├── .dockerignore
├── .github
├── dependabot.yml
└── workflows
│ ├── pre-commit.yaml
│ ├── publish_image.yaml
│ ├── semgrep.yaml
│ └── unittests.yaml
├── .gitignore
├── .gitmodules
├── .pre-commit-config.yaml
├── .semgrepignore
├── Dockerfile
├── LICENSE
├── README.md
├── docker-compose.yml
├── media
└── coverage_badge.svg
├── pyproject.toml
├── requirements-dev.txt
├── requirements.txt
├── tests
└── test_conversion.py
└── tools
├── .DS_Store
├── main.py
├── modules
├── __init__.py
├── backbones.py
├── exporter.py
├── heads.py
└── stage2.py
├── utils
├── __init__.py
├── config.py
├── constants.py
├── filesystem_utils.py
├── in_channels.py
└── version_detection.py
├── yolo
├── .DS_Store
├── __init__.py
├── yolov10_exporter.py
├── yolov5_exporter.py
├── yolov6_exporter.py
└── yolov8_exporter.py
├── yolov6r1
├── .DS_Store
└── yolov6_r1_exporter.py
├── yolov6r3
├── .DS_Store
├── gold_yolo_exporter.py
└── yolov6_r3_exporter.py
└── yolov7
└── yolov7_exporter.py
/.dockerignore:
--------------------------------------------------------------------------------
1 | venv
2 | yolo/YoloV5_export_playground.ipynb
3 | tmp
4 | export
5 | client/node_modules
6 | client/build
7 | *.pt
8 | docker-compose.yml
9 | Dockerfile
10 | .gitignore
11 | .dockerignore
12 |
--------------------------------------------------------------------------------
/.github/dependabot.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 | updates:
3 | - package-ecosystem: "pip"
4 | directory: "/"
5 | schedule:
6 | interval: "weekly"
7 | target-branch: "main"
8 | # Labels on pull requests for version updates only
9 | labels:
10 | - "pip dependencies"
--------------------------------------------------------------------------------
/.github/workflows/pre-commit.yaml:
--------------------------------------------------------------------------------
1 | name: pre-commit
2 |
3 | on:
4 | pull_request:
5 | branches: [main]
6 |
7 | jobs:
8 | pre-commit:
9 | runs-on: ubuntu-latest
10 | steps:
11 | - uses: actions/checkout@v3
12 | - uses: actions/setup-python@v3
13 | with:
14 | python-version: '3.8'
15 | - uses: pre-commit/action@v3.0.0
--------------------------------------------------------------------------------
/.github/workflows/publish_image.yaml:
--------------------------------------------------------------------------------
1 | name: Publishing a docker image
2 |
3 | on:
4 | push:
5 | branches: ['main']
6 |
7 | env:
8 | NAME: luxonis/tools_cli
9 |
10 | jobs:
11 | ghcr-publish:
12 | runs-on: ubuntu-latest
13 |
14 | permissions:
15 | contents: read
16 | packages: write
17 |
18 | steps:
19 | - name: Checkout code
20 | uses: actions/checkout@v4
21 |
22 | - name: Get tools-cli version
23 | id: commit
24 | run: echo "sha=$(git rev-parse --short HEAD)" >> $GITHUB_OUTPUT
25 |
26 | - name: Docker login to GHCR
27 | uses: docker/login-action@v3
28 | with:
29 | registry: ghcr.io
30 | username: ${{ github.actor }}
31 | password: ${{ secrets.GITHUB_TOKEN }}
32 |
33 | - name: Publish latest
34 | run: |
35 | git submodule update --init --recursive
36 | docker build -t $NAME:latest .
37 | docker tag $NAME:latest ghcr.io/$NAME:latest
38 | docker push ghcr.io/$NAME:latest
39 |
40 | - name: Publish tagged
41 | run: |
42 | VERSION=${{ steps.commit.outputs.sha }}
43 | docker tag $NAME:latest ghcr.io/$NAME:$VERSION
44 | docker push ghcr.io/$NAME:$VERSION
45 |
--------------------------------------------------------------------------------
/.github/workflows/semgrep.yaml:
--------------------------------------------------------------------------------
1 | name: Semgrep SAST Scan
2 |
3 | on:
4 | pull_request:
5 |
6 | jobs:
7 | semgrep:
8 | # User definable name of this GitHub Actions job.
9 | name: semgrep/ci
10 | # If you are self-hosting, change the following `runs-on` value:
11 | runs-on: ubuntu-latest
12 | container:
13 | # A Docker image with Semgrep installed. Do not change this.
14 | image: returntocorp/semgrep
15 | # Skip any PR created by dependabot to avoid permission issues:
16 | if: (github.actor != 'dependabot[bot]')
17 | permissions:
18 | # required for all workflows
19 | security-events: write
20 | # only required for workflows in private repositories
21 | actions: read
22 | contents: read
23 |
24 | steps:
25 | # Fetch project source with GitHub Actions Checkout.
26 | - name: Checkout repository
27 | uses: actions/checkout@v4
28 |
29 | - name: Perform Semgrep Analysis
30 | # @NOTE: This is the actual semgrep command to scan your code.
31 | # Modify the --config option to 'r/all' to scan using all rules,
32 | # or use multiple flags to specify particular rules, such as
33 | # --config r/all --config custom/rules
34 | run: semgrep scan -q --sarif --config auto --config "p/secrets" . > semgrep-results.sarif
35 |
36 | - name: Pretty-Print SARIF Output
37 | run: |
38 | jq . semgrep-results.sarif > formatted-semgrep-results.sarif || echo "{}"
39 | echo "Formatted SARIF Output (First 20 lines):"
40 | head -n 20 formatted-semgrep-results.sarif || echo "{}"
41 |
42 | - name: Validate JSON Output
43 | run: |
44 | if ! jq empty formatted-semgrep-results.sarif > /dev/null 2>&1; then
45 | echo "⚠️ Semgrep output is not valid JSON. Skipping annotations."
46 | exit 0
47 | fi
48 |
49 | - name: Add PR Annotations for Semgrep Findings
50 | run: |
51 | total_issues=$(jq '.runs[0].results | length' formatted-semgrep-results.sarif)
52 | if [[ "$total_issues" -eq 0 ]]; then
53 | echo "✅ No Semgrep issues found!"
54 | exit 0
55 | fi
56 |
57 | jq -c '.runs[0].results[]' formatted-semgrep-results.sarif | while IFS= read -r issue; do
58 | file=$(echo "$issue" | jq -r '.locations[0].physicalLocation.artifactLocation.uri')
59 | line=$(echo "$issue" | jq -r '.locations[0].physicalLocation.region.startLine')
60 | message=$(echo "$issue" | jq -r '.message.text')
61 |
62 | if [[ -n "$file" && -n "$line" && -n "$message" ]]; then
63 | echo "::error file=$file,line=$line,title=Semgrep Issue::${message}"
64 | fi
65 | done
--------------------------------------------------------------------------------
/.github/workflows/unittests.yaml:
--------------------------------------------------------------------------------
1 | name: Unit Tests
2 |
3 | on:
4 | pull_request:
5 | branches:
6 | - main
7 | paths:
8 | - 'tests/**'
9 | - 'tools/**'
10 | - '.github/workflows/unittests.yaml'
11 |
12 | workflow_call:
13 | inputs:
14 | ml_ref:
15 | description: 'luxonis-ml version (branch/tag/SHA)'
16 | required: true
17 | type: string
18 | tools_ref:
19 | description: 'tools version (branch/tag/SHA)'
20 | required: true
21 | type: string
22 |
23 | jobs:
24 | run_tests:
25 | strategy:
26 | fail-fast: false
27 | matrix:
28 | os: [ubuntu-latest, windows-latest, macOS-latest]
29 | version: ['3.10', '3.11']
30 |
31 | runs-on: ${{ matrix.os }}
32 |
33 | steps:
34 | - name: Checkout at tools_ref
35 | if: ${{ inputs.tools_ref != '' }}
36 | uses: actions/checkout@v4
37 | with:
38 | repository: Luxonis/tools
39 | ref: ${{ inputs.tools_ref }}
40 | path: tools
41 | submodules: recursive # Ensures submodules are cloned
42 |
43 | - name: Checkout
44 | if: ${{ inputs.tools_ref == '' && inputs.ml_ref == '' }}
45 | uses: actions/checkout@v4
46 | with:
47 | ref: ${{ github.head_ref }}
48 | submodules: recursive # Ensures submodules are cloned
49 |
50 | - name: Set up Python
51 | uses: actions/setup-python@v5
52 | with:
53 | python-version: ${{ matrix.version }}
54 | cache: pip
55 |
56 | - name: Install dependencies
57 | working-directory: ${{ inputs.tools_ref != '' && 'tools' || '' }}
58 | run: |
59 | pip install -e .[dev]
60 | pip install coverage-badge>=1.1.0 pytest-cov>=4.1.0
61 |
62 | - name: Install specified luxonis-ml
63 | shell: bash
64 | if: inputs.ml_ref != ''
65 | working-directory: tools
66 | env:
67 | ML_REF: ${{ inputs.ml_ref }}
68 | run: |
69 | pip uninstall luxonis-ml -y
70 | pip install \
71 | "luxonis-ml[data,nn_archive,utils] @ git+https://github.com/luxonis/luxonis-ml.git@${ML_REF}" \
72 | --upgrade --force-reinstall
73 |
74 | - name: Run tests with coverage [Ubuntu]
75 | if: matrix.os == 'ubuntu-latest' && matrix.version == '3.10'
76 | working-directory: ${{ inputs.tools_ref != '' && 'tools' || '' }}
77 | run: pytest tests --cov=tools --cov-report xml --junit-xml pytest.xml
78 |
79 | - name: Run tests [Windows, macOS]
80 | if: matrix.os != 'ubuntu-latest' || matrix.version != '3.10'
81 | working-directory: ${{ inputs.tools_ref != '' && 'tools' || '' }}
82 | run: pytest tests --junit-xml pytest.xml
83 |
84 | - name: Generate coverage badge [Ubuntu]
85 | if: matrix.os == 'ubuntu-latest' && matrix.version == '3.10' && inputs.tools_ref == '' && inputs.ml_ref == ''
86 | run: coverage-badge -o media/coverage_badge.svg -f
87 |
88 | - name: Generate coverage report [Ubuntu]
89 | if: matrix.os == 'ubuntu-latest' && matrix.version == '3.10' && inputs.tools_ref == '' && inputs.ml_ref == ''
90 | uses: orgoro/coverage@v3.1
91 | with:
92 | coverageFile: coverage.xml
93 | token: ${{ secrets.GITHUB_TOKEN }}
94 |
95 | - name: Commit coverage badge [Ubuntu]
96 | if: matrix.os == 'ubuntu-latest' && matrix.version == '3.10' && inputs.tools_ref == '' && inputs.ml_ref == ''
97 | run: |
98 | git config --global user.name 'GitHub Actions'
99 | git config --global user.email 'actions@github.com'
100 | git diff --quiet media/coverage_badge.svg || {
101 | git add media/coverage_badge.svg
102 | git commit -m "[Automated] Updated coverage badge"
103 | }
104 | - name: Push changes [Ubuntu]
105 | if: matrix.os == 'ubuntu-latest' && matrix.version == '3.10' && inputs.tools_ref == '' && inputs.ml_ref == ''
106 | uses: ad-m/github-push-action@master
107 | with:
108 | branch: ${{ github.head_ref }}
109 |
110 | - name: Upload Test Results
111 | if: always() && inputs.tools_ref == '' && inputs.ml_ref == ''
112 | uses: actions/upload-artifact@v4
113 | with:
114 | name: Test Results [${{ matrix.os }}] (Python ${{ matrix.version }})
115 | path: pytest.xml
116 | retention-days: 10
117 | if-no-files-found: error
118 |
119 | publish-test-results:
120 | name: "Publish Tests Results"
121 | needs: run_tests
122 | runs-on: ubuntu-latest
123 | permissions:
124 | checks: write
125 | pull-requests: write
126 | if: always() && inputs.tools_ref == '' && inputs.ml_ref == ''
127 |
128 | steps:
129 | - name: Checkout
130 | uses: actions/checkout@v4
131 | with:
132 | ref: ${{ github.head_ref }}
133 |
134 | - name: Download Artifacts
135 | uses: actions/download-artifact@v4
136 | with:
137 | path: artifacts
138 |
139 | - name: Publish Test Results
140 | uses: EnricoMi/publish-unit-test-result-action@v2
141 | with:
142 | files: "artifacts/**/*.xml"
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 |
2 | # Created by https://www.toptal.com/developers/gitignore/api/jupyternotebooks,python,visualstudiocode
3 | # Edit at https://www.toptal.com/developers/gitignore?templates=jupyternotebooks,python,visualstudiocode
4 |
5 | ### JupyterNotebooks ###
6 | # gitignore template for Jupyter Notebooks
7 | # website: http://jupyter.org/
8 |
9 | .ipynb_checkpoints
10 | */.ipynb_checkpoints/*
11 |
12 | # IPython
13 | profile_default/
14 | ipython_config.py
15 |
16 | tools/.DS_Store
17 |
18 | # Remove previous ipynb_checkpoints
19 | # git rm -r .ipynb_checkpoints/
20 |
21 | ### Python ###
22 | # Byte-compiled / optimized / DLL files
23 | __pycache__/
24 | *.py[cod]
25 | *$py.class
26 |
27 | # C extensions
28 | *.so
29 |
30 | # Distribution / packaging
31 | .Python
32 | build/
33 | develop-eggs/
34 | dist/
35 | downloads/
36 | eggs/
37 | .eggs/
38 | lib/
39 | lib64/
40 | parts/
41 | sdist/
42 | var/
43 | wheels/
44 | share/python-wheels/
45 | *.egg-info/
46 | .installed.cfg
47 | *.egg
48 | MANIFEST
49 |
50 | # PyInstaller
51 | # Usually these files are written by a python script from a template
52 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
53 | *.manifest
54 | *.spec
55 |
56 | # Installer logs
57 | pip-log.txt
58 | pip-delete-this-directory.txt
59 |
60 | # Unit test / coverage reports
61 | htmlcov/
62 | .tox/
63 | .nox/
64 | .coverage
65 | .coverage.*
66 | .cache
67 | nosetests.xml
68 | coverage.xml
69 | *.cover
70 | *.py,cover
71 | .hypothesis/
72 | .pytest_cache/
73 | cover/
74 |
75 | # Translations
76 | *.mo
77 | *.pot
78 |
79 | # Django stuff:
80 | *.log
81 | local_settings.py
82 | db.sqlite3
83 | db.sqlite3-journal
84 |
85 | # Flask stuff:
86 | instance/
87 | .webassets-cache
88 |
89 | # Scrapy stuff:
90 | .scrapy
91 |
92 | # Sphinx documentation
93 | docs/_build/
94 |
95 | # PyBuilder
96 | .pybuilder/
97 | target/
98 |
99 | # Jupyter Notebook
100 |
101 | # IPython
102 |
103 | # pyenv
104 | # For a library or package, you might want to ignore these files since the code is
105 | # intended to run in multiple environments; otherwise, check them in:
106 | # .python-version
107 |
108 | # pipenv
109 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
110 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
111 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
112 | # install all needed dependencies.
113 | #Pipfile.lock
114 |
115 | # poetry
116 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
117 | # This is especially recommended for binary packages to ensure reproducibility, and is more
118 | # commonly ignored for libraries.
