├── .gitignore
├── LICENSE
├── README.md
├── Seizure Detection Pipeline-Description.docx
├── evaluate
├── 2-unet-prediction.py
├── 3-lstm-fusion.py
├── 4-postprocessing.py
├── Preparing Predictions.ipynb
├── README.md
├── attention_unet_iclabel.h5
├── attention_unet_raw.h5
├── attention_unet_wiener.h5
└── model-dnn-dnnw-dnnicalbl-lstm-4.h5
├── hyp_lstm.txt
├── library
├── filters.pickle
├── loading.py
├── nedc.py
├── preprocess.py
├── spir.py
└── wiener.py
├── neureka_ieee_spmb.pdf
├── python_requirements.txt
└── training
├── 1-wiener-training.py
├── 2-iclabel
├── README.md
├── findRecording.m
├── getContent.m
├── input.mat
├── neureka.locs
├── pop_clean_rawdata.m
├── pop_runica.m
├── run_ica.m
└── run_icalabel.m
├── 3-DNN
├── 3-load-data.py
├── 3-train-unet.py
├── README.md
└── utils.py
├── 4-train-lstm.py
└── README.md
/.gitignore:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/.gitignore
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Seizure Detection Codebase used in Neureka Challenge 2020
2 |
3 |
4 | This repository contains the code of the *Biomed Irregulars* submission to the Neureka Challenge 2020. The *Biomed irregulars* team consists of PhD students from the the ESAT-STADIUS research group at KU Leuven: C. Chatzichristos, J. Dan, A.M. Narayanan, N. Seeuws, K. Vandecasteele.
5 |
6 | The seizure detection algorithm is based on the fusion of multiple attention U-nets, each operating on a distinct view of the EEG data. The outputs of the different U-nets are fused by an LSTM network. More information about the methods and results can be found in the preliminary version of the paper [neureka_ieee_spmb.pdf](neureka_ieee_spmb.pdf).
7 |
8 |
9 | ## Code
10 | 1. `library/` - This folder contains the general functions used accross modules: data loading, re-referencing, resampling and filtering.
11 | 2. `training/` - Contains the code to train the Wiener filters, U-nets and LSTM models.
12 | 3. `evaluate/` - Contains the code to run the seizure detection pipeline on unlabelled data.
13 |
14 | ## Requirements
15 |
16 | The codebase uses a mix of Python 3 and Matlab.
17 |
18 | The dataset used is the [TUH EEG Seizure dataset](https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml).
19 |
20 | Matlab requires the [EEGlab](https://sccn.ucsd.edu/eeglab/index.php) toolbox.
21 |
22 | Python requires the libraries listed in [python_requirements.txt](python_requirements.txt).
23 |
24 | ----
25 |
26 | While the intent of the code is to allow deceminatation and re-use of our pipeline and model architecture. We realize the code is not *click & run* and documentation is sometimes lacking. We do invite you to contact us through email or as a github issue to improve quality and understanding of the code.
27 |
28 |
29 | ---
30 |
31 | The code is release under the GNU GPLv3 license.
32 |
33 |
34 |
--------------------------------------------------------------------------------
/Seizure Detection Pipeline-Description.docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/Seizure Detection Pipeline-Description.docx
--------------------------------------------------------------------------------
/evaluate/2-unet-prediction.py:
--------------------------------------------------------------------------------
1 | """Generate U-net predictions
2 |
3 | Requires pre-processed EDF files similar to the training step
4 | Requires the trained U-net model
5 |
6 | Produces a results HDF5 file with predictions for every file
7 | """
8 |
9 |
10 | # Libraries
11 | import h5py
12 | import numpy as np
13 | from sklearn import model_selection
14 | from sklearn import metrics
15 | import os
16 | import tensorflow as tf
17 |
18 | # Import some utilities from the training folder
19 | import sys
20 | sys.path.insert(0, 'training/3-DNN/')
21 | from utils import build_windowfree_unet, setup_tf
22 |
23 | # All relevant files
24 | val_path = 'PATH_TO_DATASET.h5' # Pre-processed data file
25 | saved_predictions = 'PATH_TO_PREDICTIONS.h5' # File to store the prediction
26 | network_path = 'PATH_TO_NETWORK_WEIGHTS.h5' # Path to trained weights
27 |
28 | # Data settings
29 | fs = 200
30 | n_channels = 18
31 | n_filters = 8
32 |
33 | # Tensorflow function to detect GPU properly
34 | setup_tf()
35 |
36 | # Loading the signals
37 | with h5py.File(val_path, 'r') as f:
38 | file_names_test = []
39 | signals_test = []
40 |
41 | file_names_ds = f['filenames']
42 | signals_ds = f['signals']
43 |
44 | for i in range(len(signals_ds)):
45 | file_names_test.append(file_names_ds[i])
46 | data = np.asarray(np.vstack(signals_ds[i]).T, dtype=np.float32)
47 | mean = np.mean(data, axis=0)
48 | std = np.std(data, axis=0)
49 | signals_test.append((data-mean)/(std+1e-8))
50 |
51 | # Building a windowfree U-net and load trained weights
52 | unet = build_windowfree_unet(n_channels=n_channels, n_filters=n_filters)
53 | unet.load_weights(network_path)
54 |
55 | # Predictions using the windowfree U-net on CPU, our GPU ran out of memory
56 | y_probas = []
57 | reduction = 4096//4
58 | with tf.device('cpu:0'):
59 | for signal in signals_test:
60 | signal = signal[:len(signal)//reduction*reduction, :]
61 | prediction = unet.predict(signal[np.newaxis, :, :, np.newaxis])[0, :, 0, 0]
62 | y_probas.append(prediction)
63 |
64 | # Saving predictions
65 | dt_fl = h5py.vlen_dtype(np.dtype('float32'))
66 | dt_str = h5py.special_dtype(vlen=str)
67 | with h5py.File(saved_predictions, 'w') as f:
68 | dset_signals = f.create_dataset('signals', (len(file_names_test),), dtype=dt_fl)
69 | dset_file_names = f.create_dataset('filenames', (len(file_names_test),), dtype=dt_str)
70 |
71 | for i in range(len(file_names_test)):
72 | dset_signals[i] = y_probas[i]
73 | dset_file_names[i] = file_names_test[i]
74 |
--------------------------------------------------------------------------------
/evaluate/3-lstm-fusion.py:
--------------------------------------------------------------------------------
1 | """Fuse U-net predictions with an LSTM network
2 |
3 | Requires predictions from the U-nets
4 | Requires the trained LSTM model
5 |
6 | Produces a results pickle file to be used by the postprocessing
7 | """
8 |
9 | # +
10 | import sys
11 | # Root folder of main library
12 | sys.path.insert(0, 'library')
13 | # Root folder of EDF files
14 | EDF_ROOT = '/esat/biomeddata/Neureka_challenge/edf/dev/'
15 | # Root folder of predictions on edf files
16 | PREDICTION_ROOT = 'evaluation'
17 |
18 | # std lib
19 | import os
20 | import pickle
21 |
22 | # 3rd party lib
23 | import h5py
24 | from keras.models import load_model
25 | import numpy as np
26 | import resampy
27 |
28 |
29 | # +
30 | def load_filenames():
31 | filenames = list()
32 | with h5py.File(os.joind(PREDICTION_ROOT, 'prediction_test_iclabel.h5'), 'r') as f:
33 | filenames = list(f['filenames'])
34 | return filenames
35 |
36 |
37 | def prepare_file(file_i, filename, classifiers, f_nick, model_type):
38 | # Load data
39 | x = list()
40 | for classifier in classifiers:
41 | if classifier['format'] == 'nick':
42 | z = list(f_nick[classifier['name']]['filenames'])
43 | file_i = z.index(filename)
44 | predictions = f_nick[classifier['name']]['signals'][file_i]
45 | predictions = downsample(predictions, 200, fs)
46 | x.append(np.array(predictions, dtype=float))
47 |
48 | x = np.array(x)
49 | x = np.transpose(x)
50 | if model_type == 'lstm' or model_type == 'gru':
51 | x = x.reshape((len(x), 1, len(x[0])))
52 |
53 | return x
54 |
55 | def downsample(x, oldFs, newFs):
56 | return resampy.resample(x, oldFs, newFs)
57 |
58 |
59 |
60 | def test(model, modeltype, classifiers, filenames):
61 | # Preload Nick data
62 | f_nick = dict()
63 | for classifier in classifiers:
64 | if classifier['format'] == 'nick':
65 | f_nick[classifier['name']] = h5py.File(classifier['file'], 'r')
66 |
67 | # Predict probabilities
68 | results = list()
69 | for i, filename in enumerate(filenames):
70 | x, y = prepare_file(i, filename, classifiers, f_nick, modeltype)
71 | u = model.predict(x, batch_size=1)
72 | model.reset_states()
73 | results.append(u)
74 |
75 | with open('lstm-results.pkl', 'wb') as filehandler:
76 | pickle.dump(results, filehandler)
77 |
78 | # Close Nick data
79 | for key in f_nick:
80 | f_nick[key].close()
81 |
82 |
83 | # +
84 | fs = 1
85 |
86 | classifiers = [{
87 | 'name': 'ICA',
88 | 'file': os.join(PREDICTION_ROOT, 'prediction_test_iclabel.h5'),
89 | 'fs': 200,
90 | 'format': 'nick',
91 | },
92 | {
93 | 'name': 'DNN',
94 | 'file': os.join(PREDICTION_ROOT, 'prediction_test_raw.h5'),
95 | 'fs': 200,
96 | 'format': 'nick',
97 | },
98 | {
99 | 'name': 'DNN-wiener',
100 | 'file': os.join(PREDICTION_ROOT, 'prediction_test_wiener.h5'),
101 | 'fs': 200,
102 | 'format': 'nick',
103 | }
104 | ]
105 |
106 | modeltype = 'lstm'
107 | complexity = 4
108 |
109 | filenames = load_filenames()
110 | model = load_model('model-dnn-dnnw-dnnicalbl-lstm-4.h5')
111 | test(model, modeltype, classifiers, filenames)
--------------------------------------------------------------------------------
/evaluate/4-postprocessing.py:
--------------------------------------------------------------------------------
1 |
2 | """Build hypothesis file by applying post-processing rules
3 | to LSTM output
4 |
5 | Requires LSTM output
6 |
7 | Produces a hypothesis txt file
8 | """
9 |
10 | # +
11 | import sys
12 | # Root folder of main library
13 | sys.path.insert(0, 'library')
14 | # Root folder of EDF files
15 | EDF_ROOT = '/esat/biomeddata/Neureka_challenge/edf/dev/'
16 | # Root folder of predictions on edf files
17 | PREDICTION_ROOT = 'evaluation'
18 |
19 | # custom lib
20 | import spir
21 |
22 | # std lib
23 | import os
24 | import pickle
25 |
26 | # 3rd party lib
27 | import h5py
28 | import numpy as np
29 |
30 |
31 | # +
32 | def load_filenames():
33 | filenames = list()
34 | with h5py.File(os.join(PREDICTION_ROOT, 'prediction_test_iclabel.h5'), 'r') as f:
35 | filenames = list(f['filenames'])
36 | return filenames
37 |
38 |
39 | filenames = load_filenames()
40 | with open('lstm-results.pkl', 'rb') as filehandler:
41 | results = pickle.load(filehandler)
42 |
43 |
44 | threshold = 0.55
45 |
46 | for i, filename in enumerate(filenames):
47 | # Apply threshold on baseline corrected prediction
48 | hyp = spir.mask2eventList((results[i].flatten() - np.median(results[i].flatten())) > threshold, fs)
49 | # Merge events closer than 30seconds
50 | hyp = spir.merge_events(hyp, 30)
51 |
52 | # Remove events with mean prediction < 82% of event with max prediction
53 | if len(hyp):
54 | amp = list()
55 | for event in hyp:
56 | amp.append(np.mean(results[i].flatten()[int(event[0]*fs):int(event[1]*fs)]))
57 | amp = np.array(amp)
58 | amp /= np.max(amp)
59 |
60 | hyp = list(np.array(hyp)[amp > 0.82])
61 |
62 | with open('hyp_lstm.txt', 'a') as handle:
63 | for event in hyp:
64 | # Remove short events
65 | if event[1] - event[0] > 15:
66 | amp = np.mean(results[i][int(event[0]*fs):int(event[1]*fs)])
67 | # Shorten events by 2 seconds
68 | handle.write('{} {} {} {} 16\n'.format(filename, event[0]+1, event[1]-1), amp)
69 |
--------------------------------------------------------------------------------
/evaluate/Preparing Predictions.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import h5py\n",
10 | "import numpy as np\n",
11 | "from sklearn import model_selection\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "from sklearn import metrics\n",
14 | "import os\n",
15 | "import tensorflow as tf\n",
16 | "from tensorflow.keras import Model, Input\n",
17 | "from tensorflow.keras.layers import Conv2D, UpSampling2D, MaxPooling2D, AveragePooling2D, Attention\n",
18 | "from tensorflow.keras.layers import ELU, BatchNormalization, Reshape, Concatenate, Dropout, Add, Multiply\n",
19 | "\n",
20 | "from utils import SeizureState, setup_tf, AttentionPooling, BiasedConv"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": null,
26 | "metadata": {},
27 | "outputs": [],
28 | "source": [
29 | "val_path = 'PATH_TO_DATASET.h5'\n",
30 | "saved_predictions = 'PATH_TO_PREDICTIONS.h5'\n",
31 | "network_path = 'PATH_TO_NETWORK_WEIGHTS.h5'\n",
32 | "\n",
33 | "fs = 200\n",
34 | "n_channels = 18\n",
35 | "seizure = 'seiz'\n",
36 | "background = 'bckg'"
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": null,
42 | "metadata": {},
43 | "outputs": [],
44 | "source": [
45 | "setup_tf()"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": null,
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "with h5py.File(val_path, 'r') as f:\n",
55 | " file_names_test = []\n",
56 | " signals_test = []\n",
57 | " \n",
58 | " file_names_ds = f['filenames']\n",
59 | " signals_ds = f['signals']\n",
60 | " \n",
61 | " for i in range(len(signals_ds)):\n",
62 | " file_names_test.append(file_names_ds[i])\n",
63 | " data = np.asarray(np.vstack(signals_ds[i]).T, dtype=np.float32)\n",
64 | " mean = np.mean(data, axis=0)\n",
65 | " std = np.std(data, axis=0)\n",
66 | " signals_test.append((data-mean)/(std+1e-8))"
67 | ]
68 | },
69 | {
70 | "cell_type": "markdown",
71 | "metadata": {},
72 | "source": [
73 | "# Seizure detection"
74 | ]
75 | },
76 | {
77 | "cell_type": "markdown",
78 | "metadata": {},
79 | "source": [
80 | "### Building U-Net"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": null,
86 | "metadata": {},
87 | "outputs": [],
88 | "source": [
89 | "n_filters = 8"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "execution_count": null,
95 | "metadata": {},
96 | "outputs": [],
97 | "source": [
98 | "input_seq = Input(shape=(None, n_channels, 1))\n",
99 | "\n",
100 | "x = Conv2D(filters=n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(input_seq)\n",
101 | "x = BatchNormalization()(x)\n",
102 | "lvl0 = ELU()(x)\n",
103 | "\n",
104 | "x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl0)\n",
105 | "x = Conv2D(filters=2*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
106 | "x = BatchNormalization()(x)\n",
107 | "lvl1 = ELU()(x)\n",
108 | "\n",
109 | "x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl1)\n",
110 | "x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
111 | "x = BatchNormalization()(x)\n",
112 | "lvl2 = ELU()(x)\n",
113 | "\n",
114 | "x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl2)\n",
115 | "x = Conv2D(filters=4*n_filters, kernel_size=(7, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
116 | "x = BatchNormalization()(x)\n",
117 | "lvl3 = ELU()(x)\n",
118 | "\n",
119 | "x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl3)\n",
120 | "x = Conv2D(filters=8*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
121 | "x = BatchNormalization()(x)\n",
122 | "lvl4 = ELU()(x)\n",
123 | "\n",
124 | "x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl4)\n",
125 | "x = Conv2D(filters=8*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
126 | "x = BatchNormalization()(x)\n",
127 | "x = ELU()(x)\n",
128 | "lvl5 = x\n",
129 | "\n",
130 | "x = MaxPooling2D(pool_size=(1, 20), padding='same')(lvl5)\n",
131 | "x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
132 | "x = BatchNormalization()(x)\n",
133 | "x = ELU()(x)\n",
134 | "x = Dropout(rate=0.5)(x)\n",
135 | "x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
136 | "x = BatchNormalization()(x)\n",
137 | "x = ELU()(x)\n",
138 | "x = Dropout(rate=0.5)(x)\n",
139 | "\n",
140 | "up4 = UpSampling2D(size=(4, 1))(x)\n",
141 | "att4 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up4, lvl4])\n",
142 | "\n",
143 | "x = Concatenate(axis=-1)([up4, att4])\n",
144 | "x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
145 | "x = BatchNormalization()(x)\n",
146 | "x = ELU()(x)\n",
147 | "\n",
148 | "up3 = UpSampling2D(size=(4, 1))(x)\n",
149 | "att3 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up3, lvl3])\n",
150 | "\n",
151 | "x = Concatenate(axis=-1)([up3, att3])\n",
152 | "x = Conv2D(filters=4*n_filters, kernel_size=(7, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
153 | "x = BatchNormalization()(x)\n",
154 | "x = ELU()(x)\n",
155 | "\n",
156 | "up2 = UpSampling2D(size=(4, 1))(x)\n",
157 | "att2 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up2, lvl2])\n",
158 | "\n",
159 | "x = Concatenate(axis=-1)([up2, att2])\n",
160 | "x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
161 | "x = BatchNormalization()(x)\n",
162 | "x = ELU()(x)\n",
163 | "\n",
164 | "\n",
165 | "up1 = UpSampling2D(size=(4, 1))(x)\n",
166 | "att1 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up1, lvl1])\n",
167 | "\n",
168 | "x = Concatenate(axis=-1)([up1, att1])\n",
169 | "x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
170 | "x = BatchNormalization()(x)\n",
171 | "x = ELU()(x)\n",
172 | "\n",
173 | "up0 = UpSampling2D(size=(4, 1))(x)\n",
174 | "att0 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up0, lvl0])\n",
175 | "x = Concatenate(axis=-1)([up0, att0])\n",
176 | "x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
177 | "x = BatchNormalization()(x)\n",
178 | "x = ELU()(x)\n",
179 | "x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)\n",
180 | "x = BatchNormalization()(x)\n",
181 | "x = ELU()(x)\n",
182 | "output = Conv2D(filters=1, kernel_size=(15, 1), strides=(1, 1), padding='same', activation='sigmoid')(x)\n",
183 | "\n",
184 | "unet = Model(input_seq, output)"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": null,
190 | "metadata": {},
191 | "outputs": [],
192 | "source": [
193 | "unet.load_weights(network_path)\n",
194 | "unet.summary()"
195 | ]
196 | },
197 | {
198 | "cell_type": "markdown",
199 | "metadata": {},
200 | "source": [
201 | "### Prediction step"
202 | ]
203 | },
204 | {
205 | "cell_type": "code",
206 | "execution_count": null,
207 | "metadata": {},
208 | "outputs": [],
209 | "source": [
210 | "y_probas = []\n",
211 | "reduction = 4096//4\n",
212 | "with tf.device('cpu:0'):\n",
213 | " for signal in signals_test:\n",
214 | " signal = signal[:len(signal)//reduction*reduction, :]\n",
215 | " prediction = unet.predict(signal[np.newaxis, :, :, np.newaxis])[0, :, 0, 0]\n",
216 | " y_probas.append(prediction)"
217 | ]
218 | },
219 | {
220 | "cell_type": "markdown",
221 | "metadata": {},
222 | "source": [
223 | "# Saving predictions"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": null,
229 | "metadata": {},
230 | "outputs": [],
231 | "source": [
232 | "dt_fl = h5py.vlen_dtype(np.dtype('float32'))\n",
233 | "dt_str = h5py.special_dtype(vlen=str)\n",
234 | "\n",
235 | "with h5py.File(saved_predictions, 'w') as f:\n",
236 | " dset_signals = f.create_dataset('signals', (len(file_names_test),), dtype=dt_fl)\n",
237 | " dset_file_names = f.create_dataset('filenames', (len(file_names_test),), dtype=dt_str)\n",
238 | " \n",
239 | " for i in range(len(file_names_test)):\n",
240 | " dset_signals[i] = y_probas[i]\n",
241 | " dset_file_names[i] = file_names_test[i]"
242 | ]
243 | },
244 | {
245 | "cell_type": "code",
246 | "execution_count": null,
247 | "metadata": {},
248 | "outputs": [],
249 | "source": []
250 | }
251 | ],
252 | "metadata": {
253 | "kernelspec": {
254 | "display_name": "Python 3",
255 | "language": "python",
256 | "name": "python3"
257 | },
258 | "language_info": {
259 | "codemirror_mode": {
260 | "name": "ipython",
261 | "version": 3
262 | },
263 | "file_extension": ".py",
264 | "mimetype": "text/x-python",
265 | "name": "python",
266 | "nbconvert_exporter": "python",
267 | "pygments_lexer": "ipython3",
268 | "version": "3.7.3"
269 | }
270 | },
271 | "nbformat": 4,
272 | "nbformat_minor": 4
273 | }
274 |
--------------------------------------------------------------------------------
/evaluate/README.md:
--------------------------------------------------------------------------------
1 | # Evaluate
2 |
3 | Code to produce seizure detection and a hypothesis file.
