├── README.md
├── data_loader.py
├── evaluation.py
├── hg.py
├── images
├── card_keypoints.png
├── data1.png
├── data2.png
├── f1.png
├── hour.png
├── result1.png
└── result2.png
├── images_kp
├── im_0.jpg
├── im_0.json
├── im_1.jpg
├── im_1.json
├── im_102.jpg
├── im_102.json
├── im_103.jpg
├── im_103.json
├── im_104.jpg
├── im_104.json
├── im_105.jpg
├── im_105.json
├── im_106.jpg
├── im_106.json
├── im_108.jpg
├── im_108.json
├── im_11.jpg
├── im_11.json
├── im_115.jpg
├── im_115.json
├── im_116.jpg
├── im_116.json
├── im_12.jpg
├── im_12.json
├── im_120.jpg
├── im_120.json
├── im_124.jpg
├── im_124.json
├── im_125.jpg
├── im_125.json
├── im_126.jpg
├── im_126.json
├── im_128.jpg
├── im_128.json
├── im_129.jpg
├── im_129.json
├── im_131.jpg
├── im_131.json
├── im_132.jpg
├── im_132.json
├── im_133.jpg
├── im_133.json
├── im_135.jpg
├── im_135.json
├── im_137.jpg
├── im_137.json
├── im_138.jpg
├── im_138.json
├── im_139.jpg
├── im_139.json
├── im_14.jpg
├── im_14.json
├── im_141.jpg
├── im_141.json
├── im_143.jpg
├── im_143.json
├── im_15.jpg
├── im_15.json
├── im_16.jpg
├── im_16.json
├── im_17.jpg
├── im_17.json
├── im_18.jpg
├── im_18.json
├── im_19.jpg
├── im_19.json
├── im_2.jpg
├── im_2.json
├── im_20.jpg
├── im_20.json
├── im_200.jpg
├── im_200.json
├── im_201.jpg
├── im_201.json
├── im_202.jpg
├── im_202.json
├── im_203.jpg
├── im_203.json
├── im_204.jpg
├── im_204.json
├── im_205.jpg
├── im_205.json
├── im_206.jpg
├── im_206.json
├── im_207.jpg
├── im_207.json
├── im_208.jpg
├── im_208.json
├── im_209.jpg
├── im_209.json
├── im_21.jpg
├── im_21.json
├── im_210.jpg
├── im_210.json
├── im_211.jpg
├── im_211.json
├── im_212.jpg
├── im_212.json
├── im_213.jpg
├── im_213.json
├── im_214.jpg
├── im_214.json
├── im_215.jpg
├── im_215.json
├── im_216.jpg
├── im_216.json
├── im_217.jpg
├── im_217.json
├── im_218.jpg
├── im_218.json
├── im_219.jpg
├── im_219.json
├── im_220.jpg
├── im_220.json
├── im_221.jpg
├── im_221.json
├── im_222.jpg
├── im_222.json
├── im_223.jpg
├── im_223.json
├── im_224.jpg
├── im_224.json
├── im_225.jpg
├── im_225.json
├── im_226.jpg
├── im_226.json
├── im_227.jpg
├── im_227.json
├── im_228.jpg
├── im_228.json
├── im_229.jpg
├── im_229.json
├── im_230.jpg
├── im_230.json
├── im_231.jpg
├── im_231.json
├── im_232.jpg
├── im_232.json
├── im_233.jpg
├── im_233.json
├── im_234.jpg
├── im_234.json
├── im_235.jpg
├── im_235.json
├── im_236.jpg
├── im_236.json
├── im_237.jpg
├── im_237.json
├── im_238.jpg
├── im_238.json
├── im_239.jpg
├── im_239.json
├── im_24.jpg
├── im_24.json
├── im_240.jpg
├── im_240.json
├── im_241.jpg
├── im_241.json
├── im_242.jpg
├── im_242.json
├── im_243.jpg
├── im_243.json
├── im_244.jpg
├── im_244.json
├── im_245.jpg
├── im_245.json
├── im_246.jpg
├── im_246.json
├── im_247.jpg
├── im_247.json
├── im_248.jpg
├── im_248.json
├── im_249.jpg
├── im_249.json
├── im_250.jpg
├── im_250.json
├── im_251.jpg
├── im_251.json
├── im_252.jpg
├── im_252.json
├── im_253.jpg
├── im_253.json
├── im_254.jpg
├── im_254.json
├── im_255.jpg
├── im_255.json
├── im_256.jpg
├── im_256.json
├── im_257.jpg
├── im_257.json
├── im_258.jpg
├── im_258.json
├── im_259.jpg
├── im_259.json
├── im_260.jpg
├── im_260.json
├── im_261.jpg
├── im_261.json
├── im_262.jpg
├── im_262.json
├── im_263.jpg
├── im_263.json
├── im_264.jpg
├── im_264.json
├── im_265.jpg
├── im_265.json
├── im_266.jpg
├── im_266.json
├── im_267.jpg
├── im_267.json
├── im_268.jpg
├── im_268.json
├── im_269.jpg
├── im_269.json
├── im_270.jpg
├── im_270.json
├── im_271.jpg
├── im_271.json
├── im_272.jpg
├── im_272.json
├── im_273.jpg
├── im_273.json
├── im_274.jpg
├── im_274.json
├── im_275.jpg
├── im_275.json
├── im_276.jpg
├── im_276.json
├── im_277.jpg
├── im_277.json
├── im_28.jpg
├── im_28.json
├── im_3.jpg
├── im_3.json
├── im_30.jpg
├── im_30.json
├── im_300.jpg
├── im_300.json
├── im_301.jpg
├── im_301.json
├── im_302.jpg
├── im_302.json
├── im_303.jpg
├── im_303.json
├── im_304.jpg
├── im_304.json
├── im_305.jpg
├── im_305.json
├── im_306.jpg
├── im_306.json
├── im_307.jpg
├── im_307.json
├── im_308.jpg
├── im_308.json
├── im_309.jpg
├── im_309.json
├── im_31.jpg
├── im_31.json
├── im_310.jpg
├── im_310.json
├── im_311.jpg
├── im_311.json
├── im_312.jpg
├── im_312.json
├── im_313.jpg
├── im_313.json
├── im_314.jpg
├── im_314.json
├── im_315.jpg
├── im_315.json
├── im_316.jpg
├── im_316.json
├── im_317.jpg
├── im_317.json
├── im_318.jpg
├── im_318.json
├── im_319.jpg
├── im_319.json
├── im_32.jpg
├── im_32.json
├── im_320.jpg
├── im_320.json
├── im_321.jpg
├── im_321.json
├── im_322.jpg
├── im_322.json
├── im_323.jpg
├── im_323.json
├── im_324.jpg
├── im_324.json
├── im_325.jpg
├── im_325.json
├── im_326.jpg
├── im_326.json
├── im_327.jpg
├── im_327.json
├── im_328.jpg
├── im_328.json
├── im_329.jpg
├── im_329.json
├── im_330.jpg
├── im_330.json
├── im_331.jpg
├── im_331.json
├── im_332.jpg
├── im_332.json
├── im_333.jpg
├── im_333.json
├── im_334.jpg
├── im_334.json
├── im_335.jpg
├── im_335.json
├── im_336.jpg
├── im_336.json
├── im_337.jpg
├── im_337.json
├── im_338.jpg
├── im_338.json
├── im_339.jpg
├── im_339.json
├── im_34.jpg
├── im_34.json
├── im_340.jpg
├── im_340.json
├── im_341.jpg
├── im_341.json
├── im_342.jpg
├── im_342.json
├── im_343.jpg
├── im_343.json
├── im_344.jpg
├── im_344.json
├── im_345.jpg
├── im_345.json
├── im_346.jpg
├── im_346.json
├── im_347.jpg
├── im_347.json
├── im_348.jpg
├── im_348.json
├── im_349.jpg
├── im_349.json
├── im_35.jpg
├── im_35.json
├── im_350.jpg
├── im_350.json
├── im_351.jpg
├── im_351.json
├── im_352.jpg
├── im_352.json
├── im_353.jpg
├── im_353.json
├── im_354.jpg
├── im_354.json
├── im_355.jpg
├── im_355.json
├── im_356.jpg
├── im_356.json
├── im_357.jpg
├── im_357.json
├── im_358.jpg
├── im_358.json
├── im_359.jpg
├── im_359.json
├── im_36.jpg
├── im_36.json
├── im_360.jpg
├── im_360.json
├── im_361.jpg
├── im_361.json
├── im_362.jpg
├── im_362.json
├── im_363.jpg
├── im_363.json
├── im_364.jpg
├── im_364.json
├── im_365.jpg
├── im_365.json
├── im_366.jpg
├── im_366.json
├── im_367.jpg
├── im_367.json
├── im_368.jpg
├── im_368.json
├── im_369.jpg
├── im_369.json
├── im_37.jpg
├── im_37.json
├── im_370.jpg
├── im_370.json
├── im_371.jpg
├── im_371.json
├── im_372.jpg
├── im_372.json
├── im_373.jpg
├── im_373.json
├── im_374.jpg
├── im_374.json
├── im_375.jpg
├── im_375.json
├── im_376.jpg
├── im_376.json
├── im_377.jpg
├── im_377.json
├── im_378.jpg
├── im_378.json
├── im_38.jpg
├── im_38.json
├── im_39.jpg
├── im_39.json
├── im_40.jpg
├── im_40.json
├── im_400.jpg
├── im_400.json
├── im_401.jpg
├── im_401.json
├── im_402.jpg
├── im_402.json
├── im_403.jpg
├── im_403.json
├── im_404.jpg
├── im_404.json
├── im_405.jpg
├── im_405.json
├── im_406.jpg
├── im_406.json
├── im_407.jpg
├── im_407.json
├── im_408.jpg
├── im_408.json
├── im_409.jpg
├── im_409.json
├── im_41.jpg
├── im_41.json
├── im_410.jpg
├── im_410.json
├── im_411.jpg
├── im_411.json
├── im_412.jpg
├── im_412.json
├── im_413.jpg
├── im_413.json
├── im_414.jpg
├── im_414.json
├── im_415.jpg
├── im_415.json
├── im_416.jpg
├── im_416.json
├── im_417.jpg
├── im_417.json
├── im_418.jpg
├── im_418.json
├── im_419.jpg
├── im_419.json
├── im_42.jpg
├── im_42.json
├── im_420.jpg
├── im_420.json
├── im_421.jpg
├── im_421.json
├── im_422.jpg
├── im_422.json
├── im_423.jpg
├── im_423.json
├── im_424.jpg
├── im_424.json
├── im_425.jpg
├── im_425.json
├── im_426.jpg
├── im_426.json
├── im_427.jpg
├── im_427.json
├── im_428.jpg
├── im_428.json
├── im_429.jpg
├── im_429.json
├── im_430.jpg
├── im_430.json
├── im_431.jpg
├── im_431.json
├── im_432.jpg
├── im_432.json
├── im_433.jpg
├── im_433.json
├── im_434.jpg
├── im_434.json
├── im_435.jpg
├── im_435.json
├── im_436.jpg
├── im_436.json
├── im_437.jpg
├── im_437.json
├── im_438.jpg
├── im_438.json
├── im_439.jpg
├── im_439.json
├── im_44.jpg
├── im_44.json
├── im_440.jpg
├── im_440.json
├── im_441.jpg
├── im_441.json
├── im_442.jpg
├── im_442.json
├── im_443.jpg
├── im_443.json
├── im_444.jpg
├── im_444.json
├── im_445.jpg
├── im_445.json
├── im_446.jpg
├── im_446.json
├── im_447.jpg
├── im_447.json
├── im_448.jpg
├── im_448.json
├── im_449.jpg
├── im_449.json
├── im_450.jpg
├── im_450.json
├── im_451.jpg
├── im_451.json
├── im_452.jpg
├── im_452.json
├── im_453.jpg
├── im_453.json
├── im_454.jpg
├── im_454.json
├── im_455.jpg
├── im_455.json
├── im_456.jpg
├── im_456.json
├── im_457.jpg
├── im_457.json
├── im_458.jpg
├── im_458.json
├── im_459.jpg
├── im_459.json
├── im_460.jpg
├── im_460.json
├── im_461.jpg
├── im_461.json
├── im_462.jpg
├── im_462.json
├── im_463.jpg
├── im_463.json
├── im_464.jpg
├── im_464.json
├── im_465.jpg
├── im_465.json
├── im_466.jpg
├── im_466.json
├── im_467.jpg
├── im_467.json
├── im_468.jpg
├── im_468.json
├── im_469.jpg
├── im_469.json
├── im_47.jpg
├── im_47.json
├── im_470.jpg
├── im_470.json
├── im_471.jpg
├── im_471.json
├── im_472.jpg
├── im_472.json
├── im_473.jpg
├── im_473.json
├── im_474.jpg
├── im_474.json
├── im_475.jpg
├── im_475.json
├── im_476.jpg
├── im_476.json
├── im_477.jpg
├── im_477.json
├── im_478.jpg
├── im_478.json
├── im_479.jpg
├── im_479.json
├── im_48.jpg
├── im_48.json
├── im_480.jpg
├── im_480.json
├── im_481.jpg
├── im_481.json
├── im_482.jpg
├── im_482.json
├── im_483.jpg
├── im_483.json
├── im_484.jpg
├── im_484.json
├── im_485.jpg
├── im_485.json
├── im_486.jpg
├── im_486.json
├── im_487.jpg
├── im_487.json
├── im_488.jpg
├── im_488.json
├── im_489.jpg
├── im_489.json
├── im_49.jpg
├── im_49.json
├── im_490.jpg
├── im_490.json
├── im_491.jpg
├── im_491.json
├── im_492.jpg
├── im_492.json
├── im_493.jpg
├── im_493.json
├── im_494.jpg
├── im_494.json
├── im_495.jpg
├── im_495.json
├── im_496.jpg
├── im_496.json
├── im_497.jpg
├── im_497.json
├── im_498.jpg
├── im_498.json
├── im_499.jpg
├── im_499.json
├── im_5.jpg
├── im_5.json
├── im_500.jpg
├── im_500.json
├── im_501.jpg
├── im_501.json
├── im_502.jpg
├── im_502.json
├── im_503.jpg
├── im_503.json
├── im_504.jpg
├── im_504.json
├── im_505.jpg
├── im_505.json
├── im_506.jpg
├── im_506.json
├── im_507.jpg
├── im_507.json
├── im_508.jpg
├── im_508.json
├── im_509.jpg
├── im_509.json
├── im_510.jpg
├── im_510.json
├── im_511.jpg
├── im_511.json
├── im_512.jpg
├── im_512.json
├── im_513.jpg
├── im_513.json
├── im_514.jpg
├── im_514.json
├── im_515.jpg
├── im_515.json
├── im_516.jpg
├── im_516.json
├── im_517.jpg
├── im_517.json
├── im_518.jpg
├── im_518.json
├── im_519.jpg
├── im_519.json
├── im_520.jpg
├── im_520.json
├── im_521.jpg
├── im_521.json
├── im_522.jpg
├── im_522.json
├── im_523.jpg
├── im_523.json
├── im_524.jpg
├── im_524.json
├── im_525.jpg
├── im_525.json
├── im_526.jpg
├── im_526.json
├── im_527.jpg
├── im_527.json
├── im_528.jpg
├── im_528.json
├── im_529.jpg
├── im_529.json
├── im_53.jpg
├── im_53.json
├── im_530.jpg
├── im_530.json
├── im_531.jpg
├── im_531.json
├── im_532.jpg
├── im_532.json
├── im_533.jpg
├── im_533.json
├── im_534.jpg
├── im_534.json
├── im_535.jpg
├── im_535.json
├── im_536.jpg
├── im_536.json
├── im_537.jpg
├── im_537.json
├── im_538.jpg
├── im_538.json
├── im_539.jpg
├── im_539.json
├── im_54.jpg
├── im_54.json
├── im_540.jpg
├── im_540.json
├── im_541.jpg
├── im_541.json
├── im_542.jpg
├── im_542.json
├── im_543.jpg
├── im_543.json
├── im_544.jpg
├── im_544.json
├── im_545.jpg
├── im_545.json
├── im_546.jpg
├── im_546.json
├── im_547.jpg
├── im_547.json
├── im_548.jpg
├── im_548.json
├── im_549.jpg
├── im_549.json
├── im_55.jpg
├── im_55.json
├── im_550.jpg
├── im_550.json
├── im_551.jpg
├── im_551.json
├── im_552.jpg
├── im_552.json
├── im_553.jpg
├── im_553.json
├── im_554.jpg
├── im_554.json
├── im_555.jpg
├── im_555.json
├── im_556.jpg
├── im_556.json
├── im_557.jpg
├── im_557.json
├── im_558.jpg
├── im_558.json
├── im_56.jpg
├── im_56.json
├── im_57.jpg
├── im_57.json
├── im_58.jpg
├── im_58.json
├── im_59.jpg
├── im_59.json
├── im_60.jpg
├── im_60.json
├── im_61.jpg
├── im_61.json
├── im_63.jpg
├── im_63.json
├── im_65.jpg
├── im_65.json
├── im_67.jpg
├── im_67.json
├── im_68.jpg
├── im_68.json
├── im_7.jpg
├── im_7.json
├── im_70.jpg
├── im_70.json
├── im_72.jpg
├── im_72.json
├── im_73.jpg
├── im_73.json
├── im_74.jpg
├── im_74.json
├── im_75.jpg
├── im_75.json
├── im_76.jpg
├── im_76.json
├── im_77.jpg
├── im_77.json
├── im_78.jpg
├── im_78.json
├── im_80.jpg
├── im_80.json
├── im_81.jpg
├── im_81.json
├── im_82.jpg
├── im_82.json
├── im_83.jpg
├── im_83.json
├── im_84.jpg
├── im_84.json
├── im_85.jpg
├── im_85.json
├── im_86.jpg
├── im_86.json
├── im_88.jpg
├── im_88.json
├── im_89.jpg
├── im_89.json
├── im_9.jpg
├── im_9.json
├── im_90.jpg
├── im_90.json
├── im_91.jpg
├── im_91.json
├── im_92.jpg
├── im_92.json
├── im_93.jpg
├── im_93.json
├── im_95.jpg
├── im_95.json
├── im_96.jpg
├── im_96.json
├── im_97.jpg
├── im_97.json
├── im_98.jpg
├── im_98.json
├── im_99.jpg
└── im_99.json
├── kd_epoch_519_model.ckpt
├── models.py
├── test.py
├── train.py
└── visualize.py
/README.md:
--------------------------------------------------------------------------------
1 | # KeyPointsDetection 关键点识别网络
2 | 程序编写与测试:刘云飞
3 |
4 | 建议与合作联系邮箱:[liuyunfei.1314@163.com](mailto:liuyunfei.1314@163.com)
5 |
6 | #### 0x00 语言和工具
7 |
8 | 框架:PyTorch 1.2.0
9 |
10 | 语言:Python 3.7
11 |
12 | 在ubuntu 18.03测试通过
13 |
14 | #### 0x01 数据准备
15 |
16 | 标注数据类似下面,512x512 pixel
17 |
18 |
19 |
20 | 图片2
21 |
22 |
23 |
24 | 增加上2D高斯 点云 的Heatmap图如下
25 |
26 | 
27 |
28 | #### 0x02 训练
29 |
30 | 训练使用Houeglass模型,128*128进行训练
31 |
32 | 基本结构如下,漏斗式结构
33 |
34 | 
35 |
36 | #### 0x03 结果
37 |
38 | 下图左侧为检测到的四个点的heatmap,右侧为加上原图的效果,可以看到效果还不错~
39 |
40 | 结果图例1
41 |
42 | 
43 |
44 | 结果图例2
45 |
46 | 
47 |
48 |
49 |
50 | #### 0x04 后续
51 |
52 | 人体关键点检测
53 |
54 | 人脸关键点检测
55 |
56 |
--------------------------------------------------------------------------------
/data_loader.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 |
3 | import pandas as pd
4 | import numpy as np
5 | from torch.utils.data import Dataset,DataLoader
6 | import copy
7 | import glob
8 | import json
9 | import cv2
10 | from PIL import Image
11 | import matplotlib.pyplot as plt
12 |
13 | # from train import config
14 |
15 |
16 | def plot_sample(x, y, axis):
17 | """
18 |
19 | :param x: (9216,)
20 | :param y: (4,2)
21 | :param axis:
22 | :return:
23 | """
24 | img = x.reshape(128, 128)
25 | axis.imshow(img, cmap='gray')
26 | axis.scatter(y[:,0], y[:,1], marker='x', s=10)
27 |
28 | def plot_demo(X,y):
29 | fig = plt.figure(figsize=(6, 6))
30 | fig.subplots_adjust(
31 | left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
32 |
33 | for i in range(16):
34 | ax = fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])
35 | plot_sample(X[i], y[i], ax)
36 |
37 | plt.show()
38 |
39 |
40 | class KFDataset(Dataset):
41 | def __init__(self,config,X=None,gts=None):
42 | """
43 |
44 | :param X: (N,128*128)
45 | :param gts: (N,4,2)
46 | """
47 | self.__X = X
48 | self.__gts = gts
49 | self.__sigma = config['sigma']
50 | self.__debug_vis = config['debug_vis']
51 | self.__fname = config['fname']
52 | self.__is_test = config['is_test']
53 | fnames = glob.glob(config['fname']+"*.jpg")
54 | self.__X = fnames
55 | gtnames = [name.replace("jpg","json") for name in fnames]
56 | self.__gts = gtnames
57 |
58 |
59 |
60 | def __len__(self):
61 | return len(self.__X)
62 |
63 | def __getitem__(self, item):
64 | H,W = 128,128
65 | x_name = self.__X[item]
66 | x = Image.open(x_name)
67 | x = x.resize((128,128),Image.ANTIALIAS)
68 |
69 | gt_name = self.__gts[item]
70 | gt = []
71 | with open(gt_name,'r') as f:
72 | gt_json = json.load(f)
73 | gt.append(gt_json["shapes"][0]["points"][0])
74 | gt.append(gt_json["shapes"][1]["points"][0])
75 | gt.append(gt_json["shapes"][2]["points"][0])
76 | gt.append(gt_json["shapes"][3]["points"][0])
77 | gt = np.array(gt)
78 | gt = gt/4.0
79 |
80 | # gt 4x2, H 256, W 256
81 | # stride = 1
82 | heatmaps = self._putGaussianMaps(gt,H,W,1,self.__sigma)
83 |
84 | x = np.array(x)
85 |
86 | if self.__debug_vis == True:
87 | for i in range(heatmaps.shape[0]):
88 | x = cv2.cvtColor(x,cv2.COLOR_RGB2GRAY)
89 | img = copy.deepcopy(x).astype(np.uint8).reshape((H,W))
90 | self.visualize_heatmap_target(img,copy.deepcopy(heatmaps),1)
91 |
92 | x = x.reshape((3,128,128)).astype(np.float32)
93 | x = x / 255.
94 | heatmaps = heatmaps.astype(np.float32)
95 | return x,heatmaps,gt
96 |
97 | def _putGaussianMap(self, center, visible_flag, crop_size_y, crop_size_x, stride, sigma):
98 | """
99 | 根据一个中心点,生成一个heatmap
100 | :param center:
101 | :return:
102 | """
103 | grid_y = int(crop_size_y / stride) # 256/1
104 | grid_x = int(crop_size_x / stride) # 256/1
105 | if visible_flag == False:
106 | return np.zeros((grid_y,grid_x))
107 | start = stride / 2.0 - 0.5
108 | y_range = [i for i in range(grid_y)]
109 | x_range = [i for i in range(grid_x)]
110 | xx, yy = np.meshgrid(x_range, y_range)
111 | xx = xx * stride + start
112 | yy = yy * stride + start
113 | d2 = (xx - center[0]) ** 2 + (yy - center[1]) ** 2
114 | exponent = d2 / 2.0 / sigma / sigma
115 | heatmap = np.exp(-exponent)
116 | return heatmap
117 |
118 | def _putGaussianMaps(self,keypoints,crop_size_y, crop_size_x, stride, sigma):
119 | """
120 |
121 | :param keypoints: (4,2)
122 | :param crop_size_y: int 128
123 | :param crop_size_x: int 128
124 | :param stride: int 1
125 | :param sigma: float 1e-4
126 | :return:
127 | """
128 | all_keypoints = keypoints #4,2
129 | point_num = all_keypoints.shape[0] # 4
130 | heatmaps_this_img = []
131 | for k in range(point_num): # 0,1,2,3
132 | flag = ~np.isnan(all_keypoints[k,0])
133 | heatmap = self._putGaussianMap(all_keypoints[k],flag,crop_size_y,crop_size_x,stride,sigma)
134 | heatmap = heatmap[np.newaxis,...]
135 | heatmaps_this_img.append(heatmap)
136 | heatmaps_this_img = np.concatenate(heatmaps_this_img,axis=0) # (num_joint,crop_size_y/stride,crop_size_x/stride)
137 | return heatmaps_this_img
138 |
139 | def visualize_heatmap_target(self,oriImg,heatmap,stride):
140 | plt.subplot(2,2,1)
141 | plt.imshow(oriImg)
142 | plt.imshow(heatmap[0], alpha=.5)
143 | plt.subplot(2,2,2)
144 | plt.imshow(oriImg)
145 | plt.imshow(heatmap[1], alpha=.5)
146 | plt.subplot(2,2,3)
147 | plt.imshow(oriImg)
148 | plt.imshow(heatmap[2], alpha=.5)
149 | plt.subplot(2,2,4)
150 | plt.imshow(oriImg)
151 | plt.imshow(heatmap[3], alpha=.5)
152 | plt.show()
153 |
154 | if __name__ == '__main__':
155 | from train import config
156 | dataset = KFDataset(config)
157 |
158 | dataLoader = DataLoader(dataset=dataset,batch_size=8,shuffle=True)
159 | for i, (x, y ,gt) in enumerate(dataLoader):
160 | print(x.size())
161 | print(y.size())
162 | print(gt.size())
163 |
--------------------------------------------------------------------------------
/evaluation.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 |
3 | import torch
4 | import numpy as np
5 | from torch.utils.data import DataLoader
6 | from torch.autograd import Variable
7 | import matplotlib.pyplot as plt
8 |
9 | from data_loader import KFDataset
10 | from models import KFSGNet
11 | from train import config,get_peak_points,get_mse
12 |
13 |
14 | def demo(img,heatmaps):
15 | """
16 |
17 | :param img: (128,128)
18 | :param heatmaps: ()
19 | :return:
20 | """
21 | # img = img.reshape(96, 96)
22 | # axis.imshow(img, cmap='gray')
23 | # axis.scatter(y[:, 0], y[:, 1], marker='x', s=10)
24 | pass
25 |
26 | def evaluate():
27 | # 加载模型
28 | net = KFSGNet()
29 | net.float().cuda()
30 | net.eval()
31 | #if (config['checkout'] != ''):
32 | # net.load_state_dict(torch.load(config['checkout']))
33 |
34 | net.load_state_dict(torch.load("kd_epoch_519_model.ckpt"))
35 | dataset = KFDataset(config)
36 |
37 | dataLoader = DataLoader(dataset,1)
38 | for i,(images,_,gts) in enumerate(dataLoader):
39 | images = Variable(images).float().cuda()
40 |
41 | pred_heatmaps = net.forward(images)
42 | print(pred_heatmaps.cpu().data.numpy())
43 | demo_img = images[0].cpu().data.numpy().reshape((128,128,3))
44 | demo_img = (demo_img * 255.).astype(np.uint8)
45 | demo_heatmaps = pred_heatmaps[0].cpu().data.numpy()[np.newaxis,...]