119 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
120 | #poetry.lock
121 |
122 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
123 | __pypackages__/
124 |
125 | # Celery stuff
126 | celerybeat-schedule
127 | celerybeat.pid
128 |
129 | # SageMath parsed files
130 | *.sage.py
131 |
132 | # Environments
133 | .env
134 | .venv
135 | env/
136 | venv/
137 | ENV/
138 | env.bak/
139 | venv.bak/
140 |
141 | # Spyder project settings
142 | .spyderproject
143 | .spyproject
144 |
145 | # Rope project settings
146 | .ropeproject
147 |
148 | # mkdocs documentation
149 | /site
150 |
151 | # mypy
152 | .mypy_cache/
153 | .dmypy.json
154 | dmypy.json
155 |
156 | # Pyre type checker
157 | .pyre/
158 |
159 | # pytype static type analyzer
160 | .pytype/
161 |
162 | # Cython debug symbols
163 | cython_debug/
164 |
165 | # PyCharm
166 | # JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
167 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
168 | # and can be added to the global gitignore or merged into this file. For a more nuclear
169 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
170 | #.idea/
171 |
172 | ### VisualStudioCode ###
173 | .vscode/*
174 | !.vscode/settings.json
175 | !.vscode/tasks.json
176 | !.vscode/launch.json
177 | !.vscode/extensions.json
178 | !.vscode/*.code-snippets
179 |
180 | # Local History for Visual Studio Code
181 | .history/
182 |
183 | # Built Visual Studio Code Extensions
184 | *.vsix
185 |
186 | ### VisualStudioCode Patch ###
187 | # Ignore all local history of files
188 | .history
189 | .ionide
190 |
191 | # Support for Project snippet scope
192 |
193 | # End of https://www.toptal.com/developers/gitignore/api/jupyternotebooks,python,visualstudiocode
194 | tmp/
195 | export/
196 |
197 | tests/weights/*
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "yolov5"]
2 | path = tools/yolo/yolov5
3 | url = https://github.com/ultralytics/yolov5
4 | [submodule "YOLOv6"]
5 | path = tools/yolo/YOLOv6
6 | url = https://github.com/meituan/YOLOv6
7 | branch = main
8 | [submodule "yolov7"]
9 | path = tools/yolov7/yolov7
10 | url = https://github.com/WongKinYiu/yolov7.git
11 | branch = main
12 | [submodule "tools/yolo/ultralytics"]
13 | path = tools/yolo/ultralytics
14 | url = https://github.com/ultralytics/ultralytics
15 | [submodule "YOLOv6R1"]
16 | path = tools/yolov6r1/YOLOv6R1
17 | url = https://github.com/meituan/YOLOv6
18 | branch = main
19 | [submodule "GoldYolo"]
20 | path = tools/yolov6r3/Efficient-Computing
21 | url = https://github.com/huawei-noah/Efficient-Computing
22 | [submodule "ultralytics"]
23 | path = tools/yolo/ultralytics
24 | url = https://github.com/ultralytics/ultralytics
25 | [submodule "YOLOv6R3"]
26 | path = tools/yolov6r3/YOLOv6R3
27 | url = https://github.com/meituan/YOLOv6
28 |
--------------------------------------------------------------------------------
/.pre-commit-config.yaml:
--------------------------------------------------------------------------------
1 | repos:
2 | - repo: https://github.com/astral-sh/ruff-pre-commit
3 | rev: v0.1.2
4 | hooks:
5 | - id: ruff
6 | args: [--fix, --exit-non-zero-on-fix]
7 | types_or: [python, pyi]
8 |
9 | - repo: https://github.com/ambv/black
10 | rev: 23.3.0
11 | hooks:
12 | - id: black
13 | language_version: python3.8
14 | exclude: 'tools/yolov7/yolov7/'
15 |
16 | - repo: https://github.com/pre-commit/pre-commit-hooks
17 | rev: v4.4.0
18 | hooks:
19 | - id: no-commit-to-branch
20 | args: ['--branch', 'main']
21 |
22 | - repo: https://github.com/executablebooks/mdformat
23 | rev: 0.7.10
24 | hooks:
25 | - id: mdformat
26 | additional_dependencies:
27 | - mdformat-gfm
28 | - mdformat-toc
29 | exclude: '.github/'
--------------------------------------------------------------------------------
/.semgrepignore:
--------------------------------------------------------------------------------
1 | tools/yolov7/yolov7
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM python:3.11-bullseye
2 |
3 | ## Set working directory
4 | WORKDIR /app
5 |
6 | ## Install dependencies (including required libraries)
7 | RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 build-essential cmake git -y
8 |
9 | ## Add necessary files and set permissions
10 | ADD tools /app/tools
11 | ADD pyproject.toml /app
12 | ADD requirements.txt /app
13 |
14 | ## Create non-root user and set ownership of the working directory
15 | RUN adduser --disabled-password --gecos "" --no-create-home non-root && \
16 | chown -R non-root:non-root /app
17 |
18 | ## Install Python dependencies
19 | RUN pip install .
20 |
21 | ## Switch to non-root user
22 | USER non-root
23 |
24 | ## Set PATH for the installed executable
25 | ENV PATH="/home/non-root/.local/bin:/usr/local/bin:$PATH"
26 |
27 | ## Define image execution
28 | ENTRYPOINT ["tools"]
29 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Tools-CLI
2 |
3 | > \[!NOTE\]\
4 | > This is the latest version of tools CLI. If you are looking for the tools web application, please refer to the [web-app](https://github.com/luxonis/tools/tree/web-app) branch.
5 |
6 | This is a command-line tool that simplifies the conversion process of YOLO models. It supports the conversion of YOLOs ranging from V5 through V11 and Gold Yolo including oriented bounding boxes object detection (OBB), pose estimation, and instance segmentation variants of YOLOv8 and YOLO11 to ONNX format and archiving them in the NN Archive format.
7 |
8 | > \[!WARNING\]\
9 | > Please note that for the moment, we support conversion of YOLOv9 weights only from [Ultralytics](https://docs.ultralytics.com/models/yolov9/#performance-on-ms-coco-dataset).
10 |
11 | ## 📜 Table of contents
12 |
13 | - [💻 How to run](#run)
14 | - [⚙️ Arguments](#arguments)
15 | - [🧰 Supported Models](#supported-models)
16 | - [📝 Credits](#credits)
17 | - [📄 License](#license)
18 | - [🤝 Contributing](#contributing)
19 |
20 |
21 |
22 | ## 💻 How to run
23 |
24 | You can either export a model stored on the cloud (e.g. S3) or locally. You can choose to install the toolkit through pip or using Docker. In the sections below, we'll describe both options.
25 |
26 | ### Prerequisites
27 |
28 | ```bash
29 | # Cloning the tools repository and all submodules
30 | git clone --recursive https://github.com/luxonis/tools.git
31 | # Change folder
32 | cd tools
33 | ```
34 |
35 | ### Using Python package
36 |
37 | ```bash
38 | # Install the package
39 | pip install .
40 | # Running the package
41 | tools yolov6nr4.pt --imgsz "416"
42 | ```
43 |
44 | ### Using Docker or Docker Compose
45 |
46 | This option requires you to have Docker installed on your device. Additionally, to export a local model, please put it inside a `shared-component/models/` folder in the root folder of the project.
47 |
48 | #### Using Docker
49 |
50 | ```bash
51 | # Building Docker image
52 | docker build -t tools_cli .
53 | # Running the image
54 | docker run -v "${PWD}/shared_with_container:/app/shared_with_container" tools_cli shared_with_container/models/yolov8n-seg.pt --imgsz "416"
55 | ```
56 |
57 | #### Using Docker compose
58 |
59 | ```bash
60 | # Building Docker image
61 | docker compose build
62 | # Running the image
63 | docker compose run tools_cli shared_with_container/models/yolov6nr4.pt
64 | ```
65 |
66 | The output files are going to be in `shared-component/output` folder.
67 |
68 |
69 |
70 | ## ⚙️ Arguments
71 |
72 | - `model: str` = Path to the model.
73 | - `imgsz: str` = Image input shape in the format `width height` or `width`. Default value `"416 416"`.
74 | - `version: Optional[str]` = Version of the YOLO model. Default value `None`. If not specified, the version will be detected automatically. Supported versions: `yolov5`, `yolov6r1`, `yolov6r3`, `yolov6r4`, `yolov7`, `yolov8`, `yolov9`, `yolov10`, `yolov11`, `goldyolo`.
75 | - `use_rvc2: bool` = Whether to export for RVC2 or RVC3 devices. Default value `True`.
76 | - `class_names: Optional[str]` = Optional list of classes separated by a comma, e.g. `"person, dog, cat"`
77 | - `output_remote_url: Optional[str]` = Remote output url for the output .onnx model.
78 | - `config_path: Optional[str]` = Optional path to an optional config.
79 | - `put_file_plugin: Optional[str]` = Which plugin to use. Optional.
80 |
81 |
82 |
83 | ## 🧰 Supported models
84 |
85 | Currently, the following models are supported:
86 |
87 | | Model Version | Supported versions |
88 | | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
89 | | `yolov5` | YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, YOLOv5n6, YOLOv5s6, YOLOv5m6, YOLOv5l6 |
90 | | `yolov6r1` | **v1.0 release:** YOLOv6n, YOLOv6t, YOLOv6s |
91 | | `yolov6r3` | **v2.0 release:** YOLOv6n, YOLOv6t, YOLOv6s, YOLOv6m, YOLOv6l **v2.1 release:** YOLOv6n, YOLOv6s, YOLOv6m, YOLOv6l **v3.0 release:** YOLOv6n, YOLOv6s, YOLOv6m, YOLOv6l |
92 | | `yolov6r4` | **v4.0 release:** YOLOv6n, YOLOv6s, YOLOv6m, YOLOv6l |
93 | | `yolov7` | YOLOv7-tiny, YOLOv7, YOLOv7x |
94 | | `yolov8` | **Detection:** YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x, YOLOv3-tinyu, YOLOv5nu, YOLOv5n6u, YOLOv5s6u, YOLOv5su, YOLOv5m6u, YOLOv5mu, YOLOv5l6u, YOLOv5lu **Instance Segmentation, Pose, Oriented Detection, Classification:** YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x |
95 | | `yolov9` | YOLOv9t, YOLOv9s, YOLOv9m, YOLOv9c |
96 | | `yolov10` | YOLOv10n, YOLOv10s, YOLOv10m, YOLOv10b, YOLOv10l, YOLOv10x |
97 | | `yolov11` | **Detection, Instance Segmentation, Pose, Oriented Detection, Classification:** YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x |
98 | | `goldyolo` | Gold-YOLO-N, Gold-YOLO-S, Gold-YOLO-M, Gold-YOLO-L |
99 |
100 | If you don't find your model in the list, it is possible that it can be converted, however, this is not guaranteed.
101 |
102 |
103 |
104 | ## 📝 Credits
105 |
106 | This application uses source code of the following repositories: [YOLOv5](https://github.com/ultralytics/yolov5), [YOLOv6](https://github.com/meituan/YOLOv6), [GoldYOLO](https://github.com/huawei-noah/Efficient-Computing) [YOLOv7](https://github.com/WongKinYiu/yolov7), and [Ultralytics](https://github.com/ultralytics/ultralytics) (see each of them for more information).
107 |
108 |
109 |
110 | ## 📄 License
111 |
112 | This application is available under **AGPL-3.0 License** license (see [LICENSE](https://github.com/luxonis/tools/blob/master/LICENSE) file for details).
113 |
114 |
115 |
116 | ## 🤝 Contributing
117 |
118 | We welcome contributions! Whether it's reporting bugs, adding features or improving documentation, your help is much appreciated. Please create a pull request ([here](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request)'s how to do it) and assign anyone from the Luxonis team to review the suggested changes. Cheers!
119 |
--------------------------------------------------------------------------------
/docker-compose.yml:
--------------------------------------------------------------------------------
1 | version: '1'
2 |
3 | services:
4 | tools-cli:
5 | build: .
6 | environment:
7 | AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_ACCESS_KEY}
8 | AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}
9 | AWS_S3_ENDPOINT_URL: ${AWS_S3_ENDPOINT_URL}
10 | GOOGLE_APPLICATION_CREDENTIALS: /run/secrets/gcp-credentials
11 | MONGO_URI: ${MONGO_URI}
12 | AWS_BUCKET: ${AWS_BUCKET}
13 | MLFLOW_S3_BUCKET: luxonis-mlflow
14 | MLFLOW_S3_ENDPOINT_URL: ${AWS_S3_ENDPOINT_URL}
15 | volumes:
16 | - ${PWD}/shared_with_container:/app/shared_with_container
17 |
18 |
--------------------------------------------------------------------------------
/media/coverage_badge.svg:
--------------------------------------------------------------------------------
1 |
2 |
22 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [project]
2 | name = "tools"
3 | version = "0.2.5"
4 | description = "Converter for YOLO models into .ONNX format."
5 | readme = "README.md"
6 | requires-python = ">=3.8"
7 | authors = [{ name = "Luxonis", email = "support@luxonis.com" }]
8 | maintainers = [{ name = "Luxonis", email = "support@luxonis.com" }]
9 | keywords = ["ml", "onnx", "YOLO", "computer vision", "object detection", "instance segmentation", "keypoint detection", "OBB"]
10 | dynamic = ["dependencies", "optional-dependencies"]
11 | classifiers = [
12 | "Development Status :: 3 - Alpha",
13 | "Programming Language :: Python :: 3.8",
14 | "Topic :: Scientific/Engineering :: Artificial Intelligence",
15 | "Topic :: Scientific/Engineering :: Image Processing",
16 | "Topic :: Scientific/Engineering :: Image Recognition",
17 | ]
18 |
19 | [project.scripts]
20 | tools = "tools.main:app"
21 |
22 | [project.urls]
23 | repository = "https://github.com/luxonis/tools"
24 | issues = "https://github.com/luxonis/tools/issues"
25 |
26 | [build-system]
27 | requires = ["setuptools", "wheel"]
28 | build-backend = "setuptools.build_meta"
29 |
30 | [tool.setuptools.packages.find]
31 | where = ["."]
32 |
33 | [tool.setuptools.package-data]
34 | tools = [
35 | "docker-compose.yaml",
36 | "docker-compose-dev.yaml",
37 | "yolo/ultralytics/ultralytics/cfg/*.yaml",
38 | "yolo/yolov5/models/*.yaml",
39 | "yolov7/yolov7/cfg/**/*.yaml"
40 | ]
41 |
42 | [tool.setuptools.dynamic]
43 | dependencies = { file = ["requirements.txt"] }
44 | optional-dependencies = { dev = { file = ["requirements-dev.txt"] } }
45 |
46 | [tool.ruff]
47 | target-version = "py38"
48 | exclude = ["tools/yolov7/yolov7/"]
49 |
50 | [tool.ruff.lint]
51 | ignore = ["F403", "B028", "B905", "D1"]
52 | select = ["E4", "E7", "E9", "F", "W", "B", "I", "FA"]
53 |
54 | [tool.ruff.pydocstyle]
55 | convention = "google"
56 |
57 | [tool.mypy]
58 | python_version = "3.10"
59 | ignore_missing_imports = true
60 |
61 | [tool.pyright]
62 | typeCheckingMode = "basic"
63 |
--------------------------------------------------------------------------------
/requirements-dev.txt:
--------------------------------------------------------------------------------
1 | pre-commit>=4.1.0
2 | pytest-cov>=4.1.0
3 | docker-squash>=1.1.0
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | torch>=2.0.0 #,<2.6.0
2 | torchvision>=0.10.1
3 | Pillow>=7.1.2
4 | PyYAML>=5.3.1
5 | gcsfs
6 | luxonis-ml[data,nn_archive,utils]>=0.6.5,<0.7
7 | onnx>=1.17.0
8 | numpy>=1.19.5,<2.1.0
9 | onnxruntime>=1.20.1
10 | onnxsim>=0.4.36
11 | s3fs
12 | tqdm
13 | s3transfer
14 | typer>=0.12.3
15 | psutil
16 | seaborn
17 | mmcv>=1.5.0,<2.0.0
--------------------------------------------------------------------------------
/tests/test_conversion.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 |
5 | import requests
6 |
7 | from tools.utils.version_detection import detect_version
8 | from tools.yolo.yolov6_exporter import YoloV6R4Exporter
9 | from tools.yolo.yolov8_exporter import YoloV8Exporter
10 | from tools.yolo.yolov10_exporter import YoloV10Exporter
11 | from tools.yolov7.yolov7_exporter import YoloV7Exporter
12 |
13 |
14 | def _download_file(url: str):
15 | """An util function for downloading file from the given URL and saving it in the current folder."""
16 | # Send a GET request to the URL
17 | response = requests.get(url)
18 |
19 | # Check if the request was successful
20 | if response.status_code == 200:
21 | # Determine the filename from the URL or use the provided new_filename
22 | filename = url.split("/")[-1]
23 |
24 | # Construct the full path to save the file
25 | file_path = os.path.join("tests", filename)
26 |
27 | # Write the content of the response to the file
28 | with open(file_path, "wb") as file:
29 | file.write(response.content)
30 | print(f"File downloaded and saved as {file_path}")
31 | else:
32 | print("Failed to download the file")
33 |
34 |
35 | def _remove_file(file_path: str):
36 | """An util function for removing a file from the current folder."""
