├── figures
├── detection.png
├── recognition.png
└── illustration.png
├── LICENSE
└── README.md
/figures/detection.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxiangju-PersonAI/iCartoonFace/HEAD/figures/detection.png
--------------------------------------------------------------------------------
/figures/recognition.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxiangju-PersonAI/iCartoonFace/HEAD/figures/recognition.png
--------------------------------------------------------------------------------
/figures/illustration.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxiangju-PersonAI/iCartoonFace/HEAD/figures/illustration.png
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2020 iQIYI-PersonAI
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # iCartoonFace
2 |
3 | [](LICENSE)
4 | 
5 | 
6 | 
7 |
8 | ## **Cartoon Face Recognition: A Benchmark Dataset**
9 |
10 | ###
11 |
12 |
13 |
14 |
15 |
16 | The iCartoonFace project is supported by iQIYI. And this repository provides iCartoonFace dataset and baseline approaches of the following paper.
17 |
18 | [**Dataset Download**](#Dataset) | [**Citation**](#Citation) | [**Video Presentation**](https://www.youtube.com/watch?v=xOT1MiEp-uU) | [**Paper Arxiv(Pdf)**](https://arxiv.org/pdf/1907.13394.pdf) | [**Project Website**](https://iqiyi.cn/icartoonface)
19 |
20 | ## Cartoon Face Detection
21 |
22 |
23 |
24 | The iCartoonFace detection dataset is a large-scale dataset established for cartoon face detection, which contains multiple styles. In the iCartoonFace detection task, the mAP (mean average precision) metric is used to evaluate the performance of the algorithm.
25 |
26 | ## Cartoon Face Recognition
27 |
28 |
29 |
30 | The iCartoonFace recognition dataset is a large-scale challenging dataset established for cartoon face recognition. The above figure visualizes the statistics of the proposed dataset. In the iCartoonFace recognition task, given a probe photo and a gallery containing at least one photo of the same cartoon character, the algorithm needs to rank-orders all photos in the gallery based on similarity to the probe.
31 |
32 | Reference method: [insightface](https://github.com/deepinsight/insightface) or [reid-strong-baseline](https://github.com/michuanhaohao/reid-strong-baseline)
33 |
34 | ## Dataset
35 |
36 |
37 | - The iCartoonFace detection train and test dataset: [爱奇艺网盘](https://fft.cloud.iqiyi.com/s/bUbcwxz ) (密码: 1ZdlyJ)or [Google Drive](https://drive.google.com/drive/folders/1ARKrhmGAMwVNr8M9kXgDzMUDhzusLxb7?usp=sharing)
38 | - The iCartoonFace recognition train and test dataset: [爱奇艺网盘](https://fft.cloud.iqiyi.com/s/bUbdw5A ) (密码: 5Kv2M1)or [Google Drive](https://drive.google.com/drive/folders/1m6pAL9Wbn8B1td0hFUj9RVRrSweNKskW?usp=sharing)
39 | - The iCartoonFace recognition personid infomations: [爱奇艺网盘](https://fft.cloud.iqiyi.com/s/cqvUvYT ) (密码: LCl0gj)or [Google Drive](https://drive.google.com/file/d/1rOmoseZXAKG5y7mkEsVAoaWan2dIrMzD/view?usp=sharing)
40 |
41 | ## Evaluation
42 |
43 | - iCartoonFace detection test dataset label: [爱奇艺网盘](https://fft.cloud.iqiyi.com/s/b8r3nn8 ) (密码: 2s6h2X)or [Google Drive](https://drive.google.com/file/d/1qiHHCP1RvMl6kH017pAV8-QDdcMyy8PR/view?usp=sharing)
44 | - iCartoonFace recognition test dataset label: [爱奇艺网盘](https://fft.cloud.iqiyi.com/s/b8r6fX2 ) (密码: X6fgYZ)or [Google Drive](https://drive.google.com/file/d/1HmmPgvE6xlGr_UOmEac6pczHLtYjipzp/view?usp=sharing)
45 | - As for the recognition test dataset label, it consists of filename x1 y1 x2 y2 label_id. If the label id equals -1, it represents the image label does not belong to any of the current classes.
46 | - Evalution code: [爱奇艺网盘](https://fft.cloud.iqiyi.com/s/cjiZgex) (密码: 5XX55z)or [Google Drive](https://drive.google.com/file/d/1G3g1PslSleSDIEVWqtDIxFLLCNHLtJws/view?usp=sharing)
47 |
48 | ## Acknowledgement
49 |
50 |
51 | We would like to thank Song Shi and his team for the organization of competitions, Yan Fu and He Chen team for the help of data annotations, Chenwei Yang team for providing computing resources, and Lingyun Xiao, Ke Chen, Xiang Xia et al. for developing and designing competition websites.
52 |
53 | ## Citation
54 |
55 |
56 | If you use the iCartoonFace dataset for your research, please cite our paper as follows.
57 |
58 | > @inproceedings{zheng2020cartoon,
59 | > title={Cartoon Face Recognition: A Benchmark Dataset},
60 | > author={Zheng, Yi and Zhao, Yifan and Ren, Mengyuan and Yan, He and Lu, Xiangju and Liu, Junhui and Li, Jia},
61 | > booktitle={Proceedings of the 28th ACM International Conference on Multimedia},
62 | > pages={2264--2272},
63 | > year={2020}
64 | > }
65 |
--------------------------------------------------------------------------------