4 |
5 | When evaluation a new file:
6 |
7 | 1. Save a filtered version of the data using ICLabel filtering
8 | 2. Make prediction files using the U-Net model, utilizing the 3-load-data.py file from ../training/3-DNN
9 | 3. Fuse the U-Net predictions with the LSTM model
10 | 4. Use the predictions to produce a hypothesis file
--------------------------------------------------------------------------------
/evaluate/attention_unet_iclabel.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/evaluate/attention_unet_iclabel.h5
--------------------------------------------------------------------------------
/evaluate/attention_unet_raw.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/evaluate/attention_unet_raw.h5
--------------------------------------------------------------------------------
/evaluate/attention_unet_wiener.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/evaluate/attention_unet_wiener.h5
--------------------------------------------------------------------------------
/evaluate/model-dnn-dnnw-dnnicalbl-lstm-4.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/evaluate/model-dnn-dnnw-dnnicalbl-lstm-4.h5
--------------------------------------------------------------------------------
/hyp_lstm.txt:
--------------------------------------------------------------------------------
1 | 00011846_s004_t003 462.0 476.0 1.0 15
2 | 00011846_s004_t000 224.0 243.0 1.0 15
3 | 00011846_s003_t006 125.0 154.0 1.0 15
4 | 00011846_s003_t008 67.0 91.0 1.0 15
5 | 00011846_s004_t002 330.0 373.0 1.0 15
6 | 00011846_s002_t001 3087.0 3102.0 1.0 15
7 | 00011846_s003_t005 86.0 108.0 1.0 15
8 | 00011846_s003_t005 519.0 542.0 1.0 15
9 | 00011846_s004_t001 236.0 267.0 1.0 15
10 | 00011846_s003_t002 537.0 555.0 1.0 15
11 | 00011846_s003_t007 27.0 61.0 1.0 15
12 | 00011846_s003_t007 337.0 367.0 1.0 15
13 | 00011846_s004_t004 208.0 230.0 1.0 15
14 | 00011846_s003_t003 152.0 174.0 1.0 15
15 | 00011846_s004_t006 500.0 522.0 1.0 15
16 | 00005028_s006_t007 134.0 159.0 1.0 15
17 | 00005028_s006_t009 333.0 348.0 1.0 15
18 | 00005028_s006_t002 454.0 489.0 1.0 15
19 | 00005028_s004_t000 35.0 54.0 1.0 15
20 | 00012427_s001_t000 140.0 169.0 1.0 15
21 | 00012427_s001_t000 245.0 270.0 1.0 15
22 | 00012427_s001_t000 902.0 928.0 1.0 15
23 | 00012534_s004_t000 136.0 162.0 1.0 15
24 | 00012534_s001_t000 159.0 182.0 1.0 15
25 | 00012534_s001_t000 1229.0 1251.0 1.0 15
26 | 00012534_s001_t000 1428.0 1450.0 1.0 15
27 | 00012534_s001_t000 1626.0 1646.0 1.0 15
28 | 00012534_s001_t000 1806.0 1839.0 1.0 15
29 | 00012534_s004_t001 59.0 95.0 1.0 15
30 | 00012534_s004_t001 403.0 444.0 1.0 15
31 | 00011332_s002_t010 350.0 460.0 1.0 15
32 | 00011332_s002_t010 563.0 661.0 1.0 15
33 | 00011332_s002_t005 375.0 407.0 1.0 15
34 | 00011332_s001_t000 372.0 480.0 1.0 15
35 | 00011332_s001_t000 920.0 952.0 1.0 15
36 | 00011332_s001_t000 1302.0 1401.0 1.0 15
37 | 00011332_s002_t007 87.0 183.0 1.0 15
38 | 00011332_s002_t004 352.0 458.0 1.0 15
39 | 00011332_s002_t012 280.0 294.0 1.0 15
40 | 00011332_s002_t002 542.0 583.0 1.0 15
41 | 00011332_s002_t000 128.0 151.0 1.0 15
42 | 00011332_s002_t011 180.0 201.0 1.0 15
43 | 00011332_s002_t011 236.0 294.0 1.0 15
44 | 00011326_s006_t005 312.0 329.0 1.0 15
45 | 00011326_s003_t004 344.0 372.0 1.0 15
46 | 00011326_s003_t002 348.0 365.0 1.0 15
47 | 00012742_s002_t002 315.0 330.0 1.0 15
48 | 00012742_s002_t002 527.0 560.0 1.0 15
49 | 00012742_s001_t001 558.0 645.0 1.0 15
50 | 00012742_s001_t001 732.0 860.0 1.0 15
51 | 00012742_s001_t001 1016.0 1101.0 1.0 15
52 | 00012870_s002_t002 409.0 445.0 1.0 15
53 | 00013002_s002_t000 975.0 1023.0 1.0 15
54 | 00011497_s001_t000 446.0 505.0 1.0 15
55 | 00012941_s001_t001 497.0 524.0 1.0 15
56 | 00012941_s001_t001 558.0 592.0 1.0 15
57 | 00012941_s003_t003 349.0 405.0 1.0 15
58 | 00012941_s003_t003 679.0 695.0 1.0 15
59 | 00012941_s003_t007 361.0 442.0 1.0 15
60 | 00012941_s003_t007 580.0 745.0 1.0 15
61 | 00000458_s017_t020 1.0 24.0 1.0 15
62 | 00000458_s014_t009 796.0 815.0 1.0 15
63 | 00000458_s014_t003 53.0 69.0 1.0 15
64 | 00006546_s029_t001 111.0 141.0 1.0 15
65 | 00006546_s029_t001 599.0 629.0 1.0 15
66 | 00006546_s029_t001 944.0 970.0 1.0 15
67 | 00006546_s029_t003 521.0 555.0 1.0 15
68 | 00006546_s031_t000 229.0 252.0 1.0 15
69 | 00006546_s029_t002 522.0 552.0 1.0 15
70 | 00006546_s031_t005 97.0 132.0 1.0 15
71 | 00006546_s028_t000 183.0 218.0 1.0 15
72 | 00006546_s028_t000 678.0 711.0 1.0 15
73 | 00006546_s028_t000 1024.0 1055.0 1.0 15
74 | 00006546_s028_t000 1315.0 1341.0 1.0 15
75 | 00006546_s032_t003 202.0 234.0 1.0 15
76 | 00006546_s032_t003 565.0 585.0 1.0 15
77 | 00006546_s032_t003 733.0 770.0 1.0 15
78 | 00006546_s031_t002 131.0 152.0 1.0 15
79 | 00006546_s031_t006 19.0 61.0 1.0 15
80 | 00006546_s031_t006 446.0 485.0 1.0 15
81 | 00006546_s032_t004 91.0 105.0 1.0 15
82 | 00006546_s029_t006 322.0 356.0 1.0 15
83 | 00006546_s032_t000 336.0 377.0 1.0 15
84 | 00006546_s032_t000 588.0 627.0 1.0 15
85 | 00006546_s032_t000 744.0 785.0 1.0 15
86 | 00006546_s032_t000 961.0 996.0 1.0 15
87 | 00006546_s032_t002 118.0 153.0 1.0 15
88 | 00006546_s032_t002 308.0 346.0 1.0 15
89 | 00006546_s032_t002 513.0 535.0 1.0 15
90 | 00006546_s029_t004 141.0 182.0 1.0 15
91 | 00006546_s031_t003 78.0 113.0 1.0 15
92 | 00006546_s031_t003 234.0 261.0 1.0 15
93 | 00006546_s031_t003 386.0 402.0 1.0 15
94 | 00006546_s031_t003 534.0 558.0 1.0 15
95 | 00006546_s032_t001 3.0 47.0 1.0 15
96 | 00006546_s032_t001 245.0 294.0 1.0 15
97 | 00006546_s029_t000 151.0 179.0 1.0 15
98 | 00006546_s031_t001 136.0 155.0 1.0 15
99 | 00006546_s031_t001 480.0 495.0 1.0 15
100 | 00006546_s031_t004 10.0 46.0 1.0 15
101 | 00006546_s031_t004 226.0 269.0 1.0 15
102 | 00006546_s031_t004 391.0 426.0 1.0 15
103 | 00006546_s031_t004 576.0 597.0 1.0 15
104 | 00011575_s004_t001 331.0 363.0 1.0 15
105 | 00011575_s004_t005 307.0 396.0 1.0 15
106 | 00011575_s004_t004 253.0 339.0 1.0 15
107 | 00011575_s004_t006 307.0 381.0 1.0 15
108 | 00011575_s004_t006 562.0 636.0 1.0 15
109 | 00011575_s001_t001 823.0 899.0 1.0 15
110 | 00011575_s001_t001 1923.0 2008.0 1.0 15
111 | 00011575_s004_t016 663.0 691.0 1.0 15
112 | 00011575_s004_t007 305.0 329.0 1.0 15
113 | 00011575_s004_t002 317.0 350.0 1.0 15
114 | 00011575_s003_t000 543.0 599.0 1.0 15
115 | 00011575_s003_t000 2330.0 2372.0 1.0 15
116 | 00011575_s004_t000 542.0 595.0 1.0 15
117 | 00010930_s010_t003 651.0 711.0 1.0 15
118 | 00005208_s011_t000 110.0 137.0 1.0 15
119 | 00005208_s014_t000 101.0 126.0 1.0 15
120 | 00011276_s002_t000 531.0 552.0 1.0 15
121 | 00011276_s003_t001 337.0 351.0 1.0 15
122 | 00011276_s001_t000 176.0 209.0 1.0 15
123 | 00002849_s007_t001 566.0 584.0 1.0 15
124 | 00012320_s005_t011 302.0 359.0 1.0 15
125 | 00012320_s005_t007 326.0 378.0 1.0 15
126 | 00012391_s002_t007 367.0 407.0 1.0 15
127 | 00012391_s003_t004 326.0 376.0 1.0 15
128 | 00012391_s001_t000 814.0 910.0 1.0 15
129 | 00011975_s003_t026 305.0 335.0 1.0 15
130 | 00011975_s003_t022 346.0 362.0 1.0 15
131 | 00013002_s004_t011 49.0 110.0 1.0 15
132 |
--------------------------------------------------------------------------------
/library/filters.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/library/filters.pickle
--------------------------------------------------------------------------------
/library/loading.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import resampy
3 |
4 | import nedc
5 | import preprocess
6 |
7 | def loadRecording(filename, wiener=False):
8 | """Loads and preprocess an EDF file.
9 |
10 | Loads an EDF file. Converts it to a bipolar montage, resamples it to 200Hz
11 | and applies a preprocessing pipeline to the data.
12 |
13 | Args:
14 | filename: EDF filename
15 | wiener: apply Wiener filter (Default=False)
16 | Return
17 | fs: sampling frequency of the signal in Hz (200 Hz)
18 | data: np.array containing the channels as rows and samples as columns
19 | labels_mount: list of the labels of the bipolar montage
20 | """
21 |
22 | # Load Data
23 | (fsamp, sig, labels) = nedc.nedc_load_edf(filename)
24 | fs = fsamp[nedc._index(labels, 'FP1')]
25 | (sig_mont, labels_mont) = nedc.rereference(sig, labels)
26 | data = np.array(sig_mont, dtype=np.float32)
27 |
28 | # Resample data
29 | data = resampy.resample(data, fs, 200)
30 | fs = 200
31 |
32 | # Preprocess
33 | data = preprocess.preprocess(data, fs, wiener)
34 |
35 | return (fs, data, labels_mont)
36 |
37 |
--------------------------------------------------------------------------------
/library/nedc.py:
--------------------------------------------------------------------------------
1 | import pyedflib
2 | import re
3 | import sys
4 | import numpy as np
5 |
6 | #------------------------------------------------------------------------------
7 | # function: nedc_load_edf
8 | #
9 | # arguments:
10 | # fname: filename (input)
11 | #
12 | # return:
13 | # labels: store the EDF signal labels
14 | # fsamp: store the EDF signal sample frequency
15 | # sig: signals in the EDF file
16 | #
17 | # this function loads the EDF and return the signals
18 | #
19 | def nedc_load_edf(fname_a):
20 |
21 | # open an EDF file
22 | #
23 | fp = pyedflib.EdfReader(fname_a)
24 |
25 | # get the metadata that we need:
26 | # convert the labels to ascii and remove whitespace
27 | # to make matching easier
28 | #
29 | num_chans = fp.signals_in_file
30 | labels_tmp = fp.getSignalLabels()
31 | labels = [str(lbl.replace(' ', '')) for lbl in labels_tmp]
32 |
33 | # load each channel
34 | #
35 | sig = []
36 | fsamp = []
37 | for i in range(num_chans):
38 | sig.append(fp.readSignal(i))
39 | fsamp.append(fp.getSampleFrequency(i))
40 |
41 | # exit gracefully
42 | #
43 | return (fsamp, sig, labels)
44 | #
45 | # end of function
46 |
47 |
48 | # + endofcell="--"
49 | #------------------------------------------------------------------------------
50 | # function: rereference
51 | #
52 | # arguments:
53 | # sig: the signal data
54 | # labels: the channel labels
55 | #
56 | # return:
57 | # sig_mont: output signal data
58 | # labels_mont: output channel labels
59 | #
60 | # This rereferences the signal to a bipolar montage.
61 | #
62 | def rereference(sig, labels):
63 | sig_mont = list()
64 |
65 | # Define target bipolar montage
66 | #
67 | labels_mont = ['FP1-F7',
68 | 'F7-T3',
69 | 'T3-T5',
70 | 'T5-O1',
71 | 'FP2-F8',
72 | 'F8-T4',
73 | 'T4-T6',
74 | 'T6-O2',
75 | 'T3-C3',
76 | 'C3-CZ',
77 | 'CZ-C4',
78 | 'C4-T4',
79 | 'FP1-F3',
80 | 'F3-C3',
81 | 'C3-P3',
82 | 'P3-O1',
83 | 'FP2-F4',
84 | 'F4-C4']
85 | bipolarPairs = [('FP1', 'F7'),
86 | ('F7', 'T3'),
87 | ('T3', 'T5'),
88 | ('T5', 'O1'),
89 | ('FP2', 'F8'),
90 | ('F8', 'T4'),
91 | ('T4', 'T6'),
92 | ('T6', 'O2'),
93 | ('T3', 'C3'),
94 | ('C3', 'CZ'),
95 | ('CZ', 'C4'),
96 | ('C4', 'T4'),
97 | ('FP1', 'F3'),
98 | ('F3', 'C3'),
99 | ('C3', 'P3'),
100 | ('P3', 'O1'),
101 | ('FP2', 'F4'),
102 | ('F4', 'C4')]
103 |
104 |
105 | # Apply montage to signal
106 | #
107 | for i, pair in enumerate(bipolarPairs):
108 | try:
109 | sig_mont.append(
110 | sig[_index(labels, pair[0])] - sig[_index(labels, pair[1])])
111 | except TypeError:
112 | sig_mont.append(np.zeros_like(sig[_index(labels, 'FP1')]))
113 |
114 | # exit gracefully
115 | #
116 | return (sig_mont, labels_mont)
117 | #
118 | # end of function
119 |
120 |
121 | def _index(labels, match):
122 | regex = re.compile('^EEG\ ?{}-(REF|LE)'.format(match))
123 | for i, item in enumerate(labels):
124 | if re.search(regex, item):
125 | return i
126 |
127 |
128 | # -
129 |
130 |
131 | #------------------------------------------------------------------------------
132 | # function: loadTSE
133 | #
134 | # arguments:
135 | # tfile_a: TSE event file
136 | #
137 | # return:
138 | # seizures: output list of seizures. Each event is tuple of 4 items:
139 | # (seizure_start [s], seizure_end [s], seizure_type, probability)
140 | # labels_mont: output channel labels
141 | #
142 | # Load seizure events from a TSE file.
143 | #
144 | def loadTSE(tfile_a):
145 | VERSION = 'version = tse_v1.0.0\n'
146 | SEIZURES = ('seiz', 'fnsz', 'gnsz', 'spsz', 'cpsz', 'absz', 'tnsz', 'cnsz',
147 | 'tcsz', 'atsz', 'mysz', 'nesz')
148 | seizures = list()
149 |
150 | # Parse TSE file
151 | #
152 | with open(tfile_a, 'r') as tse:
153 | firstLine = tse.readline()
154 |
155 | # Check valid TSE
156 | #
157 | if firstLine != VERSION:
158 | raise ValueError(
159 | 'Expected "{}" on first line but read \n {}'.format(VERSION,
160 | firstLine))
161 |
162 | # Skip empty second line
163 | #
164 | tse.readline()
165 |
166 | # Read all events
167 | #
168 | for line in tse.readlines():
169 | fields = line.split(' ')
170 |
171 | if fields[2] in SEIZURES:
172 | # Parse fields
173 | #
174 | start = float(fields[0])
175 | end = float(fields[1])
176 | seizure = fields[2]
177 | prob = float(fields[3][:-1])
178 |
179 | seizures.append((start, end, seizure, prob))
180 |
181 | # exit gracefully
182 | #
183 | return seizures
184 | #
185 | # end of function
186 | # --
187 |
--------------------------------------------------------------------------------
/library/preprocess.py:
--------------------------------------------------------------------------------
1 | from scipy.signal import butter, filtfilt
2 |
3 |
4 | def preprocess(data, fs, wienerFilt=False):
5 | """Apply EEG pre-processing pipeline.
6 |
7 | Currently preprocessing only consists of a high pass (0.5Hz) and notch
8 | filter.
9 |
10 | Args:
11 | data: np.array containing the channels as rows and samples as columns
12 | fs: sampling frequency of the signal in Hz (200 Hz)
13 | wiener: apply Wiener filter (Default=False)
14 | Return:
15 | data: in-place transformed data np.array
16 | """
17 |
18 | # Low pass filter
19 | b, a = butter(4, 1/(fs/2), 'high')
20 | data = filtfilt(b, a, data)
21 | # 50 Hz notch
22 | b, a = butter(4, [47.5/(fs/2), 52.5/(fs/2)], 'bandstop')
23 | data = filtfilt(b, a, data)
24 | # 60 Hz notch
25 | b, a = butter(4, [57.5/(fs/2), 62.5/(fs/2)], 'bandstop')
26 | data = filtfilt(b, a, data)
27 |
28 | # Apply Wiener filter
29 | if wienerFilt:
30 | import wiener
31 | for filt in wiener.filters:
32 | filtered = wiener.wiener_filter(data, filt)
33 | data -= filtered
34 |
35 | return data
36 |
37 |
38 |
--------------------------------------------------------------------------------
/library/spir.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from scipy.signal import convolve
3 |
4 |
5 | # ## COVARIANCE MATRIX ESTIMATION ###
6 |
7 | def build_lagged_copies(data, lag, ram=True, file=None):
8 | """ Build matrix containing lagged copies of data
9 |
10 | Create a matrix with lagged copies of the rows in data.
