence score, and corresponding location predictions for
69 | each object detected. Shape: [batch,topk,7]
70 |
71 | train:
72 | list of concat outputs from:
73 | 1: confidence layers, Shape: [batch*num_priors,num_classes]
74 | 2: localization layers, Shape: [batch,num_priors*4]
75 | 3: priorbox layers, Shape: [2,num_priors*4]
76 | """
77 | sources = list()
78 | tcb_source = list()
79 | arm_loc = list()
80 | arm_conf = list()
81 | odm_loc = list()
82 | odm_conf = list()
83 |
84 | # apply vgg up to conv4_3 relu and conv5_3 relu
85 | for k in range(30):
86 | x = self.vgg[k](x)
87 | if 22 == k:
88 | s = self.conv4_3_L2Norm(x)
89 | sources.append(s)
90 | elif 29 == k:
91 | s = self.conv5_3_L2Norm(x)
92 | sources.append(s)
93 |
94 | # apply vgg up to fc7
95 | for k in range(30, len(self.vgg)):
96 | x = self.vgg[k](x)
97 | sources.append(x)
98 |
99 | # apply extra layers and cache source layer outputs
100 | for k, v in enumerate(self.extras):
101 | x = F.relu(v(x), inplace=True)
102 | if k % 2 == 1:
103 | sources.append(x)
104 |
105 | # apply ARM and ODM to source layers
106 | for (x, l, c) in zip(sources, self.arm_loc, self.arm_conf):
107 | arm_loc.append(l(x).permute(0, 2, 3, 1).contiguous())
108 | arm_conf.append(c(x).permute(0, 2, 3, 1).contiguous())
109 | arm_loc = torch.cat([o.view(o.size(0), -1) for o in arm_loc], 1)
110 | arm_conf = torch.cat([o.view(o.size(0), -1) for o in arm_conf], 1)
111 | #print([x.size() for x in sources])
112 | # calculate TCB features
113 | #print([x.size() for x in sources])
114 | p = None
115 | for k, v in enumerate(sources[::-1]):
116 | s = v
117 | for i in range(3):
118 | s = self.tcb0[(3-k)*3 + i](s)
119 | #print(s.size())
120 | if k != 0:
121 | u = p
122 | u = self.tcb1[3-k](u)
123 | s += u
124 | for i in range(3):
125 | s = self.tcb2[(3-k)*3 + i](s)
126 | p = s
127 | tcb_source.append(s)
128 | #print([x.size() for x in tcb_source])
129 | tcb_source.reverse()
130 |
131 | # apply ODM to source layers
132 | for (x, l, c) in zip(tcb_source, self.odm_loc, self.odm_conf):
133 | odm_loc.append(l(x).permute(0, 2, 3, 1).contiguous())
134 | odm_conf.append(c(x).permute(0, 2, 3, 1).contiguous())
135 | odm_loc = torch.cat([o.view(o.size(0), -1) for o in odm_loc], 1)
136 | odm_conf = torch.cat([o.view(o.size(0), -1) for o in odm_conf], 1)
137 | #print(arm_loc.size(), arm_conf.size(), odm_loc.size(), odm_conf.size())
138 |
139 | if self.phase == "test":
140 | #print(loc, conf)
141 | output = self.detect(
142 | arm_loc.view(arm_loc.size(0), -1, 4), # arm loc preds
143 | self.softmax(arm_conf.view(arm_conf.size(0), -1,
144 | 2)), # arm conf preds
145 | odm_loc.view(odm_loc.size(0), -1, 4), # odm loc preds
146 | self.softmax(odm_conf.view(odm_conf.size(0), -1,
147 | self.num_classes)), # odm conf preds
148 | self.priors.type(type(x.data)) # default boxes
149 | )
150 | else:
151 | output = (
152 | arm_loc.view(arm_loc.size(0), -1, 4),
153 | arm_conf.view(arm_conf.size(0), -1, 2),
154 | odm_loc.view(odm_loc.size(0), -1, 4),
155 | odm_conf.view(odm_conf.size(0), -1, self.num_classes),
156 | self.priors
157 | )
158 | return output
159 |
160 | def load_weights(self, base_file):
161 | other, ext = os.path.splitext(base_file)
162 | if ext == '.pkl' or '.pth':
163 | print('Loading weights into state dict...')
164 | self.load_state_dict(torch.load(base_file,
165 | map_location=lambda storage, loc: storage))
166 | print('Finished!')
167 | else:
168 | print('Sorry only .pth and .pkl files supported.')
