├── HBP_all.py
├── HBP_fc.py
├── HBP_fc_new.py
├── LICENSE
├── README.md
├── cub200.py
└── log
├── README.md
├── hbp_all.log
├── hbp_fc.log
└── hbp_fc_new.log
/HBP_all.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding: utf-8 -*-
3 | """Fine-tune all layers only for HBP(Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition).
4 | Usage:
5 | CUDA_VISIBLE_DEVICES=0,1 python HBP_all.py --base_lr 0.001 --batch_size 24 --epochs 200 --weight_decay 0.0005 --model 'HBP_fc_epoch_*.pth' | tee 'hbp_all.log'
6 | """
7 |
8 |
9 | import os
10 | import torch
11 | import torchvision
12 | import cub200
13 | import visdom
14 | import argparse
15 | vis = visdom.Visdom(env=u'HBP_all',use_incoming_socket=False)
16 | torch.manual_seed(0)
17 | torch.cuda.manual_seed_all(0)
18 |
19 | class HBP(torch.nn.Module):
20 | def __init__(self):
21 | """Declare all needed layers."""
22 | torch.nn.Module.__init__(self)
23 | # Convolution and pooling layers of VGG-16.
24 | self.features = torchvision.models.vgg16(pretrained=False).features
25 | self.features_conv5_1 = torch.nn.Sequential(*list(self.features.children())
26 | [:-5])
27 | self.features_conv5_2 = torch.nn.Sequential(*list(self.features.children())
28 | [-5:-3])
29 | self.features_conv5_3 = torch.nn.Sequential(*list(self.features.children())
30 | [-3:-1])
31 | self.bilinear_proj = torch.nn.Sequential(torch.nn.Conv2d(512,8192,kernel_size=1,bias=False),
32 | torch.nn.BatchNorm2d(8192),
33 | torch.nn.ReLU(inplace=True))
34 | # Linear classifier.
35 | self.fc = torch.nn.Linear(8192*3, 200)
36 |
37 | def hbp(self,conv1,conv2):
38 | N = conv1.size()[0]
39 | proj_1 = self.bilinear_proj(conv1)
40 | proj_2 = self.bilinear_proj(conv2)
41 | assert(proj_1.size() == (N,8192,28,28))
42 | X = proj_1 * proj_2
43 | assert(X.size() == (N,8192,28,28))
44 | X = torch.sum(X.view(X.size()[0],X.size()[1],-1),dim = 2)
45 | X = X.view(N, 8192)
46 | X = torch.sqrt(X + 1e-5)
47 | X = torch.nn.functional.normalize(X)
48 | return X
49 |
50 | def forward(self, X):
51 | N = X.size()[0]
52 | assert X.size() == (N, 3, 448, 448)
53 | X_conv5_1 = self.features_conv5_1(X)
54 | X_conv5_2 = self.features_conv5_2(X_conv5_1)
55 | X_conv5_3 = self.features_conv5_3(X_conv5_2)
56 |
57 | X_branch_1 = self.hbp(X_conv5_1,X_conv5_2)
58 | X_branch_2 = self.hbp(X_conv5_2,X_conv5_3)
59 | X_branch_3 = self.hbp(X_conv5_1,X_conv5_3)
60 |
61 | X_branch = torch.cat([X_branch_1,X_branch_2,X_branch_3],dim=1)
62 | assert X_branch.size() == (N,8192*3)
63 |
64 | X = self.fc(X_branch)
65 | assert X.size() == (N, 200)
66 | return X
67 |
68 | class HBPManager(object):
69 | def __init__(self, options, path):
70 | print('Prepare the network and data.')
71 | self._options = options
72 | self._path = path
73 | # Network.
74 | self._net = torch.nn.DataParallel(HBP()).cuda()
75 | print(self._net)
76 | self._net.load_state_dict(torch.load(self._path['model']))
77 | # Criterion.
78 | self._criterion = torch.nn.CrossEntropyLoss().cuda()
79 | # Solver.
80 | param_to_optim = []
81 | for param in self._net.parameters():
82 | param_to_optim.append(param)
83 |
84 | self._solver = torch.optim.SGD(
85 | param_to_optim, lr=self._options['base_lr'],
86 | momentum=0.9, weight_decay=self._options['weight_decay'])
87 | milestones = [100]
88 | self._scheduler = torch.optim.lr_scheduler.MultiStepLR(self._solver,milestones = milestones,gamma=0.25)
89 |
90 | train_transforms = torchvision.transforms.Compose([
91 | torchvision.transforms.Resize(size=448), # Let smaller edge match
92 | torchvision.transforms.RandomHorizontalFlip(),
93 | torchvision.transforms.RandomCrop(size=448),
94 | torchvision.transforms.ToTensor(),
95 | torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
96 | std=(0.229, 0.224, 0.225))
97 | ])
98 | test_transforms = torchvision.transforms.Compose([
99 | torchvision.transforms.Resize(size=448),
100 | torchvision.transforms.CenterCrop(size=448),
101 | torchvision.transforms.ToTensor(),
102 | torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
103 | std=(0.229, 0.224, 0.225))
104 | ])
105 | train_data = cub200.CUB200(
106 | root=self._path['cub200'], train=True, download=True,
107 | transform=train_transforms)
108 | test_data = cub200.CUB200(
109 | root=self._path['cub200'], train=False, download=True,
110 | transform=test_transforms)
111 | self._train_loader = torch.utils.data.DataLoader(
112 | train_data, batch_size=self._options['batch_size'],
113 | shuffle=True, num_workers=4, pin_memory=True)
114 | self._test_loader = torch.utils.data.DataLoader(
115 | test_data, batch_size=16,
116 | shuffle=False, num_workers=4, pin_memory=True)
117 |
118 | def train(self):
119 | print('Training.')
120 | best_acc = 0.0
121 | best_epoch = None
122 | print('Epoch\tTrain loss\tTrain acc\tTest acc')
123 | ii = 0
124 | for t in range(self._options['epochs']):
125 | epoch_loss = []
126 | num_correct = 0
127 | num_total = 0
128 | for X, y in self._train_loader:
129 | # Data.
130 | X = torch.autograd.Variable(X.cuda())
131 | y = torch.autograd.Variable(y.cuda(non_blocking = True))
132 | # Clear the existing gradients.
133 | self._solver.zero_grad()
134 | # Forward pass.
135 | score = self._net(X)
136 | loss = self._criterion(score, y)
137 | epoch_loss.append(loss.data[0])
138 | # Prediction.
139 | _, prediction = torch.max(score.data, 1)
140 | num_total += y.size(0)
141 | num_correct += torch.sum(prediction == y.data)
142 | # Backward pass.
143 | loss.backward()
144 | self._solver.step()
145 |
146 | ii += 1
147 | x = torch.Tensor([ii])
148 | y = torch.Tensor([loss.data[0]])
149 | vis.line(X=x, Y=y, win='polynomial', update='append' if ii > 0 else None)
150 |
151 | num_correct = torch.tensor(num_correct).float().cuda()
152 | num_total = torch.tensor(num_total).float().cuda()
153 |
154 | train_acc = 100 * num_correct / num_total
155 | test_acc = self._accuracy(self._test_loader)
156 | self._scheduler.step(test_acc)
157 | if test_acc > best_acc:
158 | best_acc = test_acc
159 | best_epoch = t + 1
160 | print('*', end='')
161 | # Save model onto disk.
162 | torch.save(self._net.state_dict(),
163 | os.path.join('./model/'
164 | 'HBP_all_epoch_%d.pth' % (t + 1)))
165 | print('%d\t%4.3f\t\t%4.2f%%\t\t%4.2f%%' %
166 | (t+1, sum(epoch_loss) / len(epoch_loss), train_acc, test_acc))
167 | print('Best at epoch %d, test accuaray %f' % (best_epoch, best_acc))
168 |
169 | def _accuracy(self, data_loader):
170 | self._net.train(False)
171 | num_correct = 0
172 | num_total = 0
173 | for X, y in data_loader:
174 | # Data.
175 | X = torch.autograd.Variable(X.cuda())
176 | y = torch.autograd.Variable(y.cuda(non_blocking = True))
177 | # Prediction.