11 | Args:
12 | data: data contained in an array (row = channels, column = samples)
13 | lag: number of sample lags
14 | ram: if True store in RAM; else as a memmap
15 | file: location of memmap. If ram is True and file is None. memmap is
16 | stored in /tmp
17 | Return
18 | noise: list of noise events in seconds. Each row contains two
19 | columns: [start time, end time]
20 | noise_mask: bool mask containing True on samples marked as noise.
21 | """
22 | if ram:
23 | # Build copies matrix in RAM
24 | lagged_data = np.empty((len(data)*(lag+1), len(data[0])))
25 | else:
26 | # Build copies as a memmap
27 | if file is None:
28 | with tempfile.NamedTemporaryFile() as f:
29 | file = f.name
30 | lagged_data = np.memmap(f.name, dtype='float64', mode='w+', shape=(len(data)*(lag+1), len(data[0])))
31 | else:
32 | lagged_data = np.memmap(file, dtype='float64', mode='w+', shape=(len(data)*(lag+1), len(data[0])))
33 | logging.info('Created file ({}) containing lagged copies of data'.format(file))
34 | for num in range(lag + 1):
35 | for ch in range(len(data)):
36 | if num > 0:
37 | lagged_data[ch*(lag+1)+num,:-num] = data[ch,num:]
38 | lagged_data[ch*(lag+1)+num,-num:] = 0
39 | else:
40 | lagged_data[ch*(lag+1)+num,:] = data[ch,:]
41 | return lagged_data
42 |
43 |
44 | def build_cov(data, events, lag, fs):
45 | """Build signal covariance matrix.
46 |
47 | Covariance matrix is calculated over all event epochs.
48 |
49 | Args:
50 | data: data contained in an array (row = channels, column = samples)
51 | events: list of events times in seconds. Each row contains two
52 | columns: [start time, end time]
53 | lag: positive lag in samples
54 | fs: sampling frequency of the data in Hertz
55 |
56 | Return:
57 | Rxx: covariance matrix of event epochs (accross channels and lags)
58 | """
59 | t = 0
60 | Rxx = np.zeros((len(data)*(lag+1), len(data)*(lag+1)))
61 | for event in events:
62 | lagged = build_lagged_copies(data[:,np.arange(int(event[0]*fs), int(event[1]*fs))], lag)
63 | t += len(lagged)
64 | Rxx += np.dot(lagged, np.transpose(lagged))
65 | Rxx = Rxx / t
66 | return Rxx
67 |
68 |
69 | def build_rnn(data, seizures, lag, fs):
70 | """Build noise covariance matrix.
71 |
72 | Covariance matrix is calculated over all non-seizure epochs.
73 |
74 | Args:
75 | data: data contained in an array (row = channels, column = samples)
76 | seizures: list of events times in seconds. Each row contains two
77 | columns: [start time, end time]
78 | lag: positive lag in samples
79 | fs: sampling frequency of the data in Hertz
80 |
81 | Return:
82 | Rnn: covariance matrix of noise epochs (accross channels and lags)
83 | """
84 | # Get noise events from seizure events
85 | seizure_mask = eventList2Mask(seizures, len(data[0]), fs)
86 | noise_mask = np.logical_not(seizure_mask)
87 | noise_events = mask2eventList(noise_mask, fs)
88 |
89 | Rnn = build_cov(data, noise_events, lag, fs)
90 |
91 | return Rnn
92 |
93 |
94 |
95 | # ## MAX-SNR filtering ##
96 |
97 | def find_noise(data, fs):
98 | """Detect noise events on a channel by channel basis
99 |
100 | Noise is defined as samples above 600uV
101 |
102 | Args:
103 | data: data contained in an array (row = channels, column = samples)
104 | fs: sampling frequency of the data in Hertz
105 | Return
106 | noise_list: list of noise masks. Each element of the list is a
107 | a channel.
108 | """
109 | noise_list = np.zeros((len(data), len(data[0])), dtype=bool)
110 | for i in range(len(data)):
111 | noise_mask = np.abs(data[i]) > 400
112 | noise = mask2eventList(noise_mask, fs)
113 | noise = extend_event(noise, 1.5, len(data[0])/fs)
114 | noise_list[i, :] = eventList2Mask(noise, len(data[0]), fs)
115 | return noise_list
116 |
117 |
118 | def maxspir_filter(data, v, noise):
119 | """Apply maxSPIR filter.
120 |
121 | Args:
122 | data: data contained in an array (row = channels, column = samples)
123 | v: maxSPIR filter as a flattened vector
124 | noise: noise binary mask contained in an array of the same size as data
125 | Return:
126 | out: filtered data
127 | """
128 | lag = int(len(v)/len(data))
129 | v_shaped = np.reshape(v, (len(data), lag))
130 | out = np.convolve(v_shaped[0, :], data[0, :]*np.logical_not(noise[0, :]), 'same')
131 | for i in range(1, v_shaped.shape[0]):
132 | out += np.convolve(v_shaped[i, :], data[i, :]*np.logical_not(noise[i, :]), 'same')
133 | return out
134 |
135 |
136 | def calculate_filter(rss, rnn, regularization_strategy='none'):
137 | """Calculate max-SNR filter
138 | """
139 | ws, vs = np.linalg.eig(rss)
140 | index_s = np.argmax(np.cumsum(ws)/np.sum(ws)> 0.95)
141 | wn, vn = np.linalg.eig(rnn)
142 | index_n = np.argmax(np.cumsum(wn)/np.sum(wn)> 0.9)
143 | vt = np.concatenate((vn[:,:index_n+1], vs[:,:index_s+1]), axis=1)
144 | u, s, v = np.linalg.svd(vt, full_matrices=False)
145 | index_t = np.argmax(np.cumsum(s)/np.sum(s)> 0.99)
146 | i = index_t
147 | t = u
148 |
149 | if regularization_strategy == 'none':
150 | w, v = np.linalg.eig(np.dot(np.linalg.inv(rnn), rss))
151 | elif regularization_strategy == 'pca':
152 | w, v = np.linalg.eig(np.dot(np.dot(
153 | np.dot(t[:,0:i], np.linalg.inv(np.dot(np.dot(np.transpose(t[:,0:i]), rnn), t[:,0:i]))),
154 | np.transpose(t[:,0:i])), rss))
155 |
156 | return np.real(v)
157 |
158 |
159 | def find_events(seizures, power, data, fs, duration=30, minTresh=70):
160 | """Find events in power of filtered data.
161 |
162 | Args:
163 | power: power of filtered data (single channel)
164 | data: raw data contained in an array (row = channels, column = samples)
165 | fs: sampling frequency in Hz
166 | duration: duration of each event in seconds [default:30]
167 | minTreshold: minimum detection threshold in mV [default:70]
168 | Return:
169 | events: indices of detected events (sorted with decreasing power)
170 | """
171 | threshold = 9999
172 | power_derivative = np.diff(power)
173 | s_len = int(fs/2)
174 | smooth_derivative = np.convolve(power_derivative, np.ones((s_len,))/s_len, 'same')
175 | power_copy = np.copy(power)
176 | seizure_mask = eventList2Mask(seizures, len(power), fs)
177 | np.putmask(power_copy, seizure_mask, 0)
178 | events = list()
179 | while threshold > minTresh and len(events) < 150:
180 | i = np.argmax(power_copy)
181 | threshold = power_copy[i]
182 |
183 | # Start
184 | i0 = i - s_len
185 | while i0 > 0 and smooth_derivative[i0] > 0:
186 | i0 -= 1
187 | i0 += s_len
188 | #End
189 | i1 = i + s_len
190 | while i1 < len(smooth_derivative) and smooth_derivative[i1] < 0:
191 | i1 += 1
192 | i1 -= s_len
193 |
194 | np.put(power_copy, np.arange(
195 | max(0, i0-s_len),
196 | min(len(power_copy), i1+s_len)), 0)
197 | if threshold > minTresh and i1-i0 < 60*fs and i1-i0 > fs:
198 | events.append((i0, i1))
199 |
200 | return events
201 |
202 |
203 | def find_interference(data, fs, seizures, maxThresh=500, minTresh=70):
204 | """Find interference in raw data.
205 |
206 | Args:
207 | data: raw data contained in an array (row = channels, column = samples)
208 | fs: sampling frequency in Hz
209 | duration: duration of each event in seconds [default:30]
210 | minTreshold: minimum detection threshold in mV [default:70]
211 | Return:
212 | interferences: indices of detected events (sorted with decreasing power)
213 | """
214 | threshold = 9999
215 | power = rolling_rms(data, int(1*fs))
216 |
217 |
218 | dpower = np.diff(power)
219 | s_len = int(fs/2)
220 | dpower = convolve(dpower, np.ones((dpower.shape[0],s_len))/s_len, 'same')
221 | seizure_mask = eventList2Mask(seizures, power.shape[1], fs)
222 |
223 | interference_mask = np.zeros((data.shape[1],))
224 |
225 | for c, channel in enumerate(power):
226 | np.putmask(channel, seizure_mask, 0)
227 | events = list()
228 | while threshold > minTresh and len(events) < 50:
229 | i = np.argmax(channel)
230 | threshold = channel[i]
231 |
232 | # Start
233 | i0 = i - s_len
234 | while i0 > 0 and dpower[c, i0] > 0:
235 | i0 -= 1
236 | i0 += s_len
237 | #End
238 | i1 = i + s_len
239 | while i1 < dpower.shape[1] and dpower[c, i1] < 0:
240 | i1 += 1
241 | i1 -= s_len
242 |
243 | np.put(channel, np.arange(
244 | max(0, i0-s_len),
245 | min(len(channel), i1+s_len)), 0)
246 | if threshold > minTresh and threshold < maxThresh and i1-i0 < 60*fs and i1-i0 > fs:
247 | events.append((i0/fs, i1/fs))
248 | eventmask = eventList2Mask(events, len(interference_mask), fs)
249 | interference_mask = np.logical_or(interference_mask, eventmask)
250 |
251 | return mask2eventList(interference_mask, fs)
252 |
253 |
254 | def rolling_rms(data, duration):
255 | """ Calculate rolling average RMS.
256 |
257 | Args:
258 | data: data contained in a vector
259 | duration: rolling average window duration in samples
260 | Return:
261 | power: rolling average RMS
262 | """
263 | power = np.square(data)
264 | if data.ndim == 2:
265 | power = convolve(power, np.ones((data.shape[0], duration))/duration, mode='same')
266 | elif data.ndim == 1:
267 | power = convolve(power, np.ones((duration,))/duration, mode='same')
268 | else:
269 | TypeError('Dimmension of data should be 1 or 2 to convolve.')
270 | return np.sqrt(power)
271 |
272 |
273 | # ## EVENT & MASK MANIPULATION ###
274 |
275 | def eventList2Mask(events, totalLen, fs):
276 | """Convert list of events to mask.
277 |
278 | Returns a logical array of length totalLen.
279 | All event epochs are set to True
280 |
281 | Args:
282 | events: list of events times in seconds. Each row contains two
283 | columns: [start time, end time]
284 | totalLen: length of array to return in samples
285 | fs: sampling frequency of the data in Hertz
286 | Return:
287 | mask: logical array set to True during event epochs and False the rest
288 | if the time.
289 | """
290 | mask = np.zeros((totalLen,), dtype=bool)
291 | for event in events:
292 | for i in range(min(int(event[0]*fs), totalLen-1), min(int(event[1]*fs), totalLen-1)):
293 | mask[i] = True
294 | return mask
295 |
296 |
297 | def mask2eventList(mask, fs):
298 | """Convert mask to list of events.
299 |
300 | Args:
301 | mask: logical array set to True during event epochs and False the rest
302 | if the time.
303 | fs: sampling frequency of the data in Hertz
304 | Return:
305 | events: list of events times in seconds. Each row contains two
306 | columns: [start time, end time]
307 | """
308 | events = list()
309 | tmp = []
310 | start_i = np.where(np.diff(np.array(mask, dtype=int)) == 1)[0]
311 | end_i = np.where(np.diff(np.array(mask, dtype=int)) == -1)[0]
312 |
313 | if len(start_i) == 0 and mask[0]:
314 | events.append([0, (len(mask)-1)/fs])
315 | else:
316 | # Edge effect
317 | if mask[0]:
318 | events.append([0, end_i[0]/fs])
319 | end_i = np.delete(end_i, 0)
320 | # Edge effect
321 | if mask[-1]:
322 | if len(start_i):
323 | tmp = [[start_i[-1]/fs, (len(mask)-1)/fs]]
324 | start_i = np.delete(start_i, len(start_i)-1)
325 | for i in range(len(start_i)):
326 | events.append([start_i[i]/fs, end_i[i]/fs])
327 | events += tmp
328 | return events
329 |
330 |
331 | def extend_event(events, time, max_time):
332 | """Extends events in event list by time.
333 |
334 | The start time of each event is moved time seconds back and the end
335 | time is moved time seconds later
336 |
337 | Args:
338 | events: list of events. Each event is a tuple
339 | time: time to extend each event in seconds
340 | max_time: maximum end time allowed of an event.
341 | Return
342 | extended_events: list of events which each event extended.
343 | """
344 | extended_events = events.copy()
345 | for i, event in enumerate(events):
346 | extended_events[i] = [max(0, event[0] - time),
347 | min(max_time, event[1] + time)]
348 | return extended_events
349 |
350 |
351 | def merge_events(events, distance):
352 | i = 1
353 | tot_len = len(events)
354 | while i < tot_len:
355 | if events[i][0] - events[i-1][1] < distance:
356 | events[i-1][1] = events[i][1]
357 | events.pop(i)
358 | tot_len -= 1
359 | else:
360 | i += 1
361 | return events
362 |
--------------------------------------------------------------------------------
/library/wiener.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pickle
3 |
4 | filters = None
5 | with open('filters.pickle', 'rb') as handle:
6 | filters = pickle.load(handle)
7 |
8 | def wiener_filter(data, v):
9 | """Apply Wiener filter.
10 |
11 | Args:
12 | data: data contained in an array (row = channels, column = samples)
13 | v: Wiener filter
14 | Return:
15 | out: filtered data
16 | """
17 | lag = int(v.shape[0]/data.shape[0])
18 | filtered = list()
19 | for j in range(v.shape[1]):
20 | v_shaped = np.reshape(v[:,j], (data.shape[0], lag))
21 | out = np.convolve(v_shaped[0, :], data[0, :], 'full')
22 | for i in range(1, v_shaped.shape[0]):
23 | out += np.convolve(v_shaped[i, :], data[i, :], 'full')
24 | filtered.append(out)
25 | t = np.arange(0, v.shape[0], step=lag, dtype=int)
26 | filtered = np.dot(v[t,:], filtered)
27 | return np.array(filtered[:,:data.shape[1]])
28 |
--------------------------------------------------------------------------------
/neureka_ieee_spmb.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/neureka_ieee_spmb.pdf
--------------------------------------------------------------------------------
/python_requirements.txt:
--------------------------------------------------------------------------------
1 | h5py==2.10.0
2 | keras==1.1.2
3 | matplotlib==3.3.4
4 | numpy==1.22.0
5 | pyedflib==0.1.20
6 | resampy==0.2.2
7 | scipy==1.6.1
8 | scikit-learn==0.24.1
9 | tensorflow==2.7.2
10 |
--------------------------------------------------------------------------------
/training/1-wiener-training.py:
--------------------------------------------------------------------------------
1 | """
2 | Train Wiener filters based on clusters of similar artefacts
3 |
4 | This script is heavy in computation and RAM (~50GB) as it computes and loads many large covariance matrices.
5 | This script was originally a jupyter notebook (converted with jupytext). Some plots are intended as interactive
6 | steps to optimize the algorithm parameters (such as number of clusters).
7 |
8 | The script produces a pickle object containing the filters
9 | """
10 |
11 | import sys
12 | # Adapt these two path to the root of the EDF data and to the root of the codebase
13 | EDF_ROOT = '/esat/biomeddata/Neureka_challenge/edf/train'
14 | sys.path.insert(0, 'library')
15 |
16 | # custom library
17 | import nedc
18 | import loading
19 | import spir
20 |
21 | # std lib
22 | import glob
23 | from joblib import Parallel, delayed
24 | import multiprocessing
25 | import os
26 | from pathlib import Path
27 | import pickle
28 |
29 | # 3rd party lib
30 | import numpy as np
31 | import matplotlib.pyplot as plt
32 | from scipy.signal import convolve
33 | from sklearn.cluster import KMeans
34 | from sklearn.decomposition import PCA
35 |
36 | num_cores = multiprocessing.cpu_count()
37 |
38 |
39 | # -
40 | # ## Find interference
41 | # +
42 | def find_interference(data, fs, seizures, maxThresh=500, minTresh=70):
43 | """Find interference in raw data.