37 | if os.path.exists(file_path):
38 | os.remove(file_path)
39 |
40 |
41 | def _test_model_conversion(exported_class, model_path, imgsz, use_rvc2):
42 | """Test the conversion of a model."""
43 | exporter = exported_class(model_path, imgsz, use_rvc2)
44 | exporter.export_onnx()
45 | exporter.export_nn_archive()
46 |
47 | # Check that the output files exist and are not empty
48 | assert os.path.exists(str(exporter.f_onnx))
49 | assert os.path.exists(str(exporter.f_nn_archive))
50 | _remove_file(model_path)
51 |
52 |
53 | def test_yolov5n_automatic_version_detection():
54 | """Test the YOLOv5n autodetection of the model version."""
55 | _download_file(
56 | "https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt"
57 | )
58 | assert detect_version("tests/yolov5n.pt") == "yolov5"
59 | _remove_file("tests/yolov5n.pt")
60 |
61 |
62 | def test_yolov5nu_automatic_version_detection():
63 | """Test the YOLOv5nu autodetection of the model version."""
64 | _download_file(
65 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov5nu.pt"
66 | )
67 | assert detect_version("tests/yolov5nu.pt") == "yolov5u"
68 | _remove_file("tests/yolov5nu.pt")
69 |
70 |
71 | def test_yolov5nu_model_conversion():
72 | """Test the conversion of an YOLOv5nu model."""
73 | _download_file(
74 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov5nu.pt"
75 | )
76 | _test_model_conversion(YoloV8Exporter, "tests/yolov5nu.pt", (64, 64), True)
77 |
78 |
79 | def test_yolov6nr1_automatic_version_detection():
80 | """Test the YOLOv6nr1 autodetection of the model version."""
81 | _download_file(
82 | "https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n.pt"
83 | )
84 | assert detect_version("tests/yolov6n.pt") == "yolov6r1"
85 | _remove_file("tests/yolov6n.pt")
86 |
87 |
88 | def test_yolov6nr2_automatic_version_detection():
89 | """Test the YOLOv6nr2 autodetection of the model version."""
90 | _download_file(
91 | "https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6n.pt"
92 | )
93 | assert detect_version("tests/yolov6n.pt") == "yolov6r3"
94 | _remove_file("tests/yolov6n.pt")
95 |
96 |
97 | def test_yolov6nr3_automatic_version_detection():
98 | """Test the YOLOv6nr3 autodetection of the model version."""
99 | _download_file(
100 | "https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n.pt"
101 | )
102 | assert detect_version("tests/yolov6n.pt") == "yolov6r3"
103 | _remove_file("tests/yolov6n.pt")
104 |
105 |
106 | def test_yolov6nr4_automatic_version_detection():
107 | """Test the YOLOv6nr4 autodetection of the model version."""
108 | _download_file(
109 | "https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6n.pt"
110 | )
111 | assert detect_version("tests/yolov6n.pt") == "yolov6r4"
112 | _remove_file("tests/yolov6n.pt")
113 |
114 |
115 | def test_yolov6nr4_model_conversion():
116 | """Test the conversion of an YOLOv6nr4 model."""
117 | _download_file(
118 | "https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6n.pt"
119 | )
120 | _test_model_conversion(YoloV6R4Exporter, "tests/yolov6n.pt", (640, 480), True)
121 |
122 |
123 | def test_yolov7t_automatic_version_detection():
124 | """Test the YOLOv7t autodetection of the model version."""
125 | _download_file(
126 | "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt"
127 | )
128 | assert detect_version("tests/yolov7-tiny.pt") == "yolov7"
129 | _remove_file("tests/yolov7-tiny.pt")
130 |
131 |
132 | def test_yolov7t_model_conversion():
133 | """Test the conversion of an YOLOv7t model."""
134 | _download_file(
135 | "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt"
136 | )
137 | _test_model_conversion(YoloV7Exporter, "tests/yolov7-tiny.pt", (640, 480), True)
138 |
139 |
140 | def test_yolov8n_automatic_version_detection():
141 | """Test the YOLOv8n autodetection of the model version."""
142 | _download_file(
143 | "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt"
144 | )
145 | assert detect_version("tests/yolov8n.pt") == "yolov8"
146 | _remove_file("tests/yolov8n.pt")
147 |
148 |
149 | def test_yolov8n_model_conversion():
150 | """Test the conversion of an YOLOv8n model."""
151 | _download_file(
152 | "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt"
153 | )
154 | _test_model_conversion(YoloV8Exporter, "tests/yolov8n.pt", (640, 480), True)
155 |
156 |
157 | def test_yolov9t_automatic_version_detection():
158 | """Test the YOLOv9t autodetection of the model version."""
159 | _download_file(
160 | "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9t.pt"
161 | )
162 | assert detect_version("tests/yolov9t.pt") == "yolov9"
163 | _remove_file("tests/yolov9t.pt")
164 |
165 |
166 | def test_yolov9t_model_conversion():
167 | """Test the conversion of an YOLOv9t model."""
168 | _download_file(
169 | "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9t.pt"
170 | )
171 | _test_model_conversion(YoloV8Exporter, "tests/yolov9t.pt", (640, 480), True)
172 |
173 |
174 | def test_yolov10n_automatic_version_detection():
175 | """Test the YOLOv10n autodetection of the model version."""
176 | _download_file(
177 | "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt"
178 | )
179 | assert detect_version("tests/yolov10n.pt") == "yolov10"
180 | _remove_file("tests/yolov10n.pt")
181 |
182 |
183 | def test_yolov10n_model_conversion():
184 | """Test the conversion of an YOLOv10n model."""
185 | _download_file(
186 | "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt"
187 | )
188 | _test_model_conversion(YoloV10Exporter, "tests/yolov10n.pt", (640, 480), True)
189 |
190 |
191 | def test_yolov11n_automatic_version_detection():
192 | """Test the YOLOv11n autodetection of the model version."""
193 | _download_file(
194 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt"
195 | )
196 | assert detect_version("tests/yolo11n.pt") == "yolov11"
197 | _remove_file("tests/yolo11n.pt")
198 |
199 |
200 | def test_yolov11n_model_conversion():
201 | """Test the conversion of an YOLOv11n model."""
202 | _download_file(
203 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt"
204 | )
205 | _test_model_conversion(YoloV8Exporter, "tests/yolo11n.pt", (640, 480), True)
206 |
207 |
208 | def test_yolov11n_cls_automatic_version_detection():
209 | """Test the YOLOv11n cls autodetection of the model version."""
210 | _download_file(
211 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt"
212 | )
213 | assert detect_version("tests/yolo11n-cls.pt") == "yolov11"
214 | _remove_file("tests/yolo11n-cls.pt")
215 |
216 |
217 | def test_yolov11n_cls_model_conversion():
218 | """Test the conversion of an YOLOv11n cls model."""
219 | _download_file(
220 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt"
221 | )
222 | _test_model_conversion(YoloV8Exporter, "tests/yolo11n-cls.pt", (224, 224), True)
223 |
224 |
225 | def test_yolov11n_seg_automatic_version_detection():
226 | """Test the YOLOv11n seg autodetection of the model version."""
227 | _download_file(
228 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt"
229 | )
230 | assert detect_version("tests/yolo11n-seg.pt") == "yolov11"
231 | _remove_file("tests/yolo11n-seg.pt")
232 |
233 |
234 | def test_yolov11n_seg_model_conversion():
235 | """Test the conversion of an YOLOv11n seg model."""
236 | _download_file(
237 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt"
238 | )
239 | _test_model_conversion(YoloV8Exporter, "tests/yolo11n-seg.pt", (640, 480), True)
240 |
241 |
242 | def test_yolov11n_obb_automatic_version_detection():
243 | """Test the YOLOv11n obb autodetection of the model version."""
244 | _download_file(
245 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt"
246 | )
247 | assert detect_version("tests/yolo11n-obb.pt") == "yolov11"
248 | _remove_file("tests/yolo11n-obb.pt")
249 |
250 |
251 | def test_yolov11n_obb_model_conversion():
252 | """Test the conversion of an YOLOv11n obb model."""
253 | _download_file(
254 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt"
255 | )
256 | _test_model_conversion(YoloV8Exporter, "tests/yolo11n-obb.pt", (640, 480), True)
257 |
258 |
259 | def test_yolov11n_kpts_automatic_version_detection():
260 | """Test the YOLOv11n kpts autodetection of the model version."""
261 | _download_file(
262 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt"
263 | )
264 | assert detect_version("tests/yolo11n-pose.pt") == "yolov11"
265 | _remove_file("tests/yolo11n-pose.pt")
266 |
267 |
268 | def test_yolov11n_kpts_model_conversion():
269 | """Test the conversion of an YOLOv11n kpts model."""
270 | _download_file(
271 | "https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt"
272 | )
273 | _test_model_conversion(YoloV8Exporter, "tests/yolo11n-pose.pt", (640, 480), True)
274 |
--------------------------------------------------------------------------------
/tools/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxonis/tools/45e4d08df9a4444c6d0b3e9f98e77ef7d8531fef/tools/.DS_Store
--------------------------------------------------------------------------------
/tools/main.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | from __future__ import annotations
3 |
4 | from typing import Optional
5 |
6 | import typer
7 | from loguru import logger
8 | from luxonis_ml.utils import setup_logging
9 | from typing_extensions import Annotated
10 |
11 | from tools.utils import (
12 | GOLD_YOLO_CONVERSION,
13 | YOLOV5_CONVERSION,
14 | YOLOV5U_CONVERSION,
15 | YOLOV6R1_CONVERSION,
16 | YOLOV6R3_CONVERSION,
17 | YOLOV6R4_CONVERSION,
18 | YOLOV7_CONVERSION,
19 | YOLOV8_CONVERSION,
20 | YOLOV9_CONVERSION,
21 | YOLOV10_CONVERSION,
22 | YOLOV11_CONVERSION,
23 | Config,
24 | detect_version,
25 | resolve_path,
26 | upload_file_to_remote,
27 | )
28 | from tools.utils.constants import MISC_DIR
29 |
30 | setup_logging()
31 |
32 | app = typer.Typer(help="Tools CLI", add_completion=False, rich_markup_mode="markdown")
33 |
34 |
35 | YOLO_VERSIONS = [
36 | GOLD_YOLO_CONVERSION,
37 | YOLOV5_CONVERSION,
38 | YOLOV5U_CONVERSION,
39 | YOLOV6R1_CONVERSION,
40 | YOLOV6R3_CONVERSION,
41 | YOLOV6R4_CONVERSION,
42 | YOLOV7_CONVERSION,
43 | YOLOV8_CONVERSION,
44 | YOLOV9_CONVERSION,
45 | YOLOV10_CONVERSION,
46 | YOLOV11_CONVERSION,
47 | ]
48 |
49 |
50 | @app.command()
51 | def convert(
52 | model: Annotated[str, typer.Argument(help="Path to the model file.")],
53 | imgsz: Annotated[
54 | str, typer.Option(help="Input image size [width, height].")
55 | ] = "416 416",
56 | version: Annotated[
57 | Optional[str],
58 | typer.Option(
59 | help='YOLO version (e.g. `"yolov8"`). If `None`, the toolkit will run an automatic version detector.'
60 | ),
61 | ] = None,
62 | use_rvc2: Annotated[
63 | bool, typer.Option(help="Whether the target platform is RVC2 or RVC3.")
64 | ] = True,
65 | class_names: Annotated[
66 | Optional[str],
67 | typer.Option(
68 | help='A list of class names the model is capable of recognizing (e.g. `"person, bicycle, car"`).'
69 | ),
70 | ] = None,
71 | output_remote_url: Annotated[
72 | Optional[str], typer.Option(help="An URL to upload the output to.")
73 | ] = None,
74 | config_path: Annotated[
75 | Optional[str],
76 | typer.Option(help="An optional path to a conversion config file."),
77 | ] = None,
78 | put_file_plugin: Annotated[
79 | Optional[str],
80 | typer.Option(
81 | help="The name of a registered function under the PUT_FILE_REGISTRY."
82 | ),
83 | ] = None,
84 | ):
85 | if version is not None and version not in YOLO_VERSIONS:
86 | logger.error("Wrong YOLO version selected!")
87 | raise typer.Exit(code=1) from None
88 |
89 | try:
90 | imgsz = list(map(int, imgsz.split(" "))) if " " in imgsz else [int(imgsz)] * 2
91 | except ValueError as e:
92 | logger.error('Invalid image size format. Must be "width height" or "width".')
93 | raise typer.Exit(code=1) from e
94 |
95 | if class_names:
96 | class_names = [class_name.strip() for class_name in class_names.split(",")]
97 | logger.info(f"Class names: {class_names}")
98 |
99 | config = Config.get_config(
100 | config_path,
101 | {
102 | "model": model,
103 | "imgsz": imgsz,
104 | "use_rvc2": use_rvc2,
105 | "class_names": class_names,
106 | "output_remote_url": output_remote_url,
107 | "put_file_plugin": put_file_plugin,
108 | },
109 | )
110 |
111 | # Resolve model path
112 | model_path = resolve_path(config.model, MISC_DIR)
113 |
114 | if version is None:
115 | version = detect_version(str(model_path))
116 | version_note = (
117 | "(This is an anchor-free version of the YOLOv5 model obtained by a more recent version of Ultralytics. Therefore, YOLOv8 conversion will be used instead of the standard YOLOv5 conversion)"
118 | if version == YOLOV5U_CONVERSION
119 | else ""
120 | )
121 | logger.info(f"Detected version: {version} {version_note}")
122 |
123 | try:
124 | # Create exporter
125 | logger.info("Loading model...")
126 | if version == YOLOV5_CONVERSION:
127 | from tools.yolo.yolov5_exporter import YoloV5Exporter
128 |
129 | exporter = YoloV5Exporter(str(model_path), config.imgsz, config.use_rvc2)
130 | elif version == YOLOV6R1_CONVERSION:
131 | from tools.yolov6r1.yolov6_r1_exporter import YoloV6R1Exporter
132 |
133 | exporter = YoloV6R1Exporter(str(model_path), config.imgsz, config.use_rvc2)
134 | elif version == YOLOV6R3_CONVERSION:
135 | from tools.yolov6r3.yolov6_r3_exporter import YoloV6R3Exporter
136 |
137 | exporter = YoloV6R3Exporter(str(model_path), config.imgsz, config.use_rvc2)
138 | elif version == GOLD_YOLO_CONVERSION:
139 | from tools.yolov6r3.gold_yolo_exporter import GoldYoloExporter
140 |
141 | exporter = GoldYoloExporter(str(model_path), config.imgsz, config.use_rvc2)
142 | elif version == YOLOV6R4_CONVERSION:
143 | from tools.yolo.yolov6_exporter import YoloV6R4Exporter
144 |
145 | exporter = YoloV6R4Exporter(str(model_path), config.imgsz, config.use_rvc2)
146 | elif version == YOLOV7_CONVERSION:
147 | from tools.yolov7.yolov7_exporter import YoloV7Exporter
148 |
149 | exporter = YoloV7Exporter(str(model_path), config.imgsz, config.use_rvc2)
150 | elif version in [
151 | YOLOV5U_CONVERSION,
152 | YOLOV8_CONVERSION,
153 | YOLOV9_CONVERSION,
154 | YOLOV11_CONVERSION,
155 | ]:
156 | from tools.yolo.yolov8_exporter import YoloV8Exporter
157 |
158 | exporter = YoloV8Exporter(str(model_path), config.imgsz, config.use_rvc2)
159 | elif version == YOLOV10_CONVERSION:
160 | from tools.yolo.yolov10_exporter import YoloV10Exporter
161 |
162 | exporter = YoloV10Exporter(str(model_path), config.imgsz, config.use_rvc2)
163 | else:
164 | logger.error("Unrecognized model version.")
165 | raise typer.Exit(code=1) from None
166 | logger.info("Model loaded.")
167 | except Exception as e:
168 | logger.error(f"Error creating exporter: {e}")
169 | raise typer.Exit(code=1) from e
170 |
171 | # Export model
172 | try:
173 | logger.info("Exporting model...")
174 | exporter.export_onnx()
175 | logger.info("Model exported.")
176 | except Exception as e:
177 | logger.error(f"Error exporting model: {e}")
178 | raise typer.Exit(code=1) from e
179 | # Create NN archive
180 | try:
181 | logger.info("Creating NN archive...")
