├── .env.example
├── .gitignore
├── README.md
├── README_EN.md
├── images
├── 1.png
├── 2.png
└── 3.png
├── main.py
└── requirements.txt
/.env.example:
--------------------------------------------------------------------------------
1 | # Dify API Keys Configuration
2 | # Format: Comma-separated list of API keys
3 | DIFY_API_KEYS=app-xxxxxxxxxxxxxxxx,app-yyyyyyyyyyyyyyyy,app-zzzzzzzzzzzzzzzz
4 |
5 | # Dify API Base URL
6 | DIFY_API_BASE="https://api.dify.example.com/v1"
7 |
8 | # 会话记忆功能模式
9 | # 1: 构造history_message附加到消息中的模式(默认)
10 | # 2: 当前的零宽字符模式
11 | CONVERSATION_MEMORY_MODE=1
12 |
13 | # Server Configuration
14 | SERVER_HOST="127.0.0.1"
15 | SERVER_PORT=5000
16 |
17 | # OpenAI compatable API Keys
18 | VALID_API_KEYS="sk-abc123,sk-def456"
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Python
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 | *.so
6 | .Python
7 | build/
8 | develop-eggs/
9 | dist/
10 | downloads/
11 | eggs/
12 | .eggs/
13 | lib/
14 | lib64/
15 | parts/
16 | sdist/
17 | var/
18 | wheels/
19 | *.egg-info/
20 | .installed.cfg
21 | *.egg
22 |
23 | # Virtual Environment
24 | venv/
25 | env/
26 | ENV/
27 | .env
28 |
29 | # IDE
30 | .idea/
31 | .vscode/
32 | *.swp
33 | *.swo
34 | .DS_Store
35 |
36 | # Logs
37 | *.log
38 | logs/
39 |
40 | # Local development
41 | .env
42 | .env.local
43 | .env.*.local
44 |
45 | # Testing
46 | .coverage
47 | htmlcov/
48 | .pytest_cache/
49 | .tox/
50 | .nox/
51 | coverage.xml
52 | *.cover
53 | .hypothesis/
54 |
55 | # Distribution
56 | *.pyc
57 | *.pyo
58 | *.pyd
59 | .Python
60 | *.so
61 |
62 | # Project specific
63 | *.pid
64 | *.sock
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # OpenDify
2 |
3 | OpenDify 是一个将 Dify API 转换为 OpenAI API 格式的代理服务器。它允许使用 OpenAI API 客户端直接与 Dify 服务进行交互。
4 |
5 | > 🌟 本项目完全由 Cursor + Claude-3.5 自动生成,未手动编写任何代码(包括此Readme),向 AI 辅助编程的未来致敬!
6 |
7 | [English Version](README_EN.md)
8 |
9 | ## 功能特点
10 |
11 | - 完整支持 OpenAI API 格式转换为 Dify API
12 | - 支持流式输出(Streaming)
13 | - 智能动态延迟控制,提供流畅的输出体验
14 | - 支持多种会话记忆模式,包括零宽字符模式和history_message模式
15 | - 支持 OpenAI Function Call 和 MCP Server 功能
16 | - 支持多个模型配置
17 | - 支持Dify Agent应用,处理高级工具调用(如生成图片等)
18 | - 兼容标准的 OpenAI API 客户端
19 | - 自动获取 Dify 应用信息
20 |
21 | ## 效果展示
22 |
23 | ### Function Call 和 MCP Server 支持
24 |
25 | 新增对 OpenAI Function Call 和 MCP Server 的支持,即使 Dify 不支持直接设置系统提示词:
26 |
27 | - 自动检测请求中的 `system` 角色消息
28 | - 智能将系统提示词插入到用户查询中
29 | - 防止重复插入系统提示词
30 | - 完美兼容 OpenAI 的 Function Call 格式
31 |
32 | 
33 |
34 | *上图展示了 OpenDify 对 Function Call 的支持。即使 Dify 应用不支持直接设置系统提示词,通过 OpenDify 的转换,也能正确处理 MCP Server 及 Function Call 的需求。*
35 |
36 | ### Dify Agent应用支持
37 |
38 | 
39 |
40 | *截图展示了OpenDify代理服务支持的Dify Agent应用界面,可以看到Agent成功地处理了用户的Python多线程用法请求,并返回了相关代码示例。*
41 |
42 | ### 会话记忆功能
43 |
44 | 
45 |
46 | *上图展示了OpenDify的会话记忆功能。当用户提问"今天是什么天气?"时,AI能够记住之前对话中提到"今天是晴天"的上下文信息,并给出相应回复。*
47 |
48 |
49 | ### 会话记忆功能
50 |
51 | 该代理支持自动记忆会话上下文,无需客户端进行额外处理。提供了两种会话记忆模式:
52 |
53 | 1. **history_message模式**:将历史消息直接附加到当前消息中,支持客户端编辑历史消息(默认)
54 | 2. **零宽字符模式**:在每个新会话的第一条回复中,会自动嵌入不可见的会话ID,后续消息自动继承上下文
55 |
56 | 可以通过环境变量控制此功能:
57 |
58 | ```shell
59 | # 在 .env 文件中设置会话记忆模式
60 | # 1: 构造history_message附加到消息中的模式(默认)
61 | # 2: 零宽字符模式
62 | CONVERSATION_MEMORY_MODE=1
63 | ```
64 |
65 | 默认情况下使用history_message模式,这种模式更灵活,支持客户端编辑历史消息,并能更好地处理系统提示词。
66 |
67 | > 注意:history_message模式会将所有历史消息追加到当前消息中,可能会消耗更多的token。