44 |
45 | Args:
46 | data: raw data contained in an array (row = channels, column = samples)
47 | fs: sampling frequency in Hz
48 | duration: duration of each event in seconds [default:30]
49 | minTreshold: minimum detection threshold in mV [default:70]
50 | Return:
51 | interferences: indices of detected events (sorted with decreasing power)
52 | """
53 | threshold = 9999
54 | power = spir.rolling_rms(data, int(1*fs))
55 |
56 | dpower = np.diff(power)
57 | s_len = int(fs/2)
58 | dpower = convolve(dpower, np.ones((dpower.shape[0],s_len))/s_len, 'same')
59 | seizure_mask = spir.eventList2Mask(seizures, power.shape[1], fs)
60 |
61 | interference_mask = np.zeros((data.shape[1],))
62 |
63 | for c, channel in enumerate(power):
64 | np.putmask(channel, seizure_mask, 0)
65 | events = list()
66 | while threshold > minTresh and len(events) < 50:
67 | i = np.argmax(channel)
68 | threshold = channel[i]
69 |
70 | # Start
71 | i0 = i - s_len
72 | while i0 > 0 and dpower[c, i0] > 0:
73 | i0 -= 1
74 | i0 += s_len
75 | #End
76 | i1 = i + s_len
77 | while i1 < dpower.shape[1] and dpower[c, i1] < 0:
78 | i1 += 1
79 | i1 -= s_len
80 |
81 | np.put(channel, np.arange(
82 | max(0, i0-s_len),
83 | min(len(channel), i1+s_len)), 0)
84 | if threshold > minTresh and threshold < maxThresh and i1-i0 < 60*fs and i1-i0 > fs:
85 | events.append((i0/fs, i1/fs))
86 | eventmask = spir.eventList2Mask(events, len(interference_mask), fs)
87 | interference_mask = np.logical_or(interference_mask, eventmask)
88 |
89 | return spir.mask2eventList(interference_mask, fs)
90 |
91 |
92 | # +
93 | # Find artefacts and compute covariance matrix
94 | lag = 50
95 | total_events = 0
96 | total_seizures = 0
97 | event_dict = dict()
98 | eventFiles = list()
99 | allEvents = list()
100 |
101 | rnns = list()
102 |
103 | for filename in glob.iglob(EDF_ROOT + '/**/*.edf', recursive=True):
104 | seizures = nedc.loadTSE(filename[:-3] + 'tse')
105 | (fs, data, labels) = loading.loadRecording(filename)
106 |
107 | events = find_interference(data, fs, seizures, maxThresh=500, minTresh=100)
108 |
109 | if len(events) > 0:
110 | event_dict[filename] = events
111 | allEvents += events
112 | total_events += len(events)
113 | total_seizures += len(seizures)
114 |
115 | for i in range(len(events)):
116 | eventFiles.append(filename)
117 |
118 | rnn = Parallel(n_jobs=num_cores)(delayed(spir.build_cov)(data, [event], lag, fs) for event in events)
119 | rnns += rnn
120 |
121 | # Limit to 2000 events
122 | if total_events > 2000:
123 | break
124 |
125 |
126 | # -
127 | # ## Compress Rnns
128 | # +
129 | tmp = list()
130 | for rnn in rnns:
131 | tmp.append(rnn.flatten()/np.sum(np.diag(rnn))) # Normalize
132 | pca = PCA(0.99)
133 | pca.fit(tmp)
134 | compressed = pca.fit_transform(tmp)
135 | print('Number of compressed components: {}'.format(compressed.shape[1]))
136 |
137 |
138 | # -
139 | # ## Perform K-means clustering
140 | # +
141 | ## Find n-clusters
142 | def calculate_WSS(points, kmax):
143 | sse = []
144 | for k in range(1, kmax+1):
145 | kmeans = KMeans(n_clusters = k).fit(points)
146 | centroids = kmeans.cluster_centers_
147 | pred_clusters = kmeans.predict(points)
148 | curr_sse = 0
149 |
150 | for i in range(len(points)):
151 | curr_center = centroids[pred_clusters[i]]
152 | curr_sse += (points[i, 0] - curr_center[0]) ** 2 + (points[i, 1] - curr_center[1]) ** 2
153 |
154 | sse.append(curr_sse)
155 | return sse
156 |
157 |
158 | sse = calculate_WSS(compressed, 12)
159 |
160 | plt.figure(figsize=(16, 6))
161 | plt.plot(sse[:])
162 | plt.ylabel('# SSE')
163 | plt.xlabel('# of clusters')
164 | plt.title('Choice of # of cluster')
165 | plt.show()
166 | # -
167 | n_clusters = 6 # Select 6 clusters (based on SSE plot)
168 |
169 | kmeans = KMeans(n_clusters=n_clusters).fit(compressed)
170 |
171 | import pickle
172 | with open('kmeans.pkl', 'wb') as filehandler:
173 | pickle.dump(kmeans, filehandler)
174 |
175 | plt.figure(figsize=(16, 6))
176 | plt.hist(kmeans.labels_)
177 | plt.xlabel('Cluster labels')
178 | plt.title('histogram of cluster labels')
179 | plt.show()
180 |
181 | plt.figure(figsize=(9, 9))
182 | for label in range(n_clusters):
183 | examples = np.where(kmeans.labels_ == label)[0]
184 | plt.scatter(compressed[examples, 0], compressed[examples, 1])
185 | plt.xlabel('PC 1')
186 | plt.ylabel('PC 2')
187 | plt.title('Scatter of the first two principle components')
188 | plt.legend(range(6))
189 | plt.show()
190 |
191 |
192 | # +
193 | ## Calculate filters
194 |
195 | # Average cluster
196 | avg = list()
197 | for label in range(n_clusters):
198 | avg.append(np.zeros_like(rnns[0]))
199 | examples = np.where(kmeans.labels_ == label)[0]
200 | for example in examples:
201 | avg[-1] += rnns[example] / np.sum(np.diag(rnns[example])) / len(examples)
202 |
203 | # Filter
204 | filters = list()
205 | for label in range(n_clusters):
206 | w, v = np.linalg.eig(avg[label])
207 | index_i = np.argmax(np.cumsum(np.real(w))/np.sum(np.real(w)) > 0.99)
208 | filters.append(np.real(v[:,:index_i]))
209 |
210 | # Write filters
211 | with open('filters.pkl', 'wb') as filehandler:
212 | pickle.dump(filters, filehandler)
--------------------------------------------------------------------------------
/training/2-iclabel/README.md:
--------------------------------------------------------------------------------
1 | ## README file for the use of iclabel preprocessing for the whole Neureka database
2 |
3 | The main script that must be run is "run_icalabel.m" (number of start and end subject must be defined as an input in order to be able to parallelize it)
4 | The architecture of the files must be the same as in the initial dataset
5 |
6 | The level for artifact removal has been set to correlation 0.6 (everything above this are rejected as artifact).
7 |
8 | In order to run the code you need eeglab2019_1, with plugins Biosig, Cleanrawdata and IClabel v 1.2.4 preinstalled
9 | You need to replace the following functions of eeglab:
10 | - pop_runica.m (line 385 adapted in order to have full rank)
11 | - pop_clean_rawdata.m (line 125 adapted in order to be able to load the same preselected settings for Cleanrawdata plugin).
12 |
13 | The file input.mat includes the preselected settings for Cleanrawdata plugin
14 |
15 | The file neureca.locs includes the positions and different namings of the electrodes in Neureka challenge
16 |
17 | The files findRecording.m and getContent.m are used in order to browse among different subjects
18 |
--------------------------------------------------------------------------------
/training/2-iclabel/findRecording.m:
--------------------------------------------------------------------------------
1 | function [recs] = findRecording(root, subjectstrname, sessionname)
2 | ext = 'edf';
3 | [f,d] = getContent(root, 0);
4 | N = size(d,1);
5 | recnames=[];
6 | r=[];
7 | for i = 1:N
8 | ss = strsplit(d{i},{'_','.'});
9 | if(length(ss)~= 4)
10 | continue
11 | end
12 | if(strcmp(ss{1}, subjectstrname))
13 | if(strcmp(ss{2}, sessionname))
14 | if(strcmp(ss{4}, ext))
15 | r.recstrname = ss(3);
16 | r.recnum = str2num(r.recstrname{1}(2:end));
17 | r.edfname = d(i);
18 | r.lblname = {[subjectstrname,'_',sessionname,'_',r.recstrname{1},'.lbl']};
19 | recnames=[recnames; r];
20 | end
21 | end
22 | end
23 | end
24 | recs = struct2table(recnames);
25 | recs = sortrows(recs, 'recnum');
26 | end
--------------------------------------------------------------------------------
/training/2-iclabel/getContent.m:
--------------------------------------------------------------------------------
1 | function [dirs, fnames] = getContent(root, isdir)
2 | d = struct2table(dir(root));
3 | d(strcmp(d.name, '.'),:)=[];
4 | d(strcmp(d.name, '..'),:)=[];
5 | if(~isdir)
6 | d(d.isdir,:) = [];
7 | end
8 |
9 | fnames = d.name;
10 | dirs= d.folder;
11 | end
--------------------------------------------------------------------------------
/training/2-iclabel/input.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mabhijithn/irregulars-neureka-codebase/a5d96ce0f8b972f3b98e848454196b84e6bbc4c0/training/2-iclabel/input.mat
--------------------------------------------------------------------------------
/training/2-iclabel/neureka.locs:
--------------------------------------------------------------------------------
1 | 1 -18 0.51111 FP1
2 | 1 -18 0.51111 Fp1
3 | 2 18 0.51111 FP2
4 | 2 18 0.51111 Fp2
5 | 3 0 0.51111 FPZ
6 | 3 0 0.51111 FPz
7 | 4 -54 0.51111 F7
8 | 5 -39 0.33333 F3
9 | 6 0 0.25556 FZ
10 | 6 0 0.25556 Fz
11 | 7 39 0.33333 F4
12 | 8 54 0.51111 F8
13 | 9 -90 0.51111 T3
14 | 10 -90 0.25556 C3
15 | 11 90 0 CZ
16 | 11 90 0 Cz
17 | 12 90 0.25556 C4
18 | 13 90 0.51111 T4
19 | 14 -126 0.51111 T5
20 | 15 -141 0.33333 P3
21 | 16 180 0.25556 Pz
22 | 17 141 0.33333 P4
23 | 18 126 0.51111 T6
24 | 19 -162 0.51111 O1
25 | 20 180 0.51111 OPZ
26 | 20 180 0.51111 OPz
27 | 21 162 0.51111 O2
28 |
29 |
30 |
--------------------------------------------------------------------------------
/training/2-iclabel/pop_clean_rawdata.m:
--------------------------------------------------------------------------------
1 | % pop_clean_rawdata(): Launches GUI to collect user inputs for clean_artifacts().
2 | % ASR stands for artifact subspace reconstruction.
3 | % To disable method(s), enter -1.
4 | % Usage:
5 | % >> EEG = pop_clean_rawdata(EEG);
6 | %
7 | % see also: clean_artifacts
8 |
9 | % Author: Makoto Miyakoshi and Christian Kothe, SCCN,INC,UCSD
10 | % History:
11 | % 07/31/2018 Makoto. Returns error if input data size is 3.
12 | % 04/26/2017 Makoto. Deletes existing EEG.etc.clean_channel/sample_mask. Try-catch to skip potential error in vis_artifact.
13 | % 07/18/2014 ver 1.4 by Makoto and Christian. New channel removal method supported. str2num -> str2num due to str2num([a b]) == NaN.
14 | % 11/08/2013 ver 1.3 by Makoto. Menu words changed. asr_process() line 168 bug fixed.
15 | % 10/07/2013 ver 1.2 by Makoto. Help implemented. History bug fixed.
16 | % 07/16/2013 ver 1.1 by Makoto and Christian. Minor update for help and default values.
17 | % 06/26/2013 ver 1.0 by Makoto. Created.
18 |
19 | % Copyright (C) 2013, Makoto Miyakoshi and Christian Kothe, SCCN,INC,UCSD
20 | %
21 | % This program is free software; you can redistribute it and/or modify
22 | % it under the terms of the GNU General Public License as published by
23 | % the Free Software Foundation; either version 2 of the License, or
24 | % (at your option) any later version.
25 | %
26 | % This program is distributed in the hope that it will be useful,
27 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
28 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 | % GNU General Public License for more details.
30 | %
31 | % You should have received a copy of the GNU General Public License
32 | % along with this program; if not, write to the Free Software
33 | % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 |
35 | function [EEG,com] = pop_clean_rawdata(EEG, varargin)
36 |
37 | % Check input
38 | com = '';
39 | if size(EEG(1).data) == 3
40 | error('Input data must be continuous. This data seems epoched.')
41 | end
42 |
43 | if nargin < 2
44 | % Obtain user inputs.
45 | cb_filter = 'if get(gcbo, ''value''), set(findobj(gcbf, ''userdata'', ''filter''), ''enable'', ''on''); else set(findobj(gcbf, ''userdata'', ''filter''), ''enable'', ''off''); end';
46 | cb_chan = 'if get(gcbo, ''value''), set(findobj(gcbf, ''userdata'', ''chan'') , ''enable'', ''on''); else set(findobj(gcbf, ''userdata'', ''chan'') , ''enable'', ''off''); end';
47 | cb_asr = 'if get(gcbo, ''value''), set(findobj(gcbf, ''userdata'', ''asr'') , ''enable'', ''on''); else set(findobj(gcbf, ''userdata'', ''asr'') , ''enable'', ''off''); end';
48 | cb_rej = 'if get(gcbo, ''value''), set(findobj(gcbf, ''userdata'', ''rej'') , ''enable'', ''on''); else set(findobj(gcbf, ''userdata'', ''rej'') , ''enable'', ''off''); end';
49 | winsize = max(0.5,1.5*EEG(1).nbchan/EEG(1).srate);
50 | uilist = {...
51 | {'style' 'checkbox' 'string' 'Remove channel drift (data not already high-pass filtered)' 'fontweight' 'bold' 'tag' 'filter' 'callback' cb_filter} ...
52 | {} {'style' 'text' 'string' 'Linear filter (FIR) transition band [lo hi] in Hz ' 'userdata' 'filter' 'enable' 'off' } ...
53 | {'style' 'edit' 'string' '0.25 0.75', 'enable' 'off' 'tag','filterfreqs', 'userdata' 'filter' 'tooltipstring', wordwrap('The first number is the frequency below which everything is removed, and the second number is the frequency above which everything is retained. There is a linear transition in between. For best performance of subsequent processing steps the upper frequency should be close to 1 or 2 Hz, but you can go lower if certain activities need to be retained.',80)} ...
54 | ...
55 | {} {'style' 'checkbox' 'string' 'Remove bad channels' 'fontweight' 'bold' 'tag' 'chanrm' 'callback' cb_chan 'value' 1 } ...
56 | {} {'style' 'checkbox' 'string' 'Remove channel if it is flat for more than (seconds)' 'tag' 'rmflat' 'userdata' 'chan' 'value' 1 } ...
57 | {'style' 'edit' 'string' '5', 'userdata' 'chan' 'tag' 'rmflatsec' 'tooltipstring', wordwrap('If a channel has a longer flatline than this, it will be removed. In seconds.',80)} ...
58 | ...
59 | {} {'style' 'checkbox' 'string' 'Max acceptable high-frequency noise std dev' 'value' 1 'tag' 'rmnoise' 'userdata' 'chan' } ...
60 | {'style' 'edit' 'string' '4', 'userdata' 'chan' 'tag' 'rmnoiseval' 'tooltipstring', wordwrap('If a channel has more line noise relative to its signal than this value, in standard deviations relative to the overall channel population, it will be removed.',80)} ...
61 | ...
62 | {} {'style' 'checkbox' 'string' 'Min acceptable correlation with nearby chans [0-1]' 'value' 1 'tag' 'rmcorr' 'userdata' 'chan' } ...
63 | {'style' 'edit' 'string' '0.8', 'userdata' 'chan' 'tag' 'rmcorrval' 'tooltipstring', wordwrap('If a channel has lower correlation than this to an estimate of its activity based on other channels, and this applies to more than half of the recording, the channel will be removed. This method requires that channel locations are available and roughly correct; otherwise a fallback criterion will tried used using a default setting; you can customize the fallback method by directly calling clean_channels_nolocs in the command line.',80)} ...
64 | ...
65 | {} {'style' 'checkbox' 'string' 'Perform Artifact Subspace Reconstruction bad burst correction' 'fontweight' 'bold' 'value' 1 'tag' 'asr' 'callback' cb_asr } ...
66 | {} {'style' 'text' 'string' sprintf('Max acceptable %1.1f second window std dev', winsize) 'value' 1 'userdata' 'asr' } ...
67 | {'style' 'edit' 'string' '20', 'tag' 'asrstdval' 'userdata' 'asr' 'tooltipstring', wordwrap('Standard deviation cutoff for removal of bursts. Data portions whose variance is larger than this threshold relative to the calibration data are considered missing data and will be removed. The most aggressive value that can be used without losing much EEG is 3. A reasonably conservative value is 5, but some extreme EEG bursts (e.g., sleep spindles) can cross even 5. For new users it is recommended to at first visually inspect the difference between the original and cleaned data to get a sense of the removed content at various levels.',80)} ...
68 | {} {'style' 'checkbox' 'string' 'Use Riemanian distance metric (not Euclidean) - beta' 'userdata' 'asr' 'value' 0 'tag' 'distance' } {} ...
69 | {} {'style' 'checkbox' 'tag' 'asrrej' 'string' 'Remove bad data periods (instead of correcting them)' 'value' 1 'userdata' 'asr'} {} ...
70 | ...
71 | {} {'style' 'checkbox' 'string' 'Additional removal of bad data periods' 'fontweight' 'bold' 'value' 1 'tag' 'rejwin' 'callback' cb_rej } ...
72 | {} {'style' 'text' 'tag' 'asrwintext' 'string' 'Acceptable [min max] channel power range (+/- std dev)' 'userdata' 'rej'} ...
73 | {'style' 'edit' 'string' '-Inf 7','tag', 'rejwinval1', 'userdata' 'rej' 'tooltipstring', wordwrap('If a time window has a larger fraction of simultaneously corrupted channels than this (after the other cleaning attempts), it will be cut out of the data. This can happen if a time window was corrupted beyond the point where it could be recovered.',80)} ...
74 | {} {'style' 'text' 'tag' 'asrwintext' 'string' 'Maximum out-of-bound channels (%)' 'userdata' 'rej'} ...
75 | {'style' 'edit' 'string' '25','tag', 'rejwinval2', 'userdata' 'rej' 'tooltipstring', wordwrap('If a time window has a larger fraction of simultaneously corrupted channels than this (after the other cleaning attempts), it will be cut out of the data. This can happen if a time window was corrupted beyond the point where it could be recovered.',80)} ...
76 | ...
77 | {} {'style' 'checkbox' 'string' 'Pop up scrolling data window with rejected data highlighted' 'tag' 'vis' 'value' fastif(length(EEG) > 1, 0, 1) 'enable' fastif(length(EEG) > 1, 'off', 'on') }};
78 |
79 | row = [0.1 1 0.3];
80 | row2 = [0.1 1.2 0.1];
81 | geom = { 1 row 1 1 row row row 1 1 row row2 row2 1 1 row row 1 1 };
82 | geomvert = [ 1 1 0.3 1 1 1 1 0.3 1 1 1 1 0.3 1 1 1 0.3 1 ];
83 | [res,~,~,outs] = inputgui('title', 'pop_clean_rawdata()', 'geomvert', geomvert, 'geometry', geom, 'uilist',uilist, 'helpcom', 'pophelp(''clean_artifacts'');');
84 |
85 | % Return error if no input.
86 | if isempty(res) return; end
87 |
88 | % process multiple datasets
89 | % -------------------------
90 | options = {};
91 | opt.FlatlineCriterion = 'off';
92 | opt.ChannelCriterion = 'off';
93 | opt.LineNoiseCriterion = 'off';
94 | opt.Highpass = 'off';
95 | opt.BurstCriterion = 'off';
96 | opt.WindowCriterion = 'off';
97 | opt.BurstRejection = 'off';
98 | opt.Distance = 'Euclidian';
99 |
100 | if outs.filter, opt.Highpass = str2num(outs.filterfreqs); end
101 |
102 | if outs.chanrm
103 | if outs.rmflat, opt.FlatlineCriterion = str2num(outs.rmflatsec); end
104 | if outs.rmcorr, opt.ChannelCriterion = str2num(outs.rmcorrval); end
105 | if outs.rmnoise, opt.LineNoiseCriterion = str2num(outs.rmnoiseval); end
106 | end
107 |
108 | if outs.asr
109 | opt.BurstCriterion = str2num(outs.asrstdval);
110 | if outs.distance, opt.Distance = 'Riemannian'; end
111 | end
112 |
113 | if outs.rejwin
114 | opt.WindowCriterionTolerances = str2num(outs.rejwinval1);
115 | opt.WindowCriterion = str2num(outs.rejwinval2)/100;
116 | end
117 | if outs.asrrej, opt.BurstRejection = 'on'; end
118 |
119 | % convert structure to cell
120 | options = fieldnames(opt);
121 | options(:,2) = struct2cell(opt);
122 | options = options';
123 | options = options(:)';
124 | else
125 | options = varargin{1,1};
126 | end
127 |
128 | if length(EEG) > 1
129 | % process multiple datasets
130 | [ EEG, com ] = eeg_eval( 'clean_artifacts', EEG, 'warning', 'on', 'params', options );
131 | return;
132 | end
133 |
134 | % Delete EEG.etc.clean_channel_mask and EEG.etc.clean_sample_mask if present.
135 | if isfield(EEG.etc, 'clean_channel_mask')
136 | EEG.etc = rmfield(EEG.etc, 'clean_channel_mask');
137 | disp('EEG.etc.clean_channel_mask present: Deleted.')
138 | end
139 | if isfield(EEG.etc, 'clean_sample_mask')
140 | EEG.etc = rmfield(EEG.etc, 'clean_sample_mask');
141 | disp('EEG.etc.clean_sample_mask present: Deleted.')
142 | end
143 |
144 | cleanEEG = clean_artifacts(EEG, options{:});
145 |
146 | % Apply Christian's function before and after comparison visualization.
147 | if nargin < 2 && outs.vis == 1
148 | try
149 | vis_artifacts(cleanEEG,EEG);
150 | catch
151 | warning('vis_artifacts failed. Skipping visualization.')
152 | end
153 | end
154 |
155 | % Update EEG.
156 | EEG = cleanEEG;
157 |
158 | % Output eegh.
159 | com = sprintf('EEG = clean_artifacts(EEG, %s);', vararg2str(options));
160 |
161 | % Display the ending message.
162 | disp('Done.')
