├── .gitignore
├── LICENSE
├── Readme.md
├── config
└── log_config.json
├── data_compressed
├── FB15k-237.zip
└── WN18RR.zip
├── data_loader.py
├── helper.py
├── model
├── __init__.py
├── compgcn_conv.py
├── compgcn_conv_basis.py
├── message_passing.py
└── models.py
├── overview.png
├── preprocess.sh
├── requirements.txt
└── run.py
/.gitignore:
--------------------------------------------------------------------------------
1 | data/*
2 | checkpoints/*
3 | log/*
4 |
5 | # Byte-compiled / optimized / DLL files
6 | __pycache__/
7 | *.py[cod]
8 | *$py.class
9 |
10 | # C extensions
11 | *.so
12 |
13 | # Distribution / packaging
14 | .Python
15 | build/
16 | develop-eggs/
17 | dist/
18 | downloads/
19 | eggs/
20 | .eggs/
21 | lib/
22 | lib64/
23 | parts/
24 | sdist/
25 | var/
26 | wheels/
27 | *.egg-info/
28 | .installed.cfg
29 | *.egg
30 | MANIFEST
31 |
32 | # PyInstaller
33 | # Usually these files are written by a python script from a template
34 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
35 | *.manifest
36 | *.spec
37 |
38 | # Installer logs
39 | pip-log.txt
40 | pip-delete-this-directory.txt
41 |
42 | # Unit test / coverage reports
43 | htmlcov/
44 | .tox/
45 | .coverage
46 | .coverage.*
47 | .cache
48 | nosetests.xml
49 | coverage.xml
50 | *.cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 |
63 | # Flask stuff:
64 | instance/
65 | .webassets-cache
66 |
67 | # Scrapy stuff:
68 | .scrapy
69 |
70 | # Sphinx documentation
71 | docs/_build/
72 |
73 | # PyBuilder
74 | target/
75 |
76 | # Jupyter Notebook
77 | .ipynb_checkpoints
78 |
79 | # pyenv
80 | .python-version
81 |
82 | # celery beat schedule file
83 | celerybeat-schedule
84 |
85 | # SageMath parsed files
86 | *.sage.py
87 |
88 | # Environments
89 | .env
90 | .venv
91 | env/
92 | venv/
93 | ENV/
94 | env.bak/
95 | venv.bak/
96 |
97 | # Spyder project settings
98 | .spyderproject
99 | .spyproject
100 |
101 | # Rope project settings
102 | .ropeproject
103 |
104 | # mkdocs documentation
105 | /site
106 |
107 | # mypy
108 | .mypy_cache/
109 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/Readme.md:
--------------------------------------------------------------------------------
1 |
2 | CompGCN
3 |
4 |
5 | Composition-Based Multi-Relational Graph Convolutional Networks
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Overview of CompGCN
20 |
21 |
22 | Given node and relation embeddings, CompGCN performs a composition operation φ(·) over each edge in the neighborhood of a central node (e.g. Christopher Nolan above). The composed embeddings are then convolved with specific filters WO and WI for original and inverse relations respectively. We omit self-loop in the diagram for clarity. The message from all the neighbors are then aggregated to get an updated embedding of the central node. Also, the relation embeddings are transformed using a separate weight matrix. Please refer to the paper for details.
23 |
24 | ### Dependencies
25 |
26 | - Compatible with PyTorch 1.0 and Python 3.x.
27 | - Dependencies can be installed using `requirements.txt`.
28 |
29 | ### Dataset:
30 |
31 | - We use FB15k-237 and WN18RR dataset for knowledge graph link prediction.
32 | - FB15k-237 and WN18RR are included in the `data` directory.
33 |
34 | ### Training model:
35 |
36 | - Install all the requirements from `requirements.txt.`
37 |
38 | - Execute `./setup.sh` for extracting the dataset and setting up the folder hierarchy for experiments.
39 |
40 | - Commands for reproducing the reported results on link prediction:
41 |
42 | ```shell
43 | ##### with TransE Score Function
44 | # CompGCN (Composition: Subtraction)
45 | python run.py -score_func transe -opn sub -gamma 9 -hid_drop 0.1 -init_dim 200
46 |
47 | # CompGCN (Composition: Multiplication)
48 | python run.py -score_func transe -opn mult -gamma 9 -hid_drop 0.2 -init_dim 200
49 |
50 | # CompGCN (Composition: Circular Correlation)
51 | python run.py -score_func transe -opn corr -gamma 40 -hid_drop 0.1 -init_dim 200
52 |
53 | ##### with DistMult Score Function
54 | # CompGCN (Composition: Subtraction)
55 | python run.py -score_func distmult -opn sub -gcn_dim 150 -gcn_layer 2
56 |
57 | # CompGCN (Composition: Multiplication)
58 | python run.py -score_func distmult -opn mult -gcn_dim 150 -gcn_layer 2
59 |
60 | # CompGCN (Composition: Circular Correlation)
61 | python run.py -score_func distmult -opn corr -gcn_dim 150 -gcn_layer 2
62 |
63 | ##### with ConvE Score Function
64 | # CompGCN (Composition: Subtraction)
65 | python run.py -score_func conve -opn sub -ker_sz 5
66 |
67 | # CompGCN (Composition: Multiplication)
68 | python run.py -score_func conve -opn mult
69 |
70 | # CompGCN (Composition: Circular Correlation)
71 | python run.py -score_func conve -opn corr
72 |
73 | ##### Overall BEST:
74 | python run.py -name best_model -score_func conve -opn corr
75 | ```
76 |
77 | - `-score_func` denotes the link prediction score score function
78 | - `-opn` is the composition operation used in **CompGCN**. It can take the following values:
79 | - `sub` for subtraction operation: Φ(e_s, e_r) = e_s - e_r
80 | - `mult` for multiplication operation: Φ(e_s, e_r) = e_s * e_r
81 | - `corr` for circular-correlation: Φ(e_s, e_r) = e_s ★ e_r
82 | - `-name` is some name given for the run (used for storing model parameters)
83 | - `-model` is name of the model `compgcn'.