182 | exporter.export_nn_archive(config.class_names)
183 | logger.info(f"NN archive created in {exporter.output_folder}.")
184 | except Exception as e:
185 | logger.error(f"Error creating NN archive: {e}")
186 | raise typer.Exit(code=1) from e
187 |
188 | # Upload to remote
189 | if config.output_remote_url:
190 | upload_file_to_remote(
191 | exporter.f_nn_archive, config.output_remote_url, config.put_file_plugin
192 | )
193 | logger.info(f"Uploaded NN archive to {config.output_remote_url}")
194 |
195 |
196 | if __name__ == "__main__":
197 | app()
198 |
--------------------------------------------------------------------------------
/tools/modules/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from .backbones import YoloV6BackBone
4 | from .exporter import Exporter
5 | from .heads import (
6 | OBBV8,
7 | ClassifyV8,
8 | DetectV5,
9 | DetectV6R1,
10 | DetectV6R3,
11 | DetectV6R4m,
12 | DetectV6R4s,
13 | DetectV7,
14 | DetectV8,
15 | DetectV10,
16 | PoseV8,
17 | SegmentV8,
18 | )
19 | from .stage2 import Multiplier
20 |
21 | __all__ = [
22 | "YoloV6BackBone",
23 | "DetectV6R1",
24 | "DetectV6R3",
25 | "DetectV6R4s",
26 | "DetectV6R4m",
27 | "DetectV8",
28 | "Exporter",
29 | "PoseV8",
30 | "OBBV8",
31 | "SegmentV8",
32 | "ClassifyV8",
33 | "Multiplier",
34 | "DetectV5",
35 | "DetectV7",
36 | "DetectV10",
37 | ]
38 |
--------------------------------------------------------------------------------
/tools/modules/backbones.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from torch import nn
4 |
5 |
6 | class YoloV6BackBone(nn.Module):
7 | """Backbone of YoloV6 model, it takes the model's original backbone and wraps it in
8 | this universal class.
9 |
10 | This was created for backwards compatibility with R2 models.
11 | """
12 |
13 | def __init__(
14 | self, old_layer, uses_fuse_P2: bool = True, uses_6_erblock: bool = False
15 | ):
16 | super().__init__()
17 |
18 | self.uses_fuse_P2 = uses_fuse_P2
19 | self.uses_6_erblock = uses_6_erblock
20 |
21 | self.fuse_P2 = old_layer.fuse_P2 if hasattr(old_layer, "fuse_P2") else False
22 |
23 | self.stem = old_layer.stem
24 | self.ERBlock_2 = old_layer.ERBlock_2
25 | self.ERBlock_3 = old_layer.ERBlock_3
26 | self.ERBlock_4 = old_layer.ERBlock_4
27 | self.ERBlock_5 = old_layer.ERBlock_5
28 | if uses_6_erblock:
29 | self.ERBlock_6 = old_layer.ERBlock_6
30 |
31 | def forward(self, x):
32 | outputs = []
33 | x = self.stem(x)
34 | x = self.ERBlock_2(x)
35 | if self.uses_fuse_P2 and self.fuse_P2:
36 | outputs.append(x)
37 | elif not self.uses_fuse_P2:
38 | outputs.append(x)
39 | x = self.ERBlock_3(x)
40 | outputs.append(x)
41 | x = self.ERBlock_4(x)
42 | outputs.append(x)
43 | x = self.ERBlock_5(x)
44 | outputs.append(x)
45 | if self.uses_6_erblock:
46 | x = self.ERBlock_6(x)
47 | outputs.append(x)
48 |
49 | return tuple(outputs)
50 |
--------------------------------------------------------------------------------
/tools/modules/exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | from datetime import datetime
5 | from typing import List, Optional, Tuple
6 |
7 | import onnx
8 | import onnxsim
9 | import torch
10 | from luxonis_ml.nn_archive import ArchiveGenerator
11 | from luxonis_ml.nn_archive.config_building_blocks import (
12 | DataType,
13 | Head,
14 | InputType,
15 | )
16 | from luxonis_ml.nn_archive.config_building_blocks.base_models.head_metadata import (
17 | HeadYOLOMetadata,
18 | )
19 |
20 | from tools.utils.constants import OUTPUTS_DIR
21 |
22 |
23 | class Exporter:
24 | """Exporter class to export models to ONNX and NN archive formats."""
25 |
26 | def __init__(
27 | self,
28 | model_path: str,
29 | imgsz: Tuple[int, int],
30 | use_rvc2: bool,
31 | subtype: str,
32 | output_names: List[str] = None,
33 | all_output_names: Optional[List[str]] = None,
34 | ):
35 | """
36 | Initialize the Exporter class.
37 |
38 | Args:
39 | model_path (str): Path to the model's weights
40 | imgsz (Tuple[int, int]): Image size [width, height]
41 | use_rvc2 (bool): Whether to use RVC2
42 | subtype (str): Subtype of the model
43 | output_names (List[str]): List of output names. Defaults to ["output"].
44 | all_output_names (Optional[List[str]]): List of all output names. Defaults to None.
45 | """
46 | # Set up variables
47 | self.model_path = model_path
48 | self.imgsz = imgsz
49 | self.model_name = os.path.basename(self.model_path).split(".")[0]
50 | self.model = None
51 | # Set up file paths
52 | self.f_onnx = None
53 | self.f_nn_archive = None
54 | self.use_rvc2 = use_rvc2
55 | self.number_of_channels = None
56 | self.subtype = subtype
57 | self.output_names = output_names
58 | self.all_output_names = (
59 | all_output_names if all_output_names is not None else output_names
60 | )
61 | self.output_folder = (
62 | OUTPUTS_DIR
63 | / f"{self.model_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
64 | ).resolve()
65 | # If output directory does not exist, create it
66 | if not self.output_folder.exists():
67 | self.output_folder.mkdir(parents=True)
68 |
69 | def export_onnx(self) -> os.PathLike:
70 | """Export the model to ONNX format.
71 |
72 | Returns:
73 | Path: Path to the exported ONNX model
74 | """
75 | self.f_onnx = (self.output_folder / f"{self.model_name}.onnx").resolve()
76 | im = torch.zeros(1, self.number_of_channels, *self.imgsz[::-1])
77 | # export onnx model
78 | torch.onnx.export(
79 | self.model,
80 | im,
81 | self.f_onnx,
82 | verbose=False,
83 | opset_version=12,
84 | training=torch.onnx.TrainingMode.EVAL,
85 | do_constant_folding=True,
86 | input_names=["images"],
87 | output_names=self.all_output_names,
88 | dynamic_axes=None,
89 | )
90 |
91 | # check if the arhcitecture is correct
92 | model_onnx = onnx.load(self.f_onnx) # load onnx model
93 | onnx.checker.check_model(model_onnx) # check onnx model
94 |
95 | # simplify the moodel
96 | onnx_model, check = onnxsim.simplify(model_onnx)
97 | assert check, "Simplified ONNX model could not be validated"
98 |
99 | # Save onnx model
100 | onnx.save(onnx_model, self.f_onnx)
101 |
102 | return self.f_onnx
103 |
104 | def make_nn_archive(
105 | self,
106 | class_list: List[str],
107 | n_classes: int,
108 | iou_threshold: float = 0.5,
109 | conf_threshold: float = 0.5,
110 | max_det: int = 300,
111 | parser: str = "YOLO",
112 | stage2_executable_path: Optional[str] = None,
113 | postprocessor_path: Optional[str] = None,
114 | n_prototypes: Optional[int] = None,
115 | n_keypoints: Optional[int] = None,
116 | is_softmax: Optional[bool] = None,
117 | anchors: Optional[List[List[List[float]]]] = None,
118 | output_kwargs: Optional[dict] = None,
119 | ):
120 | """Export the model to NN archive format.
121 |
122 | Args:
123 | class_list (List[str], optional): List of class names
124 | n_classes (int): Number of classes
125 | iou_threshold (float): Intersection over Union threshold
126 | conf_threshold (float): Confidence threshold
127 | max_det (int): Maximum number of detections
128 | parser (str): Parser type, defaults to "YOLO"
129 | 2stage_executable_path (Optional[str], optional): Path to the executables. Defaults to None.
130 | postprocessor_path (Optional[str], optional): Path to the postprocessor. Defaults to None.
131 | n_prototypes (Optional[int], optional): Number of prototypes. Defaults to None.
132 | n_keypoints (Optional[int], optional): Number of keypoints. Defaults to None.
133 | is_softmax (Optional[bool], optional): Whether to use softmax. Defaults to None.
134 | anchors (Optional[List[List[List[float]]]], optional): Anchors. Defaults to None.
135 | output_kwargs (Optional[dict], optional): Output keyword arguments. Defaults to None.
136 | """
137 | self.f_nn_archive = (self.output_folder / f"{self.model_name}.tar.xz").resolve()
138 | if stage2_executable_path is not None:
139 | executables_paths = [str(self.f_onnx), stage2_executable_path]
140 | else:
141 | executables_paths = [str(self.f_onnx)]
142 |
143 | if output_kwargs is None:
144 | output_kwargs = {}
145 |
146 | archive = ArchiveGenerator(
147 | archive_name=self.model_name,
148 | save_path=str(self.output_folder),
149 | cfg_dict={
150 | "config_version": "1.0",
151 | "model": {
152 | "metadata": {
153 | "name": self.model_name,
154 | "path": f"{self.model_name}.onnx",
155 | },
156 | "inputs": [
157 | {
158 | "name": "images",
159 | "dtype": DataType.FLOAT32,
160 | "input_type": InputType.IMAGE,
161 | "shape": [1, self.number_of_channels, *self.imgsz[::-1]],
162 | "preprocessing": {
163 | "mean": [0, 0, 0],
164 | "scale": [255, 255, 255],
165 | },
166 | }
167 | ],
168 | "outputs": [
169 | {
170 | "name": output,
171 | "dtype": DataType.FLOAT32,
172 | }
173 | for output in self.all_output_names
174 | ],
175 | "heads": [
176 | Head(
177 | parser=parser,
178 | metadata=HeadYOLOMetadata(
179 | yolo_outputs=self.output_names,
180 | subtype=self.subtype,
181 | n_classes=n_classes,
182 | classes=class_list,
183 | iou_threshold=iou_threshold,
184 | conf_threshold=conf_threshold,
185 | max_det=max_det,
186 | postprocessor_path=postprocessor_path,
187 | n_prototypes=n_prototypes,
188 | n_keypoints=n_keypoints,
189 | is_softmax=is_softmax,
190 | anchors=anchors,
191 | **output_kwargs,
192 | ),
193 | outputs=self.all_output_names,
194 | )
195 | ],
196 | },
197 | },
198 | executables_paths=executables_paths,
199 | )
200 | archive.make_archive()
201 |
202 | def export_nn_archive(self, class_names: Optional[List[str]] = None):
203 | """
204 | Export the model to NN archive format.
205 |
206 | Args:
207 | class_list (Optional[List[str]], optional): List of class names. Defaults to None.
208 | """
209 | nc = self.model.detect.nc
210 | # If class names are provided, use them
211 | if class_names is not None:
212 | assert (
213 | len(class_names) == nc
214 | ), f"Number of the given class names {len(class_names)} does not match number of classes {nc} provided in the model!"
215 | names = class_names
216 | else:
217 | # Check if the model has a names attribute
218 | if hasattr(self.model, "names"):
219 | names = self.model.names
220 | else:
221 | names = [f"Class_{i}" for i in range(nc)]
222 |
223 | self.make_nn_archive(names, nc)
224 |
--------------------------------------------------------------------------------
/tools/modules/heads.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import math
4 |
5 | import torch
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 |
9 |
10 | def make_anchors(feats, strides, grid_cell_offset=0.5):
11 | """Generate anchors from features."""
12 | anchor_points, stride_tensor = [], []
13 | assert feats is not None
14 | dtype, device = feats[0].dtype, feats[0].device
15 | for i, stride in enumerate(strides):
16 | _, _, h, w = feats[i].shape
17 | sx = (
18 | torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset
19 | ) # shift x
20 | sy = (
21 | torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset
22 | ) # shift y
23 | sy, sx = torch.meshgrid(sy, sx, indexing="ij")
24 | anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2).transpose(0, 1))
25 | stride_tensor.append(
26 | torch.full((h * w, 1), stride, dtype=dtype, device=device).transpose(0, 1)
27 | )
28 | return anchor_points, stride_tensor
29 | # return torch.cat(anchor_points), torch.cat(stride_tensor)
30 |
31 |
32 | class DetectV5(nn.Module):
33 | """
34 | YOLOv5 Detect head for detection models.
35 | """
36 |
37 | def __init__(self, old_detect):
38 | super().__init__()
39 | self.nc = old_detect.nc # number of classes
40 | self.no = old_detect.no # number of outputs per anchor
41 | self.nl = old_detect.nl # number of detection layers
42 | self.na = old_detect.na
43 | self.grid = old_detect.grid # [torch.zeros(1)] * self.nl
44 | self.anchor_grid = old_detect.anchor_grid
45 | self.m = old_detect.m
46 | self.inplace = old_detect.inplace
47 | self.stride = old_detect.stride
48 | self.anchors = old_detect.anchors
49 | self.f = old_detect.f
50 | self.i = old_detect.i
51 |
52 | def forward(self, x):
53 | outputs = []
54 |
55 | for i in range(self.nl):
56 | x[i] = self.m[i](x[i]) # conv
57 | channel_output = torch.sigmoid(x[i])
58 | outputs.append(channel_output)
59 |
60 | return outputs
61 |
62 |
63 | class DetectV7(nn.Module):
64 | """
65 | YOLOv7 Detect head for detection models.
66 | """
67 |
68 | def __init__(self, old_detect):
69 | super().__init__()
70 | self.nc = old_detect.nc # number of classes
71 | self.no = old_detect.no # number of outputs per anchor
72 | self.nl = old_detect.nl # number of detection layers
73 | self.na = old_detect.na
74 | self.grid = old_detect.grid
75 | self.anchor_grid = old_detect.anchor_grid
76 | self.m = old_detect.m
77 | self.stride = old_detect.stride
78 | self.anchors = old_detect.anchors
79 | self.f = old_detect.f
80 | self.i = old_detect.i
81 |
82 | def forward(self, x):
83 | outputs = []
84 |
85 | for i in range(self.nl):
86 | x[i] = self.m[i](x[i]) # conv
87 | channel_output = torch.sigmoid(x[i])
88 | outputs.append(channel_output)
89 |
90 | return outputs
91 |
92 |
93 | class DetectV6R1(nn.Module):
94 | """Efficient Decoupled Head
95 | With hardware-aware degisn, the decoupled head is optimized with
96 | hybridchannels methods.
97 | """
98 |
99 | # def __init__(self, num_classes=80, anchors=1, num_layers=3, inplace=True, head_layers=None, use_dfl=True, reg_max=16): # detection layer
100 | def __init__(self, old_detect): # detection layer
101 | super().__init__()
102 | self.nc = old_detect.nc # number of classes
103 | self.no = old_detect.no # number of outputs per anchor
104 | self.nl = old_detect.nl # number of detection layers
105 | self.na = old_detect.na
106 | self.anchors = old_detect.anchors
107 | self.grid = old_detect.grid # [torch.zeros(1)] * self.nl
108 | self.prior_prob = 1e-2
109 | self.inplace = old_detect.inplace
110 | stride = [8, 16, 32] # strides computed during build
111 | self.stride = torch.tensor(stride)
112 |
113 | # Init decouple head
114 | self.stems = old_detect.stems
115 | self.cls_convs = old_detect.cls_convs
116 | self.reg_convs = old_detect.reg_convs
117 | self.cls_preds = old_detect.cls_preds
118 | self.reg_preds = old_detect.reg_preds
119 | # New
120 | self.obj_preds = old_detect.obj_preds
121 |
122 | def forward(self, x):
123 | outputs = []
124 | for i in range(self.nl):
125 | x[i] = self.stems[i](x[i])
126 | cls_x = x[i]
127 | reg_x = x[i]
128 | cls_feat = self.cls_convs[i](cls_x)
129 | cls_output = self.cls_preds[i](cls_feat)
130 | reg_feat = self.reg_convs[i](reg_x)
131 | reg_output = self.reg_preds[i](reg_feat)
132 | obj_output = self.obj_preds[i](reg_feat)
133 | y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
134 | outputs.append(y)
135 | return outputs
136 |
137 |
138 | class DetectV6R3(nn.Module):
139 | """Efficient Decoupled Head for YOLOv6 R2&R3 With hardware-aware degisn, the
140 | decoupled head is optimized with hybridchannels methods."""