163 |
164 | function outtext = wordwrap(intext,nChars)
165 | outtext = '';
166 | while ~isempty(intext)
167 | if length(intext) > nChars
168 | cutoff = nChars+find([intext(nChars:end) ' ']==' ',1)-1;
169 | outtext = [outtext intext(1:cutoff-1) '\n']; %#ok<*AGROW>
170 | intext = intext(cutoff+1:end);
171 | else
172 | outtext = [outtext intext];
173 | intext = '';
174 | end
175 | end
176 | outtext = sprintf(outtext);
177 |
--------------------------------------------------------------------------------
/training/2-iclabel/pop_runica.m:
--------------------------------------------------------------------------------
1 | % pop_runica() - Run an ICA decomposition of an EEG dataset using runica(),
2 | % binica(), or another ICA or other linear decomposition.
3 | % Usage:
4 | % >> OUT_EEG = pop_runica( EEG ); % pops-up a data entry window
5 | % >> OUT_EEG = pop_runica( EEG, 'key', 'val' ); % no pop_up
6 | %
7 | % Graphic interface:
8 | % "ICA algorithm to use" - [edit box] The ICA algorithm to use for
9 | % ICA decomposition. Command line equivalent: 'icatype'
10 | % "Commandline options" - [edit box] Command line options to forward
11 | % to the ICA algorithm. Command line equivalent: 'options'
12 | % Inputs:
13 | % EEG - input EEG dataset or array of datasets
14 | %
15 | % Optional inputs:
16 | % 'icatype' - ['runica'|'binica'|'jader'|'fastica'] ICA algorithm
17 | % to use for the ICA decomposition. The nature of any
18 | % differences in the results of these algorithms have
19 | % not been well characterized. {default: binica(), if
20 | % found, else runica()}
21 | % 'dataset' - [integer array] dataset index or indices.
22 | % 'chanind' - [integer array or cell array] subset of channel indices
23 | % for running the ICA decomposition. Alternatively, you may
24 | % also enter channel types here in a cell array.
25 | % 'concatenate' - ['on'|'off'] 'on' concatenate all input datasets
26 | % (assuming there are several). 'off' run ICA independently
27 | % on each dataset. Default is 'off'.
28 | % 'concatcond' - ['on'|'off'] 'on' concatenate conditions for input datasets
29 | % of the same sessions and the same subject. Default is 'off'.
30 | % 'reorder' - ['on'|'off'] re-order components by variance if that's not
31 | % already the case. Default is 'on'.
32 | % 'key','val' - ICA algorithm options (see ICA routine help messages).
33 | %
34 | % Adding a new algorithm:
35 | % Add the algorithm to the list of algorithms line 366 to 466, for example
36 | %
37 | % case 'myalgo', [EEG.icaweights] = myalgo( tmpdata, g.options{:} );
38 | %
39 | % where "myalgo" is the name of your algorithm (and Matlab function).
40 | % tmpdata is the 2-D array containing the EEG data (channels x points) and
41 | % g.options{} contains custom options for your algorithm (there is no
42 | % predetermined format for these options). The output EEG.icaweights is the
43 | % mixing matrix (or inverse of the unmixing matrix).
44 | %
45 | % Note:
46 | % 1) Infomax (runica, binica) is the ICA algorithm we use most. It is based
47 | % on Tony Bell's infomax algorithm as implemented for automated use by
48 | % Scott Makeig et al. using the natural gradient of Amari et al. It can
49 | % also extract sub-Gaussian sources using the (recommended) 'extended' option
50 | % of Lee and Girolami. Function runica() is the all-Matlab version; function
51 | % binica() calls the (1.5x faster) binary version (a separate download)
52 | % translated into C from runica() by Sigurd Enghoff.
53 | % 2) jader() calls the JADE algorithm of Jean-Francois Cardoso. This is
54 | % included in the EEGLAB toolbox by his permission. See >> help jader
55 | % 3) To run fastica(), download the fastICA toolbox from its website,
56 | % http://www.cis.hut.fi/projects/ica/fastica/, and make it available
57 | % in your Matlab path. According to its authors, default parameters
58 | % are not optimal: Try args 'approach', 'sym' to estimate components
59 | % in parallel.
60 | %
61 | % Outputs:
62 | % OUT_EEG = The input EEGLAB dataset with new fields icaweights, icasphere
63 | % and icachansind (channel indices).
64 | %
65 | % Author: Arnaud Delorme, CNL / Salk Institute, 2001
66 | %
67 | % See also: runica(), binica(), jader(), fastica()
68 |
69 | % Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
70 | %
71 | % This file is part of EEGLAB, see http://www.eeglab.org
72 | % for the documentation and details.
73 | %
74 | % Redistribution and use in source and binary forms, with or without
75 | % modification, are permitted provided that the following conditions are met:
76 | %
77 | % 1. Redistributions of source code must retain the above copyright notice,
78 | % this list of conditions and the following disclaimer.
79 | %
80 | % 2. Redistributions in binary form must reproduce the above copyright notice,
81 | % this list of conditions and the following disclaimer in the documentation
82 | % and/or other materials provided with the distribution.
83 | %
84 | % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
85 | % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
86 | % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
87 | % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
88 | % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
89 | % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
90 | % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
91 | % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
92 | % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
93 | % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
94 | % THE POSSIBILITY OF SUCH DAMAGE.
95 |
96 | % 01-25-02 reformated help & license -ad
97 | % 03-07-02 add the eeglab options -ad
98 | % 03-18-02 add other decomposition options -ad
99 | % 03-19-02 text edition -sm
100 |
101 | function [ALLEEG, com] = pop_runica( ALLEEG, varargin )
102 |
103 | com = '';
104 | if nargin < 1
105 | help pop_runica;
106 | return;
107 | end
108 |
109 | % find available algorithms
110 | % -------------------------
111 | allalgs = { 'runica' 'binica' 'jader' 'jadeop' 'jade_td_p' 'MatlabshibbsR' 'fastica' ...
112 | 'tica' 'erica' 'simbec' 'unica' 'amuse' 'fobi' 'evd' 'evd24' 'sons' 'sobi' 'ng_ol' ...
113 | 'acsobiro' 'acrsobibpf' 'pearson_ica' 'egld_ica' 'eeA' 'tfbss' 'icaML' 'icaMS' 'picard' }; % do not use egld_ica => too slow
114 | selectalg = {};
115 | linenb = 1;
116 | count = 1;
117 | for index = length(allalgs):-1:1
118 | if exist(allalgs{index}) ~= 2 && exist(allalgs{index}) ~= 6
119 | allalgs(index) = [];
120 | end
121 | end
122 |
123 | % special AMICA
124 | % -------------
125 | selectamica = 0;
126 | defaultopts = [ '''extended'', 1' ] ;
127 | if nargin > 1
128 | if ischar(varargin{1})
129 | if strcmpi(varargin{1}, 'selectamica')
130 | selectamica = 1;
131 | allalgs = { 'amica' allalgs{:} };
132 | defaultopts = sprintf('''outdir'', ''%s''', fullfile(pwd, 'amicaout'));
133 | elseif strcmpi(varargin{1}, 'selectamicaloc')
134 | selectamica = 1;
135 | allalgs = { 'amica' allalgs{:} };
136 | defaultopts = sprintf('''outdir'', ''%s'', ''qsub'', ''off''', fullfile(pwd, 'amicaout'));
137 | end
138 | end
139 | end
140 |
141 | % popup window parameters
142 | % -----------------------
143 | fig = [];
144 | if nargin < 2 || selectamica
145 | commandchans = [ 'tmpchans = get(gcbf, ''userdata'');' ...
146 | 'tmpchans = tmpchans{1};' ...
147 | 'set(findobj(gcbf, ''tag'', ''chantype''), ''string'', ' ...
148 | ' int2str(pop_chansel( tmpchans )));' ...
149 | 'clear tmpchans;' ];
150 | commandtype = ['tmptype = get(gcbf, ''userdata'');' ...
151 | 'tmptype = tmptype{2};' ...
152 | 'if ~isempty(tmptype),' ...
153 | ' [tmps,tmpv, tmpstr] = listdlg2(''PromptString'',''Select type(s)'', ''ListString'', tmptype);' ...
154 | ' if tmpv' ...
155 | ' set(findobj(''parent'', gcbf, ''tag'', ''chantype''), ''string'', tmpstr);' ...
156 | ' end;' ...
157 | 'else,' ...
158 | ' warndlg2(''No channel type'', ''No channel type'');' ...
159 | 'end;' ...
160 | 'clear tmps tmpv tmpstr tmptype tmpchans;' ];
161 | cb_ica = [ 'if get(gcbo, ''value'') < 3, ' ...
162 | ' set(findobj(gcbf, ''tag'', ''params''), ''string'', ''''''extended'''', 1'');' ...
163 | 'else set(findobj(gcbf, ''tag'', ''params''), ''string'', '''');' ...
164 | 'end;' ];
165 |
166 | promptstr = { { 'style' 'text' 'string' 'ICA algorithm to use (click to select)' } ...
167 | { 'style' 'listbox' 'string' strvcat(allalgs{:}) 'callback', cb_ica } ...
168 | { 'style' 'text' 'string' 'Commandline options (See help messages)' } ...
169 | { 'style' 'edit' 'string' defaultopts 'tag' 'params' } ...
170 | { 'style' 'checkbox' 'string' 'Reorder components by variance (if that''s not already the case)' 'value' 1 } ...
171 | { 'style' 'text' 'string' 'Channel type(s) or channel indices' } ...
172 | { 'style' 'edit' 'string' '' 'tag' 'chantype' } ...
173 | { 'style' 'pushbutton' 'string' '... types' 'callback' commandtype } ...
174 | { 'style' 'pushbutton' 'string' '... channels' 'callback' commandchans } };
175 | geometry = { [2 1.5] [2 1.5] [1] [2 1 1 1] };
176 | geomvert = [ 1.5 1 1 1];
177 | if length(ALLEEG) > 1
178 | cb1 = 'set(findobj(''parent'', gcbf, ''tag'', ''concat2''), ''value'', 0);';
179 | cb2 = 'set(findobj(''parent'', gcbf, ''tag'', ''concat1''), ''value'', 0);';
180 | promptstr = { promptstr{:}, ...
181 | { 'style' 'text' 'string' 'Concatenate all datasets (check=yes; uncheck=run ICA on each dataset)?' }, ...
182 | { 'style' 'checkbox' 'string' '' 'value' 0 'tag' 'concat1' 'callback' cb1 }, ...
183 | { 'style' 'text' 'string' 'Concatenate datasets for the same subject and session (check=yes)?' }, ...
184 | { 'style' 'checkbox' 'string' '' 'value' 1 'tag' 'concat2' 'callback' cb2 } };
185 | geometry = { geometry{:} [ 2 0.2 ] [ 2 0.2 ]};
186 | geomvert = [ geomvert 1 1];
187 | end
188 |
189 | % channel types
190 | % -------------
191 | if isfield(ALLEEG(1).chanlocs, 'type')
192 | tmpchanlocs = ALLEEG(1).chanlocs;
193 | alltypes = { tmpchanlocs.type };
194 | indempty = cellfun('isempty', alltypes);
195 | alltypes(indempty) = '';
196 | try
197 | alltypes = unique_bc(alltypes);
198 | catch
199 | alltypes = '';
200 | end
201 | else
202 | alltypes = '';
203 | end
204 |
205 | % channel labels
206 | % --------------
207 | if ~isempty(ALLEEG(1).chanlocs)
208 | tmpchanlocs = ALLEEG(1).chanlocs;
209 | alllabels = { tmpchanlocs.labels };
210 | else
211 | for index = 1:ALLEEG(1).nbchan
212 | alllabels{index} = int2str(index);
213 | end
214 | end
215 |
216 | % gui
217 | % ---
218 | result = inputgui( 'geometry', geometry, 'geomvert', geomvert, 'uilist', promptstr, ...
219 | 'helpcom', 'pophelp(''pop_runica'')', ...
220 | 'title', 'Run ICA decomposition -- pop_runica()', 'userdata', { alllabels alltypes } );
221 | if length(result) == 0 return; end
222 | options = { 'icatype' allalgs{result{1}} 'dataset' [1:length(ALLEEG)] 'options' eval( [ '{' result{2} '}' ]) 'reorder' fastif(result{3}, 'on', 'off') };
223 | if ~isempty(result{4})
224 | if ~isempty(str2num(result{4})), options = { options{:} 'chanind' str2num(result{4}) };
225 | else options = { options{:} 'chanind' parsetxt(result{4}) };
226 | end
227 | end
228 | if length(result) > 4
229 | options = { options{:} 'concatenate' fastif(result{5}, 'on', 'off') };
230 | options = { options{:} 'concatcond' fastif(result{6}, 'on', 'off') };
231 | end
232 | else
233 | if mod(length(varargin),2) == 1
234 | options = { 'icatype' varargin{1:end} };
235 | else
236 | options = varargin;
237 | end
238 | end
239 |
240 | % decode input arguments
241 | % ----------------------
242 | [ g, addoptions ] = finputcheck( options, { 'icatype' 'string' allalgs 'runica'; ...
243 | 'dataset' 'integer' [] [1:length(ALLEEG)];
244 | 'options' 'cell' [] {};
245 | 'concatenate' 'string' { 'on','off' } 'off';
246 | 'concatcond' 'string' { 'on','off' } 'off';
247 | 'reorder' 'string' { 'on','off' } 'on';
248 | 'chanind' { 'cell','integer' } { [] [] } [];}, ...
249 | 'pop_runica', 'ignore');
250 | if ischar(g), error(g); end
251 | if ~isempty(addoptions), g.options = { g.options{:} addoptions{:}}; end
252 |
253 | % select datasets, create new big dataset if necessary
254 | % ----------------------------------------------------
255 | if length(g.dataset) == 1
256 | EEG = ALLEEG(g.dataset);
257 | EEG = eeg_checkset(EEG, 'loaddata');
258 | elseif length(ALLEEG) > 1 && ~strcmpi(g.concatenate, 'on') && ~strcmpi(g.concatcond, 'on')
259 | [ ALLEEG, com ] = eeg_eval( 'pop_runica', ALLEEG, 'warning', 'off', 'params', ...
260 | { 'icatype' g.icatype 'options' g.options 'chanind' g.chanind } );
261 | return;
262 | elseif length(ALLEEG) > 1 && strcmpi(g.concatcond, 'on')
263 | allsubjects = { ALLEEG.subject };
264 | allsessions = { ALLEEG.session };
265 | alltags = zeros(1,length(allsubjects));
266 | if any(cellfun('isempty', allsubjects))
267 | errordlg2( [ 'Aborting: Subject names missing from at least one dataset file.' 10 ...
268 | 'Subject names must be stored within the datasets. To do so,' 10 ...
269 | 'use the STUDY > Edit STUDY Info menu and check the box' 10 ...
270 | '"Dataset info (condition, group, ...) differs from study info..."' ]);
271 | end
272 | dats = {};
273 | for index = 1:length(allsubjects)
274 | if ~alltags(index)
275 | allinds = strmatch(allsubjects{index}, allsubjects, 'exact');
276 | rmind = [];
277 | % if we have different sessions they will not be concatenated
278 | for tmpi = setdiff_bc(allinds,index)'
279 | if ~isequal(allsessions(index), allsessions(tmpi)), rmind = [rmind tmpi];
280 | end
281 | end
282 | allinds = setdiff_bc(allinds, rmind);
283 | fprintf('Found %d datasets for subject ''%s''\n', length(allinds), allsubjects{index});
284 | dats = { dats{:} allinds };
285 | alltags(allinds) = 1;
286 | end
287 | end
288 | fprintf('**************************\nNOW RUNNING ALL DECOMPOSITIONS\n****************************\n');
289 | for index = 1:length(dats)
290 | ALLEEG(dats{index}) = pop_runica(ALLEEG(dats{index}), 'icatype', g.icatype, ...
291 | 'options', g.options, 'chanind', g.chanind, 'concatenate', 'on');
292 | for idat = 1:length(dats{index})
293 | ALLEEG(dats{index}(idat)).saved = 'no';
294 | pop_saveset(ALLEEG(dats{index}(idat)), 'savemode', 'resave');
295 | ALLEEG(dats{index}(idat)).saved = 'yes';
296 | end
297 | end
298 | com = sprintf('EEG = pop_runica(EEG, %s);', ...
299 | vararg2str({ 'icatype' g.icatype 'concatcond' 'on' 'options' g.options }) );
300 | return;
301 | else
302 | disp('Concatenating datasets...');
303 | EEG = ALLEEG(g.dataset(1));
304 |
305 | % compute total data size
306 | % -----------------------
307 | totalpnts = 0;
308 | for i = g.dataset
309 | totalpnts = totalpnts+ALLEEG(g.dataset(i)).pnts*ALLEEG(g.dataset(i)).trials;
310 | end
311 | EEG.data = zeros(EEG.nbchan, totalpnts);
312 |
313 | % copy data
314 | % ---------
315 | cpnts = 1;
316 | for i = g.dataset
317 | tmplen = ALLEEG(g.dataset(i)).pnts*ALLEEG(g.dataset(i)).trials;
318 | TMP = eeg_checkset(ALLEEG(g.dataset(i)), 'loaddata');
319 | EEG.data(:,cpnts:cpnts+tmplen-1) = reshape(TMP.data, size(TMP.data,1), size(TMP.data,2)*size(TMP.data,3));
320 | cpnts = cpnts+tmplen;
321 | end
322 | EEG.icaweights = [];
323 | EEG.trials = 1;
324 | EEG.pnts = size(EEG.data,2);
325 | EEG.saved = 'no';
326 | end
327 |
328 | % Store and then remove current EEG ICA weights and sphere
329 | % ---------------------------------------------------
330 | fprintf('\n');
331 | if ~isempty(EEG.icaweights)
332 | fprintf('Saving current ICA decomposition in "EEG.etc.oldicaweights" (etc.).\n');
333 | if ~isfield(EEG,'etc'), EEG.etc = []; end
334 | if ~isfield(EEG.etc,'oldicaweights')
335 | EEG.etc.oldicaweights = {};
336 | EEG.etc.oldicasphere = {};
337 | EEG.etc.oldicachansind = {};
338 | end
339 | tmpoldicaweights = EEG.etc.oldicaweights;
340 | tmpoldicasphere = EEG.etc.oldicasphere;
341 | tmpoldicachansind = EEG.etc.oldicachansind;
342 | EEG.etc.oldicaweights = { EEG.icaweights tmpoldicaweights{:} };
343 | EEG.etc.oldicasphere = { EEG.icasphere tmpoldicasphere{:} };
344 | EEG.etc.oldicachansind = { EEG.icachansind tmpoldicachansind{:} };
345 | fprintf(' Decomposition saved as entry %d.\n',length(EEG.etc.oldicaweights));
346 | end
347 | EEG.icaweights = [];
348 | EEG.icasphere = [];
349 | EEG.icawinv = [];
350 | EEG.icaact = [];
351 |
352 | % select sub_channels
353 | % -------------------
354 | if isempty(g.chanind)
355 | g.chanind = 1:EEG.nbchan;
356 | end
357 | if iscell(g.chanind)
358 | datatype = {EEG.chanlocs.type};
359 | tmpChanInd = [];
360 | for iChan = 1:length(datatype)
361 | if ~isempty(datatype{iChan}) && ~isempty(strmatch(datatype{iChan}, g.chanind))
362 | tmpChanInd = [ tmpChanInd iChan ];
363 | end
364 | end
365 | g.chanind = tmpChanInd;
366 | end
367 | EEG.icachansind = g.chanind;
368 |
369 | % is pca already an option?
370 | % -------------------------
371 | pca_opt = 0;
372 | for i = 1:length(g.options)
373 | if ischar(g.options{i})
374 | if strcmpi(g.options{i}, 'pca')
375 | pca_opt = 1;
376 | pca_ind = i;
377 | end
378 | end
379 | end
380 |
381 | %------------------------------
382 | % compute ICA on a definite set
383 | % -----------------------------
384 | tmpdata = reshape( EEG.data(g.chanind,:,:), length(g.chanind), EEG.pnts*EEG.trials);
385 | tmprank = length(g.chanind);
386 | tmpdata = tmpdata - repmat(mean(tmpdata,2), [1 size(tmpdata,2)]); % zero mean
387 | if ~strcmpi(g.icatype, 'binica')
388 | try
389 | disp('Attempting to convert data matrix to double precision for more accurate ICA results.')