178 | score = self._net(X)
179 | _, prediction = torch.max(score.data, 1)
180 | num_total += y.size(0)
181 | num_correct += torch.sum(prediction == y.data)
182 | self._net.train(True) # Set the model to training phase
183 | num_correct = torch.tensor(num_correct).float().cuda()
184 | num_total = torch.tensor(num_total).float().cuda()
185 | return 100 * num_correct / num_total
186 |
187 | def getStat(self):
188 | print('Compute mean and variance for training data.')
189 | train_data = cub200.CUB200(
190 | root=self._path['cub200'], train=True,
191 | transform=torchvision.transforms.ToTensor(), download=True)
192 | train_loader = torch.utils.data.DataLoader(
193 | train_data, batch_size=1, shuffle=False, num_workers=4,
194 | pin_memory=True)
195 | mean = torch.zeros(3)
196 | std = torch.zeros(3)
197 | for X, _ in train_loader:
198 | for d in range(3):
199 | mean[d] += X[:, d, :, :].mean()
200 | std[d] += X[:, d, :, :].std()
201 | mean.div_(len(train_data))
202 | std.div_(len(train_data))
203 | print(mean)
204 | print(std)
205 |
206 | def main():
207 | parser = argparse.ArgumentParser(
208 | description='Train HBP on CUB200.')
209 | parser.add_argument('--base_lr', dest='base_lr', type=float, required=True,
210 | help='Base learning rate for training.')
211 | parser.add_argument('--batch_size', dest='batch_size', type=int,
212 | required=True, help='Batch size.')
213 | parser.add_argument('--epochs', dest='epochs', type=int,
214 | required=True, help='Epochs for training.')
215 | parser.add_argument('--weight_decay', dest='weight_decay', type=float,
216 | required=True, help='Weight decay.')
217 | parser.add_argument('--model', dest='model', type=str, required=True,
218 | help='Model for fine-tuning.')
219 | args = parser.parse_args()
220 | if args.base_lr <= 0:
221 | raise AttributeError('--base_lr parameter must >0.')
222 | if args.batch_size <= 0:
223 | raise AttributeError('--batch_size parameter must >0.')
224 | if args.epochs < 0:
225 | raise AttributeError('--epochs parameter must >=0.')
226 | if args.weight_decay <= 0:
227 | raise AttributeError('--weight_decay parameter must >0.')
228 |
229 | options = {
230 | 'base_lr': args.base_lr,
231 | 'batch_size': args.batch_size,
232 | 'epochs': args.epochs,
233 | 'weight_decay': args.weight_decay,
234 | }
235 |
236 | project_root = os.popen('pwd').read().strip()
237 | path = {
238 | 'cub200': os.path.join(project_root, 'data/cub200'),
239 | 'model': os.path.join(project_root, 'model', args.model),
240 | }
241 | for d in path:
242 | if d == 'model':
243 | assert os.path.isfile(path[d])
244 | else:
245 | assert os.path.isdir(path[d])
246 |
247 | manager = HBPManager(options, path)
248 | manager.getStat()
249 | manager.train()
250 | if __name__ == '__main__':
251 | main()
252 |
--------------------------------------------------------------------------------
/HBP_fc.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding: utf-8 -*-
3 | """Fine-tune the fc layer only for HBP(Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition).
4 | Usage:
5 | CUDA_VISIBLE_DEVICES=0,1 python HBP_fc.py --base_lr 1.0 --batch_size 12 --epochs 120 --weight_decay 0.000005 | tee 'hbp_fc.log'
6 | """
7 |
8 | import os
9 | import torch
10 | import torchvision
11 | import cub200
12 | import visdom
13 | import argparse
14 |
15 | vis = visdom.Visdom(env=u'HBP_fc',use_incoming_socket=False)
16 | torch.manual_seed(0)
17 | torch.cuda.manual_seed_all(0)
18 |
19 | class HBP(torch.nn.Module):
20 | def __init__(self):
21 | torch.nn.Module.__init__(self)
22 | # Convolution and pooling layers of VGG-16.
23 | self.features = torchvision.models.vgg16(pretrained=True).features
24 | self.features_conv5_1 = torch.nn.Sequential(*list(self.features.children())
25 | [:-5])
26 | self.features_conv5_2 = torch.nn.Sequential(*list(self.features.children())
27 | [-5:-3])
28 | self.features_conv5_3 = torch.nn.Sequential(*list(self.features.children())
29 | [-3:-1])
30 | self.bilinear_proj = torch.nn.Sequential(torch.nn.Conv2d(512,8192,kernel_size=1,bias=False),
31 | torch.nn.BatchNorm2d(8192),
32 | torch.nn.ReLU(inplace=True))
33 | # Linear classifier.
34 | self.fc = torch.nn.Linear(8192*3, 200)
35 |
36 | # Freeze all previous layers.
37 | for param in self.features_conv5_1.parameters():
38 | param.requires_grad = False
39 | for param in self.features_conv5_2.parameters():
40 | param.requires_grad = False
41 | for param in self.features_conv5_3.parameters():
42 | param.requires_grad = False
43 |
44 | # Initialize the fc layers.
45 | torch.nn.init.xavier_normal_(self.fc.weight.data)
46 | if self.fc.bias is not None:
47 | torch.nn.init.constant_(self.fc.bias.data, val=0)
48 |
49 | #init
50 | for m in self.bilinear_proj.modules():
51 | if isinstance(m, torch.nn.Conv2d):
52 | torch.nn.init.xavier_normal_(m.weight)
53 | if m.bias is not None:
54 | torch.nn.init.constant_(m.bias, 0)
55 | elif isinstance(m, torch.nn.BatchNorm2d):
56 | torch.nn.init.constant_(m.weight,1)
57 | torch.nn.init.constant_(m.bias, 0)
58 | elif isinstance(m, torch.nn.Linear):
59 | torch.nn.init.xavier_normal_(m.weight)
60 | torch.nn.init.constant_(m.bias, 0)
61 |
62 | def hbp(self,conv1,conv2):
63 | N = conv1.size()[0]
64 | proj_1 = self.bilinear_proj(conv1)
65 | proj_2 = self.bilinear_proj(conv2)
66 | assert(proj_1.size() == (N,8192,28,28))
67 | X = proj_1 * proj_2
68 | assert(X.size() == (N,8192,28,28))
69 | X = torch.sum(X.view(X.size()[0],X.size()[1],-1),dim = 2)
70 | X = X.view(N, 8192)
71 | X = torch.sqrt(X + 1e-5)
72 | X = torch.nn.functional.normalize(X)
73 | return X
74 |
75 | def forward(self, X):
76 | N = X.size()[0]
77 | assert X.size() == (N, 3, 448, 448)
78 | X_conv5_1 = self.features_conv5_1(X)
79 | X_conv5_2 = self.features_conv5_2(X_conv5_1)
80 | X_conv5_3 = self.features_conv5_3(X_conv5_2)
81 |
82 | X_branch_1 = self.hbp(X_conv5_1,X_conv5_2)
83 | X_branch_2 = self.hbp(X_conv5_2,X_conv5_3)
84 | X_branch_3 = self.hbp(X_conv5_1,X_conv5_3)
85 |
86 | X_branch = torch.cat([X_branch_1,X_branch_2,X_branch_3],dim = 1)
87 | assert X_branch.size() == (N,8192*3)
88 | X = self.fc(X_branch)
89 | assert X.size() == (N, 200)
90 | return X
91 |
92 | class HBPManager(object):
93 | def __init__(self, options, path):
94 | self._options = options
95 | self._path = path
96 | # Network.
97 | self._net = torch.nn.DataParallel(HBP()).cuda()
98 | print(self._net)
99 | # Criterion.
100 | self._criterion = torch.nn.CrossEntropyLoss().cuda()
101 | # Solver.