169 |
170 |
171 | # This function is derived from torchvision VGG make_layers()
172 | # https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
173 | def vgg(cfg, i, batch_norm=False):
174 | layers = []
175 | in_channels = i
176 | for v in cfg:
177 | if v == 'M':
178 | layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
179 | elif v == 'C':
180 | layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
181 | else:
182 | conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
183 | if batch_norm:
184 | layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
185 | else:
186 | layers += [conv2d, nn.ReLU(inplace=True)]
187 | in_channels = v
188 | pool5 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
189 | conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=3, dilation=3)
190 | conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
191 | layers += [pool5, conv6,
192 | nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
193 | return layers
194 |
195 |
196 | def add_extras(cfg, size, i, batch_norm=False):
197 | # Extra layers added to VGG for feature scaling
198 | layers = []
199 | in_channels = i
200 | flag = False
201 | for k, v in enumerate(cfg):
202 | if in_channels != 'S':
203 | if v == 'S':
204 | layers += [nn.Conv2d(in_channels, cfg[k + 1],
205 | kernel_size=(1, 3)[flag], stride=2, padding=1)]
206 | else:
207 | layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
208 | flag = not flag
209 | in_channels = v
210 | return layers
211 |
212 | def arm_multibox(vgg, extra_layers, cfg):
213 | arm_loc_layers = []
214 | arm_conf_layers = []
215 | vgg_source = [21, 28, -2]
216 | for k, v in enumerate(vgg_source):
217 | arm_loc_layers += [nn.Conv2d(vgg[v].out_channels,
218 | cfg[k] * 4, kernel_size=3, padding=1)]
219 | arm_conf_layers += [nn.Conv2d(vgg[v].out_channels,
220 | cfg[k] * 2, kernel_size=3, padding=1)]
221 | for k, v in enumerate(extra_layers[1::2], 3):
222 | arm_loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
223 | * 4, kernel_size=3, padding=1)]
224 | arm_conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
225 | * 2, kernel_size=3, padding=1)]
226 | return (arm_loc_layers, arm_conf_layers)
227 |
228 | def odm_multibox(vgg, extra_layers, cfg, num_classes):
229 | odm_loc_layers = []
230 | odm_conf_layers = []
231 | vgg_source = [21, 28, -2]
232 | for k, v in enumerate(vgg_source):
233 | odm_loc_layers += [nn.Conv2d(256, cfg[k] * 4, kernel_size=3, padding=1)]
234 | odm_conf_layers += [nn.Conv2d(256, cfg[k] * num_classes, kernel_size=3, padding=1)]
235 | for k, v in enumerate(extra_layers[1::2], 3):
236 | odm_loc_layers += [nn.Conv2d(256, cfg[k] * 4, kernel_size=3, padding=1)]
237 | odm_conf_layers += [nn.Conv2d(256, cfg[k] * num_classes, kernel_size=3, padding=1)]
238 | return (odm_loc_layers, odm_conf_layers)
239 |
240 | def add_tcb(cfg):
241 | feature_scale_layers = []
242 | feature_upsample_layers = []
243 | feature_pred_layers = []
244 | for k, v in enumerate(cfg):
245 | feature_scale_layers += [nn.Conv2d(cfg[k], 256, 3, padding=1),
246 | nn.ReLU(inplace=True),
247 | nn.Conv2d(256, 256, 3, padding=1)
248 | ]
249 | feature_pred_layers += [nn.ReLU(inplace=True),
250 | nn.Conv2d(256, 256, 3, padding=1),
251 | nn.ReLU(inplace=True)
252 | ]
253 | if k != len(cfg) - 1:
254 | feature_upsample_layers += [nn.ConvTranspose2d(256, 256, 2, 2)]
255 | return (feature_scale_layers, feature_upsample_layers, feature_pred_layers)
256 |
257 | base = {
258 | '320': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
259 | 512, 512, 512],
260 | '512': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
261 | 512, 512, 512],
262 | }
263 | extras = {
264 | '320': [256, 'S', 512],
265 | '512': [256, 'S', 512],
266 | }
267 | mbox = {
268 | '320': [3, 3, 3, 3], # number of boxes per feature map location
269 | '512': [3, 3, 3, 3], # number of boxes per feature map location
270 | }
271 |
272 | tcb = {
273 | '320': [512, 512, 1024, 512],
274 | '512': [512, 512, 1024, 512],
275 | }
276 |
277 |
278 | def build_refinedet(phase, size=320, num_classes=21):
279 | if phase != "test" and phase != "train":
280 | print("ERROR: Phase: " + phase + " not recognized")
281 | return
282 | if size != 320 and size != 512:
283 | print("ERROR: You specified size " + repr(size) + ". However, " +
284 | "currently only RefineDet320 and RefineDet512 is supported!")
