├── LICENSE ├── README.md ├── _config.yaml └── tutorial-edbt25 └── index.md /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2024 Dylan Ma 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # LLM-KG4QA: Large Language Models and Knowledge Graphs for Question Answering 2 | 3 | [](https://awesome.re)    4 | 5 | ## 🔔 News 6 | - **`2025-05`** The preprint of our extended survey is avaliable on **[arXiv](https://arxiv.org/abs/2505.20099)**. 7 | - **`2025-02`** Our [tutorial](https://machuangtao.github.io/LLM-KG4QA/tutorial-edbt25) was accepted to be presented at **EDBT2025** 8 | - **`2024-12`** We create this repository to maintain a paper list on **LLMs and KGs for QA.** 9 | 10 | If you find our work is useful, please cite our paper by using the following BibTeX entry. 11 | 12 | ``` 13 | @article{ma2025llmkg4qa, 14 | title={Large Language Models Meet Knowledge Graphs for Question Answering: Synthesis and Opportunities}, 15 | author={Ma, Chuangtao and Chen, Yongrui and Wu, Tianxing and Khan, Arijit and Wang, Haofen}, 16 | journal={arXiv preprint arXiv:2505.20099}, 17 | year={2025} 18 | } 19 | ``` 20 | 21 | ## Content 22 | - [LLM and KGs for QA](#1-llms-and-kgs-for-qa) 23 | - [KGs as Background Knowledge](#kgs-as-background-knowledge) 24 | - [KGs as Reasoning Guideline](#kgs-as-reasoning-guideline) 25 | - [KGs as Refiner and Filter](#kgs-as-refiner-and-filter) 26 | 27 | - [Complex QA](#2-complex-qa) 28 | - [Explainable QA](#explainable-qa) 29 | - [Multi-modal QA](#multi-modal-qa) 30 | - [Multi-document QA](#multi-document-qa) 31 | - [Multi-Hop QA](#multi-hop-qa) 32 | - [Multi-run and Conversational QA](#multi-run-and-conversational-qa) 33 | - [Temporal QA](#temporal-qa) 34 | - [Multi-domain and Multilingual QA](#multi-domain-and-multilingual-qa) 35 | - [Advanced Topics](#3-advanced-topics) 36 | - [Optimization](#optimization) 37 | - [Data Management](#data-management) 38 | - [Benchmark and Applications](#4-benchmark-and-applications) 39 | - [Benchmark Dataset](#benchmark-dataset) 40 | - [Industrial and Scientific Applications](#industrial-and-scientific-applications) 41 | - [Demo](#demo) 42 | - [Related Survey](#5-related-survey) 43 | --- 44 | ## 1. LLMs and KGs for QA 45 | 46 | ### KGs as Background Knowledge 47 | #### Pre-training and Fine-tuning 48 | 49 | | NO | Title | Venue | Year | Category |Paper Link | 50 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 51 | | 1 | Deep Bidirectional Language-Knowledge Graph pretraining | NeurIPS | 2022| Pre-training | [Link](https://proceedings.neurips.cc/paper_files/paper/2022/file/f224f056694bcfe465c5d84579785761-Paper-Conference.pdf) 52 | | 2 | GreaseLM: Graph REASoning Enhanced Language Models | ICLR | 2022 | Pre-training | [Link](https://openreview.net/forum?id=41e9o6cQPj) 53 | | 3 | InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration | LLM+KG@VLDB | 2024 | Pre-training | [Link](https://arxiv.org/abs/2402.11441) 54 | | 4 | Large Language Models Meet Knowledge Graphs to Answer Factoid Questions | PACLIC | 2023 | Pre-training | [Link](https://aclanthology.org/2023.paclic-1.63/) 55 | | 5 | KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning | arXiv | 2024 | Pre-training | [Link](https://arxiv.org/abs/2412.04948) 56 | | 6 | KBLaM: Knowledge Base augmented Language Model | ICLR | 2025 | Pre-training | [Link](https://openreview.net/forum?id=aLsMzkTej9) 57 | | 7 | KnowLA: Enhancing Parameter-efficient Finetuning with Knowledgeable Adaptation | NAACL | 2024 | Fine-Tuning | [Link](https://aclanthology.org/2024.naacl-long.396/) 58 | | 8 | KG-Adapter: Enabling Knowledge Graph Integration in Large Language Models through Parameter-Efficient Fine-Tuning | ACL Findlings | 2024 | Fine-Tuning | [Link](https://aclanthology.org/2024.findings-acl.229/) 59 | | 9 | A GAIL Fine-Tuned LLM Enhanced Framework for Low-Resource Knowledge Graph Question Answering | CIKM | 2024 | Fine-Tuning | [Link](https://dl.acm.org/doi/10.1145/3627673.3679753) 60 | | 10 | Knowledge Graph Finetuning Enhances Knowledge Manipulation in Large Language Models | ICLR | 2025 | Fine-Tuning | [Link](https://openreview.net/forum?id=oMFOKjwaRS) 61 | | 11 | KLearn Together: Joint Multitask Finetuning of Pretrained KG-enhanced LLM for Downstream Tasks | GenAIK@COLING | 2025 | Fine-Tuning | [Link](https://aclanthology.org/2025.genaik-1.2/) 62 | | 12 | Improving Pre-trained Language Models with Knowledge Enhancement and Filtering Framework | NAACL Findings | 2025 | Fine-Tuning | [Link](https://aclanthology.org/2025.findings-naacl.213/) 63 | | 13 | Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts | arXiv | 2024 | KG-Augmented Prompting | [Link](https://arxiv.org/abs/2405.06524) 64 | | 14 | KnowGPT: Knowledge Graph based Prompting for Large Language Models | arXiv | 2024 | KG-Augmented Prompting | [Link](https://arxiv.org/abs/2312.06185) 65 | | 15 | Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering | NLRSE | 2023 | KG-Augmented Prompting | [Link](https://aclanthology.org/2023.nlrse-1.7/) 66 | | 16 | Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for Knowledge Graph Question Answering | IJCKG | 2023 | KG-Augmented Prompting | [Link](https://ijckg2023.knowledge-graph.jp/pages/proc/paper_30.pdf/) 67 | | 17 | Mitigating LLM Hallucinations with Knowledge Graphs: A Case Study | arXiv | 2025 | KG-Augmented Prompting | [Link](https://arxiv.org/abs/2504.12422/) 68 | 69 | 70 | #### RAG (Retrieval Augmented Generation) 71 | 72 | | NO | Title | Venue | Year | Category |Paper Link | 73 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 74 | | 1 | Enhancing Textbook Question Answering Task with Large Language Models and Retrieval Augmented Generation| arXiv | 2024 | RAG | [Link](https://arxiv.org/abs/2402.05128) 75 | | 2 | Retrieval-enhanced Knowledge Editing in Language Models for Multi-Hop Question Answering | CIKM | 2024 | RAG | [Link](https://dl.acm.org/doi/abs/10.1145/3627673.3679722) 76 | | 3 | Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation | arXiv | 2024 | RAG | [Link](https://arxiv.org/abs/2406.18676) 77 | | 4 | RAG-based Question Answering over Heterogeneous Data and Text | arXiv | 2024 | RAG | [Link](https://arxiv.org/abs/2412.07420) 78 | | 5 | Awakening Augmented Generation: Learning to Awaken Internal Knowledge of Large Language Models for Question Answering | COLING | 2025 | RAG | [Link](https://aclanthology.org/2025.coling-main.89/) 79 | | 6 | SAGE: A Framework of Precise Retrieval for RAG | arXiv | 2025 | RAG | [Link](https://arxiv.org/abs/2503.01713) 80 | | 7 | From Local to Global: A Graph RAG Approach to Query-Focused Summarization | arXiv | 2024 | Graph RAG| [Link](https://arxiv.org/abs/2404.16130) 81 | | 8 | LightRAG: Simple and Fast Retrieval-Augmented Generatio | arXiv | 2024 | Graph RAG | [Link](https://arxiv.org/abs/2410.05779) 82 | | 9 | GRAG: Graph Retrieval-Augmented Generation | arXiv | 2024 | Graph RAG | [Link](https://arxiv.org/abs/2405.16506) 83 | | 10 | HybGRAG: Hybrid Retrieval-Augmented Generation on Textual and Relational Knowledge Bases | arXiv | 2024 | Graph RAG | [Link](https://arxiv.org/abs/2412.16311) 84 | | 11 | CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs | arXiv | 2025 | Graph RAG | [Link](https://arxiv.org/abs/2501.15067) 85 | | 12 | MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation | arXiv | 2025 | Graph RAG | [Link](https://arxiv.org/abs/2501.06713) 86 | | 13 | GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation | arXiv | 2025 | Graph RAG | [Link](https://arxiv.org/abs/2502.01113) 87 | | 14 | MSG-LLM: A Multi-scale Interactive Framework for Graph-enhanced Large Language Models | COLING | 2025 | Graph RAG | [Link](https://aclanthology.org/2025.coling-main.648/) 88 | | 15 | PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths | arXiv | 2025 | Graph RAG | [Link](https://arxiv.org/abs/2502.14902/) 89 | | 16 | In-depth Analysis of Graph-based RAG in a Unified Framework | arXiv | 2025 | Graph RAG | [Link](https://www.arxiv.org/abs/2503.04338/) 90 | | 17 | Empowering GraphRAG with Knowledge Filtering and Integration | arXiv | 2025 | Graph RAG | [Link](https://arxiv.org/abs/2503.13804/) 91 | | 18 | Graph Neural Network Enhanced Retrieval for Question Answering of Large Language Models | NAACL | 2025 | Graph RAG | [Link](https://aclanthology.org/2025.naacl-long.337/) 92 | | 19 | NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes | arXiv | 2025 | Graph RAG | [Link](https://arxiv.org/abs/2504.11544/) 93 | | 20 | KG-RAG: Bridging the Gap Between Knowledge and Creativity | arXiv | 2024 | KG RAG | [Link](https://arxiv.org/abs/2405.12035) 94 | | 21 | Knowledge Graph-extended Retrieval Augmented Generation for Question Answering | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2504.08893) 95 | | 22 | Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering| SIGIR | 2024 | KG RAG | [Link](https://dl.acm.org/doi/10.1145/3626772.3661370) 96 | | 23 | REnhancing Large Language Models with Knowledge Graphs for Robust Question Answering | ICPADS | 2024 | KG RAG | [Link](https://doi.ieeecomputersociety.org/10.1109/ICPADS63350.2024.00042) 97 | | 24 | FRAG: A Flexible Modular Framework for Retrieval-Augmented Generation based on Knowledge Graphs | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2501.09957) 98 | | 25 | SimGRAG: Leveraging Similar Subgraphs for Knowledge Graphs Driven Retrieval-Augmented Generation | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2412.15272) 99 | | 26 | RGR-KBQA: Generating Logical Forms for Question Answering Using Knowledge-Graph-Enhanced Large Language Model | COLING | 2025 | KG RAG | [Link](https://aclanthology.org/2025.coling-main.205) 100 | | 27 | Knowledge Graph-Guided Retrieval Augmented Generation | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2502.06864) 101 | | 28 | Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation | ICLR | 2025 | KG RAG | [Link](https://openreview.net/forum?id=JvkuZZ04O7) 102 | | 29 | CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2504.13534) 103 | | 30 | A Pilot Empirical Study on When and How to Use Knowledge Graphs as Retrieval Augmented Generation | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2502.20854) 104 | | 31 | A Systematic Exploration of Knowledge Graph Alignment with Large Language Models in Retrieval Augmented Generation | AAAI | 2025 | KG RAG | [Link](https://ojs.aaai.org/index.php/AAAI/article/view/34716) 105 | | 32 | Evaluating Knowledge Graph Based Retrieval Augmented Generation Methods under Knowledge Incompleteness | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2504.05163) 106 | | 33 | RAG-KG-IL: A Multi-Agent Hybrid Framework for Reducing Hallucinations and Enhancing LLM Reasoning through RAG and Incremental Knowledge Graph Learning Integration | arXiv | 2025 | KG RAG | [Link](https://arxiv.org/abs/2503.13514) 107 | | 34 | Empowering LLMs by hybrid retrieval-augmented generation for domain-centric Q&A in smart manufacturing | Advanced Engineering Informatics | 2025| Hybrid RAG | [Link](https://doi.org/10.1016/j.aei.2025.103212) 108 | | 35 | Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Spatial Reasoning Questions | arXiv | 2025 | Spatial RAG | [Link](https://arxiv.org/abs/2502.18470) 109 | | 36 | Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Spatial Reasoning Questions | arXiv | 2025 | Spatial RAG | [Link](https://arxiv.org/abs/2502.18470) 110 | 111 | ### KGs as Reasoning Guideline 112 | 113 | | NO | Title | Venue | Year | Category |Paper Link | 114 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 115 | | 1 | Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answerings | ACL | 2022 | Offline KG Guidelines | [Link](https://aclanthology.org/2022.acl-long.396/) 116 | | 2 | keqing: knowledge-based question answering is a nature chain-of-thought mentor of LLM | arXiv | 2023 | Offline KG Guidelines | [Link](https://arxiv.org/abs/2401.00426) 117 | | 3 | Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph | arXiv | 2024 | Offline KG Guidelines | [Link](https://arxiv.org/abs/2406.01145) 118 | | 4 | Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models | arXiv | 2024 | Offline KG Guidelines | [Link](https://arxiv.org/abs/2410.13080) 119 | | 5 | Reasoning with Trees: Faithful Question Answering over Knowledge Graph | COLING | 