46 | demo_pred_poins = get_peak_points(demo_heatmaps)[0] # (4,2)
47 |
48 | plt.figure(1)
49 | plt.subplot(2,2,1)
50 | plt.imshow(demo_heatmaps[0][0],alpha=.5)
51 | plt.subplot(2,2,2)
52 | plt.imshow(demo_heatmaps[0][1],alpha=.5)
53 | plt.subplot(2,2,3)
54 | plt.imshow(demo_heatmaps[0][2],alpha=.5)
55 | plt.subplot(2,2,4)
56 | plt.imshow(demo_heatmaps[0][3],alpha=.5)
57 |
58 |
59 | plt.figure(2)
60 | plt.imshow(demo_img,cmap='gray')
61 | plt.scatter(demo_pred_poins[:,0],demo_pred_poins[:,1])
62 | plt.text(demo_pred_poins[0,0],demo_pred_poins[0,1],"P1",color='r')
63 | plt.text(demo_pred_poins[1,0],demo_pred_poins[1,1],"P2",color='r')
64 | plt.text(demo_pred_poins[2,0],demo_pred_poins[2,1],"P3",color='r')
65 | plt.text(demo_pred_poins[3,0],demo_pred_poins[3,1],"P4",color='r')
66 |
67 | plt.show()
68 |
69 | # loss = get_mse(demo_pred_poins[np.newaxis,...],gts)
70 |
71 | if __name__ == '__main__':
72 | evaluate()
73 |
--------------------------------------------------------------------------------
/hg.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | """ pytorch实现:stacked hourglass network architecture"""
3 |
4 | import torch
5 | import torch.nn as nn
6 | from torch.nn import UpsamplingNearest2d,Upsample
7 | from torch.autograd import Variable
8 |
9 | class StackedHourGlass(nn.Module):
10 | def __init__(self,nFeats=256,nStack=8,nJoints=18):
11 | """
12 | 输入: 256^2
13 | """
14 | super(StackedHourGlass,self).__init__()
15 | self._nFeats = nFeats
16 | self._nStack = nStack
17 | self._nJoints = nJoints
18 | self.conv1 = nn.Conv2d(3,64,7,2,3)
19 | self.bn1 = nn.BatchNorm2d(64)
20 | self.relu1 = nn.ReLU(inplace=True)
21 | self.res1 = Residual(64,128)
22 | self.pool1 = nn.MaxPool2d(2,2)
23 | self.res2 = Residual(128,128)
24 | self.res3 = Residual(128,self._nFeats) #cmd:option('-nFeats', 256, 'Number of features in the hourglass')
25 | self._init_stacked_hourglass()
26 |
27 | def _init_stacked_hourglass(self):
28 | for i in range(self._nStack):
29 | setattr(self,'hg'+str(i),HourGlass(4,self._nFeats))
30 | setattr(self,'hg'+str(i)+'_res1',Residual(self._nFeats,self._nFeats))
31 | setattr(self,'hg'+str(i)+'_lin1',Lin(self._nFeats,self._nFeats))
32 | setattr(self,'hg'+str(i)+'_conv_pred',nn.Conv2d(self._nFeats,self._nJoints,1))
33 | if i < self._nStack - 1:
34 | setattr(self,'hg'+str(i)+'_conv1',nn.Conv2d(self._nFeats,self._nFeats,1))
35 | setattr(self,'hg'+str(i)+'_conv2',nn.Conv2d(self._nJoints,self._nFeats,1))
36 |
37 | def forward(self,x):
38 | # 初始图像处理
39 | x = self.relu1(self.bn1(self.conv1(x))) #(n,64,128,128)
40 | x = self.res1(x) #(n,128,128,128)
41 | x = self.pool1(x) #(n,128,64,64)
42 | x = self.res2(x) #(n,128,64,64)
43 | x = self.res3(x) #(n,256,64,64)
44 |
45 | out = []
46 | inter = x
47 |
48 | for i in range(self._nStack): #cmd:option('-nStack', 8, 'Number of hourglasses to stack')
49 | hg = eval('self.hg'+str(i))(inter)
50 | # Residual layers at output resolution
51 | ll = hg
52 | ll = eval('self.hg'+str(i)+'_res1')(ll)
53 | # Linear layer to produce first set of predictions
54 | ll = eval('self.hg'+str(i)+'_lin1')(ll)
55 | # Predicted heatmaps
56 | tmpOut = eval('self.hg'+str(i)+'_conv_pred')(ll)
57 | out.append(tmpOut)
58 | # Add predictions back
59 | if i < self._nStack - 1:
60 | ll_ = eval('self.hg'+str(i)+'_conv1')(ll)
61 | tmpOut_ = eval('self.hg'+str(i)+'_conv2')(tmpOut)
62 | inter = inter + ll_ + tmpOut_
63 | return out
64 |
65 | class HourGlass(nn.Module):
66 | """不改变特征图的高宽"""
67 | def __init__(self,n=4,f=256):
68 | """
69 | :param n: hourglass模块的层级数目
70 | :param f: hourglass模块中的特征图数量
71 | :return:
72 | """
73 | super(HourGlass,self).__init__()
74 | self._n = n
75 | self._f = f
76 | self._init_layers(self._n,self._f)
77 |
78 | def _init_layers(self,n,f):
79 | # 上分支
80 | setattr(self,'res'+str(n)+'_1',Residual(f,f))
81 | # 下分支
82 | setattr(self,'pool'+str(n)+'_1',nn.MaxPool2d(2,2))
83 | setattr(self,'res'+str(n)+'_2',Residual(f,f))
84 | if n > 1:
85 | self._init_layers(n-1,f)
86 | else:
87 | self.res_center = Residual(f,f)
88 | setattr(self,'res'+str(n)+'_3',Residual(f,f))
89 | # setattr(self,'SUSN'+str(n),UpsamplingNearest2d(scale_factor=2))
90 | setattr(self,'SUSN'+str(n),Upsample(scale_factor=2))
91 |
92 |
93 | def _forward(self,x,n,f):
94 | # 上分支
95 | up1 = x
96 | up1 = eval('self.res'+str(n)+'_1')(up1)
97 | # 下分支
98 | low1 = eval('self.pool'+str(n)+'_1')(x)
99 | low1 = eval('self.res'+str(n)+'_2')(low1)
100 | if n > 1:
101 | low2 = self._forward(low1,n-1,f)
102 | else:
103 | low2 = self.res_center(low1)
104 | low3 = low2
105 | low3 = eval('self.'+'res'+str(n)+'_3')(low3)
106 | up2 = eval('self.'+'SUSN'+str(n)).forward(low3)
107 |
108 | return up1+up2
109 |
110 | def forward(self,x):
111 | return self._forward(x,self._n,self._f)
112 |
113 | class Residual(nn.Module):
114 | """
115 | 残差模块,并不改变特征图的宽高
116 | """
117 | def __init__(self,ins,outs):
118 | super(Residual,self).__init__()
119 | # 卷积模块
120 | self.convBlock = nn.Sequential(
121 | nn.BatchNorm2d(ins),
122 | nn.ReLU(inplace=True),
123 | nn.Conv2d(ins,outs/2,1),
124 | nn.BatchNorm2d(outs/2),
125 | nn.ReLU(inplace=True),
126 | nn.Conv2d(outs/2,outs/2,3,1,1),
127 | nn.BatchNorm2d(outs/2),
128 | nn.ReLU(inplace=True),
129 | nn.Conv2d(outs/2,outs,1)
130 | )
131 | # 跳层
132 | if ins != outs:
133 | self.skipConv = nn.Conv2d(ins,outs,1)
134 | self.ins = ins
135 | self.outs = outs
136 | def forward(self,x):
137 | residual = x
138 | x = self.convBlock(x)
139 | if self.ins != self.outs:
140 | residual = self.skipConv(residual)
141 | x += residual
142 | return x
143 |
144 | class Lin(nn.Module):
145 | def __init__(self,numIn,numout):
146 | super(Lin,self).__init__()
147 | self.conv = nn.Conv2d(numIn,numout,1)
148 | self.bn = nn.BatchNorm2d(numout)
149 | self.relu = nn.ReLU(inplace=True)
150 | def forward(self,x):
151 | return self.relu(self.bn(self.conv(x)))
152 |
153 |
154 | from torch.utils.data import Dataset,DataLoader
155 | import numpy as np
156 | import torch.optim as optim
157 |
158 | class tempDataset(Dataset):
159 | def __init__(self):
160 | self.X = np.random.randn(100,3,512,512)
161 | self.Y = np.random.randn(100,18,128,128)
162 | def __len__(self):
163 | return len(self.X)
164 | def __getitem__(self, item):
165 | # 这里返回的时候不要设置batch_size
166 | return self.X[item],self.Y[item]
167 |
168 | if __name__ == '__main__':
169 | from torch.nn import MSELoss
170 | critical = MSELoss()
171 |
172 | dataset = tempDataset()
173 | dataLoader = DataLoader(dataset=dataset)
174 | shg = StackedHourGlass()
175 | optimizer = optim.SGD(shg.parameters(), lr=0.01, momentum=0.9,weight_decay=1e-4)
176 | for i,(x,y) in enumerate(dataLoader):
177 | x = Variable(x,requires_grad=True).float()
178 | y = Variable(y).float()
179 | y_pred = shg.forward(x)
180 | loss = critical(y_pred[0],y[0])
181 | print('loss : {}'.format(loss))
182 | optimizer.zero_grad()
183 | loss.backward()
184 | optimizer.step()
--------------------------------------------------------------------------------
/images/card_keypoints.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/card_keypoints.png
--------------------------------------------------------------------------------
/images/data1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/data1.png
--------------------------------------------------------------------------------
/images/data2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/data2.png
--------------------------------------------------------------------------------
/images/f1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/f1.png
--------------------------------------------------------------------------------
/images/hour.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/hour.png
--------------------------------------------------------------------------------
/images/result1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/result1.png
--------------------------------------------------------------------------------
/images/result2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images/result2.png
--------------------------------------------------------------------------------
/images_kp/im_0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_0.jpg
--------------------------------------------------------------------------------
/images_kp/im_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_1.jpg
--------------------------------------------------------------------------------
/images_kp/im_102.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_102.jpg
--------------------------------------------------------------------------------
/images_kp/im_103.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_103.jpg
--------------------------------------------------------------------------------
/images_kp/im_104.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_104.jpg
--------------------------------------------------------------------------------
/images_kp/im_105.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_105.jpg
--------------------------------------------------------------------------------
/images_kp/im_106.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_106.jpg
--------------------------------------------------------------------------------
/images_kp/im_108.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_108.jpg
--------------------------------------------------------------------------------
/images_kp/im_11.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_11.jpg
--------------------------------------------------------------------------------
/images_kp/im_115.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_115.jpg
--------------------------------------------------------------------------------
/images_kp/im_116.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_116.jpg
--------------------------------------------------------------------------------
/images_kp/im_12.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_12.jpg
--------------------------------------------------------------------------------
/images_kp/im_120.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_120.jpg
--------------------------------------------------------------------------------
/images_kp/im_124.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_124.jpg
--------------------------------------------------------------------------------
/images_kp/im_125.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_125.jpg
--------------------------------------------------------------------------------
/images_kp/im_126.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_126.jpg
--------------------------------------------------------------------------------
/images_kp/im_128.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_128.jpg
--------------------------------------------------------------------------------
/images_kp/im_129.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_129.jpg
--------------------------------------------------------------------------------
/images_kp/im_131.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_131.jpg
--------------------------------------------------------------------------------
/images_kp/im_132.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_132.jpg
--------------------------------------------------------------------------------
/images_kp/im_133.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_133.jpg
--------------------------------------------------------------------------------
/images_kp/im_135.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_135.jpg
--------------------------------------------------------------------------------
/images_kp/im_137.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_137.jpg
--------------------------------------------------------------------------------
/images_kp/im_138.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_138.jpg
--------------------------------------------------------------------------------
/images_kp/im_139.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_139.jpg
--------------------------------------------------------------------------------
/images_kp/im_14.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_14.jpg
--------------------------------------------------------------------------------
/images_kp/im_141.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_141.jpg
--------------------------------------------------------------------------------
/images_kp/im_143.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_143.jpg
--------------------------------------------------------------------------------
/images_kp/im_15.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_15.jpg
--------------------------------------------------------------------------------
/images_kp/im_16.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_16.jpg
--------------------------------------------------------------------------------
/images_kp/im_17.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_17.jpg
--------------------------------------------------------------------------------
/images_kp/im_18.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_18.jpg
--------------------------------------------------------------------------------
/images_kp/im_18.json:
--------------------------------------------------------------------------------
1 | {
2 | "version": "3.16.7",
3 | "flags": {},
4 | "shapes": [
5 | {
6 | "label": "point1",
7 | "line_color": null,
8 | "fill_color": null,
9 | "points": [
10 | [
11 | 353.4210526315789,
12 | 311.6315789473684
13 | ]
14 | ],
15 | "shape_type": "point",
16 | "flags": {}
17 | },
18 | {
19 | "label": "point2",
20 | "line_color": null,
21 | "fill_color": null,
22 | "points": [
23 | [
24 | 166.05263157894734,
25 | 321.10526315789474
26 | ]
27 | ],
28 | "shape_type": "point",
29 | "flags": {}
30 | },
31 | {
32 | "label": "point3",
33 | "line_color": null,
34 | "fill_color": null,
35 | "points": [
36 | [
37 | 163.9473684210526,
38 | 206.89473684210526
39 | ]
40 | ],
41 | "shape_type": "point",
42 | "flags": {}
43 | },
44 | {
45 | "label": "point4",
46 | "line_color": null,
47 | "fill_color": null,
48 | "points": [
49 | [
50 | 344.4736842105263,
51 | 199.52631578947367
52 | ]
53 | ],
54 | "shape_type": "point",
55 | "flags": {}
56 | }
57 | ],
58 | "lineColor": [
59 | 0,
60 | 255,
61 | 0,
62 | 128
63 | ],
64 | "fillColor": [
65 | 255,
66 | 0,
67 | 0,
68 | 128
69 | ],
70 | "imagePath": "im_18.jpg",
71 | "imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDoY36VajbmqSk1YjNQUXkfIqYEnpVVDU6t+dAEo6UtNByKdVCENN5706g0ANNJS0UAJSUuKKAG0YpaTtQIMUd6KQc0AGKTvTjTaADpRQKUUAFJS0UAJmkpe9IaADrSYpaKAEFL170YoFAxe1HbpR70opAJyaXoaWkoABRRRQAlFGDS4pANoNLRQMSl4pB1pe9AB70UDrRjBoAOlLSUtAB0pRRij6UAFA60tJimAtGaAOKCcYoAKWkzSigBO1L0o6UUgCjFJg0o60AJRSkUUAH86KMUetACUfpS9veigBDzSdTTs5pvrQBirxVhCKrrU6cUAWUPpU6E9qqoelToaYFgEU4HiogaeDQIcf1ozSUc0wA9KSiigAzSYIpaQ0AFFFJQIOKTGCMdKdRQA3t7UUpFJ+NACCijH5UvegBMUp+tB6cUlACYoPvS0h4oAOppfwpMUpoGA60YpKXNABS9qSikAo5opB2oJJoAWjNITRnpQAuaTvSZpRSAWkIpaTmgYdqKMUh60AGf/r07vTadQAcUCkooAdniimilHWgBaWkz2o6UwHY496aRn3pc0lACgf59KXFAooABRkUnQ0tAgo70dqO9IYopDS0GgBAKUCil7UAIRRj1ooNACUmKdnikxQBiL19qmQYqFRUyUASqRUyVAKmTpTAnU+lPBqJc08UCHClpuaXNABmjOaOlJnJoAXJpCKKM0wClpO1FAC0nHNJRQAppKKPxoAKB2o7cUUAGKDRmg0AJiigUGkAdqQjNLR2oAbgU7vSUtABSUUGgA7UucUnWl7UAJRxRg8UoB/GkAYpRSc0UALRmko70DFpOtFHegAzR0oooAO9Lijt0ozQAcClxSYpetACFQTmloopgBNHeg0uOKADNLSUYoAKUUlLQIPpRjvSUtABiikpwpDAUn8qKXmgBKWkxS0ANxilpe1HegDFXpUg+lNAp4oAcKlU1EtSL0oAmU0/+VRDNSA8UxDhzThxTaAaAHZpKKKAFpKQ0ooAMj8KKO1FAAaKKM0AHSikopgFFHeigBelFIKKQBmg0uKSgAozRR3oAaMmnUlFAB0opD1paAAUuaSigBetFJ7UtAAaSlopAJ0FGaKKADvR3o70vXmgA70daO1JQAtLSZooGOPSjikooAWjpRniimAUtIOnNL3oAKKO9L60AJR6c0CjrQIKXjNJjFLQAZ5oFHagUDF4JozRRikAUUClpgHakpaTvQBkilxSZo3c0hEgFPUc1EHxTw9AyYDvTx1qEPTgwBpiJsjFGfyqLf2pQ9AElOBqPfSh+aAHdaOnakBpevegBaKQUtACUtHSkPNAC0hopcmgBOlFFFAC0UlLQAZpKO9FABRQaSgBSMYpKKOaAClpKPrQAUUfWgUAFHej8KKADt60uaT+VB4oAOtFFGcUAHFFFHSkAtFJRQAtFAFIetADu1L3ptLQMWk6UtFMBBTqTv7UtAAeKPrRRQIKX0pKO1ABQf1opaAEpaKKACiiigYooFJmlHFAB9aDSZooAyCRTC3NK1RMSKQh++nCTHeqxammTBzQMuiWl873qh53FHm0AaHm8daXzfeqAl96BNTA0BL05p4l96zRN+dPWagRpCQetPWT3rNE3rUqy0AaKvmnfjVJJeOtTLIPWgCxSUxWp9AC9O9BpKXFACUUUUAJR2pfrSUwCij+VLQAUlLSUgCjv1o9KKADPHFFHaj2oAKMUZooAKO9JRmgBf5UdqTNGaAFoxRniigAzRQaKAE70veiikAUtGPSkpgO7UlFLQMKKKDQAtFFFAhaSl78daTvQA4UUlFABS96Sj60AKeKTNFGaAFxRRzSUAL6UUdqTNAC44oo7UUDMZiKgc04vxUTmkIY1QSMORUjt15qBuhpDG7+etKHNMxzRjFMCTfnvSh+OtRil70AP3GlDmmfzpe9AEiyHPNTCXpzVcdKKYF5Jvep1l96yw5qZZSO9AGqkvvUyycVlRze9WEl96BGmrAilzmqaS89anV/egCWlpAQaX8aAEopcUlAC0hoo70AFHfmjvmj+dABRRzRQAUlGKKACg0e9FACd6XNJS4oASlFFFAAKABRRmgBaOlJRQAtGeaT+dLQAUd6BQOtAAKKKWgBR0oxSUtAxKXFFKOtABS96SjpQAtHagHFIelAhe1FJ2o9aAFpKTNL6/wA6AClNNooAXvR2pO1FAC5xxQTSe1HSgZzXm0hcVUDnFKJKkCYtUZOc00ODRnNMBCaXNGRRQAvalpvSnCgAAx6Uo/SjPNFAC9qBQM0UAFGTnIoooAesmOtSLNUGM0ZxTA0Emqwk/aspZCDVhJfegRrJNUyyZrLjl96spLQBeBzR1NQpJkVKGH50AKRR3oFGPegApKXnFFACUvUUUEUAJ2ope9J3oAQ8Ud6DQTQAUA80nfilFAC9+KTPFFL60AIKWiigA7UY4ooJoAOlLSc0tACd6Wk70ZyaAFzS03NLmgApfwpKUe9ABmlzSUoFAxaOKTpRQAZo60ZoBoAWkozx0ooAWkJopM0CFzRSUZoAXNFJmigBc+lFJQaBnGYpaXGKMVIwFL70D9KKYheaSlHSj8sUAGfelBpKBQA7vS9aaKcKAFHAp3rSrS4oAZRUgXim7Sc0wGfhRjilINFIBtODEGkP1pPyoAnjl6VZil59veqAyOamRsYpgasb8VYSQAVmwvwKto3GRj8aBFxWBFOqKN89xUo5+lAATQOaXFJQAUUUtACUGig0AJSdT0p2KSgBDS5pvtTvwoADSClFJ7UAFL2pM0poASlFHajvQAtFJS0AJR+FFFAB2pc0HmjFACZ5pT60oozQAdaXNIaTNAC0tNz70tAwpaSg0ALQOlA6UUAFFFFACUpHWig0AIaKMZo7UAApaSjPFAHIdPrSU6k71IxO1LQKD0oEGc0HpRRk0wDFLj86Q0CgBRTlHNMp69aAJlGfrTsVGp5qUHNABjHWk28U+imBCy4NMqV+DUZpAJgUYpTRQAnQinL2pMU5RQBZjNXIjVKOrcVMRbT9KnA4qGPtVgdKAENApcUUAIKMUtLQA08UGl60YxQAmMUn0pT060mPyoACKTvSnFFAB3oI5oopAJS4pAMUv0oASjpilxxR3pgANLijFIaADvRRQaAAGl70dBR1FACelLRRQAGijGRRQMKKKWgAopOlLQAZpaTPFFAC/wA6KSloAMUhpTSUAGKM8UooPWgBOtGKWjtQI4+iloqShMUYpSMj2oxQAgoxSigg0CE6UCg0UAFOWkJ/GgUwJFNSA1CDTwTxQBMGp27jiogaUtxQA12pvfNKeeaSgApc80mKXFIBKctJgYApQBmmBYjNW4+vNVI8Yq3HTEW4zVgHiq8dWFoAXrRRRQACilpOaAAUhpaKAE6ik6c07FIc0AFFJ7UtACGilNJ+FABQOtLikpAAopQKKADpSUvQUlMANIPSloxQAUYpQKP5UAFJS9qX60ANpaKO9ABmij8aB+lABiilz60UAFL1pOpooAUUUfQ0UAHtRQOtHWgBOtLRQeaACijtRQByBoNHHXFLUjDIopM0UDF7UlGSfrR1oASilpKAClo5A60UCFBpwNMFOzQBIDR1600UufWgBe9IMUde9H0oAWgCkpRQAU5RSUqnBpgTpVuLtVRBkVcipiLcZqdelQRjipxxQA6iiigAo6UtFACUUtFACYpCKd2pMUAIRR296WkxQAfzoox1oxxQAlLRijpSASg0GkoADS0tJTAMUlLRQAUUfzooAPWgUe1FABRRRmgApBxSnpRmgApcUlL3oAMUtJR3oAWikpcc0AGcdKM0lL0oASlBopMUALQKTHFLQByFFB5pPxqRi+9J0pKWgAzS5GKOKOPxoGFJS0c5oASlzSUUALxS0lKOaBCj604d6aKUGgBe9LxTaUUAOxRjFAzS4oAKcopMUoHPFAE6dOlW4hkCs6e9trGEy3Myxp6k1TXxloiDIuJH9lib+oFXGLeyEdQn0qda5L/hPNJXpHdt9EH9Wpf+FhaQP+Xe+/74T/4qr9lPsFjrqK4yT4kaYoOyzu2PYMFH9TVR/idCD8mlOR6mcD/2Wn7Gp2HY7+krz8/E8fwaQcepuf8A7Go2+J8uDs0pAexM5P8A7LTWHqdgsz0XFFeZH4makfu2NoPTO4/1pn/CyNYPS1sB6fI//wAXT+rVOwWPUc8UV5a3xC1xukVmn+7G39WqJ/HXiArhZ4k91hXP65p/VZhY9X/CjFeRHxp4kJ/5CHH/AFwj/wDiaF8V+IZj82ovz6Io/kKf1WYWPXcelIRXlseqaxIMyaldfhKR/Kp31O+iUNcalPGDyDJM2T+HJ/HGKX1eXcOU9K6UAEgEcjrkV4/ca/GWGXuZwR8wZ9uP/Qs1lS6puY7IQB6OxP8ALFUsLILHubMqjLEKPc1A1/ZoSHvLdT6GRR/WvDheRs2ZIDj0jcr/ADzViztzqdx5FoJxKx+VSA4A9WYYwPwp/VbbsLHsraxpannUbQf9t1/xpsutaZAP3t9Ao/364SDQW0iDzZGWebu68qv0/wATWJqN0ZGYMKUaEW9GFj1O213SruYRW+oW7yMcKm/BY+wPJrQrwOQZORXsPhLUptT8O209w2+cZRnPfBIz+WKmtR5FdBY3KKSg1ziCilooASiiigBKO1LSYx9aAFBpaTpQKABuRijGKWk70AKKWk6UZxQAZ7UuKSgUAL7UUYpKYC9qSgCgUgORxScUUmeakYuDRQTS0AJ0FFH8qX1oGJjtQKKWgBKUUdqMkcGgAFOptKKAFooFL3oAWlxSAU4ZoAUCiilAoEAzTlpBThQBwXjG4kk1dYix2JGNozxnJ5rDQVteLwBrYPrEP5msRTXo0fgQ0Sc+tNdvSoLqaWJAY03evH/16g82aS03YIfZkNkcmtlJXsMnY03NZ0MtzI4yzYzz781NMZd5CbwPUDOf8KFUTV7CLeaUDNVZBM0AKqwdewP/ANerNjbzPM5fOTwMnj8qrm1tYZZihLnpWlb6a7dRioLDSpf3U48oiN8bmfei993XPsB685rpRJbxtsM0QYHBBcZzU84WM5NLUDrUn9moBWltGMjke1KFpczKsZB0xamgsQHCqpLE4Axya0CtK7/ZbOSbjc2VHPQY5/PI/Wi7Cxn3t4mnIVjIMv8Afz0+n+P5ep5i4upJ3LMxOTyTS3lw087Mx6mq1aRjYlgc0U6OJ5pFjjRnkY4VVGST6Ad69E8NfD4Jsu9aUFgcrag5H/Az3+n5+lTUqRgrsk5vw54QvtfYSkG3sgeZmH3vZR3+vT+Vel2mgWWjWfk2cW0fxMeWc+pNbaIsaBFUKqjAAGABQ6hlINefUrSm/IVzlL6FuShKkdCDXI6nYibeyIFmAyVHRvXHofavQ7y268Vz95ZEsJEyrA5BHY1pSnYtanm8kRVsGvS/h6xPh+QHotyyj/vlT/WuN11ba1nPI3ONwRR09foM5H4V1fw4uPN0u7jxjbOGx9VH+Fa19adyWdpzn2pelLik61wCCijmj8aADvSU6g8UANHXvS49aB6UfjQMKDmlooEHpRQDRQAe1GKXHfFIfrQAClpOvSlpgHNJ3paKACjFIKUCgDj8/SiiioKDpRjmjNFABR70Zo4oAO9FHFFABRRmigBwopBS/jQACn8UylHSgB1KKaP1pw60AKKcDzTRS9KAHj1NOFMHSnYoEcD4x41tf+uI/mawQa3vGY/4nEZ7GEfzNc8D0r0KL9xFIkzxTGpeKa1bpgNNJ60meetANWmA9etadnF5qsgxllIGazFPNX7Sby3BzTA3LLSJUdJJDHheioxx95T3GAPl9Mn2ODWpPYvdbQsrBVdHZcDbhXDZJxkdPWqcGqRR27TSk+WuBgdWPYD/AB7foci91+4uflUiOLsi9P8A6596xUGM6l3tYgRJcLnHRBnn36fpmomvLHaNu4N3JkGP5VxL3Ur/AHnJqPzXzncav2YXO7W4gkGAI8+oJ/xqLVxA2nRsRIiklWdcN05+7x6jvXGJcyJkqxH0q/a6g0sT2czgLJgo7H7rDpknsenbse1Lks7hcotZmUk2zibqdg4ccn+E9TgZO3OB1NT6PoV9rd15NnFux9+RuEQe5/p1rodA8C3WqS+ffrJa2g/hK4kf2APQe5r1C1tILOEQ28YRAcnuSe5JPJJ9Tyazq4hR0jqyGzG8PeFLHQI96Dzroj5p3HP0Ufwit7pS0nSuCUnJ3ZIZNOzWLrHijS9EDLcz7px0gi+Z/wAR2/HFee6z491TUd0VqfsUB7Rt85+rf4Y/GtKdGcx2O88QeJdK0dTHPNvuMcQxfM34+n415rq3i6/1BmWE/ZYT0WM/N+Lf4YrBYknJySe9TwxrEguZlyuf3aH+M/8AxI7+vT3HZCjGHmNIS7LAwxNyY4wCfckt/wCzY/Cu5+GDf8hNT0zEQP8AvuuAd2kkZ3YszEliepNdr8NZGGrXkQPytAHP1DAD/wBCNFdfu2B6bSGjvmlrzQEpRSD8KXNAB3pDS0nfNAB2pRSdDS0AFFJS0AGKXpSfjQaBAelFL1oNACdKAaX+dIDzTAWil60hXvmgAA/OlpM8+9ByaAONpeKTvRmoKF7ZpabmjvzQAtH40A5oNAB26UdqOaQdaAFo70Z/OjvQAe9KDSc0d6AHDrS9qaKWgBwxmnA0znFOFADs04UzNOzQA9elLnimg+lKKBHC+NB/xNIT/wBMv6mubFdP42H+nWx9UP8AOuYFd9H4END+1NNKKXArYZERTe9TFKYV5qkwGg1Kr4xTAPak5qkwNG+fb5ECkFI4lbjuzgMSffkL9FFVKsXf7xoZVGFeFABnJyqhTn0OVzj0I9ar4/OqWwBSU7aa2NB8M3+vzYgXy7dWxJO4+VfYep9vp0olJRV2BmWtpPe3KW9tE8s0hwqKOT/n1r0vw34Eg0/Zd6mFnuhysXWOP/4o/p+QNb2ieH7HQrby7WPMjffmbl3/AB9PatXpXBVxDlpHYlsOlANZGr+JdL0YFbm4DTY/1MfzP+Xb8cVx9x4rvdfuGtbO4XToG6E5Dn6sM4/DHvWcKUpa9BJXOv1nxPpeiArcz7pu0EXzP+Xb8cV53rPjzVNR3R2p+xQHtGfnP1bt+GPxqrfJqLGT7NdyyWwXAEUp5RAF3MoORwBkkVkiSaIbRHCR6tCjH8yK66dCMddx2KpYkknqec1KlpPIgkEe2NicSOQqk+m44GaUXFzHJ5kUjQv6w/u//QcVDIzuxdyzMxyWJyTXRqMm/wBGg7/aJO3BVB/In9OfWopZnnkMkjbmPtjA9AOw9qjxT1TNADQCTXZfDweVr8hPV7dl/wDHlP8ASuZiiUV0vg5tviW1HZg4P/fBP9KyrfAwZ6jnilpPSlPevLEJ2oB9qO9H4UgCloopgJ3oFL0ooATHPWnEUmeaByKACig89KVe1AgpeKTk0d6YB24oxS4pMY70AKPWl603rmlBoATGBmlIxR2pcUgOLoopM1JQvbNFJSigApaSjFAC8UdTSdKKAFpKD9aT8aAFpaQGloAWlz2pM0tACinZpopR+lADqd3popwoAX8KeOlNFKKAOL8cD/SbQ/7LfzFcqK6vxwP3lkfZ/wClcoDXdR+BAOHWnimA04NWwx4XigoCfemeZjvR5tAx4jyaZJGVbinpJx/KtjTLWO7IVsc0+awGdaMDE0E+7ymO4MBkxt6j69CO/HoKdJZSwYLruRvuOvKsPY/5I6HBrv7PwrbmHOBkip4V0nwuHllMs0xIJVVyBjpgHjPv/Kp9uvs6iuZPh3wE9xtudXVo4eCtuOGb/e/uj26/THPosMMVvEsUMaRxqMKiAAAewrlP+Fh6SOtve/8AfCf/ABVaNt4x0O5dEN6sMjKG2zKVxkZ5b7o/Ouap7WWskQ7mxdzm0tJZxDLNsXPlwrudvoO5ry7XPG+rXkslvArWEQO0qpPmZHYt1HPpj8a9UjljmjWSJ1dGGVZTkEeoNVr3SrDUlxeWkM+AVBdASo9j1H4VNKcYP3lcFoeFxxS3MuyNS7HknPQdyT2HqTxVnzVtIjFA4eRh+8lHQD+6v9T36DjO71G78CaRcokcZuLaJQP3cDgKxGeTkHJ5PPWsiX4ZRNITDqjonYPAGP5hhXYsRTe5V0efCVwwYMQQcgg9DVn7YLkgXB/eE8TY65/v+vPfryc54x2L/DKUD93qiN/vQkf+zGoG+Gl/ni/tiPdWqvbU+4XRyDyCNmSRNrqSCCOQR2qtK4PQV3F94CEFvHNf6za2wRAjO4PzYzjqR/DgYHpXI6lbadbNsstRkvCP4vs3lp+ZbP6VUakZbDuUO9OU80zpTRMqvtOc5xVN2Avxnitvw3MYfENiw6mUJ/31x/WufgnVmC4bnpmtnR3EesWLngLcRk/99ConrFiPYlHAo6UD7uaM5ryhBxQaQdKXHGfzpAITR3o5paYBRRRQAlLRjNLj1oAPalpKXFAgHTIFA47UvPamnk+9ADu9A60mM5pR0oAQigDH404daD0pgNpRzQaBQBxQGaOKTvR1qChe/NLSc0ZoAOgpaM9fSjNABilxSdqM0AFFL0HpSUAGaUUnFLzQAtBoFLQAoGaWkoFADx3pRTQacKAH0o5pvtThQByHjhRizPcFh/KuPrsvHAHlWp9GP8q4stiu2h8ADi2KYX5pjNURatxk3mZ4qeFDIQBVFW5q/aXIiYE0AX47FypwO1XNPc2k6knoe9QjU0A6c1D54uZixbbGg3OQM4H+PQD3IqdXuM9N0zV45IByOBySeBUOoi0vATI+fYd/zrzhtXuGIEZMcS/dQHge/uff+mBUn9q3BHMhx7Uo0LO6FZHR3GkaWQdqzrk/89l/+JqK90fTpDE0UksKsoy5dZOgweML3Hr71zzX0rnlzW7oOj6rrKiNYmWxc589+Ah6bl9emCBwcc4wCNmuVXbAzzHeaY7y6beSAYy5t5CrADJ+ZepAAyeoHrXV+HdU8Zaid6LBJbtj99dxbVH+7twW/X8K3dG8GadpciXEpa7ulIKySDAUjuF/xz04xW7cXKwIQgV5AB8m7FctWtF6JXJbHxLIsSiZ0eTHzMilQT7Ak4/OnkgDJPFVXluZIQYzFHIeu9S4H6iub1HwtdasSL/XLqVD/wAs1UKnt8o4/HrXPFJvVkl3U/GuiaZlTc/aZR/yztxv/Xp+ua4jV/iPq1ypXToYrRfX77/meP0/Gt0fDjTh967uj9No/pU0HgDS4H3rcXfmAfK25cofUfL19+31wR0R9hFdytDzHUbzUJ5Ql68ssqE7/NfcQ2cEZJPYD6HjFUS0/TaCf8+/1r1c/DnR8f8AHzff99p/8RSf8K60cf8ALxff9/E/+IrVV4JBdHlRE2Dyo9zSjzAC3nJ04OPp7V1vi/w3b6Elr9ieaQTbw3mkcYxjoB61zMcUu0/uEIxxk9en5VakpK6GTW7N5m0up+cj0OPy5rQjYxurqcFSCD71RRJxKCYI8BvvDrjJ5/z61cFWtgPbRSkVBZzfaLSCYc+ZGr/mM1PXkiExzR0oPBoPNAAaKO1FAABS0g5peBQAHpQOaXIpKAFA4pe1IDS4xQIQHP0pSOc0mMUE0ALSA5OBQKOKAHDmkxQD1o70wEpelFKBQBxHSko60etQULS5pKAelAB2paKD2oAWkGeaKARzQAuRSY59aOuPWg0ALRSClHvQAZpaTiloAUUvvSUCgB4pwpgNOzQA8U4GoxTx64oA5XxwALG3bv5uP0NcMWruPHZP9lwHt5w/ka4Avmu2g/cAczVGTSFqTNbDFBp6tinpAvlrJM/lxt93Ayze4HpnuSO/pSO8Hy7IpAcc7pAcn8AMUAOEh9atRMGs5sAlwyHI7LznP47arobZkCkSo/OW3BgfQYwMfXJ+lbejeHtTvrnFvAHtmGGmJxGyn0OOT+BIOMjindLcDIUkVuaL4a1TWiGtodsHeaX5U/Pv07ZrobfS/DHhyN576f8AtK4jOGRF3Kp9CoOAf94844qPUPiLeyho9Nt47ZOQJH+d/YgdB9OaXPKXwIVzpdM8G6NocJutQkSd0+9JcYWNfwPHfvn8KXU/iFpNlujtA95KOmz5Uz/vH+gNeX3uo3moTebeXMs79jI2cew9B7CqpJpqhd3m7hY6fU/HWtajuSOcWkR/ht/lPXj5uufpiuq8A3LXul3JnVGdZ/vCNVzlRycDk+55rzaG1ZlEszeVAf4yOW9lH8R7egOMkda9C+HlwJYL+NEEccbJsUcnB3ck9zxyfywAAJrxiqfuoHsXpdU1XSdQu7vUbqzm0xbhY2hh+/axtgI57nOfmB6dQccV1NcZ430C41OCSWytUSRbeR5LiLPmy4HyxYXBYH3z06dK3R4htOn2bUv/AAXT/wDxFcJBRvh4gttZ8uC6Dafdt8sv2fzHtnwPlIDAbDg/Ng4J59aqaK+uX2tyTLrJuNJt2KMzWqIJ36FUxztX+9nqMc8ml8QW0FveF5E8SXIuASUsJZGjXtjAIA+lU9CtLH7TBZ2un+J7KJSSpnkkjhXHPOGxyfbkmgDXu71rXxLcTT3dwttBBbqsCY2FpZHTLAjsQvOeOaz49U1XUNRfw9JMtteQZkubuIAF4sjaY1OcEgjOemPcVNrWn3eoaxfW9su1pLS1dJHyELRzsxGQOuMfmKoHStZfX5DPb2BuGcXkd0FkwhAWPYHBB6KMqeCD3oAn8b2U1zHYBBvKb8kkDP3al0TwzDbWkd1qIW3jwCwY4Zj7nsPaty8nMNzaM1i1y+G+ZWAEXT5ueKw9ZWzmmMralPNJjhQMhfxBC/kK4cVXklyS2XT/AD7+hjUl3I/E17pV3YNDBZx5jHyT7dpGOw74+v5Vw3epriV3lZWlZ1DHGTUQ617GDp1KcP3kr3/A3gmlqev6K2/RLAj/AJ94/wD0EVeAx71jeFpTL4csmJ6IV/JiP6Vs1yy0kxiHpRRnNL+lSAUY5oOcUfWgQoA70hozjrS5zQADpS8U368ilzhaAFziimnIHqRSjnmgBQO1GOaO2RRmgY4AetJ0pB9aXAoATp9KMUuQRRkHjFMQZNGfek7UuMHBFAHDc9aXPNJmjNQUOoHSkHXNGeaAHUo/Wm9aXvQApxSZoHNB96ADtmgdaM80tABmjikxS0AFO696Sge9AC0Z70Ud6AFpwpoNLuoGPH4U4dKjBpwzQI5fx5/yB4iP+ew/ka87zXpXjK1kutEJjGTEwkI9hnNeaV10PhAXNKOSM0gorcCzek/bJgegYheeMDgAe2MUtvZyTDeWSKLvLKdq++O5PsMmmiZXULOhfAwHU4b2z6j/ADmnkWrkFrict3zEP/iqANK3udI0w7o7Y6jcD+OcbYQfUJ1bv1x9Ksal4g1LULKFJ7hkRy58mIbE2cADA6jIPXNY6tbRMTGjzHsZBtH4qCc/n+FBd5pC7ksx9v0ppK9wJIZZIXDxOyOOjKcEVbS8y4aa2t5sDABUoPr8hXJ+tQw2N1Njy7eZz/soTV1NC1Zhxpl6f+3d/wDCteaIFf7TFuz9it8emZP/AIqnNeDfuhtbeH5cEBS4P/fZbB+mKux+GtZk6aZcj/ejK/zq0vgzXmGRp5/GVB/7NQ6kO4zEZ5J5TJK7SOerOck/jXYeCtXs9HN4LyRoxLs2kKW6bs9PqKpReCtbPJtAv1lT+hq7D4I1Zh83kR/7z/4A1nOdOS5Ww0Z1p8Y6KBxcsfpG3+FMPjTRx0eU/SM1zn/CDap0860/77b/AOJp6+Br8nDXNuPoWP8ASuflo9ybI228caWOi3B+iD/GmHxzpn/PK6P/AABf/iqzx4Cc9dQx9If/ALKnDwAep1Eke0OP/ZqVqPcLIuHx3pn/ADwvP++F/wDiqP8AhPNM7295/wB8L/8AFVEngK1GN91Ox77QB/jUg8B6d3muzx/fX/4ml+58w0MjXfFUWoCEWcUihN27zQB1xjGCfeuYaaRydzNyckZ4zXoCeBtNXq1w3sXH9BVgeDtIB/49yfXMjf40QdCEnJLVglFO55r3qSKKSaVY4kLuxwFA5NelDwlo/X7GP+/jf41dtNHsrJt1vbRxtj7wHP51q8SuiHcboFo9ho9tayY3op3fUknH61qA5pqrgUuK427u5Ippc00c96fSAOvWkPT+tGcCmk880ALmlz+dJRmgBynnFKSKb2pRwOetACnpSjoKTPPOKXd2oATNOPIpvXtTxQMYPelx6Up4P+FKOaAG8Y/nQKXg96Xr2/KmAbeM9Pak78mn4OMCkFAjg8ilzScUd6goX8KKO/WigBe1GfzpKOaAHD3pfamil9KAFoooxQAd6XmkpaACjvRQOlAC9qOaKBQAopc80lAoAcDTs+1M/GnUAI6CRSpAIPY1ztx4M0+WYyIjLk5Kg4FdGOaeOlNNrYDmE8GacDkxE/8AAzUy+D9NDZMA/wC+j/jXRClzk0+aXcDFTwzpqj/j0h/Fanj0DT1YEWkAP/XMVqA80oPPFHMwIrfS7SIjZCikeigVqQW6DGOlQRc1biPFAizHCoHSrCxqB0qJM1YHTrQITYPSk2A5GKdSc0AGBnpRgUtFABgAZpMA9qWkNACYoJoPvSUDA9KD1ooz7UCEoz2oNA6+9ABRSkU3kH2pAOHSl6imgnFAzTAO9OpuKXNAwIox2xRR0zzQAY5pce1H8qU+x4oEA6YxSjGaT8aCMUAKf8ilAz6fnSDJpwUmgYmKdnkdKcBzjvSEZPpQAmOcmk2E9DjFOwOKXkdDQAzHOCfzpwJJx2oA78Ufe/CgB3qB09aQjB5/SgZH+FKBnjFAjgKKPejNSUHSlpM+n5UZoAXNKBxSA+tGaAHA9u1GcUnaigB1H0ozRmgBR60opv8AKjPrQAtFJ1paAFzRSdutFACj9KWmj60vegBw/SnA0yloAdmnUwU6gBwPFGe9GaTPNAD88UZ5puetLmgCxEavRGs+LrV2I80xF+M8VOORVaPJ+lWV4FMQUc5petJ3oGFLmkyKDQAtITSc59qM0CFpDSd6P50AL2pvehulAFACnAFIDxQRSD86AHA0UmaOc5pDFopO1LTAKMfhRTjQA09cDpS9DS8cUo688UANx/kUvSlFKc8UAJ29KUcnNLjrj9KM5zQADHYU8cfX1poBJ+lHagBwBOTSk5FCjjmnYwKAGfjxTkHfv2OaQLxyMU4EjntQAhGD/gaNvHJ/EU8KMZOc0u3K0ANC8HIPHpSghT1/OnLkcdPWl2Dk+vvQB5yDRTcn1pw6GpGHFLnFNGKX0oAWgUc/5NGaAFpabmjnrQA7PWlpmfanA0AOBpCaKWgAzR2pPSlHSgAo6Ck9qWgBQaBTaUUAPBopoNKP85oAdTs03NL+FADqKbS+9ADqOh96QYNLxQBPEelXYTnFZ8ZxV2E84NMRoRHFWQeKqxHgYq0vSmAvak70vaikAnAoNBNJ17UwFFFJSUAKPWjOelJR0FAAaWk60vH40AFJRR0oAAQQCDwRmkH1pc4o79KQADkUClOO1IKYC0vFN/nSg9qBAOuKcMHr1pPc0DFAC07t1pORyM0o9TQMUjoexFA6c4z6UA5H+NKufb8aADbzwaXGR16UueRnnNLt6AGgAUEkevvTySR06ccUnJHXpTsD+Lr7UxCADJwOCOh7U4JxkkYx3NIuOPUHk0p7EfkKAFAOBk8E9+BT9g6d/bNIuBjBOPQU9fnwBkgetADMHocAHuT0pyjp0GPenbQBg8n3HSlAGcndn3pDPMSelGaTvS1JQuef/rUZpD+lAoEOz7UUlLzQAetLnFNozigB3WlptOHSgBelFIKWgA7UoNJ2oPSgBc5ozTeaM0AOpfSm5oLgUAOFOB4pmfSlHSgBw4FO7UwU4ZxxQA70oozxRnvQAoopM+9LQBKnFXIj+dUY+oq7F2piNCI9KtIeB6VUiPFW0HFMBxNFGMZopAJS54pOtGaAD1NGaBSc0AKKOetHUUZpgJjvSfU0pPB9Kb3oAXjpRmjPNBzmgAJpCeaUUcCgBRQTRR0oAXrQRxnH5Ug4pe1Ag7Uo6/hSelL0PSgB34UEYxmjB3e+PWgcjNAxw7DB96fz0A68U1ccD+tKuMj2oAXoRzml5GfShsMAeOnIFGcjjt1xQA5QGXBH40uPm570igAZOKeMDOe3amIAMHPX0NPCKeM4PSlyuOenpSoCM5YYAyBimABQBgA56Hmn9Fx+lAx/vBucCnMORj8+w+uaQCqc4HcdsUoADZGOO1IOwz16804Ljjdlvp0oA8rBxRmnFTTOh5qCxcmlBpB9aUUCF+lGfzpDSjPGKAFxxQM0nSlzQADj60opCeKBxQA4Yo4HSkooAKWkzS0AJRQTxRQAU4c/Wm4p1ABTs03NLQA7il7UwH1p2aAHUvWm5yBRQA72ozSHpRQBLH1q7Ceaox9auwnkUxGhEciraH86pxE4q4i8UwJO1NPBpc4pM8mkAn0NLik6d6XtQAA+9HU0np6UtACZNAppGTnJ5HSnCmAh47UZoNIPegA96XNJ1+tL3pAIKWkpaYB1peppKWgBRS44pucU4Z4oEA+lOHJ78Ck4wOKAKAF4FLnrjv0pM+1KByc9O1AxwwB0zn1OKfkben/1qb6Drj1NKo+Y9MZPWgCXaOTjGe3pSFcdskflThllGdw4PajbjJIz+NMBuNx5HU/hUygEBc8cYOD6VGoOMjp6A1Minvnk9qBCxjcnGeCcn/P407bt+Y45P+RTgSRkHA7AUgBY/KCccmmA8Atg5HHpSgHLZPtz0FKqFuM4B7en5Uvl8YHf268UgCNOMRjcehAFPjQjnYzL3605YyXOVwQc4708I+45HAxyOvrQB5S6cdKrsMHpWhMlU5E5PaoKIR+lKKDSUDHCjp70gPNLikAUopKUUwAjkUtFFIBelHeijNMA96KTrzR/KgAopKWgBaUdKbSg0CF60ucU0UuaAHDuaMUgNKOaAHClJyaSj6UAKKAKSloAkjq9DVKPrV6EdKYi9D0q4o4FVYhxira9OKAFooozQAYpKXOetFADSfmpaO3tSYoAOlFLSUAIcUUYo5oAKXFFFAB1ox3pAKUd6YC4paQfrRjkUABpR0oxnjvRjpQAoxilB7d6TocD8Kf05oATHtT0xjHf3pmDntTxyM8/lQBICeueR+GKNo6Y5U03nBwOF604DPzcHHJoAkHf5uM/nT16DrnqD9KhOAxBwP6c1Ju6KCMk/lQA4KV6gfMcjj1qTCgKw6+tNXg544H50DJILdAM9OtMROU6LntyMd6cPlOMAH1pgGw8ht3qKk7bjtx0PHagBF5+TvjPHep8l2z0AODgcUyPBC/KrDqTyfrUwGARnBzzjmgAAAl4OAvTGOe/+FK2W45BHcCl24bnoOcZ9qeqsRtHIxzx/KgDzSRPaqUqc8CtWRP8iqcqc1AzMdSM0zv6VakjwM1AVxzSKG4Hp1pfak4FGaAFBpe3tTeKHfb2yfQUAPByKKap45GKcOvPFAC9qSigigAzSd6KTPNAC0lL0pM0wCnimU6gBfxpaQUpNAhcUo96QUtACjpS96QfpSGgB1AzSelKtAyeLrV+FapQjmr8XamSXYhwKtrwKrRe9WR6UAIeaKdim+tAC0Y59qQfrSn9aAEFHajFFACYpeKTNIKAFxmkFKDQc0AIQaO1B470oxTABSd6UAkcUhHNAC44p3GcgUgo60ALnpRxk0HtjtS9RzQAoxnNLnHIP5U3AAxkZpV6kEnHfigBwx17DtUmeOOvWozyCM/kacuVPJ78igBwAPI6Ac81IFKfdB3AjHHX3pgJLHnr1p+GKhvw696YBgkYx/8AWqRF3Ek8k8nPNMYDBI69uamHyycnkfdoAUHAyQN2RxSqNwyByOwFNQZ3DBHPr+NTrtJGDlj046D/AD/OgA3BSRtx6j3FSGNQQQ2QT0AGajVTjdntUyL8x43Ace1Ah0ce3jgH0IIxxUiD/vo4zx7frSRHAz9e56GpVVDuKts+UE8dcf5/SgBUUNxjk4OSKl+RyTzg9RTUVcMx4AJ68kfT8KlVNpzxu7/XrQB5061Xlj4q8RUTrkHHWoKMqWPg1UkTmtaRBg8VUlj4NIDMIxSY9asOlQlcGgYnFA4ooB5oAXtS0DpQKAF7UGjHNJigBKO+aU0lABxQKB0puaAHUvvTadTAUUvQ0gNHWgBw5pRTQc0ooAeOlBpAaXtQACnAc00U5TyKALUQ6cVfhqhEeavwnimIvRjipwT0qCI5xVigQCk98UdqQGgB2e9H60CjpQAn0pD1p30pMYoATHNFKPTvQfegBvNLgZo4zRQAUnalJ/OkNMBR0pc9OKb70vvQAvHNHGaTFHWgB3bil4Bxx9RTRTtxzxQAgweppw70gJFKOT70AP6AkGlHQn880zAxkjj0qRRgEg89KAFyVcMp5HenKcLyPwPf/OajUg7SevfFSKjcg9jg49elAD3Uqiv044Hrin4PJAPHXmox2JB2Y54/z9alX8ueQegpgSIBuxxjPOfx/KnKoG4Hr0GOhqMfMRlsHPX61Nv5b5dpHY+uaAJACDk/d28cduKcASoVP8k//qpgHI4HHXHvU2CFLDGSeATyc/5/CgRMEHlg9ASRnP1oCFEyT0zye2etJDuCHC/IDyW47jr+f6VKcH5mAYA4CqOntQBNGoBBwORyAO4NPI+VV+bC8+vf9OtRLhQcswYHO4A85x/9epVA3h+WO4/N6H8PwoA4DFNZc5pc80tQUVnQc1Xki61fK5qGROtAGVLFjtVWSP0Fa0kftVSSPnpQBmsMHpSCrEkftUBGOMUhiU7NNHFO/nQAUfSlzSGgBKO1HQ0Z9DQAlFHejrQAZpRSe3FOHWgBD1p1NNKKYC+wpQfWkzS0ALnFGSaOlKKAAGlB5pCaM0AWoW5rQgbGKyo3wRWhA2frQI1Yjx71YBqpC3FWVPFMQ7NA60dqaT1oAeDR2popaAF7e9H1pM0etAB0pKWjFADefwpQKM4FGaAA96TvS0UwDvS+tJk9qM0AKTxSetJS54NAC89uaXsTSCjntSAUnLHFL8w+tN9+hp6frTAUKCeKXLDjdwf0oOPbNIOeTQBLvzgkHGeCO/8Anj86kjYspOBgH+f/AOqoVXIwD07mpCcAADjof1pgSAk5I9PTOfx/KnJtAC7MA55/L/69NDFj0OOuAePf9KkUDIwee2fQevpQA9GAIBPGeAP5VJGAFBUgH1z0Ocf0qHILDJyO+Tz2zUqKxUbsZPUdP8jgUASQsoPB4/2jnv0/SrCllkAc8A7cH/PbFQkl1bGMA5PHPQD/ACKlVsg9lGfl/GgRKCpIRM++R0HT+WfzqZADySwYsSQTx/n88gVCWDE8YXopH8/0P61MAWcscdDwOnrx7f4elAEwAYLjJcEEqzEYx/T/AOtT1XhAw2478d8jn27VGyl9wI3LgZx1z/8AW5qSFiXYOq7/AOfU/wAx+lAHnvFL09KSl71BYUhWnCl60CKrpziq0kRrQZc1C6daAMmWI1UkjINa8sec+tU5U68c0AZ5XFJippENQ4NIYo/Gg0go60AHakPFL1oNACduaKO1J9aAF/Gl9PSko6UAL2pD0o7Z70ZzQAo/SnDn60z2p2fzpgL0pcimg0tAC9aX1pBRmgB6NirkLgEVQ7+1Twvz1oEbMMnSr0b1jwydv61oRSDFMRczS46UxWzTj0oAXOKKQ+9A60AOopKSgB1GaTOaO9AAaSlzSUwDFL+FJnmigAI6Ufzo60AYNABz+FKODQMdzzS5oATPqM0o4pDgUA49vrQAoIGOBTl4NMP4UueBgUAPLdxj3pwIA7HvimZye2fpSr1A9fegRIrZ47jGKkR8AZJ49ajABUnvnrSrjB7Y7/5/GmBIjhXB54OMinp8w4wSe5/D/CmDPc4OeB6cf5/KpUyM5/l70DJduApKnA/hxzjNOTIf5V4AwTj0NQrgSYzxnk47mpejBgeMAHHof/10ATxZKHODhc49uP6kVOI3252npn5QOBg/4H/PFVlbBU7chc5A79OPapopsPu+824fLg5znqKBE6gsjE8kjCgc84x+XBqVCEbgEjbkqRyc8YHrx/jUS/IqE8kfNwe2OMe/zZ/Onq5HzNnJPUY56H/6+OPwoAsoGIR9w3Lkk9c9OuP8/nT1lydqMMqM8dznnpx1xx74qFX+YAZ3qThh0GPr9cZ9vpU0Y3xxsCCu0jGep6ce+OKAPPR3pcUgpR1qChR0paKOtACUjL7U4UUAVpE4qpLHnNaLrnpUDxjGKAMmWPFVHTBrVlj61RlQZpDKmKM05wQabSAbS9aMYHNBpgIaDR9aOKAEpaKM0AIR1oo79aM0AA4pc9KTpSd6YDs8U4GmZpRQA8UfzpAfajvmgApyttplLQBdhk6VoQycCsVHw3Xir0MuMelMRtxtmpx9azYpelXo2BFAiUUdKQdMijrQApozSelFMBaKMcUmRQAtGKBzS0wGilx70UUgDp9aO1A6+tLnNAAB3J5pSTTeTilH8qYgOOlG085pRRkdMUAGMjmlxikHTFKOTzigAyPXj0pwHBHtzTTk9OlOByOvTvikAvTLA9P0py8HP5YpuTgeoz0FOU4G7uOn+fwoGTo8YyCCO4PtzkelGQr4YD069aiHOO3Hf1qQZJ5zn/DPemBKp6McgDJ5449alVvnOAucAHHH1qBsgkfmPepFyPmxjb97gnnP/wCof/XoEWM4DccdcflT4YvmQschk3A+3c8/jiokdmYYIJODwefQVLG5Gw/MCoG0qPyP6UAWDIqDoWHOAo79uvYcEfr7zOqDYS/JI2EEEAZAPPtge/PNVUKjLgdCvyHBHrj6cc/Wp0OQHZZCADhhgEDHTv2K/wAue7AmZyV3LuVwuWJH3T0GPpnpUwYMyKOhIUEHkdRx+n+QcQBmMSffL4zjdj0yfb+ePWpWYgKdh3AYHTGRg/j2+o57UAcHnIHpSA5oAxxS4rMoB60du1ApfrQMKdTaUGgBSOKjcAZycVJQwyKAKUiVTljHNabpkcVVkSkIyZIxzVVgRWnLHVJ05pAQZo9O9IRzR3oGL3xSUHjtR1FMAo4pMUUABPNNp3U000wDpRmkpM80AOBpeSfakzSj3oAcDS5yKbmloAXrSc5o96TORQAvfipopMfWq5NOUkGgDXglyBzWhDIMdawYZcGtGCbPemI2FfI607j1qrFJnpVkHimIXNHJpM5pBmmA8HAptHNFAh3SlzTeaUfhQAHmilxmkxQMB35penFHOKSkAopc4pB70nNMQufypc8U38aWgBc4z0pR/Smmlxn60AOB65/SjOWwcgdyOTSc46/jS45oAeWzzn6cUAHPHUDnJpgznnGaXO0gDn296QyXccnIwM4P+fpS78gkn3x2JpqYz7n17e9KFwucrjGQPxxQBMrjIXOduev8Q+nr1/yKehyOMdv5VBywD5O0Dk+g46/nUikAjcTgj146f40CLSLsPl5JLYGQM+/8/wCWKcjnbkjeT8qgjOOv+BqIHa77mIXnI6n9Pw/LNPLlxjAJPIIGAOcZI/T8PWmBYVtqllAdWHLcD0J6+mCP/wBdOV1MjNnOPldR/ENx6nGewH+GKijl8uQqQACw2MDnBODw3px/+upEYKQ2I1SVSF6HsB3PbPP40wLcbSJEhXazYwACfXgEdse5p6DMqrgkpg5ByT1xx+PTp16ZxVRWkXYUUAD5ivOWwQep6fXjAPNWI3AjSMNhJBs+fhSNoyc9vu8cevocAH//2Q==",
72 | "imageHeight": 512,
73 | "imageWidth": 512
74 | }
--------------------------------------------------------------------------------
/images_kp/im_19.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_19.jpg
--------------------------------------------------------------------------------
/images_kp/im_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_2.jpg
--------------------------------------------------------------------------------
/images_kp/im_20.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_20.jpg
--------------------------------------------------------------------------------
/images_kp/im_200.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_200.jpg
--------------------------------------------------------------------------------
/images_kp/im_201.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_201.jpg
--------------------------------------------------------------------------------
/images_kp/im_202.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_202.jpg
--------------------------------------------------------------------------------
/images_kp/im_203.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_203.jpg
--------------------------------------------------------------------------------
/images_kp/im_204.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_204.jpg
--------------------------------------------------------------------------------
/images_kp/im_205.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_205.jpg
--------------------------------------------------------------------------------
/images_kp/im_206.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_206.jpg
--------------------------------------------------------------------------------
/images_kp/im_207.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_207.jpg
--------------------------------------------------------------------------------
/images_kp/im_208.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_208.jpg
--------------------------------------------------------------------------------
/images_kp/im_209.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_209.jpg
--------------------------------------------------------------------------------
/images_kp/im_21.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_21.jpg
--------------------------------------------------------------------------------
/images_kp/im_210.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_210.jpg
--------------------------------------------------------------------------------
/images_kp/im_211.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_211.jpg
--------------------------------------------------------------------------------
/images_kp/im_212.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_212.jpg
--------------------------------------------------------------------------------
/images_kp/im_213.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_213.jpg
--------------------------------------------------------------------------------
/images_kp/im_214.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_214.jpg
--------------------------------------------------------------------------------
/images_kp/im_215.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_215.jpg
--------------------------------------------------------------------------------
/images_kp/im_216.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_216.jpg
--------------------------------------------------------------------------------
/images_kp/im_217.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_217.jpg
--------------------------------------------------------------------------------
/images_kp/im_218.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_218.jpg
--------------------------------------------------------------------------------
/images_kp/im_219.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_219.jpg
--------------------------------------------------------------------------------
/images_kp/im_220.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_220.jpg
--------------------------------------------------------------------------------
/images_kp/im_221.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_221.jpg
--------------------------------------------------------------------------------
/images_kp/im_222.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_222.jpg
--------------------------------------------------------------------------------
/images_kp/im_223.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_223.jpg
--------------------------------------------------------------------------------
/images_kp/im_224.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_224.jpg
--------------------------------------------------------------------------------
/images_kp/im_225.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_225.jpg
--------------------------------------------------------------------------------
/images_kp/im_226.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_226.jpg
--------------------------------------------------------------------------------
/images_kp/im_227.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_227.jpg
--------------------------------------------------------------------------------
/images_kp/im_228.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_228.jpg
--------------------------------------------------------------------------------
/images_kp/im_229.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_229.jpg
--------------------------------------------------------------------------------
/images_kp/im_230.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_230.jpg
--------------------------------------------------------------------------------
/images_kp/im_231.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_231.jpg
--------------------------------------------------------------------------------
/images_kp/im_232.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_232.jpg
--------------------------------------------------------------------------------
/images_kp/im_233.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_233.jpg
--------------------------------------------------------------------------------
/images_kp/im_234.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_234.jpg
--------------------------------------------------------------------------------
/images_kp/im_235.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_235.jpg
--------------------------------------------------------------------------------
/images_kp/im_236.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_236.jpg
--------------------------------------------------------------------------------
/images_kp/im_237.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_237.jpg
--------------------------------------------------------------------------------
/images_kp/im_238.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_238.jpg
--------------------------------------------------------------------------------
/images_kp/im_239.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_239.jpg
--------------------------------------------------------------------------------
/images_kp/im_24.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_24.jpg
--------------------------------------------------------------------------------
/images_kp/im_240.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_240.jpg
--------------------------------------------------------------------------------
/images_kp/im_241.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_241.jpg
--------------------------------------------------------------------------------
/images_kp/im_242.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_242.jpg
--------------------------------------------------------------------------------
/images_kp/im_243.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_243.jpg
--------------------------------------------------------------------------------
/images_kp/im_244.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_244.jpg
--------------------------------------------------------------------------------
/images_kp/im_245.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_245.jpg
--------------------------------------------------------------------------------
/images_kp/im_246.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_246.jpg
--------------------------------------------------------------------------------
/images_kp/im_247.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_247.jpg
--------------------------------------------------------------------------------
/images_kp/im_248.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_248.jpg
--------------------------------------------------------------------------------
/images_kp/im_249.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_249.jpg
--------------------------------------------------------------------------------
/images_kp/im_250.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_250.jpg
--------------------------------------------------------------------------------