141 |
142 | def __init__(self, old_detect, use_rvc2: bool): # detection layer
143 | super().__init__()
144 | self.nc = old_detect.nc # number of classes
145 | self.no = old_detect.no # number of outputs per anchor
146 | self.nl = old_detect.nl # number of detection layers
147 | if hasattr(old_detect, "anchors"):
148 | self.anchors = old_detect.anchors
149 | self.grid = old_detect.grid # [torch.zeros(1)] * self.nl
150 | self.prior_prob = 1e-2
151 | self.inplace = old_detect.inplace
152 | stride = [8, 16, 32] # strides computed during build
153 | self.stride = torch.tensor(stride)
154 | self.use_dfl = old_detect.use_dfl
155 | self.reg_max = old_detect.reg_max
156 | self.proj_conv = old_detect.proj_conv
157 | self.grid_cell_offset = 0.5
158 | self.grid_cell_size = 5.0
159 |
160 | # Init decouple head
161 | self.stems = old_detect.stems
162 | self.cls_convs = old_detect.cls_convs
163 | self.reg_convs = old_detect.reg_convs
164 | if hasattr(old_detect, "cls_preds"):
165 | self.cls_preds = old_detect.cls_preds
166 | elif hasattr(old_detect, "cls_preds_af"):
167 | self.cls_preds = old_detect.cls_preds_af
168 | if hasattr(old_detect, "reg_preds"):
169 | self.reg_preds = old_detect.reg_preds
170 | elif hasattr(old_detect, "reg_preds_af"):
171 | self.reg_preds = old_detect.reg_preds_af
172 |
173 | self.use_rvc2 = use_rvc2
174 |
175 | def forward(self, x):
176 | outputs = []
177 | for i in range(self.nl):
178 | b, _, h, w = x[i].shape
179 | x[i] = self.stems[i](x[i])
180 | cls_x = x[i]
181 | reg_x = x[i]
182 | cls_feat = self.cls_convs[i](cls_x)
183 | cls_output = self.cls_preds[i](cls_feat)
184 | reg_feat = self.reg_convs[i](reg_x)
185 | reg_output = self.reg_preds[i](reg_feat)
186 |
187 | if self.use_dfl:
188 | reg_output = reg_output.reshape(
189 | [-1, 4, self.reg_max + 1, h * w]
190 | ).permute(0, 2, 1, 3)
191 | reg_output = self.proj_conv(F.softmax(reg_output, dim=1))[:, 0]
192 | reg_output = reg_output.reshape([-1, 4, h, w])
193 |
194 | cls_output = torch.sigmoid(cls_output)
195 | # conf, _ = cls_output.max(1, keepdim=True)
196 | if self.use_rvc2:
197 | conf, _ = cls_output.max(1, keepdim=True)
198 | else:
199 | conf = torch.ones(
200 | (cls_output.shape[0], 1, cls_output.shape[2], cls_output.shape[3]),
201 | device=cls_output.device,
202 | )
203 | output = torch.cat([reg_output, conf, cls_output], axis=1)
204 | outputs.append(output)
205 |
206 | return outputs
207 |
208 |
209 | class DetectV6R4s(nn.Module):
210 | """Efficient Decoupled Head for YOLOv6 R4 nano & small With hardware-aware design,
211 | the decoupled head is optimized with hybridchannels methods."""
212 |
213 | def __init__(self, old_detect, use_rvc2: bool): # detection layer
214 | super().__init__()
215 | self.nc = old_detect.nc # number of classes
216 | self.no = old_detect.no # number of outputs per anchor
217 | self.nl = old_detect.nl # number of detection layers
218 | if hasattr(old_detect, "anchors"):
219 | self.anchors = old_detect.anchors
220 | self.grid = old_detect.grid # [torch.zeros(1)] * self.nl
221 | self.prior_prob = 1e-2
222 | self.inplace = old_detect.inplace
223 | self.stride = old_detect.stride
224 | if hasattr(old_detect, "use_dfl"):
225 | self.use_dfl = old_detect.use_dfl
226 | # print(old_detect.use_dfl)
227 | if hasattr(old_detect, "reg_max"):
228 | self.reg_max = old_detect.reg_max
229 | if hasattr(old_detect, "proj_conv"):
230 | self.proj_conv = old_detect.proj_conv
231 | self.grid_cell_offset = 0.5
232 | self.grid_cell_size = 5.0
233 |
234 | # Init decouple head
235 | self.stems = old_detect.stems
236 | self.cls_convs = old_detect.cls_convs
237 | self.reg_convs = old_detect.reg_convs
238 | if hasattr(old_detect, "cls_preds"):
239 | self.cls_preds = old_detect.cls_preds
240 | elif hasattr(old_detect, "cls_preds_af"):
241 | self.cls_preds = old_detect.cls_preds_af
242 | if hasattr(old_detect, "reg_preds"):
243 | self.reg_preds = old_detect.reg_preds
244 | elif hasattr(old_detect, "reg_preds_af"):
245 | self.reg_preds = old_detect.reg_preds_af
246 |
247 | self.use_rvc2 = use_rvc2
248 |
249 | def forward(self, x):
250 | outputs = []
251 |
252 | for i in range(self.nl):
253 | x[i] = self.stems[i](x[i])
254 | cls_x = x[i]
255 | reg_x = x[i]
256 | cls_feat = self.cls_convs[i](cls_x)
257 | cls_output = self.cls_preds[i](cls_feat)
258 | reg_feat = self.reg_convs[i](reg_x)
259 | reg_output = self.reg_preds[i](reg_feat)
260 |
261 | cls_output = torch.sigmoid(cls_output)
262 |
263 | if self.use_rvc2:
264 | conf, _ = cls_output.max(1, keepdim=True)
265 | else:
266 | conf = torch.ones(
267 | (cls_output.shape[0], 1, cls_output.shape[2], cls_output.shape[3]),
268 | device=cls_output.device,
269 | )
270 | output = torch.cat([reg_output, conf, cls_output], axis=1)
271 | outputs.append(output)
272 |
273 | return outputs
274 |
275 |
276 | class DetectV6R4m(nn.Module):
277 | """Efficient Decoupled Head for YOLOv6 R4 medium & large With hardware-aware design,
278 | the decoupled head is optimized with hybridchannels methods."""
279 |
280 | def __init__(self, old_detect, use_rvc2: bool): # detection layer
281 | super().__init__()
282 | self.nc = old_detect.nc # number of classes
283 | self.no = old_detect.no # number of outputs per anchor
284 | self.nl = old_detect.nl # number of detection layers
285 | if hasattr(old_detect, "anchors"):
286 | self.anchors = old_detect.anchors
287 | self.grid = old_detect.grid # [torch.zeros(1)] * self.nl
288 | self.prior_prob = 1e-2
289 | self.inplace = old_detect.inplace
290 | self.stride = old_detect.stride
291 | self.use_dfl = old_detect.use_dfl
292 | # print(old_detect.use_dfl)
293 | self.reg_max = old_detect.reg_max
294 | self.proj_conv = old_detect.proj_conv
295 | self.grid_cell_offset = 0.5
296 | self.grid_cell_size = 5.0
297 |
298 | # Init decouple head
299 | self.stems = old_detect.stems
300 | self.cls_convs = old_detect.cls_convs
301 | self.reg_convs = old_detect.reg_convs
302 | if hasattr(old_detect, "cls_preds"):
303 | self.cls_preds = old_detect.cls_preds
304 | elif hasattr(old_detect, "cls_preds_af"):
305 | self.cls_preds = old_detect.cls_preds_af
306 | if hasattr(old_detect, "reg_preds"):
307 | self.reg_preds = old_detect.reg_preds
308 | elif hasattr(old_detect, "reg_preds_af"):
309 | self.reg_preds = old_detect.reg_preds_af
310 |
311 | self.use_rvc2 = use_rvc2
312 |
313 | def forward(self, x):
314 | outputs = []
315 |
316 | for i in range(self.nl):
317 | b, _, h, w = x[i].shape
318 | x[i] = self.stems[i](x[i])
319 | cls_x = x[i]
320 | reg_x = x[i]
321 | cls_feat = self.cls_convs[i](cls_x)
322 | cls_output = self.cls_preds[i](cls_feat)
323 | reg_feat = self.reg_convs[i](reg_x)
324 | reg_output = self.reg_preds[i](reg_feat)
325 |
326 | if self.use_dfl:
327 | reg_output = reg_output.reshape(
328 | [-1, 4, self.reg_max + 1, h * w]
329 | ).permute(0, 2, 1, 3)
330 | reg_output = self.proj_conv(F.softmax(reg_output, dim=1)).reshape(
331 | [-1, 4, h, w]
332 | )
333 |
334 | cls_output = torch.sigmoid(cls_output)
335 |
336 | if self.use_rvc2:
337 | conf, _ = cls_output.max(1, keepdim=True)
338 | else:
339 | conf = torch.ones(
340 | (cls_output.shape[0], 1, cls_output.shape[2], cls_output.shape[3]),
341 | device=cls_output.device,
342 | )
343 | output = torch.cat([reg_output, conf, cls_output], axis=1)
344 | outputs.append(output)
345 |
346 | return outputs
347 |
348 |
349 | class DetectV8(nn.Module):
350 | """YOLOv8 Detect head for detection models."""
351 |
352 | dynamic = False # force grid reconstruction
353 | export = False # export mode
354 | shape = None
355 | anchors = torch.empty(0) # init
356 | strides = torch.empty(0) # init
357 |
358 | def __init__(self, old_detect, use_rvc2: bool):
359 | super().__init__()
360 | self.nc = old_detect.nc # number of classes
361 | self.nl = old_detect.nl # number of detection layers
362 | self.reg_max = (
363 | old_detect.reg_max
364 | ) # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
365 | self.no = old_detect.no # number of outputs per anchor
366 | self.stride = old_detect.stride # strides computed during build
367 |
368 | self.cv2 = old_detect.cv2
369 | self.cv3 = old_detect.cv3
370 | self.f = old_detect.f
371 | self.i = old_detect.i
372 |
373 | self.use_rvc2 = use_rvc2
374 |
375 | self.proj_conv = nn.Conv2d(old_detect.dfl.c1, 1, 1, bias=False).requires_grad_(
376 | False
377 | )
378 | x = torch.arange(old_detect.dfl.c1, dtype=torch.float)
379 | self.proj_conv.weight.data[:] = nn.Parameter(x.view(1, old_detect.dfl.c1, 1, 1))
380 |
381 | def forward(self, x):
382 | bs = x[0].shape[0] # batch size
383 |
384 | outputs = []
385 | for i in range(self.nl):
386 | box = self.cv2[i](x[i])
387 | h, w = box.shape[2:]
388 |
389 | # ------------------------------
390 | # DFL PART
391 | box = box.view(bs, 4, self.reg_max, h * w).permute(0, 2, 1, 3)
392 | box = self.proj_conv(F.softmax(box, dim=1))[:, 0]
393 | box = box.reshape([bs, 4, h, w])
394 | # ------------------------------
395 |
396 | cls = self.cv3[i](x[i])
397 | cls_output = cls.sigmoid()
398 | if self.use_rvc2:
399 | conf, _ = cls_output.max(1, keepdim=True)
400 | else:
401 | conf = torch.ones(
402 | (cls_output.shape[0], 1, cls_output.shape[2], cls_output.shape[3]),
403 | device=cls_output.device,
404 | )
405 |
406 | output = torch.cat([box, conf, cls_output], axis=1)
407 | outputs.append(output)
408 |
409 | return outputs
410 |
411 |
412 | class OBBV8(DetectV8):
413 | """YOLOv8 OBB detection head for detection with rotation models."""
414 |
415 | def __init__(self, old_obb, use_rvc2):
416 | super().__init__(old_obb, use_rvc2)
417 | self.ne = old_obb.ne # number of extra parameters
418 | self.cv4 = old_obb.cv4
419 |
420 | def forward(self, x):
421 | # Detection part
422 | outputs = super().forward(x)
423 |
424 | # OBB part
425 | bs = x[0].shape[0] # batch size
426 | angle = torch.cat(
427 | [self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2
428 | ) # OBB theta logits
429 | # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
430 | angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]
431 | # Append the angle
432 | outputs.append(angle)
433 |
434 | return outputs
435 |
436 |
437 | class PoseV8(DetectV8):
438 | """YOLOv8 Pose head for keypoints models."""
439 |
440 | def __init__(self, old_kpts, use_rvc2):
441 | super().__init__(old_kpts, use_rvc2)
442 | self.kpt_shape = (
443 | old_kpts.kpt_shape
444 | ) # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
445 | self.nk = old_kpts.nk # number of keypoints total
446 | self.cv4 = old_kpts.cv4
447 | self.use_rvc2 = use_rvc2
448 |
449 | def forward(self, x):
450 | """Perform forward pass through YOLO model and return predictions."""
451 | bs = x[0].shape[0] # batch size
452 | if self.shape != bs:
453 | self.anchors, self.strides = make_anchors(x, self.stride, 0.5)
454 | self.shape = bs
455 |
456 | # Detection part
457 | outputs = super().forward(x)
458 |
459 | # Pose part
460 | for i in range(self.nl):
461 | kpt = self.cv4[i](x[i]).view(bs, self.nk, -1)
462 | outputs.append(self.kpts_decode(bs, kpt, i))
463 |
464 | return outputs
465 |
466 | def kpts_decode(self, bs, kpts, i):
467 | """Decodes keypoints."""
468 | ndim = self.kpt_shape[1]
469 | y = kpts.view(bs, *self.kpt_shape, -1)
470 | a = (y[:, :, :2] * 2.0 + (self.anchors[i] - 0.5)) * self.strides[i]
471 | if ndim == 3:
472 | # a = torch.cat((a, y[:, :, 2:3].sigmoid()*10), 2)
473 | a = torch.cat((a, y[:, :, 2:3]), 2)
474 | return a.view(bs, self.nk, -1)
475 |
476 |
477 | class SegmentV8(DetectV8):
478 | """YOLOv8 Segment head for segmentation models."""
479 |
480 | def __init__(self, old_segment, use_rvc2):
481 | super().__init__(old_segment, use_rvc2)
482 | self.nm = old_segment.nm # number of masks
483 | self.npr = old_segment.npr # number of protos
484 | self.proto = old_segment.proto # protos
485 | self.cv4 = old_segment.cv4
486 |
487 | def forward(self, x):
488 | # Detection part
489 | outputs = super().forward(x)
490 | # Masks
491 | outputs.extend([self.cv4[i](x[i]) for i in range(self.nl)])
492 | # Mask protos
493 | outputs.append(self.proto(x[0]))
494 |
495 | return outputs
496 |
497 |
498 | class ClassifyV8(nn.Module):
499 | """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
500 |
501 | def __init__(self, old_classify, use_rvc2: bool):
502 | super().__init__()
503 | self.conv = old_classify.conv
504 | self.pool = old_classify.pool
505 | self.drop = old_classify.drop
506 | self.linear = old_classify.linear
507 | self.f = old_classify.f
508 | self.i = old_classify.i
509 |
510 | self.use_rvc2 = use_rvc2
511 |
512 | def forward(self, x):
513 | """Performs a forward pass of the YOLO model on input image data."""
514 | if isinstance(x, list):
515 | x = torch.cat(x, 1)
516 | x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
517 | return x
518 |
519 |
520 | class DetectV10(DetectV8):
521 | """YOLOv10 Detect head for detection models."""