2025 | Offline KG Guidelines | [Link](https://aclanthology.org/2025.coling-main.211/) 120 | | 6 | Empowering Language Models with Knowledge Graph Reasoning for Open-Domain Question Answering | EMNLP | 2022 | Online KG Guildlines | [Link](https://aclanthology.org/2022.emnlp-main.650/) 121 | | 7 | Knowledge-Enhanced Iterative Instruction Generation and Reasoning for Knowledge Base Question Answering | NLPCC | 2022 | Online KG Guildlines | [Link](https://link.springer.com/chapter/10.1007/978-3-031-17120-8_34) 122 | | 8 | Evaluating and Enhancing Large Language Models for Conversational Reasoning on Knowledge Graphs | arXiv | 2023 | Online KG Guildlines | [Link](https://arxiv.org/abs/2312.11282) 123 | | 9 | Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph | ICLR | 2024 | Online KG Guildlines | [Link](https://openreview.net/forum?id=nnVO1PvbTv) 124 | | 10 | Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-guided Retrieval Augmented Generation | ICLR | 2024 | Online KG Guildlines | [Link](https://openreview.net/forum?id=oFBu7qaZpS) 125 | | 11 | KARPA: A Training-free Method of Adapting Knowledge Graph as References for Large Language Model's Reasoning Path Aggregation | arXiv | 2024 | Online KG Guildlines | [Link](https://arxiv.org/abs/2412.20995) 126 | | 12 | Retrieval and Reasoning on KGs: Integrate Knowledge Graphs into Large Language Models for Complex Question Answering | EMNLP | 2024 | Online KG Guildlines | [Link](https://aclanthology.org/2024.findings-emnlp.446) 127 | | 13 | KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Grap | arXiv | 2024 | Agent-based KG Guildlines | [Link](https://arxiv.org/abs/2402.11163) 128 | | 14 | ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs | ACL Findings | 2024 | Agent-based KG Guildlines | [Link](https://aclanthology.org/2024.findings-acl.442/) | 129 | | 15 | A Collaborative Reasoning Framework Powered by Reinforcement Learning and Large Language Models for Complex Questions Answering over Knowledge Graph | COLING| 2025 | Collaborative Reasoning | [Link](https://aclanthology.org/2025.coling-main.712/) 130 | | 16 | Rule-KBQA: Rule-Guided Reasoning for Complex Knowledge Base Question Answering with Large Language Models | COLING| 2025 | Rule-Guided Reasoning | [Link](https://aclanthology.org/2025.coling-main.562/) 131 | 132 | ### KGs as Refiner and Filter 133 | 134 | | NO | Title | Venue | Year | Category |Paper Link | 135 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 136 | | 1 | Answer Candidate Type Selection: Text-To-Text Language Model for Closed Book Question Answering Meets Knowledge Graphs | KONVENS | 2023 | KG-Driven Filtering and Validation | [Link](https://aclanthology.org/2023.konvens-main.16/) 137 | | 2 | KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques | BioNLP Workshop | 2024 |KG-Driven Filtering and Validation | [Link](https://aclanthology.org/2024.bionlp-1.13/) 138 | | 3 | Mitigating Large Language Model Hallucinations via Autonomous Knowledge Graph-based Retrofitting | AAAI | 2024 |KG-Driven Filtering and Validation | [Link](https://ojs.aaai.org/index.php/AAAI/article/view/29770/31326) 139 | | 4 | Evidence-Focused Fact Summarization for Knowledge-Augmented Zero-Shot Question Answering | ariXv | 2024 |KG-Augmented Output Refinement | [Link](https://arxiv.org/abs/2403.02966) 140 | | 5 | Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models | ACL | 2024 |KG-Augmented Output Refinement | [Link](https://aclanthology.org/2024.acl-long.569/) 141 | | 6 | Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs | arXiv | 2024 |KG-Augmented Output Refinement | [Link](https://arxiv.org/abs/2406.14282) 142 | | 7 | Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection | arXiv | 2025 |RAG-based Answers Selection | [Link](https://arxiv.org/abs/2502.06148) 143 | 144 | ## 2. Complex QA 145 | 146 | ### Explainable QA 147 | 148 | | NO | Title | Venue | Year | Category |Paper Link | 149 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 150 | | 1 | Reasoning over Hierarchical Question Decomposition Tree for Explainable Question Answering | ACL | 2024 | - | [Link](https://aclanthology.org/2023.acl-long.814/) 151 | | 2 | Explainable Conversational Question Answering over Heterogeneous Sources via Iterative Graph Neural Networks | SIGIR | 2023 | - | [Link](https://dl.acm.org/doi/10.1145/3539618.3591682) 152 | | 3 | Retrieval In Decoder benefits generative models for explainable complex question answering | Neural Networks | 2025 | - | [Link](https://doi.org/10.1016/j.neunet.2024.106833) 153 | 154 | ### Multi-Modal QA 155 | 156 | | NO | Title | Venue | Year | Category |Paper Link | 157 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 158 | | 1 | Lako: Knowledge-driven visual question answering via late knowledge-to text injection | IJCKG | 2022 | VQA | [Link](https://dl.acm.org/doi/10.1145/3579051.3579053) 159 | | 2 | Modality-Aware Integration with Large Language Models for Knowledge-Based Visual Question Answering | ACL | 2024 | VQA | [Link](https://aclanthology.org/2024.acl-long.132/) 160 | | 3 | Knowledge-Enhanced Visual Question Answering with Multi-modal Joint Guidance |JCKG | 2024 | VQA | [Link](https://dl.acm.org/doi/10.1145/3579051.3579073) 161 | | 4 | ReasVQA: Advancing VideoQA with Imperfect Reasoning Process |arXiv | 2025 | VQA | [Link](https://arxiv.org/abs/2501.13536) 162 | | 5 | Fine-grained knowledge fusion for retrieval-augmented medical visual question answering | Information Fusion | 2025 | VQA | [Link](https://doi.org/10.1016/j.inffus.2025.103059) 163 | | 6 | RAMQA: A Unified Framework for Retrieval-Augmented Multi-Modal Question Answering | arXiv | 2025 | Multi-Modal QA | [Link](https://arxiv.org/abs/2501.13297) 164 | | 7 | MuRAR: A Simple and Effective Multimodal Retrieval and Answer Refinement Framework for Multimodal Question Answering | arXiv | 2024 | Multi-Modal QA | [Link](https://arxiv.org/abs/2408.08521) 165 | 166 | 167 | ### Multi-Document QA 168 | 169 | | NO | Title | Venue | Year | Category |Paper Link | 170 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 171 | | 1 | Knowledge Graph Prompting for Multi-Document Question