├── samples ├── manifold.png └── digits_latent_space.png └── README.md /samples/manifold.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lyeoni/keras-mnist-VAE/HEAD/samples/manifold.png -------------------------------------------------------------------------------- /samples/digits_latent_space.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/lyeoni/keras-mnist-VAE/HEAD/samples/digits_latent_space.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # keras-mnist-VAE 2 | Variational AutoEncoder on the MNIST data set using the keras API 3 | 4 | 5 | ## Dependencies 6 | - keras 7 | - tensorflow 8 | - numpy 9 | - scipy 10 | - matplotlib 11 | 12 | ## Results 13 | - Distribution of labeled data 14 | 15 | ![alt text](https://github.com/lyeoni/keras-mnist-VAE/blob/master/samples/digits_latent_space.png) 16 | 17 | - Learned MNIST manifold (2-D latent space) 18 | 19 | ![alt text](https://github.com/lyeoni/keras-mnist-VAE/blob/master/samples/manifold.png) 20 | 21 | 22 | ## Reference 23 | 1. Auto-Encoding Variational Bayes (paper): 24 | https://arxiv.org/abs/1312.6114 25 | 2. Building Autoencoders in Keras (document): 26 | https://blog.keras.io/building-autoencoders-in-keras.html 27 | 3. hwalsuklee/tensorflow-mnist-VAE (github): 28 | https://github.com/hwalsuklee/tensorflow-mnist-VAE/ 29 | --------------------------------------------------------------------------------