/images_kp/im_251.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_251.jpg
--------------------------------------------------------------------------------
/images_kp/im_252.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_252.jpg
--------------------------------------------------------------------------------
/images_kp/im_253.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_253.jpg
--------------------------------------------------------------------------------
/images_kp/im_254.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_254.jpg
--------------------------------------------------------------------------------
/images_kp/im_255.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_255.jpg
--------------------------------------------------------------------------------
/images_kp/im_256.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_256.jpg
--------------------------------------------------------------------------------
/images_kp/im_257.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_257.jpg
--------------------------------------------------------------------------------
/images_kp/im_258.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_258.jpg
--------------------------------------------------------------------------------
/images_kp/im_259.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_259.jpg
--------------------------------------------------------------------------------
/images_kp/im_260.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_260.jpg
--------------------------------------------------------------------------------
/images_kp/im_261.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_261.jpg
--------------------------------------------------------------------------------
/images_kp/im_262.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_262.jpg
--------------------------------------------------------------------------------
/images_kp/im_263.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_263.jpg
--------------------------------------------------------------------------------
/images_kp/im_264.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_264.jpg
--------------------------------------------------------------------------------
/images_kp/im_265.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_265.jpg
--------------------------------------------------------------------------------
/images_kp/im_266.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_266.jpg
--------------------------------------------------------------------------------
/images_kp/im_267.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_267.jpg
--------------------------------------------------------------------------------
/images_kp/im_268.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_268.jpg
--------------------------------------------------------------------------------
/images_kp/im_269.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_269.jpg
--------------------------------------------------------------------------------
/images_kp/im_270.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_270.jpg
--------------------------------------------------------------------------------
/images_kp/im_271.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_271.jpg
--------------------------------------------------------------------------------
/images_kp/im_272.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_272.jpg
--------------------------------------------------------------------------------
/images_kp/im_273.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_273.jpg
--------------------------------------------------------------------------------
/images_kp/im_274.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_274.jpg
--------------------------------------------------------------------------------
/images_kp/im_275.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_275.jpg
--------------------------------------------------------------------------------
/images_kp/im_276.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_276.jpg
--------------------------------------------------------------------------------
/images_kp/im_277.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_277.jpg
--------------------------------------------------------------------------------
/images_kp/im_28.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_28.jpg
--------------------------------------------------------------------------------
/images_kp/im_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_3.jpg
--------------------------------------------------------------------------------
/images_kp/im_30.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_30.jpg
--------------------------------------------------------------------------------
/images_kp/im_300.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_300.jpg
--------------------------------------------------------------------------------
/images_kp/im_301.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_301.jpg
--------------------------------------------------------------------------------
/images_kp/im_302.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_302.jpg
--------------------------------------------------------------------------------
/images_kp/im_303.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_303.jpg
--------------------------------------------------------------------------------
/images_kp/im_304.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_304.jpg
--------------------------------------------------------------------------------
/images_kp/im_305.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_305.jpg
--------------------------------------------------------------------------------
/images_kp/im_306.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_306.jpg
--------------------------------------------------------------------------------
/images_kp/im_307.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_307.jpg
--------------------------------------------------------------------------------
/images_kp/im_308.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_308.jpg
--------------------------------------------------------------------------------
/images_kp/im_309.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_309.jpg
--------------------------------------------------------------------------------
/images_kp/im_31.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_31.jpg
--------------------------------------------------------------------------------
/images_kp/im_310.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_310.jpg
--------------------------------------------------------------------------------
/images_kp/im_311.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_311.jpg
--------------------------------------------------------------------------------
/images_kp/im_312.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_312.jpg
--------------------------------------------------------------------------------
/images_kp/im_313.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_313.jpg
--------------------------------------------------------------------------------
/images_kp/im_314.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_314.jpg
--------------------------------------------------------------------------------
/images_kp/im_315.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_315.jpg
--------------------------------------------------------------------------------
/images_kp/im_316.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_316.jpg
--------------------------------------------------------------------------------
/images_kp/im_317.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_317.jpg
--------------------------------------------------------------------------------
/images_kp/im_318.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_318.jpg
--------------------------------------------------------------------------------
/images_kp/im_319.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_319.jpg
--------------------------------------------------------------------------------
/images_kp/im_32.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_32.jpg
--------------------------------------------------------------------------------
/images_kp/im_320.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_320.jpg
--------------------------------------------------------------------------------
/images_kp/im_321.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_321.jpg
--------------------------------------------------------------------------------
/images_kp/im_322.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_322.jpg
--------------------------------------------------------------------------------
/images_kp/im_323.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_323.jpg
--------------------------------------------------------------------------------
/images_kp/im_324.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_324.jpg
--------------------------------------------------------------------------------
/images_kp/im_325.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_325.jpg
--------------------------------------------------------------------------------
/images_kp/im_326.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_326.jpg
--------------------------------------------------------------------------------
/images_kp/im_327.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_327.jpg
--------------------------------------------------------------------------------
/images_kp/im_328.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_328.jpg
--------------------------------------------------------------------------------
/images_kp/im_329.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_329.jpg
--------------------------------------------------------------------------------
/images_kp/im_330.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_330.jpg
--------------------------------------------------------------------------------
/images_kp/im_331.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_331.jpg
--------------------------------------------------------------------------------
/images_kp/im_332.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_332.jpg
--------------------------------------------------------------------------------
/images_kp/im_333.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_333.jpg
--------------------------------------------------------------------------------
/images_kp/im_334.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_334.jpg
--------------------------------------------------------------------------------
/images_kp/im_335.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_335.jpg
--------------------------------------------------------------------------------
/images_kp/im_336.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_336.jpg
--------------------------------------------------------------------------------
/images_kp/im_337.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_337.jpg
--------------------------------------------------------------------------------
/images_kp/im_338.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_338.jpg
--------------------------------------------------------------------------------
/images_kp/im_339.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_339.jpg
--------------------------------------------------------------------------------
/images_kp/im_34.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_34.jpg
--------------------------------------------------------------------------------
/images_kp/im_340.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_340.jpg
--------------------------------------------------------------------------------
/images_kp/im_341.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_341.jpg
--------------------------------------------------------------------------------
/images_kp/im_342.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_342.jpg
--------------------------------------------------------------------------------
/images_kp/im_343.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_343.jpg
--------------------------------------------------------------------------------
/images_kp/im_344.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_344.jpg
--------------------------------------------------------------------------------
/images_kp/im_345.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_345.jpg
--------------------------------------------------------------------------------
/images_kp/im_346.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_346.jpg
--------------------------------------------------------------------------------
/images_kp/im_347.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_347.jpg
--------------------------------------------------------------------------------
/images_kp/im_348.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_348.jpg
--------------------------------------------------------------------------------
/images_kp/im_349.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_349.jpg
--------------------------------------------------------------------------------
/images_kp/im_35.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_35.jpg
--------------------------------------------------------------------------------
/images_kp/im_350.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_350.jpg
--------------------------------------------------------------------------------
/images_kp/im_351.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_351.jpg
--------------------------------------------------------------------------------
/images_kp/im_352.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_352.jpg
--------------------------------------------------------------------------------
/images_kp/im_353.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_353.jpg
--------------------------------------------------------------------------------
/images_kp/im_354.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_354.jpg
--------------------------------------------------------------------------------
/images_kp/im_355.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_355.jpg
--------------------------------------------------------------------------------
/images_kp/im_356.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_356.jpg
--------------------------------------------------------------------------------
/images_kp/im_357.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_357.jpg
--------------------------------------------------------------------------------
/images_kp/im_358.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_358.jpg
--------------------------------------------------------------------------------
/images_kp/im_359.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_359.jpg
--------------------------------------------------------------------------------
/images_kp/im_36.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_36.jpg
--------------------------------------------------------------------------------
/images_kp/im_360.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_360.jpg
--------------------------------------------------------------------------------
/images_kp/im_361.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_361.jpg
--------------------------------------------------------------------------------
/images_kp/im_362.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_362.jpg
--------------------------------------------------------------------------------
/images_kp/im_363.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_363.jpg
--------------------------------------------------------------------------------
/images_kp/im_364.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_364.jpg
--------------------------------------------------------------------------------
/images_kp/im_365.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_365.jpg
--------------------------------------------------------------------------------
/images_kp/im_366.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_366.jpg
--------------------------------------------------------------------------------
/images_kp/im_367.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_367.jpg
--------------------------------------------------------------------------------
/images_kp/im_368.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_368.jpg
--------------------------------------------------------------------------------
/images_kp/im_369.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_369.jpg
--------------------------------------------------------------------------------
/images_kp/im_37.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_37.jpg
--------------------------------------------------------------------------------
/images_kp/im_370.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_370.jpg
--------------------------------------------------------------------------------
/images_kp/im_371.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_371.jpg
--------------------------------------------------------------------------------
/images_kp/im_372.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_372.jpg
--------------------------------------------------------------------------------
/images_kp/im_373.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_373.jpg
--------------------------------------------------------------------------------
/images_kp/im_374.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_374.jpg
--------------------------------------------------------------------------------
/images_kp/im_375.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_375.jpg
--------------------------------------------------------------------------------
/images_kp/im_376.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_376.jpg
--------------------------------------------------------------------------------
/images_kp/im_377.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_377.jpg
--------------------------------------------------------------------------------
/images_kp/im_378.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_378.jpg
--------------------------------------------------------------------------------
/images_kp/im_38.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_38.jpg
--------------------------------------------------------------------------------
/images_kp/im_39.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_39.jpg
--------------------------------------------------------------------------------
/images_kp/im_40.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_40.jpg
--------------------------------------------------------------------------------
/images_kp/im_400.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_400.jpg
--------------------------------------------------------------------------------
/images_kp/im_401.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_401.jpg
--------------------------------------------------------------------------------
/images_kp/im_402.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_402.jpg
--------------------------------------------------------------------------------
/images_kp/im_403.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_403.jpg
--------------------------------------------------------------------------------
/images_kp/im_404.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_404.jpg
--------------------------------------------------------------------------------
/images_kp/im_405.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_405.jpg
--------------------------------------------------------------------------------
/images_kp/im_406.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_406.jpg
--------------------------------------------------------------------------------
/images_kp/im_407.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_407.jpg
--------------------------------------------------------------------------------
/images_kp/im_408.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_408.jpg
--------------------------------------------------------------------------------
/images_kp/im_409.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_409.jpg
--------------------------------------------------------------------------------
/images_kp/im_41.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_41.jpg
--------------------------------------------------------------------------------
/images_kp/im_410.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_410.jpg
--------------------------------------------------------------------------------
/images_kp/im_411.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_411.jpg
--------------------------------------------------------------------------------
/images_kp/im_412.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_412.jpg
--------------------------------------------------------------------------------
/images_kp/im_413.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_413.jpg
--------------------------------------------------------------------------------
/images_kp/im_414.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_414.jpg
--------------------------------------------------------------------------------
/images_kp/im_415.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_415.jpg
--------------------------------------------------------------------------------