68 |
69 | ### 流式输出优化
70 |
71 | - 智能缓冲区管理
72 | - 动态延迟计算
73 | - 平滑的输出体验
74 |
75 | ### 配置灵活性
76 |
77 | - 自动获取应用信息
78 | - 简化的配置方式
79 | - 动态模型名称映射
80 |
81 | ## 支持的模型
82 |
83 | 支持任意 Dify 应用,系统会自动从 Dify API 获取应用名称和信息。只需在配置文件中添加应用的 API Key 即可。
84 |
85 | ## API 使用
86 |
87 | ### List Models
88 |
89 | 获取所有可用模型列表:
90 |
91 | ```python
92 | import openai
93 |
94 | openai.api_base = "http://127.0.0.1:5000/v1"
95 | openai.api_key = "any" # 可以使用任意值
96 |
97 | # 获取可用模型列表
98 | models = openai.Model.list()
99 | print(models)
100 |
101 | # 输出示例:
102 | {
103 | "object": "list",
104 | "data": [
105 | {
106 | "id": "My Translation App", # Dify 应用名称
107 | "object": "model",
108 | "created": 1704603847,
109 | "owned_by": "dify"
110 | },
111 | {
112 | "id": "Code Assistant", # 另一个 Dify 应用名称
113 | "object": "model",
114 | "created": 1704603847,
115 | "owned_by": "dify"
116 | }
117 | ]
118 | }
119 | ```
120 |
121 | 系统会自动从 Dify API 获取应用名称,并用作模型 ID。
122 |
123 | ### Chat Completions
124 |
125 | ```python
126 | import openai
127 |
128 | openai.api_base = "http://127.0.0.1:5000/v1"
129 | openai.api_key = "any" # 可以使用任意值
130 |
131 | response = openai.ChatCompletion.create(
132 | model="My Translation App", # 使用 Dify 应用的名称
133 | messages=[
134 | {"role": "user", "content": "你好"}
135 | ],
136 | stream=True
137 | )
138 |
139 | for chunk in response:
140 | print(chunk.choices[0].delta.content or "", end="")
141 | ```
142 |
143 | ## 快速开始
144 |
145 | ### 环境要求
146 |
147 | - Python 3.9+
148 | - pip
149 |
150 | ### 安装依赖
151 |
152 | ```bash
153 | pip install -r requirements.txt
154 | ```
155 |
156 | ### 配置
157 |
158 | 1. 复制 `.env.example` 文件并重命名为 `.env`:
159 | ```bash
160 | cp .env.example .env
161 | ```
162 |
163 | 2. 在 Dify 平台配置应用:
164 | - 登录 Dify 平台,进入工作室
165 | - 点击"创建应用",配置好需要的模型(如 Claude、Gemini 等)
166 | - 配置应用的提示语和其他参数
167 | - 发布应用
168 | - 进入"访问 API"页面,生成 API 密钥
169 |
170 | > **重要说明**:Dify 不支持在请求时动态传入提示词、切换模型及其他参数。所有这些配置都需要在创建应用时设置好。Dify 会根据 API 密钥来确定使用哪个应用及其对应的配置。系统会自动从 Dify API 获取应用的名称和描述信息。
171 |
172 | 3. 在 `.env` 文件中配置你的 Dify API Keys:
173 | ```env
174 | # Dify API Keys Configuration
175 | # Format: Comma-separated list of API keys
176 | DIFY_API_KEYS=app-xxxxxxxx,app-yyyyyyyy,app-zzzzzzzz
177 |
178 | # Dify API Base URL
179 | DIFY_API_BASE="https://your-dify-api-base-url/v1"
180 |
181 | # Server Configuration
182 | SERVER_HOST="127.0.0.1"
183 | SERVER_PORT=5000
184 | ```
185 |
186 | 配置说明:
187 | - `DIFY_API_KEYS`:以逗号分隔的 API Keys 列表,每个 Key 对应一个 Dify 应用
188 | - 系统会自动从 Dify API 获取每个应用的名称和信息
189 | - 无需手动配置模型名称和映射关系
190 |
191 | ### 运行服务
192 |
193 | ```bash
194 | python openai_to_dify.py
195 | ```
196 |
197 | 服务将在 `http://127.0.0.1:5000` 启动
198 |
199 | ## 贡献指南
200 |
201 | 欢迎提交 Issue 和 Pull Request 来帮助改进项目。
202 |
203 | ## 许可证
204 |
205 | [MIT License](LICENSE)
--------------------------------------------------------------------------------
/README_EN.md:
--------------------------------------------------------------------------------
1 | # OpenDify
2 |
3 | OpenDify is a proxy server that transforms the Dify API into OpenAI API format. It allows direct interaction with Dify services using any OpenAI API client.
4 |
5 | > 🌟 This project was fully generated by Cursor + Claude-3.5, without any manual coding (including this README), salute to the future of AI-assisted programming!