102 | param_to_optim = []
103 | for param in self._net.parameters():
104 | if param.requires_grad == False:
105 | continue
106 | param_to_optim.append(param)
107 |
108 | self._solver = torch.optim.SGD(
109 | param_to_optim, lr=self._options['base_lr'],
110 | momentum=0.9, weight_decay=self._options['weight_decay'])
111 |
112 | milestones = [40,60,80,100]
113 | self._scheduler = torch.optim.lr_scheduler.MultiStepLR(self._solver,milestones = milestones,gamma=0.25)
114 |
115 | train_transforms = torchvision.transforms.Compose([
116 | torchvision.transforms.Resize(size=448), # Let smaller edge match
117 | torchvision.transforms.RandomHorizontalFlip(),
118 | torchvision.transforms.RandomCrop(size=448),
119 | torchvision.transforms.ToTensor(),
120 | torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
121 | std=(0.229, 0.224, 0.225))
122 | ])
123 | test_transforms = torchvision.transforms.Compose([
124 | torchvision.transforms.Resize(size=448),
125 | torchvision.transforms.CenterCrop(size=448),
126 | torchvision.transforms.ToTensor(),
127 | torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
128 | std=(0.229, 0.224, 0.225))
129 | ])
130 | train_data = cub200.CUB200(
131 | root=self._path['cub200'], train=True, download=True,
132 | transform=train_transforms)
133 | test_data = cub200.CUB200(
134 | root=self._path['cub200'], train=False, download=True,
135 | transform=test_transforms)
136 | self._train_loader = torch.utils.data.DataLoader(
137 | train_data, batch_size=self._options['batch_size'],
138 | shuffle=True, num_workers=4, pin_memory=True)
139 | self._test_loader = torch.utils.data.DataLoader(
140 | test_data, batch_size=16,
141 | shuffle=False, num_workers=4, pin_memory=True)
142 |
143 | def train(self):
144 | print('Training.')
145 | best_acc = 0.0
146 | best_epoch = None
147 | print('Epoch\tTrain loss\tTrain acc\tTest acc')
148 | ii = 0
149 | for t in range(self._options['epochs']):
150 | epoch_loss = []
151 | num_correct = 0
152 | num_total = 0
153 | for X, y in self._train_loader:
154 | # Data.
155 | X = torch.autograd.Variable(X.cuda())
156 | y = torch.autograd.Variable(y.cuda(non_blocking = True))
157 | # Clear the existing gradients.
158 | self._solver.zero_grad()
159 | # Forward pass.
160 | score = self._net(X)
161 | loss = self._criterion(score, y)
162 | epoch_loss.append(loss.data[0])
163 | # Prediction.
164 | _, prediction = torch.max(score.data, 1)
165 | num_total += y.size(0)
166 | num_correct += torch.sum(prediction == y.data)
167 | # Backward pass.
168 | loss.backward()
169 | self._solver.step()
170 |
171 | ii += 1
172 | x = torch.Tensor([ii])
173 | y = torch.Tensor([loss.data[0]])
174 | vis.line(X=x, Y=y, win='polynomial', update='append' if ii > 0 else None)
175 |
176 | num_correct = torch.tensor(num_correct).float().cuda()
177 | num_total = torch.tensor(num_total).float().cuda()
178 |
179 | train_acc = 100 * num_correct / num_total
180 | test_acc = self._accuracy(self._test_loader)
181 | self._scheduler.step(test_acc)
182 | if test_acc > best_acc:
183 | best_acc = test_acc
184 | best_epoch = t + 1
185 | print('*', end='')
186 | # Save model onto disk.
187 | torch.save(self._net.state_dict(),
188 | os.path.join(self._path['model'],
189 | 'HBP_fc_epoch_%d.pth' % (t + 1)))
190 | print('%d\t%4.3f\t\t%4.2f%%\t\t%4.2f%%' %
191 | (t+1, sum(epoch_loss) / len(epoch_loss), train_acc, test_acc))
192 | print('Best at epoch %d, test accuaray %f' % (best_epoch, best_acc))
193 |
194 | def _accuracy(self, data_loader):
195 | self._net.train(False)
196 | num_correct = 0
197 | num_total = 0
198 | for X, y in data_loader:
199 | # Data.
200 | X = torch.autograd.Variable(X.cuda())
201 | y = torch.autograd.Variable(y.cuda(non_blocking = True))
202 | # Prediction.
203 | score = self._net(X)
204 | _, prediction = torch.max(score.data, 1)
205 | num_total += y.size(0)
206 | num_correct += torch.sum(prediction == y.data)
207 | self._net.train(True) # Set the model to training phase
208 | num_correct = torch.tensor(num_correct).float().cuda()
209 | num_total = torch.tensor(num_total).float().cuda()
210 | return 100 * num_correct / num_total
211 |
212 | def getStat(self):
213 | print('Compute mean and variance for training data.')
214 | train_data = cub200.CUB200(
215 | root=self._path['cub200'], train=True,
216 | transform=torchvision.transforms.ToTensor(), download=True)
217 | train_loader = torch.utils.data.DataLoader(
218 | train_data, batch_size=1, shuffle=False, num_workers=4,
219 | pin_memory=True)
220 | mean = torch.zeros(3)
221 | std = torch.zeros(3)
222 | for X, _ in train_loader:
223 | for d in range(3):
224 | mean[d] += X[:, d, :, :].mean()
225 | std[d] += X[:, d, :, :].std()
226 | mean.div_(len(train_data))
227 | std.div_(len(train_data))
228 | print(mean)
229 | print(std)
230 |
231 |
232 | def main():
233 |
234 | parser = argparse.ArgumentParser(
235 | description='Train HBP on CUB200.')
236 | parser.add_argument('--base_lr', dest='base_lr', type=float, required=True,
237 | help='Base learning rate for training.')
238 | parser.add_argument('--batch_size', dest='batch_size', type=int,
239 | required=True, help='Batch size.')
240 | parser.add_argument('--epochs', dest='epochs', type=int,
241 | required=True, help='Epochs for training.')
242 | parser.add_argument('--weight_decay', dest='weight_decay', type=float,
243 | required=True, help='Weight decay.')
244 | args = parser.parse_args()
245 | if args.base_lr <= 0:
246 | raise AttributeError('--base_lr parameter must >0.')
247 | if args.batch_size <= 0:
248 | raise AttributeError('--batch_size parameter must >0.')
249 | if args.epochs < 0:
250 | raise AttributeError('--epochs parameter must >=0.')
251 | if args.weight_decay <= 0:
252 | raise AttributeError('--weight_decay parameter must >0.')
253 |
254 | options = {
255 | 'base_lr': args.base_lr,
256 | 'batch_size': args.batch_size,
257 | 'epochs': args.epochs,
258 | 'weight_decay': args.weight_decay,
259 | }
260 |
261 | project_root = os.popen('pwd').read().strip()
262 | path = {
263 | 'cub200': os.path.join(project_root, 'data/cub200'),
264 | 'model': os.path.join(project_root, 'model'),
265 | }
266 | for d in path:
267 | assert os.path.isdir(path[d])
268 |
269 | manager = HBPManager(options, path)
270 | manager.getStat()
271 | manager.train()
272 |
273 | if __name__ == '__main__':
274 | main()
275 |
--------------------------------------------------------------------------------
/HBP_fc_new.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding: utf-8 -*-
3 | """Fine-tune the fc layer only for HBP(Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition).
4 | Usage:
5 | CUDA_VISIBLE_DEVICES=0,1,2,3 python HBP_fc.py --base_lr 1.0 --batch_size 128 --epochs 240 --weight_decay 0.000005 | tee 'hbp_fc.log'
6 | """
7 |
8 | import os
9 | import torch
10 | import torchvision
11 | import cub200
12 | import visdom
13 | import argparse
14 |
15 | vis = visdom.Visdom(env=u'HBP_fc',use_incoming_socket=False)
16 | torch.manual_seed(0)
17 | torch.cuda.manual_seed_all(0)
18 |
19 | class HBP(torch.nn.Module):
20 | def __init__(self):
21 | torch.nn.Module.__init__(self)
22 | # Convolution and pooling layers of VGG-16.
23 | self.features = torchvision.models.vgg16(pretrained=True).features
24 | self.features_conv5_1 = torch.nn.Sequential(*list(self.features.children())
25 | [:-5])
26 | self.features_conv5_2 = torch.nn.Sequential(*list(self.features.children())
27 | [-5:-3])
28 | self.features_conv5_3 = torch.nn.Sequential(*list(self.features.children())
29 | [-3:-1])
30 | self.bilinear_proj_1 = torch.nn.Conv2d(512,8192,kernel_size=1,bias=True)
31 | self.bilinear_proj_2 = torch.nn.Conv2d(512,8192,kernel_size=1,bias=True)
32 | self.bilinear_proj_3 = torch.nn.Conv2d(512,8192,kernel_size=1,bias=True)
33 | # Linear classifier.