/images_kp/im_416.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_416.jpg
--------------------------------------------------------------------------------
/images_kp/im_417.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_417.jpg
--------------------------------------------------------------------------------
/images_kp/im_418.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_418.jpg
--------------------------------------------------------------------------------
/images_kp/im_419.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_419.jpg
--------------------------------------------------------------------------------
/images_kp/im_42.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_42.jpg
--------------------------------------------------------------------------------
/images_kp/im_42.json:
--------------------------------------------------------------------------------
1 | {
2 | "version": "3.16.7",
3 | "flags": {},
4 | "shapes": [
5 | {
6 | "label": "point1",
7 | "line_color": null,
8 | "fill_color": null,
9 | "points": [
10 | [
11 | 238.68421052631578,
12 | 162.68421052631578
13 | ]
14 | ],
15 | "shape_type": "point",
16 | "flags": {}
17 | },
18 | {
19 | "label": "point2",
20 | "line_color": null,
21 | "fill_color": null,
22 | "points": [
23 | [
24 | 100.78947368421052,
25 | 231.1052631578947
26 | ]
27 | ],
28 | "shape_type": "point",
29 | "flags": {}
30 | },
31 | {
32 | "label": "point3",
33 | "line_color": null,
34 | "fill_color": null,
35 | "points": [
36 | [
37 | 64.4736842105263,
38 | 162.15789473684208
39 | ]
40 | ],
41 | "shape_type": "point",
42 | "flags": {}
43 | },
44 | {
45 | "label": "point4",
46 | "line_color": null,
47 | "fill_color": null,
48 | "points": [
49 | [
50 | 195.0,
51 | 100.57894736842104
52 | ]
53 | ],
54 | "shape_type": "point",
55 | "flags": {}
56 | }
57 | ],
58 | "lineColor": [
59 | 0,
60 | 255,
61 | 0,
62 | 128
63 | ],
64 | "fillColor": [
65 | 255,
66 | 0,
67 | 0,
68 | 128
69 | ],
70 | "imagePath": "im_42.jpg",
71 | "imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1+kxTiKCOaAGUU4ikxyaAG0lO6UmKAGmkI5paQ0AIcU004000ANIFJ/KloNADaT3pabQAGm049KTtQA2kpxptABRmjtSUALmkzRijFACU0040w9aQCUE0UHrQAmaDRikAoAM0c0tGOKBidqWiigAP6Ud6KWkA3NBOKXFIRQAUopBTgKACkp9JjmgBvQ0UpFJjFABS0lLSAKSlopjEopaKAAUUUc0AFFFLjigQmKO9LjiigBCKQinUYoAYRTSOakIpCKAIiM9QKieBXHNWcUmKAMa404HlazZrV4yRjpXUFe1QS2ySdRSsM5RlIODUZWtu604gErzWZJAyHkUrAeoYoxzTyKbitCRmOaDTsUhFADDTafTDQAhpDSnNNoAQ0lKaQ0AJTT6UtNNACdKTtS000ABpDQTxSUABpKOaSgApOlLRQAlIaXNIaAEPWm9/WnUh+tIBKMDNLRQA2il7UUANoPSjtRQMTpS0ZpKAFoFGaM0gFpKSgUAKKUGkFKOaAFzRRSGgApKKKACl7UnejnNAC0tN70tABRRniigApcUUlAC9e9LSdBRmgBaO9J1ozQAvekozS0AGKQDilooATFJtp1GKAG45phANS0mKAISgOeKqz2SSAjFXyKaVzQB0ZFNP0qTFNNUIZTSOtPNNNAEZppp5phoAaaQ0pppoAQ00nNKTTTQAhpCaDSUAITSUtITQAhpMUGigBKQ/WlPSm0ALSUUYoAKSlpKQCGiig0AJRRmjNABSEUZpCaBhjFNxS5/OigBO1JS0lIBaMUlLigAA70dKKWgApR6UmKUCgBeKD1pcUhHNADf50UtJQAUUUUAGaKO1LQAUe1J+NKOaAFoooJoAKKQ0Z5oABigmgUd6ADNGcUmcUvagBc0tNABFFAC0veko70DFFFFAFABjtSFadxiigR0RFMYdalIphHNUIjxTTUh60xqAIjTD3qQ0xqAGGmGnE03tQAhphpxppoAaTSE0pppFACdqSnU2gAzSHFB6UhoAKSijrQAUmaM0GkAZpDRSGgAzRR2pKBhniijtRQAhpKOlFIBKKXvSUAGKO9B9KQmgBcUUmaWgApaSjNAC5paSlNABS5pKKAA0hpaSgAooooAO1LkCm45paAFoo/WigAzSDrS/WkoAWkzRRQAUUUUAFL0opDQAtLxSZooGLS5pOlFAC9qKSlHSgBe1JS0CgDpj7UxvWnmmsaokjIHNMIqRjioiaAIz9KYakY1GaAI8U0inmmHigBppppxphoAQ0lKaaaAENIaUmm0gE7UUGkzQAE0hpaSgApKM0UDCk/lRRQAdqTiiigApKUmkpAB5pKDnFBoAO1NpfaigBKPWlooASlFHeigApcUUnPFADqSilH1oAO1FLSUAGaKM0mcmgAooooAKOKM8UUALRSc4ooAXpRSUo9aADpSUdqWgBO1AH50tH8qADij+VJS9aAD60tNpaAClooxQMKXPpSUUAOB4opKB1oA6oioWGKmb61E5qiSJvSozUh9ajY0ARnpTT3pxNMakAwmmGnGmmgBppppxphNACGm0ppKAENNNLSUDENFGaQ0AFBNFJQAUn4UvSkNABzRRRQAlBoNJQAtIRRRSASj8KWkoAKSjNFABSUZ5pM0wFpe1IDS5oAKCcUZpKQBmlpKKAHZozSdRRmgBaKSigBc0n50cUZoABS/qaTNKKACgUZooAPrRQaWgAxQKKKAFpDRRQAGgUZ5ooAD1oFIaWgBelGaKBQAD9KKKKBiiiiigDqmPWoXp7HrUZ6UyRjcVE1SMeaiY80AMY1GTTz0qM/hTAQmmNSk00kUhjWphpx5ppNACGm0ppDQAlJS0hoAKQ0UhoAWikooAKQ0uaSgAo7UhOBzWVqWv2Wmx5lmXPYZppN7AameOelUb3V7OwUtPMigeprlG8S3upB2t0KQDofWuL1gXVxMzSb3+praFByeo7Hrun6zZamD9lnWQjqAa0OteCaZfXWkahHcwMylT8w7MK9u0vUYtU0+K6iYEMOcetTWo+zfkIuUUUViAhpMUtGaAG0UtJQAUUlLTAUUlFFIAxS55pKKAAGlpO1GaAFopKWgBc0nejmigBaWm0tAC0uabR0oAXPNB60maXvQAtJR7UvegAooooASloo7UAIaUUfpRigAooFFIApaTtS0xin1pM0dqKAOnaomOakY1ExpiIz1OaY1OY0wmgRGeKYx5pWao2NMBCaaaUnim5pDENNp3WmGgAJFJRSUABpKU0lACUlLmkoAKKjlmjhXdI6qB3Jrm9R8a6faMY4j50noppqLbsgOmZgoyTgVjal4ktNPBBO5x/CK4+88S316rMXEMeOin+tcZqWqSXEjKrHb3OeTXRTw7b1HY6XWvHt1O7R2+EX/Z61i6VDe+IdUWIsTk/Mx5rDhieeVY0G5ia9j8GeHU0ixE0qjz5Bn6Ct6nJRjpuJlmPQ1s7NYE5AHJ9ayrvRgzHPSu24IrlvFmvWmjWbcBp24RBXJCcm9BpnDa7BbWo8sY88j5QKi8FeKJNJ1AW05zbTNzn+E1gvdzX189zMxJ5J9hVAnn8a7vZ3jyyDc+kEdZEV1OVIyCKWuD8A+J2u7ddNvG/eoMRsT94V3hrzZxcJWYhM0daKKkBDR2oNJQAUUGigApc02loAKXNJR3oAB79aWkooAM0tAFFAC55oo60fSgAoo5paADFGKOtLQAgpe9JS0AH1paSigBaBRRQMKMUtH1oASjNLRSEJ3ooo70AHaloxRQMMYzRS0UwOjLDFRMacx4zULHrTENZqYTQxqNjQA1jio3bFKTTT60AM3E07NIeKQmgAzTSaDSUALmkPWkpM9aAFzSVWub+2tELTzKoHqa4zWPiDBCzRWSeaR/FniqjCUnoB2txeW9qhaaRUA9TXK6r47srfclp+/k/wBnpXnt5ql9rM5aaVtp/gB4FWLayCjLV0xw6Wsx2LGo67q2rEq0hjjP8K1Tt7Iq25+T71oBABwKeIye2K3VoqyKSKGqy+RabF6kVyxOSfWuv1W2Se33Bs4HIFZuh6P/AGpqSQRxvjdySKqMko3YnodD4C8NfanN9dJ+7U/KD3r1EAAAAAAdqg0+yjsLKO3iGFQY+tVdb1i30eyaaVhnHyr3Jrz6k3UkQV/EPiG10OyaSRwZSPlQdSa8X1TU7rWb5p5mLEn5VzwBVjWdQuNYv2ubg7V/hBPQVnF9qlYh16tXbRoqCv1KSEdxDGYl+8fvGoo03NzTSCOtOVsGtyjVsrl7KaOaFirocgivY/D2tw61p6yK371Rh19DXh8cwGMmug8O6y+j6ik4J8pjh1z1FYV6XOrrclnsxoqK2uI7u3SeJgyOMgipDXmiDikpaSgBKWijNACUtJzRQAv40UCjvQADpRnNGaKAF/lRRzRQAUtJS0AFLSUE0ALS0lLQAdqKOtGKAFooooGLij86QUtABRSUtAB+NFFGKQCUd6WjmgAo70UdaAFopKWgDaZvbFMY00tTS1UIC3WomPNKW5pjGgBmc0HijNITnvQAhpDQTSEj8KACkNZepa7Z6bGTJKu4DhfWuJ1Txrd3G5LXEadm71cKcpbBY7u/1Wz0+IvPMq4HQmuF1n4gFleOwB54DnpXHX97PcMWnmd/95qyzOrEqp5rqhh4r4h2Lt7qN1eyM9xM759TxVJZAz7Qefaol8xm+bpU0EaI+QOa6ErLQZq6arB8tjHoa2AG3gAcetZ9kISNx6+lS6jfC3gCxH5m/QVDu2NFi5vIbRfmILelYlzrMshIQ4rPkkeRtzMSajIyatQSC5ainup51VHYsxwAK9j8KaR/Z2mRySoBcSDLHHauU8CeGhM639zGdi/dyOpr0DUL+HTrR55nVVUZ5NcmIqXfJEhsbqeoxabbGaZgABx715V4gv5dUlFxPOEXJ2rnOBVPXddu9f1FiHYQA4VAeMetVU0691CVYraCR1AwMD9a0pUVD3pDSKrR2xOTNk+pBoMMrgCFN49VrtdI+HE022TUHMa/3e9XNavNG8I24trGCKS9fgEjJHuat11e0dQued3umz2cSyXGELdFPU1mswwa0J11DWdRd28yWRm+uK6jSvh5NNFvu3MRI4B6mqdRRXvMLnDRA9a0oJOdh/CrSaDLFrD2MwOVbGB3Fdzc6NpOjaKqSwI11IM5PVawq4unSepMqiiV/A+vi2n/ALOuH/dv/qyT0PpXo3avCSdkxMZIwcqR2r1Hwfrp1WxMMzD7RCMH3HrUYin9tFHS9qDgUUmK5RCUvejFGKAEpelGKKAEFLRRQAUmaKWgAooooAWkozRQAtFJS0ALSim0uaAHZoptO4zQAUo/WkP60UAKKWkzRQMWikpe9AC9qSjvRQAtFJRSAWkzRSdKADtS/hRRQBo7uKaW596ZmkLYqhDixpmabupM0AKaTpSE9qTNAAeeaq6g0iWcrRY3AcVZzTXAIIIyDQB4tdyzT3UjzsS+45zVWTIU46103i3SfsOoGZB+7l/Q1zhGR716VOSlFNFGa0cj7vMxj0qsLdIzwOfetZ0zVWSE9RVpAVCKQcGpzCaTyTVDEWZkxg8VJekuY3zwV60zyjipImKjy3Xevp6UAVNue1bHh3Q5NY1KOIfcB+Y+1Lb6YLl1EYcbj0K16Fpv9meEtODXEg89xyB1+mKyq1LKy3EzqrS1itLZIIlwiDAFZuseHbbWmH2qaYRj+BGwK5u48dXc6MbCy4HGXP61j3PinX5R/wAfMURPQKOa440al7k2O0tPCeiWAwsAYn++a24bW3tk2wxJGo/uriuW8MaPePF/aGrXEk0h5jVm4A9cV0M91FJEVMnlqeM5xUTvfe4jC8QeIrgSnT9Ji825bhn7JWBZeBy8323WLpmkJ3EZrt7aztoIz5CKM/xDqfxrntXS5jmeKaf7QrKdkSqR+eKaqOKtECdF0/SdPS5sLdJIy4VnH165qlf6vcG6gwAbbzSCYzhuBnBzU+ihmt106YRLH5ZDRoCefc9BUqaJZ28Ujag6soPyktgY7H61G4EklvYXEkerLEzuvBAHOa5XxLfWjSyIC0szfeLH9BWvf+KrO2t/sWnxGY42gjoKwrDwtfapJ504MaE5561Kwyc1ObsvxIdO7uznEjaRgqAk+gru/BuiXFnObuUFSwwB7Vu6V4Ys7CMYjDOOrMK3EiVBgCumrX5lyo0bHDpRRjiiucQZoopAc80gFNJS0lAw7UUtJQAlFFFABS0xpEX7zAfWo5LuGKF5WcbUGSc0wJ6QmuLufE17eQTfZwluCcRu5x+NYiT+J4t0kWrwzf7JIrpeHta8lf1I5/I9OzS15K/jrX7KRkufIyo/uHn9a0vD/ifXvEt61rZhfOVC7cAAD15qlg6nkRKvCKuz0nI9aM15rqnjLU9Ena3uSpnXqhH9RTLP4pgsBdWgx6oaUsHVj0HGtCSuj07NLmuYsfHGi3cYY3Hlez8VcPivQwf+QjB/30KxdKaeqL5kbYPNLmsiPxLo8v3L+A/8DFXI9QtJf9XcRNn0YVDi10Hct5pc0wOrDIYH6UvXvSGPoyBTQaUUAOoxRkUZpAFBoNFAwooooATpS0UZoAm3Um6ot3vTs0xD88ZoyKZk0ZoAdnNJmkBooAUmmk0dKSkBleIdNXUdMlTHzgZU+9eUOhjdkYYZTgivaj8wIPIrznxdpBtLs3UY/dv147104ednysaOZwKaUBpc0o612lEflCl8lc1JnionlA+tAD1jQGrdlb28k6+YABmqMQaVhitFbby13lsGkxnoGlQaZDaAjZuHQmue1qPT1maWRw7Z6E1zralNBC7q54HHNYk99NM3zuSTWMKL5r3FY1LjVsSbbdcdhiuu8L+HxPGmp6miqoyyg8Z9zWT4X8MBwNT1LCWyfNhu9QeKvGcl6z2OnHy7Rfl3LwW/+tRL3nyQ+bJeppeKfHZS4+x6Zgxpw7jv7CugsXtvEWiwSlV3qA2D2b3rx+GMH95IcIO/rXR+FvEZ0q/fzs/ZpOCB2pVKCUfd3QNHa6bHq2nX1xF5Hm2rH5McBT689q1J2jS1kOpyRqp7KcYHpmuY1Dxw8v7rTojk/wAbf4VQt9F1fXJRNdyOEJzlv8KwVJpXnoKxp3ni+2tUMGk24Y9AwXA/+vVGHSdZ8QSCW8lZIieAen5V1Ol+F7OwAPlh3/vNW8kaoMKMUvaRj8CAwtM8L2OngMI97/3m5rdSNUGAOKf2oxWTbb1EJSiigUAFIeTS0fzoAaBS4pcdaKAE6008Gn0hoGJSGlAoIpANOKo6jeLb27kOA+OATV4jIrlNdt5EuDKTlD79KGBQuL+4uGBkkPHpUBuGWGQ8uccITwfrTCcU1RGj/aJVaVEIzEGxu+pqGNDdSk1PXIoHW3ghEcexEhj2j8azI9F8QxZdrbco/uHP8quanLdXtyZbaOO2iY/LH5hwo+p60Ws2pWZ3GQ4/6ZyVKSsUUl1IhzDd26seh3r0p0N7pkE7PbBreQjBeJihqxfWlhrJ33bSJKOjA4P6Vnnwsu3/AEbUWye0mGpxnKLvF2BxUlaSIrzQbHUpGmF9N5jdS53VkzeDLxSWtbiKUehODWjJoer25JRYZgP7jFTUXn6laNma3uFA9tw/StViqyfxXF7OFtjnL+w1myTbJaybB3HIrGa5nU/OrA16FD4h5Kyuh/2W+X+dTNJpN6CLi0Uk/wAQWtfrs2/eJ9iuh50uouvUVdttceA5VmU+oOK6ybwvot1zDIYyewP+NZ8/gNzzbXKN6A1tDGeZDo+RqeG/G9ra7vt11fbgPkCEMD9cmr03xG1csVt2iMf8JxzXFyeDdXhOVh3e6mq50vVbQkG2lH0Ga6FWp1NJJGXs3F3TZ6xpt14z1LTf7RhCeRjILkDIrMX4k6laSMlwsblTggcVxKahrtvatAhu442HzIrMAR7gVizS3IYmRWX6itp/VrfCZwVa75me06f8U7GYhbqFoj/eHIrpbXxlodym4X8S+oZgDXzWl3sbmrC3iOwVAzue1cjpUJap2N1KR9LJ4k0hyAt/CT7MKtx6lZzf6u4jb6Gvn7SbQyyKLp5EXuNuMV1NlpWnXMyw2V1cG5chU8s8k+nFZSp4dfbKTn2PYVIPIORR6VhaDZaxpaG01dXDg/u2f+IVvAVzNWdi0JRSmkpDG7qUMcUzNLmgQ/dRmm5zR+NADx60u7tTAaKBjjSUlGaAFrP1jT01CwkhYdRxV/mg+lFwPFriB7W4eGQYZTiot1dj420kI4vo14Jw+K4tmwK9KlPnjcY2STANVHlOafK3Gapuea1GX7e88mnz6m8i4BrMUM5woyal2xxcSHc390GiyAlSdZFeJzw3Q+9b/h/w4JGN9qJEdpHzk/xVR0q1t3zd3cYjtYuSSeT7Cm67rdxeusEZ8q1UfJGvHHvWcm5PliIu+IfEN3qubaAfZ7FeFTpke9c5iGI/MfMb0HSolV5GwAWJ/Gui0jwdf6ltd1MUR7tT92mg2MAmS4cAKfZVFdLo3hC+vtruvlRnuwrvNG8IWOmxg+WJJO7MK6JIljACgYrmqYlvSIrmBpXhWy09AxQPIP4mGa30iRAAABin4oFcrbe4g70UYopAHWloopiEpcUYooAKMUUUAGKKWjFACUmKdRQMbmilxSUAMfhT2rjda3i8YtJuUngA9K6y9WRrZxGcNjg1w04dZGEmd3fNSwRVZqq3NybKWMsu5ZOuegq06bs4NZV/coIvIlPK9c9xRCnKpJQj1G2krsq3l687nyn3f7tQJdX0Iz5kij3FQax4hsILW3i0sMsqj96wTvVa08TXhjG+eJkJwVkQZ/TFdcsBZ8qkmzP2+l7GwmrTkfMUcfSrUd/HJ96LB9jXO63oc5gGq6fqEE6NzJHBlTH9VNYttq97bxMpfce27tUVcHKm7S0HCvGex6RHKSoaOVh+tS/bZo15CyD3FeeQeLb22/1kMbitW08c2Z/4+beRT7ciuR02jZSR0c11p84K3VoMepXNVTomjXRzBP5Dn0YrinWfiXQLs7WuI1J4xINv860Ra6LdLuSWMcdVcUlF+Y7mW/ha6QZtdQEgHZsNUf8AZ2vWhJECSAd42IrU/sqFSDbakVOeAW6VOg1i1H7q5jmT/eBpuLFcxV1m9tWxcW1wmPVNw/Srtt4mtpDiTYW9CcH9a011O7BAu7JXHfiiaLR7qPdc2YQn/ZBqVFvYdypqsuny6QlxZTyNqDk7otnypyMfXjJzn8Kwxaz3aM19boIwM8LzXRReGdEugfsWpLBITjazlRWbf6f4g0kyRokVxEB3bt9a6qNdxVpamco3OGm0zTZ9VSNJtiM2GXoa6mwsdO0/C2sK+YR94jJP51zVvfPZ6w897ZhjggL6Gt+PUbifHk2jqD6rjFZVJNscUbX2e3kUfaJdo/uqM4rc8ORaZp2p297A294XDgSA44rmooI5IsXV06Z7IK6Hw1eabpOpxXEbtMYzkLKMj9KhMZ0Wta7qGp6vBM5RYl4iSLpg9cnua6GJiY1Ldcc1yV3rP9oa8Lx0VQT9wDj611UcgZAacbNsTJTRSZBFFWIhpQeaQCgcUCH5oBpBS5oGOozjtTRzTs0AA6UUUUALSUZopAVNUs0vrCSBxww4rx7ULZ7K6kgkGCpwK9sIrhvHWjb7Y30Q+ZOWwOtb0KnLKzGjzqV6qseacz7jTPWvRGWI8pas6/eJxkdhTLcIZd0n3Rzgd6SBpVbEeST2x1rpdJ8NanqbAsghiPViMVMpqO4MyJpprsoGXZCp+SJe/wD9etPTvCWoarKJJE8mM9z6V3uk+ELOwZZHXzZR/E9dIkSRjCgVySxD2iTc5zSfB2n6cFbyg8g/icV0iRLGMKBxTqK5m23diCilopAJRRS0CEpaSg0ALRSUtMAoFV7y+tdPg866mWNPfqfYDvXHal4+IJj06AAf89JeT+QpN2KUW9juqrzX9pbnE11BGc9HkA/nXk15rmp3+77ReSsp6qGwv5Dis/5jyTzU85apHsX9uaT0/tG1/wC/q/41JHqlhMwWO9t2J6ASqf614zz60hyKOcfske4ggjI5B7ilrxa11K9sz/o11LH7I5A/Kuk07x3fQMFvY1uY+5A2uP6GnzIl030PRaTvWdpeu6fq6/6LOPMxzE/DD8O/4Vo1RGw0rkVyniCymE5nAzFjqO1dbUU8KTRsjjIPak1cR5q5IrH1K0F3LFv+7nDkdcV3t74ZDszW8m3PZqyJvDV8CQFU++aqnJwlzIHqjnNQs7Sy0oQ7o0Qn93uOMUyCCK98MXFjKsMkSMZY3TGQ2PXGa2dR8O3q2fzxxzAc7SM4rkrlLhbdrRR5ER4ZEG3P1qIxale5fMrGRa3r2WoW8yASRx/fjJ4cdwaueJrvQtX1EXGj2b2MRQboic/N3qitg8M24HK+9Mk03MhZDgntXtwqqpG267HFKnaXMZ72cg+7IGHuKYtqyn5nUeuBV5rO6j6DPpzUltpd3cyqpTAJ7VHsKd9iueXcjsLOOVmEUYAUZaRhVk2yg/fatNrdLOAwIOc/MaqmM10wiktDOTdyAQ7ejtU8U9xD/q7iRfoxphBFNLYp2QHWeHNTtJLhl1nVbm3jC/IypuBPvwT+ldHa3Wl3+sDTob+3lWQfupZF2hj2Xnoa8vEoH8Qp8FxEk6PMGaEEbwp5I74rGph6VRWaCMpwlzJv0PTNS0W1t5mimjRZB3Rqwrjw5FduEiu7lGJwBv4rE17UdEur9X0RbuKAKB+/f5wfzNUodUurX5obycEdMnP864ZZdPeEjeGJi17ysZeu2tzpupmNmMsaH71W/wDhJiyqkUblgOlVru4kuiWnkeQnrk1WT5OUTAHfFKOBf22V7b+U6bT7PU9WUPtSJD0LPXQ2Xg7Vo5kliuIH2nOCa8/XWPKbEW8sP7lbukazrMpdrf7biMbmwrMFHqfSqlg6LdoyEq01uj1nVNX1O50OHTriztoDEB80aEE49OcCr+kSySWKNJ97HJ9a4/wx4jn1+Q2V9tLJ8yuBjIrvIIkhiCKMAVxTounOzNlJSiShjmnhuajx6UUgG54paQHmgGkA6lNNpaAHClFMBp2aAFopM0Z9aAFooxxRQAtQXlsl3ayQuMh1IqbHNLQB4drWgXmm6hJH5DtGTlGA6irWk+D7/UcO6mKM929K9jkgil++it9RRHFHHwqgV0fWZ8th3Od0jwfYWCKxjDSAfebmujjiSJQFA4p9FYuTbuyQoooqQDNFFJn3pgLmikpC2KAHZpC1VZ7yOEEs1ZU+ssciIY9zRcRumQDqaYbiMHlwPxrl5L2aQ/M5qLzWz1NK47HWi5iPSRfzqpqeqx2FjNcl0VYyFLMc/MeigdWbHOOmOSRXK3+orp9vvLfvW+4o6gf3v8P/AK1cle3019MHlYkDhVzwo/z1PehyLjC+pLqOp3OqXLSzSMc+p7f59Kp7TxilUU41BsM5pM040hFIY3JowaUCnKhYgAZJ9KAGhRnNP2ZHSri6fPHbC6lhkEJOA+04P40yOQszD+GgCpHK8EgdHZXU5DKcEV3Xhzxn5pS01RwGPCT9M+zf41wsq4c0wEqetNOwpRTR7nxTWrivBviMuyaXeOSTxbuf/QT/AE/Ku3NaJ3OaUWmREVGyZqcimEUxFZogwIxWTqGg2d1kyQrk9xW7jFMdMigDh5/B1m+drOtVD4Jt8/69/wAq7uSCoDDTuBylv4RsYiCweQ+54rorHSrKBQqwJ09Kn8vFSoNtUpMLEM2l6fIMSWkRHrtqjL4Z0SXk2ir/ALprXYZT3qsVIOKfM1sxWucxf+C9LZG8jzFbHHzZriNU8LTWsp3FyvYivWzHmopLdJBhlDD3FP21TuLlXY8SfSdoOGYGkjtWVdh5HvXrk/h2wuCS0IGfSqDeDbP+FmFXDETiwcEzy2TTX6oajWzvV4xkV6ong60Vss7mtCHQbKJCiQjHqa3WM8iPZHkcNlLgvKnAqVDHNtgkGxCcEgV6RdeEbaYkozIfTtVD/hBsv/r/AJfpRLGt6JAqSRiyaRY2tmHjYRpjk4yTWt4P1CSM3Vla3HmRzgCRNnX0PP8AOuns/D9nFaLBJH5gAwd1a+n6VY2GWt7dEY9wOa85xbdzoUtDI0Pwv9k1V75lEa4wq11o60wNhaAauUnLclKw/pS00UuakYz60tNzSikA7NL3puTjpSg8UAKKMikzSd6AH5ozgU3oKWgBw60UgOKM0ALS00GlzzSAWgUgpaYC5opM0UAL1ooooEJRQaYzYpgDOADWVfamIQUQ5ak1O/8AJGxD8xrAaQuxJPPrSbAllneVssxJqIH16UlKKkY4Uu9I1MkpwiDLH2ptZ+uTiKyjiBIeRsnH90f/AF/5UDirswdQu3vbqSVuATwo6AdhVXGacx/WmipNxwpav2+j3U9l9pXywhDMis4DOF6kDvitd9EsbBIbiW4S4hMqq/O3COvBx1460xNnOw28tzKsUMbPIx4VRkmtG10C5nlmjmZLYxsikSZ5LZ2gY+nWpn1WFNJFrI/nSK6hBHGEEaqSD8w5O4fzqtea1cXDkQjyIfLSIIpJ+VTkcnvnvQGpci8OgaQ13cSmNxIARjhEDbGz755x6CtBr3SNG1K3WJIp7coN5TDsjKeHz0yR2rlhJJJIxdmYs2457k96tJpk03KxOAdvJGBycDr78UXC3ckGr4sryDbI73B2hnk+VF3buF9fx71Th4U1Pe6c+m3bW9xxIuD7HPNQM6ouBSHoV5uZM0zHFOcknJFM60hj43MbhlYqwOQQeh9a9c8PaqNY0iK4J/fL8ko/2h3/AB4P415Aa67wFfmDV3tGY7LlDgf7a8j9N1VF2ZFSN0eimmsKfQRWpzkWM0mM1IRzSYoGQleKjaMHtVgim4oAqmPHamlatFM0hSgCt06dKYy96tFBTdmTRcCrso2e1WvLo2DpQBU8oUGP2q2Y+KQx5oAp+XzTli55FWfLxRtpiIFjBbpSvAAQQKm28mnDkUARJEAOlSqAOtLSg0higU7tSdKWkMUUvb3pKXFICOnAmm5ozmkA7OaXPFMzQDz1pgOzRScUuaAFpe9Npc0ALRmkJooAUGlzSZozSAdmlzyabmgUAOzS5pAaM0wFozRSZoEBOBVS6mEUbMTVhjWHrNxgeWDQBk3ExmmLE9ahpM0tSMcDzSg0zvzTge9ADwa5/X5A18VB4jRV/r/WugFcvqhzfTZ/56N/Ohl09yi/QfSmjrTn5P1ptSbGhDrF1BZfZkEeArKrlMuqt1APbOTVTc8rKCWduFAzn6CohxVqzuhaStJ5UchKlRvH3T2I96ZJdg8P3kqTPKohSAAy7vvKP93r0yfwNXH03R9OVhdXLTTghhGPlwNu4BgMnnoeeM1i3Ot32pXRV3lYvhCFGAcZx069T+damn6SCFZ9rTtteBXPySEH5o29DgfrQTKSS1NBtbs4jcDTNKJjeLG4qFKEZ54B9j+FZ13rmrXBLyBVMkCoxEQ+ZASQec9z1Fei2V3Z3GkSSW8IWNEZXh2YKkDlSPWuPFohsLXe2VGk2qNgZJBlDSH8AKqxk6qXQ5Weae4l8yd3kfGCznJqMKTW/p9jf67BeXy2I8rfI6NuChnZhwSf4VGelUbi38sCRCXgdmEUu3AkAOMj2qbGkKsZnTyaWNZ8MWqwqzzpGDGIoQiBuhyx6/gfwrhCpViDwQcYr0Tw46y6AvmqrJE7ITPORGO/3fx71zviiygW8a6tZI33D96scexU6AYHfPrSZUXrY53FXdHuDaavZz/8850J+mRn9KpU+MkMCOo5FCLZ7iRg496aakf7x+tNrY5BpptOY03BxQMaaSnUlADaMUtJmkA0rzRinGjGaBjQKMU7FKKAGkUm0elPA9aMc0CGbabsqX9KMUAQlOKUDmpMUYoAj20oWn45pR7UAR7aU08jigCgY3FGKeBRigCtmj6U3PvTs0gFxxzSjFNFL3oAdSUlL2oAWlzTeKM0ALRn8qM8UUALSjFNzSjrQA7t70ZpKKQDs0uabQKYDhSdqByKDQIjc4rltVkzdMK6d65TU/8Aj8akxopg04Gmg04HNIYtOpoNOHP0piHiuZ1dNl9KfVs/nzXS5rE1uI+YsmOGGPxH+RSZdPcxSaaadTSOtSbDc4o8zimPkU2gRo2NjdXistrCzzv8kQ2HBOP7w4UjrzWoqaxZx3dpq0Cq/wBjeSNwR875VYyMdDuZRVG3uJrDSnurKe1iukQsGF2dw6/ejPBOOg+lJp/io6s6Q6q5a5ZfKWXGAwJBAOOhBAINUcNWScz0fw6ge91ifcSGuVg5GMmONQW/Ft35CotUsorG6tUiby4biVlA/wCeLbGYsPRcKcjpWPBq82nPPdRKzuQsskQH+u+fyzx2cNgcVa1Bb/VLovcC28uK3mgmigYs0XmADJJGCQB29TVBdWOe1vXruw8LrBbSm3+0GPMacFNyF5FHoPmjP/A/rUOlzf2no63FySnIhlu5l3sdv3YYEH4En603xPZNeac8z4E0JMhx0ztG78CqAj6Yq74F0S9k0qO4itlgaVmK38j7iiHgiNOzHH3j+tTuzNc3OV7ORbRJoboeVIjfdfKNyO/ft0wetRz6pbCNo0jEinqqrhT9Sev5A1jT3CXOoXjRvI8S3DIjyNuZgO5Pv1pKk9CPvK4tXtHtVvdVtrZjtWSRVJHbJxVE113gTTWuNTN2yjyoRk5Hft+OefwNNLUcnZHo7csaaacaQ1qc40immnUhxQAztSHinUhoATmkp2aaaQCUuKKKADpR60Hil60AJijvRSjpQAnWilFLQAmKDSgUlACYoHXmnUDg0AFGKDk0poASlx6UZooGUc0tMHSnZFSA4c0tMz6U4GmA7ijrSZ4ozQMXvSmm5oyKBC0tJkYzRmgBc0opvBpRQAtLSdqUUALRmkpQaAFozRSGgBjjg1y+sR7bkt611LDIIrH1e38yIsByKGBzmcUucikPHFGakY8HilFR5xil3UCJAagvYftFsy4+Ycr9akzk9aQtQCdjk5V2nimZzWtqVoEZpUHyMecdjWUeOKR0J3RGwBFRGpmHFRsO9IZ0Wh3KS26WpuP3qklYEsPN+X+8zd+v6Vh6x4XvILl7rT4Lu4hQb5ZGtzHhs5+UelVxNc28iz2czQ3EZyjKf0rqrn4jzp4XgliMS6sJvLljdcjaActj8qrdHFXgk7slg1OFmN3DtdgN6oeMkTibHt3H4V09tc6xqdnPdW8dvZFmUpI3zbkwc9enbnGK810PVLTUtZu9Q8QOHQQ4SGIbS8hIAChce9d88GjDUn0XSxBJfBN5Sd3kjHsRnGcc4pozg7nMT22o6hZXEWnRNdRwhkknU/Kw3SKVUn7x2sOn1qOD4k3tldQRLYxQ2ECeV9mXqAOOp7jFdB4r8S3Wg7tOksP9HKKIbmGTyyTjn5R05zxXlipNqV2zyOzFjmSQ0m7EO/NaO5pWIBjeRAQkkjOoPUDtVsU1VCKFUYUDAFL1NSelGPLFIcil3AA71654X086bocSSLtkl+dgew7D+v41yHg7w617cLqFyMWsTfKD/wAtGHb6Dv8Al616KWPJzzVxRnUl0HGkpu7NGaszCkpeCKSgBuaDRjig0AJRiiigBCKSnGkoAT+dLRRxSAM5pelJS0AGaMUfjRmgApcUUhPPWgBaKKOlAw7UtJSj1piCikzzRQBnZwKN9RF+KYZAO9QMs7hSeZxVQzDNNM3NMC75o9aDLVAz8df1pPPFAy8ZRS+cKzzN1xSG4pCNHzR680ol96zBP71Is9MDTEnenCQE1nLNnvT0lO7npQBoBqcD71UWXgGpVkHqKAJqWmh6XOaAHUUhpc0AB6VXmjDqVPQirHWmkZoA5DUbQ28x4+U9KoGuyu7VLhNrD8a5m8sZLZzxlfWk0MpE0bqCuPpTTSAfupM800mkzzQIc2CpUjKkYINYt7ZGI70G6Pv7VrmmmgqMmjmyOM0wrnpWzcafHJlojsb07Gs6a2lhPzoR7jpSsaqSZTYGoZ7SK4HzjDDow61cKmm7CO1IbSaszKGl3KfvIm3BT94cYNWLCTVdNnaazlaCVxtZ1IyRnOM1rRXbxWU1rsUpKQcnqDVfBzQYfVoXuR6j9q1nUXvb+UGRwoIU8cAD8OlPjjSFAiKABTgKuWOl3moSBLW2eTnqBwPqelBpGnGGxU6103hrwrPq0i3FwGislPLkcv7L/jW/oXgeG2Kz6kVnkHIiH3B9fX+VdiAEUKAAo4AA6Vaj3FKfYjSOOCFIYlCRoNqqOwpDSsetNzVGQZAozimk80hNAD80ZNR7sUbqAJM0ZzUZJpwpgLSd6KKAA0fypKKAA0ZpcgUfSkAcUYpM0uaAFzijtTaUcUAL9aTtS9vSjnNAwoyDRQRQAYpeKF4oP60wEzilpMcUAYoEYTvUDSYpzvmq0j4qChWlqMz89agdyelRFjQBa87PegS1U3GjJxSAsmU560nnVXBJpaYExmPGKeJj61W/GnUAWkmqdZuRzzWcCaeHI70AaqT1Msue9ZCy89anSbvmgDYSX34qVZPespJ/erCTHpQI0g2R1pw5xzVJJelTrJTAno700N70tAAQDUE0CyqVYZFTGlxQI5680U8tCfwNY81pLGcMhrtyM/WongR+GUGlYdzhjGRSbD712D6ZbucmMD6VH/Ytvnoc0WC5ynlHPQ04W7N0Ga6xNHt1/hzViOyhjPyoKLBc5AaZcOMrGxpP7Luxx5L4+lduqBRwOKdtBp2C559Jocj8tZHPqoxTE8LvKwG2eP6gGvRNo9KQqKfKh87OFXwRKeTd4Hpt/wDr1ah8Cw5zNdu3sq4rsQgpwWjlQc8jDtPCelW5BMHmN1zIc10EECRIEjRVUdAowBSKAKl3DHFMm7e5IDtFNLUwtk5pCc0ADGmE/lSk8UwmkApOaaTk0maQnigBTQDTc0biaAJAaXNMB4xRuoAfmlzUYJp3WgB3Wj9aaOlOBoAMUdKKKAD1oopc4oAM0Zo5NHegBccUUCgjNAw6c0oOelIBR0oATnNLSUc5zQA4YFJSHIpaYjlWkqu7ZpDLxUZbNQUI2fWmGlJ65phNIBelLmm45pRwMUALS031o/GmAtOApucil70AOFGaaKdmgBe3FKGxTRS4oAmSQjr0qdZulUxTgcUAaUc3vVlJqx1kwanSb3oA2EmqdZMislJqtRzZpiL+aXNV0fOKlBzQA6loHajtQIKMe1GaKYCgUUlFAC9qAaSjNAC0hpaSgBoanBjTSKM+9AEoanA1CDTs+lAEuaTdTMmkzzzQA4txTCc0E03PNAC5xRmkJpKAFzR3pKM9KAFzRmkpc5oAOe1OBpnQ04HmgB+cUueaZnijqc0ASZpc0ylFADs0E9qSjHtQA4UnelFGKAAHIpaTFGOKAAc96O1FFAwpR0pO1FAC0oNN/OlzQBwW6kzTc/5zSgnpUFDieaQ0lL1oELSg+lJ1Ioz70AKf1pKM8UUwHDnpSj0pvX/61OUc0AKKXGe1KopwU0AM6U6lK+1GMCgBvvRQaSgB1KGIpuaTp3pAWY5ORzVyOT3rMUknrVqNunrTA1InyRVpGrOiYYx3q7G1MRaU8UpNMQ5FO4oAUUUhFHegBaAKSloAKBzSUvegBaTPNHagdaAEpDTj7U09aYgyKCaaetGaAHbqN1NzRnJoAUmjrTe/tRn0oAXGKTpQDmg0ALmim0oPrQAozil70lHSgBaWmg06gBe1ApoySKWgB4OeKXPNNBooAeDxSimjtS5/yaAHijpSUfWgBeq4pelNFGR60wFo6GkpeaAACj+dGaKADNFKen+NJSGcBS0fT1oqCgHFApPeloELSDrR9aP5UwFFLTfwpRxk0AKOtSL+tR9TUqYoAlVelPC0i81IBQA3FIw4qQdfSkPegCswxTexp7nnFMFABR1o96OlAwXg1YjPT1qtnmpo2oEX4TxV6PoKzYmq/E3SgC7GRUmeeKhQ5qXoaYhaOmaSlzQACikzSjmgApaQ0YoAXNHNJRQAp5pOtLxSUAMI5oxxTuKbTAbS9aTHNB70ALSUA0ZoAUCjpSE0UCDNHp6Ud6WgA6CjuaKBQACn9qbj8qXPFMApaTOOKKQC+9OGKaKWgY7ODTsimA5pR0oAdmlzmm5oz6UCHZzS5po6UopgLS0g4780c9aAF/nSd6BRQAvrRRmikBwHSlpKM81BYtAozjpSdRQIXrRkCkozQAopR06Un1p2cUAJ396epwaYfypynmgCdWqZW9aqg08NTAs7qQtiogxoZvegBjnmmk8UpyabQAc0UUZoGBp8Z5FR555pVPNAF2Imr0LVnRGr0TdqBGihqUHNVYjirKmmA7NFFHTvQIUGlxim55pR60AKPeijvR/OgA60nWlo60AIKWgCjFABim4606g0AMxSYpTmm9KYBRRmgUAHfrRSfzoBzQAuaDz1o6CjOTQAopO9A/WlHFAhwPFIev8AhRQKYBTutN5NLSAUce9Lmm96UHigYvSnCmilzigBTml7UhOaWgBecUYozS0xAMUtIDS0AFKOaMYpM80AHeloooA8/Joz1pcGlrMsTvR06UdutHWgAFLSUDtSAO1KDRjAoB60AKKXFICKXPIoAUHFOzimj9aPSmA/dxSFiabSjmgBd2KO/p9KO3WkB5pgL2oopaAG0q9aKQdaALUbYq7CaoRHirsRxTEaEZ4FWFqpGasx0ASjANBoHWl5oATindqT3paQB2zRRR160xC5oo7UlAC0UdqKACk4pccUlACUhHFBooAbijpTscU09aAEPrRS4/OkpgOOAOaSk70ZoAUUtIPypaAAdKUUh6UA0CHZyaTmiloGH4UtJS0ALQKTn1pRQAv+TS0lLz+FAC0tN7UoODTEKDSjrSClOKAFByKMUgp1AAKKKAKAOBFHB5pD+lH8qzLF4xSetGMdaO9IApe/tSdetLwKADnvRjrRRQADPelzijntRQAopec0lL+lABxS9qbmlHWmAtHNIaWgA70tJ1ooAKBSUc0wLEfQVbjzjjrVFCADVuFsUCNGI4q2hqhE3SrsTZpgT9qWkHAyaarDJAPNAD+1GaKOaQBS0Ue1MQZopOlLn86AFpPxoooAWjjNJS0AIeKSlNJ+FACHikNKelJ3oAQ/kaSlI5pMUALRRRzTAKUc02lzQApAoxSZpQeKAFFLntSDgUd6AF78UCij1oAKM9KSnAUAKPpThyOtNpQfWgBcUe4pR0oxQACn44puaUHmgQoGM0uPekzn2ozzTAUUd6OaUdPegDgDj60UCjsKyLDGaTPFKOlHtQAnNLRR1oAOnFHeiloAKKO2aXv70AJS9zSe9LQAdDS9KQGjNAC0ZpP880A8+lMBc0Z5pO9GKAAn2oo5ozQA9DjirEb/AIVU6Gnq2BTEaUclXIpfeshJelWUm96YGuJRjrUiso6VmLNxirCT0AXgQacKqrLUofigCXvQaaDThQIO1A6UtJQAveikpewoAM5opaOlACUlL1o9aAENHFBozQAhFJilzyaTNABxQaO9IaYBR1+lGetFIBTQKT9aXNACA9qdSDnFO6UwEx2pfSjPFKBQAgHFOHSk/ClHFAC8c0A80nX6UAGgBwpf50AUY56UALnmlwT2pvvTxQAAUvTkUUUxBS4JPWk6UuOeuaAOA6//AFqP5UdaM1kWHalxjHWjtSdO9AC0d6TmgZzQAtHak/nS0AHaignJo/nQAUe1GKQd6AFpB+tLSZoAWgc0nNH1pgOHHf6UlGaTPagBc45ozR7UUAHUUc0lGaAHBiKkWQ1FRnFMC2s/vU6T9BWcMilDn1oEa6XHvVlJ6xEnI4qzHP70XA2Um561Oj5rKimHTNW4pPQ0xF4HvS4qFJMipc5xQAY4pRSc+lKKAFo7UmPel7UAIO9H0oBozQAYpDS9qTGaAExmggAUuKQ55oASjFGKKYCY9KXt70lLmkACjvRmkoAUHFFFLjFMA7UoNJSigBRz1pRSUtACilGaTPFKPegA9aDSUuOaAHDmjrQOtLQAClzmmin4/WmAD3pw7UgApSOaBHn9HT3oH1payLExS9OlJn3pKAFoJo9aU96AG/ypRR2oI4oAKMUd6UYoAOe9JmgUeuKACikoxQAvag0YFJTAX6daToaDQCKADPc0ZoyKTd2oAUHrS0g+tLTAKXvTc0ooAUcEc80c0UH9aAEwaerlfrTefwpv05oAuxTVeil6Vjq2DVyGQjvTQjZikzVlGzWbC/ar0Z/GgRZHSlpq0ueaAF6HmlxSd6O9AC03oaDyaUUAJ3pevajFJ3pgHQ0naloNABjikxS0YOOetADcUYyKU0tADe3Aox70GjvQAoxmikFL9KAAU6mgd6d+AoAAM0oBAoBooAOvSnLSUCgBcetKBxSdaXbQAdT7U7tSDFL+FMBQBxSjjk9KQc9qU5xzzQIXrz2pwNNHXbj8KXAznrQB5+OnXmjv04o45orI0Cij3/SjH5UAH4UdaPypR60AJ2o/Glxij8aBCYoxRzRnmgApDxR0oPagAyMUUnFB4oAUnNJnNH16UYwc0ALSUuQOKaTwcUwDvS0lH0/KgBRxRR196PxpgLSikpc8YoAU0nc0vaigA6daTHHvRRnP/wBegBBwatxfSqqnJ96tRDmgRoQNyKvxdqz4eMVfizxTAtrTgM01Qce1OGKYhehoopOpoAUCiikzRYA6UYyTzRxSZoACKX3pCaPagBR0ooHBoPQYoASlx6UgHNA44oAKMc0Hqf0ox3oEHagfpS44ox70AKMUd6OxooAO1LijtgdaBQAuOOKCQMZFHTijqaAHL0pSDSADFOz6imAg6/ypT1o69utH60AKoOM9qcfu0L3pdwH1oAQc04DAx3NCgnJxx6Yozz7/AEoA89ozzSdqWsjQUH8/ek7UD2ooAWikFLnHNIYpPGe1Jkc0mR26UGgQH6UE0fzpKADNFJ0o9qBC55pDS9qTvTAKTFL9OlBoAMUdOKQnvSZpgOJ4FJmkJ6ml+tAxc8UZ9aSk9KYh4PFLSCnd6ADsKXpQDTc5pgLxSUfSjNACqB1q3CRxVRTirUP6UCNCHpV6KqMPGKvxUAWgeABilpq4A56040xADS5zTaUdKYgpOaXNHSgBP5UetBNFAC8Cig880mcUAKKX1pO9FIYd6UYozx70n0piFo/lSdqUD1NABnilzSUA4NAC5paaetKSaQBSgEA0gHFKKBi49aB0pCeKARQIeO3pSim56cUeg6UAO69DThg8g80zOO1OUjpmmA4cfjQPvEcc0ZAH9aTdzxxQA4KdpJ7U85APoM0nAGM8ZoY+maYH/9k=",