84 | - `-gpu` for specifying the GPU to use
85 | - Rest of the arguments can be listed using `python run.py -h`
86 | ### Citation:
87 | Please cite the following paper if you use this code in your work.
88 | ```bibtex
89 | @inproceedings{
90 | vashishth2020compositionbased,
91 | title={Composition-based Multi-Relational Graph Convolutional Networks},
92 | author={Shikhar Vashishth and Soumya Sanyal and Vikram Nitin and Partha Talukdar},
93 | booktitle={International Conference on Learning Representations},
94 | year={2020},
95 | url={https://openreview.net/forum?id=BylA_C4tPr}
96 | }
97 | ```
98 | For any clarification, comments, or suggestions please create an issue or contact [Shikhar](http://shikhar-vashishth.github.io).
99 |
--------------------------------------------------------------------------------
/config/log_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "version": 1,
3 | "disable_existing_loggers": false,
4 | "formatters": {
5 | "simple": {
6 | "format": "%(asctime)s - %(name)s - [%(levelname)s] - %(message)s"
7 | }
8 | },
9 |
10 | "handlers": {
11 | "file_handler": {
12 | "class": "logging.FileHandler",
13 | "level": "DEBUG",
14 | "formatter": "simple",
15 | "filename": "python_logging.log",
16 | "encoding": "utf8"
17 | }
18 | },
19 |
20 | "root": {
21 | "level": "DEBUG",
22 | "handlers": ["file_handler"]
23 | }
24 | }
25 |
--------------------------------------------------------------------------------
/data_compressed/FB15k-237.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/malllabiisc/CompGCN/3b06f5fec42526faa81afc158df9e64a8382982c/data_compressed/FB15k-237.zip
--------------------------------------------------------------------------------
/data_compressed/WN18RR.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/malllabiisc/CompGCN/3b06f5fec42526faa81afc158df9e64a8382982c/data_compressed/WN18RR.zip
--------------------------------------------------------------------------------
/data_loader.py:
--------------------------------------------------------------------------------
1 | from helper import *
2 | from torch.utils.data import Dataset
3 |
4 | class TrainDataset(Dataset):
5 | """
6 | Training Dataset class.
7 |
8 | Parameters
9 | ----------
10 | triples: The triples used for training the model
11 | params: Parameters for the experiments
12 |
13 | Returns
14 | -------
15 | A training Dataset class instance used by DataLoader
16 | """
17 | def __init__(self, triples, params):
18 | self.triples = triples
19 | self.p = params
20 | self.entities = np.arange(self.p.num_ent, dtype=np.int32)
21 |
22 | def __len__(self):
23 | return len(self.triples)
24 |
25 | def __getitem__(self, idx):
26 | ele = self.triples[idx]
27 | triple, label, sub_samp = torch.LongTensor(ele['triple']), np.int32(ele['label']), np.float32(ele['sub_samp'])
28 | trp_label = self.get_label(label)
29 |
30 | if self.p.lbl_smooth != 0.0:
31 | trp_label = (1.0 - self.p.lbl_smooth)*trp_label + (1.0/self.p.num_ent)
32 |
33 | return triple, trp_label, None, None
34 |
35 | @staticmethod
36 | def collate_fn(data):
37 | triple = torch.stack([_[0] for _ in data], dim=0)
38 | trp_label = torch.stack([_[1] for _ in data], dim=0)
39 | return triple, trp_label
40 |
41 | def get_neg_ent(self, triple, label):
42 | def get(triple, label):
43 | pos_obj = label
44 | mask = np.ones([self.p.num_ent], dtype=np.bool)
45 | mask[label] = 0
46 | neg_ent = np.int32(np.random.choice(self.entities[mask], self.p.neg_num - len(label), replace=False)).reshape([-1])
47 | neg_ent = np.concatenate((pos_obj.reshape([-1]), neg_ent))
48 |
49 | return neg_ent
50 |
51 | neg_ent = get(triple, label)
52 | return neg_ent
53 |
54 | def get_label(self, label):
55 | y = np.zeros([self.p.num_ent], dtype=np.float32)
56 | for e2 in label: y[e2] = 1.0
57 | return torch.FloatTensor(y)
58 |
59 |
60 | class TestDataset(Dataset):
61 | """
62 | Evaluation Dataset class.