34 | self.fc = torch.nn.Linear(8192*3, 200)
35 |
36 | # Freeze all previous layers.
37 | for param in self.features_conv5_1.parameters():
38 | param.requires_grad = False
39 | for param in self.features_conv5_2.parameters():
40 | param.requires_grad = False
41 | for param in self.features_conv5_3.parameters():
42 | param.requires_grad = False
43 |
44 | # Initialize the fc layers.
45 | torch.nn.init.xavier_normal_(self.fc.weight.data)
46 | if self.fc.bias is not None:
47 | torch.nn.init.constant_(self.fc.bias.data, val=0)
48 |
49 | def hbp_1_2(self,conv1,conv2):
50 | N = conv1.size()[0]
51 | proj_1 = self.bilinear_proj_1(conv1)
52 | proj_2 = self.bilinear_proj_2(conv2)
53 | assert(proj_1.size() == (N,8192,28,28))
54 | X = proj_1 * proj_2
55 | assert(X.size() == (N,8192,28,28))
56 | X = torch.sum(X.view(X.size()[0],X.size()[1],-1),dim = 2)
57 | X = X.view(N, 8192)
58 | X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)
59 | X = torch.nn.functional.normalize(X)
60 | return X
61 |
62 | def hbp_1_3(self,conv1,conv3):
63 | N = conv1.size()[0]
64 | proj_1 = self.bilinear_proj_1(conv1)
65 | proj_3 = self.bilinear_proj_3(conv3)
66 | assert(proj_1.size() == (N,8192,28,28))
67 | X = proj_1 * proj_3
68 | assert(X.size() == (N,8192,28,28))
69 | X = torch.sum(X.view(X.size()[0],X.size()[1],-1),dim = 2)
70 | X = X.view(N, 8192)
71 | X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)
72 | X = torch.nn.functional.normalize(X)
73 | return X
74 |
75 | def hbp_2_3(self,conv2,conv3):
76 | N = conv2.size()[0]
77 | proj_2 = self.bilinear_proj_2(conv2)
78 | proj_3 = self.bilinear_proj_3(conv3)
79 | assert(proj_2.size() == (N,8192,28,28))
80 | X = proj_2 * proj_3
81 | assert(X.size() == (N,8192,28,28))
82 | X = torch.sum(X.view(X.size()[0],X.size()[1],-1),dim = 2)
83 | X = X.view(N, 8192)
84 | X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)
85 | X = torch.nn.functional.normalize(X)
86 | return X
87 |
88 | def forward(self, X):
89 | N = X.size()[0]
90 | assert X.size() == (N, 3, 448, 448)
91 | X_conv5_1 = self.features_conv5_1(X)
92 | X_conv5_2 = self.features_conv5_2(X_conv5_1)
93 | X_conv5_3 = self.features_conv5_3(X_conv5_2)
94 |
95 | X_branch_1 = self.hbp_1_2(X_conv5_1,X_conv5_2)
96 | X_branch_2 = self.hbp_1_3(X_conv5_1,X_conv5_3)
97 | X_branch_3 = self.hbp_2_3(X_conv5_2,X_conv5_3)
98 |
99 |
100 | X_branch = torch.cat([X_branch_1,X_branch_2,X_branch_3],dim = 1)
101 | assert X_branch.size() == (N,8192*3)
102 | X = self.fc(X_branch)
103 | assert X.size() == (N, 200)
104 | return X
105 |
106 | class HBPManager(object):
107 | def __init__(self, options, path):
108 | self._options = options
109 | self._path = path
110 | # Network.
111 | self._net = torch.nn.DataParallel(HBP()).cuda()
112 | print(self._net)
113 | # Criterion.
114 | self._criterion = torch.nn.CrossEntropyLoss().cuda()
115 | # Solver.
116 | param_to_optim = []
117 | for param in self._net.parameters():
118 | if param.requires_grad == False:
119 | continue
120 | param_to_optim.append(param)
121 |
122 | self._solver = torch.optim.SGD(
123 | param_to_optim, lr=self._options['base_lr'],
124 | momentum=0.9, weight_decay=self._options['weight_decay'])
125 |
126 | self._scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self._solver)
127 |
128 | # milestones = [40,60,80,100]
129 | # self._scheduler = torch.optim.lr_scheduler.MultiStepLR(self._solver,milestones = milestones,gamma=0.25)
130 |
131 | train_transforms = torchvision.transforms.Compose([
132 | torchvision.transforms.Resize(size=448), # Let smaller edge match
133 | torchvision.transforms.RandomHorizontalFlip(),
134 | torchvision.transforms.RandomCrop(size=448),
135 | torchvision.transforms.ToTensor(),
136 | torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
137 | std=(0.229, 0.224, 0.225))
138 | ])
139 | test_transforms = torchvision.transforms.Compose([
140 | torchvision.transforms.Resize(size=448),
141 | torchvision.transforms.CenterCrop(size=448),
142 | torchvision.transforms.ToTensor(),
143 | torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
144 | std=(0.229, 0.224, 0.225))
145 | ])
146 | train_data = cub200.CUB200(
147 | root=self._path['cub200'], train=True, download=True,
148 | transform=train_transforms)
149 | test_data = cub200.CUB200(
150 | root=self._path['cub200'], train=False, download=True,
151 | transform=test_transforms)
152 | self._train_loader = torch.utils.data.DataLoader(
153 | train_data, batch_size=self._options['batch_size'],
154 | shuffle=True, num_workers=4, pin_memory=True)
155 | self._test_loader = torch.utils.data.DataLoader(
156 | test_data, batch_size=16,
157 | shuffle=False, num_workers=4, pin_memory=True)
158 |
159 | def train(self):
160 | print('Training.')
161 | best_acc = 0.0
162 | best_epoch = None
163 | print('Epoch\tTrain loss\tTrain acc\tTest acc')
164 | ii = 0
165 | for t in range(self._options['epochs']):
166 | epoch_loss = []
167 | num_correct = 0
168 | num_total = 0
169 | for X, y in self._train_loader:
170 | # Data.
171 | X = torch.autograd.Variable(X.cuda())
172 | y = torch.autograd.Variable(y.cuda(non_blocking = True))
173 | # Clear the existing gradients.
174 | self._solver.zero_grad()
175 | # Forward pass.
176 | score = self._net(X)
177 | loss = self._criterion(score, y)
178 | epoch_loss.append(loss.data[0])
179 | # Prediction.
180 | _, prediction = torch.max(score.data, 1)
181 | num_total += y.size(0)
182 | num_correct += torch.sum(prediction == y.data)
183 | # Backward pass.
184 | loss.backward()
185 | self._solver.step()
186 |
187 | ii += 1
188 | x = torch.Tensor([ii])
189 | y = torch.Tensor([loss.data[0]])
190 | vis.line(X=x, Y=y, win='polynomial', update='append' if ii > 0 else None)
191 |
192 | num_correct = torch.tensor(num_correct).float().cuda()
193 | num_total = torch.tensor(num_total).float().cuda()
194 |
195 | train_acc = 100 * num_correct / num_total
196 | test_acc = self._accuracy(self._test_loader)
197 | self._scheduler.step(test_acc)
198 | if test_acc > best_acc:
199 | best_acc = test_acc
200 | best_epoch = t + 1
201 | print('*', end='')
202 | # Save model onto disk.
203 | torch.save(self._net.state_dict(),
204 | os.path.join(self._path['model'],
205 | 'HBP_fc_epoch_%d.pth' % (t + 1)))
206 | print('%d\t%4.3f\t\t%4.2f%%\t\t%4.2f%%' %
207 | (t+1, sum(epoch_loss) / len(epoch_loss), train_acc, test_acc))
208 | print('Best at epoch %d, test accuaray %f' % (best_epoch, best_acc))
209 |
210 | def _accuracy(self, data_loader):
211 | self._net.train(False)
212 | num_correct = 0
213 | num_total = 0
214 | for X, y in data_loader:
215 | # Data.
216 | X = torch.autograd.Variable(X.cuda())
217 | y = torch.autograd.Variable(y.cuda(non_blocking = True))
218 | # Prediction.