6 |
7 | [中文版本](README.md)
8 |
9 | ## Features
10 |
11 | - Full support for converting OpenAI API formats to Dify API
12 | - Streaming output support
13 | - Intelligent dynamic delay control for smooth output experience
14 | - Multiple conversation memory modes, including zero-width character mode and history_message mode
15 | - Support for OpenAI Function Call and MCP Server functionality
16 | - Support for multiple model configurations
17 | - Support for Dify Agent applications with advanced tool calls (like image generation)
18 | - Compatible with standard OpenAI API clients
19 | - Automatic fetching of Dify application information
20 |
21 | ## Screenshots
22 |
23 | ### Function Call and MCP Server Support
24 |
25 | 
26 |
27 | *The above image demonstrates OpenDify's support for Function Call. Even though Dify applications don't support setting system prompts directly, through OpenDify's conversion, it can correctly handle MCP Server and Function Call requirements.*
28 |
29 | ### Dify Agent Application Support
30 |
31 | 
32 |
33 | *The screenshot shows the Dify Agent application interface supported by the OpenDify proxy service. It demonstrates how the Agent successfully processes a user's request about Python multithreading usage and returns relevant code examples.*
34 |
35 | ### Conversation Memory Feature
36 |
37 | 
38 |
39 | *The above image demonstrates the conversation memory feature of OpenDify. When the user asks "What's the weather today?", the AI remembers the context from previous conversations that "today is sunny" and provides an appropriate response.*
40 |
41 | ## Detailed Features
42 |
43 | ### Function Call and MCP Server Support
44 |
45 | Added support for OpenAI Function Call and MCP Server, even though Dify doesn't support setting system prompts directly:
46 |
47 | - Automatically detects `system` role messages in requests
48 | - Intelligently inserts system prompts into user queries
49 | - Prevents duplicate insertion of system prompts
50 | - Perfectly compatible with OpenAI Function Call format
51 |
52 | ### Conversation Memory
53 |
54 | The proxy supports automatic remembering of conversation context without requiring additional processing by the client. It provides three conversation memory modes:
55 |
56 | 1. **No conversation memory**: Each conversation is independent, with no context association
57 | 2. **history_message mode**: Directly appends historical messages to the current message, supporting client-side editing of historical messages
58 | 3. **Zero-width character mode**: Automatically embeds an invisible session ID in the first reply of each new conversation, and subsequent messages automatically inherit the context
59 |
60 | This feature can be controlled via environment variable:
61 |
62 | ```shell
63 | # Set conversation memory mode in the .env file
64 | # 0: No conversation memory
65 | # 1: Construct history_message attached to the message
66 | # 2: Zero-width character mode (default)
67 | CONVERSATION_MEMORY_MODE=2
68 | ```
69 |
70 | Zero-width character mode is used by default. For scenarios that need to support client-side editing of historical messages, the history_message mode is recommended.
71 |
72 | > Note: history_message mode will append all historical messages to the current message, which may consume more tokens.
73 |
74 | ### Streaming Output Optimization
75 |
76 | - Intelligent buffer management
77 | - Dynamic delay calculation
78 | - Smooth output experience
79 |
80 | ### Configuration Flexibility
81 |
82 | - Automatic application information retrieval
83 | - Simplified configuration method
84 | - Dynamic model name mapping
85 |
86 | ## Supported Models
87 |
88 | Supports any Dify application. The system automatically retrieves application names and information from the Dify API. Simply add the API Key for the application in the configuration file.
89 |
90 | ## API Usage
91 |
92 | ### List Models
93 |
94 | Get a list of all available models:
95 |
96 | ```python
97 | import openai
98 |
99 | openai.api_base = "http://127.0.0.1:5000/v1"
100 | openai.api_key = "any" # Can use any value
101 |
102 | # Get available models
103 | models = openai.Model.list()
104 | print(models)
105 |
106 | # Example output:
107 | {
108 | "object": "list",
109 | "data": [
110 | {
111 | "id": "My Translation App", # Dify application name
112 | "object": "model",
113 | "created": 1704603847,
114 | "owned_by": "dify"
115 | },
116 | {
117 | "id": "Code Assistant", # Another Dify application name
118 | "object": "model",
119 | "created": 1704603847,
120 | "owned_by": "dify"
121 | }
122 | ]
123 | }
124 | ```
125 |
126 | The system automatically retrieves application names from the Dify API and uses them as model IDs.
127 |
128 | ### Chat Completions
129 |
130 | ```python
131 | import openai
132 |
133 | openai.api_base = "http://127.0.0.1:5000/v1"
134 | openai.api_key = "any" # Can use any value
135 |
136 | response = openai.ChatCompletion.create(
137 | model="My Translation App", # Use the Dify application name
138 | messages=[
139 | {"role": "user", "content": "Hello"}
140 | ],
141 | stream=True
142 | )
143 |
144 | for chunk in response:
145 | print(chunk.choices[0].delta.content or "", end="")
146 | ```
147 |
148 | ## Quick Start
149 |
150 | ### Requirements
151 |
152 | - Python 3.9+
153 | - pip
154 |
155 | ### Installing Dependencies
156 |
157 | ```bash
158 | pip install -r requirements.txt
159 | ```
160 |
161 | ### Configuration
162 |
163 | 1. Copy the `.env.example` file and rename it to `.env`:
164 | ```bash
165 | cp .env.example .env
166 | ```
167 |
168 | 2. Configure your application on the Dify platform:
169 | - Log in to the Dify platform and enter the workspace
170 | - Click "Create Application" and configure the required models (such as Claude, Gemini, etc.)
171 | - Configure the application prompts and other parameters
172 | - Publish the application
173 | - Go to the "Access API" page and generate an API key
174 |
175 | > **Important Note**: Dify does not support dynamically passing prompts, switching models, or other parameters in requests. All these configurations need to be set when creating the application. Dify determines which application and its corresponding configuration to use based on the API key. The system will automatically retrieve the application's name and description information from the Dify API.
176 |
177 | 3. Configure your Dify API Keys in the `.env` file:
178 | ```env
179 | # Dify API Keys Configuration
180 | # Format: Comma-separated list of API keys
181 | DIFY_API_KEYS=app-xxxxxxxx,app-yyyyyyyy,app-zzzzzzzz
182 |
183 | # Dify API Base URL
184 | DIFY_API_BASE="https://your-dify-api-base-url/v1"
185 |
186 | # Server Configuration
187 | SERVER_HOST="127.0.0.1"
188 | SERVER_PORT=5000
189 | ```
190 |
191 | Configuration notes:
192 | - `DIFY_API_KEYS`: A comma-separated list of API Keys, each corresponding to a Dify application
193 | - The system automatically retrieves the name and information of each application from the Dify API
194 | - No need to manually configure model names and mapping relationships
195 |
196 | ### Running the Service
197 |
198 | ```bash
199 | python openai_to_dify.py
200 | ```
201 |
202 | The service will start at `http://127.0.0.1:5000`
203 |
204 | ## Contribution Guidelines
205 |
206 | Issues and Pull Requests are welcome to help improve the project.