390 | tmpdata = double(tmpdata);
391 | tmpdata = tmpdata - repmat(mean(tmpdata,2), [1 size(tmpdata,2)]); % zero mean (more precise than single precision)
392 | catch
393 | disp('*************************************************************')
394 | disp('Not enough memory to convert data matrix to double precision.')
395 | disp('All computations will be done in single precision. Matlab 7.x')
396 | disp('under 64-bit Linux and others is imprecise in this mode.')
397 | disp('We advise use of "binica" instead of "runica."')
398 | disp('*************************************************************')
399 | end
400 | end
401 | switch lower(g.icatype)
402 | case 'runica'
403 | try if ismatlab, g.options = { g.options{:}, 'interrupt', 'on' }; end; catch, end
404 | if tmprank == size(tmpdata,1) || pca_opt
405 | [EEG.icaweights,EEG.icasphere] = runica( tmpdata, 'lrate', 0.001, g.options{:} );
406 | else
407 | if nargin < 2
408 | uilist = { { 'style' 'text' 'string' [ 'EEGLAB has detected that the rank of your data matrix' 10 ...
409 | 'is lower the number of input data channels. This might' 10 ...
410 | 'be because you are including a reference channel or' 10 ...
411 | 'because you are running a second ICA decomposition.' 10 ...
412 | sprintf('The proposed dimension for ICA is %d (out of %d channels).', tmprank, size(tmpdata,1)) 10 ...
413 | 'Rank computation may be inacurate so you may edit this' 10 ...
414 | 'number below. If you do not understand, simply press OK.' ] } { } ...
415 | { 'style' 'text' 'string' 'Proposed rank:' } ...
416 | { 'style' 'edit' 'string' num2str(tmprank) } };
417 | res = inputgui('uilist', uilist, 'geometry', { [1] [1] [1 1] }, 'geomvert', [6 1 1]);
418 | if isempty(res), return; end
419 | tmprank = str2num(res{1});
420 | g.options = [g.options { 'pca' tmprank }];
421 | else
422 | g.options = [g.options {'pca' tmprank }]; % automatic for STUDY (batch processing)
423 | end
424 | disp(['Data rank (' int2str(tmprank) ') is smaller than the number of channels (' int2str(size(tmpdata,1)) ').']);
425 | [EEG.icaweights,EEG.icasphere] = runica( tmpdata, 'lrate', 0.001, g.options{:} );
426 | end
427 | case 'binica'
428 | icadefs;
429 | fprintf(['Warning: If the binary ICA function does not work, check that you have added the\n' ...
430 | 'binary file location (in the EEGLAB directory) to your Unix /bin directory (.cshrc file)\n']);
431 | if exist(ICABINARY) ~= 2
432 | error('Pop_runica(): binary ICA executable not found. Edit icadefs.m file to specify the ICABINARY location');
433 | end
434 | tmprank = getrank(tmpdata(:,1:min(3000, size(tmpdata,2))));
435 | if tmprank == size(tmpdata,1) || pca_opt
436 | [EEG.icaweights,EEG.icasphere] = binica( tmpdata, 'lrate', 0.001, g.options{:} );
437 | else
438 | disp(['Data rank (' int2str(tmprank) ') is smaller than the number of channels (' int2str(size(tmpdata,1)) ').']);
439 | [EEG.icaweights,EEG.icasphere] = binica( tmpdata, 'lrate', 0.001, 'pca', tmprank, g.options{:} );
440 | end
441 | case 'amica'
442 | tmprank = getrank(tmpdata(:,1:min(3000, size(tmpdata,2))));
443 | fprintf('Now Running AMICA\n');
444 | if length(g.options) > 1
445 | if ischar(g.options{2})
446 | fprintf('See folder %s for outputs\n', g.options{2});
447 | end
448 | end
449 | fprintf('To import results, use menu item "Tools > Run AMICA > Load AMICA components\n');
450 | modres = runamica( tmpdata, [], size(tmpdata,1), size(tmpdata,2), g.options{:} );
451 | if ~isempty(modres)
452 | EEG.icaweights = modres.W;
453 | EEG.icasphere = modres.S;
454 | else
455 | return;
456 | end
457 | case 'picard'
458 | options2 = g.options;
459 | if pca_opt
460 | if g.options{pca_ind+1} < 0
461 | [tmpdata,eigvec] = runpca(tmpdata, size(tmpdata,1)+g.options{pca_ind+1});
462 | else
463 | [tmpdata,eigvec] = runpca(tmpdata, g.options{pca_ind+1});
464 | end
465 | options2(pca_ind:pca_ind+1) = [];
466 | end
467 | [~, EEG.icaweights] = picard( tmpdata, 'verbose', true, options2{:});
468 | if pca_opt
469 | EEG.icaweights = EEG.icaweights*pinv(eigvec);
470 | end
471 | case 'pearson_ica'
472 | if isempty(g.options)
473 | disp('Warning: EEGLAB default for pearson ICA is 1000 iterations and epsilon=0.0005');
474 | [~, EEG.icaweights] = pearson_ica( tmpdata, 'maxNumIterations', 1000,'epsilon',0.0005);
475 | else
476 | [~, EEG.icaweights] = pearson_ica( tmpdata, g.options{:});
477 | end
478 | case 'egld_ica', disp('Warning: This algorithm is very slow!!!');
479 | [~, EEG.icaweights] = egld_ica( tmpdata, g.options{:} );
480 | case 'tfbss'
481 | if isempty(g.options)
482 | [~, EEG.icaweights] = tfbss( tmpdata, size(tmpdata,1), 8, 512 );
483 | else
484 | [~, EEG.icaweights] = tfbss( tmpdata, g.options{:} );
485 | end
486 | case 'jader', [EEG.icaweights] = jader( tmpdata, g.options{:} );
487 | case 'matlabshibbsr', [EEG.icaweights] = MatlabshibbsR( tmpdata, g.options{:} );
488 | case 'eea', [EEG.icaweights] = eeA( tmpdata, g.options{:} );
489 | case 'icaml', [~, EEG.icawinv] = icaML( tmpdata, g.options{:} );
490 | case 'icams', [~, EEG.icawinv] = icaMS( tmpdata, g.options{:} );
491 | case 'fastica', [~, EEG.icawinv, EEG.icaweights] = fastica( tmpdata, 'displayMode', 'off', g.options{:} );
492 | case { 'tica' 'erica' 'simbec' 'unica' 'amuse' 'fobi' 'evd' 'sons' ...
493 | 'jadeop' 'jade_td_p' 'evd24' 'sobi' 'ng_ol' 'acsobiro' 'acrsobibpf' }
494 | fig = figure('tag', 'alg_is_run', 'visible', 'off');
495 |
496 | if isempty(g.options), g.options = { size(tmpdata,1) }; end
497 | switch lower(g.icatype)
498 | case 'tica', EEG.icaweights = tica( tmpdata, g.options{:} );
499 | case 'erica', EEG.icaweights = erica( tmpdata, g.options{:} );
500 | case 'simbec', EEG.icaweights = simbec( tmpdata, g.options{:} );
501 | case 'unica', EEG.icaweights = unica( tmpdata, g.options{:} );
502 | case 'amuse', EEG.icaweights = amuse( tmpdata );
503 | case 'fobi', [~, EEG.icaweights] = fobi( tmpdata, g.options{:} );
504 | case 'evd', EEG.icaweights = evd( tmpdata, g.options{:} );
505 | case 'sons', EEG.icaweights = sons( tmpdata, g.options{:} );
506 | case 'jadeop', EEG.icaweights = jadeop( tmpdata, g.options{:} );
507 | case 'jade_td_p',EEG.icaweights = jade_td_p( tmpdata, g.options{:} );
508 | case 'evd24', EEG.icaweights = evd24( tmpdata, g.options{:} );
509 | case 'sobi', EEG.icawinv = sobi( tmpdata, g.options{:} );
510 | case 'ng_ol', [~, EEG.icaweights] = ng_ol( tmpdata, g.options{:} );
511 | case 'acsobiro', EEG.icawinv = acsobiro( tmpdata, g.options{:} );
512 | case 'acrsobibpf', EEG.icawinv = acrsobibpf( tmpdata, g.options{:} );
513 | end
514 | clear tmp;
515 | close(fig);
516 | otherwise, error('Pop_runica: unrecognized algorithm');
517 | end
518 |
519 | % update weight and inverse matrices etc...
520 | % -----------------------------------------
521 | if ~isempty(fig), try close(fig); catch, end; end
522 | if isempty(EEG.icaweights)
523 | EEG.icaweights = pinv(EEG.icawinv);
524 | end
525 | if isempty(EEG.icasphere)
526 | EEG.icasphere = eye(size(EEG.icaweights,2));
527 | end
528 | if isempty(EEG.icawinv)
529 | EEG.icawinv = pinv(EEG.icaweights*EEG.icasphere); % a priori same result as inv
530 | end
531 |
532 | % Reorder components by variance
533 | % ------------------------------
534 | meanvar = sum(EEG.icawinv.^2).*sum(transpose((EEG.icaweights * EEG.icasphere)*EEG.data(EEG.icachansind,:)).^2)/((length(EEG.icachansind)*EEG.pnts)-1);
535 | [~, windex] = sort(meanvar);
536 | windex = windex(end:-1:1); % order large to small
537 | meanvar = meanvar(windex);
538 | EEG.icaweights = EEG.icaweights(windex,:);
539 | EEG.icawinv = pinv( EEG.icaweights * EEG.icasphere );
540 | if ~isempty(EEG.icaact)
541 | EEG.icaact = EEG.icaact(windex,:,:);
542 | end
543 |
544 | % copy back data to datasets if necessary
545 | % ---------------------------------------
546 | if length(g.dataset) > 1
547 | for i = g.dataset
548 | ALLEEG(i).icaweights = EEG.icaweights;
549 | ALLEEG(i).icasphere = EEG.icasphere;
550 | ALLEEG(i).icawinv = EEG.icawinv;
551 | ALLEEG(i).icachansind = g.chanind;
552 | end
553 | ALLEEG = eeg_checkset(ALLEEG);
554 | else
555 | EEG = eeg_checkset(EEG);
556 | ALLEEG = eeg_store(ALLEEG, EEG, g.dataset);
557 | end
558 |
559 | if nargin < 2 || selectamica
560 | if ~isempty(g.options)
561 | com = sprintf('EEG = pop_runica(EEG, ''icatype'', ''%s'', %s);', g.icatype, vararg2str(g.options) ); %vararg2str({ 'icatype' g.icatype 'dataset' g.dataset 'options' g.options }) );
562 | else
563 | com = sprintf('EEG = pop_runica(EEG, ''icatype'', ''%s'');',g.icatype );
564 | end
565 | end
566 |
567 | return;
568 |
569 | function tmprank2 = getrank(tmpdata)
570 |
571 | tmprank = rank(tmpdata);
572 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
573 | %Here: alternate computation of the rank by Sven Hoffman
574 | %tmprank = rank(tmpdata(:,1:min(3000, size(tmpdata,2)))); old code
575 | covarianceMatrix = cov(tmpdata', 1);
576 | [~, D] = eig (covarianceMatrix);
577 | rankTolerance = 1e-7;
578 | tmprank2=sum (diag (D) > rankTolerance);
579 | if tmprank ~= tmprank2
580 | fprintf('Warning: fixing rank computation inconsistency (%d vs %d) most likely because running under Linux 64-bit Matlab\n', tmprank, tmprank2);
581 | tmprank2 = max(tmprank, tmprank2);
582 | end
583 |
584 |
585 |
--------------------------------------------------------------------------------
/training/2-iclabel/run_ica.m:
--------------------------------------------------------------------------------
1 | function run_ica(startsub,stopsub)
2 |
3 | cd //user//leuven//336//vsc33613//eeglab2019_1
4 | eeglab
5 | cd //user//leuven//336//vsc33613//Extra
6 | %% params
7 | newroot = '//scratch//leuven//333//vsc33378//Datasets//Neureka_challenge//ICAlabel';
8 | root0 = '//scratch//leuven//333//vsc33378//Datasets//Neureka_challenge';
9 | root1 = '//edf//train';
10 | root = [root0,root1];
11 | montage = '02_tcp_le';
12 | path = fullfile(root, montage);
13 | [f,d] = getContent(path, 1);
14 | N = size(d,1);
15 |
16 |
17 | recs0=[];
18 | for ifolder = startsub:stopsub
19 | p = fullfile(f{ifolder}, d{ifolder});
20 | [f2,d2] = getContent(p, 1);
21 | N2 = size(d2,1);
22 | subject = [];
23 | for isubject = 1:N2
24 | p = fullfile(f2{isubject}, d2{isubject});
25 | subjectstrname = d2{isubject};
26 | subjectname = num2str(str2num(subjectstrname));
27 | [f3,d3] = getContent(p, 1);
28 | N3 = size(d3,1); %number of sessions
29 |
30 | %newsubjectfolder = fullfile(newroot,subjectname);
31 | %if(~exist(newsubjectfolder , 'dir'))
32 | % mkdir(newsubjectfolder )
33 | %end
34 |
35 | for isession = 1:N3
36 | pf = fullfile(f3{isession }, d3{isession });
37 | foldername = d3{isession};
38 | sessionname = strsplit(foldername,'_');
39 | sessionname = sessionname{1};
40 | recnames = findRecording(pf, subjectstrname, sessionname);
41 | newrecCounter = 0;
42 | for irec = 1:size(recnames,1)
43 | fprintf('processing ifolder: %d, isubject: %d, isession: %d, irec: %d \n', ifolder, isubject, isession, irec);
44 | display([pf, ' -> ', recnames.recstrname{irec}]);
45 | %newedfname = [subjectname, char('a' + newrecCounter)];
46 | %newedfpath = fullfile(newsubjectfolder, [newedfname,'.edf']);
47 | %newannpath = fullfile(newsubjectfolder, [newedfname,'.tsv']);
48 | oldedfpath = fullfile(pf, recnames.edfname{irec});
49 | newrecCounter = newrecCounter + 1;
50 | newrecfolder = fullfile(newroot, subjectname);
51 | newedfname = [subjectname,'_r', num2str(newrecCounter)];
52 | newedfpath = fullfile(newrecfolder, [newedfname,'.mat']);
53 | EEG=pop_biosig(oldedfpath,'importevent','off','rmeventchan','off');
54 | EEG=pop_runica(EEG,'chanind',[1:21]);
55 | if(~exist(newrecfolder , 'dir'))
56 | mkdir(newrecfolder);
57 | end
58 | save(newedfpath,'EEG')
59 | end
60 | end
61 | end
62 |
63 | clc
64 | end
65 | end
66 |
67 |
68 |
--------------------------------------------------------------------------------
/training/2-iclabel/run_icalabel.m:
--------------------------------------------------------------------------------
1 | function run_icalabel(startsub,stopsub,root,montage,saveroot)
2 | %Function for run the complete icalabel to all subjects (you need to include in the path eeglab and folder with "Extra" functions
3 | %Inputs
4 | %startsub,stopsub - the number of subjects for which you want to run the algorithm.
5 | %montage - the montage for which you want to run the algorithm (with the appropriate selection of montage startsub,stopsub you can parallelize the algorithm)
6 | %root- The root where the data are saved - the format must follow the one given by Temple Un.
7 | %saveroot- The folder where the results will be saved
8 |
9 | %Example of the function paths which shall be included, root saveroot and montage formats
10 | %cd //user//leuven//336//vsc33613//eeglab2019_1
11 | %cd //user//leuven//336//vsc33613//Extra
12 | %root0 = '//scratch//leuven//333//vsc33378//Datasets//Neureka_challenge';
13 | %root1 = '//edf//dev';
14 | %root = [root0,root1];
15 | %montage='02_tcp_le';
16 |
17 | eeglab
18 | path = fullfile(root, montage);
19 | [f,d] = getContent(path, 1);
20 | for ifolder = startsub:stopsub
21 | p = fullfile(f{ifolder}, d{ifolder});
22 | [f2,d2] = getContent(p, 1);
23 | N2 = size(d2,1);
24 | for isubject = 1:N2
25 | p = fullfile(f2{isubject}, d2{isubject});
26 | subjectstrname = d2{isubject};
27 | [f3,d3] = getContent(p, 1);
28 | N3 = size(d3,1); %number of sessions
29 | for isession = 1:N3
30 | pf = fullfile(f3{isession }, d3{isession });
31 | foldername = d3{isession};
32 | sessionname = strsplit(foldername,'_');
33 | sessionname = sessionname{1};
34 | recnames = findRecording(pf, subjectstrname, sessionname);
35 | for irec = 1:size(recnames,1)
36 | fprintf('processing ifolder: %d, isubject: %d, isession: %d, irec: %d \n', ifolder, isubject, isession, irec);
37 | display([pf, ' -> ', recnames.recstrname{irec}]);
38 | oldedfpath = fullfile(pf, recnames.edfname{irec});
39 | newedfname = [pf,'/',erase(recnames.edfname{irec},'.edf'),'_icalbl.edf'];
40 | EEG=pop_biosig(oldedfpath,'importevent','off','rmeventchan','off');
41 | temp=load('input.mat');
42 | EEG=pop_clean_rawdata(EEG,temp.options);
43 | neureka_locs=squeeze(struct2cell(readlocs('neureka.locs')));
44 | eeg1=struct2cell(EEG.chanlocs);
45 | for i=1:size(eeg1,2)
46 | for j=1:size(neureka_locs,2)
47 | if contains(eeg1{1,i},neureka_locs{3,j})
48 | eeg1{3,i}=neureka_locs{1,j};
49 | eeg1{4,i}=neureka_locs{2,j};
50 | eeg1{5,i}=neureka_locs{8,j};
51 | eeg1{6,i}=neureka_locs{9,j};
52 | eeg1{7,i}=neureka_locs{10,j};
53 | eeg1{8,i}=neureka_locs{4,j};
54 | eeg1{9,i}=neureka_locs{5,j};
55 | end
56 | end
57 | end
58 | channels_ic=find(cellfun(@isempty,(eeg1(3,:)))==0);
59 | EEG.chanlocs=cell2struct(eeg1,fieldnames(EEG.chanlocs)',1);
60 | EEG=pop_runica(EEG,'chanind',channels_ic);
61 | EEG=iclabel(EEG);
62 | [indx,indy]=find(EEG.etc.ic_classification.ICLabel.classifications(:,2:6)>0.8);
63 | if (size(channels_ic,2)-size(indx,1))==0
64 | [indx,indy]=find(EEG.etc.ic_classification.ICLabel.classifications(:,2:6)>0.9);
65 | end
66 | if (size(channels_ic,2)-size(indx,1))==0
67 | OUTEEG=EEG;
68 | else
69 | OUTEEG = pop_subcomp( EEG,indx );
70 | end
71 | %pfz=erase(f3{isession},'/ddn1/vol1/site_scratch/leuven/333/vsc33378/Datasets/Neureka_challenge');
72 | %pfz=['/data/leuven/336/vsc33613/Neureka', pfz];
73 | pfz=erase(f3{isession},root);
74 | pfz=[saveroot,pfz];
75 | if(~exist(pfz , 'dir'))
76 | mkdir(pfz);
77 | end
78 | newedfname = [pfz,'/',erase(recnames.edfname{irec},'.edf'),'_icalbl.edf'];
79 | pop_writeeeg(OUTEEG, newedfname, 'TYPE','EDF');
80 | end
81 | end
82 | end
83 |
84 | clc
85 | end
86 | end
87 |
88 |
89 |
--------------------------------------------------------------------------------
/training/3-DNN/3-load-data.py:
--------------------------------------------------------------------------------
1 | """ Load all edf files.
2 |
3 | This file reads all edf files in a given directory and combines them in a data structure
4 | to be used during training of the U-net.
5 | Has to be run for every U-net that is going to be trained.