219 | score = self._net(X)
220 | _, prediction = torch.max(score.data, 1)
221 | num_total += y.size(0)
222 | num_correct += torch.sum(prediction == y.data)
223 | self._net.train(True) # Set the model to training phase
224 | num_correct = torch.tensor(num_correct).float().cuda()
225 | num_total = torch.tensor(num_total).float().cuda()
226 | return 100 * num_correct / num_total
227 |
228 | def getStat(self):
229 | print('Compute mean and variance for training data.')
230 | train_data = cub200.CUB200(
231 | root=self._path['cub200'], train=True,
232 | transform=torchvision.transforms.ToTensor(), download=True)
233 | train_loader = torch.utils.data.DataLoader(
234 | train_data, batch_size=1, shuffle=False, num_workers=4,
235 | pin_memory=True)
236 | mean = torch.zeros(3)
237 | std = torch.zeros(3)
238 | for X, _ in train_loader:
239 | for d in range(3):
240 | mean[d] += X[:, d, :, :].mean()
241 | std[d] += X[:, d, :, :].std()
242 | mean.div_(len(train_data))
243 | std.div_(len(train_data))
244 | print(mean)
245 | print(std)
246 |
247 |
248 | def main():
249 |
250 | parser = argparse.ArgumentParser(
251 | description='Train HBP on CUB200.')
252 | parser.add_argument('--base_lr', dest='base_lr', type=float, required=True,
253 | help='Base learning rate for training.')
254 | parser.add_argument('--batch_size', dest='batch_size', type=int,
255 | required=True, help='Batch size.')
256 | parser.add_argument('--epochs', dest='epochs', type=int,
257 | required=True, help='Epochs for training.')
258 | parser.add_argument('--weight_decay', dest='weight_decay', type=float,
259 | required=True, help='Weight decay.')
260 | args = parser.parse_args()
261 | if args.base_lr <= 0:
262 | raise AttributeError('--base_lr parameter must >0.')
263 | if args.batch_size <= 0:
264 | raise AttributeError('--batch_size parameter must >0.')
265 | if args.epochs < 0:
266 | raise AttributeError('--epochs parameter must >=0.')
267 | if args.weight_decay <= 0:
268 | raise AttributeError('--weight_decay parameter must >0.')
269 |
270 | options = {
271 | 'base_lr': args.base_lr,
272 | 'batch_size': args.batch_size,
273 | 'epochs': args.epochs,
274 | 'weight_decay': args.weight_decay,
275 | }
276 |
277 | project_root = os.popen('pwd').read().strip()
278 | path = {
279 | 'cub200': os.path.join(project_root, 'data/cub200'),
280 | 'model': os.path.join(project_root, 'model'),
281 | }
282 | for d in path:
283 | assert os.path.isdir(path[d])
284 |
285 | manager = HBPManager(options, path)
286 | manager.getStat()
287 | manager.train()
288 |
289 | if __name__ == '__main__':
290 | main()
291 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # HBP-pytorch
2 | ![]() ![]() ![]()
3 |
4 | ### **Overview**
5 |
6 | ---
7 |
8 | A third-party reimplementation of Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition in Pytorch.
9 |
10 | The related paper is as follows:
11 |
12 | Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition[C]
13 | Chaojian Yu, Xinyi Zhao, Qi Zheng, Peng Zhang, Xinge You*
14 | European Conference on Computer Vision. 2018.
15 |
16 | Official Caffe implementation of Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition is [HERE](https://github.com/ChaojianYu/Hierarchical-Bilinear-Pooling).
17 |
18 | ### **Preparation**
19 |
20 | ---
21 |
22 | **Dataset**
23 |
24 | - [CUB-200-2011]()
25 | - If you don't have a dataset, you can still execute the program and the program will automatically download the dataset.
26 |
27 | **Requirement**
28 |
29 | - pip install visdom pytorch torchvision
30 |
31 | ### **Usage**
32 |
33 | ---
34 |
35 | for example:
36 |
37 | - CUDA_VISIBLE_DEVICES=0,1 python HBP_fc.py --base_lr 1.0 --batch_size 12 --epochs 120 --weight_decay 0.000005 | tee 'hbp_fc.log'
38 | - CUDA_VISIBLE_DEVICES=0,1 python HBP_all.py --base_lr 0.001 --batch_size 24 --epochs 200 --weight_decay 0.0005 --model 'HBP_fc_epoch_*.pth' | tee 'hbp_all.log'
39 |
40 | ### **Result**
41 |
42 | ---
43 |
44 | | file | acc |
45 | | ---------- | :---: |
46 | | HBP_fc | 80.42 |
47 | | HBP_fc_new | 79.79 |
48 | | HBP_all | 80.42 |
49 |
50 | *Note that `HBP_fc_new.py` may be the closest to the original implementation. But it still doesn't work well.*
51 |
52 | ### **Last**
53 |
54 | ---
55 |
56 | Based on my code and experimental results, it is far from the result of the original author. So you can use it as a reference for learning.
57 |
58 | This code borrows from [HERE](https://github.com/HaoMood/bilinear-cnn). If you have any suggestions please contact me, I am still continue to improve the results.
59 |
60 | Happy coding.
61 |
--------------------------------------------------------------------------------
/cub200.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*
2 | """This module is served as torchvision.datasets to load CUB200-2011.
3 | CUB200-2011 dataset has 11,788 images of 200 bird species. The project page
4 | is as follows.
5 | http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
6 | - Images are contained in the directory data/cub200/raw/images/,
7 | with 200 subdirectories.
8 | - Format of images.txt:
9 | - Format of train_test_split.txt:
10 | - Format of classes.txt:
11 | - Format of iamge_class_labels.txt:
12 | This file is modified from:
13 | https://github.com/vishwakftw/vision.
14 | """
15 |
16 |
17 | import os
18 | import pickle
19 |
20 | import numpy as np
21 | import PIL.Image
22 | import torch
23 |
24 |
25 | __all__ = ['CUB200']
26 | __author__ = 'Hao Zhang'
27 | __copyright__ = '2018 LAMDA'
28 | __date__ = '2018-01-09'
29 | __email__ = 'zhangh0214@gmail.com'
30 | __license__ = 'CC BY-SA 3.0'
31 | __status__ = 'Development'
32 | __updated__ = '2018-01-10'
33 | __version__ = '1.0'
34 |
35 |
36 | class CUB200(torch.utils.data.Dataset):
37 | """CUB200 dataset.
38 | Args:
39 | _root, str: Root directory of the dataset.
40 | _train, bool: Load train/test data.
41 | _transform, callable: A function/transform that takes in a PIL.Image
42 | and transforms it.
43 | _target_transform, callable: A function/transform that takes in the
44 | target and transforms it.
45 | _train_data, list of np.ndarray.
46 | _train_labels, list of int.
47 | _test_data, list of np.ndarray.
48 | _test_labels, list of int.
49 | """
50 | def __init__(self, root, train=True, transform=None, target_transform=None,
51 | download=False):
52 | """Load the dataset.
53 | Args
54 | root, str: Root directory of the dataset.
55 | train, bool [True]: Load train/test data.
56 | transform, callable [None]: A function/transform that takes in a
57 | PIL.Image and transforms it.
58 | target_transform, callable [None]: A function/transform that takes
59 | in the target and transforms it.
60 | download, bool [False]: If true, downloads the dataset from the
61 | internet and puts it in root directory. If dataset is already
62 | downloaded, it is not downloaded again.
63 | """
64 | self._root = os.path.expanduser(root) # Replace ~ by the complete dir
65 | self._train = train
66 | self._transform = transform
67 | self._target_transform = target_transform
68 |
69 | if self._checkIntegrity():
70 | print('Files already downloaded and verified.')
71 | elif download:
72 | url = ('http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/'
73 | 'CUB_200_2011.tgz')
74 | self._download(url)
75 | self._extract()
76 | else:
77 | raise RuntimeError(
78 | 'Dataset not found. You can use download=True to download it.')
79 |
80 | # Now load the picked data.
81 | if self._train:
82 | self._train_data, self._train_labels = pickle.load(open(
83 | os.path.join(self._root, 'processed/train.pkl'), 'rb'),encoding='iso-8859-1')
84 | assert (len(self._train_data) == 5994
85 | and len(self._train_labels) == 5994)
86 | else:
87 | self._test_data, self._test_labels = pickle.load(open(
88 | os.path.join(self._root, 'processed/test.pkl'), 'rb'),encoding='iso-8859-1')
89 | assert (len(self._test_data) == 5794
90 | and len(self._test_labels) == 5794)
91 |
92 | def __getitem__(self, index):
93 | """
94 | Args:
95 | index, int: Index.