207 |
208 | ## License
209 |
210 | [MIT License](LICENSE)
--------------------------------------------------------------------------------
/images/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lzskyline/OpenDify/5350860f787d7ef68e8a89128abe100544037920/images/1.png
--------------------------------------------------------------------------------
/images/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lzskyline/OpenDify/5350860f787d7ef68e8a89128abe100544037920/images/2.png
--------------------------------------------------------------------------------
/images/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/lzskyline/OpenDify/5350860f787d7ef68e8a89128abe100544037920/images/3.png
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | import json
2 | import logging
3 | import asyncio
4 | from flask import Flask, request, Response, stream_with_context, jsonify
5 | import httpx
6 | import time
7 | from dotenv import load_dotenv
8 | import os
9 | import ast
10 |
11 | # 配置日志
12 | logging.basicConfig(
13 | level=logging.INFO,
14 | format='%(asctime)s - %(levelname)s - %(message)s'
15 | )
16 | logger = logging.getLogger(__name__)
17 |
18 | # 设置httpx的日志级别为WARNING,减少不必要的输出
19 | logging.getLogger("httpx").setLevel(logging.WARNING)
20 |
21 | # 加载环境变量
22 | load_dotenv()
23 |
24 | # 从环境变量读取有效的API密钥(逗号分隔)
25 | VALID_API_KEYS = [key.strip() for key in os.getenv("VALID_API_KEYS", "").split(",") if key]
26 |
27 | # 获取会话记忆功能模式配置
28 | # 1: 构造history_message附加到消息中的模式(默认)
29 | # 2: 零宽字符模式
30 | CONVERSATION_MEMORY_MODE = int(os.getenv('CONVERSATION_MEMORY_MODE', '1'))
31 |
32 | class DifyModelManager:
33 | def __init__(self):
34 | self.api_keys = []
35 | self.name_to_api_key = {} # 应用名称到API Key的映射
36 | self.api_key_to_name = {} # API Key到应用名称的映射
37 | self.load_api_keys()
38 |
39 | def load_api_keys(self):
40 | """从环境变量加载API Keys"""
41 | api_keys_str = os.getenv('DIFY_API_KEYS', '')
42 | if api_keys_str:
43 | self.api_keys = [key.strip() for key in api_keys_str.split(',') if key.strip()]
44 | logger.info(f"Loaded {len(self.api_keys)} API keys")
45 |
46 | async def fetch_app_info(self, api_key):
47 | """获取Dify应用信息"""
48 | try:
49 | async with httpx.AsyncClient() as client:
50 | headers = {
51 | "Authorization": f"Bearer {api_key}",
52 | "Content-Type": "application/json"
53 | }
54 | response = await client.get(
55 | f"{DIFY_API_BASE}/info",
56 | headers=headers,
57 | params={"user": "default_user"}
58 | )
59 |
60 | if response.status_code == 200:
61 | app_info = response.json()
62 | return app_info.get("name", "Unknown App")
63 | else:
64 | logger.error(f"Failed to fetch app info for API key: {api_key[:8]}...")
65 | return None
66 | except Exception as e:
67 | logger.error(f"Error fetching app info: {str(e)}")
68 | return None
69 |
70 | async def refresh_model_info(self):
71 | """刷新所有应用信息"""
72 | self.name_to_api_key.clear()
73 | self.api_key_to_name.clear()
74 |
75 | for api_key in self.api_keys:
76 | app_name = await self.fetch_app_info(api_key)
77 | if app_name:
78 | self.name_to_api_key[app_name] = api_key
79 | self.api_key_to_name[api_key] = app_name
80 | logger.info(f"Mapped app '{app_name}' to API key: {api_key[:8]}...")
81 |
82 | def get_api_key(self, model_name):
83 | """根据模型名称获取API Key"""
84 | return self.name_to_api_key.get(model_name)
85 |
86 | def get_available_models(self):
87 | """获取可用模型列表"""
88 | return [
89 | {
90 | "id": name,
91 | "object": "model",
92 | "created": int(time.time()),
93 | "owned_by": "dify"
94 | }
95 | for name in self.name_to_api_key.keys()
96 | ]
97 |
98 | # 创建模型管理器实例
99 | model_manager = DifyModelManager()
100 |
101 | # 从环境变量获取API基础URL
102 | DIFY_API_BASE = os.getenv("DIFY_API_BASE", "")
103 |
104 | app = Flask(__name__)
105 |
106 | def get_api_key(model_name):
107 | """根据模型名称获取对应的API密钥"""
108 | api_key = model_manager.get_api_key(model_name)
109 | if not api_key:
110 | logger.warning(f"No API key found for model: {model_name}")
111 | return api_key
112 |
113 | def transform_openai_to_dify(openai_request, endpoint):
114 | """将OpenAI格式的请求转换为Dify格式"""
115 |
116 | if endpoint == "/chat/completions":
117 | messages = openai_request.get("messages", [])
118 | stream = openai_request.get("stream", False)
119 |
120 | # 尝试从历史消息中提取conversation_id
121 | conversation_id = None
122 |
123 | # 提取system消息内容
124 | system_content = ""
125 | system_messages = [msg for msg in messages if msg.get("role") == "system"]
126 | if system_messages:
127 | system_content = system_messages[0].get("content", "")
128 | # 记录找到的system消息
129 | logger.info(f"Found system message: {system_content[:100]}{'...' if len(system_content) > 100 else ''}")
130 |
131 | if CONVERSATION_MEMORY_MODE == 2: # 零宽字符模式
132 | if len(messages) > 1:
133 | # 遍历历史消息,找到最近的assistant消息