72 | "imageHeight": 512,
73 | "imageWidth": 512
74 | }
--------------------------------------------------------------------------------
/images_kp/im_420.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_420.jpg
--------------------------------------------------------------------------------
/images_kp/im_421.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_421.jpg
--------------------------------------------------------------------------------
/images_kp/im_422.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_422.jpg
--------------------------------------------------------------------------------
/images_kp/im_423.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_423.jpg
--------------------------------------------------------------------------------
/images_kp/im_424.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_424.jpg
--------------------------------------------------------------------------------
/images_kp/im_425.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_425.jpg
--------------------------------------------------------------------------------
/images_kp/im_426.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_426.jpg
--------------------------------------------------------------------------------
/images_kp/im_427.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_427.jpg
--------------------------------------------------------------------------------
/images_kp/im_428.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_428.jpg
--------------------------------------------------------------------------------
/images_kp/im_429.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_429.jpg
--------------------------------------------------------------------------------
/images_kp/im_430.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_430.jpg
--------------------------------------------------------------------------------
/images_kp/im_431.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_431.jpg
--------------------------------------------------------------------------------
/images_kp/im_432.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_432.jpg
--------------------------------------------------------------------------------
/images_kp/im_433.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_433.jpg
--------------------------------------------------------------------------------
/images_kp/im_434.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_434.jpg
--------------------------------------------------------------------------------
/images_kp/im_435.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_435.jpg
--------------------------------------------------------------------------------
/images_kp/im_436.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_436.jpg
--------------------------------------------------------------------------------
/images_kp/im_437.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_437.jpg
--------------------------------------------------------------------------------
/images_kp/im_438.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_438.jpg
--------------------------------------------------------------------------------
/images_kp/im_439.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_439.jpg
--------------------------------------------------------------------------------
/images_kp/im_44.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_44.jpg
--------------------------------------------------------------------------------
/images_kp/im_440.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_440.jpg
--------------------------------------------------------------------------------
/images_kp/im_441.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_441.jpg
--------------------------------------------------------------------------------
/images_kp/im_442.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_442.jpg
--------------------------------------------------------------------------------
/images_kp/im_443.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_443.jpg
--------------------------------------------------------------------------------
/images_kp/im_444.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_444.jpg
--------------------------------------------------------------------------------
/images_kp/im_445.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_445.jpg
--------------------------------------------------------------------------------
/images_kp/im_446.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_446.jpg
--------------------------------------------------------------------------------
/images_kp/im_447.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_447.jpg
--------------------------------------------------------------------------------
/images_kp/im_448.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_448.jpg
--------------------------------------------------------------------------------
/images_kp/im_449.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_449.jpg
--------------------------------------------------------------------------------
/images_kp/im_450.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_450.jpg
--------------------------------------------------------------------------------
/images_kp/im_451.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_451.jpg
--------------------------------------------------------------------------------
/images_kp/im_452.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_452.jpg
--------------------------------------------------------------------------------
/images_kp/im_453.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_453.jpg
--------------------------------------------------------------------------------
/images_kp/im_454.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_454.jpg
--------------------------------------------------------------------------------
/images_kp/im_455.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_455.jpg
--------------------------------------------------------------------------------
/images_kp/im_456.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_456.jpg
--------------------------------------------------------------------------------
/images_kp/im_457.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_457.jpg
--------------------------------------------------------------------------------
/images_kp/im_458.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_458.jpg
--------------------------------------------------------------------------------
/images_kp/im_459.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_459.jpg
--------------------------------------------------------------------------------
/images_kp/im_460.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_460.jpg
--------------------------------------------------------------------------------
/images_kp/im_461.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_461.jpg
--------------------------------------------------------------------------------
/images_kp/im_462.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_462.jpg
--------------------------------------------------------------------------------
/images_kp/im_463.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_463.jpg
--------------------------------------------------------------------------------
/images_kp/im_464.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_464.jpg
--------------------------------------------------------------------------------
/images_kp/im_465.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_465.jpg
--------------------------------------------------------------------------------
/images_kp/im_466.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_466.jpg
--------------------------------------------------------------------------------
/images_kp/im_467.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_467.jpg
--------------------------------------------------------------------------------
/images_kp/im_468.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_468.jpg
--------------------------------------------------------------------------------
/images_kp/im_469.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_469.jpg
--------------------------------------------------------------------------------
/images_kp/im_47.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_47.jpg
--------------------------------------------------------------------------------
/images_kp/im_470.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_470.jpg
--------------------------------------------------------------------------------
/images_kp/im_471.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_471.jpg
--------------------------------------------------------------------------------
/images_kp/im_472.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_472.jpg
--------------------------------------------------------------------------------
/images_kp/im_473.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_473.jpg
--------------------------------------------------------------------------------
/images_kp/im_474.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_474.jpg
--------------------------------------------------------------------------------
/images_kp/im_475.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_475.jpg
--------------------------------------------------------------------------------
/images_kp/im_476.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_476.jpg
--------------------------------------------------------------------------------
/images_kp/im_477.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_477.jpg
--------------------------------------------------------------------------------
/images_kp/im_478.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_478.jpg
--------------------------------------------------------------------------------
/images_kp/im_479.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_479.jpg
--------------------------------------------------------------------------------
/images_kp/im_48.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_48.jpg
--------------------------------------------------------------------------------
/images_kp/im_480.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_480.jpg
--------------------------------------------------------------------------------
/images_kp/im_481.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_481.jpg
--------------------------------------------------------------------------------
/images_kp/im_482.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_482.jpg
--------------------------------------------------------------------------------
/images_kp/im_483.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_483.jpg
--------------------------------------------------------------------------------
/images_kp/im_484.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_484.jpg
--------------------------------------------------------------------------------
/images_kp/im_485.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_485.jpg
--------------------------------------------------------------------------------
/images_kp/im_486.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_486.jpg
--------------------------------------------------------------------------------
/images_kp/im_487.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_487.jpg
--------------------------------------------------------------------------------
/images_kp/im_488.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_488.jpg
--------------------------------------------------------------------------------
/images_kp/im_489.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_489.jpg
--------------------------------------------------------------------------------
/images_kp/im_49.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_49.jpg
--------------------------------------------------------------------------------
/images_kp/im_490.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_490.jpg
--------------------------------------------------------------------------------
/images_kp/im_491.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_491.jpg
--------------------------------------------------------------------------------
/images_kp/im_492.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_492.jpg
--------------------------------------------------------------------------------
/images_kp/im_493.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_493.jpg
--------------------------------------------------------------------------------
/images_kp/im_494.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_494.jpg
--------------------------------------------------------------------------------
/images_kp/im_495.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_495.jpg
--------------------------------------------------------------------------------
/images_kp/im_496.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_496.jpg
--------------------------------------------------------------------------------
/images_kp/im_497.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_497.jpg
--------------------------------------------------------------------------------
/images_kp/im_498.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_498.jpg
--------------------------------------------------------------------------------
/images_kp/im_499.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_499.jpg
--------------------------------------------------------------------------------
/images_kp/im_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_5.jpg
--------------------------------------------------------------------------------
/images_kp/im_500.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_500.jpg
--------------------------------------------------------------------------------
/images_kp/im_501.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_501.jpg
--------------------------------------------------------------------------------
/images_kp/im_502.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_502.jpg
--------------------------------------------------------------------------------
/images_kp/im_503.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_503.jpg
--------------------------------------------------------------------------------
/images_kp/im_504.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_504.jpg
--------------------------------------------------------------------------------
/images_kp/im_505.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_505.jpg
--------------------------------------------------------------------------------
/images_kp/im_506.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_506.jpg
--------------------------------------------------------------------------------
/images_kp/im_507.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_507.jpg
--------------------------------------------------------------------------------
/images_kp/im_508.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_508.jpg
--------------------------------------------------------------------------------
/images_kp/im_509.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_509.jpg
--------------------------------------------------------------------------------
/images_kp/im_510.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_510.jpg
--------------------------------------------------------------------------------
/images_kp/im_511.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_511.jpg
--------------------------------------------------------------------------------
/images_kp/im_512.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_512.jpg
--------------------------------------------------------------------------------
/images_kp/im_513.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_513.jpg
--------------------------------------------------------------------------------
/images_kp/im_514.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_514.jpg
--------------------------------------------------------------------------------
/images_kp/im_515.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_515.jpg
--------------------------------------------------------------------------------
/images_kp/im_516.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_516.jpg
--------------------------------------------------------------------------------
/images_kp/im_517.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_517.jpg
--------------------------------------------------------------------------------
/images_kp/im_518.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_518.jpg
--------------------------------------------------------------------------------
/images_kp/im_519.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_519.jpg
--------------------------------------------------------------------------------
/images_kp/im_520.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_520.jpg
--------------------------------------------------------------------------------
/images_kp/im_521.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_521.jpg
--------------------------------------------------------------------------------
/images_kp/im_522.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_522.jpg
--------------------------------------------------------------------------------
/images_kp/im_523.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_523.jpg
--------------------------------------------------------------------------------
/images_kp/im_524.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_524.jpg
--------------------------------------------------------------------------------
/images_kp/im_525.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_525.jpg
--------------------------------------------------------------------------------
/images_kp/im_526.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_526.jpg
--------------------------------------------------------------------------------
/images_kp/im_527.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_527.jpg
--------------------------------------------------------------------------------
/images_kp/im_528.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_528.jpg
--------------------------------------------------------------------------------
/images_kp/im_529.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_529.jpg
--------------------------------------------------------------------------------
/images_kp/im_53.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_53.jpg
--------------------------------------------------------------------------------
/images_kp/im_530.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_530.jpg
--------------------------------------------------------------------------------
/images_kp/im_531.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_531.jpg
--------------------------------------------------------------------------------
/images_kp/im_532.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_532.jpg
--------------------------------------------------------------------------------
/images_kp/im_533.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_533.jpg
--------------------------------------------------------------------------------
/images_kp/im_534.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_534.jpg
--------------------------------------------------------------------------------
/images_kp/im_535.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_535.jpg
--------------------------------------------------------------------------------
/images_kp/im_536.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_536.jpg
--------------------------------------------------------------------------------
/images_kp/im_537.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_537.jpg
--------------------------------------------------------------------------------
/images_kp/im_538.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_538.jpg
--------------------------------------------------------------------------------
/images_kp/im_539.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_539.jpg
--------------------------------------------------------------------------------
/images_kp/im_54.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_54.jpg
--------------------------------------------------------------------------------
/images_kp/im_540.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_540.jpg
--------------------------------------------------------------------------------
/images_kp/im_541.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_541.jpg
--------------------------------------------------------------------------------
/images_kp/im_542.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_542.jpg