96 | Returns:
97 | image, PIL.Image: Image of the given index.
98 | target, str: target of the given index.
99 | """
100 | if self._train:
101 | image, target = self._train_data[index], self._train_labels[index]
102 | else:
103 | image, target = self._test_data[index], self._test_labels[index]
104 | # Doing this so that it is consistent with all other datasets.
105 | image = PIL.Image.fromarray(image)
106 |
107 | if self._transform is not None:
108 | image = self._transform(image)
109 | if self._target_transform is not None:
110 | target = self._target_transform(target)
111 |
112 | return image, target
113 |
114 | def __len__(self):
115 | """Length of the dataset.
116 | Returns:
117 | length, int: Length of the dataset.
118 | """
119 | if self._train:
120 | return len(self._train_data)
121 | return len(self._test_data)
122 |
123 | def _checkIntegrity(self):
124 | """Check whether we have already processed the data.
125 | Returns:
126 | flag, bool: True if we have already processed the data.
127 | """
128 | return (
129 | os.path.isfile(os.path.join(self._root, 'processed/train.pkl'))
130 | and os.path.isfile(os.path.join(self._root, 'processed/test.pkl')))
131 |
132 | def _download(self, url):
133 | """Download and uncompress the tar.gz file from a given URL.
134 | Args:
135 | url, str: URL to be downloaded.
136 | """
137 | import six.moves
138 | import tarfile
139 |
140 | raw_path = os.path.join(self._root, 'raw')
141 | processed_path = os.path.join(self._root, 'processed')
142 | if not os.path.isdir(raw_path):
143 | os.mkdir(raw_path, mode=0o775)
144 | if not os.path.isdir(processed_path):
145 | os.mkdir(processed_path, mode=0x775)
146 |
147 | # Downloads file.
148 | fpath = os.path.join(self._root, 'raw/CUB_200_2011.tgz')
149 | try:
150 | print('Downloading ' + url + ' to ' + fpath)
151 | six.moves.urllib.request.urlretrieve(url, fpath)
152 | except six.moves.urllib.error.URLError:
153 | if url[:5] == 'https:':
154 | self._url = self._url.replace('https:', 'http:')
155 | print('Failed download. Trying https -> http instead.')
156 | print('Downloading ' + url + ' to ' + fpath)
157 | six.moves.urllib.request.urlretrieve(url, fpath)
158 |
159 | # Extract file.
160 | cwd = os.getcwd()
161 | tar = tarfile.open(fpath, 'r:gz')
162 | os.chdir(os.path.join(self._root, 'raw'))
163 | tar.extractall()
164 | tar.close()
165 | os.chdir(cwd)
166 |
167 | def _extract(self):
168 | """Prepare the data for train/test split and save onto disk."""
169 | image_path = os.path.join(self._root, 'raw/CUB_200_2011/images/')
170 | # Format of images.txt:
171 | id2name = np.genfromtxt(os.path.join(
172 | self._root, 'raw/CUB_200_2011/images.txt'), dtype=str)
173 | # Format of train_test_split.txt:
174 | id2train = np.genfromtxt(os.path.join(
175 | self._root, 'raw/CUB_200_2011/train_test_split.txt'), dtype=int)
176 |
177 | train_data = []
178 | train_labels = []
179 | test_data = []
180 | test_labels = []
181 | for id_ in range(id2name.shape[0]):
182 | image = PIL.Image.open(os.path.join(image_path, id2name[id_, 1]))
183 | label = int(id2name[id_, 1][:3]) - 1 # Label starts with 0
184 |
185 | # Convert gray scale image to RGB image.
186 | if image.getbands()[0] == 'L':
187 | image = image.convert('RGB')
188 | image_np = np.array(image)
189 | image.close()
190 |
191 | if id2train[id_, 1] == 1:
192 | train_data.append(image_np)
193 | train_labels.append(label)
194 | else:
195 | test_data.append(image_np)
196 | test_labels.append(label)
197 |
198 | pickle.dump((train_data, train_labels),
199 | open(os.path.join(self._root, 'processed/train.pkl'), 'wb'))
200 | pickle.dump((test_data, test_labels),
201 | open(os.path.join(self._root, 'processed/test.pkl'), 'wb'))
202 |
--------------------------------------------------------------------------------
/log/README.md:
--------------------------------------------------------------------------------
1 | hbp_all.log uses
2 | ```python
3 | self._scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
4 | self._solver, mode='max', factor=0.1, patience=5, verbose=True,
5 | threshold=1e-4)
6 | ```
7 | to reduce learning rate.
8 |
--------------------------------------------------------------------------------
/log/hbp_all.log:
--------------------------------------------------------------------------------
1 | Prepare the network and data.
2 | DataParallel(
3 | (module): BCNN(
4 | (features): Sequential(
5 | (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
6 | (1): ReLU(inplace)
7 | (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
8 | (3): ReLU(inplace)
9 | (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
10 | (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
11 | (6): ReLU(inplace)
12 | (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
13 | (8): ReLU(inplace)
14 | (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
15 | (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
16 | (11): ReLU(inplace)
17 | (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
18 | (13): ReLU(inplace)
19 | (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
20 | (15): ReLU(inplace)
21 | (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
22 | (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
23 | (18): ReLU(inplace)
24 | (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
25 | (20): ReLU(inplace)
26 | (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
27 | (22): ReLU(inplace)
28 | (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
29 | (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
30 | (25): ReLU(inplace)
31 | (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
32 | (27): ReLU(inplace)
33 | (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
34 | (29): ReLU(inplace)
35 | (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
36 | )
37 | (features_conv5_1): Sequential(
38 | (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
39 | (1): ReLU(inplace)
40 | (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
41 | (3): ReLU(inplace)
42 | (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
43 | (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
44 | (6): ReLU(inplace)
45 | (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
46 | (8): ReLU(inplace)
47 | (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
48 | (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
49 | (11): ReLU(inplace)
50 | (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
51 | (13): ReLU(inplace)
52 | (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
53 | (15): ReLU(inplace)
54 | (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
55 | (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
56 | (18): ReLU(inplace)
57 | (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
58 | (20): ReLU(inplace)
59 | (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
60 | (22): ReLU(inplace)
61 | (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
62 | (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
63 | (25): ReLU(inplace)
64 | )
65 | (features_conv5_2): Sequential(
66 | (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
67 | (1): ReLU(inplace)
68 | )
69 | (features_conv5_3): Sequential(
70 | (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
71 | (1): ReLU(inplace)
72 | )
73 | (bilinear_proj): Sequential(
74 | (0): Conv2d(512, 8192, kernel_size=(1, 1), stride=(1, 1), bias=False)
75 | (1): BatchNorm2d(8192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
76 | (2): ReLU(inplace)
77 | )
78 | (fc): Linear(in_features=24576, out_features=200, bias=True)
79 | )
80 | )
81 | Files already downloaded and verified.
82 | Files already downloaded and verified.
83 | Training.
84 | Epoch Train loss Train acc Test acc
85 | *1 0.942 76.66% 66.43%
86 | *2 0.653 84.25% 73.32%
87 | *3 0.346 93.41% 77.93%
88 | *4 0.186 97.46% 79.27%
89 | *5 0.130 98.65% 80.38%
90 | *6 0.077 99.55% 81.24%
91 | *7 0.057 99.88% 82.33%
92 | *8 0.047 99.87% 83.14%
93 | *9 0.043 99.87% 83.19%
94 | 10 0.039 99.93% 82.76%
95 | *11 0.038 99.97% 83.48%
96 | 12 0.041 99.88% 83.31%
97 | *13 0.037 99.97% 83.53%
98 | *14 0.037 99.98% 83.79%
99 | 15 0.036 100.00% 83.59%
100 | 16 0.036 100.00% 83.79%
101 | *17 0.039 99.98% 84.09%
102 | 18 0.040 99.97% 84.02%
103 | 19 0.039 100.00% 83.53%
104 | 20 0.041 99.97% 83.64%
105 | *21 0.041 99.98% 84.29%
106 | 22 0.046 99.95% 84.02%
107 | 23 0.044 100.00% 83.53%
108 | 24 0.047 99.98% 83.69%
109 | 25 0.050 99.95% 83.95%
110 | 26 0.053 100.00% 83.71%
111 | Epoch 26: reducing learning rate of group 0 to 1.0000e-03.