285 | return
286 | base_ = vgg(base[str(size)], 3)
287 | extras_ = add_extras(extras[str(size)], size, 1024)
288 | ARM_ = arm_multibox(base_, extras_, mbox[str(size)])
289 | ODM_ = odm_multibox(base_, extras_, mbox[str(size)], num_classes)
290 | TCB_ = add_tcb(tcb[str(size)])
291 | return RefineDet(phase, size, base_, extras_, ARM_, ODM_, TCB_, num_classes)
292 |
--------------------------------------------------------------------------------
/train_refinedet.py:
--------------------------------------------------------------------------------
1 | from data import *
2 | from utils.augmentations import SSDAugmentation
3 | from layers.modules import RefineDetMultiBoxLoss
4 | #from ssd import build_ssd
5 | from models.refinedet import build_refinedet
6 | import os
7 | import sys
8 | import time
9 | import torch
10 | import torch.nn as nn
11 | import torch.optim as optim
12 | import torch.backends.cudnn as cudnn
13 | import torch.nn.init as init
14 | import torch.utils.data as data
15 | import numpy as np
16 | import argparse
17 | from utils.logging import Logger
18 |
19 | def str2bool(v):
20 | return v.lower() in ("yes", "true", "t", "1")
21 |
22 |
23 | parser = argparse.ArgumentParser(
24 | description='Single Shot MultiBox Detector Training With Pytorch')
25 | train_set = parser.add_mutually_exclusive_group()
26 | parser.add_argument('--dataset', default='VOC', choices=['VOC', 'COCO'],
27 | type=str, help='VOC or COCO')
28 | parser.add_argument('--input_size', default='320', choices=['320', '512'],
29 | type=str, help='RefineDet320 or RefineDet512')
30 | parser.add_argument('--dataset_root', default=VOC_ROOT,
31 | help='Dataset root directory path')
32 | parser.add_argument('--basenet', default='./weights/vgg16_reducedfc.pth',
33 | help='Pretrained base model')
34 | parser.add_argument('--batch_size', default=32, type=int,
35 | help='Batch size for training')
36 | parser.add_argument('--resume', default=None, type=str,
37 | help='Checkpoint state_dict file to resume training from')
38 | parser.add_argument('--start_iter', default=0, type=int,
39 | help='Resume training at this iter')
40 | parser.add_argument('--num_workers', default=8, type=int,
41 | help='Number of workers used in dataloading')
42 | parser.add_argument('--cuda', default=True, type=str2bool,
43 | help='Use CUDA to train model')
44 | parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
45 | help='initial learning rate')
46 | parser.add_argument('--momentum', default=0.9, type=float,
47 | help='Momentum value for optim')
48 | parser.add_argument('--weight_decay', default=5e-4, type=float,
49 | help='Weight decay for SGD')
50 | parser.add_argument('--gamma', default=0.1, type=float,
51 | help='Gamma update for SGD')
52 | parser.add_argument('--visdom', default=False, type=str2bool,
53 | help='Use visdom for loss visualization')
54 | parser.add_argument('--save_folder', default='weights/',
55 | help='Directory for saving checkpoint models')
56 | args = parser.parse_args()
57 |
58 |
59 | if torch.cuda.is_available():
60 | if args.cuda:
61 | torch.set_default_tensor_type('torch.cuda.FloatTensor')
62 | if not args.cuda:
63 | print("WARNING: It looks like you have a CUDA device, but aren't " +
64 | "using CUDA.\nRun with --cuda for optimal training speed.")
65 | torch.set_default_tensor_type('torch.FloatTensor')
66 | else:
67 | torch.set_default_tensor_type('torch.FloatTensor')
68 |
69 | if not os.path.exists(args.save_folder):
70 | os.mkdir(args.save_folder)
71 |
72 | sys.stdout = Logger(os.path.join(args.save_folder, 'log.txt'))
73 |
74 | def train():
75 | if args.dataset == 'COCO':
76 | '''if args.dataset_root == VOC_ROOT:
77 | if not os.path.exists(COCO_ROOT):
78 | parser.error('Must specify dataset_root if specifying dataset')
79 | print("WARNING: Using default COCO dataset_root because " +
80 | "--dataset_root was not specified.")
81 | args.dataset_root = COCO_ROOT
82 | cfg = coco
83 | dataset = COCODetection(root=args.dataset_root,
84 | transform=SSDAugmentation(cfg['min_dim'],
85 | MEANS))'''
86 | elif args.dataset == 'VOC':
87 | '''if args.dataset_root == COCO_ROOT:
88 | parser.error('Must specify dataset if specifying dataset_root')'''
89 | cfg = voc_refinedet[args.input_size]
90 | dataset = VOCDetection(root=args.dataset_root,
91 | transform=SSDAugmentation(cfg['min_dim'],
92 | MEANS))
93 |
94 | if args.visdom:
95 | import visdom
96 | viz = visdom.Visdom()
97 |
98 | refinedet_net = build_refinedet('train', cfg['min_dim'], cfg['num_classes'])
99 | net = refinedet_net
100 | print(net)
101 | #input()
102 |
103 | if args.cuda:
104 | net = torch.nn.DataParallel(refinedet_net)
105 | cudnn.benchmark = True
106 |
107 | if args.resume:
108 | print('Resuming training, loading {}...'.format(args.resume))
109 | refinedet_net.load_weights(args.resume)
110 | else:
111 | #vgg_weights = torch.load(args.save_folder + args.basenet)
112 | vgg_weights = torch.load(args.basenet)
113 | print('Loading base network...')