134 | for msg in reversed(messages[:-1]): # 除了最后一条消息
135 | if msg.get("role") == "assistant":
136 | content = msg.get("content", "")
137 | # 尝试解码conversation_id
138 | conversation_id = decode_conversation_id(content)
139 | if conversation_id:
140 | break
141 |
142 | # 获取最后一条用户消息
143 | user_query = messages[-1]["content"] if messages and messages[-1].get("role") != "system" else ""
144 |
145 | # 如果有system消息且是首次对话(没有conversation_id),则将system内容添加到用户查询前
146 | if system_content and not conversation_id:
147 | user_query = f"系统指令: {system_content}\n\n用户问题: {user_query}"
148 | logger.info(f"[零宽字符模式] 首次对话,添加system内容到查询前")
149 |
150 | dify_request = {
151 | "inputs": {},
152 | "query": user_query,
153 | "response_mode": "streaming" if stream else "blocking",
154 | "conversation_id": conversation_id,
155 | "user": openai_request.get("user", "default_user")
156 | }
157 | else: # history_message模式(默认)
158 | # 获取最后一条用户消息
159 | user_query = messages[-1]["content"] if messages and messages[-1].get("role") != "system" else ""
160 |
161 | # 构造历史消息
162 | if len(messages) > 1:
163 | history_messages = []
164 | has_system_in_history = False
165 |
166 | # 检查历史消息中是否已经包含system消息
167 | for msg in messages[:-1]: # 除了最后一条消息
168 | role = msg.get("role", "")
169 | content = msg.get("content", "")
170 | if role and content:
171 | if role == "system":
172 | has_system_in_history = True
173 | history_messages.append(f"{role}: {content}")
174 |
175 | # 如果历史中没有system消息但现在有system消息,则添加到历史的最前面
176 | if system_content and not has_system_in_history:
177 | history_messages.insert(0, f"system: {system_content}")
178 | logger.info(f"[history_message模式] 添加system内容到历史消息前")
179 |
180 | # 将历史消息添加到查询中
181 | if history_messages:
182 | history_context = "\n\n".join(history_messages)
183 | user_query = f"\n{history_context}\n\n\n用户当前问题: {user_query}"
184 | elif system_content: # 没有历史消息但有system消息
185 | user_query = f"系统指令: {system_content}\n\n用户问题: {user_query}"
186 | logger.info(f"[history_message模式] 首次对话,添加system内容到查询前")
187 |
188 | dify_request = {
189 | "inputs": {},
190 | "query": user_query,
191 | "response_mode": "streaming" if stream else "blocking",
192 | "user": openai_request.get("user", "default_user")
193 | }
194 |
195 | return dify_request
196 |
197 | return None
198 |
199 | def transform_dify_to_openai(dify_response, model="claude-3-5-sonnet-v2", stream=False):
200 | """将Dify格式的响应转换为OpenAI格式"""
201 |
202 | if not stream:
203 | # 首先获取回答内容,支持不同的响应模式
204 | answer = ""
205 | mode = dify_response.get("mode", "")
206 |
207 | # 普通聊天模式
208 | if "answer" in dify_response:
209 | answer = dify_response.get("answer", "")
210 |
211 | # 如果是Agent模式,需要从agent_thoughts中提取回答
212 | elif "agent_thoughts" in dify_response:
213 | # Agent模式下通常最后一个thought包含最终答案
214 | agent_thoughts = dify_response.get("agent_thoughts", [])
215 | if agent_thoughts:
216 | for thought in agent_thoughts:
217 | if thought.get("thought"):
218 | answer = thought.get("thought", "")
219 |
220 | # 只在零宽字符会话记忆模式时处理conversation_id
221 | if CONVERSATION_MEMORY_MODE == 2:
222 | conversation_id = dify_response.get("conversation_id", "")
223 | history = dify_response.get("conversation_history", [])
224 |
225 | # 检查历史消息中是否已经有会话ID
226 | has_conversation_id = False
227 | if history:
228 | for msg in history:
229 | if msg.get("role") == "assistant":
230 | content = msg.get("content", "")
231 | if decode_conversation_id(content) is not None:
232 | has_conversation_id = True
233 | break
234 |
235 | # 只在新会话且历史消息中没有会话ID时插入
236 | if conversation_id and not has_conversation_id:
237 | logger.info(f"[Debug] Inserting conversation_id: {conversation_id}, history_length: {len(history)}")
238 | encoded = encode_conversation_id(conversation_id)
239 | answer = answer + encoded
240 | logger.info(f"[Debug] Response content after insertion: {repr(answer)}")
241 |
242 | return {
243 | "id": dify_response.get("message_id", ""),
244 | "object": "chat.completion",
245 | "created": dify_response.get("created", int(time.time())),
246 | "model": model,
247 | "choices": [{
248 | "index": 0,
249 | "message": {
250 | "role": "assistant",
251 | "content": answer
252 | },
253 | "finish_reason": "stop"
254 | }]
255 | }
256 | else:
257 | # 流式响应的转换在stream_response函数中处理
258 | return dify_response
259 |
260 | def create_openai_stream_response(content, message_id, model="claude-3-5-sonnet-v2"):
261 | """创建OpenAI格式的流式响应"""
262 | return {
263 | "id": message_id,
264 | "object": "chat.completion.chunk",
265 | "created": int(time.time()),
266 | "model": model,
267 | "choices": [{
268 | "index": 0,
269 | "delta": {
270 | "content": content
271 | },
272 | "finish_reason": None
273 | }]
274 | }
275 |
276 | def encode_conversation_id(conversation_id):
277 | """将conversation_id编码为不可见的字符序列"""
278 | if not conversation_id:
279 | return ""