112 | 27 0.054 99.97% 83.85%
113 | *28 0.048 99.95% 84.40%
114 | 29 0.047 99.98% 84.24%
115 | 30 0.046 100.00% 84.24%
116 | 31 0.045 100.00% 84.38%
117 | 32 0.046 100.00% 84.14%
118 | 33 0.045 99.98% 84.35%
119 | Epoch 33: reducing learning rate of group 0 to 1.0000e-04.
120 | 34 0.045 99.98% 84.23%
121 | 35 0.045 100.00% 84.29%
122 | 36 0.044 100.00% 84.35%
123 | *37 0.046 99.98% 84.41%
124 | 38 0.045 100.00% 84.36%
125 | *39 0.046 100.00% 84.43%
126 | 40 0.045 99.98% 84.26%
127 | *41 0.044 100.00% 84.48%
128 | 42 0.046 99.98% 84.28%
129 | 43 0.045 100.00% 84.29%
130 | 44 0.045 100.00% 84.31%
131 | 45 0.046 99.98% 84.36%
132 | 46 0.046 99.98% 84.29%
133 | Epoch 46: reducing learning rate of group 0 to 1.0000e-05.
134 | 47 0.045 99.98% 84.29%
135 | 48 0.045 100.00% 84.35%
136 | 49 0.046 100.00% 84.29%
137 | 50 0.045 100.00% 84.29%
138 | 51 0.046 100.00% 84.23%
139 | 52 0.046 100.00% 84.28%
140 | Epoch 52: reducing learning rate of group 0 to 1.0000e-06.
141 | 53 0.045 99.98% 84.38%
142 | 54 0.045 100.00% 84.36%
143 | 55 0.045 100.00% 84.35%
144 | 56 0.045 100.00% 84.41%
145 | 57 0.045 100.00% 84.24%
146 | 58 0.044 100.00% 84.26%
147 | Epoch 58: reducing learning rate of group 0 to 1.0000e-07.
148 | 59 0.045 100.00% 84.31%
149 | 60 0.045 99.98% 84.38%
150 | 61 0.044 100.00% 84.38%
151 | 62 0.046 99.97% 84.28%
152 | 63 0.045 99.98% 84.33%
153 | 64 0.044 100.00% 84.21%
154 | Epoch 64: reducing learning rate of group 0 to 1.0000e-08.
155 | 65 0.045 100.00% 84.26%
156 | 66 0.045 99.97% 84.36%
157 | 67 0.047 99.98% 84.40%
158 | 68 0.045 99.97% 84.21%
159 | 69 0.044 100.00% 84.31%
160 | 70 0.046 99.97% 84.35%
161 | 71 0.046 99.98% 84.36%
162 | 72 0.044 100.00% 84.38%
163 | 73 0.046 99.97% 84.36%
164 |
--------------------------------------------------------------------------------
/log/hbp_fc.log:
--------------------------------------------------------------------------------
1 | Prepare the network and data.
2 | DataParallel(
3 | (module): BCNN(
4 | (features): Sequential(
5 | (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
6 | (1): ReLU(inplace)
7 | (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
8 | (3): ReLU(inplace)
9 | (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
10 | (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
11 | (6): ReLU(inplace)
12 | (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
13 | (8): ReLU(inplace)
14 | (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
15 | (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
16 | (11): ReLU(inplace)
17 | (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
18 | (13): ReLU(inplace)
19 | (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
20 | (15): ReLU(inplace)
21 | (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
22 | (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
23 | (18): ReLU(inplace)
24 | (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
25 | (20): ReLU(inplace)
26 | (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
27 | (22): ReLU(inplace)
28 | (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
29 | (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
30 | (25): ReLU(inplace)
31 | (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
32 | (27): ReLU(inplace)
33 | (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
34 | (29): ReLU(inplace)
35 | (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
36 | )
37 | (features_conv5_1): Sequential(
38 | (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
39 | (1): ReLU(inplace)
40 | (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
41 | (3): ReLU(inplace)
42 | (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
43 | (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
44 | (6): ReLU(inplace)
45 | (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
46 | (8): ReLU(inplace)
47 | (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
48 | (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
49 | (11): ReLU(inplace)
50 | (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
51 | (13): ReLU(inplace)
52 | (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
53 | (15): ReLU(inplace)
54 | (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
55 | (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
56 | (18): ReLU(inplace)
57 | (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
58 | (20): ReLU(inplace)
59 | (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
60 | (22): ReLU(inplace)
61 | (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
62 | (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
63 | (25): ReLU(inplace)
64 | )
65 | (features_conv5_2): Sequential(
66 | (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
67 | (1): ReLU(inplace)
68 | )
69 | (features_conv5_3): Sequential(
70 | (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
71 | (1): ReLU(inplace)
72 | )
73 | (bilinear_proj): Sequential(
74 | (0): Conv2d(512, 8192, kernel_size=(1, 1), stride=(1, 1), bias=False)
75 | (1): BatchNorm2d(8192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
76 | (2): ReLU(inplace)
77 | )
78 | (fc): Linear(in_features=24576, out_features=200, bias=True)
79 | )
80 | )
81 | Files already downloaded and verified.
82 | Files already downloaded and verified.
83 | Training.
84 | Epoch Train loss Train acc Test acc
85 | *1 4.094 15.90% 39.51%
86 | *2 1.655 55.96% 57.46%
87 | *3 0.724 83.10% 74.78%
88 | *4 0.542 89.32% 76.54%
89 | *5 0.499 90.86% 76.98%
90 | 6 0.474 91.79% 76.96%
91 | *7 0.450 92.16% 77.30%
92 | 8 0.425 92.83% 77.22%
93 | *9 0.411 93.44% 77.82%
94 | *10 0.389 94.18% 77.93%
95 | *11 0.375 94.54% 78.36%
96 | 12 0.356 95.30% 77.98%
97 | 13 0.346 95.60% 77.82%
98 | 14 0.329 95.91% 78.24%
99 | *15 0.311 96.18% 78.51%
100 | 16 0.293 97.01% 78.18%
101 | *17 0.284 97.06% 78.60%
102 | 18 0.271 97.60% 78.27%
103 | 19 0.256 97.80% 78.27%
104 | *20 0.250 97.86% 78.77%
105 | 21 0.240 98.18% 78.51%
106 | 22 0.223 98.38% 78.77%
107 | *23 0.215 98.48% 78.87%
108 | *24 0.206 98.58% 79.13%
109 | 25 0.196 98.73% 78.79%
110 | 26 0.194 98.92% 79.10%
111 | *27 0.182 99.07% 79.25%
112 | 28 0.177 99.10% 79.00%
113 | 29 0.170 99.23% 79.15%
114 | *30 0.161 99.32% 79.48%
115 | *31 0.156 99.27% 79.58%
116 | 32 0.152 99.32% 79.12%
117 | 33 0.145 99.52% 78.72%
118 | 34 0.139 99.55% 79.48%
119 | 35 0.131 99.68% 79.32%
120 | 36 0.125 99.63% 79.55%
121 | *37 0.126 99.62% 79.74%
122 | 38 0.119 99.77% 79.43%
123 | 39 0.117 99.70% 79.44%
124 | 40 0.112 99.73% 79.22%
125 | 41 0.110 99.67% 79.58%
126 | 42 0.106 99.72% 79.57%
127 | 43 0.103 99.83% 79.46%
128 | 44 0.100 99.83% 79.55%
129 | 45 0.098 99.82% 79.67%
130 | 46 0.095 99.80% 79.63%
131 | 47 0.091 99.87% 79.46%
132 | 48 0.089 99.85% 79.41%
133 | 49 0.085 99.87% 79.60%
134 | 50 0.086 99.88% 79.69%
135 | 51 0.081 99.88% 79.53%
136 | *52 0.080 99.83% 79.77%
137 | 53 0.077 99.88% 79.65%
138 | 54 0.076 99.87% 79.77%
139 | 55 0.075 99.90% 79.72%
140 | 56 0.073 99.90% 79.62%
141 | 57 0.069 99.97% 79.58%
142 | *58 0.069 99.92% 79.88%
143 | *59 0.070 99.88% 80.15%
144 | 60 0.064 99.92% 79.98%