114 | refinedet_net.vgg.load_state_dict(vgg_weights)
115 |
116 | if args.cuda:
117 | net = net.cuda()
118 |
119 | if not args.resume:
120 | print('Initializing weights...')
121 | # initialize newly added layers' weights with xavier method
122 | refinedet_net.extras.apply(weights_init)
123 | refinedet_net.arm_loc.apply(weights_init)
124 | refinedet_net.arm_conf.apply(weights_init)
125 | refinedet_net.odm_loc.apply(weights_init)
126 | refinedet_net.odm_conf.apply(weights_init)
127 | #refinedet_net.tcb.apply(weights_init)
128 | refinedet_net.tcb0.apply(weights_init)
129 | refinedet_net.tcb1.apply(weights_init)
130 | refinedet_net.tcb2.apply(weights_init)
131 |
132 | optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
133 | weight_decay=args.weight_decay)
134 | arm_criterion = RefineDetMultiBoxLoss(2, 0.5, True, 0, True, 3, 0.5,
135 | False, args.cuda)
136 | odm_criterion = RefineDetMultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5,
137 | False, args.cuda, use_ARM=True)
138 |
139 | net.train()
140 | # loss counters
141 | arm_loc_loss = 0
142 | arm_conf_loss = 0
143 | odm_loc_loss = 0
144 | odm_conf_loss = 0
145 | epoch = 0
146 | print('Loading the dataset...')
147 |
148 | epoch_size = len(dataset) // args.batch_size
149 | print('Training RefineDet on:', dataset.name)
150 | print('Using the specified args:')
151 | print(args)
152 |
153 | step_index = 0
154 |
155 | if args.visdom:
156 | vis_title = 'RefineDet.PyTorch on ' + dataset.name
157 | vis_legend = ['Loc Loss', 'Conf Loss', 'Total Loss']
158 | iter_plot = create_vis_plot('Iteration', 'Loss', vis_title, vis_legend)
159 | epoch_plot = create_vis_plot('Epoch', 'Loss', vis_title, vis_legend)
160 |
161 | data_loader = data.DataLoader(dataset, args.batch_size,
162 | num_workers=args.num_workers,
163 | shuffle=True, collate_fn=detection_collate,
164 | pin_memory=True)
165 | # create batch iterator
166 | batch_iterator = iter(data_loader)
167 | for iteration in range(args.start_iter, cfg['max_iter']):
168 | if args.visdom and iteration != 0 and (iteration % epoch_size == 0):
169 | update_vis_plot(epoch, arm_loc_loss, arm_conf_loss, epoch_plot, None,
170 | 'append', epoch_size)
171 | # reset epoch loss counters
172 | arm_loc_loss = 0
173 | arm_conf_loss = 0
174 | odm_loc_loss = 0
175 | odm_conf_loss = 0
176 | epoch += 1
177 |
178 | if iteration in cfg['lr_steps']:
179 | step_index += 1
180 | adjust_learning_rate(optimizer, args.gamma, step_index)
181 |
182 | # load train data
183 | try:
184 | images, targets = next(batch_iterator)
185 | except StopIteration:
186 | batch_iterator = iter(data_loader)
187 | images, targets = next(batch_iterator)
188 |
189 | if args.cuda:
190 | images = images.cuda()
191 | targets = [ann.cuda() for ann in targets]
192 | else:
193 | images = images
194 | targets = [ann for ann in targets]
195 | # forward
196 | t0 = time.time()
197 | out = net(images)
198 | # backprop
199 | optimizer.zero_grad()
200 | arm_loss_l, arm_loss_c = arm_criterion(out, targets)
201 | odm_loss_l, odm_loss_c = odm_criterion(out, targets)
202 | #input()
203 | arm_loss = arm_loss_l + arm_loss_c
204 | odm_loss = odm_loss_l + odm_loss_c
205 | loss = arm_loss + odm_loss
206 | loss.backward()
207 | optimizer.step()
208 | t1 = time.time()
209 | arm_loc_loss += arm_loss_l.item()
210 | arm_conf_loss += arm_loss_c.item()
211 | odm_loc_loss += odm_loss_l.item()
212 | odm_conf_loss += odm_loss_c.item()
213 |
214 | if iteration % 10 == 0:
215 | print('timer: %.4f sec.' % (t1 - t0))
216 | print('iter ' + repr(iteration) + ' || ARM_L Loss: %.4f ARM_C Loss: %.4f ODM_L Loss: %.4f ODM_C Loss: %.4f ||' \
217 | % (arm_loss_l.item(), arm_loss_c.item(), odm_loss_l.item(), odm_loss_c.item()), end=' ')
218 |
219 | if args.visdom:
220 | update_vis_plot(iteration, arm_loss_l.data[0], arm_loss_c.data[0],
221 | iter_plot, epoch_plot, 'append')
222 |
223 | if iteration != 0 and iteration % 5000 == 0:
224 | print('Saving state, iter:', iteration)
225 | torch.save(refinedet_net.state_dict(), args.save_folder
226 | + '/RefineDet{}_{}_{}.pth'.format(args.input_size, args.dataset,
227 | repr(iteration)))
228 | torch.save(refinedet_net.state_dict(), args.save_folder
229 | + '/RefineDet{}_{}_final.pth'.format(args.input_size, args.dataset))
230 |
231 |
232 | def adjust_learning_rate(optimizer, gamma, step):
233 | """Sets the learning rate to the initial LR decayed by 10 at every
234 | specified step
235 | # Adapted from PyTorch Imagenet example:
236 | # https://github.com/pytorch/examples/blob/master/imagenet/main.py
237 | """
238 | lr = args.lr * (gamma ** (step))
239 | for param_group in optimizer.param_groups:
240 | param_group['lr'] = lr
241 |
242 |
243 | def xavier(param):
244 | init.xavier_uniform_(param)
245 |
246 |
247 | def weights_init(m):
248 | if isinstance(m, nn.Conv2d):
249 | xavier(m.weight.data)
250 | m.bias.data.zero_()
251 | elif isinstance(m, nn.ConvTranspose2d):
252 | xavier(m.weight.data)
253 | m.bias.data.zero_()
254 |
255 |
256 | def create_vis_plot(_xlabel, _ylabel, _title, _legend):
257 | return viz.line(
258 | X=torch.zeros((1,)).cpu(),
259 | Y=torch.zeros((1, 3)).cpu(),
260 | opts=dict(
261 | xlabel=_xlabel,
262 | ylabel=_ylabel,
263 | title=_title,
264 | legend=_legend
265 | )
266 | )
267 |
268 |
269 | def update_vis_plot(iteration, loc, conf, window1, window2, update_type,
270 | epoch_size=1):
271 | viz.line(
272 | X=torch.ones((1, 3)).cpu() * iteration,
273 | Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu() / epoch_size,
274 | win=window1,
275 | update=update_type
276 | )
277 | # initialize epoch plot on first iteration
278 | if iteration == 0:
279 | viz.line(
280 | X=torch.zeros((1, 3)).cpu(),
281 | Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu(),
282 | win=window2,
283 | update=True
284 | )
285 |
286 |
287 | if __name__ == '__main__':
288 | train()
289 |
--------------------------------------------------------------------------------
/train_refinedet320.sh:
--------------------------------------------------------------------------------
1 | CUDA_VISIBLE_DEVICES=0 python train_refinedet.py --save_folder weights/RefineDet320/ --input_size 320
2 |
--------------------------------------------------------------------------------
/train_refinedet512.sh:
--------------------------------------------------------------------------------
1 | CUDA_VISIBLE_DEVICES=0 python train_refinedet.py --save_folder weights/RefineDet512/ --input_size 512
2 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .augmentations import SSDAugmentation
--------------------------------------------------------------------------------
/utils/augmentations.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torchvision import transforms
3 | import cv2
4 | import numpy as np
5 | import types
6 | from numpy import random
7 |
8 |
9 | def intersect(box_a, box_b):
10 | max_xy = np.minimum(box_a[:, 2:], box_b[2:])
11 | min_xy = np.maximum(box_a[:, :2], box_b[:2])
12 | inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf)
13 | return inter[:, 0] * inter[:, 1]
14 |
15 |
16 | def jaccard_numpy(box_a, box_b):
17 | """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
18 | is simply the intersection over union of two boxes.
19 | E.g.:
20 | A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
21 | Args:
22 | box_a: Multiple bounding boxes, Shape: [num_boxes,4]
23 | box_b: Single bounding box, Shape: [4]
24 | Return:
25 | jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
26 | """
27 | inter = intersect(box_a, box_b)
28 | area_a = ((box_a[:, 2]-box_a[:, 0]) *
29 | (box_a[:, 3]-box_a[:, 1])) # [A,B]
30 | area_b = ((box_b[2]-box_b[0]) *
31 | (box_b[3]-box_b[1])) # [A,B]
32 | union = area_a + area_b - inter
33 | return inter / union # [A,B]
34 |
35 |
36 | class Compose(object):
37 | """Composes several augmentations together.