522 |
523 | def __init__(self, old_detect, use_rvc2):
524 | super().__init__(old_detect, use_rvc2)
525 | self.cv2 = old_detect.one2one_cv2
526 | self.cv3 = old_detect.one2one_cv3
527 |
--------------------------------------------------------------------------------
/tools/modules/stage2.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import torch
4 | import torch.nn as nn
5 |
6 |
7 | class Multiplier(nn.Module):
8 | def forward(self, prototypes, coefficients):
9 | coefficients = coefficients.view(coefficients.shape[0], -1, 1, 1)
10 | x = coefficients * prototypes
11 | res = torch.sigmoid(x.sum(dim=1, keepdim=True))
12 | return res
13 |
--------------------------------------------------------------------------------
/tools/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from .config import Config
4 | from .filesystem_utils import (
5 | download_from_remote,
6 | get_protocol,
7 | resolve_path,
8 | upload_file_to_remote,
9 | )
10 | from .in_channels import get_first_conv2d_in_channels
11 | from .version_detection import (
12 | GOLD_YOLO_CONVERSION,
13 | UNRECOGNIZED,
14 | YOLOV5_CONVERSION,
15 | YOLOV5U_CONVERSION,
16 | YOLOV6R1_CONVERSION,
17 | YOLOV6R3_CONVERSION,
18 | YOLOV6R4_CONVERSION,
19 | YOLOV7_CONVERSION,
20 | YOLOV8_CONVERSION,
21 | YOLOV9_CONVERSION,
22 | YOLOV10_CONVERSION,
23 | YOLOV11_CONVERSION,
24 | detect_version,
25 | )
26 |
27 | __all__ = [
28 | "Config",
29 | "detect_version",
30 | "YOLOV5_CONVERSION",
31 | "YOLOV5U_CONVERSION",
32 | "YOLOV6R1_CONVERSION",
33 | "YOLOV6R3_CONVERSION",
34 | "YOLOV6R4_CONVERSION",
35 | "YOLOV7_CONVERSION",
36 | "YOLOV8_CONVERSION",
37 | "YOLOV9_CONVERSION",
38 | "YOLOV10_CONVERSION",
39 | "YOLOV11_CONVERSION",
40 | "GOLD_YOLO_CONVERSION",
41 | "UNRECOGNIZED",
42 | "resolve_path",
43 | "download_from_remote",
44 | "upload_file_to_remote",
45 | "get_protocol",
46 | "get_first_conv2d_in_channels",
47 | ]
48 |
--------------------------------------------------------------------------------
/tools/utils/config.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from typing import List, Literal, Optional
4 |
5 | from luxonis_ml.utils import LuxonisConfig
6 | from pydantic import Field, validator
7 |
8 |
9 | class Config(LuxonisConfig):
10 | model: str = Field(..., description="Path to the model's weights")
11 | imgsz: List[int] = Field(
12 | default=[416, 416],
13 | min_length=2,
14 | max_length=2,
15 | min_ledescription="Input image size [width, height].",
16 | )
17 | class_names: Optional[List[str]] = Field(None, description="List of class names.")
18 | use_rvc2: Literal[False, True] = Field(True, description="Whether to use RVC2.")
19 | output_remote_url: Optional[str] = Field(
20 | None, description="URL to upload the output to."
21 | )
22 | put_file_plugin: Optional[str] = Field(
23 | None,
24 | description="The name of a registered function under the PUT_FILE_REGISTRY.",
25 | )
26 |
27 | @validator("imgsz", each_item=True)
28 | def check_imgsz(cls, v):
29 | if v <= 0:
30 | raise ValueError("Image size values must be greater than 0.")
31 | if v % 32 != 0:
32 | raise ValueError("Image size values must be divisible by 32.")
33 | return v
34 |
--------------------------------------------------------------------------------
/tools/utils/constants.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from pathlib import Path
4 | from typing import Final
5 |
6 | SHARED_DIR: Final[Path] = Path("shared_with_container")
7 | OUTPUTS_DIR: Final[Path] = SHARED_DIR / "outputs"
8 | MISC_DIR: Final[Path] = SHARED_DIR / "misc"
9 |
10 | __all__ = ["SHARED_DIR", "OUTPUTS_DIR", "MISC_DIR"]
11 |
--------------------------------------------------------------------------------
/tools/utils/filesystem_utils.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from pathlib import Path
4 | from typing import Optional, Union
5 |
6 | from luxonis_ml.utils import LuxonisFileSystem
7 |
8 | from tools.utils.constants import SHARED_DIR
9 |
10 |
11 | def resolve_path(string: str, dest: Path) -> Path:
12 | """Downloads the file from remote or returns the path otherwise."""
13 | protocol = get_protocol(string)
14 | if protocol != "file":
15 | path = download_from_remote(string, dest)
16 | else:
17 | path = Path(string)
18 | if not path.exists():
19 | path = SHARED_DIR / path
20 | if not path.exists():
21 | raise ValueError(f"Path `{string}` does not exist.")
22 | return path
23 |
24 |
25 | def download_from_remote(url: str, dest: Union[Path, str], max_files: int = -1) -> Path:
26 | """Downloads file(s) from remote bucket storage.
27 |
28 | It could be single file, entire direcory, or `max_files` within a directory
29 | """
30 |
31 | absolute_path, remote_path = LuxonisFileSystem.split_full_path(url)
32 | if isinstance(dest, str):
33 | dest = Path(dest)
34 | local_path = dest / remote_path
35 | fs = LuxonisFileSystem(absolute_path)
36 |
37 | if fs.is_directory(remote_path):
38 | for i, remote_file in enumerate(fs.walk_dir(remote_path)):
39 | if i == max_files:
40 | break
41 | if not local_path.exists():
42 | fs.get_file(remote_file, str(local_path / Path(remote_file).name))
43 |
44 | else:
45 | if not local_path.exists():
46 | fs.get_file(remote_path, str(local_path))
47 |
48 | return local_path
49 |
50 |
51 | def upload_file_to_remote(
52 | local_path: Union[Path, str], url: str, put_file_plugin: Optional[str] = None
53 | ) -> None:
54 | """Uploads a file to remote bucket storage."""
55 |
56 | absolute_path, remote_path = LuxonisFileSystem.split_full_path(url)
57 | fs = LuxonisFileSystem(absolute_path, put_file_plugin=put_file_plugin)
58 |
59 | fs.put_file(str(local_path), remote_path)
60 |
61 |
62 | def get_protocol(url: str) -> str:
63 | """Returns LuxonisFileSystem protocol."""
64 |
65 | return LuxonisFileSystem.get_protocol(url)
66 |
--------------------------------------------------------------------------------
/tools/utils/in_channels.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import torch
4 |
5 |
6 | def get_first_conv2d_in_channels(model):
7 | """Get the number of input channels of the first Conv2d layer in the model."""
8 | for layer in model.modules():
9 | if isinstance(layer, torch.nn.Conv2d):
10 | return layer.in_channels
11 | return None
12 |
--------------------------------------------------------------------------------
/tools/utils/version_detection.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import platform
4 | import shutil
5 | import subprocess
6 | from os import listdir
7 | from os.path import exists, isdir, join
8 |
9 | YOLOV5_CONVERSION = "yolov5"
10 | YOLOV5U_CONVERSION = "yolov5u"
11 | YOLOV6R1_CONVERSION = "yolov6r1"
12 | YOLOV6R3_CONVERSION = "yolov6r3"
13 | YOLOV6R4_CONVERSION = "yolov6r4"
14 | YOLOV7_CONVERSION = "yolov7"
15 | YOLOV8_CONVERSION = "yolov8"
16 | YOLOV9_CONVERSION = "yolov9"
17 | YOLOV10_CONVERSION = "yolov10"
18 | YOLOV11_CONVERSION = "yolov11"
19 | GOLD_YOLO_CONVERSION = "goldyolo"
20 | UNRECOGNIZED = "none"
21 |
22 |
23 | def detect_version(path: str, debug: bool = False) -> str:
24 | """Detect the version of the model weights.
25 |
26 | Args:
27 | path (str): Path to the model weights
28 |
29 | Returns:
30 | str: The detected version
31 | """
32 | try:
33 | # Remove and recreate the extracted_model directory
34 | if exists("extracted_model"):
35 | shutil.rmtree("extracted_model")
36 | subprocess.check_output("mkdir extracted_model", shell=True)
37 |
38 | # Extract the tar file into the extracted_model directory
39 | if platform.system() == "Windows":
40 | subprocess.check_output(["tar", "-xf", path, "-C", "extracted_model"])
41 | else:
42 | subprocess.check_output(["unzip", path, "-d", "extracted_model"])
43 |
44 | folder = [
45 | f for f in listdir("extracted_model") if isdir(join("extracted_model", f))
46 | ][0]
47 |
48 | if "yolov8" in folder.lower():
49 | return YOLOV8_CONVERSION
50 |
51 | # open a file, where you stored the pickled data
52 | with open(f"extracted_model/{folder}/data.pkl", "rb") as file:
53 | data = file.read()
54 | if debug:
55 | print(data.decode(errors="replace"))
56 | content = data.decode("latin1")
57 | if "yolo11" in content:
58 | return YOLOV11_CONVERSION
59 | elif "yolov10" in content or "v10DetectLoss" in content:
60 | return YOLOV10_CONVERSION
61 | elif "yolov9" in content or (
62 | "v9-model" in content and "ultralytics" in content
63 | ):
64 | return YOLOV9_CONVERSION
65 | elif (
66 | "yolov8" in content
67 | or (
68 | "YOLOv8" in content and "yolov5" not in content
69 | ) # the second condition is to avoid yolov5u being detected as yolov8
70 | or ("v8DetectionLoss" in content and "ultralytics" in content)
71 | ):
72 | return YOLOV8_CONVERSION
73 | elif "yolov6" in content:
74 | if "yolov6.models.yolo\nDetect" in content:
75 | return YOLOV6R1_CONVERSION
76 | elif "CSPSPPFModule" in content or "ConvBNReLU" in content:
77 | return YOLOV6R4_CONVERSION
78 | elif "gold_yolo" in content:
79 | return GOLD_YOLO_CONVERSION
80 | return YOLOV6R3_CONVERSION
81 | elif "yolov7" in content:
82 | return YOLOV7_CONVERSION
83 | elif "yolov5u" in content or (
84 | "yolov5" in content
85 | and "ultralytics.nn.modules" in content
86 | # the second condition checks if the new version of the Ultralytics package was used to build the model which signals the "u" variant
87 | ):
88 | return YOLOV5U_CONVERSION
89 | elif (
90 | "yolov5" in content
91 | or "SPPF" in content
92 | or (
93 | "models.yolo.Detectr1" in content
94 | and "models.common.SPPr" in content
95 | )
96 | ):
97 | return YOLOV5_CONVERSION
98 |
99 | except subprocess.CalledProcessError as e:
100 | raise RuntimeError() from e
101 | finally:
102 | # Ensure the extracted_model directory is removed after processing
103 | if exists("extracted_model"):
104 | shutil.rmtree("extracted_model")
105 |
106 | return UNRECOGNIZED
107 |
--------------------------------------------------------------------------------
/tools/yolo/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxonis/tools/45e4d08df9a4444c6d0b3e9f98e77ef7d8531fef/tools/yolo/.DS_Store
--------------------------------------------------------------------------------
/tools/yolo/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import sys
4 |
5 | sys.path.append("./yolo")
6 |
--------------------------------------------------------------------------------
/tools/yolo/yolov10_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import List, Optional, Tuple
6 |
7 | from loguru import logger
8 |
9 | from tools.modules import DetectV10, Exporter
10 | from tools.utils import get_first_conv2d_in_channels
11 |
12 | current_dir = os.path.dirname(os.path.abspath(__file__))
13 | yolo_path = os.path.join(current_dir, "ultralytics")
14 | sys.path.append(yolo_path)
15 |
16 | from ultralytics.nn.modules import Detect # noqa: E402
17 | from ultralytics.nn.tasks import attempt_load_one_weight # noqa: E402
18 |
19 |
20 | class YoloV10Exporter(Exporter):
21 | def __init__(
22 | self,
23 | model_path: str,
24 | imgsz: Tuple[int, int],
25 | use_rvc2: bool,
26 | ):
27 | super().__init__(
28 | model_path,
29 | imgsz,
30 | use_rvc2,
31 | subtype="yolov10",
32 | output_names=["output1_yolov10", "output2_yolov10", "output3_yolov10"],
33 | )
34 | self.load_model()
35 |
36 | def load_model(self):
37 | # load the model
38 | model, _ = attempt_load_one_weight(
39 | self.model_path, device="cpu", inplace=True, fuse=True
40 | )
41 |
42 | if isinstance(model.model[-1], (Detect)):
43 | model.model[-1] = DetectV10(model.model[-1], self.use_rvc2)
44 |
45 | self.names = (
46 | model.module.names if hasattr(model, "module") else model.names
47 | ) # get class names
48 | # check num classes and labels
49 | assert model.yaml["nc"] == len(
50 | self.names
51 | ), f'Model class count {model.yaml["nc"]} != len(names) {len(self.names)}'
52 |
53 | try:
54 | self.number_of_channels = get_first_conv2d_in_channels(model)
55 | # print(f"Number of channels: {self.number_of_channels}")
56 | except Exception as e:
57 | logger.error(f"Error while getting number of channels: {e}")
58 |
59 | # check if image size is suitable
60 | gs = max(int(model.stride.max()), 32) # model stride
61 | if isinstance(self.imgsz, int):
62 | self.imgsz = [self.imgsz, self.imgsz]
63 | for sz in self.imgsz:
64 | if sz % gs != 0:
65 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
66 |
67 | # ensure correct length
68 | if len(self.imgsz) != 2:
69 | raise ValueError("Image size must be of length 1 or 2.")
70 |
71 | model.eval()
72 | self.model = model
73 |
74 | def export_nn_archive(self, class_names: Optional[List[str]] = None):
75 | """
76 | Export the model to NN archive format.
77 |
78 | Args:
79 | class_list (Optional[List[str]], optional): List of class names. Defaults to None.
80 | """
81 | names = list(self.model.names.values())
82 |
83 | if class_names is not None:
84 | assert len(class_names) == len(
85 | names
86 | ), f"Number of the given class names {len(class_names)} does not match number of classes {len(names)} provided in the model!"
87 | names = class_names
88 |
89 | self.f_nn_archive = (self.output_folder / f"{self.model_name}.tar.xz").resolve()
90 |
91 | self.make_nn_archive(names, self.model.model[-1].nc)
92 |
--------------------------------------------------------------------------------
/tools/yolo/yolov5_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import List, Optional, Tuple
6 |
7 | import torch
8 | import torch.nn as nn
9 | from loguru import logger
10 |
11 | from tools.modules import DetectV5, Exporter
12 | from tools.utils import get_first_conv2d_in_channels
13 |
14 | current_dir = os.path.dirname(os.path.abspath(__file__))
15 | yolov5_path = os.path.join(current_dir, "yolov5")
16 | sys.path.append(yolov5_path)
17 |
18 | import models.experimental # noqa: E402
19 | from models.common import Conv # noqa: E402
20 | from models.yolo import Detect as DetectYOLOv5 # noqa: E402
21 | from utils.activations import SiLU # noqa: E402
22 |
23 |
24 | def attempt_load_yolov5(weights, device=None, inplace=True, fuse=True):
25 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
26 | from models.yolo import Detect, Model # noqa: E402
27 |
28 | model = models.experimental.Ensemble()
29 | for w in weights if isinstance(weights, list) else [weights]:
30 | ckpt = torch.load(
31 | models.experimental.attempt_download(w),
32 | map_location="cpu",
33 | weights_only=False,
34 | ) # load
35 | ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
36 |
37 | # Model compatibility updates
38 | if not hasattr(ckpt, "stride"):
39 | ckpt.stride = torch.tensor([32.0])
40 | if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
41 | ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
42 |
43 | model.append(
44 | ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()
45 | ) # model in eval mode
46 |
47 | # Module compatibility updates
48 | for m in model.modules():
49 | t = type(m)
50 | if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
51 | m.inplace = inplace # torch 1.7.0 compatibility
52 | if t is Detect and not isinstance(m.anchor_grid, list):
53 | delattr(m, "anchor_grid")
54 | m.anchor_grid = [torch.zeros(1)] * m.nl
55 | elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
56 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
57 |
58 | # Return model
59 | if len(model) == 1:
60 | return model[-1]
61 |
62 | # Return detection ensemble
63 | print(f"Ensemble created with {weights}\n")
64 | for k in "names", "nc", "yaml":
65 | setattr(model, k, getattr(model[0], k))
66 | model.stride = model[
67 | torch.argmax(torch.tensor([m.stride.max() for m in model])).int()
68 | ].stride # max stride
69 | assert all(
70 | model[0].nc == m.nc for m in model
71 | ), f"Models have different class counts: {[m.nc for m in model]}"
72 | return model
73 |
74 |
75 | # Replace the original function
76 | models.experimental.attempt_load = attempt_load_yolov5
77 |
78 |
79 | class YoloV5Exporter(Exporter):
80 | def __init__(
81 | self,
82 | model_path: str,
83 | imgsz: Tuple[int, int],
84 | use_rvc2: bool,
85 | ):
86 | super().__init__(
87 | model_path,
88 | imgsz,
89 | use_rvc2,
90 | subtype="yolov5",
91 | output_names=["output1_yolov5", "output2_yolov5", "output3_yolov5"],
92 | )
93 | self.load_model()
94 |
95 | def load_model(self):
96 | # code based on export.py from YoloV5 repository
97 | # load the model
98 | model = attempt_load_yolov5(self.model_path, device="cpu") # load FP32 model
99 |
100 | # check num classes and labels
101 | assert model.nc == len(
102 | model.names
103 | ), f"Model class count {model.nc} != len(names) {len(model.names)}"
104 |
105 | # check if image size is suitable
106 | gs = int(max(model.stride)) # grid size (max stride)
107 | if isinstance(self.imgsz, int):
108 | self.imgsz = [self.imgsz, self.imgsz]
109 | for sz in self.imgsz:
110 | if sz % gs != 0:
111 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
112 |
113 | # ensure correct length
114 | if len(self.imgsz) != 2:
115 | raise ValueError("Image size must be of length 1 or 2.")