63 |
64 | Parameters
65 | ----------
66 | triples: The triples used for evaluating the model
67 | params: Parameters for the experiments
68 |
69 | Returns
70 | -------
71 | An evaluation Dataset class instance used by DataLoader for model evaluation
72 | """
73 | def __init__(self, triples, params):
74 | self.triples = triples
75 | self.p = params
76 |
77 | def __len__(self):
78 | return len(self.triples)
79 |
80 | def __getitem__(self, idx):
81 | ele = self.triples[idx]
82 | triple, label = torch.LongTensor(ele['triple']), np.int32(ele['label'])
83 | label = self.get_label(label)
84 |
85 | return triple, label
86 |
87 | @staticmethod
88 | def collate_fn(data):
89 | triple = torch.stack([_[0] for _ in data], dim=0)
90 | label = torch.stack([_[1] for _ in data], dim=0)
91 | return triple, label
92 |
93 | def get_label(self, label):
94 | y = np.zeros([self.p.num_ent], dtype=np.float32)
95 | for e2 in label: y[e2] = 1.0
96 | return torch.FloatTensor(y)
--------------------------------------------------------------------------------
/helper.py:
--------------------------------------------------------------------------------
1 | import numpy as np, sys, os, random, pdb, json, uuid, time, argparse
2 | from pprint import pprint
3 | import logging, logging.config
4 | from collections import defaultdict as ddict
5 | from ordered_set import OrderedSet
6 |
7 | # PyTorch related imports
8 | import torch
9 | from torch.nn import functional as F
10 | from torch.nn.init import xavier_normal_
11 | from torch.utils.data import DataLoader
12 | from torch.nn import Parameter
13 | from torch_scatter import scatter_add
14 |
15 | np.set_printoptions(precision=4)
16 |
17 | def set_gpu(gpus):
18 | """
19 | Sets the GPU to be used for the run
20 |
21 | Parameters
22 | ----------
23 | gpus: List of GPUs to be used for the run
24 |
25 | Returns
26 | -------
27 |
28 | """
29 | os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
30 | os.environ["CUDA_VISIBLE_DEVICES"] = gpus
31 |
32 | def get_logger(name, log_dir, config_dir):
33 | """
34 | Creates a logger object
35 |
36 | Parameters
37 | ----------
38 | name: Name of the logger file
39 | log_dir: Directory where logger file needs to be stored
40 | config_dir: Directory from where log_config.json needs to be read
41 |
42 | Returns
43 | -------
44 | A logger object which writes to both file and stdout
45 |
46 | """
47 | config_dict = json.load(open( config_dir + 'log_config.json'))
48 | config_dict['handlers']['file_handler']['filename'] = log_dir + name.replace('/', '-')
49 | logging.config.dictConfig(config_dict)
50 | logger = logging.getLogger(name)
51 |
52 | std_out_format = '%(asctime)s - [%(levelname)s] - %(message)s'
53 | consoleHandler = logging.StreamHandler(sys.stdout)
54 | consoleHandler.setFormatter(logging.Formatter(std_out_format))
55 | logger.addHandler(consoleHandler)
56 |
57 | return logger
58 |
59 | def get_combined_results(left_results, right_results):
60 | results = {}
61 | count = float(left_results['count'])
62 |
63 | results['left_mr'] = round(left_results ['mr'] /count, 5)
64 | results['left_mrr'] = round(left_results ['mrr']/count, 5)
65 | results['right_mr'] = round(right_results['mr'] /count, 5)
66 | results['right_mrr'] = round(right_results['mrr']/count, 5)
67 | results['mr'] = round((left_results['mr'] + right_results['mr']) /(2*count), 5)
68 | results['mrr'] = round((left_results['mrr'] + right_results['mrr'])/(2*count), 5)
69 |
70 | for k in range(10):
71 | results['left_hits@{}'.format(k+1)] = round(left_results ['hits@{}'.format(k+1)]/count, 5)
72 | results['right_hits@{}'.format(k+1)] = round(right_results['hits@{}'.format(k+1)]/count, 5)
73 | results['hits@{}'.format(k+1)] = round((left_results['hits@{}'.format(k+1)] + right_results['hits@{}'.format(k+1)])/(2*count), 5)
74 | return results
75 |
76 | def get_param(shape):
77 | param = Parameter(torch.Tensor(*shape));
78 | xavier_normal_(param.data)
79 | return param
80 |
81 | def com_mult(a, b):
82 | r1, i1 = a[..., 0], a[..., 1]
83 | r2, i2 = b[..., 0], b[..., 1]
84 | return torch.stack([r1 * r2 - i1 * i2, r1 * i2 + i1 * r2], dim = -1)
85 |
86 | def conj(a):
87 | a[..., 1] = -a[..., 1]
88 | return a
89 |
90 | def cconv(a, b):
91 | return torch.irfft(com_mult(torch.rfft(a, 1), torch.rfft(b, 1)), 1, signal_sizes=(a.shape[-1],))
92 |
93 | def ccorr(a, b):
94 | return torch.irfft(com_mult(conj(torch.rfft(a, 1)), torch.rfft(b, 1)), 1, signal_sizes=(a.shape[-1],))
--------------------------------------------------------------------------------
/model/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/malllabiisc/CompGCN/3b06f5fec42526faa81afc158df9e64a8382982c/model/__init__.py
--------------------------------------------------------------------------------
/model/compgcn_conv.py:
--------------------------------------------------------------------------------
1 | from helper import *
2 | from model.message_passing import MessagePassing
3 |
4 | class CompGCNConv(MessagePassing):
5 | def __init__(self, in_channels, out_channels, num_rels, act=lambda x:x, params=None):
6 | super(self.__class__, self).__init__()
7 |
8 | self.p = params
9 | self.in_channels = in_channels
10 | self.out_channels = out_channels
11 | self.num_rels = num_rels
12 | self.act = act
13 | self.device = None
14 |
15 | self.w_loop = get_param((in_channels, out_channels))
16 | self.w_in = get_param((in_channels, out_channels))
17 | self.w_out = get_param((in_channels, out_channels))
18 | self.w_rel = get_param((in_channels, out_channels))
19 | self.loop_rel = get_param((1, in_channels));
20 |
21 | self.drop = torch.nn.Dropout(self.p.dropout)
22 | self.bn = torch.nn.BatchNorm1d(out_channels)
23 |
24 | if self.p.bias: self.register_parameter('bias', Parameter(torch.zeros(out_channels)))
25 |
26 | def forward(self, x, edge_index, edge_type, rel_embed):
27 | if self.device is None:
28 | self.device = edge_index.device
29 |
30 | rel_embed = torch.cat([rel_embed, self.loop_rel], dim=0)
31 | num_edges = edge_index.size(1) // 2
32 | num_ent = x.size(0)
33 |
34 | self.in_index, self.out_index = edge_index[:, :num_edges], edge_index[:, num_edges:]
35 | self.in_type, self.out_type = edge_type[:num_edges], edge_type [num_edges:]
36 |
37 | self.loop_index = torch.stack([torch.arange(num_ent), torch.arange(num_ent)]).to(self.device)
38 | self.loop_type = torch.full((num_ent,), rel_embed.size(0)-1, dtype=torch.long).to(self.device)
39 |
40 | self.in_norm = self.compute_norm(self.in_index, num_ent)
41 | self.out_norm = self.compute_norm(self.out_index, num_ent)
42 |
43 | in_res = self.propagate('add', self.in_index, x=x, edge_type=self.in_type, rel_embed=rel_embed, edge_norm=self.in_norm, mode='in')