38 | Args:
39 | transforms (List[Transform]): list of transforms to compose.
40 | Example:
41 | >>> augmentations.Compose([
42 | >>> transforms.CenterCrop(10),
43 | >>> transforms.ToTensor(),
44 | >>> ])
45 | """
46 |
47 | def __init__(self, transforms):
48 | self.transforms = transforms
49 |
50 | def __call__(self, img, boxes=None, labels=None):
51 | for t in self.transforms:
52 | img, boxes, labels = t(img, boxes, labels)
53 | return img, boxes, labels
54 |
55 |
56 | class Lambda(object):
57 | """Applies a lambda as a transform."""
58 |
59 | def __init__(self, lambd):
60 | assert isinstance(lambd, types.LambdaType)
61 | self.lambd = lambd
62 |
63 | def __call__(self, img, boxes=None, labels=None):
64 | return self.lambd(img, boxes, labels)
65 |
66 |
67 | class ConvertFromInts(object):
68 | def __call__(self, image, boxes=None, labels=None):
69 | return image.astype(np.float32), boxes, labels
70 |
71 |
72 | class SubtractMeans(object):
73 | def __init__(self, mean):
74 | self.mean = np.array(mean, dtype=np.float32)
75 |
76 | def __call__(self, image, boxes=None, labels=None):
77 | image = image.astype(np.float32)
78 | image -= self.mean
79 | return image.astype(np.float32), boxes, labels
80 |
81 |
82 | class ToAbsoluteCoords(object):
83 | def __call__(self, image, boxes=None, labels=None):
84 | height, width, channels = image.shape
85 | boxes[:, 0] *= width
86 | boxes[:, 2] *= width
87 | boxes[:, 1] *= height
88 | boxes[:, 3] *= height
89 |
90 | return image, boxes, labels
91 |
92 |
93 | class ToPercentCoords(object):
94 | def __call__(self, image, boxes=None, labels=None):
95 | height, width, channels = image.shape
96 | boxes[:, 0] /= width
97 | boxes[:, 2] /= width
98 | boxes[:, 1] /= height
99 | boxes[:, 3] /= height
100 |
101 | return image, boxes, labels
102 |
103 |
104 | class Resize(object):
105 | def __init__(self, size=300):
106 | self.size = size
107 |
108 | def __call__(self, image, boxes=None, labels=None):
109 | image = cv2.resize(image, (self.size,
110 | self.size))
111 | return image, boxes, labels
112 |
113 |
114 | class RandomSaturation(object):
115 | def __init__(self, lower=0.5, upper=1.5):
116 | self.lower = lower
117 | self.upper = upper
118 | assert self.upper >= self.lower, "contrast upper must be >= lower."
119 | assert self.lower >= 0, "contrast lower must be non-negative."
120 |
121 | def __call__(self, image, boxes=None, labels=None):
122 | if random.randint(2):
123 | image[:, :, 1] *= random.uniform(self.lower, self.upper)
124 |
125 | return image, boxes, labels
126 |
127 |
128 | class RandomHue(object):
129 | def __init__(self, delta=18.0):
130 | assert delta >= 0.0 and delta <= 360.0
131 | self.delta = delta
132 |
133 | def __call__(self, image, boxes=None, labels=None):
134 | if random.randint(2):
135 | image[:, :, 0] += random.uniform(-self.delta, self.delta)
136 | image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
137 | image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
138 | return image, boxes, labels
139 |
140 |
141 | class RandomLightingNoise(object):
142 | def __init__(self):
143 | self.perms = ((0, 1, 2), (0, 2, 1),
144 | (1, 0, 2), (1, 2, 0),
145 | (2, 0, 1), (2, 1, 0))
146 |
147 | def __call__(self, image, boxes=None, labels=None):
148 | if random.randint(2):
149 | swap = self.perms[random.randint(len(self.perms))]
150 | shuffle = SwapChannels(swap) # shuffle channels
151 | image = shuffle(image)
152 | return image, boxes, labels
153 |
154 |
155 | class ConvertColor(object):
156 | def __init__(self, current='BGR', transform='HSV'):
157 | self.transform = transform
158 | self.current = current
159 |
160 | def __call__(self, image, boxes=None, labels=None):
161 | if self.current == 'BGR' and self.transform == 'HSV':
162 | image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
163 | elif self.current == 'HSV' and self.transform == 'BGR':
164 | image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
165 | else:
166 | raise NotImplementedError
167 | return image, boxes, labels
168 |
169 |
170 | class RandomContrast(object):
171 | def __init__(self, lower=0.5, upper=1.5):
172 | self.lower = lower
173 | self.upper = upper
174 | assert self.upper >= self.lower, "contrast upper must be >= lower."