116 |
117 | inplace = True
118 |
119 | for _, m in model.named_modules():
120 | if isinstance(m, Conv): # assign export-friendly activations
121 | if isinstance(m.act, nn.SiLU):
122 | m.act = SiLU()
123 | elif isinstance(m, DetectYOLOv5):
124 | m.inplace = inplace
125 | m.onnx_dynamic = False
126 | if hasattr(m, "forward_export"):
127 | m.forward = m.forward_export # assign custom forward (optional)
128 |
129 | if hasattr(model, "module"):
130 | model.module.model[-1] = DetectV5(model.module.model[-1])
131 | else:
132 | model.model[-1] = DetectV5(model.model[-1])
133 |
134 | model.eval()
135 | self.model = model
136 |
137 | try:
138 | self.number_of_channels = get_first_conv2d_in_channels(model)
139 | # print(f"Number of channels: {self.number_of_channels}")
140 | except Exception as e:
141 | logger.error(f"Error while getting number of channels: {e}")
142 |
143 | self.m = model.module.model[-1] if hasattr(model, "module") else model.model[-1]
144 | self.num_branches = len(self.m.anchor_grid)
145 |
146 | def export_nn_archive(self, class_names: Optional[List[str]] = None):
147 | """
148 | Export the model to NN archive format.
149 |
150 | Args:
151 | class_list (Optional[List[str]], optional): List of class names. Defaults to None.
152 | """
153 | names = list(self.model.names.values())
154 |
155 | if class_names is not None:
156 | assert (
157 | len(class_names) == self.model.nc
158 | ), f"Number of the given class names {len(class_names)} does not match number of classes {self.model.nc} provided in the model!"
159 | names = class_names
160 |
161 | anchors = [
162 | self.m.anchor_grid[i][0, :, 0, 0].numpy().tolist()
163 | for i in range(self.num_branches)
164 | ]
165 | self.make_nn_archive(
166 | names, self.model.nc, parser="YOLOExtendedParser", anchors=anchors
167 | )
168 |
--------------------------------------------------------------------------------
/tools/yolo/yolov6_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import Tuple
6 |
7 | import torch
8 | from loguru import logger
9 |
10 | from tools.modules import DetectV6R4m, DetectV6R4s, Exporter
11 | from tools.utils import get_first_conv2d_in_channels
12 |
13 | current_dir = os.path.dirname(os.path.abspath(__file__))
14 | yolov6_path = os.path.join(current_dir, "YOLOv6")
15 | sys.path.append(yolov6_path)
16 |
17 | import yolov6.utils.checkpoint # noqa: E402
18 | from yolov6.layers.common import RepVGGBlock # noqa: E402
19 | from yolov6.models.heads.effidehead_distill_ns import Detect # noqa: E402
20 |
21 |
22 | # Override with your custom implementation
23 | def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
24 | """Load model from checkpoint file."""
25 | from yolov6.utils.events import LOGGER # noqa: E402
26 | from yolov6.utils.torch_utils import fuse_model # noqa: E402
27 |
28 | LOGGER.info("Loading checkpoint from {}".format(weights))
29 | ckpt = torch.load(weights, map_location=map_location, weights_only=False) # load
30 | model = ckpt["ema" if ckpt.get("ema") else "model"].float()
31 | if fuse:
32 | LOGGER.info("\nFusing model...")
33 | model = fuse_model(model).eval()
34 | else:
35 | model = model.eval()
36 | return model
37 |
38 |
39 | # Replace the original function
40 | yolov6.utils.checkpoint.load_checkpoint = load_checkpoint
41 |
42 |
43 | class YoloV6R4Exporter(Exporter):
44 | def __init__(
45 | self,
46 | model_path: str,
47 | imgsz: Tuple[int, int],
48 | use_rvc2: bool,
49 | ):
50 | super().__init__(
51 | model_path,
52 | imgsz,
53 | use_rvc2,
54 | subtype="yolov6r2",
55 | output_names=["output1_yolov6r2", "output2_yolov6r2", "output3_yolov6r2"],
56 | )
57 | self.load_model()
58 |
59 | def load_model(self):
60 | # code based on export.py from YoloV5 repository
61 | # load the model
62 | model = load_checkpoint(
63 | self.model_path,
64 | map_location="cpu",
65 | inplace=True,
66 | fuse=True,
67 | ) # load FP32 model
68 |
69 | for layer in model.modules():
70 | if isinstance(layer, RepVGGBlock):
71 | layer.switch_to_deploy()
72 |
73 | if isinstance(model.detect, Detect):
74 | model.detect = DetectV6R4s(model.detect, self.use_rvc2)
75 | else:
76 | model.detect = DetectV6R4m(model.detect, self.use_rvc2)
77 |
78 | try:
79 | self.number_of_channels = get_first_conv2d_in_channels(model)
80 | # print(f"Number of channels: {self.number_of_channels}")
81 | except Exception as e:
82 | logger.error(f"Error while getting number of channels: {e}")
83 |
84 | self.num_branches = len(model.detect.grid)
85 |
86 | # check if image size is suitable
87 | gs = 2 ** (2 + self.num_branches) # 1 = 8, 2 = 16, 3 = 32
88 | if isinstance(self.imgsz, int):
89 | self.imgsz = [self.imgsz, self.imgsz]
90 | for sz in self.imgsz:
91 | if sz % gs != 0:
92 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
93 |
94 | # ensure correct length
95 | if len(self.imgsz) != 2:
96 | raise ValueError("Image size must be of length 1 or 2.")
97 |
98 | model.eval()
99 | self.model = model
100 |
--------------------------------------------------------------------------------
/tools/yolo/yolov8_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import List, Optional, Tuple
6 |
7 | import torch
8 | from loguru import logger
9 | from luxonis_ml.nn_archive import ArchiveGenerator
10 | from luxonis_ml.nn_archive.config_building_blocks import (
11 | DataType,
12 | Head,
13 | InputType,
14 | )
15 | from luxonis_ml.nn_archive.config_building_blocks.base_models.head_metadata import (
16 | HeadClassificationMetadata,
17 | )
18 |
19 | from tools.modules import (
20 | OBBV8,
21 | ClassifyV8,
22 | DetectV8,
23 | Exporter,
24 | Multiplier,
25 | PoseV8,
26 | SegmentV8,
27 | )
28 | from tools.utils import get_first_conv2d_in_channels
29 |
30 | current_dir = os.path.dirname(os.path.abspath(__file__))
31 | yolo_path = os.path.join(current_dir, "ultralytics")
32 | sys.path.append(yolo_path)
33 |
34 | from ultralytics.nn.modules import OBB, Classify, Detect, Pose, Segment # noqa: E402
35 | from ultralytics.nn.tasks import attempt_load_one_weight # noqa: E402
36 |
37 | DETECT_MODE = 0
38 | SEGMENT_MODE = 1
39 | OBB_MODE = 2
40 | CLASSIFY_MODE = 3
41 | POSE_MODE = 4
42 |
43 |
44 | def get_output_names(mode: int) -> List[str]:
45 | """
46 | Get the output names based on the mode.
47 |
48 | Args:
49 | mode (int): Mode of the model
50 |
51 | Returns:
52 | List[str]: List of output names
53 | """
54 | if mode == DETECT_MODE:
55 | return ["output1_yolov6r2", "output2_yolov6r2", "output3_yolov6r2"]
56 | elif mode == SEGMENT_MODE:
57 | return [
58 | "output1_yolov8",
59 | "output2_yolov8",
60 | "output3_yolov8",
61 | "output1_masks",
62 | "output2_masks",
63 | "output3_masks",
64 | "protos_output",
65 | ]
66 | elif mode == OBB_MODE:
67 | return ["output1_yolov8", "output2_yolov8", "output3_yolov8", "angle_output"]
68 | elif mode == POSE_MODE:
69 | return [
70 | "output1_yolov8",
71 | "output2_yolov8",
72 | "output3_yolov8",
73 | "kpt_output1",
74 | "kpt_output2",
75 | "kpt_output3",
76 | ]
77 | return ["output"]
78 |
79 |
80 | class YoloV8Exporter(Exporter):
81 | def __init__(
82 | self,
83 | model_path: str,
84 | imgsz: Tuple[int, int],
85 | use_rvc2: bool,
86 | ):
87 | super().__init__(
88 | model_path,
89 | imgsz,
90 | use_rvc2,
91 | subtype="yolov8",
92 | output_names=["output1_yolov6r2", "output2_yolov6r2", "output3_yolov6r2"],
93 | )
94 | self.load_model()
95 |
96 | def load_model(self):
97 | # load the model
98 | model, _ = attempt_load_one_weight(
99 | self.model_path, device="cpu", inplace=True, fuse=True
100 | )
101 |
102 | self.mode = -1
103 | if isinstance(model.model[-1], (Segment)):
104 | model.model[-1] = SegmentV8(model.model[-1], self.use_rvc2)
105 | self.mode = SEGMENT_MODE
106 | # self.export_stage2_multiplier()
107 | elif isinstance(model.model[-1], (OBB)):
108 | model.model[-1] = OBBV8(model.model[-1], self.use_rvc2)
109 | self.mode = OBB_MODE
110 | elif isinstance(model.model[-1], (Pose)):
111 | model.model[-1] = PoseV8(model.model[-1], self.use_rvc2)
112 | self.mode = POSE_MODE
113 | elif isinstance(model.model[-1], (Classify)):
114 | model.model[-1] = ClassifyV8(model.model[-1], self.use_rvc2)
115 | self.mode = CLASSIFY_MODE
116 | elif isinstance(model.model[-1], (Detect)):
117 | model.model[-1] = DetectV8(model.model[-1], self.use_rvc2)
118 | self.mode = DETECT_MODE
119 |
120 | if self.mode in [DETECT_MODE, SEGMENT_MODE, OBB_MODE, POSE_MODE]:
121 | self.names = (
122 | model.module.names if hasattr(model, "module") else model.names
123 | ) # get class names
124 | # check num classes and labels
125 | assert model.nc == len(
126 | self.names
127 | ), f"Model class count {model.nc} != len(names) {len(self.names)}"
128 |
129 | try:
130 | self.number_of_channels = get_first_conv2d_in_channels(model)
131 | # print(f"Number of channels: {self.number_of_channels}")
132 | except Exception as e:
133 | logger.error(f"Error while getting number of channels: {e}")
134 |
135 | # Get output names
136 | self.all_output_names = get_output_names(self.mode)
137 |
138 | # check if image size is suitable
139 | gs = max(int(model.stride.max()), 32) # model stride
140 | if isinstance(self.imgsz, int):
141 | self.imgsz = [self.imgsz, self.imgsz]
142 | for sz in self.imgsz:
143 | if sz % gs != 0:
144 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
145 |
146 | # ensure correct length
147 | if len(self.imgsz) != 2:
148 | raise ValueError("Image size must be of length 1 or 2.")
149 |
150 | model.eval()
151 | self.model = model
152 |
153 | def export_stage2_multiplier(self):
154 | """Export the stage 2 multiplier to ONNX format."""
155 | stage2_w = self.imgsz[0] // 4
156 | stage2_h = self.imgsz[1] // 4
157 | self.stage2_filename = f"mult_{str(self.imgsz[0])}x{str(self.imgsz[1])}.onnx"
158 | self.f_stage2_onnx = (self.output_folder / self.stage2_filename).resolve()
159 | torch.onnx.export(
160 | Multiplier(),
161 | (torch.randn(1, 32, stage2_h, stage2_w), torch.randn(1, 32)),
162 | self.f_stage2_onnx,
163 | input_names=["prototypes", "coeffs"],
164 | output_names=["mask"],
165 | )
166 |
167 | def export_nn_archive(self, class_names: Optional[List[str]] = None):
168 | """
169 | Export the model to NN archive format.
170 |
171 | Args:
172 | class_list (Optional[List[str]], optional): List of class names. Defaults to None.
173 | """
174 | names = list(self.model.names.values())
175 |
176 | if class_names is not None:
177 | assert len(class_names) == len(
178 | names
179 | ), f"Number of the given class names {len(class_names)} does not match number of classes {len(names)} provided in the model!"
180 | names = class_names
181 |
182 | self.f_nn_archive = (self.output_folder / f"{self.model_name}.tar.xz").resolve()
183 |
184 | if self.mode == DETECT_MODE:
185 | self.make_nn_archive(names, self.model.model[-1].nc)
186 | elif self.mode == SEGMENT_MODE:
187 | self.make_nn_archive(
188 | names,
189 | self.model.model[-1].nc,
190 | parser="YOLOExtendedParser",
191 | # stage2_executable_path=str(self.f_stage2_onnx),
192 | # postprocessor_path=self.stage2_filename,
193 | n_prototypes=32,
194 | is_softmax=True,
195 | output_kwargs={
196 | "mask_outputs": ["output1_masks", "output2_masks", "output3_masks"],
197 | "protos_outputs": "protos_output",
198 | },
199 | )
200 | elif self.mode == OBB_MODE:
201 | self.make_nn_archive(
202 | names,
203 | self.model.model[-1].nc,
204 | output_kwargs={"angles_outputs": ["angle_output"]},
205 | )
206 | elif self.mode == POSE_MODE:
207 | self.make_nn_archive(
208 | names,
209 | self.model.model[-1].nc,
210 | parser="YOLOExtendedParser",
211 | n_keypoints=17,
212 | output_kwargs={"keypoints_outputs": ["kpt_output"]},
213 | )
214 | elif self.mode == CLASSIFY_MODE:
215 | self.make_cls_nn_archive(names, len(self.model.names))
216 |
217 | def make_cls_nn_archive(self, class_list: List[str], n_classes: int):
218 | """Export the model to NN archive format.
219 |
220 | Args:
221 | class_list (List[str], optional): List of class names
222 | n_classes (int): Number of classes
223 | """
224 | archive = ArchiveGenerator(
225 | archive_name=self.model_name,
226 | save_path=str(self.output_folder),
227 | cfg_dict={
228 | "config_version": "1.0",
229 | "model": {
230 | "metadata": {
231 | "name": self.model_name,
232 | "path": f"{self.model_name}.onnx",
233 | },
234 | "inputs": [
235 | {
236 | "name": "images",
237 | "dtype": DataType.FLOAT32,
238 | "input_type": InputType.IMAGE,
239 | "shape": [1, self.number_of_channels, *self.imgsz[::-1]],
240 | "preprocessing": {
241 | "mean": [0, 0, 0],
242 | "scale": [255, 255, 255],
243 | },
244 | }
245 | ],
246 | "outputs": [
247 | {
248 | "name": output,
249 | "dtype": DataType.FLOAT32,
250 | }
251 | for output in self.all_output_names
252 | ],
253 | "heads": [
254 | Head(
255 | parser="ClassificationParser",
256 | metadata=HeadClassificationMetadata(
257 | is_softmax=False,
258 | n_classes=n_classes,
259 | classes=class_list,
260 | ),
261 | outputs=self.all_output_names,
262 | )
263 | ],
264 | },
265 | },
266 | executables_paths=[str(self.f_onnx)],
267 | )
268 | archive.make_archive()
269 |
--------------------------------------------------------------------------------
/tools/yolov6r1/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxonis/tools/45e4d08df9a4444c6d0b3e9f98e77ef7d8531fef/tools/yolov6r1/.DS_Store
--------------------------------------------------------------------------------
/tools/yolov6r1/yolov6_r1_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import Tuple
6 |
7 | import torch
8 | from loguru import logger
9 |
10 | from tools.modules import DetectV6R1, Exporter
11 | from tools.utils import get_first_conv2d_in_channels
12 |
13 | current_dir = os.path.dirname(os.path.abspath(__file__))
14 | yolo_path = os.path.join(current_dir, "YOLOv6R1")
15 | sys.path.append(yolo_path)
16 |
17 | import yolov6.utils.checkpoint # noqa: E402
18 | from yolov6.layers.common import RepVGGBlock # noqa: E402
19 |
20 |
21 | # Override with your custom implementation
22 | def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
23 | """Load model from checkpoint file."""