145 | 61 0.065 99.95% 80.10%
146 | 62 0.062 99.95% 80.07%
147 | 63 0.061 99.92% 79.75%
148 | 64 0.064 100.00% 79.58%
149 | 65 0.062 99.92% 80.15%
150 | 66 0.059 99.95% 80.05%
151 | 67 0.058 99.95% 80.13%
152 | 68 0.057 99.97% 79.81%
153 | 69 0.061 99.93% 79.88%
154 | 70 0.059 99.93% 79.93%
155 | 71 0.060 99.93% 79.82%
156 | 72 0.057 100.00% 79.57%
157 | 73 0.056 99.97% 80.01%
158 | 74 0.053 99.93% 80.10%
159 | 75 0.054 99.93% 79.94%
160 | 76 0.055 99.93% 80.03%
161 | *77 0.052 99.95% 80.17%
162 | 78 0.051 99.95% 80.08%
163 | 79 0.052 99.95% 80.01%
164 | *80 0.050 99.98% 80.43%
165 | 81 0.048 100.00% 79.55%
166 | 82 0.051 99.97% 80.24%
167 | 83 0.050 99.95% 79.75%
168 | 84 0.050 99.98% 80.17%
169 | 85 0.049 99.97% 80.17%
170 | 86 0.048 99.95% 79.89%
171 | 87 0.051 99.95% 80.08%
172 | 88 0.047 99.97% 80.08%
173 | 89 0.048 99.95% 79.84%
174 | 90 0.048 99.95% 80.17%
175 | 91 0.048 99.85% 80.10%
176 | 92 0.045 100.00% 79.88%
177 | 93 0.046 99.95% 80.34%
178 | 94 0.047 99.93% 80.17%
179 | 95 0.045 99.98% 80.08%
180 | 96 0.043 100.00% 80.20%
181 | 97 0.043 99.95% 80.12%
182 | 98 0.044 100.00% 80.22%
183 | 99 0.044 99.95% 79.67%
184 | 100 0.046 99.93% 80.39%
185 | 101 0.045 99.93% 80.03%
186 | 102 0.043 99.97% 79.98%
187 | 103 0.044 99.97% 79.96%
188 | 104 0.045 99.98% 80.13%
189 | 105 0.042 99.93% 80.27%
190 | 106 0.040 100.00% 80.07%
191 | 107 0.042 99.98% 80.22%
192 | 108 0.039 100.00% 80.19%
193 | 109 0.040 99.98% 80.41%
194 | 110 0.040 99.98% 80.24%
195 | 111 0.040 99.93% 80.19%
196 | 112 0.040 99.97% 80.15%
197 | 113 0.041 99.98% 80.05%
198 | 114 0.040 100.00% 80.03%
199 | 115 0.040 99.98% 79.96%
200 | 116 0.041 99.98% 79.93%
201 | 117 0.042 99.95% 80.22%
202 | 118 0.039 99.97% 80.12%
203 | 119 0.039 99.95% 79.82%
204 | 120 0.040 100.00% 80.31%
205 | Best at epoch 80, test accuaray 80.428032
206 |
--------------------------------------------------------------------------------
/log/hbp_fc_new.log:
--------------------------------------------------------------------------------
1 | DataParallel(
2 | (module): HBP(
3 | (features): Sequential(
4 | (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
5 | (1): ReLU(inplace)
6 | (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
7 | (3): ReLU(inplace)
8 | (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
9 | (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
10 | (6): ReLU(inplace)
11 | (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
12 | (8): ReLU(inplace)
13 | (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
14 | (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
15 | (11): ReLU(inplace)
16 | (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
17 | (13): ReLU(inplace)
18 | (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
19 | (15): ReLU(inplace)
20 | (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
21 | (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
22 | (18): ReLU(inplace)
23 | (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
24 | (20): ReLU(inplace)
25 | (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
26 | (22): ReLU(inplace)
27 | (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
28 | (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
29 | (25): ReLU(inplace)
30 | (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
31 | (27): ReLU(inplace)
32 | (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
33 | (29): ReLU(inplace)
34 | (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
35 | )
36 | (features_conv5_1): Sequential(
37 | (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
38 | (1): ReLU(inplace)
39 | (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
40 | (3): ReLU(inplace)
41 | (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
42 | (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
43 | (6): ReLU(inplace)
44 | (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
45 | (8): ReLU(inplace)
46 | (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
47 | (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
48 | (11): ReLU(inplace)
49 | (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
50 | (13): ReLU(inplace)
51 | (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
52 | (15): ReLU(inplace)
53 | (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
54 | (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
55 | (18): ReLU(inplace)
56 | (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
57 | (20): ReLU(inplace)
58 | (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
59 | (22): ReLU(inplace)
60 | (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
61 | (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
62 | (25): ReLU(inplace)
63 | )
64 | (features_conv5_2): Sequential(
65 | (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
66 | (1): ReLU(inplace)
67 | )
68 | (features_conv5_3): Sequential(
69 | (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
70 | (1): ReLU(inplace)
71 | )
72 | (bilinear_proj_1): Conv2d(512, 8192, kernel_size=(1, 1), stride=(1, 1))
73 | (bilinear_proj_2): Conv2d(512, 8192, kernel_size=(1, 1), stride=(1, 1))
74 | (bilinear_proj_3): Conv2d(512, 8192, kernel_size=(1, 1), stride=(1, 1))
75 | (fc): Linear(in_features=24576, out_features=200, bias=True)
76 | )
77 | )
78 | Files already downloaded and verified.
79 | Files already downloaded and verified.
80 | Compute mean and variance for training data.
81 | Files already downloaded and verified.
82 | tensor([0.4856, 0.4994, 0.4324])
83 | tensor([0.1817, 0.1811, 0.1927])
84 | Training.
85 | Epoch Train loss Train acc Test acc
86 | *1 4.912 13.66% 39.02%
87 | *2 3.484 47.75% 54.33%
88 | *3 2.454 64.88% 64.38%
89 | *4 1.844 75.04% 69.88%
90 | *5 1.456 80.26% 72.42%
91 | *6 1.200 84.67% 74.47%
92 | *7 1.002 87.10% 75.77%
93 | *8 0.867 89.36% 77.06%
94 | *9 0.751 91.02% 77.58%
95 | *10 0.665 92.39% 78.13%
96 | 11 0.589 93.88% 78.06%
97 | *12 0.522 94.53% 78.44%
98 | *13 0.439 96.13% 78.86%
99 | *14 0.411 96.46% 79.13%
100 | *15 0.396 96.58% 79.22%
101 | 16 0.389 96.61% 79.19%
102 | *17 0.378 96.66% 79.48%
103 | 18 0.375 96.93% 79.41%
104 | *19 0.366 97.08% 79.72%
105 | 20 0.358 97.23% 79.55%
106 | 21 0.354 97.28% 79.58%
107 | 22 0.348 97.45% 79.69%
108 | 23 0.341 97.38% 79.60%
109 | 24 0.335 97.63% 79.62%
110 | 25 0.334 97.61% 79.70%
111 | 26 0.332 97.55% 79.70%
112 | *27 0.329 97.70% 79.74%
113 | 28 0.331 97.65% 79.70%
114 | 29 0.334 97.56% 79.72%
115 | 30 0.329 97.75% 79.74%
116 | 31 0.331 97.48% 79.74%
117 | *32 0.327 97.68% 79.75%
118 | *33 0.327 97.81% 79.79%
119 | 34 0.328 97.48% 79.77%
120 | 35 0.324 97.75% 79.77%
121 | 36 0.324 97.81% 79.77%
122 | 37 0.327 97.60% 79.79%
123 | 38 0.326 97.63% 79.79%
124 | 39 0.324 97.80% 79.79%
125 | 40 0.327 97.63% 79.75%
126 | 41 0.325 97.85% 79.77%
127 | 42 0.326 97.58% 79.79%
128 | 43 0.324 97.53% 79.75%
129 | 44 0.327 97.46% 79.75%
130 | 45 0.327 97.76% 79.77%
131 | 46 0.327 97.70% 79.77%
132 | 47 0.325 97.76% 79.77%
133 | 48 0.327 97.65% 79.77%
134 |
--------------------------------------------------------------------------------