175 | assert self.lower >= 0, "contrast lower must be non-negative."
176 |
177 | # expects float image
178 | def __call__(self, image, boxes=None, labels=None):
179 | if random.randint(2):
180 | alpha = random.uniform(self.lower, self.upper)
181 | image *= alpha
182 | return image, boxes, labels
183 |
184 |
185 | class RandomBrightness(object):
186 | def __init__(self, delta=32):
187 | assert delta >= 0.0
188 | assert delta <= 255.0
189 | self.delta = delta
190 |
191 | def __call__(self, image, boxes=None, labels=None):
192 | if random.randint(2):
193 | delta = random.uniform(-self.delta, self.delta)
194 | image += delta
195 | return image, boxes, labels
196 |
197 |
198 | class ToCV2Image(object):
199 | def __call__(self, tensor, boxes=None, labels=None):
200 | return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels
201 |
202 |
203 | class ToTensor(object):
204 | def __call__(self, cvimage, boxes=None, labels=None):
205 | return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels
206 |
207 |
208 | class RandomSampleCrop(object):
209 | """Crop
210 | Arguments:
211 | img (Image): the image being input during training
212 | boxes (Tensor): the original bounding boxes in pt form
213 | labels (Tensor): the class labels for each bbox
214 | mode (float tuple): the min and max jaccard overlaps
215 | Return:
216 | (img, boxes, classes)
217 | img (Image): the cropped image
218 | boxes (Tensor): the adjusted bounding boxes in pt form
219 | labels (Tensor): the class labels for each bbox
220 | """
221 | def __init__(self):
222 | self.sample_options = (
223 | # using entire original input image
224 | None,
225 | # sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9
226 | (0.1, None),
227 | (0.3, None),
228 | (0.7, None),
229 | (0.9, None),
230 | # randomly sample a patch
231 | (None, None),
232 | )
233 |
234 | def __call__(self, image, boxes=None, labels=None):
235 | height, width, _ = image.shape
236 | while True:
237 | # randomly choose a mode
238 | mode = random.choice(self.sample_options)
239 | if mode is None:
240 | return image, boxes, labels
241 |
242 | min_iou, max_iou = mode
243 | if min_iou is None:
244 | min_iou = float('-inf')
245 | if max_iou is None:
246 | max_iou = float('inf')
247 |
248 | # max trails (50)
249 | for _ in range(50):
250 | current_image = image
251 |
252 | w = random.uniform(0.3 * width, width)
253 | h = random.uniform(0.3 * height, height)
254 |
255 | # aspect ratio constraint b/t .5 & 2
256 | if h / w < 0.5 or h / w > 2:
257 | continue
258 |
259 | left = random.uniform(width - w)
260 | top = random.uniform(height - h)
261 |
262 | # convert to integer rect x1,y1,x2,y2
263 | rect = np.array([int(left), int(top), int(left+w), int(top+h)])
264 |
265 | # calculate IoU (jaccard overlap) b/t the cropped and gt boxes
266 | overlap = jaccard_numpy(boxes, rect)
267 |
268 | # is min and max overlap constraint satisfied? if not try again
269 | if overlap.min() < min_iou and max_iou < overlap.max():
270 | continue
271 |
272 | # cut the crop from the image
273 | current_image = current_image[rect[1]:rect[3], rect[0]:rect[2],
274 | :]
275 |
276 | # keep overlap with gt box IF center in sampled patch
277 | centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
278 |
279 | # mask in all gt boxes that above and to the left of centers
280 | m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
281 |
282 | # mask in all gt boxes that under and to the right of centers
283 | m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
284 |
285 | # mask in that both m1 and m2 are true
286 | mask = m1 * m2
287 |
288 | # have any valid boxes? try again if not
289 | if not mask.any():
290 | continue
291 |
292 | # take only matching gt boxes
293 | current_boxes = boxes[mask, :].copy()
294 |
295 | # take only matching gt labels
296 | current_labels = labels[mask]
297 |
298 | # should we use the box left and top corner or the crop's
299 | current_boxes[:, :2] = np.maximum(current_boxes[:, :2],
300 | rect[:2])
301 | # adjust to crop (by substracting crop's left,top)
302 | current_boxes[:, :2] -= rect[:2]
303 |
304 | current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:],
305 | rect[2:])
306 | # adjust to crop (by substracting crop's left,top)
307 | current_boxes[:, 2:] -= rect[:2]
308 |
309 | return current_image, current_boxes, current_labels
310 |
311 |
312 | class Expand(object):
313 | def __init__(self, mean):
314 | self.mean = mean
315 |
316 | def __call__(self, image, boxes, labels):
317 | if random.randint(2):
318 | return image, boxes, labels
319 |
320 | height, width, depth = image.shape
321 | ratio = random.uniform(1, 4)
322 | left = random.uniform(0, width*ratio - width)
323 | top = random.uniform(0, height*ratio - height)
324 |
325 | expand_image = np.zeros(
326 | (int(height*ratio), int(width*ratio), depth),
327 | dtype=image.dtype)
328 | expand_image[:, :, :] = self.mean
329 | expand_image[int(top):int(top + height),
330 | int(left):int(left + width)] = image
331 | image = expand_image
332 |
333 | boxes = boxes.copy()
334 | boxes[:, :2] += (int(left), int(top))
335 | boxes[:, 2:] += (int(left), int(top))
336 |
337 | return image, boxes, labels
338 |
339 |
340 | class RandomMirror(object):
341 | def __call__(self, image, boxes, classes):
342 | _, width, _ = image.shape
343 | if random.randint(2):
344 | image = image[:, ::-1]
345 | boxes = boxes.copy()
346 | boxes[:, 0::2] = width - boxes[:, 2::-2]
347 | return image, boxes, classes
348 |
349 |
350 | class SwapChannels(object):
351 | """Transforms a tensorized image by swapping the channels in the order
352 | specified in the swap tuple.