280 |
281 | # 使用Base64编码减少长度
282 | import base64
283 | encoded = base64.b64encode(conversation_id.encode()).decode()
284 |
285 | # 使用8种不同的零宽字符表示3位数字
286 | # 这样可以将编码长度进一步减少
287 | char_map = {
288 | '0': '\u200b', # 零宽空格
289 | '1': '\u200c', # 零宽非连接符
290 | '2': '\u200d', # 零宽连接符
291 | '3': '\ufeff', # 零宽非断空格
292 | '4': '\u2060', # 词组连接符
293 | '5': '\u180e', # 蒙古语元音分隔符
294 | '6': '\u2061', # 函数应用
295 | '7': '\u2062', # 不可见乘号
296 | }
297 |
298 | # 将Base64字符串转换为八进制数字
299 | result = []
300 | for c in encoded:
301 | # 将每个字符转换为8进制数字(0-7)
302 | if c.isalpha():
303 | if c.isupper():
304 | val = ord(c) - ord('A')
305 | else:
306 | val = ord(c) - ord('a') + 26
307 | elif c.isdigit():
308 | val = int(c) + 52
309 | elif c == '+':
310 | val = 62
311 | elif c == '/':
312 | val = 63
313 | else: # '='
314 | val = 0
315 |
316 | # 每个Base64字符可以产生2个3位数字
317 | first = (val >> 3) & 0x7
318 | second = val & 0x7
319 | result.append(char_map[str(first)])
320 | if c != '=': # 不编码填充字符的后半部分
321 | result.append(char_map[str(second)])
322 |
323 | return ''.join(result)
324 |
325 | def decode_conversation_id(content):
326 | """从消息内容中解码conversation_id"""
327 | try:
328 | # 零宽字符到3位数字的映射
329 | char_to_val = {
330 | '\u200b': '0', # 零宽空格
331 | '\u200c': '1', # 零宽非连接符
332 | '\u200d': '2', # 零宽连接符
333 | '\ufeff': '3', # 零宽非断空格
334 | '\u2060': '4', # 词组连接符
335 | '\u180e': '5', # 蒙古语元音分隔符
336 | '\u2061': '6', # 函数应用
337 | '\u2062': '7', # 不可见乘号
338 | }
339 |
340 | # 提取最后一段零宽字符序列
341 | space_chars = []
342 | for c in reversed(content):
343 | if c not in char_to_val:
344 | break
345 | space_chars.append(c)
346 |
347 | if not space_chars:
348 | return None
349 |
350 | # 将零宽字符转换回Base64字符串
351 | space_chars.reverse()
352 | base64_chars = []
353 | for i in range(0, len(space_chars), 2):
354 | first = int(char_to_val[space_chars[i]], 8)
355 | if i + 1 < len(space_chars):
356 | second = int(char_to_val[space_chars[i + 1]], 8)
357 | val = (first << 3) | second
358 | else:
359 | val = first << 3
360 |
361 | # 转换回Base64字符
362 | if val < 26:
363 | base64_chars.append(chr(val + ord('A')))
364 | elif val < 52:
365 | base64_chars.append(chr(val - 26 + ord('a')))
366 | elif val < 62:
367 | base64_chars.append(str(val - 52))
368 | elif val == 62:
369 | base64_chars.append('+')
370 | else:
371 | base64_chars.append('/')
372 |
373 | # 添加Base64填充
374 | padding = len(base64_chars) % 4
375 | if padding:
376 | base64_chars.extend(['='] * (4 - padding))
377 |
378 | # 解码Base64字符串
379 | import base64
380 | base64_str = ''.join(base64_chars)
381 | return base64.b64decode(base64_str).decode()
382 |
383 | except Exception as e:
384 | logger.debug(f"Failed to decode conversation_id: {e}")
385 | return None
386 |
387 | @app.route('/v1/chat/completions', methods=['POST'])
388 | def chat_completions():
389 | try:
390 | # 新增:验证API密钥
391 | auth_header = request.headers.get('Authorization')
392 | if not auth_header:
393 | return jsonify({
394 | "error": {
395 | "message": "Missing Authorization header",
396 | "type": "invalid_request_error",
397 | "param": None,
398 | "code": "invalid_api_key"
399 | }
400 | }), 401
401 |
402 | parts = auth_header.split()
403 | if len(parts) != 2 or parts[0].lower() != 'bearer':
404 | return jsonify({
405 | "error": {
406 | "message": "Invalid Authorization header format. Expected: Bearer ",
407 | "type": "invalid_request_error",
408 | "param": None,
409 | "code": "invalid_api_key"
410 | }
411 | }), 401
412 |
413 | provided_api_key = parts[1]
414 | if provided_api_key not in VALID_API_KEYS:
415 | return jsonify({
416 | "error": {
417 | "message": "Invalid API key",
418 | "type": "invalid_request_error",
419 | "param": None,
420 | "code": "invalid_api_key"
421 | }
422 | }), 401
423 |
424 | # 继续处理原始逻辑
425 | openai_request = request.get_json()
426 | logger.info(f"Received request: {json.dumps(openai_request, ensure_ascii=False)}")
427 |
428 | model = openai_request.get("model", "claude-3-5-sonnet-v2")
429 |
430 | # 验证模型是否支持
431 | api_key = get_api_key(model)
432 | if not api_key:
433 | error_msg = f"Model {model} is not supported. Available models: {', '.join(model_manager.name_to_api_key.keys())}"
434 | logger.error(error_msg)
435 | return {
436 | "error": {
437 | "message": error_msg,
438 | "type": "invalid_request_error",
439 | "code": "model_not_found"
440 | }
441 | }, 404
442 |
443 | dify_request = transform_openai_to_dify(openai_request, "/chat/completions")
444 |
445 | if not dify_request:
446 | logger.error("Failed to transform request")
447 | return {
448 | "error": {
449 | "message": "Invalid request format",
450 | "type": "invalid_request_error",
451 | }
452 | }, 400
453 |
454 | headers = {
455 | "Authorization": f"Bearer {api_key}",
456 | "Content-Type": "application/json"
457 | }
458 |