44 | loop_res = self.propagate('add', self.loop_index, x=x, edge_type=self.loop_type, rel_embed=rel_embed, edge_norm=None, mode='loop')
45 | out_res = self.propagate('add', self.out_index, x=x, edge_type=self.out_type, rel_embed=rel_embed, edge_norm=self.out_norm, mode='out')
46 | out = self.drop(in_res)*(1/3) + self.drop(out_res)*(1/3) + loop_res*(1/3)
47 |
48 | if self.p.bias: out = out + self.bias
49 | out = self.bn(out)
50 |
51 | return self.act(out), torch.matmul(rel_embed, self.w_rel)[:-1] # Ignoring the self loop inserted
52 |
53 | def rel_transform(self, ent_embed, rel_embed):
54 | if self.p.opn == 'corr': trans_embed = ccorr(ent_embed, rel_embed)
55 | elif self.p.opn == 'sub': trans_embed = ent_embed - rel_embed
56 | elif self.p.opn == 'mult': trans_embed = ent_embed * rel_embed
57 | else: raise NotImplementedError
58 |
59 | return trans_embed
60 |
61 | def message(self, x_j, edge_type, rel_embed, edge_norm, mode):
62 | weight = getattr(self, 'w_{}'.format(mode))
63 | rel_emb = torch.index_select(rel_embed, 0, edge_type)
64 | xj_rel = self.rel_transform(x_j, rel_emb)
65 | out = torch.mm(xj_rel, weight)
66 |
67 | return out if edge_norm is None else out * edge_norm.view(-1, 1)
68 |
69 | def update(self, aggr_out):
70 | return aggr_out
71 |
72 | def compute_norm(self, edge_index, num_ent):
73 | row, col = edge_index
74 | edge_weight = torch.ones_like(row).float()
75 | deg = scatter_add( edge_weight, row, dim=0, dim_size=num_ent) # Summing number of weights of the edges
76 | deg_inv = deg.pow(-0.5) # D^{-0.5}
77 | deg_inv[deg_inv == float('inf')] = 0
78 | norm = deg_inv[row] * edge_weight * deg_inv[col] # D^{-0.5}
79 |
80 | return norm
81 |
82 | def __repr__(self):
83 | return '{}({}, {}, num_rels={})'.format(
84 | self.__class__.__name__, self.in_channels, self.out_channels, self.num_rels)
85 |
--------------------------------------------------------------------------------
/model/compgcn_conv_basis.py:
--------------------------------------------------------------------------------
1 | from helper import *
2 | from model.message_passing import MessagePassing
3 |
4 | class CompGCNConvBasis(MessagePassing):
5 | def __init__(self, in_channels, out_channels, num_rels, num_bases, act=lambda x:x, cache=True, params=None):
6 | super(self.__class__, self).__init__()
7 |
8 | self.p = params
9 | self.in_channels = in_channels
10 | self.out_channels = out_channels
11 | self.num_rels = num_rels
12 | self.num_bases = num_bases
13 | self.act = act
14 | self.device = None
15 | self.cache = cache # Should be False for graph classification tasks
16 |
17 | self.w_loop = get_param((in_channels, out_channels));
18 | self.w_in = get_param((in_channels, out_channels));
19 | self.w_out = get_param((in_channels, out_channels));
20 |
21 | self.rel_basis = get_param((self.num_bases, in_channels))
22 | self.rel_wt = get_param((self.num_rels*2, self.num_bases))
23 | self.w_rel = get_param((in_channels, out_channels))
24 | self.loop_rel = get_param((1, in_channels));
25 |
26 | self.drop = torch.nn.Dropout(self.p.dropout)
27 | self.bn = torch.nn.BatchNorm1d(out_channels)
28 |
29 | self.in_norm, self.out_norm,
30 | self.in_index, self.out_index,
31 | self.in_type, self.out_type,
32 | self.loop_index, self.loop_type = None, None, None, None, None, None, None, None
33 |
34 | if self.p.bias: self.register_parameter('bias', Parameter(torch.zeros(out_channels)))
35 |
36 | def forward(self, x, edge_index, edge_type, edge_norm=None, rel_embed=None):
37 | if self.device is None:
38 | self.device = edge_index.device
39 |
40 | rel_embed = torch.mm(self.rel_wt, self.rel_basis)
41 | rel_embed = torch.cat([rel_embed, self.loop_rel], dim=0)
42 |
43 | num_edges = edge_index.size(1) // 2
44 | num_ent = x.size(0)
45 |
46 | if not self.cache or self.in_norm == None:
47 | self.in_index, self.out_index = edge_index[:, :num_edges], edge_index[:, num_edges:]
48 | self.in_type, self.out_type = edge_type[:num_edges], edge_type [num_edges:]
49 |
50 | self.loop_index = torch.stack([torch.arange(num_ent), torch.arange(num_ent)]).to(self.device)
51 | self.loop_type = torch.full((num_ent,), rel_embed.size(0)-1, dtype=torch.long).to(self.device)
52 |
53 | self.in_norm = self.compute_norm(self.in_index, num_ent)
54 | self.out_norm = self.compute_norm(self.out_index, num_ent)
55 |
56 | in_res = self.propagate('add', self.in_index, x=x, edge_type=self.in_type, rel_embed=rel_embed, edge_norm=self.in_norm, mode='in')
57 | loop_res = self.propagate('add', self.loop_index, x=x, edge_type=self.loop_type, rel_embed=rel_embed, edge_norm=None, mode='loop')
58 | out_res = self.propagate('add', self.out_index, x=x, edge_type=self.out_type, rel_embed=rel_embed, edge_norm=self.out_norm, mode='out')
59 | out = self.drop(in_res)*(1/3) + self.drop(out_res)*(1/3) + loop_res*(1/3)
60 |
61 | if self.p.bias: out = out + self.bias
62 | if self.b_norm: out = self.bn(out)
63 |
64 | return self.act(out), torch.matmul(rel_embed, self.w_rel)[:-1]
65 |
66 | def rel_transform(self, ent_embed, rel_embed):
67 | if self.p.opn == 'corr': trans_embed = ccorr(ent_embed, rel_embed)
68 | elif self.p.opn == 'sub': trans_embed = ent_embed - rel_embed
69 | elif self.p.opn == 'mult': trans_embed = ent_embed * rel_embed
70 | else: raise NotImplementedError
71 |
72 | return trans_embed
73 |
74 | def message(self, x_j, edge_type, rel_embed, edge_norm, mode):
75 | weight = getattr(self, 'w_{}'.format(mode))
76 | rel_emb = torch.index_select(rel_embed, 0, edge_type)
77 | xj_rel = self.rel_transform(x_j, rel_emb)
78 | out = torch.mm(xj_rel, weight)
79 |
80 | return out if edge_norm is None else out * edge_norm.view(-1, 1)
81 |
82 | def update(self, aggr_out):
83 | return aggr_out
84 |
85 | def compute_norm(self, edge_index, num_ent):
86 | row, col = edge_index
87 | edge_weight = torch.ones_like(row).float()
88 | deg = scatter_add( edge_weight, row, dim=0, dim_size=num_ent) # Summing number of weights of the edges [Computing out-degree] [Should be equal to in-degree (undireted graph)]
89 | deg_inv = deg.pow(-0.5) # D^{-0.5}
90 | deg_inv[deg_inv == float('inf')] = 0
91 | norm = deg_inv[row] * edge_weight * deg_inv[col] # D^{-0.5}
92 |
93 | return norm
94 |
95 | def __repr__(self):
96 | return '{}({}, {}, num_rels={})'.format(
97 | self.__class__.__name__, self.in_channels, self.out_channels, self.num_rels)
98 |
--------------------------------------------------------------------------------
/model/message_passing.py:
--------------------------------------------------------------------------------
1 | import inspect, torch
2 | from torch_scatter import scatter
3 |
4 | def scatter_(name, src, index, dim_size=None):
5 | r"""Aggregates all values from the :attr:`src` tensor at the indices
6 | specified in the :attr:`index` tensor along the first dimension.