353 | Args:
354 | swaps (int triple): final order of channels
355 | eg: (2, 1, 0)
356 | """
357 |
358 | def __init__(self, swaps):
359 | self.swaps = swaps
360 |
361 | def __call__(self, image):
362 | """
363 | Args:
364 | image (Tensor): image tensor to be transformed
365 | Return:
366 | a tensor with channels swapped according to swap
367 | """
368 | # if torch.is_tensor(image):
369 | # image = image.data.cpu().numpy()
370 | # else:
371 | # image = np.array(image)
372 | image = image[:, :, self.swaps]
373 | return image
374 |
375 |
376 | class PhotometricDistort(object):
377 | def __init__(self):
378 | self.pd = [
379 | RandomContrast(),
380 | ConvertColor(transform='HSV'),
381 | RandomSaturation(),
382 | RandomHue(),
383 | ConvertColor(current='HSV', transform='BGR'),
384 | RandomContrast()
385 | ]
386 | self.rand_brightness = RandomBrightness()
387 | self.rand_light_noise = RandomLightingNoise()
388 |
389 | def __call__(self, image, boxes, labels):
390 | im = image.copy()
391 | im, boxes, labels = self.rand_brightness(im, boxes, labels)
392 | if random.randint(2):
393 | distort = Compose(self.pd[:-1])
394 | else:
395 | distort = Compose(self.pd[1:])
396 | im, boxes, labels = distort(im, boxes, labels)
397 | return self.rand_light_noise(im, boxes, labels)
398 |
399 |
400 | class SSDAugmentation(object):
401 | def __init__(self, size=300, mean=(104, 117, 123)):
402 | self.mean = mean
403 | self.size = size
404 | self.augment = Compose([
405 | ConvertFromInts(),
406 | ToAbsoluteCoords(),
407 | PhotometricDistort(),
408 | Expand(self.mean),
409 | RandomSampleCrop(),
410 | RandomMirror(),
411 | ToPercentCoords(),
412 | Resize(self.size),
413 | SubtractMeans(self.mean)
414 | ])
415 |
416 | def __call__(self, img, boxes, labels):
417 | return self.augment(img, boxes, labels)
418 |
--------------------------------------------------------------------------------
/utils/logging.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 | import os
3 | import sys
4 |
5 | from .osutils import mkdir_if_missing
6 |
7 |
8 | class Logger(object):
9 | def __init__(self, fpath=None):
10 | self.console = sys.stdout
11 | self.file = None
12 | if fpath is not None:
13 | mkdir_if_missing(os.path.dirname(fpath))
14 | self.file = open(fpath, 'w')
15 |
16 | def __del__(self):
17 | self.close()
18 |
19 | def __enter__(self):
20 | pass
21 |
22 | def __exit__(self, *args):
23 | self.close()
24 |
25 | def write(self, msg):
26 | self.console.write(msg)
27 | if self.file is not None:
28 | self.file.write(msg)
29 |
30 | def flush(self):
31 | self.console.flush()
32 | if self.file is not None:
33 | self.file.flush()
34 | os.fsync(self.file.fileno())
35 |
36 | def close(self):
37 | self.console.close()
38 | if self.file is not None:
39 | self.file.close()
40 |
--------------------------------------------------------------------------------
/utils/osutils.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 | import os
3 | import errno
4 |
5 |
6 | def mkdir_if_missing(dir_path):
7 | try:
8 | os.makedirs(dir_path)
9 | except OSError as e:
10 | if e.errno != errno.EEXIST:
11 | raise
12 |
--------------------------------------------------------------------------------