459 | stream = openai_request.get("stream", False)
460 | dify_endpoint = f"{DIFY_API_BASE}/chat-messages"
461 | logger.info(f"Sending request to Dify endpoint: {dify_endpoint}, stream={stream}")
462 |
463 | if stream:
464 | def generate():
465 | client = httpx.Client(timeout=None)
466 |
467 | def flush_chunk(chunk_data):
468 | """Helper function to flush chunks immediately"""
469 | return chunk_data.encode('utf-8')
470 |
471 | def calculate_delay(buffer_size):
472 | """
473 | 根据缓冲区大小动态计算延迟
474 | buffer_size: 缓冲区中剩余的字符数量
475 | """
476 | if buffer_size > 30: # 缓冲区内容较多,快速输出
477 | return 0.001 # 5ms延迟
478 | elif buffer_size > 20: # 中等数量,适中速度
479 | return 0.002 # 10ms延迟
480 | elif buffer_size > 10: # 较少内容,稍慢速度
481 | return 0.01 # 20ms延迟
482 | else: # 内容很少,使用较慢的速度
483 | return 0.02 # 30ms延迟
484 |
485 | def send_char(char, message_id):
486 | """Helper function to send single character"""
487 | openai_chunk = {
488 | "id": message_id,
489 | "object": "chat.completion.chunk",
490 | "created": int(time.time()),
491 | "model": model,
492 | "choices": [{
493 | "index": 0,
494 | "delta": {
495 | "content": char
496 | },
497 | "finish_reason": None
498 | }]
499 | }
500 | chunk_data = f"data: {json.dumps(openai_chunk)}\n\n"
501 | return flush_chunk(chunk_data)
502 |
503 | # 初始化缓冲区
504 | output_buffer = []
505 |
506 | try:
507 | with client.stream(
508 | 'POST',
509 | dify_endpoint,
510 | json=dify_request,
511 | headers={
512 | **headers,
513 | 'Accept': 'text/event-stream',
514 | 'Cache-Control': 'no-cache',
515 | 'Connection': 'keep-alive'
516 | }
517 | ) as response:
518 | generate.message_id = None
519 | buffer = ""
520 |
521 | for raw_bytes in response.iter_raw():
522 | if not raw_bytes:
523 | continue
524 |
525 | try:
526 | buffer += raw_bytes.decode('utf-8')
527 |
528 | while '\n' in buffer:
529 | line, buffer = buffer.split('\n', 1)
530 | line = line.strip()
531 |
532 | if not line or not line.startswith('data: '):
533 | continue
534 |
535 | try:
536 | json_str = line[6:]
537 | dify_chunk = json.loads(json_str)
538 |
539 | if dify_chunk.get("event") == "message" and "answer" in dify_chunk:
540 | current_answer = dify_chunk["answer"]
541 | if not current_answer:
542 | continue
543 |
544 | message_id = dify_chunk.get("message_id", "")
545 | if not generate.message_id:
546 | generate.message_id = message_id
547 |
548 | # 将当前批次的字符添加到输出缓冲区
549 | for char in current_answer:
550 | output_buffer.append((char, generate.message_id))
551 |
552 | # 根据缓冲区大小动态调整输出速度
553 | while output_buffer:
554 | char, msg_id = output_buffer.pop(0)
555 | yield send_char(char, msg_id)
556 | # 根据剩余缓冲区大小计算延迟
557 | delay = calculate_delay(len(output_buffer))
558 | time.sleep(delay)
559 |
560 | # 立即继续处理下一个请求
561 | continue
562 |
563 | # 处理Agent模式的消息事件
564 | elif dify_chunk.get("event") == "agent_message" and "answer" in dify_chunk:
565 | current_answer = dify_chunk["answer"]
566 | if not current_answer:
567 | continue
568 |
569 | message_id = dify_chunk.get("message_id", "")
570 | if not generate.message_id:
571 | generate.message_id = message_id
572 |
573 | # 将当前批次的字符添加到输出缓冲区
574 | for char in current_answer:
575 | output_buffer.append((char, generate.message_id))
576 |
577 | # 根据缓冲区大小动态调整输出速度
578 | while output_buffer:
579 | char, msg_id = output_buffer.pop(0)
580 | yield send_char(char, msg_id)
581 | # 根据剩余缓冲区大小计算延迟
582 | delay = calculate_delay(len(output_buffer))
583 | time.sleep(delay)
584 |
585 | # 立即继续处理下一个请求
586 | continue
587 |
588 | # 处理Agent的思考过程,记录日志但不输出给用户
589 | elif dify_chunk.get("event") == "agent_thought":
590 | thought_id = dify_chunk.get("id", "")
591 | thought = dify_chunk.get("thought", "")
592 | tool = dify_chunk.get("tool", "")
593 | tool_input = dify_chunk.get("tool_input", "")
594 | observation = dify_chunk.get("observation", "")
595 |
596 | logger.info(f"[Agent Thought] ID: {thought_id}, Tool: {tool}")
597 | if thought:
598 | logger.info(f"[Agent Thought] Thought: {thought}")
599 | if tool_input:
600 | logger.info(f"[Agent Thought] Tool Input: {tool_input}")
601 | if observation:
602 | logger.info(f"[Agent Thought] Observation: {observation}")
603 |
604 | # 获取message_id以关联思考和最终输出
605 | message_id = dify_chunk.get("message_id", "")
606 | if not generate.message_id and message_id:
607 | generate.message_id = message_id
608 |
609 | continue
610 |
611 | # 处理消息中的文件(如图片),记录日志但不直接输出给用户
612 | elif dify_chunk.get("event") == "message_file":
613 | file_id = dify_chunk.get("id", "")
614 | file_type = dify_chunk.get("type", "")
615 | file_url = dify_chunk.get("url", "")
616 |
617 | logger.info(f"[Message File] ID: {file_id}, Type: {file_type}, URL: {file_url}")
618 | continue
619 |
620 | elif dify_chunk.get("event") == "message_end":
621 | # 快速输出剩余内容
622 | while output_buffer:
623 | char, msg_id = output_buffer.pop(0)