7 | If multiple indices reference the same location, their contributions
8 | are aggregated according to :attr:`name` (either :obj:`"add"`,
9 | :obj:`"mean"` or :obj:`"max"`).
10 |
11 | Args:
12 | name (string): The aggregation to use (:obj:`"add"`, :obj:`"mean"`,
13 | :obj:`"max"`).
14 | src (Tensor): The source tensor.
15 | index (LongTensor): The indices of elements to scatter.
16 | dim_size (int, optional): Automatically create output tensor with size
17 | :attr:`dim_size` in the first dimension. If set to :attr:`None`, a
18 | minimal sized output tensor is returned. (default: :obj:`None`)
19 |
20 | :rtype: :class:`Tensor`
21 | """
22 | if name == 'add': name = 'sum'
23 | assert name in ['sum', 'mean', 'max']
24 | out = scatter(src, index, dim=0, out=None, dim_size=dim_size, reduce=name)
25 | return out[0] if isinstance(out, tuple) else out
26 |
27 |
28 | class MessagePassing(torch.nn.Module):
29 | r"""Base class for creating message passing layers
30 |
31 | .. math::
32 | \mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
33 | \square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
34 | \left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{i,j}\right) \right),
35 |
36 | where :math:`\square` denotes a differentiable, permutation invariant
37 | function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}`
38 | and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as
39 | MLPs.
40 | See `here `__ for the accompanying tutorial.
42 |
43 | """
44 |
45 | def __init__(self, aggr='add'):
46 | super(MessagePassing, self).__init__()
47 |
48 | self.message_args = inspect.getargspec(self.message)[0][1:] # In the defined message function: get the list of arguments as list of string| For eg. in rgcn this will be ['x_j', 'edge_type', 'edge_norm'] (arguments of message function)
49 | self.update_args = inspect.getargspec(self.update)[0][2:] # Same for update function starting from 3rd argument | first=self, second=out
50 |
51 | def propagate(self, aggr, edge_index, **kwargs):
52 | r"""The initial call to start propagating messages.
53 | Takes in an aggregation scheme (:obj:`"add"`, :obj:`"mean"` or
54 | :obj:`"max"`), the edge indices, and all additional data which is
55 | needed to construct messages and to update node embeddings."""
56 |
57 | assert aggr in ['add', 'mean', 'max']
58 | kwargs['edge_index'] = edge_index
59 |
60 |
61 | size = None
62 | message_args = []
63 | for arg in self.message_args:
64 | if arg[-2:] == '_i': # If arguments ends with _i then include indic
65 | tmp = kwargs[arg[:-2]] # Take the front part of the variable | Mostly it will be 'x',
66 | size = tmp.size(0)
67 | message_args.append(tmp[edge_index[0]]) # Lookup for head entities in edges
68 | elif arg[-2:] == '_j':
69 | tmp = kwargs[arg[:-2]] # tmp = kwargs['x']
70 | size = tmp.size(0)
71 | message_args.append(tmp[edge_index[1]]) # Lookup for tail entities in edges
72 | else:
73 | message_args.append(kwargs[arg]) # Take things from kwargs
74 |
75 | update_args = [kwargs[arg] for arg in self.update_args] # Take update args from kwargs
76 |
77 | out = self.message(*message_args)
78 | out = scatter_(aggr, out, edge_index[0], dim_size=size) # Aggregated neighbors for each vertex
79 | out = self.update(out, *update_args)
80 |
81 | return out
82 |
83 | def message(self, x_j): # pragma: no cover
84 | r"""Constructs messages in analogy to :math:`\phi_{\mathbf{\Theta}}`
85 | for each edge in :math:`(i,j) \in \mathcal{E}`.
86 | Can take any argument which was initially passed to :meth:`propagate`.
87 | In addition, features can be lifted to the source node :math:`i` and
88 | target node :math:`j` by appending :obj:`_i` or :obj:`_j` to the
89 | variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`."""
90 |
91 | return x_j
92 |
93 | def update(self, aggr_out): # pragma: no cover
94 | r"""Updates node embeddings in analogy to
95 | :math:`\gamma_{\mathbf{\Theta}}` for each node
96 | :math:`i \in \mathcal{V}`.
97 | Takes in the output of aggregation as first argument and any argument
98 | which was initially passed to :meth:`propagate`."""