Answering | AAAI | 2024 | Multi-doc QA | [Link](https://ojs.aaai.org/index.php/AAAI/article/view/29889) 172 | | 2 | CuriousLLM: Elevating Multi-Document QA with Reasoning-Infused Knowledge Graph Prompting | arXiv | 2024 | Multi-doc QA | [Link](https://arxiv.org/abs/2404.09077) 173 | | 3 | VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation | arXiv | 2024 | Multi-doc QA | [Link](https://arxiv.org/abs/2412.10704) 174 | 175 | ### Multi-Hop QA 176 | 177 | | NO | Title | Venue | Year | Category |Paper Link | 178 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 179 | | 1 | GraphLLM: A General Framework for Multi-hop Question Answering over Knowledge Graphs Using Large Language Models | NLPCC | 2024 | Multi-Hop QA | [Link](https://link.springer.com/chapter/10.1007/978-981-97-9431-7_11) 180 | | 2 | LLM-KGMQA: Large Language Model-Augmented Multi-Hop Question-Answering System based on Knowledge Graph in Medical Field | KBS | 2024 | Multi-Hop QA | [Link](https://doi.org/10.21203/rs.3.rs-4721418/v1) 181 | | 3 | PokeMQA: Programmable knowledge editing for Multi-hop Question Answering | ACL | 2024 | Multi-Hop QA | [Link](https://aclanthology.org/2024.acl-long.438/) 182 | | 4 | HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs | ACL | 2024 | Multi-Hop QA | [Link](https://aclanthology.org/2024.acl-long.717/) 183 | | 5 | LLM-Based Multi-Hop Question Answering with Knowledge Graph Integration in Evolving Environments | EMNLP | 2024 | Multi-Hop QA | [Link](https://aclanthology.org/2024.findings-emnlp.844/) 184 | | 6 | SG-RAG: Multi-Hop Question Answering With Large Language Models Through Knowledge Graphs | ICNLSP | 2024 | Multi-Hop QA | [Link](https://aclanthology.org/2024.icnlsp-1.45/) 185 | | 7 | From Superficial to Deep: Integrating External Knowledge for Follow-up Question Generation Using Knowledge Graph and LLM | COLING | 2025 | Multi-Hop QA | [Link](https://aclanthology.org/2025.coling-main.55/) 186 | | 8 | Multi-Hop Question Answering with LLMs & Knowledge Graphs | Blog | 2023 | Multi-Hop QA | [Link](https://www.wisecube.ai/blog-2/multi-hop-question-answering-with-llms-knowledge-graphs/) 187 | | 9 | Mitigating Lost-in-Retrieval Problems in Retrieval Augmented Multi-Hop Question Answering | arXiv | 2025 | Multi-Hop QA | [Link](https://arxiv.org/abs/2502.14245) 188 | | 10 | Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement | IEEE IKT | 2024 | Multi-Hop QA | [Link](https://ieeexplore.ieee.org/abstract/document/10892619) 189 | | 11 | A Framework of Knowledge Graph-Enhanced Large Language Model Based on Question Decomposition and Atomic Retrieval | EMNLP Findings | 2024 | Multi-Hop QA | [Link](https://aclanthology.org/2024.findings-emnlp.670/) 190 | 191 | ### Multi-run and Conversational QA 192 | 193 | | NO | Title | Venue | Year | Category | Paper Link | 194 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 195 | | 1 | Explainable Conversational Question Answering over Heterogeneous Sources via Iterative Graph Neural Networks | SIGIR | 2023 | Conversational QA | [Link](https://dl.acm.org/doi/10.1145/3539618.3591682) 196 | | 2 | Conversational Question Answering with Language Models Generated Reformulations over Knowledge Graph | ACL Findings | 2024 | Conversational QA | [Link](https://aclanthology.org/2024.findings-acl.48/) 197 | | 3 | LLM-Based Multi-Hop Question Answering with Knowledge Graph Integration in Evolving Environments | EMNLP | 2024 | Multi-Hop QA | [Link](https://aclanthology.org/2024.findings-emnlp.844/) 198 | | 4 | Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA | EMNLP | 2024 | Conversational QA | [Link](https://aclanthology.org/2024.findings-emnlp.622) 199 | | 5 | ConvKGYarn: Spinning Configurable and Scalable Conversational Knowledge Graph QA Datasets with Large Language Models | EMNLP | 2024 | Conversational QA | [Link](https://aclanthology.org/2024.emnlp-industry.89) 200 | | 6 | Dialogue Benchmark Generation from Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs | SIGMOD | 2025 | Dialogue | [Link](https://arxiv.org/abs/2501.09928) 201 | 202 | ### Temporal QA 203 | 204 | | NO | Title | Venue | Year | Category | Paper Link | 205 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 206 | | 1 | KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning | arXiv | 2025 | Temporal QA | [Link](https://arxiv.org/abs/2503.14234) 207 | | 2 | Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models | ACL Findings | 2024 | Temporal QA | [Link](https://aclanthology.org/2024.findings-acl.401) 208 | | 3 | TimeR4 : Time-aware Retrieval-Augmented Large Language Models for Temporal Knowledge Graph Question Answering | EMNLP | 2024 | Temporal QA | [Link](https://aclanthology.org/2024.emnlp-main.394/) 209 | 210 | 211 | ### Multi-domain and Multilingual QA 212 | 213 | | NO | Title | Venue | Year | Category | Paper Link | 214 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 215 | | 1 | MKG-Rank: Enhancing Large Language Models with Knowledge Graph for Multilingual Medical Question Answering | arXiv | 2025 | Multilingual QA | [Link](https://arxiv.org/abs/2503.16131) 216 | | 2 | Language Models as SPARQL Query Filtering for Improving the Quality of Multilingual Question Answering over Knowledge Graphs | IWCE | 2024 | Multilingual QA | [Link](https://link.springer.com/chapter/10.1007/978-3-031-62362-2_1) 217 | 218 | 219 | ## 3. Advanced Topics 220 | 221 | ### Optimization 222 | 223 | | NO | Title | Venue | Year | Category | Paper Link | 224 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 225 | | 1 | Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning | arXiv | 2023 | Index-based Optimization| [Link](https://arxiv.org/abs/2405.16933) 226 | | 2 | Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs | ICLR | 2024 |Index-based Optimization | [Link](https://openreview.net/forum?id=6LKmaC4cO0/) 227 | | 3 | KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models | arXiv | 2024 |Index-based Optimization | [Link](https://arxiv.org/abs/2412.05547) 228 | | 4 | Prompting Is Programming: A Query Language for Large Language Models | PLDL | 2023 |Prompting-based Optimization | [Link](https://dl.acm.org/doi/10.1145/3591300/) 229 | | 5 | LLM as Prompter: Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs | ACL Findings | 2024 |Prompting-based Optimization | [Link](https://aclanthology.org/2024.findings-acl.224/) 230 | | 6 | LightRAG: Simple and Fast Retrieval-Augmented Generation | arXiv | 2024 | Graph retrieval-based optimization | [Link](https://arxiv.org/abs/2410.05779) 231 | | 7 | Clue-Guided Path Exploration: Optimizing Knowledge Graph Retrieval with Large Language Models to Address the Information Black Box Challenge | arXiv | 2024 | Graph retrieval-based optimization | [Link](https://arxiv.org/abs/2401.13444) 232 | | 8 | Optimizing open-domain question answering with graph-based retrieval augmented generation | arXiv | 2025 | Graph retrieval-based optimization | [Link](https://arxiv.org/abs/2503.02922) 233 | | 9 | Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation | WWW | 2025 | Graph retrieval-based optimization | [Link](https://openreview.net/forum?id=2ZaqnRIUCV) 234 | | 10 | Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection | arXiv | 2025 | Graph retrieval-based optimization | [Link](https://arxiv.org/abs/2502.06148) 235 | | 11 | Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG | arXiv | 2025 | Graph retrieval-based optimization | [Link](https://arxiv.org/abs/2502.08356) 236 | | 12 | KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques | BioNLP Workshop | 2024 | Ranking-based optimization | [Link](https://aclanthology.org/2024.bionlp-1.13/) 237 | | 13 | KS-LLM: Knowledge Selection of Large Language Models with Evidence Document for Question Answering | arXiv | 2024 | Ranking-based optimization | [Link](https://arxiv.org/abs/2404.15660) 238 | | 14 | RAG-based Question Answering over Heterogeneous Data and Text | arXiv | 2024 | Ranking-based optimization | [Link](https://arxiv.org/abs/2412.07420) 239 | | 15 | Cost-efficient Knowledge-based Question Answering with Large Language Models | arXiv | 2024 | Cost-based optimization | [Link](https://arxiv.org/abs/2405.17337) 240 | | 16 | KGLens: Towards Efficient and Effective Knowledge Probing of Large Language Models with Knowledge Graphs | arXiv | 2024 | Cost-based optimization | [Link](https://arxiv.org/abs/2312.11539) 241 | | 17 | Knowledge Graph-Enhanced Large Language Models via Path Selection | ACL Findings | 2024 | Path-based optimization | [Link](https://aclanthology.org/2024.findings-acl.376) 242 | | 18 | LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration | arXiv | 2024 | Path-based optimization | [Link](https://arxiv.org/abs/2411.05844) 243 | | 19 | Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models | arXiv | 2024 | Query-based optimization | [Link](https://arxiv.org/abs/2411.07820) 244 | | 20 | A MapReduce Approach to Effectively Utilize Long Context Information in Retrieval Augmented Language Models | arXiv | 2024 | MapReduce-based optimization | [Link](https://arxiv.org/abs/2412.15271) 245 | | 21 | PIP-KAG: Mitigating Knowledge Conflicts in Knowledge-Augmented Generation via Parametric Pruning | arXiv | 2025 | Knowledge conflicts mitigation | [Link](https://arxiv.org/abs/2502.15543) 246 | | 22 | Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models | arXiv | 2025 | Knowledge conflicts mitigation | [Link](https://arxiv.org/abs/2505.03075) 247 | 248 | 249 | ### Data Management 250 | 251 | | NO | Title | Venue | Year | Category | Paper Link | 252 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------------| 253 | | 1 | Triple Augmented Generative Language Models for SPARQL Query Generation from Natural Language Questions | arXiv | 2024 | NL2GQL | [Link](https://dl.acm.org/doi/10.1145/3673791.3698426) 254 | | 2 | R3-NL2GQL: A Model Coordination and Knowledge Graph Alignment Approach for NL2GQL | ACL Findings | 2024 | NL2GQL | [Link](https://aclanthology.org/2024.findings-emnlp.800/) 255 | | 3 | Aligning Large Language Models to a Domain-specific Graph Database for NL2GQL | CIKM | 2024 | NL2GQL | [Link](https://dl.acm.org/doi/10.1145/3627673.3679713) 256 | | 4 | UniOQA: A Unified Framework for Knowledge Graph Question Answering with Large Language Models | arXiv | 2024 | NL2GQL | [Link](https://arxiv.org/abs/2406.02110) 257 | | 5 | NAT-NL2GQL: A Novel Multi-Agent Framework for Translating Natural Language to Graph Query Language | arXiv | 2024 | NL2GQL | [Link](https://arxiv.org/abs/2412.10434) 258 | | 6 | CypherBench: Towards Precise Retrieval over Full-scale Modern Knowledge Graphs in the LLM Era | arXiv | 2024 | NL2GQL | [Link](https://arxiv.org/abs/2412.18702) 259 | | 7 | SpCQL: A Semantic Parsing Dataset for Converting Natural Language into Cypher | CIKM | 2022 | NL2GQL | [Link](https://dl.acm.org/doi/10.1145/3511808.3557703) 260 | | 8 | Robust Text-to-Cypher Using Combination of BERT, GraphSAGE, and Transformer (CoBGT) Model |Applied Sciences | 2024 | NL2GQL | [Link](https://doi.org/10.3390/app14177881) 261 | | 9 | Real-Time Text-to-Cypher Query Generation with Large Language Models for Graph Databases | Future Internet | 2024 | NL2GQL | [Link](https://doi.org/10.3390/fi16120438) 262 | | 10 | LLM4QA: Leveraging Large Language Model for Efficient Knowledge Graph Reasoning with SPARQL Query | JAIT | 2024 | NL2GQL | [Link](https://doi.org/10.12720/jait.15.10.1157-1162) 263 | | 11 | Text to Graph Query Using Filter Condition Attributes | LSGDA@VLDB | 2024 | NL2GQL | [Link](https://vldb.org/workshops/2024/proceedings/LSGDA/LSGDA24.09.pdf) 264 | | 12 | Text-to-CQL Based on Large Language Model and Graph Pattern Enhancement | PRML | 2024 | NL2GQL | [Link](https://ieeexplore.ieee.org/document/10779814) 265 | | 13 | Demystifying Natural Language to Cypher Conversion with OpenAI, Neo4j, LangChain, and LangSmith | Blog | 2024 | NL2GQL | [Link](https://medium.com/@muthoju.pavan/demystifying-natural-language-to-cypher-conversion-with-openai-neo4j-langchain-and-langsmith-2dbecb1e2ce9/) 266 | | 14 | Text2Cypher, the beginning of the Graph + LLM stack | Blog | 2023 | NL2GQL | [Link](https://siwei.io/en/llm-text-to-nebulagraph-query/) 267 | | 15 | Text2Cypher - Natural Language Queries | Blog | 2023 | NL2GQL | [Link](https://neo4j.com/labs/neodash/2.4/user-guide/extensions/natural-language-queries/) 268 | | 16 | A Framework for Question Answering on Knowledge Graphs Using Large Language Models | ESWC | 2024 | NL2GQL | [Link](https://link.springer.com/chapter/10.1007/978-3-031-78952-6_20/) 269 | | 17 | LLaSA: Large Language and Structured Data Assistant | arXiv | 2024 | Structured Data Assistant | [Link](https://arxiv.org/abs/2411.14460) 270 | | 18 | GraphRAG and role of Graph Databases in Advancing AI | IJRCAIT | 2024 | Graph DB | [Link](https://doi.org/10.5281/zenodo.13908615) 271 | | 19 | TigerVector: Supporting Vector Search in Graph Databases for Advanced RAGs | arXiv | 2025 | Graph DB | [Link](https://arxiv.org/abs/2501.11216) 272 | | 20 | Increasing Accuracy of LLM-powered Question Answering on SQL databases: Knowledge Graphs to the Rescue | Data Engineering Bulletin | 2024 | RDB QA | [Link](http://sites.computer.org/debull/A24dec/p109.pdf) 273 | | 21 | Symphony: Towards Trustworthy Question Answering and Verification using RAG over Multimodal Data Lakes | Data Engineering Bulletin | 2024 | RDB QA | [Link](http://sites.computer.org/debull/A24dec/p135.pdf) 274 | | 22 | Increasing the LLM Accuracy for Question Answering: Ontologies to the Rescue! | arXiv | 2024 | RDB QA | [Link](https://arxiv.org/abs/2405.11706) 275 | | 23 | GTR: Graph-Table-RAG for Cross-Table Question Answering | arXiv | 2025 | RDB QA | [Link](https://arxiv.org/abs/2504.01346) 276 | | 24 | ER-RAG: Enhance RAG with ER-Based Unified Modeling of Heterogeneous Data Sources | arXiv | 2025 | RDB QA | [Link](https://arxiv.org/abs/2504.06271) 277 | 278 | 279 | ## 4. Benchmark and Applications 280 | 281 | ### Benchmark Dataset 282 | 283 | | NO | Title | Venue | Year | Dataset | Category | Paper Link | 284 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------| 285 | | 1 | The Value of Semantic Parse Labeling for Knowledge Base Question Answering | ACL | 2016 | [WebQSP](https://www.microsoft.com/en-us/download/details.aspx?id=52763) | KBQA and KGQA| [Link](https://aclanthology.org/P16-2033/) 286 | | 2 | Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs | arXiv | 2024 | CAQA | KBQA and KGQA| [Link](https://arxiv.org/abs/2401.14640/) 287 | | 3 | G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering | NeurIPS | 2024 | [GraphQA](https://github.com/XiaoxinHe/G-Retriever) | KBQA and KGQA| [Link](https://openreview.net/forum?id=MPJ3oXtTZl) 288 | | 4 | Automatic Question-Answer Generation for Long-Tail Knowledge | KnowledgeNL@KDD | 2023 | Long-tail QA | KBQA and KGQA| [Link](https://knowledge-nlp.github.io/kdd2023/papers/Kumar5.pdf) 289 | | 5 | BioASQ-QA: A manually curated corpus for Biomedical Question Answering | Scientific Data |2023 | [BioASQ-QA](https://zenodo.org/records/7655130)| KBQA and KGQA| [Link](https://pubmed.ncbi.nlm.nih.gov/36973320/) 290 | | 6 | HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering | EMNLP | 2018 | [HotpotQA](https://github.com/hotpotqa/hotpot)| KBQA and KGQA| [Link](https://aclanthology.org/D18-1259) 291 | | 7 | CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge | arXiv | 2024 | [CR-LT-KGQA](https://github.com/D3Mlab/cr-lt-kgqa)| KBQA and KGQA| [Link](https://arxiv.org/abs/2403.01395) 292 | | 8 | CPAT-Questions: A Self-Updating Benchmark for Present-Anchored Temporal Question-Answering | ACL Findings | 2024 | [TemporalQA](https://github.com/D3Mlab/cr-lt-kgqa) | KBQA and KGQA| [Link](https://arxiv.org/abs/2403.01395) 293 | | 9 | SituatedQA: Incorporating Extra-Linguistic Contexts into QA | EMNLP | 2024 | [SituatedQA](https://github.com/mikejqzhang/SituatedQA)| Open-retrieval QA | [Link](https://aclanthology.org/2021.emnlp-main.586/) 294 | | 10 | CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge | NAACL | 2024 | [CommonsenseQA](https://github.com/jonathanherzig/commonsenseqa)| Multiple-choice QA| [Link](https://aclanthology.org/N19-1421) 295 | | 11 | FanOutQA: A Multi-Hop, Multi-Document Question Answering Benchmark for Large Language Models | ACL | 2024 | [FanOutQA](https://github.com/zhudotexe/fanoutqa)| Multi-hop QA| [Link](https://aclanthology.org/2024.acl-short.2) 296 | | 12 | MINTQA: A Multi-Hop Question Answering Benchmark for Evaluating LLMs on New and Tail Knowledge | arXiv | 2024 | [MINTQA](https://github.com/probe2/multi-hop/)| Multi-hop QA| [Link](https://arxiv.org/abs/2412.17032) 297 | | 13 | What Disease Does This Patient Have? A Large-Scale Open Domain Question Answering Dataset from Medical Exams | Applied Sciences | 2021 | [MedQA](https://github.com/jind11/MedQA)| Multiple-choice QA | [Link](https://www.mdpi.com/2076-3417/11/14/6421) 298 | | 14 | PAT-Questions: A Self-Updating Benchmark for Present-Anchored Temporal Question-Answering | ACL Findings | 2024 | [PAQA](https://github.com/jannatmeem95/PAT-Questions)| Temporal QA| [Link](https://aclanthology.org/2024.findings-acl.777) 299 | | 15 | MenatQA: A New Dataset for Testing the Temporal Comprehension and Reasoning Abilities of Large Language Models | ACL Findings | 2023 | [MenatQA](https://github.com/weiyifan1023/MenatQA)| Temporal QA| [Link](https://aclanthology.org/2023.findings-emnlp.100) 300 | | 16 | TempTabQA: Temporal Question Answering for Semi-Structured Tables| EMNLP | 2023 | [TempTabQA](https://github.com/temptabqa/temptabqa)| Temporal QA| [Link](https://aclanthology.org/2023.emnlp-main.149) 301 | | 17 | Complex Temporal Question Answering on Knowledge Graphs| CIKM | 2021 | [EXAQT](https://exaqt.mpi-inf.mpg.de/)| Temporal QA| [Link](https://dl.acm.org/doi/10.1145/3459637.3482416) 302 | | 18 | Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA| EMNLP | 2024 | [Loong](https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/Loong)| Multi-doc QA| [Link](https://aclanthology.org/2024.emnlp-main.322) 303 | | 19 | MRAMG-Bench: A BeyondText Benchmark for Multimodal Retrieval-Augmented Multimodal Generation | arXiv | 2025 | [MRAMG](https://huggingface.co/MRAMG)| Multi-modal QA| [Link](https://arxiv.org/abs/2502.04176) 304 | | 20 | OMG-QA: Building Open-Domain Multi-Modal Generative Question Answering Systems | EMNLP | 2024 | [OMG-QA](https://github.com/linyongnan/OMG-QA)| Multi-domain Multilingual QA| [Link](https://aclanthology.org/2024.findings-emnlp.365) 305 | | 21 | WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval | arXiv | 2025 | [WebFAQ](https://github.com/padas-lab-de/webfaq)| Multi-domain Multilingual QA| [Link](https://arxiv.org/abs/2502.20936) 306 | | 22 | M2QA: Multi-domain Multilingual Question Answering | EMNLP | 2024 | [M2QA](https://github.com/UKPLab/m2qa)| Multi-modal QA| [Link](https://aclanthology.org/2024.emnlp-industry.75) 307 | | 23 | M3SciQA: A Multi-Modal Multi-Document Scientific QA Benchmark for Evaluating Foundation Models | ACL Findings | 2024 | [M3SciQA](https://github.com/yale-nlp/M3SciQA)| Multi-modal QA| [Link](https://aclanthology.org/2024.findings-emnlp.904) 308 | | 24 | A Benchmark to Understand the Role of Knowledge Graphs on Large Language Model's Accuracy for Question Answering on Enterprise SQL Databases | GRADES-NDA | 2024 | [ChatData](https://github.com/datadotworld/cwd-benchmark-data) | LLM and KGs for QA| [Link](https://dl.acm.org/doi/10.1145/3661304.3661901) 309 | | 25 | XplainLLM: A Knowledge-Augmented Dataset for Reliable Grounded Explanations in LLMs | EMNLP | 2024 | [XplainLLM](https://github.com/chen-zichen/XplainLLM_dataset) | LLM and KGs for QA| [Link](https://arxiv.org/abs/2311.08614) 310 | | 26 | Developing a Scalable Benchmark for Assessing Large Language Models in Knowledge Graph Engineering | SEMANTICS | 2023 | [LLM-KG-Bench](https://github.com/AKSW/LLM-KG-Bench)| LLM and KGs for QA| [Link](https://ceur-ws.org/Vol-3526/paper-04.pdf) 311 | | 27 | Docugami Knowledge Graph Retrieval Augmented Generation (KG-RAG) Datasets | - | 2023 | [KG-RAG](https://github.com/docugami/KG-RAG-datasets)| LLM and KGs for QA| - 312 | | 28 | How Credible Is an Answer From Retrieval-Augmented LLMs? Investigation and Evaluation With Multi-Hop QA | ACL ARR | 2024 |- | LLM and KGs for QA| [Link](https://openreview.net/forum?id=YsmnPHBbx1f) 313 | | 29 | Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study over Open-ended Question Answering | arXiv | 2024 |[OKGQA](https://anonymous.4open.science/r/OKGQA-CBB0) | LLM and KGs for QA| [Link](https://arxiv.org/abs/2410.08085) 314 | | 30 | MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation | arXiv | 2025 | [LiHua-World](https://github.com/HKUDS/MiniRAG/tree/main/dataset/LiHua-World)| LLM and KGs for QA| [Link](https://arxiv.org/abs/2501.06713) 315 | | 31 | Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering | NeurIPS Dataset and Benchmarks Track | 2022 | [ScienceQA](https://github.com/lupantech/ScienceQA) | LLM and KGs for QA| [Link](https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf) 316 | | 32 | STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases | NeurIPS Dataset and Benchmarks Track | 2024 | [STaRK](https://github.com/snap-stanford/STaRK) | LLM and KGs for QA| [Link](https://proceedings.neurips.cc/paper_files/paper/2024/hash/e607b1419e9ae7cd5cb5b5bb60c2ad5c-Abstract-Datasets_and_Benchmarks_Track.html) 317 | | 33 | mmRAG: A Modular Benchmark for Retrieval-Augmented Generation over Text, Tables, and Knowledge Graphs | arXiv | 2025 | [mmRAG](https://huggingface.co/datasets/Askio/mmrag_benchmark) | LLM and KGs for QA| [Link](https://arxiv.org/abs/2505.11180) 318 | | 34 | LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing | arXiv | 2025 | [LaRA](https://github.com/Alibaba-NLP/LaRA) | LLM and KGs for QA| [Link](https://arxiv.org/abs/2502.09977) 319 | | 35 | KGQAGen: Diagnosing and Addressing Pitfalls in KG-RAG Datasets, toward More Reliable Benchmarking | - | 2025 | [KGQAGen](https://github.com/liangliang6v6/KGQAGen) | LLM and KGs for QA| - 320 | 321 | ### Industrial and Scientific Applications 322 | 323 | | NO | Title | Venue | Year | Github | Category | Paper Link | 324 | |----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------| 325 | | 1 | KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation | arXiv | 2024 | [KAG](https://github.com/OpenSPG/KAG)| LLM and KGs for QA| [Link](https://arxiv.org/abs/2409.13731) 326 | | 2 | Fact Finder -- Enhancing Domain Expertise of Large Language Models by Incorporating Knowledge Graphs | arXiv | 2024 | [Fact Finder](https://github.com/chrschy/fact-finder/)| LLM and KGs for QA| [Link](https://arxiv.org/abs/2408.03010) 327 | | 3 | Leveraging Large Language Models and Knowledge Graphs for Advanced Biomedical Question Answering Systems | CSA 2024 | 2024 | [Cypher Translator](https://github.com/phdResearcherDz/CypherTranslator/)| LLM and KGs for QA| [Link](https://link.springer.com/chapter/10.1007/978-3-031-71848-9_31) 328 | | 4 | A Prompt Engineering Approach and a Knowledge Graph based Framework for Tackling Legal Implications of Large Language Model Answers | arXiv | 2024 | - | LLM and KGs for QA| [Link](https://link.springer.com/chapter/10.1007/978-3-031-71848-9_31) 329 | | 5 | Ontology-Aware RAG for Improved Question-Answering in Cybersecurity Education | arXiv | 2024 | - | LLM and KGs for QA| [Link](https://arxiv.org/abs/2412.14191) 330 | | 6 |Knowledge Graphs as a source of trust for LLM-powered enterprise question answering | Journal of Web Semantics | 2025 | - | LLM and KGs for QA| [Link](https://doi.org/10.1016/j.websem.2024.100858) 331 | | 7 |MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot |WWW| 2025 | [MedRAG](https://github.com/SNOWTEAM2023/MedRAG)| LLM and KGs for QA| [Link](https://openreview.net/pdf/7d3d9ad2d616ceae8c5b77eb94019086b980ceda.pdf) 332 | | 8 |EICopilot: Search and Explore Enterprise Information over Large-scale Knowledge Graphs with LLM-driven Agents |arXiv| 2025 | - | LLM and KGs for QA| [Link](https://arxiv.org/abs/2501.13746) 333 | | 9 |Nanjing Yunjin intelligent question-answering system based on knowledge graphs and retrieval augmented generation technology |Heritage Science| 2024 | - | LLM and KGs for QA| [Link](https://www.nature.com/articles/s40494-024-01231-3) 334 | | 10 |A Joint LLM-KG System for Disease Q&A |IEEE JBHI| 2025 | - | LLM and KGs for QA| [Link](https://ieeexplore.ieee.org/abstract/document/10787401) 335 | 336 | ### Demo 337 | 338 | | NO | Name | Description |Source |Github | 339 | |----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------| 340 | | 1 | GraphRAG-QA | An industrial demo of GraphRAG integrating several query engine for augmenting QA, NLP2Cypher-based KG query engine, vector RAG query engine, and Graph vector RAG query engine. |NebulaGraph| [GraphRAG-QA](https://github.com/wey-gu/demo-kg-build) 341 | | 2 | Neo4jRAG-QA | This sample application demonstrates how to implement a Large Language Model (LLM) and Retrieval Augmented Generation (RAG) system with a Neo4j Graph Database. | Neo4j Graph | [Neo4j Graph RAG](https://github.com/neo4j-examples/rag-demo) 342 | | 3 | BioGraphRAG | This a platform to integrate biomedical knowledge graphs stored in NebulaGraph with LLMs via GraphRAG architecture. | | [BioGraphRAG](https://github.com/devingupta1/BioGraphRAG) 343 | | 4 | kotaemon |An open-source clean & customizable RAG UI for chatting with your documents. Built with both end users and developers in mind. | Cinnamon AI | [kotaemon](https://github.com/Cinnamon/kotaemon) 344 | | 5 | PIKE-RAG |A secIalized KnowledgE and Rationale Augmented Generation, which focuses on extracting, understanding, and applying domain-specific knowledge to gradually guide LLMs toward accurate responses. | Microsoft | [PIKE-RAG](https://github.com/microsoft/PIKE-RAG) 345 | | 6 | AprèsCoT |AprèsCoT: Explaining LLM Answers with Knowledge Graphs and Chain of Thought. | [EDBT25 Demo](https://openproceedings.org/2025/conf/edbt/paper-337.pdf) | [AprèsCoT](http://lg-research-2.uwaterloo.ca:8050/aprescot) 346 | 347 | ## 5. Related Survey 348 | 349 | | NO | Title | Venue | Year | Paper Link | 350 | |----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------| 351 | | 1 | Unifying Large Language Models and Knowledge Graphs: A Roadmap | TKDE | 2024 | [Link](https://doi.org/10.1109/TKDE.2024.3352100) 352 | | 2 | Graph Retrieval-Augmented Generation: A Survey | arXiv | 2024 | [Link](https://arxiv.org/abs/2408.08921) 353 | | 3 | Retrieval-Augmented Generation with Graphs (GraphRAG) | arXiv | 2024 | [Link](https://arxiv.org/abs/2501.00309) 354 | | 4 | Multilingual Question Answering Systems for Knowledge Graphs—A Survey | Semantic Web | 2024 | [Link](https://journals.sagepub.com/doi/full/10.3233/SW-243633) 355 | | 5 | Temporal Knowledge Graph Question Answering: A Survey | arXiv | 2024 | [Link](https://arxiv.org/abs/2406.14191) 356 | | 6 | Knowledge Graph and Large Language Model Co-learning via Structure-oriented Retrieval Augmented Generation | Data Engineering Bulletin | 2024 | [Link](http://sites.computer.org/debull/A24dec/p9.pdf) 357 | | 7 | Research Trends for the Interplay between Large Language Models and Knowledge Graphs | LLM+KG@VLDB2024| 2024 | [Link](https://vldb.org/workshops/2024/proceedings/LLM+KG/LLM+KG-9.pdf) 358 | | 8 | Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective | arXiv| 2024 | [Link](https://arxiv.org/abs/2412.10390) 359 | | 9 | Large Language Models, Knowledge Graphs and Search Engines: A Crossroads for Answering Users' Questions | arXiv | 2025 | [Link](https://arxiv.org/abs/2501.06699) 360 | | 10 | Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective | Journal of Web Semantics | 2025 | [Link](https://doi.org/10.1016/j.websem.2024.100844) 361 | | 11 | A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models | arXiv | 2025 | [Link](https://arxiv.org/abs/2501.13958) 362 | | 12 | Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG | arXiv | 2025 | [Link](https://arxiv.org/abs/2501.09136) 363 | | 13 | A survey on augmenting knowledge graphs (KGs) with large language models (LLMs): models, evaluation metrics, benchmarks, and challenges |Discover Artificial Intelligence | 2024 | [Link](https://link.springer.com/article/10.1007/s44163-024-00175-8) 364 | | 14 | Unifying Large Language Models and Knowledge Graphs for efficient Regulatory Information Retrieval and Answer Generation |REgNLP Workshop | 2025 | [Link](https://aclanthology.org/2025.regnlp-1.4/) 365 | | 15 | A Comprehensive Survey of Knowledge-Based Vision Question Answering Systems: The Lifecycle of Knowledge in Visual Reasoning Task |arXiv | 2025 | [Link](https://arxiv.org/abs/2504.17547) 366 | | 16 | Knowledge Conflicts for LLMs: A Survey |EMNLP | 2024 | [Link](https://aclanthology.org/2024.emnlp-main.486/) 367 | | 17 | A comprehensive survey on integrating large language models with knowledge-based methods | Knowledge-Based Systems | 2025 | [Link](https://doi.org/10.1016/j.knosys.2025.113503/) 368 | | 18 | Synergizing RAG and Reasoning: A Systematic Review | arXiv | 2025 | [Link](https://arxiv.org/abs/2504.15909/) 369 | | 19 | A Survey of Multimodal Retrieval-Augmented Generation | arXiv | 2025 | [Link](https://arxiv.org/abs/2504.08748/) 370 | | 20 | Retrieval-Augmented Generation with Knowledge Graphs: A Survey | OpenReview | 2025 | [Link](https://openreview.net/forum?id=ZikTuGY28C/) 371 | | 21 | Complex QA and language models hybrid architectures, Survey | arXiv| 2023 | [Link](https://arxiv.org/abs/2302.09051) 372 | | 22 | Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey |arXiv | 2025 | [Link](https://arxiv.org/abs/2502.10708) 373 | -------------------------------------------------------------------------------- /_config.yaml: -------------------------------------------------------------------------------- 1 | title: null 2 | name: "Unifying LLMs and KGs for QA: Recent Advances and Opportunities" 3 | author: " Chuangtao Ma, Yongrui Chen, Tianxing Wu, Arijit Khan, Haofen Wang" 4 | theme: minima 5 | header_pages: 6 | - tutorial-edbt25/index.md 7 | exclude: 8 | - README.md 9 | description: "EDBT25 LLM-KG4QA Tutorial" 10 | social: 11 | image: https://machuangtao.github.io/images/edbt25.jpg -------------------------------------------------------------------------------- /tutorial-edbt25/index.md: -------------------------------------------------------------------------------- 1 | --- 2 | layout: page 3 | description: "EDBT 2025 tutorial on integrating LLMs with Knowledge Graphs for QA." 4 | image: https://machuangtao.github.io/images/edbt25.jpg 5 | --- 6 | 7 | Welcome to our EDBT 2025 tutorial! 8 |
9 |
10 |