6 | """
7 |
8 |
9 | # Importing of necessary libraries
10 |
11 | import sys
12 | # Root folder of main library
13 | sys.path.insert(0, 'library')
14 | import loading
15 | import nedc
16 |
17 | # Libraries
18 | import os
19 | import pandas as pd
20 | import numpy as np
21 | import matplotlib.pyplot as plt
22 | from multiprocessing import Pool
23 | import h5py
24 |
25 |
26 | # Variables that have to be set accordingly
27 | base_directory = 'PATH_OF_ORIGINAL_DATASET' # Path to directory with EDF files
28 | save_path = 'PATH_OF_LOADED_FILE.h5' # Path to file containing the loaded data structure
29 |
30 | includes_tse = False # Boolean flag, whether .tse files with ground-truth labels can also be loaded
31 | wiener = False # Boolean flag, whether Wiener filtering is applied
32 |
33 | def wrangle_tse(tse_path, length, fs=200):
34 | """
35 | Function to process a given .tse file into a time series of labels.
36 | tse_path: Path to .tse file
37 | length: Number of time samples in the corresponding EEG time series
38 | fs: Sampling rate of the time series
39 | """
40 | label_dct = {
41 | 'bckg': 0,
42 | 'seiz': 1
43 | }
44 |
45 | label = np.zeros(shape=(length,))
46 |
47 | df_label = pd.read_csv(
48 | filepath_or_buffer=tse_path,
49 | header=None,
50 | sep=' ',
51 | names=['start', 'stop', 'label', 'confidence'],
52 | skiprows=2,
53 | na_filter=False
54 | )
55 |
56 | for i, time_s in enumerate(df_label.start):
57 | label_str = df_label.label[i]
58 | label[int(time_s*fs):] = label_dct[label_str]
59 |
60 | return label
61 |
62 |
63 | """
64 | Function that loads a given recording, resamples and re-references.
65 | Applies Wiener filtering, and loads the .tse file; both when appropriate.
66 | """
67 | if includes_tse:
68 | def process_file(file_path):
69 | file_name = file_path[-22-7:-4-7]
70 |
71 | try:
72 | (fs, data, mount) = loading.loadRecording(file_path, wiener=wiener)
73 | signal = np.asarray(data, dtype=np.float32)
74 |
75 | label = wrangle_tse(file_path[:-4]+'.tse_bi', length=signal.shape[1])
76 | label = np.asarray(label, dtype=np.uint8)
77 | except TypeError:
78 | signal = 0
79 |
80 | return file_name, signal, label
81 | else:
82 | def process_file(file_path):
83 | file_name = file_path[-22-7:-4-7]
84 |
85 | try:
86 | (fs, data, mount) = loading.loadRecording(file_path, wiener=wiener)
87 | signal = np.asarray(data, dtype=np.float32)
88 |
89 | except TypeError:
90 | signal = 0
91 |
92 | return file_name, signal
93 |
94 |
95 | # Walks through the given directory and creates list of all .edf files
96 | edf_files = []
97 | for root, dirs, files in os.walk(base_directory):
98 | for file in files:
99 | if file.endswith(".edf"):
100 | edf_files.append(os.path.join(root, file))
101 |
102 | # Processes all files in parallel
103 | pool = Pool()
104 |
105 | if includes_tse:
106 | file_names, signals, labels = zip(*pool.map(process_file, edf_files))
107 | else:
108 | file_names, signals = zip(*pool.map(process_file, edf_files))
109 |
110 | # Necessary manipulation, the ICLabel procedure rejects some training files due to noise.
111 | file_names, signals = zip(*[[file_name, signal] for file_name, signal in zip(file_names, signals)
112 | if len(np.asarray(signal).shape)!=0])
113 |
114 | # Saves new data structure to disk
115 | if includes_tse:
116 | dt_fl = h5py.vlen_dtype(np.dtype('float32'))
117 | dt_int = h5py.vlen_dtype(np.dtype('uint8'))
118 | dt_str = h5py.special_dtype(vlen=str)
119 |
120 | with h5py.File(save_path, 'w') as f:
121 | dset_signals = f.create_dataset('signals', (len(signals), 18), dtype=dt_fl)
122 | dset_labels = f.create_dataset('labels', (len(labels),), dtype=dt_int)
123 | dset_file_names = f.create_dataset('filenames', (len(file_names),), dtype=dt_str)
124 |
125 | for i in range(len(signals)):
126 | dset_signals[i] = signals[i]
127 | dset_labels[i] = labels[i]
128 | dset_file_names[i] = file_names[i]
129 | else:
130 | dt_fl = h5py.vlen_dtype(np.dtype('float32'))
131 | dt_str = h5py.special_dtype(vlen=str)
132 |
133 | with h5py.File(save_path, 'w') as f:
134 | dset_signals = f.create_dataset('signals', (len(signals), 18), dtype=dt_fl)
135 | dset_file_names = f.create_dataset('filenames', (len(file_names),), dtype=dt_str)
136 |
137 | for i in range(len(signals)):
138 | dset_signals[i] = signals[i]
139 | dset_file_names[i] = file_names[i]
--------------------------------------------------------------------------------
/training/3-DNN/3-train-unet.py:
--------------------------------------------------------------------------------
1 | """Train a U-net for a specific data view.
2 |
3 | This file loads a pre-processed data object, creates a new U-net and starts the training loop on the data.
4 | During training, the network weights with the best validation performance are saved to disk.
5 | """
6 | # Importing of necessary libraries
7 | import h5py
8 | import numpy as np
9 | from sklearn import model_selection
10 | import matplotlib.pyplot as plt
11 | from sklearn import metrics
12 |
13 | import tensorflow as tf
14 | from tensorflow.keras.optimizers import Adam
15 |
16 | from utils import SegmentGenerator, setup_tf, build_unet
17 |
18 |
19 | # Variables locating the pre-processed data and the to-be-saved network weights
20 | save_path = 'PATH_TO_LOADED_DATA.h5'
21 | network_path = 'PATH_TO_NETWORK_WEIGHTS.h5'
22 |
23 | # Some random variables
24 | fs = 200
25 | n_secs = 30
26 | n_channels = 18
27 |
28 | # Tensorflow function to detect GPU properly
29 | setup_tf()
30 |
31 | # Loading data + normalizing
32 | with h5py.File(save_path, 'r') as f:
33 | file_names = []
34 | labels = []
35 | signals = []
36 |
37 | file_names_ds = f['filenames']
38 | signals_ds = f['signals']
39 | labels_ds = f['labels']
40 |
41 | for i in range(len(signals_ds)):
42 | file_names.append(file_names_ds[i])
43 | data = np.asarray(np.vstack(signals_ds[i]), dtype=np.float32).T
44 | mean = np.mean(data, axis=0)
45 | std = np.std(data, axis=0)
46 | signals.append((data-mean)/std)
47 | labels.append(labels_ds[i])
48 |
49 | # Building a list for stratified train-val split, balance the amount of files containing seizures
50 | seizure_label = []
51 | for label in labels:
52 | seizure_label.append(np.sum(label)>0)
53 | seizure_label = np.asarray(seizure_label, dtype=np.uint8)
54 |
55 | # Train-val split
56 | signal_train, signal_val, label_train, label_val = model_selection.train_test_split(signals, labels,
57 | test_size=0.2, random_state=1337, stratify=seizure_label)
58 |
59 | # Network settings
60 | n_filters = 8
61 | window_size = 4096
62 | n_channels = 18
63 |
64 | # Build the unet, and unet_train objects (use same underlying layers, unet_train is used for deep supervision)
65 | unet, unet_train = build_unet(window_size=window_size, n_channels=n_channels, n_filters=n_filters)
66 |
67 | # Build a Keras data generator object
68 | generator = SegmentGenerator(signals=signal_train, labels=label_train, batch_size=32,
69 | window_size=window_size, stride=1000, n_channels=n_channels)
70 |
71 | # Training settings + bookkeeping variables
72 | n_batches = len(generator)
73 | n_epochs = 100
74 | optimizer = Adam(lr=1e-4)
75 |
76 | loss_train = np.zeros(shape=(n_epochs,))
77 | xentr_train = np.zeros(shape=(n_epochs,))
78 | xentr_val_mean = np.zeros(shape=(n_epochs,))
79 | xentr_val_std = np.zeros(shape=(n_epochs,))
80 | one = np.float32(1.)
81 | bin_xent = tf.keras.losses.BinaryCrossentropy(label_smoothing=0.2)
82 |
83 | best_loss = 1e20
84 |
85 | # Loss weights
86 | all_labels = np.copy(np.concatenate(label_train))
87 | n_bckg = np.sum(all_labels==0)
88 | n_seiz = np.sum(all_labels==1)
89 | del all_labels
90 |
91 |
92 | # Actual training loop
93 | for epoch in range(n_epochs):
94 |
95 | epoch_loss_avg = tf.keras.metrics.Mean()
96 | epoch_xentr_avg = tf.keras.metrics.Mean()
97 | print('====== Epoch #{0:3d} ======'.format(epoch))
98 | # Training loop over all batches
99 | for batch in range(n_batches):
100 | x, y = generator.__getitem__(batch)
101 |
102 | with tf.GradientTape() as t:
103 | y_0, y_1, y_2, y_3, y_4, y_5 = unet_train(x, training=True)
104 | xentr0 = bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_0, axis=-1),
105 | sample_weight=n_bckg/n_seiz*y+(one-y))
106 | y = y[:, ::4]
107 | xentr1 = bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_1, axis=-1),
108 | sample_weight=n_bckg/n_seiz*y+(one-y))
109 | y = y[:, ::4]
110 | xentr2 = bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_2, axis=-1),
111 | sample_weight=n_bckg/n_seiz*y+(one-y))
112 | y = y[:, ::4]
113 | xentr3 = bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_3, axis=-1),
114 | sample_weight=n_bckg/n_seiz*y+(one-y))
115 | y = y[:, ::4]
116 | xentr4 = bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_4, axis=-1),
117 | sample_weight=n_bckg/n_seiz*y+(one-y))
118 | y = y[:, ::4]
119 | xentr5 = bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_5, axis=-1),
120 | sample_weight=n_bckg/n_seiz*y+(one-y))
121 |
122 | loss0 = tf.reduce_mean(xentr0)
123 | loss1 = tf.reduce_mean(xentr1)
124 | loss2 = tf.reduce_mean(xentr2)
125 | loss3 = tf.reduce_mean(xentr3)
126 | loss4 = tf.reduce_mean(xentr4)
127 | loss5 = tf.reduce_mean(xentr5)
128 | loss = loss0 + 0.2*(loss1 + loss2 + loss3 + loss4 + loss5)
129 |
130 | grad = t.gradient(loss, unet_train.trainable_variables)
131 | optimizer.apply_gradients(zip(grad, unet_train.trainable_variables))
132 | epoch_loss_avg(loss)
133 | epoch_xentr_avg(loss0)
134 |
135 | generator.on_epoch_end()
136 |
137 | xentr_train[epoch] = epoch_xentr_avg.result()
138 | loss_train[epoch] = epoch_loss_avg.result()
139 | print('Loss Train - {0:.4f}'.format(loss_train[epoch]))
140 | print('Xentropy Train - {0:.4f}'.format(xentr_train[epoch]))
141 |
142 | # Calculating validation loss for "early stopping"
143 | xentr = []
144 | for j in range(len(signal_val)):
145 | signal = signal_val[j]
146 | label = label_val[j]
147 | if len(signal) < window_size:
148 | break
149 | x = []
150 | y = []
151 | for i in range(len(signal)//window_size):
152 | x.append(signal[window_size*i:(i+1)*window_size, :])
153 | y.append(label[window_size*i:(i+1)*window_size])
154 | x = np.asarray(x, dtype=np.float32)
155 | y = np.asarray(y, dtype=np.float32)
156 | y_ = unet.predict(x)
157 | xentr.append(bin_xent(y_true=tf.expand_dims(y, axis=-1), y_pred=tf.expand_dims(y_, axis=-1),
158 | sample_weight=n_bckg/n_seiz*y+(one-y)).numpy())
159 |
160 | xentr_val_mean[epoch] = np.mean(xentr)
161 | xentr_val_std[epoch] = np.std(xentr)
162 |
163 | if xentr_val_mean[epoch] < best_loss:
164 | best_loss = xentr_val_mean[epoch]
165 | unet.save_weights(network_path)
166 |
167 | print('Xentropy Val - {0:.4f} ± {1:.4f}'.format(xentr_val_mean[epoch], xentr_val_std[epoch]))
--------------------------------------------------------------------------------
/training/3-DNN/README.md:
--------------------------------------------------------------------------------
1 | ## README file for the base detection neural network code for the Neureka data
2 |
3 |
4 | * 3-load-data.py
5 |
6 | This file processes a directory structure of EEG recordings, preprocessed with ICLabel or not, and prepares a data structure
7 | fit for training the neural network.
8 |
9 | * 3-train-unet.py
10 |
11 | Script providing code for training a model on either raw EEG, Wiener filtered EEG, or ICLabel processed EEG. The notebook
12 | saves the model parameters during training for later use.
13 |
14 | * utils.py
15 |
16 | File with utility code for the data generator and building the U-net
17 |
--------------------------------------------------------------------------------
/training/3-DNN/utils.py:
--------------------------------------------------------------------------------
1 | import h5py
2 | import numpy as np
3 |
4 | import tensorflow as tf
5 | from tensorflow import keras
6 | from tensorflow.keras import Model, Input
7 | from tensorflow.keras.layers import Conv2D, UpSampling2D, MaxPooling2D, AveragePooling2D, Attention
8 | from tensorflow.keras.layers import ELU, BatchNormalization, Reshape, Concatenate, Dropout, Add, Multiply
9 | from tensorflow.keras.optimizers import Adam
10 | from tensorflow.python.keras import activations
11 | from tensorflow.python.keras import constraints
12 | from tensorflow.python.keras import initializers
13 | from tensorflow.python.keras import regularizers
14 | from tensorflow.python.framework import tensor_shape
15 | from tensorflow.python.ops import nn
16 |
17 |
18 | def setup_tf():
19 | """
20 | Detects GPUs and (currently) sets automatic memory growth
21 | """
22 | gpus = tf.config.experimental.list_physical_devices('GPU')
23 |
24 | if gpus:
25 | try:
26 | for gpu in gpus:
27 | tf.config.experimental.set_memory_growth(gpu,True)
28 | logical_gpus = tf.config.experimental.list_logical_devices('GPU')
29 |
30 | print(len(gpus), 'Physical GPUs, ', len(logical_gpus), 'Logical GPUs')
31 | except RuntimeError as e:
32 | print(e)
33 |
34 |
35 | class SegmentGenerator(keras.utils.Sequence):
36 | def __init__(self, signals, labels, batch_size=128, shuffle=True, stride=200, window_size=1024, n_channels=20):
37 | super().__init__()
38 | self.signals = signals
39 | self.labels = labels
40 | self.batch_size = batch_size
41 | self.shuffle = shuffle
42 | self.stride = stride
43 | self.window_size = window_size
44 | self.n_channels = n_channels
45 |
46 | key_array = []
47 |
48 | for i, array in enumerate(self.signals):
49 | n = (array.shape[0] - self.window_size)//self.stride
50 | for j in range(n):
51 | key_array.append([i, self.stride*j])
52 |
53 | self.key_array = np.asarray(key_array, dtype=np.uint32)
54 |
55 | self.on_epoch_end()
56 |
57 | def __len__(self):
58 | return len(self.key_array)//self.batch_size
59 |
60 | def __getitem__(self, index):
61 | keys = np.arange(start=index*self.batch_size, stop=(index+1)*self.batch_size)
62 |
63 | x, y = self.__data_generation__(keys)
64 |
65 | return x, y
66 |
67 | def on_epoch_end(self):
68 | if self.shuffle:
69 | self.key_array = np.random.permutation(self.key_array)
70 |
71 | def __data_generation__(self, keys):
72 | x = np.empty(shape=(self.batch_size, self.window_size, self.n_channels), dtype=np.float32)
73 | y = np.empty(shape=(self.batch_size, self.window_size))
74 |
75 | for i in range(self.batch_size):
76 | key = self.key_array[keys[i]]
77 | x[i, :, :] = self.signals[key[0]][key[1]:key[1]+self.window_size, :]
78 | y[i, :] = self.labels[key[0]][key[1]:key[1]+self.window_size]
79 |
80 | return x, y
81 |
82 |
83 | class BiasedConv(Conv2D):
84 | def __init__(self,
85 | filters,
86 | kernel_size,
87 | strides=(1, 1),
88 | padding='valid',
89 | data_format=None,
90 | dilation_rate=(1, 1),
91 | activation=None,
92 | use_bias=True,
93 | kernel_initializer='glorot_uniform',
94 | bias_initializer='zeros',
95 | kernel_regularizer=None,
96 | bias_regularizer=None,
97 | activity_regularizer=None,
98 | kernel_constraint=None,
99 | bias_constraint=None,
100 | **kwargs):
101 | super(Conv2D, self).__init__(
102 | rank=2,
103 | filters=filters,
104 | kernel_size=kernel_size,
105 | strides=strides,
106 | padding=padding,
107 | data_format=data_format,
108 | dilation_rate=dilation_rate,
109 | activation=activations.get(activation),
110 | use_bias=True,
111 | kernel_initializer=initializers.get(kernel_initializer),
112 | bias_initializer=initializers.get(bias_initializer),
113 | kernel_regularizer=regularizers.get(kernel_regularizer),
114 | bias_regularizer=regularizers.get(bias_regularizer),
115 | activity_regularizer=regularizers.get(activity_regularizer),
116 | kernel_constraint=constraints.get(kernel_constraint),
117 | bias_constraint=constraints.get(bias_constraint),
118 | **kwargs)
119 |
120 | def build(self, input_shape):
121 | input_shape = tensor_shape.TensorShape(input_shape)
122 |
123 | self.bias = self.add_weight(
124 | name='bias',
125 | shape=(self.filters,),
126 | initializer=self.bias_initializer,
127 | regularizer=self.bias_regularizer,
128 | constraint=self.bias_constraint,
129 | trainable=True,
130 | dtype=self.dtype)
131 |
132 | self.built = True
133 |
134 | def compute_output_shape(self, input_shape):
135 | return input_shape
136 |
137 | def call(self, inputs):
138 | # Check if the input_shape in call() is different from that in build().
139 | # If they are different, recreate the _convolution_op to avoid the stateful
140 | # behavior.
141 | call_input_shape = inputs.get_shape()
142 | outputs = inputs
143 |
144 | if self.data_format == 'channels_first':
145 | if self.rank == 1:
146 | # nn.bias_add does not accept a 1D input tensor.