624 | yield send_char(char, msg_id)
625 | time.sleep(0.001) # 固定使用最小延迟快速输出剩余内容
626 |
627 | # 只在零宽字符会话记忆模式时处理conversation_id
628 | if CONVERSATION_MEMORY_MODE == 2:
629 | conversation_id = dify_chunk.get("conversation_id")
630 | history = dify_chunk.get("conversation_history", [])
631 |
632 | has_conversation_id = False
633 | if history:
634 | for msg in history:
635 | if msg.get("role") == "assistant":
636 | content = msg.get("content", "")
637 | if decode_conversation_id(content) is not None:
638 | has_conversation_id = True
639 | break
640 |
641 | # 只在新会话且历史消息中没有会话ID时插入
642 | if conversation_id and not has_conversation_id:
643 | logger.info(f"[Debug] Inserting conversation_id in stream: {conversation_id}")
644 | encoded = encode_conversation_id(conversation_id)
645 | logger.info(f"[Debug] Stream encoded content: {repr(encoded)}")
646 | for char in encoded:
647 | yield send_char(char, generate.message_id)
648 |
649 | final_chunk = {
650 | "id": generate.message_id,
651 | "object": "chat.completion.chunk",
652 | "created": int(time.time()),
653 | "model": model,
654 | "choices": [{
655 | "index": 0,
656 | "delta": {},
657 | "finish_reason": "stop"
658 | }]
659 | }
660 | yield flush_chunk(f"data: {json.dumps(final_chunk)}\n\n")
661 | yield flush_chunk("data: [DONE]\n\n")
662 |
663 | except json.JSONDecodeError as e:
664 | logger.error(f"JSON decode error: {str(e)}")
665 | continue
666 |
667 | except Exception as e:
668 | logger.error(f"Error processing chunk: {str(e)}")
669 | continue
670 |
671 | finally:
672 | client.close()
673 |
674 | return Response(
675 | stream_with_context(generate()),
676 | content_type='text/event-stream',
677 | headers={
678 | 'Cache-Control': 'no-cache, no-transform',
679 | 'Connection': 'keep-alive',
680 | 'Transfer-Encoding': 'chunked',
681 | 'X-Accel-Buffering': 'no',
682 | 'Content-Encoding': 'none'
683 | },
684 | direct_passthrough=True
685 | )
686 | else:
687 | async def sync_response():
688 | try:
689 | async with httpx.AsyncClient() as client:
690 | response = await client.post(
691 | dify_endpoint,
692 | json=dify_request,
693 | headers=headers
694 | )
695 |
696 | if response.status_code != 200:
697 | error_msg = f"Dify API error: {response.text}"
698 | logger.error(f"Request failed: {error_msg}")
699 | return {
700 | "error": {
701 | "message": error_msg,
702 | "type": "api_error",
703 | "code": response.status_code
704 | }
705 | }, response.status_code
706 |
707 | dify_response = response.json()
708 | logger.info(f"Received response from Dify: {json.dumps(dify_response, ensure_ascii=False)}")
709 | logger.info(f"[Debug] Response content: {repr(dify_response.get('answer', ''))}")
710 | openai_response = transform_dify_to_openai(dify_response, model=model)
711 | conversation_id = dify_response.get("conversation_id")
712 | if conversation_id:
713 | # 在响应头中传递conversation_id
714 | return Response(
715 | json.dumps(openai_response),
716 | content_type='application/json',
717 | headers={
718 | 'Conversation-Id': conversation_id
719 | }
720 | )
721 | else:
722 | return openai_response
723 | except httpx.RequestError as e:
724 | error_msg = f"Failed to connect to Dify: {str(e)}"
725 | logger.error(error_msg)
726 | return {
727 | "error": {
728 | "message": error_msg,
729 | "type": "api_error",
730 | "code": "connection_error"
731 | }
732 | }, 503
733 |
734 | return asyncio.run(sync_response())
735 |
736 | except Exception as e:
737 | logger.exception("Unexpected error occurred")
738 | return {
739 | "error": {
740 | "message": str(e),
741 | "type": "internal_error",
742 | }
743 | }, 500
744 |
745 | @app.route('/v1/models', methods=['GET'])
746 | def list_models():
747 | """返回可用的模型列表"""
748 | logger.info("Listing available models")
749 |
750 | # 刷新模型信息
751 | asyncio.run(model_manager.refresh_model_info())
752 |
753 | # 获取可用模型列表
754 | available_models = model_manager.get_available_models()
755 |
756 | response = {
757 | "object": "list",
758 | "data": available_models
759 | }
760 | logger.info(f"Available models: {json.dumps(response, ensure_ascii=False)}")
761 | return response
762 |
763 | # 在main.py的最后初始化时添加环境变量检查:
764 | if __name__ == '__main__':
765 | if not VALID_API_KEYS:
766 | print("Warning: No API keys configured. Set the VALID_API_KEYS environment variable with comma-separated keys.")
767 |
768 | # 启动时初始化模型信息
769 | asyncio.run(model_manager.refresh_model_info())
770 |
771 | host = os.getenv("SERVER_HOST", "127.0.0.1")
772 | port = int(os.getenv("SERVER_PORT", 5000))
773 | logger.info(f"Starting server on http://{host}:{port}")
774 | app.run(debug=True, host=host, port=port)
775 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | flask
2 | httpx
3 | python-dotenv
--------------------------------------------------------------------------------