--------------------------------------------------------------------------------
/images_kp/im_543.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_543.jpg
--------------------------------------------------------------------------------
/images_kp/im_544.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_544.jpg
--------------------------------------------------------------------------------
/images_kp/im_545.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_545.jpg
--------------------------------------------------------------------------------
/images_kp/im_546.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_546.jpg
--------------------------------------------------------------------------------
/images_kp/im_547.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_547.jpg
--------------------------------------------------------------------------------
/images_kp/im_548.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_548.jpg
--------------------------------------------------------------------------------
/images_kp/im_549.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_549.jpg
--------------------------------------------------------------------------------
/images_kp/im_55.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_55.jpg
--------------------------------------------------------------------------------
/images_kp/im_550.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_550.jpg
--------------------------------------------------------------------------------
/images_kp/im_551.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_551.jpg
--------------------------------------------------------------------------------
/images_kp/im_552.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_552.jpg
--------------------------------------------------------------------------------
/images_kp/im_553.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_553.jpg
--------------------------------------------------------------------------------
/images_kp/im_554.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_554.jpg
--------------------------------------------------------------------------------
/images_kp/im_555.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_555.jpg
--------------------------------------------------------------------------------
/images_kp/im_556.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_556.jpg
--------------------------------------------------------------------------------
/images_kp/im_557.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_557.jpg
--------------------------------------------------------------------------------
/images_kp/im_558.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_558.jpg
--------------------------------------------------------------------------------
/images_kp/im_56.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_56.jpg
--------------------------------------------------------------------------------
/images_kp/im_57.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_57.jpg
--------------------------------------------------------------------------------
/images_kp/im_58.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_58.jpg
--------------------------------------------------------------------------------
/images_kp/im_59.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_59.jpg
--------------------------------------------------------------------------------
/images_kp/im_60.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_60.jpg
--------------------------------------------------------------------------------
/images_kp/im_61.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_61.jpg
--------------------------------------------------------------------------------
/images_kp/im_63.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_63.jpg
--------------------------------------------------------------------------------
/images_kp/im_65.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_65.jpg
--------------------------------------------------------------------------------
/images_kp/im_67.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_67.jpg
--------------------------------------------------------------------------------
/images_kp/im_68.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_68.jpg
--------------------------------------------------------------------------------
/images_kp/im_7.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_7.jpg
--------------------------------------------------------------------------------
/images_kp/im_70.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_70.jpg
--------------------------------------------------------------------------------
/images_kp/im_72.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_72.jpg
--------------------------------------------------------------------------------
/images_kp/im_73.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_73.jpg
--------------------------------------------------------------------------------
/images_kp/im_74.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_74.jpg
--------------------------------------------------------------------------------
/images_kp/im_75.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_75.jpg
--------------------------------------------------------------------------------
/images_kp/im_76.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_76.jpg
--------------------------------------------------------------------------------
/images_kp/im_77.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_77.jpg
--------------------------------------------------------------------------------
/images_kp/im_78.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_78.jpg
--------------------------------------------------------------------------------
/images_kp/im_80.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_80.jpg
--------------------------------------------------------------------------------
/images_kp/im_81.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_81.jpg
--------------------------------------------------------------------------------
/images_kp/im_82.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_82.jpg
--------------------------------------------------------------------------------
/images_kp/im_83.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_83.jpg
--------------------------------------------------------------------------------
/images_kp/im_84.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_84.jpg
--------------------------------------------------------------------------------
/images_kp/im_85.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_85.jpg
--------------------------------------------------------------------------------
/images_kp/im_86.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_86.jpg
--------------------------------------------------------------------------------
/images_kp/im_88.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_88.jpg
--------------------------------------------------------------------------------
/images_kp/im_89.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_89.jpg
--------------------------------------------------------------------------------
/images_kp/im_9.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_9.jpg
--------------------------------------------------------------------------------
/images_kp/im_90.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_90.jpg
--------------------------------------------------------------------------------
/images_kp/im_91.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_91.jpg
--------------------------------------------------------------------------------
/images_kp/im_91.json:
--------------------------------------------------------------------------------
1 | {
2 | "version": "3.16.7",
3 | "flags": {},
4 | "shapes": [
5 | {
6 | "label": "point1",
7 | "line_color": null,
8 | "fill_color": null,
9 | "points": [
10 | [
11 | 422.36842105263156,
12 | 120.05263157894736
13 | ]
14 | ],
15 | "shape_type": "point",
16 | "flags": {}
17 | },
18 | {
19 | "label": "point2",
20 | "line_color": null,
21 | "fill_color": null,
22 | "points": [
23 | [
24 | 301.84210526315786,
25 | 244.26315789473682
26 | ]
27 | ],
28 | "shape_type": "point",
29 | "flags": {}
30 | },
31 | {
32 | "label": "point3",
33 | "line_color": null,
34 | "fill_color": null,
35 | "points": [
36 | [
37 | 220.26315789473682,
38 | 166.36842105263156
39 | ]
40 | ],
41 | "shape_type": "point",
42 | "flags": {}
43 | },
44 | {
45 | "label": "point4",
46 | "line_color": null,
47 | "fill_color": null,
48 | "points": [
49 | [
50 | 340.7894736842105,
51 | 49.52631578947368
52 | ]
53 | ],
54 | "shape_type": "point",
55 | "flags": {}
56 | }
57 | ],
58 | "lineColor": [
59 | 0,
60 | 255,
61 | 0,
62 | 128
63 | ],
64 | "fillColor": [
65 | 255,
66 | 0,
67 | 0,
68 | 128
69 | ],
70 | "imagePath": "im_91.jpg",
71 | "imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDaSBEAwKczheBSO3FQtk1JQNKTkVGSTTgKXaTTER7fagL6VKFp2zjpQIjC07bTwnFPC/nTAjVaeFp+386cFoAaFzTwtOCntTwOaAEC08DigDinYoAUDpTlpAKcooAkUVIKYB0p4GDQA8elLTRTgaQCgcUv4UgPNKKAFzxR3pKU0hhRSUtABRnNJS80ABNKD3pKWgAoopaQxKKM0d6AEpKd3ooAT+dHajHFLQAmDS/SiikAlLS0UAJjvS0AGlxzTABRjijFKKAEFFLRQAUUCg0wCiiigBKXHvSClpAFHrQKWgBOtLjFJRQIWkxRS+tAxAKO1LR+NACdqKKXrQBzDDjNJtz9Km2Z4xRtpiItn50bPapttKFx06UwIghpQhqXbk07FAiLZxS7al2jFG3FMBgQCnYFOxS4FAxu2ngGgcCl70gDHNKAaAKcPWmIAO1PApBzT15oAUU8cikA4p1ACjk+9O/GkFLSAUUvpQKKBhRR60CgAxS4/KiikAUd6KX8aACiiigBcUlGaKQxe+aSg9KWgBMUuKTtS0AHajFFHSgBKWig9qAFo4oo60gAUfzpKWmAUZoooAXtRg5oooADwKB1/wAaXFFMBO9ByKXFHegBP5UUZopAHajvS9aSgQtFJ/OloGKaTvS0dqAEoxSij8s0AJz2pGp1FAGHt4o280/bS7eQKYDAOnpSYp+05o20xDMClxx0pxWjFACYopcYoAwaAExS/SlxQBz0oATHNAFOxmlC0AJingc04CnAflQA3FPFLilAoABSgUopaAFxQKB0paADFLR1pcUAFFFFIBaSiigAxRS0maAFoxSUZoAXFGKM9KXpSGJilxikpfxoAPpRQP0ooAKKUdKOaAExSige1KOtACYwaOtLR3pAJ2oGKCcUuPSgAoxRmlHWmAUlLQaADt0pKOtLQAmaKXnvQKAG0v1pMdaWgAooo70AH0pe9IKWgApc02loAWikpe9ABj2o4opKAM4pwaQpz0q0UppTtTEVdpzS7fWpinpSFe1AEGyjbU2ygLTAh20u2pdtAXPagCLbTgtSbKAv5UAMC04LT8UAUANApdtOxxxSgGgBNtLilA4pcUAJ2pRS4496MUAANAox60dKAFpc4pKKQAaXtRjNAoASijpSigAo70UcUAL0oFGKQ0ALSZAGTRk0HpigYuaUUg4paAClpuT0pRSAUUdOaKMUAFLSUtIArP1fVrbSLRp525H3UHVjTdY1m20a1M07/N/CndjXA6hezarbi6m5aTJVewHatadPmfkCKd7471iW6LxFIowflQDP511PhfxrHqZFre7Y7nsc4DV51PbSljhSB9KrrDKjhhlSDwRXfLDwlGyA9/yGAIPFOrz3w141WIR2WqPgnhJSOv1rv45FkQOjAqehFefODg7MB9FFJUALxSdDS0lAAaKWkoAMcUUZzRQAUUUnegAJ/Kl6UE9KCaADpS8UgH5UtAB2pfekozQAHFFFFAEZGaaRTqOtUIYQOeKTHtT6Q9aAGYHpRtpxoFIBmKMU7vQRQA3FHpTsYpcc80wGYoxT8UY5oAbilxS4NLikAgFFLjmjvQAdqMUdqKADGaOlKKMUwENAzS0UABoo4pKQCmiijtQAcUUdqWgA5GKSlooASl70UUDD0pTRRQA0jnpTh0xR2oAxSAWgmlpPwoAWs7WNXttHsmnnbnHyr3Y07VtWg0m0Mspy5+4g6sa8l17W5ru7aadg85+4n8MY/wAa2pUnNgQ6xqNxq1211dymONvuqT29hXdW2mpFpdvEseSsS8t9K8yso31HVbaFyztNKqHPuQK94NguwBcYA4rortQSigvY4ebT3zwq/wDfIqAabu4eIH3AxXbyadnotZGubdK0i5u26oh2+7HgfrWcarbsO55brUYF9IYyDGp2gj1HWuj8IeMm011s7+Rmtyflc/wf/WrlLVjLI8TnPmAnJ/vdc1WPBxXZKmprlkI+ibeeO5hWWJgyMMgg1Ia8c8KeLbjR5Vt5iZLQnp3T6V63aXkF9bpNBIHRhkEGvNq0pU3qMnzmiil6VmISjPNH86SgB1JRQaADNJ+FHWg0ALR0pBS0AJmlptKKACjrRmigBc80Z54PNJS9BTAZRSA0tMQfWk+lLSYpAJ0oAoIpaAGmlx3pe1BoAbjilFFLigBMUooooAKKOtFABSUtFABRRQKACiiigA6UnbrS9aMcUwAUmKWikACiiigAoo6iigApcUlFAC0tJzRzQAtFFGKBi0UfSgUAKKoarqsOl2pkcgyHhEzyTTdY1i20ezM0zDd/Ag6sa87mvZ9Wu/Plb5nOAM8KPStKdNzfkCK+vatNIGuJpN08nCLn7o9QK5BmLMWJyT1Oa0NYuPOvHK/cBwo9hWdXp04qMdBnR+BbY3Pi6y4ysZaRvwU4/XFe2ivKfhfbb9ZvLnP+qg2Y/wB4/wD2Neq5rgxTvUsSOFedfE/UAsNnpyNy5MsgB7Dgf1/KvRB0rwvxZqX9qeJLudTmNW8tP91eP/r/AI0YaHNO/YaMqzBa8iGD94ZqJ/vsR61YtMxiafkeWhAPqW4A/LJ/Cq1eh1GT2y/Pmuj0XXrrR7gNExaIn5oyeDXORHaOatK+aUoqSswPbNL1e11W3EkEqscfMueRV+vFdL1W40u7WeBunVSeGr1PQ9ettYtgyNtkH3kPUV51Wi4O/QRr0p60delArABKDS0lAAaTPalpO/WgBeMUlFH4UAAozzRmj8KACjofak7UYpgL+dFJS0ARA06mA07NAh3akpM8ZozQAtHakz0paAE4pRxScYpcYoASlpO+KKYCmjiiikAUUlL70AFGc0c0UABFHFIOaWgAoozRQAUdqKPpQAYo60UZ5oAKKKQfWgBT04o7UdKM0AFLSE0tAB1FFH8qDQAZpaQdKWgYtZmua5a6HYtPO43kYRO7Gk1zXLbRLFppnG88IndjXj2o6jd61fNcXLsxP3Vzwo9BW1Gi6j8gJbzVbrWb9ri5ckk/KvZR6VrWgIRiB0Ru3tj+tZlnaYIYitm1UeZtPdSP0ruaSVkUjj7/AP4+X+tVq09XtzHcscdTVCOGSQ4RWY+wrVPQR6h8LrcLo97Pt5kn2Z9QFB/qa7yue8D2jWXhOzR12u+6Rh9WOP0xXRV5VZ3m2SY3inURpfhy8uA21ymyP/ebgf4/hXhQUswUDJPAAr0X4m6g0k9npcZyAPNcA9SeF/r+dcOQLFSijN0eGP8Azy9h/tfy+vTtw0eWF+40R3REUaWq/wAHzSY7v3/Lp+dVgKsQ25YZPSmyqAeK6EUR54pwlCDLUzHrUM20EFufQetD0EXobgkbnOAegrRtbqW0nWaGQo6ngisSMtuXjdIT/wB81cgdzJsTLjufeo30YHr3hzxNDqsIilIW5HVT3+ldGK8NjkmtpVkRmjdTkMDg16F4Y8Vi8Atb11WYdGJ+9XDWocusdhHXmihTuHBormAMUlLmk6UAFHeijvQAdqSijFABRRmimAGgGjij3oArg07dUG/FMMuKQFndRvxVTzvQ0nnZ70xFvzKPM4qp53vTTNQBdEnApRJVLz/elE/vTAveZShqoiYVIs2aALYNFQCXmpA/PvQA+lBpoIp38qQCGkzmg0ZoAOlBNJmigBwpeKaOKXNAC0ZFJ2pe9AB0opKWgBDRRRQMWigUUCClpBS55pAJS0lFMBaydf1630KxM0p3SMMInqaZr/iK10G08yY7pW+5GDya8g1TVrrWr9rm5fJP3Vzwo9BW1Gi6jv0GibUNTu9cvmubp8k/dUdFHoKt2dmoUM1VtPt9xBI4raVQoHFd7tFWRSQKgA4FTRo7SKEHzZ4xSRo0jBVGST0FLdXkVjGyKwLHhmB6+w9v51BQ++sILkEgK8w5IP3T/jXK3q3KOyMxVOhVeB+QqW71eSU7UJUe1O0me5vdXtLV3LrNMiMGAbgkZ6+1XFOK1JZ7TpVqLLSrS1ByIYUTPrgAVcLBQSeAB1pB0rF8V6jHpugXDvJsaUeUuOTk9cfhmvLScpEHm2t3U2raxPeWit/pBG1z94AcYHp29/fmsv7DDbNie4QMOqjLfyq42oGTSpUhQRxo6jAPJznqe/SsZiWOTXrQTSsWW3MDDalxj2KmtXRPC7Xwmvr5/L0y2UvJIh5fAztWrPhbwXca2VurotBYg9cfNJ7L7e9b3j3VrXRtMttAtI1RJVG9V42oDx+Z5/D3rKdWz5I7ibPNr+7Wa4klWNY1J+WNeijsKr29u80ijBaRjhVHvUsNjPcXiwpGzzM21UA5zXqvhbwhFoqrdXW2S9I+oj9h6n3p1KigtQbPLZLOeCYwMpRgfmz2r0TwLotmPMuLiJJAiZ+cZAzWhquk2viFJJbYbZonKFiMBiODUmj2N3Z6FdQoM3Dt5YOMADH/AOuvOxWIfLHldu/3GU5bHJ+I5Y5rtpEVVLMcBRjArEVihBBII6EGuh8QWEFiShk8ycfebPBPoPpXO9a1y2XNQ1d3d3KpaxPQvBviCe9LWdydzIuVfuRXZiuF8EaNNCrajMu1ZBiNT1I9fpXcjpUVuVTfKUH0o70ZNH8qyAOlFFFACHFFFFACUUUdKAD6Uooo7H3pgZTv1NQPLinyEVVlapGOabHQ03zveqrtTd5zTEWzN70nm571UMlJuOKYFwT470ef71TzQDzQBfFwfWpFnrNDEU4SEUAaq3A9amE+cYNZCS+tTJLQBrrMOKmEgPGayUmHHNWEmoEaIOaKrLNkVKsgNAD8UvajNHWgA4xRRR3oAKUHj3pOnNKKADoaWko60AKaSjpR3pDF7UdaM0UAGKXHNHUUUCA8Vj694htNCtTJO2ZSPkjHVjS6/r9roVkZpmDSEfJGDyxrxrVdUudXvnurlssx4UdFHpW9Gi5u72GkO1fVrrWbxrm5bJ/hUdFHpVNCFyWOAOpNRswAJJAHrUcVwslx5RAKHocV6OkVZDOj0m5WX5NhU5OM+gA5/wDHhWk7MHTCkrnkDqf/AK1YcEjQp5KZfcOS/p3Aro7Xe0KtIMMRnHce1Ytu5SHzTpZWhmJw7jCj0Hc/5965O8vHuJCc8Vo+Ibkm9aAZAiGzGe46/rmsOtYRsrgHvXTeBLY3Hiy1YD5Yg8jZ9NpA/Uiuaru/hjah9UvbrP8AqoRHj/eOf/ZaVZ2psT2PT+1eYfEnVPO1KDTo2+W3XfIP9pun6Y/OvTXYIhZjgAZJryc+F9a8SatcXr25toppC2+fIwM8DHU8VxYblUuaXQhHOwLIbB0VdxmlUKo5JKg//FCu18NfD+WZ1u9ZUxxjlbfPzN/vY6D26/Sus0HwtY6JFGVAmuEXHmuoyOSTj0/wFbwq6mJb0gO5CzQWVozHbFBChJwMBVA9vavD9UubnxP4iknjiaSWaTEUY6hRwB+XevR/Ht9MbCHRrNWku75vuJ1CA/1P6A07wv4Zh0C0MsxV7uQfvJOyj+6Pb+dTSkqced7sNhPD/hiDSpHvJgr3kn8R6Rj0Hv6mpL7V5D9qhiItXgcDdKm7ePUAdB7ms7WtSu7+e3exmaHTbe5RZJlODcMWwVX/AGBzk9z06ZrRuGtNcuJYbNs3FoMNOFzHuP8AAT39wOmaxlJyd2SY1pqd1o1y8NxJbMkshlUpuLSliThBj+ZAHJOBXSvHNfWsMxLREfvDCrDDHsCR1rP0fR4d88l3bNvH7sJKoZVHU7fYn+VR+IvEcGj2/wBjtNjXJXAA6RD/AB9BU+z9p7oWvocRrcryajKJGYsDznsa2vC3hdr+Rb2+jItByiH/AJaH/D+dR+GfDkusXP268DfZQ2SW6ynPT6ep/wAj0pECAAAAAcAVu5KjTVKHQpLlVhY41VQAAABwBTxSDpRXMAppppTSUAIc9BS9qPag0AGaOaTmjmgAo5o7UoPFMBPal4ope1AHPu3FVnPvTi/HXNQs2T1qRjG60w04nnmmk/nTAKQ0H60mMUCFzRwaTHaigB3rRzn2pM8+1KD3oAUfrTg2DmmUtAEyykVMkpFUqUMR9aYGok2asRyislJDxViOUjoaANdJAcVKHzWYkvT1qyk2cUAXAcdaXNQrIDUm4HnNAh1FAozQAc4oFLniikAGiiigBRR3xSDrS0AKKytd1y20SyaWVsyH7iDqTSa9rkOi2TSEq0zf6tM9TXk2pX9xqV01xcyF3b1PA+lb0aLm7vYaRU1TUrnVLx7i5kLMx4BPQelZxYAEnpU8o2gt2FZRunkuAFOBngeteheMEkPYlM5aQqEJUnaBViGNImJUYJ60iRKrF9oDHrTwKaXVgadpc7CM9jWqNTATjrXNqSO9SeY2MdqHFMZZ1Zi2q3RLBh5rEH1GetU8VdIF9ApXm5jXay/31A4I+g4x7Z9aqhDnGOaaAaFzXqfw0txHot1Ptw0k+3OOoCjH6k15miV7L4Ptja+FrJGxllMh/wCBEkfoRWGKfuWFLY3qinuIbaJpp5UijUZZnIAH4muQ17xqITJbaOY5p0GWkPKj12+pH5fXnHHPHqGrH7Tq15MU5Zd5z/3yvQfoK5YYdvWWgkjq9X8dfabiPTdBG+4mcRi4cYVSTjgHr9T+tdwgW3t1VmJVQFyxyT26nvXmngXTre48QNOkLbLRN29nz8x4HGPTd+Vd1rF1HHPbW+8CSTcygn0xz+tFaMYvliJiw2Ea31xfON9xNgFz/Cg6KPQd/c8/SW7sra/tmt7mJZYm6q3Q1l6pbX8t5FMl/NBp8ULGVYMb2cdMZUk8dqx7HxPNY6m9lqaXKWhXfFd3MflnH+0O3fBOM46euIhdX0OFi2nWlstjpzAS3123dFOQiZ7+/Ye9T6JbzXlxDcwRtY6JbLttLYDa03/TRx6egPJ6mtPT57rU5JbuZTFYsNsEDJ80i/8APRs8jPZfTr1wMjxT4mNkpsbJx9oIw7j/AJZj0+v8qqMXJ2QD/FHiRdOiaztXzdsOSP8AlmP8a53w14dk1i4+2XYb7Irck9ZT6fT1NJ4c0CTW7s3F1v8AsqHLsTzI3pn+Zr0uGCOGNI40VEQYVVGABW05KkuWO5Ww6GNY41VVCoowqgcAVJRRiuUBP50v1opDQAGjvRS4oAQ9Paig5ooAKKTHIwaWmAGkPSjqOaXtQAlKOtJ0pcCgDjzIaQtk0zJxRmpGLnNGaTrxQKYBQaM0negApaKOnNAgxSijtQBQAueaWgCjBFABSGlx70mKADNOVyKZR2pAWkmxyaspNis0EipFkIPWmBrxykVZR6yo5atxy5IoA0VbNOzVdGyKmTkUxDhS0lFAC0tN7UopALWfreprpOmyXW3cw4UHoTWhjrisjxJpkmraPJBEf3oO9QTjcRnimrX1A8tvtQuNTu3uLlyzt27D6VUK9qkeKSCZopUKOpwQRgg0nWvWja2hZkXE8n2ny1T5SQM45FO+zRo5cKAx74rRMa7idoye+KaY89qaXcCkUpNuKtmH0FNENUBAFp4WphCfSpVh4GRQMrBSCCM5zwRVyO6kLgSxxzD/AG15/MYJ/GpYrcEjI4q3bWMTTfMeM0m0Bd0yxkvcGK0t09wpb+ZIrrPEs13FpkWl2TFEEYSVwMEjGMDHT3q34eS2ghABG7FX9RlttjM207Rk1xTqXntsT1PP7PRxp6pczYM4+ZAeijscdz+n1zWfqWrGVmQIh5+ZznLVf13Vt8jRo31Nc7ZW0mo6lb2iE7ppAmcZxk9fw610xV/ekM9V8D2As/D0c7Jtkuj5rfTov6c/jXnPinX5tY1uWVJWFvG22AAkAAdG+vU/jXoXjDU49B8MC1tsI8y+REo/hXHJ/AcfiK8dJ5rKhHmbqMlHpXhfxeZI7ezv3/eP8qSnuR2Nde1pay3BuXiVpSgQseRtznGOnWvEJzsjt48AMse5sHqSSR+hFdFbeL9TTS/sYcbsbRMc7wP8fepqYe7vEGjqPE3ik2ZexsGHn9JJB/B7D3/l9enP+HfD8uuXLSzMy2qH944PLH0HvUPh/Qp9cujkslsh/ey/0Hqf5fofUrS0htLZLe3jWOFBhVH+eamclSXLHcNhLW2itrdIYUEcSDCqvYVYFFGc1yALSUdKKQAelIKWkJ5oAWkoJGKBQAGjFB5o70wCkNLyaOe1ACUUtHegAoPNKMfjSA5oA4qgnFJn86DipGLn/wCtSZoFIOKAFzRScUUAOpe9MzSjrTAevPtTwBUann61MBQIKMU8ClIFAEOOKaRUxHFRt3oAZQTmj60maAClPWkpcUgJo2NW4m6VRSrcXamBoxvwKtxniqERxVyM5piJ88UUgpaAClpO1LSAAaU80gpcc0Ac54k8MxatGZ4QEvFH3uzj0Pv7/wCR5rPby2s7wzIUdDghhXtuKw/EHh2DWYCy7Y7pR8j+vsa3o1nDR7DTPK8UoXiprq0nsrh4LiNo5EOCDUY+tegmmrosaUo8un5pwpiGrGKkVAO1KO1BbFIY4vtFCSktletVmfJq3YRiSQZo2A1LS9uIo85NMv8AWJZNPm+Y7vMUZz0GG/8ArflU1xIkUBHGcVg+esvm27OqLJgqx6bhnGT2HJH481CSetgZQllLEknJNdZ8OdN+1azLfOPktUwv++3H8g1cfLHJFIySKVYHBBHSu/tJz4Y+HInU7by/JKc9Nw4I+ijP1p1n7tl1JZzvjXWhq+vSeU263t/3UeDwcdT+J/QCsK2jRi0spxFHyR/ePZR9f0H5U8W4jxJdkxqeQg++3GRgdgcjk/hnGKhlmaUqAoVF+6q9BVxSjHlQCPI00zSOcsxyeK3/AA3oE+uXW1cpbp/rZcdPYepqp4f0G512/EMI2xLzLKRwg/qfQf8A1zXsemaZb6ZZR2tqm2JB36se5Pqawr1uT3Y7g2PsbKGxtY7a3TZFGMAf1PqaudqQ4FJXn7ki0lLSGkMD0pSc0lBOaAF7U2iigBaKKSgBaWkBoJNMAzQP0pKUc0ABpOaWgYzmgA9qKDS+lAjhycc9qQ9aM8Ude9SUL9DRnHakHNGe9AAc8UZxR2ooACaX8KSlzzQA5TiplPFQA4p6tTEWAQcU/ioA3pTw1ADyOKgcjNSb+KhY5NACY596Q+1B70UAH+eaWko6UASJ+tWoqqIeatRnpTAvRVcjqjEeBV2M9KBFkciikB4paAD6UoopPrSAcOaKBRQAdqKKXtQBj67oFvrNvhsJOo+SQfyPtXmN/YXGnXTW9xGVdfyI9a9mrM1rRbfWbUxTDa4/1cgHKn/D2ralVcH5DTPJAacDVjUdNudKumt7lMEdGHRh6iqua9CMk1dFEmajkbilzUMhqgInk5qaC8MRyDzVKQ5NR7uaYzRnv2l6mqTOSajBJ+tWpGjs/kQJJPgh3IyFPoo6HHr69OgJNgLekW95qV9b2MYLJK6oWZA3lr3IJHGBk8Vr+NNekuNY+yWcnl29l+7jKAAhhw2D1HpxxxVXQbuSxg1HXpnaSeNBBbtINxMr98n0UHj0NYk4MtvFct95mZGP94jBz+TCs7XnfsT1Kx9609D0O513UFtoBtUcySkcRr6/X0Hf9aZo2jXWt3621svu7noi+pr2LRdHttHsVtbVcKOWc9Xb1NRWrcistwbJdJ0u10iwjtLRNsadSfvO3dmPc/56Vo5pvbFHQV5zd9WSL79qKKDSAM0ZpO9JQAuQRS5pKMjtQAfWjIBoooAXiimmlHFMBaOhoPWk6daAF+lAH/6qKSgBehoo70lAC0vWmjpTugoA4bgZo70AUv8AOpKE6UZFLRQAlHGKKKAENAJ3f1paWgA9KUGk9qXpQBIppwI6VEDmnUxDy1R9aXtSfxdaADmijP5UUAFBoFGaAHLVmNqrIasxDPNMC7CeBV2M96oxcVdiPHWgRZU5FO6UxOlOJ60AKTmjNJ+dLmgBaKQU7PWkMTrS0nalFAB7UtJR3oEUNV0q21a1ME6/7rDqprzHWNGutGu/KnXKHlJB0YV68MVV1DT7fU7Rra5Tch6Hup9R71rTquDGnY8aqKStnWtEuNGuNkg3xH7kgHBFYzV6MJKSuiipIOahNWJRVc1Yy1YgqZpwcNBHvXr1JCgjHQjdn8Kqk81LazLE7K+7ypF2Pt64yD+hAOO+KcIIjKF+1xBdudxV8D2+7nNAFq6lP2Sy02FSxT944XJ3yvj9Qu1ceoPrUllpVxqt9BptmoZlGZXByinPzMT0wOBx1wMdRS6faT6nefZNPRpbib788nGB/Ee+B6nkn8SD6voOg22hWIgg+aRsGWUjmRv6D0Hb8STz1aqgrLclsfomiWuiWQtrZcnrJIfvSN6n/DtWsFApAMUZrz223dkhSjnrSZoJpALSGiigAoxRSZxQAUuOaTPfvS4oAWkooFAC9qKTvSimAcYopD0ozigBeKOT0oo/GgAApeg96QUGgBaXPFNzRQBxOMd6Qf5FLxjpR2qCgo7UUUwExS9qSloATvS5FJmjNAC0uab1peKAHDFKKbmjrQA6kwM5pKOvpTELgUpxSfjS0AANFIe1JyDxQA9etWozVVasIfrTAuxHNXIqpQ/WrkZ4FAi0vSnU1PennFACUvXNJ0ooAUU6m0uaBi0vTpSUA0gF4xR3pKKBC0ZpKU0AQXllBf2zwTxh0YdDXl/iPw5Posu9cyWrH5Hx09j7/wCfWvVs8VFc28V1bvBOgeNxhlPetKdRwd0NOx4PI3WoDXV+K/Ck2lSNc2wL2hPUdV+v+f8ACuTHSvShUU1dFXFq1Y2M+o3kVrbIXlkOAB/P6UyysrjULuO1tYjJNIcKo/zwPevYPDnhy30KzCrtkunX99Njr7D2/n1qK1VQXmDY/wAP6Bb6FYiKMB525mlxyx9B7CtoYA9qMADFArzW23dkCk00Z704c0tIBOoopKBQAtJS0lAC0DmjNJQMXvS0h6UdqAFPtSZ9qO9FMQuaKTFLQAn50UuKBQAgNKOtKQKQcd6AA8UuRSGkwRQAuc0tJjGeaUUAcTRxSZpR3qSw60dqM0npQIPpRmiigA6UcYpDRk5FAC0UmcnFLQAvelpKKAD60ZozxijpQIXPpQDSduaM0wHUlGc0UAOXFWIjVdetTx0AXYj0q7HziqURq5Ec0xFtOgp2aYpGKfmgA+lJR2ooAWl4pKKAHA5o4pAaM0gFoo96M80AANKeaTNGKAAUvegUA0AMliSWNkkQMrDBBGQRXE6j8ObSecyWlxJbqxzsK7gOe3NdyTR1qozlHYDA8PeGLXQIn8rMlxIMPM45x6D0Hf8A/UMb44GBSUo9qUpOTuwDvRmik60gHA0cUmcCjOaADOTRjNJmgdf5UALSg0g60tAwopKXrQAlGKWjFMA7ZopOnFOwO9AhPSlPrSCnZ4oAbxSjp0oxRnAoAM8UlLzRmgA4oBpME96M4oAXNL1NNpeaAOJP60CikJqCxaP50gOeB1opiF9aSiigBaM0h60nNAC0opPalFAC5o4opp69aAFoz+VIDR1oAWl60lFAhaO9JSimAoPNTRt0qvT1bBoA0I2q5E1Zcb1ailx3piNeNhipKz45sd6spKCKAJ+OlA5pgYetLmgB3XFGcCjtRn2oAWjvSGikAtGRR2oFACil5pO3FHvQADIpR+tJzRmgBTRSE0YNAC0U2lBoAWg0UmcUAGefalPSjijPJoAPqKMUhpaAF4oJxSHpSUDHZo79aSloAUE0lLRjNMBBS9sUDpmloENFOxRiigBDxRnFL3NHWgBO9LmgelHNAC0mPWlpM0wF60opD0pQaAOGoOe1GeKBWZQfWl+lJjmgUwF7UUh96KBh60Ue1H40CFo7UhJooAOaD3ozR1oAKOn1oo70AIfpQKX8qQfWgQtLTRS5oAPSnDtSZ4o9+9ADw2KlSWoM0ZxTAvpP6mrMc+e9ZIc1Kk2O9MDZSap1lFYyTe9WkmzjmgRqBsgU4dKpxzdOasJJke1AElLSDml6CgA6d6KT8KDSAXPApc00UtAC0GkpcUAHal6UmKQ0AOApCaKMUAGaXOabRmgB2aBSZpM0wHUdBSClPegBaSjilzQAn1p1J3paBgKKOTR3oAUUdO9JS9qBAP8APNLwO1IKXP50ABox6UlKKADHtR3pT1opgA60YGcijHHNFAAMUHFHWlx3oA4TOKWm0H2rModnilBpo4p2aYB9aO2aCc/Wk7UDFpOlAo6UALRSZ5ozQIXIpKDR60ABpCaKKADrR/KikoAUGjNJmlzQAtO70wfWnA8UAFLSCimIWgdaKKAHK5FTxy1WNKDtPWgDUil7VcikrGikq7DJ70wNZHzUgNU43zVhTQBJmkyB3opfxpABo9KMUtABRRRQIU4xRRSGgYvJ+lJ1oxzRQADpQKCTRmgA70YopQcmmIBS5pCKKAFpKMGjoOaAFpQaO1B4oAXpS5zTc0uKACjNJmjrQAvUUoooAoAXAoo6dKMUALikpc0Y6+tAC5zSdKXtmgUwEpe9L/Kg0AcFR1FJR0rMoUdfalHrQATQaAAHmlwMikzRTGL+NHtRnp70cUCA8D29KKT8aBQAZozRikwM0AGaKOtJ0+tAC0maKBwKAFpen1ptLnkUAL3pfrSAUdKAF604c0z0xS/jTEOJpKKKAFpO/wBKXoKOtIY+M4Iq7EapR1ci6imIvwtxV2PpVGHpV2PpTAlAopc8UmaQBRR2ooAMmlzSdqMe1ACj2opBxSnmgBKXHNJS9uKACgGk6UdaBC9aAAKKKYC7uOlA6ZpM07FACfjSnGaSgmgBaGG5cdPxozgc0UAAGBTqbmlzzQAYxS0maWgBecUYoGKX/OaBh+NKaB6GjFAgHWjpilFGcA0AAOaM0AGgDpTAM0E8+1OwTzS4oA8/zQAc80n40o/WsyxRjPvRR+VLQITFL+tJ1pKYDs/Wj8qQ0o4xQAv4Ug4pc0d6ACm9fpTs9qaaAEzRS9qTGB7UAFJnijNB6UAL1pabzS0AKTxzSjmkwCOaXpQAtA60Z5paBB2paaGzS0ALnijvSUq9aYyaMVciGKrRLV2IcigRZiHFXY+nNVohVtRgUwFzxRQaKQCfSiloNACA0UcZo7c0ALiijtSA0ALSE9qPwo+tABS0lAFAh2c0g70UUALmiminDmmAvUUUAZFFAB+NL2oo4oAOvWloGKXPNABjjiijFKORSAKKOhFOOSetMAJz2ooxgUD8qBjsd6AOKOQKX60AJjv/ACpduPrQOtB6kfnTEKDxSkdDkcjsaTJwKcOeooA874pR1o/lRzWZYuaKMc0vTFAADS0nWjP8qBB2ozR26fnQDTAB9KWkozzQAtBx+FHWkNABR70UlAB70hooxzQAfSlpMUUAOFKTTaXqKAFBpc9qQcUUCEXdk7sAdsGnUdqM0AKBT060ynx9etMC1EKuxCqcQ4FXoh0pgXIhVgdPeoYeB7VLQAppKWkPekAUHtRS0AJS4pOlHU0AAoOfSlx+lB5oATtiiloxQAlBPtR3ooEKDS03rS/WgBe1ApO1LkUAFKfWk96WmMO1FGP0oAoAOacM4o28UY9aBCjoKAMDrQDwOOlOHIoATntTs+1J/npTuc8UALjA4INAGOcUu7jOaM5GcjFABg54NLQTk8UdTx0pgAHPApxyBzQOR1/A0pw2AO/JoARQSOAacFz3GQO3egZ/LtTx1J28etAHmvpS0npQB3rMsfmim9PegH69KAHA0tIDQKYgooooAWijtR396ADpRRRQAg7UGjtQaAA+vakoowKAD3/SjOaPYUDHSgBfwpaQdqWgBaKKPxoELRSUvagAPapIxzUdSR0xl6DFX4RWfDjg1ow/WmItxjA4p+PzpqdKf04oASlxRRSAM0daPegcigBKKX2pMYoAWjOKTjFAHWmACigik60gFoxRj1o5zQAUooxijFABQBRSjj60CFxQeKKPxpjD86XGaUe9HH50AKDgUZpORS9KAAd6cDx0pAKcKQBSjnigY9aUDngHH1piADmnYAHr60gPvTs5PFMBOAB6ml469/rSd/54p/bpjIoAByMY59qcBjkfWlUcYyB74oxyRnA78UAIAMgCpApZgqckn0po5AA49fapQmSTtbHtn8KAPMM0UlA69azLDJ/Glo75pelAgFAozxQDximA40UA/jRnNABRmgHmjrQAv+RRnpRgetBoATOaM9aKQ+5oAKQGjI7UGgBc0fWkzzinY5oABxRSUvWgBRS5pAKUUALRmgUdaAAVIh5qM09Dg0wL0ODV+E/lWdCemavwHp6UxF9DxUnTvUUXQVLSAKDS0lAB9KTpS0UAFJQBSigAoxQOaSmAGil70h60AJSj3oopALxR60nNHNAC0vakpRTEA460ueKT8aUUAGePenZzjNJRQMdwRTgOMdqaB1pQcc9qAAjilB4NBJPpilUkZGe1IABGafTMU7PAz1FMQAcnbn3p3tmmfTipAo25yCf5UwFXJ5Ap4XID9BnjI44pAhySeO3Jp4PGOAvXNMAAGAe2eopNp2np2OQM0oDHGc8571Iv31V8kZyRnn0pAImCDnj1+tSlsn7xC5+uPaogrDKY6joevrmpkX+Fs7c4z6f5xQB5Xj0ooJOO1J0NZli/ypfWk4zS59KAF6d6OKQmk5oESD1pM80nUUuaAFz60A9KSlBpgB6UZzRS0ANz0pe3vRmjP5UDEpMZo7UfyoEA4pwH50lAoAWjFFA9DQAo5+lLj1oHTrR1oAMU7rSUdaAFpU60meM0L1oAuRHJrQhrNhzmtCDr1piNCPmpvxqCI1PQAeoNH16UuOKDQAnajFANLQAlBo7UlAB0pc0nWjuKACl7+1JS0AJS0lJigBxpKKKYCgc0v4/lSUo60AFKBigcZoJoEL1Ioo7UmDQMdg0DFGSMZoH86AH8AUoOcECkUD15pxx1/lQAnHXOKXgHJH60AZ607kdRQIeilRnGfwpRgN7fzoQkDjP5UpXK55IHt0/zmmA9BvAwcdj7e1Ls+VT2I4JFIhK4UexIHc807IJBHWmA/cSOpbHAwe30+tCjaA3ZvbPf/wCtSqpyCcA8nFPUjZgKBx078fWkAY3rnjdgDp14NOjIbgsR/WlHGQflB9+RUgTywrKemCD79/8AP0oA8jwKM96M8UYrMsX0oz6/rRRjmgAApfSkoORQAtKDSDNFADqX+VNU0uaAFo45NIDnOKWgAApD1xS9qQ80wE4NL+NIf1oNAC0dKTvzS9+KBB65pRSY6UooAKcKTt7U78aADrQaTk9aUdaAF74oHGKKQmgC1EelaEPas2I1owH1piNCEjGascVWi6CrK+lAC57UmaKD+lAAMYooFFABSd6WigBKQnFOGKQDjpQAUUUv40AJijNLj1ooAQ9aUDPSiimAYpRmkzSg4oAXPFHvSdOlOxQAYoB4oxx1o6UAOHvSUZ70AcUASAEY4NO6nimA8Y9KcO+KAFHXqB2ORTiMkDjJ6UwAE9afnkZPTpQAsajbx1Pp60/aRx1ApUwcbsjsdo7UEsQOOM9f8/WmIkjIbgkDPY/lSgdv59aISBn5gOMfhxTwDuXIIPTGcfhQAi5YYXPuBz/nvToyQAwGQTyKCp3YJxjg+1TFRu+6QMnJPXtwfx9PWgATJY4ySRyD2OP8M1K+A67sYJxgHnrgDA59sj1o2lVbcAOcAdwam2nC8bSz48ont06Hv/jQB4z3NOFN704dOazLDFL6UnpS5x60AL70lGKOnakAZo60UvtQAd/8KXr3ope9MBaTHXmjvmjNAB70lGe3ejgYoADjJpKM8mloAP8APFGRSHrQDmmA7IFB5NJSj2oEKOlL6Ug/SlzQAtLik7Uo+lAB1oFL1o70ATxckVfg4qjEauwnkUwNGI8VaXgVUi4Aq2vSmIOtBo7UUgFopAaWgBMdKKKKACiijigBKCaOO9H8qAFzxSHmlIo70AJ9aUUhFKOvtQAuKM0EUhPemAvelyTTenOacKAD0p3TNJkjikJ5oAXPanDGcE03GaUjHbNADgODTzg9AaYv1p/Q9fyoAVePWnsM/Lt5pg4Jz/8Aqp43DpyAOTQA5cjg57fhTlXKkYz7CmdSwY4PtUqHCLll6lQoHOP8mgCVRGOuQO5HJFOAV2AzyScn/P50zOABkEnPHHp/+unhSDnzFySCEX/PTH+HrhiHFABiTCjO0AjaDnvnr0P48dakwCqvwO+P8imRru2P8zPzx/KpGZVQMmMDqR1PXg0ASAEDHlkBjnK9MYXj6f41OiEkHdxxnPYkjB9+v+e8X3cBkVd/dj3POMnvjt9akDJtypYDgr159uD3wMe+OuKAPGRTh60nelrIsKcOtJ19aBTACfejv70h6UvY+tIBKOhpcevWkpgKKXOab9aWgB46UmaT60elABQaM0GgBM4zil/CgUh5oAXr9KBxSDjrS9TQAfhThTe1KKYDval7UgpR05oEKDS5pvalFAxc5o70Ud+KAJ4qvw1Qhq/COlCEaEQ6CrSjgVUhNXFPFMQE0HpS0lAAOKDzRS0AJQOtLSUAJ1o9aDRQAmKWijFABR3o7Yo5oAUc0UdKTJoAdQKQc0c0AL1peM0meKKADvTsZpKUcUwFHAoz1xRnI9qdyAMigBVxjgcUpAyDnrSAgc8Zpykd+BQAqcsKcFyTyOnUmmg/NnHTpmpBjHIBx7470AOwclGypBOQ3rTgByCf/wBVIu0neccnpinnCrlSMCmAqh2KjnIBOQKsxLl1BYKuME846f1qqjYBIOe2eanj6KQoLN0PXt/gTQIezbmXjk9QO35VMi/JnPAPr94nHApFG8BBtzjJzgg/T3xjihAigA5KjGN2fmH5H6/nQBZYEuRISgI/gXIwTxgf99fl0prlyrEYfOQwJ6nr+ORjp9etPiEhAkVGZNoOC2OccdP0+n4hrBdypIOSjKHXkEDjHPTkE8UAeOOuO1NH0qxItQEY7VkWA5496Xjgd6Re9OoATFHajpQaYAaKKSgA6c0v40nal4oAXpQTRSelACg8Uh60UZoAPxo70maKAFzQKKKAFz+VKP0pB6UvemAopfrSCloAXPvRmgc0UALmgcnmgcClXrQBZiHSr8I6VRhH5VoQjpihCLsQGKtL0qtEKtCmIPwooz7c0UAJR3oooAO9GaKKBhSdaU0lAB+lBopKBC0Zoo+lAB1pT1pM0oyaYCUUvQUZHekAuaXP8qQH15ooAKXikoFMBw607d2zx71HjABp2aAHD19accHI7Z/KkX3PP1p4OF56+tAABkjnjvin9ByPoQaZwv1pQVJHbmmBKoP8OeB1FPYchQBzgjP4CkXJDnK5Uc569R0pygsVBJPsKAHrxtJJAPcH3/8ArVKiFgpVxnqAOCDn/JqJDtKnPy84/wA+lPDmRUYqvb+HGfxHWgCbbvZUJzHkKQe4wO/b6duKsxlyAFVWLg/KTjJAHHPsf14qsrbVOAR8wxz0x6/n/OpYkJVHAQgNyHIPPJ7/AEx+f0IIenlbEZQdpVvlA53H0/TGasIVTaybgh5VeTnoDjHXqB7fzgQhSyBWBC7hhgMDG7P9Pb1qcKA+d7BsgspUdM5P/oRPegDyaVCDVV1xWnJHweKqSpgc1kWUselKPrT3XjFMxTADR2pDz2ox70AH1oxmlz60v8qAExRilIpKAF7UhoozSAT1o+tJ+FLzmmAc0g6e9GO1H0oAUH8qcKbn8qUGgBR0pc/nTc0ueKAFBpwpgFO7UwFzQeDTaWgB3WlUc00U9OtAFyEfhWhD0FZ8IrRgpiLsQ7cVPmoYuRmpgaBAaQmlozQADNHekyaXNAB0o5PWjFJk0ALikozRzmgApKM5FAoAUdKAKKKYBRRRmgAJoHFGe1GM0AL9aB7npQOOtL3oAB9KMdaQCg80AOBo59KTbincetADgenpT8ENgjBHUHtUWeBing4POOaAHAjgY/KlPJ+tN4xjPT1pw65/WmBICWbHfNPPQDkH1FMDyAdcZ4PPSn4DIdwIYc5z+P8AjQA4EsdgXdjk8c1OihJCRt6bgRwDwCD/AFxVc7SQ2cnt0/yOP5VPGzeUV+7lcgE9eR/hQIdGxT5ueAOc+/arknlqoALttIww+nP9Pf6VTRnGT82AeMfj/wDX+vNTIrCIlSAegbBzjBzx7jIzQBYWNywcZJA5x1zzgenYfrzUi4BXjeg5OM8ADk4Pfnr05+lR2x3Mu3cpIyxIOFxyDye3P50qjlQrKNgbIYYwfQ5Gcd/woA4CSPP0qpLF3rUZePeqzx5zkVBRkvHgHiqzIQc1rSRCqkkXGKQygcj6Uv1FSulRd6AClpBSmgBO9LzQeaB+lIBcflTaf+PFIQBmgBhFJj8aUmk60AFGDRSZ70wFIzS0lLigA/zmlxjmkzS8UwFBpaQGjIIoAU0uOc033NL35oAcMdacvWmAilB5oAvQHpWjDjisuJuma0IW5piNOI8VKMd6rRNx6VZB4piD2pDSk4NIT70gFpabn+dGeaYC56UUUZxQAnej1opegNACdaBR3ooAP5UUDpS4oASjNBoNABgilxzRRQAdqM0Ec5pQM9aADr0oxzQRS8dxxQAmf/r0A9DSE5PNL3HpQA7g55+nFOAzwDxTAOOlOBxg0APAAOBznoacXKjbjg4JxTc8Zxz6U4YJGD9MmmIkU/Lj88HjNKrbTwcMe/pSBgB94A85znH0NGcngDkZ9/1oAnDFfkyeDu49aefvnhlJG1ge/GPwqFTwuew5B9c/pUm8CZj8vBOSOPxoAkHzAv8AMGHK8cYHUfy/WpouFL4bbuADZIAIHt+PvyKg8wEjphVKnnvg4/n/AJ5qaLCyMXJXBHHHGRxx05OPwFMCRS0cQKSYB+/jGSQT0zwRjGfz5xVpsYJbOWZmzjg4JGMZ4OB79PpVTYQu1z/qwME9ccdP8981MpPA80BlUhi46nGAOehwf84oA5BhkVGyipscU081mUU3j9qrSR1osoqB48mgZkSRc9arOmD04rWkjHNU5Y8GkMpGj/CnuuKj5pAFLQBR7UCF5FIR1pc8UhoAb7UlFFACdDyaD0o/Cj2pgA6UoptO5JFABmgHApO1H8qYx2fagc0mcUZ460CHg0ZHakBo64oAWlye9JRQBNE/ODWjA/IrKQ4OatxSYxTEbcL1bVgayYZx0q/FICOtMCyelGR0poORR3pALkcUuabR+VMQ7PagU00oNAC+9Jk0vak7imIKKQ0tAAKWigUhhRnn1opMUALml6e1NxSimAvUUUe1JQIdkcUZpCO3FIeBQAvfFGaTOeaX3NIY7d29qMkfWmkZwTS4xnnpQA/cAOP1p4xwVYjjnNRjHf8AWncDIX889aBD+uPfpTx8oJ4OeBx1pgJP3uvQAg/5605WZTlRjHP/AOrFFwJQ2ApJPA4NKrgqC2AB7ZzgVFuDM2MBQfl9Tz0/z6VIJOmFB43bD39qYFjczKMjjknB/l7dKVt2EwWO5eABnOeB9fX8PXioo5d4w5XaOORwMnk/gKkX5GyyhlXII9/8eppgTxlCmWzyN3Y4GD+XQU5WMecgM3bJPPIBIx+H5VErEbgWzuyAeuDkd/rmk81mwOcnueM9s8Y/yT1oA//Z",
72 | "imageHeight": 512,
73 | "imageWidth": 512
74 | }
--------------------------------------------------------------------------------
/images_kp/im_92.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_92.jpg
--------------------------------------------------------------------------------
/images_kp/im_93.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_93.jpg
--------------------------------------------------------------------------------
/images_kp/im_95.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_95.jpg
--------------------------------------------------------------------------------
/images_kp/im_96.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_96.jpg
--------------------------------------------------------------------------------
/images_kp/im_97.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_97.jpg
--------------------------------------------------------------------------------
/images_kp/im_98.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_98.jpg
--------------------------------------------------------------------------------
/images_kp/im_99.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/images_kp/im_99.jpg
--------------------------------------------------------------------------------
/kd_epoch_519_model.ckpt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lyffly/KeyPointsDetection/669e3540efdc1758b0173aeefccd200b741ffa4e/kd_epoch_519_model.ckpt
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | import torch
3 | import torch.nn as nn
4 | from torch.nn import Upsample
5 | from torch.autograd import Variable
6 |
7 | class HourGlass(nn.Module):
8 | """不改变特征图的高宽"""
9 | def __init__(self,n=4,f=128):
10 | """
11 | :param n: hourglass模块的层级数目
12 | :param f: hourglass模块中的特征图数量
13 | :return:
14 | """
15 | super(HourGlass,self).__init__()
16 | self._n = n
17 | self._f = f
18 | self._init_layers(self._n,self._f)
19 |
20 | def _init_layers(self,n,f):
21 | # 上分支
22 | setattr(self,'res'+str(n)+'_1',Residual(f,f))
23 | # 下分支
24 | setattr(self,'pool'+str(n)+'_1',nn.MaxPool2d(2,2))
25 | setattr(self,'res'+str(n)+'_2',Residual(f,f))
26 | if n > 1:
27 | self._init_layers(n-1,f)
28 | else:
29 | self.res_center = Residual(f,f)
30 | setattr(self,'res'+str(n)+'_3',Residual(f,f))
31 | setattr(self,'unsample'+str(n),Upsample(scale_factor=2))
32 |
33 |
34 | def _forward(self,x,n,f):
35 | # 上分支
36 | up1 = x
37 | up1 = eval('self.res'+str(n)+'_1')(up1)
38 | # 下分支
39 | low1 = eval('self.pool'+str(n)+'_1')(x)
40 | low1 = eval('self.res'+str(n)+'_2')(low1)
41 | if n > 1:
42 | low2 = self._forward(low1,n-1,f)
43 | else:
44 | low2 = self.res_center(low1)
45 | low3 = low2
46 | low3 = eval('self.'+'res'+str(n)+'_3')(low3)
47 | up2 = eval('self.'+'unsample'+str(n)).forward(low3)
48 |
49 | return up1+up2
50 |
51 | def forward(self,x):
52 | return self._forward(x,self._n,self._f)
53 |
54 | class Residual(nn.Module):
55 | """
56 | 残差模块,并不改变特征图的宽高
57 | """
58 | def __init__(self,ins,outs):
59 | super(Residual,self).__init__()
60 | # 卷积模块
61 | self.convBlock = nn.Sequential(
62 | nn.BatchNorm2d(ins),
63 | nn.ReLU(inplace=True),
64 | nn.Conv2d(ins,int(outs/2),1),
65 | nn.BatchNorm2d(int(outs/2)),
66 | nn.ReLU(inplace=True),
67 | nn.Conv2d(int(outs/2),int(outs/2),3,1,1),
68 | nn.BatchNorm2d(int(outs/2)),
69 | nn.ReLU(inplace=True),
70 | nn.Conv2d(int(outs/2),outs,1)
71 | )
72 | # 跳层
73 | if ins != outs:
74 | self.skipConv = nn.Conv2d(ins,outs,1)
75 | self.ins = ins
76 | self.outs = outs
77 | def forward(self,x):
78 | residual = x
79 | x = self.convBlock(x)
80 | if self.ins != self.outs:
81 | residual = self.skipConv(residual)
82 | x += residual
83 | return x
84 |
85 | class Lin(nn.Module):
86 | def __init__(self,numIn=128,numout=4):
87 | super(Lin,self).__init__()
88 | self.conv = nn.Conv2d(numIn,numout,1)
89 | self.bn = nn.BatchNorm2d(numout)
90 | self.relu = nn.ReLU(inplace=True)
91 | def forward(self,x):
92 | return self.relu(self.bn(self.conv(x)))
93 |
94 |
95 | class KFSGNet(nn.Module):
96 |
97 | def __init__(self):
98 | super(KFSGNet,self).__init__()
99 | self.__conv1 = nn.Conv2d(3,64,1)
100 | self.__relu1 = nn.ReLU(inplace=True)
101 | self.__conv2 = nn.Conv2d(64,128,1)
102 | self.__relu2 = nn.ReLU(inplace=True)
103 | self.__hg = HourGlass()
104 | self.__lin = Lin()
105 | def forward(self,x):
106 | x = self.__relu1(self.__conv1(x))
107 | x = self.__relu2(self.__conv2(x))
108 | x = self.__hg(x)
109 | x = self.__lin(x)
110 | return x
111 |
112 |
113 | from torch.utils.data import Dataset,DataLoader
114 | import numpy as np
115 | import torch.optim as optim
116 |
117 | class tempDataset(Dataset):
118 | def __init__(self):
119 | self.X = np.random.randn(100,3,256,256)
120 | self.Y = np.random.randn(100,4,256,256)
121 | def __len__(self):
122 | return len(self.X)
123 | def __getitem__(self, item):
124 | # 这里返回的时候不要设置batch_size
125 | return self.X[item],self.Y[item]
126 |
127 | if __name__ == '__main__':
128 | from torch.nn import MSELoss
129 | critical = MSELoss()
130 |
131 | dataset = tempDataset()
132 | dataLoader = DataLoader(dataset=dataset,batch_size=4)
133 | shg = KFSGNet().cuda()
134 | optimizer = optim.SGD(shg.parameters(), lr=0.001, momentum=0.9,weight_decay=1e-4)
135 |
136 | for e in range(200):
137 | for i,(x,y) in enumerate(dataLoader):
138 | x = Variable(x,requires_grad=True).float().cuda()
139 | y = Variable(y).float().cuda()
140 | y_pred = shg.forward(x)
141 | loss = critical(y_pred[0],y[0])
142 | print('loss : {}'.format(loss.data))
143 | optimizer.zero_grad()
144 | loss.backward()
145 | optimizer.step()
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 |
3 | import torch
4 | import numpy as np
5 | from torch.utils.data import DataLoader
6 | from torch.autograd import Variable
7 | import matplotlib.pyplot as plt
8 | import pandas as pd
9 |
10 | from data_loader import KFDataset
11 | from models import KFSGNet
12 | from train import config,get_peak_points
13 | import cv2
14 | import time
15 |
16 |
17 | def toTensor(img):
18 | assert type(img) == np.ndarray,'the img type is {}, but ndarry expected'.format(type(img))
19 | #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
20 | img = torch.from_numpy(img.transpose((2, 0, 1)))
21 | #img = torch.from_numpy(img)
22 | return img.float().div(255).unsqueeze(0) # 255也可以改为256
23 |
24 | def test():
25 | # 加载模型
26 | net = KFSGNet()
27 | net.float().cuda()
28 | net.eval()
29 | if (config['checkout'] != ''):
30 | net.load_state_dict(torch.load(config['checkout']))
31 |
32 | all_result = []
33 |
34 | camera = cv2.VideoCapture(0)
35 |
36 | if not camera.isOpened():
37 | print("camera is not ready !!!!!")
38 | exit(0)
39 |
40 | while True:
41 | ret,frame = camera.read()
42 | if ret is None:
43 | break
44 | image = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
45 |
46 | height=len(image)
47 | width=len(image[0])
48 |
49 | t0 = time.time()
50 |
51 | image = image[0:height,0:height]
52 |
53 | image_resized = cv2.resize(image,(256,256))
54 |
55 | image1 = Variable(toTensor(image_resized)).cuda()
56 | pred_heatmaps = net(image1)
57 | #print(pred_heatmaps.shape)
58 |
59 | #cv2.imshow("heatmap",pred_heatmaps.cpu().data.numpy()[0][0])
60 |
61 |
62 | pred_points = get_peak_points(pred_heatmaps.cpu().data.numpy()) #(N,4,2)
63 | pred_points = pred_points.reshape((pred_points.shape[0],-1)) #(N,8)
64 |
65 | print(pred_points)
66 |
67 | image_resized = cv2.cvtColor(image_resized,cv2.COLOR_RGB2BGR)
68 |
69 | cv2.imshow("result",image_resized)
70 | cv2.waitKey(1)
71 |
72 |
73 | if __name__ == '__main__':
74 | test()
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | import torch
3 | from torch.autograd import Variable
4 | from torch.backends import cudnn
5 | import torch.nn as nn
6 | import torch.optim as optim
7 | from torch.utils.data import DataLoader
8 | import numpy as np
9 | import pprint
10 |
11 | from data_loader import KFDataset
12 | from models import KFSGNet
13 |
14 | config = dict()
15 | config['lr'] = 0.0000009
16 | config['momentum'] = 0.9
17 | config['weight_decay'] = 1e-4
18 | config['epoch_num'] = 100
19 | config['batch_size'] = 40
20 | config['sigma'] = 5.0
21 | config['debug_vis'] = False
22 |
23 | config['fname'] = 'images_kp/'
24 | config['is_test'] = False
25 |
26 | config['save_freq'] = 10
27 | config['checkout'] = 'kd_epoch_429_model.ckpt'
28 | config['start_epoch'] = 429
29 | config['load_pretrained_weights'] = True
30 | config['eval_freq'] = 5
31 | config['debug'] = False
32 | config['featurename2id'] = {
33 | 'point1_x':0,
34 | 'point1_y':1,
35 | 'point2_x':2,
36 | 'point2_y':3,
37 | 'point3_x':4,
38 | 'point3_y':5,
39 | 'point4_x':6,
40 | 'point4_y':7
41 | }
42 |
43 |
44 | def get_peak_points(heatmaps):
45 | """
46 |
47 | :param heatmaps: numpy array (N,4,256,256)
48 | :return:numpy array (N,4,2) #
49 | """
50 | N,C,H,W = heatmaps.shape # N= batch size C=4 hotmaps
51 | all_peak_points = []
52 | for i in range(N):
53 | peak_points = []
54 | for j in range(C):
55 | yy,xx = np.where(heatmaps[i,j] == heatmaps[i,j].max())
56 | y = yy[0]
57 | x = xx[0]
58 | peak_points.append([x,y])
59 | all_peak_points.append(peak_points)
60 | all_peak_points = np.array(all_peak_points)
61 | return all_peak_points
62 |
63 | def get_mse(pred_points,gts,indices_valid=None):
64 | """
65 |
66 | :param pred_points: numpy (N,4,2)
67 | :param gts: numpy (N,4,2)
68 | :return:
69 | """
70 | pred_points = pred_points[indices_valid[0],indices_valid[1],:]
71 | gts = gts[indices_valid[0],indices_valid[1],:]
72 | pred_points = Variable(torch.from_numpy(pred_points).float(),requires_grad=False)
73 | gts = Variable(torch.from_numpy(gts).float(),requires_grad=False)
74 | criterion = nn.MSELoss()
75 | loss = criterion(pred_points,gts)
76 | return loss
77 |
78 | # 计算mask ??
79 | def calculate_mask(heatmaps_target):
80 | """
81 |
82 | :param heatmaps_target: Variable (N,4,256,256)
83 | :return: Variable (N,4,256,256)
84 | """
85 | N,C,_,_ = heatmaps_targets.size() #N =8 C = 4
86 | N_idx = []
87 | C_idx = []
88 | for n in range(N): # 0-7
89 | for c in range(C): # 0-3
90 | max_v = heatmaps_targets[n,c,:,:].max().item()
91 | if max_v != 0.0:
92 | N_idx.append(n)
93 | C_idx.append(c)
94 | mask = Variable(torch.zeros(heatmaps_targets.size()))
95 | mask[N_idx,C_idx,:,:] = 1.0
96 | mask = mask.float().cuda()
97 | return mask,[N_idx,C_idx]
98 |
99 | if __name__ == '__main__':
100 | pprint.pprint(config)
101 | torch.manual_seed(0)
102 | cudnn.benchmark = True
103 | net = KFSGNet()
104 | net.float().cuda()
105 | net.train()
106 | criterion = nn.MSELoss()
107 | #criterion2 = nn.P()
108 | #optimizer = optim.SGD(net.parameters(), lr=config['lr'], momentum=config['momentum'] , weight_decay=config['weight_decay'])
109 | #optimizer = optim.Adam(net.parameters(),lr=config['lr'], weight_decay=config['weight_decay'])
110 | optimizer = optim.RMSprop(net.parameters(),lr=config['lr'],
111 | weight_decay=config['weight_decay'],
112 | momentum=config['momentum'])
113 | # 定义 Dataset
114 | trainDataset = KFDataset(config)
115 | #trainDataset.load()
116 | # 定义 data loader
117 | trainDataLoader = DataLoader(trainDataset,config['batch_size'],True,num_workers=8)
118 | sample_num = len(trainDataset)
119 |
120 | if config['load_pretrained_weights']:
121 | if (config['checkout'] != ''):
122 | net.load_state_dict(torch.load(config['checkout']))
123 |
124 | for epoch in range(config['start_epoch'],config['epoch_num']+config['start_epoch']):
125 | running_loss = 0.0
126 | for i, (inputs, heatmaps_targets, gts) in enumerate(trainDataLoader):
127 | inputs = Variable(inputs).cuda()
128 | heatmaps_targets = Variable(heatmaps_targets).cuda()
129 | mask,indices_valid = calculate_mask(heatmaps_targets)
130 |
131 | optimizer.zero_grad()
132 | outputs = net(inputs)
133 | outputs = outputs #* mask
134 | heatmaps_targets = heatmaps_targets #* mask
135 | loss = criterion(outputs, heatmaps_targets)
136 | loss.backward()
137 | optimizer.step()
138 |
139 | # 统计最大值与最小值
140 | v_max = torch.max(outputs)
141 | v_min = torch.min(outputs)
142 |
143 | # 评估
144 | all_peak_points = get_peak_points(heatmaps_targets.cpu().data.numpy())
145 | loss_coor = get_mse(all_peak_points, gts.numpy(),indices_valid)
146 |
147 | print('[ Epoch {:005d} -> {:005d} / {} ] loss : {:15} loss_coor : {:15} max : {:10} min : {}'.format(
148 | epoch, i * config['batch_size'],
149 | sample_num, loss.item(),loss_coor.item(),v_max.item(),v_min.item()))
150 |
151 |
152 |
153 | if (epoch+1) % config['save_freq'] == 0 or epoch == config['epoch_num'] - 1:
154 | torch.save(net.state_dict(),'kd_epoch_{}_model.ckpt'.format(epoch))
155 |
156 |
--------------------------------------------------------------------------------
/visualize.py:
--------------------------------------------------------------------------------
1 | from graphviz import Digraph
2 | import torch
3 | from torch.autograd import Variable
4 |
5 |
6 | def make_dot(var, params=None):
7 | """ Produces Graphviz representation of PyTorch autograd graph
8 |
9 | Blue nodes are the Variables that require grad, orange are Tensors
10 | saved for backward in torch.autograd.Function
11 |
12 | Args:
13 | var: output Variable
14 | params: dict of (name, Variable) to add names to node that
15 | require grad (TODO: make optional)
16 | """
17 | if params is not None:
18 | assert isinstance(params.values()[0], Variable)
19 | param_map = {id(v): k for k, v in params.items()}
20 |
21 | node_attr = dict(style='filled',
22 | shape='box',
23 | align='left',
24 | fontsize='12',
25 | ranksep='0.1',
26 | height='0.2')
27 | dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
28 | seen = set()
29 |
30 | def size_to_str(size):
31 | return '('+(', ').join(['%d' % v for v in size])+')'
32 |
33 | def add_nodes(var):
34 | if var not in seen:
35 | if torch.is_tensor(var):
36 | dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
37 | elif hasattr(var, 'variable'):
38 | u = var.variable
39 | name = param_map[id(u)] if params is not None else ''
40 | node_name = '%s\n %s' % (name, size_to_str(u.size()))
41 | dot.node(str(id(var)), node_name, fillcolor='lightblue')
42 | else:
43 | dot.node(str(id(var)), str(type(var).__name__))
44 | seen.add(var)
45 | if hasattr(var, 'next_functions'):
46 | for u in var.next_functions:
47 | if u[0] is not None:
48 | dot.edge(str(id(u[0])), str(id(var)))
49 | add_nodes(u[0])
50 | if hasattr(var, 'saved_tensors'):
51 | for t in var.saved_tensors:
52 | dot.edge(str(id(t)), str(id(var)))
53 | add_nodes(t)
54 | add_nodes(var.grad_fn)
55 | return dot
56 |
57 | if __name__ == '__main__':
58 | from models import KFSGNet
59 | from torch.autograd import Variable
60 | import torch
61 |
62 | net = KFSGNet()
63 | x = Variable(torch.randn((1,3,512,512)))
64 | y = net(x)
65 | g = make_dot(y)
66 | print(net)
67 | g.view()
68 | pass
--------------------------------------------------------------------------------