147 | bias = array_ops.reshape(self.bias, (1, self.filters, 1))
148 | outputs += bias
149 | else:
150 | outputs = nn.bias_add(outputs, self.bias, data_format='NCHW')
151 | else:
152 | outputs = nn.bias_add(outputs, self.bias, data_format='NHWC')
153 |
154 | if self.activation is not None:
155 | return self.activation(outputs)
156 | return outputs
157 |
158 | class AttentionPooling(object):
159 | def __init__(self,filters, channels=18):
160 | self.filters = filters
161 | self.channels = channels
162 |
163 | def __call__(self, inputs):
164 | query, value = inputs
165 |
166 | att_q = Conv2D(filters=self.filters, kernel_size=(1, 1), strides=(1, 1),
167 | padding='same', activation=None, use_bias=False)(query)
168 | att_k = Conv2D(filters=self.filters, kernel_size=(1, 1), strides=(1, 1),
169 | padding='same', activation=None, use_bias=False)(value)
170 | gate = BiasedConv(filters=self.filters, kernel_size=(1, 1), strides=(1, 1),
171 | padding='same', activation='sigmoid',
172 | kernel_initializer='zeros', bias_initializer='ones')(Add()([att_q, att_k]))
173 | att = Conv2D(filters=1, kernel_size=(1, 1), strides=(1, 1),
174 | padding='same', activation='sigmoid',
175 | kernel_initializer='ones', bias_initializer='zeros')(gate)
176 |
177 | return AveragePooling2D(pool_size=(1, self.channels), padding='same')(Multiply()([att, value]))
178 |
179 | def build_unet(window_size=4096, n_channels=18, n_filters=8):
180 | input_seq = Input(shape=(window_size, n_channels))
181 |
182 | x = Reshape(target_shape=(window_size, n_channels, 1))(input_seq)
183 |
184 | x = Conv2D(filters=n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
185 | x = BatchNormalization()(x)
186 | lvl0 = ELU()(x)
187 |
188 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl0)
189 | x = Conv2D(filters=2*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
190 | x = BatchNormalization()(x)
191 | lvl1 = ELU()(x)
192 |
193 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl1)
194 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
195 | x = BatchNormalization()(x)
196 | lvl2 = ELU()(x)
197 |
198 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl2)
199 | x = Conv2D(filters=4*n_filters, kernel_size=(7, 1), strides=(1, 1), padding='same', activation=None)(x)
200 | x = BatchNormalization()(x)
201 | lvl3 = ELU()(x)
202 |
203 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl3)
204 | x = Conv2D(filters=8*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
205 | x = BatchNormalization()(x)
206 | lvl4 = ELU()(x)
207 |
208 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl4)
209 | x = Conv2D(filters=8*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
210 | x = BatchNormalization()(x)
211 | x = ELU()(x)
212 | lvl5 = x
213 |
214 | x = MaxPooling2D(pool_size=(1, 20), padding='same')(lvl5)
215 | x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
216 | x = BatchNormalization()(x)
217 | x = ELU()(x)
218 | x = Dropout(rate=0.5)(x)
219 | x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
220 | x = BatchNormalization()(x)
221 | x = ELU()(x)
222 | x = Dropout(rate=0.5)(x)
223 |
224 | out5 = Conv2D(filters=1, kernel_size=(3, 1), strides=(1, 1), padding='same', activation='sigmoid')(x)
225 | out5 = Reshape(target_shape=(window_size//1024,))(out5)
226 |
227 | up4 = UpSampling2D(size=(4, 1))(x)
228 | att4 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up4, lvl4])
229 |
230 | out4 = Conv2D(filters=1, kernel_size=(3, 1), strides=(1, 1), padding='same', activation='sigmoid')(att4)
231 | out4 = Reshape(target_shape=(window_size//256,))(out4)
232 |
233 | x = Concatenate(axis=-1)([up4, att4])
234 | x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
235 | x = BatchNormalization()(x)
236 | x = ELU()(x)
237 |
238 | up3 = UpSampling2D(size=(4, 1))(x)
239 | att3 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up3, lvl3])
240 |
241 | out3 = Conv2D(filters=1, kernel_size=(7, 1), strides=(1, 1), padding='same', activation='sigmoid')(att3)
242 | out3 = Reshape(target_shape=(window_size//64,))(out3)
243 |
244 | x = Concatenate(axis=-1)([up3, att3])
245 | x = Conv2D(filters=4*n_filters, kernel_size=(7, 1), strides=(1, 1), padding='same', activation=None)(x)
246 | x = BatchNormalization()(x)
247 | x = ELU()(x)
248 |
249 | up2 = UpSampling2D(size=(4, 1))(x)
250 | att2 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up2, lvl2])
251 |
252 | out2 = Conv2D(filters=1, kernel_size=(15, 1), strides=(1, 1), padding='same', activation='sigmoid')(att2)
253 | out2 = Reshape(target_shape=(window_size//16,))(out2)
254 |
255 | x = Concatenate(axis=-1)([up2, att2])
256 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
257 | x = BatchNormalization()(x)
258 | x = ELU()(x)
259 |
260 |
261 | up1 = UpSampling2D(size=(4, 1))(x)
262 | att1 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up1, lvl1])
263 |
264 | out1 = Conv2D(filters=1, kernel_size=(15, 1), strides=(1, 1), padding='same', activation='sigmoid')(att1)
265 | out1 = Reshape(target_shape=(window_size//4,))(out1)
266 |
267 | x = Concatenate(axis=-1)([up1, att1])
268 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
269 | x = BatchNormalization()(x)
270 | x = ELU()(x)
271 |
272 | up0 = UpSampling2D(size=(4, 1))(x)
273 | att0 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up0, lvl0])
274 | x = Concatenate(axis=-1)([up0, att0])
275 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
276 | x = BatchNormalization()(x)
277 | x = ELU()(x)
278 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
279 | x = BatchNormalization()(x)
280 | x = ELU()(x)
281 | x = Conv2D(filters=1, kernel_size=(15, 1), strides=(1, 1), padding='same', activation='sigmoid')(x)
282 |
283 | output = Reshape(target_shape=(window_size,))(x)
284 |
285 | unet = Model(input_seq, output)
286 | unet_train = Model(input_seq, [output, out1, out2, out3, out4, out5])
287 |
288 | return unet, unet_train
289 |
290 |
291 | def build_windowfree_unet(n_channels=18, n_filters=8):
292 | input_seq = Input(shape=(None, n_channels, 1))
293 |
294 | x = Conv2D(filters=n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(input_seq)
295 | x = BatchNormalization()(x)
296 | lvl0 = ELU()(x)
297 |
298 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl0)
299 | x = Conv2D(filters=2*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
300 | x = BatchNormalization()(x)
301 | lvl1 = ELU()(x)
302 |
303 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl1)
304 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
305 | x = BatchNormalization()(x)
306 | lvl2 = ELU()(x)
307 |
308 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl2)
309 | x = Conv2D(filters=4*n_filters, kernel_size=(7, 1), strides=(1, 1), padding='same', activation=None)(x)
310 | x = BatchNormalization()(x)
311 | lvl3 = ELU()(x)
312 |
313 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl3)
314 | x = Conv2D(filters=8*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
315 | x = BatchNormalization()(x)
316 | lvl4 = ELU()(x)
317 |
318 | x = MaxPooling2D(pool_size=(4, 1), padding='same')(lvl4)
319 | x = Conv2D(filters=8*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
320 | x = BatchNormalization()(x)
321 | x = ELU()(x)
322 | lvl5 = x
323 |
324 | x = MaxPooling2D(pool_size=(1, 20), padding='same')(lvl5)
325 | x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
326 | x = BatchNormalization()(x)
327 | x = ELU()(x)
328 | x = Dropout(rate=0.5)(x)
329 | x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
330 | x = BatchNormalization()(x)
331 | x = ELU()(x)
332 | x = Dropout(rate=0.5)(x)
333 |
334 | up4 = UpSampling2D(size=(4, 1))(x)
335 | att4 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up4, lvl4])
336 |
337 | x = Concatenate(axis=-1)([up4, att4])
338 | x = Conv2D(filters=4*n_filters, kernel_size=(3, 1), strides=(1, 1), padding='same', activation=None)(x)
339 | x = BatchNormalization()(x)
340 | x = ELU()(x)
341 |
342 | up3 = UpSampling2D(size=(4, 1))(x)
343 | att3 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up3, lvl3])
344 |
345 | x = Concatenate(axis=-1)([up3, att3])
346 | x = Conv2D(filters=4*n_filters, kernel_size=(7, 1), strides=(1, 1), padding='same', activation=None)(x)
347 | x = BatchNormalization()(x)
348 | x = ELU()(x)
349 |
350 | up2 = UpSampling2D(size=(4, 1))(x)
351 | att2 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up2, lvl2])
352 |
353 | x = Concatenate(axis=-1)([up2, att2])
354 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
355 | x = BatchNormalization()(x)
356 | x = ELU()(x)
357 |
358 |
359 | up1 = UpSampling2D(size=(4, 1))(x)
360 | att1 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up1, lvl1])
361 |
362 | x = Concatenate(axis=-1)([up1, att1])
363 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
364 | x = BatchNormalization()(x)
365 | x = ELU()(x)
366 |
367 | up0 = UpSampling2D(size=(4, 1))(x)
368 | att0 = AttentionPooling(filters=4*n_filters, channels=n_channels)([up0, lvl0])
369 | x = Concatenate(axis=-1)([up0, att0])
370 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
371 | x = BatchNormalization()(x)
372 | x = ELU()(x)
373 | x = Conv2D(filters=4*n_filters, kernel_size=(15, 1), strides=(1, 1), padding='same', activation=None)(x)
374 | x = BatchNormalization()(x)
375 | x = ELU()(x)
376 | output = Conv2D(filters=1, kernel_size=(15, 1), strides=(1, 1), padding='same', activation='sigmoid')(x)
377 |
378 | unet = Model(input_seq, output)
379 |
380 | return unet
381 |
382 | class SeizureState:
383 | def __init__(self, state):
384 | if state == 'seiz':
385 | self.state = 1
386 | elif state == 'bckg':
387 | self.state = 0
388 | else:
389 | raise ValueError('Invalid initial seizure state given')
390 |
391 | def print_state(self):
392 | if self.state:
393 | return 'seiz'
394 | else:
395 | return 'bckg'
396 |
397 | def change_state(self):
398 | self.state = (self.state+1)%2
--------------------------------------------------------------------------------
/training/4-train-lstm.py:
--------------------------------------------------------------------------------
1 | """ Train LSTM network
2 | LSTM network fuses output of U-nets
3 |
4 | This file relies on pre-computed predictions and uses them to train the LSTM.
5 | The model is saved in model-dnn-dnnw-dnnicalbl-lstm-4.h5
6 | """
7 |
8 | import sys
9 | # Root folder of main library
10 | sys.path.insert(0, 'library')
11 | # Root folder of EDF files
12 | EDF_ROOT = '/esat/biomeddata/Neureka_challenge/edf/dev/'
13 | # Root folder of predictions on edf files
14 | PREDICTION_ROOT = 'evaluation'
15 |
16 | # custom library
17 | import nedc
18 | import spir
19 |
20 | # std lib
21 | import glob
22 | import os
23 |
24 | # 3rd party lib
25 | import h5py
26 | from keras.models import Sequential
27 | from keras.layers import Bidirectional, Dense, GRU, LSTM
28 | import numpy as np
29 | import resampy
30 |
31 |
32 | # +
33 | def load_filenames():
34 | '''
35 |
36 |
37 | Returns
38 | -------
39 | filenames : list
40 | List of names of EEG recordings whose predictions are present in all views. ICLabel view excludes
41 | some files due to bad channels, hence has the lowest number
42 | of common files
43 |
44 | '''
45 | filenames = list()
46 | with h5py.File(os.path.join(PREDICTION_ROOT, 'prediction_test_iclabel.h5'), 'r') as f:
47 | filenames = list(f['filenames'])
48 | return filenames
49 |
50 |
51 | def prepare_file(file_i, filename, classifiers, f_unet, model_type, fs):
52 | '''
53 |
54 |
55 | Parameters
56 | ----------
57 | file_i : TYPE
58 | Index of predictions belonging to a file.
59 | filename : TYPE
60 | Unique name of the EEG recording.
61 | classifiers : TYPE
62 | The set of multi-view U-Net classifiers.
63 | f_unet : TYPE
64 | File pointer to h5 dataset containing the U-Net predictions.
65 | model_type : TYPE
66 | The ype of RNN to be trained. 'lstm' or 'gru' currently supported
67 | fs : TYPE
68 | Frequency of predictions of the output model.
69 |
70 | Returns
71 | -------
72 | x : numpy array
73 | Array of U-Net predictions; training data for RNN
74 | y : numpy array
75 | Array of labels; training labels for the RNN.
76 |
77 | '''
78 | # Load data
79 | x = list()
80 | for classifier in classifiers:
81 | if classifier['format'] == 'unet':
82 | z = list(f_unet[classifier['name']]['filenames'])
83 | file_i = z.index(filename)
84 | predictions = f_unet[classifier['name']]['signals'][file_i]
85 | predictions = downsample(predictions, 200, fs)
86 | x.append(np.array(predictions, dtype=float))
87 |
88 | x = np.array(x)
89 | x = np.transpose(x)
90 | if model_type == 'lstm' or model_type == 'gru':
91 | x = x.reshape((len(x), 1, len(x[0])))
92 | # Collect the true lables
93 | seizures = nedc.loadTSE(os.path.join(EDF_ROOT,filename[:-4]+'.tse'))
94 |
95 | # Create labels at fs sampling rate
96 | y = spir.eventList2Mask(seizures, len(x), fs)
97 |
98 | return x,y
99 |
100 |
101 | class AvgModel:
102 | def fit(*argv, **kwargs):
103 | return 0
104 |
105 | def reset_states(*argv, **kwargs):
106 | return 0
107 |
108 | def predict(x, *argv, **kwargs):
109 | if np.ndim(x) > 1:
110 | return np.mean(x, axis=1)
111 | else:
112 | return x
113 |
114 |
115 | def downsample(x, oldFs, newFs):
116 | '''
117 |
118 |
119 | Parameters
120 | ----------
121 | x : numpy array
122 | Data to be downsampled.
123 | oldFs : int
124 | Sampling rate (Hz) of data.
125 | newFs : TYPE
126 | Target sampling rate (Hz).
127 |
128 | Returns
129 | -------
130 | numpy array
131 | Downsampled data to newFs.
132 |
133 | '''
134 | return resampy.resample(x, oldFs, newFs)
135 |
136 |
137 | def findTse(filename):
138 | '''
139 |
140 |
141 | Parameters
142 | ----------
143 | filename : string
144 | Unique name of the EEG recording.
145 |
146 | Returns
147 | -------
148 | string
149 | Unique name/path of the seizure annotation of the EEG recording.
150 |
151 | '''
152 | result = glob.glob(os.path.join(EDF_ROOT, '*', filename[3:6], filename.split('_')[0], filename.split('_')[1] + '_' + '[0-9_]*', filename + '.tse'))
153 | return result[0]
154 |
155 |
156 | def build_model(n_input, model_type, complexity=None):
157 | '''
158 |
159 |
160 | Parameters
161 | ----------
162 | n_input : TYPE
163 | DESCRIPTION.
164 | model_type : str
165 | Type of final output layer. Currently supported:
166 | 'lstm' - An LSTM RNN
167 | 'gru' - GRU based RNN
168 | 'dense' - A dense neural-network layer
169 | 'avg' - A simple average of multi-view U-Net predictions
170 | complexity : int, optional
171 | Complexity of RNNs. Required for model_type 'lstm' and 'gru'
172 | The default is None.
173 |
174 | Returns
175 | -------
176 | model : TYPE
177 | DESCRIPTION.
178 |
179 | '''
180 | if model_type == 'lstm':
181 | model = Sequential()
182 | model.add(Bidirectional(LSTM(complexity, stateful=True, return_sequences=False),
183 | input_shape=(1, n_input), batch_size=1))
184 | model.add(Dense(1, activation='sigmoid'))
185 | model.compile(loss='mse', optimizer='adam')
186 | elif model_type == 'gru':
187 | model = Sequential()
188 | model.add(Bidirectional(GRU(complexity, stateful=True, return_sequences=False),
189 | input_shape=(1, n_input), batch_size=1))
190 | model.add(Dense(1, activation='sigmoid'))
191 | model.compile(loss='mse', optimizer='adam')
192 | elif model_type == 'dense':
193 | model = Sequential()
194 | model.add(Dense(1, activation='sigmoid', input_shape=(n_input, ), batch_size=1))
195 | model.compile(loss='mse', optimizer='adam')
196 | elif model_type == 'avg':
197 | model = AvgModel
198 | return model
199 |
200 |
201 | def train(model, model_type, classifiers, filenames, fs=1):
202 | '''
203 |
204 |
205 | Parameters
206 | ----------
207 | model : TYPE
208 | DESCRIPTION.
209 | model_type : str
210 | Type of final output layer. Currently supported:
211 | 'lstm' - An LSTM RNN
212 | 'gru' - GRU based RNN
213 | 'dense' - A dense neural-network layer
214 | 'avg' - A simple average of multi-view U-Net predictions
215 | classifiers : list (of dicts)
216 | Defined in main.
217 | filenames : list
218 | List of names of EEG recordings whose predictions are present in all views..
219 | fs : int, optional
220 | Frequency of predictions. The default is 1 Hz.
221 |
222 | Returns
223 | -------
224 | int
225 | DESCRIPTION.
226 |
227 | '''
228 | if model_type == 'avg':
229 | return 0
230 |
231 | # Preload U-Net data
232 | f_unet = dict()
233 | for classifier in classifiers:
234 | if classifier['format'] == 'unet':
235 | f_unet[classifier['name']] = h5py.File(classifier['file'], 'r')
236 |
237 | # Train
238 | for i, filename in enumerate(filenames):
239 | x, y = prepare_file(i, filename, classifiers, f_unet, model_type, fs)
240 | if np.any(y):
241 | model.fit(x, y, batch_size=1, epochs=15, verbose=1)
242 | else:
243 | model.fit(x, y, batch_size=1, epochs=1, verbose=1)
244 | model.reset_states()
245 |
246 | # Close U-Net data
247 | for key in f_unet:
248 | f_unet[key].close()
249 |
250 |
251 | # +
252 | fs = 1 # LSTM prediction sampling frequency
253 |
254 | classifiers = [{
255 | 'name': 'ICA',
256 | 'file': os.join(PREDICTION_ROOT, 'prediction_test_iclabel.h5'),
257 | 'fs': 200,
258 | 'format': 'unet',
259 | },
260 | {
261 | 'name': 'DNN',
262 | 'file': os.join(PREDICTION_ROOT, 'prediction_test_raw.h5'),
263 | 'fs': 200,
264 | 'format': 'unet',
265 | },
266 | {
267 | 'name': 'DNN-wiener',
268 | 'file': os.join(PREDICTION_ROOT, 'prediction_test_wiener.h5'),
269 | 'fs': 200,
270 | 'format': 'unet',
271 | }
272 | ]
273 |
274 | modeltype = 'lstm'
275 | complexity = 4
276 |
277 | filenames = load_filenames()
278 | model = build_model(len(classifiers), modeltype, complexity)
279 | train(model, modeltype, classifiers, filenames, fs)
280 | model.save('model-dnn-dnnw-dnnicalbl-lstm-4.h5')
281 |
--------------------------------------------------------------------------------
/training/README.md:
--------------------------------------------------------------------------------
1 | # Training pipeline
2 |
3 | The seizure detection pipeline is trained in several independent steps:
4 |
5 | 1. Train and build the Wiener filters.
6 | 2. Remove artifcats with ICLabel
7 | 3. Train U-nets
8 | 4. Train LSTM
9 |
10 |
11 | ## 1. Wiener pre-processing
12 |
13 | Wiener pre-processing builds a filter bank of spatio-temporal filters based on artifacts identified in the training set.
14 |
15 | 1. A set of high power non-seizure epochs are identified
16 | 2. PCA compressed spatio-temporal covariance matrices are used to represent the artifacts
17 | 3. K-means clustering is used to group the artifacts
18 | 4. The average representation of the groups is used to pre-compute a spatio-temporal wiener filter
19 |
20 | ## 2. ICLabel pre-processing
21 |
22 | ICLabel pre-processing rejects any ``bad-channels'' and then removes any components of the signal which are clustered as artifacts.
23 |
24 | 1. High pass filtering of the data
25 | 2. Rejection of any bad channels (flat channels for above 20 seconds, channels with high SNR and channels with very low correlation to their estimation based on the rest of the channels)
26 | 3. Computation of the Independent Components using SOBI ICA.
27 | 4. Classification of the components using the ICLabel package of EEGlab
28 | 5. Rejection of all the components with a correlation higher than 0.6 to the following clusters: Muscle, Eye, Heart, Line Noise, Channel Noise
29 |
30 | ## 3. Train U-net
31 |
32 | A separate U-net is trained and stored for each available "view" on the data.
33 |
34 | ## 4. Train LSTM
35 | Fusion of the different U-Net DNN results is done using a shallow recurrent neural network.
36 |
37 | The recurrent NN is built using two layers:
38 |
39 | 1. A bidirectional LSTM layer with a state vector of length 4
40 | 2. A dense layer combining the the outputs of the LSTM layer
41 |
--------------------------------------------------------------------------------