99 |
100 | return aggr_out
101 |
--------------------------------------------------------------------------------
/model/models.py:
--------------------------------------------------------------------------------
1 | from helper import *
2 | from model.compgcn_conv import CompGCNConv
3 | from model.compgcn_conv_basis import CompGCNConvBasis
4 |
5 | class BaseModel(torch.nn.Module):
6 | def __init__(self, params):
7 | super(BaseModel, self).__init__()
8 |
9 | self.p = params
10 | self.act = torch.tanh
11 | self.bceloss = torch.nn.BCELoss()
12 |
13 | def loss(self, pred, true_label):
14 | return self.bceloss(pred, true_label)
15 |
16 | class CompGCNBase(BaseModel):
17 | def __init__(self, edge_index, edge_type, num_rel, params=None):
18 | super(CompGCNBase, self).__init__(params)
19 |
20 | self.edge_index = edge_index
21 | self.edge_type = edge_type
22 | self.p.gcn_dim = self.p.embed_dim if self.p.gcn_layer == 1 else self.p.gcn_dim
23 | self.init_embed = get_param((self.p.num_ent, self.p.init_dim))
24 | self.device = self.edge_index.device
25 |
26 | if self.p.num_bases > 0:
27 | self.init_rel = get_param((self.p.num_bases, self.p.init_dim))
28 | else:
29 | if self.p.score_func == 'transe': self.init_rel = get_param((num_rel, self.p.init_dim))
30 | else: self.init_rel = get_param((num_rel*2, self.p.init_dim))
31 |
32 | if self.p.num_bases > 0:
33 | self.conv1 = CompGCNConvBasis(self.p.init_dim, self.p.gcn_dim, num_rel, self.p.num_bases, act=self.act, params=self.p)
34 | self.conv2 = CompGCNConv(self.p.gcn_dim, self.p.embed_dim, num_rel, act=self.act, params=self.p) if self.p.gcn_layer == 2 else None
35 | else:
36 | self.conv1 = CompGCNConv(self.p.init_dim, self.p.gcn_dim, num_rel, act=self.act, params=self.p)
37 | self.conv2 = CompGCNConv(self.p.gcn_dim, self.p.embed_dim, num_rel, act=self.act, params=self.p) if self.p.gcn_layer == 2 else None
38 |
39 | self.register_parameter('bias', Parameter(torch.zeros(self.p.num_ent)))
40 |
41 | def forward_base(self, sub, rel, drop1, drop2):
42 |
43 | r = self.init_rel if self.p.score_func != 'transe' else torch.cat([self.init_rel, -self.init_rel], dim=0)
44 | x, r = self.conv1(self.init_embed, self.edge_index, self.edge_type, rel_embed=r)
45 | x = drop1(x)
46 | x, r = self.conv2(x, self.edge_index, self.edge_type, rel_embed=r) if self.p.gcn_layer == 2 else (x, r)
47 | x = drop2(x) if self.p.gcn_layer == 2 else x
48 |
49 | sub_emb = torch.index_select(x, 0, sub)
50 | rel_emb = torch.index_select(r, 0, rel)
51 |
52 | return sub_emb, rel_emb, x
53 |
54 |
55 | class CompGCN_TransE(CompGCNBase):
56 | def __init__(self, edge_index, edge_type, params=None):
57 | super(self.__class__, self).__init__(edge_index, edge_type, params.num_rel, params)
58 | self.drop = torch.nn.Dropout(self.p.hid_drop)
59 |
60 | def forward(self, sub, rel):
61 |
62 | sub_emb, rel_emb, all_ent = self.forward_base(sub, rel, self.drop, self.drop)
63 | obj_emb = sub_emb + rel_emb
64 |
65 | x = self.p.gamma - torch.norm(obj_emb.unsqueeze(1) - all_ent, p=1, dim=2)
66 | score = torch.sigmoid(x)
67 |
68 | return score
69 |
70 | class CompGCN_DistMult(CompGCNBase):
71 | def __init__(self, edge_index, edge_type, params=None):
72 | super(self.__class__, self).__init__(edge_index, edge_type, params.num_rel, params)
73 | self.drop = torch.nn.Dropout(self.p.hid_drop)
74 |
75 | def forward(self, sub, rel):
76 |
77 | sub_emb, rel_emb, all_ent = self.forward_base(sub, rel, self.drop, self.drop)
78 | obj_emb = sub_emb * rel_emb
79 |
80 | x = torch.mm(obj_emb, all_ent.transpose(1, 0))
81 | x += self.bias.expand_as(x)
82 |
83 | score = torch.sigmoid(x)
84 | return score
85 |
86 | class CompGCN_ConvE(CompGCNBase):
87 | def __init__(self, edge_index, edge_type, params=None):
88 | super(self.__class__, self).__init__(edge_index, edge_type, params.num_rel, params)
89 |
90 | self.bn0 = torch.nn.BatchNorm2d(1)
91 | self.bn1 = torch.nn.BatchNorm2d(self.p.num_filt)
92 | self.bn2 = torch.nn.BatchNorm1d(self.p.embed_dim)
93 |
94 | self.hidden_drop = torch.nn.Dropout(self.p.hid_drop)
95 | self.hidden_drop2 = torch.nn.Dropout(self.p.hid_drop2)
96 | self.feature_drop = torch.nn.Dropout(self.p.feat_drop)
97 | self.m_conv1 = torch.nn.Conv2d(1, out_channels=self.p.num_filt, kernel_size=(self.p.ker_sz, self.p.ker_sz), stride=1, padding=0, bias=self.p.bias)
98 |
99 | flat_sz_h = int(2*self.p.k_w) - self.p.ker_sz + 1
100 | flat_sz_w = self.p.k_h - self.p.ker_sz + 1
101 | self.flat_sz = flat_sz_h*flat_sz_w*self.p.num_filt
102 | self.fc = torch.nn.Linear(self.flat_sz, self.p.embed_dim)
103 |
104 | def concat(self, e1_embed, rel_embed):
105 | e1_embed = e1_embed. view(-1, 1, self.p.embed_dim)
106 | rel_embed = rel_embed.view(-1, 1, self.p.embed_dim)
107 | stack_inp = torch.cat([e1_embed, rel_embed], 1)
108 | stack_inp = torch.transpose(stack_inp, 2, 1).reshape((-1, 1, 2*self.p.k_w, self.p.k_h))
109 | return stack_inp
110 |
111 | def forward(self, sub, rel):
112 |
113 | sub_emb, rel_emb, all_ent = self.forward_base(sub, rel, self.hidden_drop, self.feature_drop)
114 | stk_inp = self.concat(sub_emb, rel_emb)
115 | x = self.bn0(stk_inp)
116 | x = self.m_conv1(x)
117 | x = self.bn1(x)
118 | x = F.relu(x)