24 | from yolov6.utils.events import LOGGER # noqa: E402
25 | from yolov6.utils.torch_utils import fuse_model # noqa: E402
26 |
27 | LOGGER.info("Loading checkpoint from {}".format(weights))
28 | ckpt = torch.load(weights, map_location=map_location, weights_only=False) # load
29 | model = ckpt["ema" if ckpt.get("ema") else "model"].float()
30 | if fuse:
31 | LOGGER.info("\nFusing model...")
32 | model = fuse_model(model).eval()
33 | else:
34 | model = model.eval()
35 | return model
36 |
37 |
38 | # Replace the original function
39 | yolov6.utils.checkpoint.load_checkpoint = load_checkpoint
40 |
41 |
42 | class YoloV6R1Exporter(Exporter):
43 | def __init__(
44 | self,
45 | model_path: str,
46 | imgsz: Tuple[int, int],
47 | use_rvc2: bool,
48 | ):
49 | super().__init__(
50 | model_path,
51 | imgsz,
52 | use_rvc2,
53 | subtype="yolov6",
54 | output_names=["output1_yolov6", "output2_yolov6", "output3_yolov6"],
55 | )
56 | self.load_model()
57 |
58 | def load_model(self):
59 | # code based on export.py from YoloV5 repository
60 | # load the model
61 | model = load_checkpoint(
62 | self.model_path, map_location="cpu", inplace=True, fuse=True
63 | ) # load FP32 model
64 |
65 | for layer in model.modules():
66 | if isinstance(layer, RepVGGBlock):
67 | layer.switch_to_deploy()
68 |
69 | if hasattr(model.detect, "obj_preds"):
70 | model.detect = DetectV6R1(model.detect)
71 | else:
72 | raise ValueError(
73 | "Error while loading model (This may be caused by trying to convert either the latest release 4.0 that isn't supported yet, or by releases 2.0 or 3.0, in which case, try to convert using the 'YoloV6 (R2, R3)' option)."
74 | )
75 |
76 | self.num_branches = len(model.detect.grid)
77 |
78 | try:
79 | self.number_of_channels = get_first_conv2d_in_channels(model)
80 | # print(f"Number of channels: {self.number_of_channels}")
81 | except Exception as e:
82 | logger.error(f"Error while getting number of channels: {e}")
83 |
84 | # check if image size is suitable
85 | gs = 2 ** (2 + self.num_branches) # 1 = 8, 2 = 16, 3 = 32
86 | if isinstance(self.imgsz, int):
87 | self.imgsz = [self.imgsz, self.imgsz]
88 | for sz in self.imgsz:
89 | if sz % gs != 0:
90 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
91 |
92 | # ensure correct length
93 | if len(self.imgsz) != 2:
94 | raise ValueError("Image size must be of length 1 or 2.")
95 |
96 | model.eval()
97 | self.model = model
98 |
--------------------------------------------------------------------------------
/tools/yolov6r3/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/luxonis/tools/45e4d08df9a4444c6d0b3e9f98e77ef7d8531fef/tools/yolov6r3/.DS_Store
--------------------------------------------------------------------------------
/tools/yolov6r3/gold_yolo_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import Tuple
6 |
7 | import torch
8 | from loguru import logger
9 |
10 | from tools.modules import DetectV6R3, Exporter
11 | from tools.utils import get_first_conv2d_in_channels
12 |
13 | current_dir = os.path.dirname(os.path.abspath(__file__))
14 | sys.path.append(os.path.join(current_dir, "Efficient-Computing/Detection/Gold-YOLO/"))
15 | sys.path.append(
16 | os.path.join(current_dir, "Efficient-Computing/Detection/Gold-YOLO/gold_yolo/")
17 | )
18 | sys.path.append(
19 | os.path.join(current_dir, "Efficient-Computing/Detection/Gold-YOLO/yolov6/utils/")
20 | )
21 |
22 | import checkpoint # noqa: E402
23 | from switch_tool import switch_to_deploy # noqa: E402
24 |
25 |
26 | # Override with your custom implementation
27 | def load_checkpoint_gold_yolo(weights, map_location=None, inplace=True, fuse=True):
28 | """Load model from checkpoint file."""
29 | from yolov6.utils.events import LOGGER # noqa: E402
30 | from yolov6.utils.torch_utils import fuse_model # noqa: E402
31 |
32 | LOGGER.info("Loading checkpoint from {}".format(weights))
33 | ckpt = torch.load(weights, map_location=map_location, weights_only=False) # load
34 | model = ckpt["ema" if ckpt.get("ema") else "model"].float()
35 | if fuse:
36 | LOGGER.info("\nFusing model...")
37 | model = fuse_model(model).eval()
38 | else:
39 | model = model.eval()
40 | return model
41 |
42 |
43 | # Replace the original function
44 | checkpoint.load_checkpoint = load_checkpoint_gold_yolo
45 |
46 |
47 | class GoldYoloExporter(Exporter):
48 | def __init__(
49 | self,
50 | model_path: str,
51 | imgsz: Tuple[int, int],
52 | use_rvc2: bool,
53 | ):
54 | super().__init__(
55 | model_path,
56 | imgsz,
57 | use_rvc2,
58 | subtype="yolov6r2",
59 | output_names=["output1_yolov6r2", "output2_yolov6r2", "output3_yolov6r2"],
60 | )
61 | self.load_model()
62 |
63 | def load_model(self):
64 | # Load the model
65 | model = load_checkpoint_gold_yolo(self.model_path, map_location="cpu")
66 |
67 | model.detect = DetectV6R3(model.detect, self.use_rvc2)
68 | self.num_branches = len(model.detect.grid)
69 |
70 | # switch to deploy
71 | model = switch_to_deploy(model)
72 |
73 | try:
74 | self.number_of_channels = get_first_conv2d_in_channels(model)
75 | # print(f"Number of channels: {self.number_of_channels}")
76 | except Exception as e:
77 | logger.error(f"Error while getting number of channels: {e}")
78 |
79 | # check if image size is suitable
80 | gs = 2 ** (2 + self.num_branches) # 1 = 8, 2 = 16, 3 = 32
81 | if isinstance(self.imgsz, int):
82 | self.imgsz = [self.imgsz, self.imgsz]
83 | for sz in self.imgsz:
84 | if sz % gs != 0:
85 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
86 |
87 | # ensure correct length
88 | if len(self.imgsz) != 2:
89 | raise ValueError("Image size must be of length 1 or 2.")
90 |
91 | model.eval()
92 | self.model = model
93 |
--------------------------------------------------------------------------------
/tools/yolov6r3/yolov6_r3_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import Tuple
6 |
7 | import torch
8 | from loguru import logger
9 |
10 | from tools.modules import DetectV6R3, Exporter, YoloV6BackBone
11 | from tools.utils import get_first_conv2d_in_channels
12 |
13 | current_dir = os.path.dirname(os.path.abspath(__file__))
14 | yolo_path = os.path.join(current_dir, "YOLOv6R3")
15 | sys.path.append(yolo_path) # noqa: E402
16 |
17 | import yolov6.utils.checkpoint # noqa: E402
18 | from yolov6.layers.common import RepVGGBlock # noqa: E402
19 |
20 | try:
21 | from yolov6.models.efficientrep import (
22 | CSPBepBackbone, # noqa: E402
23 | CSPBepBackbone_P6, # noqa: E402
24 | EfficientRep, # noqa: E402
25 | EfficientRep6, # noqa: E402
26 | )
27 | except Exception as e:
28 | raise ImportError(
29 | "Error while importing EfficientRep, CSPBepBackbone, CSPBepBackbone_P6 or EfficientRep6: {e}"
30 | ) from e
31 |
32 |
33 | # Override with your custom implementation
34 | def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
35 | """Load model from checkpoint file."""
36 | from yolov6.utils.events import LOGGER # noqa: E402
37 | from yolov6.utils.torch_utils import fuse_model # noqa: E402
38 |
39 | LOGGER.info("Loading checkpoint from {}".format(weights))
40 | ckpt = torch.load(weights, map_location=map_location, weights_only=False) # load
41 | model = ckpt["ema" if ckpt.get("ema") else "model"].float()
42 | if fuse:
43 | LOGGER.info("\nFusing model...")
44 | model = fuse_model(model).eval()
45 | else:
46 | model = model.eval()
47 | return model
48 |
49 |
50 | # Replace the original function
51 | yolov6.utils.checkpoint.load_checkpoint = load_checkpoint
52 |
53 |
54 | class YoloV6R3Exporter(Exporter):
55 | def __init__(
56 | self,
57 | model_path: str,
58 | imgsz: Tuple[int, int],
59 | use_rvc2: bool,
60 | ):
61 | super().__init__(
62 | model_path,
63 | imgsz,
64 | use_rvc2,
65 | subtype="yolov6r2",
66 | output_names=["output1_yolov6r2", "output2_yolov6r2", "output3_yolov6r2"],
67 | )
68 | self.load_model()
69 |
70 | def load_model(self):
71 | # Code based on export.py from YoloV5 repository
72 | # load the model
73 | model = load_checkpoint(
74 | self.model_path,
75 | map_location="cpu",
76 | inplace=True,
77 | fuse=True,
78 | ) # load FP32 model
79 |
80 | for layer in model.modules():
81 | if isinstance(layer, RepVGGBlock):
82 | layer.switch_to_deploy()
83 |
84 | for n, module in model.named_children():
85 | if isinstance(module, EfficientRep) or isinstance(module, CSPBepBackbone):
86 | setattr(model, n, YoloV6BackBone(module))
87 | elif isinstance(module, EfficientRep6):
88 | setattr(model, n, YoloV6BackBone(module, uses_6_erblock=True))
89 | elif isinstance(module, CSPBepBackbone_P6):
90 | setattr(
91 | model,
92 | n,
93 | YoloV6BackBone(module, uses_fuse_P2=False, uses_6_erblock=True),
94 | )
95 |
96 | if not hasattr(model.detect, "obj_preds"):
97 | model.detect = DetectV6R3(model.detect, self.use_rvc2)
98 |
99 | self.num_branches = len(model.detect.grid)
100 |
101 | try:
102 | self.number_of_channels = get_first_conv2d_in_channels(model)
103 | # print(f"Number of channels: {self.number_of_channels}")
104 | except Exception as e:
105 | logger.error(f"Error while getting number of channels: {e}")
106 |
107 | # check if image size is suitable
108 | gs = 2 ** (2 + self.num_branches) # 1 = 8, 2 = 16, 3 = 32
109 | if isinstance(self.imgsz, int):
110 | self.imgsz = [self.imgsz, self.imgsz]
111 | for sz in self.imgsz:
112 | if sz % gs != 0:
113 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
114 |
115 | # ensure correct length
116 | if len(self.imgsz) != 2:
117 | raise ValueError("Image size must be of length 1 or 2.")
118 |
119 | model.eval()
120 | self.model = model
121 |
--------------------------------------------------------------------------------
/tools/yolov7/yolov7_exporter.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import os
4 | import sys
5 | from typing import List, Optional, Tuple
6 |
7 | import torch
8 | import torch.nn as nn
9 | from loguru import logger
10 |
11 | from tools.modules import DetectV7, Exporter
12 | from tools.utils import get_first_conv2d_in_channels
13 |
14 | current_dir = os.path.dirname(os.path.abspath(__file__))
15 | yolo_path = os.path.join(current_dir, "yolov7")
16 | sys.path.append(yolo_path)
17 |
18 | import models.experimental # noqa: E402
19 |
20 |
21 | def attempt_load(weights, map_location=None):
22 | from models.common import Conv # noqa: E402
23 | from utils.google_utils import attempt_download # noqa: E402
24 |
25 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
26 | model = models.experimental.Ensemble()
27 | for w in weights if isinstance(weights, list) else [weights]:
28 | attempt_download(w)
29 | ckpt = torch.load(w, map_location=map_location, weights_only=False) # load
30 | model.append(
31 | ckpt["ema" if ckpt.get("ema") else "model"].float().fuse().eval()
32 | ) # FP32 model
33 |
34 | # Compatibility updates
35 | for m in model.modules():
36 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
37 | m.inplace = True # pytorch 1.7.0 compatibility
38 | elif type(m) is nn.Upsample:
39 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
40 | elif type(m) is Conv:
41 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
42 |
43 | if len(model) == 1:
44 | return model[-1] # return model
45 | else:
46 | print("Ensemble created with %s\n" % weights)
47 | for k in ["names", "stride"]:
48 | setattr(model, k, getattr(model[-1], k))
49 | return model # return ensemble
50 |
51 |
52 | models.experimental.attempt_load = attempt_load
53 |
54 |
55 | class YoloV7Exporter(Exporter):
56 | def __init__(
57 | self,
58 | model_path: str,
59 | imgsz: Tuple[int, int],
60 | use_rvc2: bool,
61 | ):
62 | super().__init__(
63 | model_path,
64 | imgsz,
65 | use_rvc2,
66 | subtype="yolov7",
67 | output_names=["output1_yolov7", "output2_yolov7", "output3_yolov7"],
68 | )
69 | self.load_model()
70 |
71 | def load_model(self):
72 | # code based on export.py from YoloV5 repository
73 | # load the model
74 | model = attempt_load(self.model_path, map_location="cpu")
75 | # check num classes and labels
76 | assert model.nc == len(
77 | model.names
78 | ), f"Model class count {model.nc} != len(names) {len(model.names)}"
79 |
80 | if hasattr(model, "module"):
81 | model.module.model[-1] = DetectV7(model.module.model[-1])
82 | # self.number_of_channels = model.module.model[0].conv.in_channels
83 | else:
84 | model.model[-1] = DetectV7(model.model[-1])
85 | # self.number_of_channels = model.model[0].conv.in_channels
86 |
87 | try:
88 | self.number_of_channels = get_first_conv2d_in_channels(model)
89 | # print(f"Number of channels: {self.number_of_channels}")
90 | except Exception as e:
91 | logger.error(f"Error while getting number of channels: {e}")
92 |
93 | # check if image size is suitable
94 | gs = int(max(model.stride)) # grid size (max stride)
95 | if isinstance(self.imgsz, int):
96 | self.imgsz = [self.imgsz, self.imgsz]
97 | for sz in self.imgsz:
98 | if sz % gs != 0:
99 | raise ValueError(f"Image size is not a multiple of maximum stride {gs}")
100 |
101 | # ensure correct length
102 | if len(self.imgsz) != 2:
103 | raise ValueError("Image size must be of length 1 or 2.")
104 |
105 | model.eval()
106 |
107 | self.model = model
108 |
109 | self.m = model.module.model[-1] if hasattr(model, "module") else model.model[-1]
110 | self.num_branches = len(self.m.anchor_grid)
111 |
112 | def export_nn_archive(self, class_names: Optional[List[str]] = None):
113 | """
114 | Export the model to NN archive format.
115 |
116 | Args:
117 | class_list (Optional[List[str]], optional): List of class names. Defaults to None.
118 | """
119 | names = self.model.names
120 |
121 | if class_names is not None:
122 | assert (
123 | len(class_names) == self.model.nc
124 | ), f"Number of the given class names {len(class_names)} does not match number of classes {self.model.nc} provided in the model!"
125 | names = class_names
126 |
127 | anchors = self.m.anchor_grid[:, 0, :, 0, 0].numpy().tolist()
128 | self.make_nn_archive(
129 | names, self.model.nc, parser="YOLOExtendedParser", anchors=anchors
130 | )
131 |
--------------------------------------------------------------------------------