119 | x = self.feature_drop(x)
120 | x = x.view(-1, self.flat_sz)
121 | x = self.fc(x)
122 | x = self.hidden_drop2(x)
123 | x = self.bn2(x)
124 | x = F.relu(x)
125 |
126 | x = torch.mm(x, all_ent.transpose(1,0))
127 | x += self.bias.expand_as(x)
128 |
129 | score = torch.sigmoid(x)
130 | return score
131 |
--------------------------------------------------------------------------------
/overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/malllabiisc/CompGCN/3b06f5fec42526faa81afc158df9e64a8382982c/overview.png
--------------------------------------------------------------------------------
/preprocess.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | mkdir log
3 | mkdir checkpoints
4 | mkdir data
5 |
6 | unzip data_compressed/FB15k-237.zip -d data
7 | unzip data_compressed/WN18RR.zip -d data
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | torch==1.4.0
2 | ordered_set==3.1
3 | numpy==1.16.2
4 | torch_scatter==2.0.4
5 | scikit_learn==0.21.1
6 |
--------------------------------------------------------------------------------
/run.py:
--------------------------------------------------------------------------------
1 | from helper import *
2 | from data_loader import *
3 |
4 | # sys.path.append('./')
5 | from model.models import *
6 |
7 | class Runner(object):
8 |
9 | def load_data(self):
10 | """
11 | Reading in raw triples and converts it into a standard format.
12 |
13 | Parameters
14 | ----------
15 | self.p.dataset: Takes in the name of the dataset (FB15k-237)
16 |
17 | Returns
18 | -------
19 | self.ent2id: Entity to unique identifier mapping
20 | self.id2rel: Inverse mapping of self.ent2id
21 | self.rel2id: Relation to unique identifier mapping
22 | self.num_ent: Number of entities in the Knowledge graph
23 | self.num_rel: Number of relations in the Knowledge graph
24 | self.embed_dim: Embedding dimension used
25 | self.data['train']: Stores the triples corresponding to training dataset
26 | self.data['valid']: Stores the triples corresponding to validation dataset
27 | self.data['test']: Stores the triples corresponding to test dataset
28 | self.data_iter: The dataloader for different data splits
29 |
30 | """
31 |
32 | ent_set, rel_set = OrderedSet(), OrderedSet()
33 | for split in ['train', 'test', 'valid']:
34 | for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
35 | sub, rel, obj = map(str.lower, line.strip().split('\t'))
36 | ent_set.add(sub)
37 | rel_set.add(rel)
38 | ent_set.add(obj)
39 |
40 | self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
41 | self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
42 | self.rel2id.update({rel+'_reverse': idx+len(self.rel2id) for idx, rel in enumerate(rel_set)})
43 |
44 | self.id2ent = {idx: ent for ent, idx in self.ent2id.items()}
45 | self.id2rel = {idx: rel for rel, idx in self.rel2id.items()}
46 |
47 | self.p.num_ent = len(self.ent2id)
48 | self.p.num_rel = len(self.rel2id) // 2
49 | self.p.embed_dim = self.p.k_w * self.p.k_h if self.p.embed_dim is None else self.p.embed_dim
50 |
51 | self.data = ddict(list)
52 | sr2o = ddict(set)
53 |
54 | for split in ['train', 'test', 'valid']:
55 | for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
56 | sub, rel, obj = map(str.lower, line.strip().split('\t'))
57 | sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
58 | self.data[split].append((sub, rel, obj))
59 |
60 | if split == 'train':
61 | sr2o[(sub, rel)].add(obj)
62 | sr2o[(obj, rel+self.p.num_rel)].add(sub)
63 |
64 | self.data = dict(self.data)
65 |
66 | self.sr2o = {k: list(v) for k, v in sr2o.items()}
67 | for split in ['test', 'valid']:
68 | for sub, rel, obj in self.data[split]:
69 | sr2o[(sub, rel)].add(obj)
70 | sr2o[(obj, rel+self.p.num_rel)].add(sub)
71 |
72 | self.sr2o_all = {k: list(v) for k, v in sr2o.items()}
73 | self.triples = ddict(list)
74 |
75 | for (sub, rel), obj in self.sr2o.items():
76 | self.triples['train'].append({'triple':(sub, rel, -1), 'label': self.sr2o[(sub, rel)], 'sub_samp': 1})
77 |
78 | for split in ['test', 'valid']:
79 | for sub, rel, obj in self.data[split]:
80 | rel_inv = rel + self.p.num_rel
81 | self.triples['{}_{}'.format(split, 'tail')].append({'triple': (sub, rel, obj), 'label': self.sr2o_all[(sub, rel)]})
82 | self.triples['{}_{}'.format(split, 'head')].append({'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
83 |
84 | self.triples = dict(self.triples)
85 |
86 | def get_data_loader(dataset_class, split, batch_size, shuffle=True):
87 | return DataLoader(
88 | dataset_class(self.triples[split], self.p),
89 | batch_size = batch_size,
90 | shuffle = shuffle,
91 | num_workers = max(0, self.p.num_workers),
92 | collate_fn = dataset_class.collate_fn
93 | )
94 |
95 | self.data_iter = {
96 | 'train': get_data_loader(TrainDataset, 'train', self.p.batch_size),
97 | 'valid_head': get_data_loader(TestDataset, 'valid_head', self.p.batch_size),
98 | 'valid_tail': get_data_loader(TestDataset, 'valid_tail', self.p.batch_size),
99 | 'test_head': get_data_loader(TestDataset, 'test_head', self.p.batch_size),
100 | 'test_tail': get_data_loader(TestDataset, 'test_tail', self.p.batch_size),
101 | }
102 |
103 | self.edge_index, self.edge_type = self.construct_adj()
104 |
105 | def construct_adj(self):
106 | """
107 | Constructor of the runner class
108 |
109 | Parameters
110 | ----------
111 |
112 | Returns
113 | -------
114 | Constructs the adjacency matrix for GCN
115 |
116 | """
117 | edge_index, edge_type = [], []
118 |
119 | for sub, rel, obj in self.data['train']:
120 | edge_index.append((sub, obj))
121 | edge_type.append(rel)
122 |
123 | # Adding inverse edges
124 | for sub, rel, obj in self.data['train']:
125 | edge_index.append((obj, sub))
126 | edge_type.append(rel + self.p.num_rel)
127 |
128 | edge_index = torch.LongTensor(edge_index).to(self.device).t()
129 | edge_type = torch.LongTensor(edge_type). to(self.device)
130 |
131 | return edge_index, edge_type
132 |
133 | def __init__(self, params):
134 | """
135 | Constructor of the runner class
136 |
137 | Parameters
138 | ----------
139 | params: List of hyper-parameters of the model
140 |
141 | Returns
142 | -------
143 | Creates computational graph and optimizer
144 |
145 | """
146 | self.p = params
147 | self.logger = get_logger(self.p.name, self.p.log_dir, self.p.config_dir)
148 |
149 | self.logger.info(vars(self.p))
150 | pprint(vars(self.p))
151 |
152 | if self.p.gpu != '-1' and torch.cuda.is_available():
153 | self.device = torch.device('cuda')
154 | torch.cuda.set_rng_state(torch.cuda.get_rng_state())
155 | torch.backends.cudnn.deterministic = True
156 | else:
157 | self.device = torch.device('cpu')
158 |
159 | self.load_data()
160 | self.model = self.add_model(self.p.model, self.p.score_func)
161 | self.optimizer = self.add_optimizer(self.model.parameters())
162 |
163 |
164 | def add_model(self, model, score_func):
165 | """
166 | Creates the computational graph
167 |
168 | Parameters
169 | ----------
170 | model_name: Contains the model name to be created
171 |
172 | Returns
173 | -------
174 | Creates the computational graph for model and initializes it
175 |
176 | """
177 | model_name = '{}_{}'.format(model, score_func)
178 |
179 | if model_name.lower() == 'compgcn_transe': model = CompGCN_TransE(self.edge_index, self.edge_type, params=self.p)
180 | elif model_name.lower() == 'compgcn_distmult': model = CompGCN_DistMult(self.edge_index, self.edge_type, params=self.p)
181 | elif model_name.lower() == 'compgcn_conve': model = CompGCN_ConvE(self.edge_index, self.edge_type, params=self.p)
182 | else: raise NotImplementedError
183 |
184 | model.to(self.device)
185 | return model
186 |
187 | def add_optimizer(self, parameters):
188 | """
189 | Creates an optimizer for training the parameters
190 |
191 | Parameters
192 | ----------
193 | parameters: The parameters of the model
194 |
195 | Returns
196 | -------
197 | Returns an optimizer for learning the parameters of the model
198 |
199 | """
200 | return torch.optim.Adam(parameters, lr=self.p.lr, weight_decay=self.p.l2)
201 |
202 | def read_batch(self, batch, split):
203 | """
204 | Function to read a batch of data and move the tensors in batch to CPU/GPU
205 |
206 | Parameters
207 | ----------
208 | batch: the batch to process
209 | split: (string) If split == 'train', 'valid' or 'test' split
210 |
211 |
212 | Returns
213 | -------
214 | Head, Relation, Tails, labels
215 | """
216 | if split == 'train':
217 | triple, label = [ _.to(self.device) for _ in batch]
218 | return triple[:, 0], triple[:, 1], triple[:, 2], label
219 | else:
220 | triple, label = [ _.to(self.device) for _ in batch]
221 | return triple[:, 0], triple[:, 1], triple[:, 2], label
222 |
223 | def save_model(self, save_path):
224 | """
225 | Function to save a model. It saves the model parameters, best validation scores,
226 | best epoch corresponding to best validation, state of the optimizer and all arguments for the run.
227 |
228 | Parameters
229 | ----------
230 | save_path: path where the model is saved
231 |
232 | Returns
233 | -------
234 | """
235 | state = {
236 | 'state_dict' : self.model.state_dict(),
237 | 'best_val' : self.best_val,
238 | 'best_epoch' : self.best_epoch,
239 | 'optimizer' : self.optimizer.state_dict(),
240 | 'args' : vars(self.p)
241 | }
242 | torch.save(state, save_path)
243 |
244 | def load_model(self, load_path):
245 | """
246 | Function to load a saved model
247 |
248 | Parameters
249 | ----------
250 | load_path: path to the saved model
251 |
252 | Returns
253 | -------
254 | """
255 | state = torch.load(load_path)
256 | state_dict = state['state_dict']
257 | self.best_val = state['best_val']
258 | self.best_val_mrr = self.best_val['mrr']
259 |
260 | self.model.load_state_dict(state_dict)
261 | self.optimizer.load_state_dict(state['optimizer'])
262 |
263 | def evaluate(self, split, epoch):
264 | """
265 | Function to evaluate the model on validation or test set
266 |
267 | Parameters
268 | ----------
269 | split: (string) If split == 'valid' then evaluate on the validation set, else the test set
270 | epoch: (int) Current epoch count
271 |
272 | Returns
273 | -------
274 | resutls: The evaluation results containing the following:
275 | results['mr']: Average of ranks_left and ranks_right
276 | results['mrr']: Mean Reciprocal Rank
277 | results['hits@k']: Probability of getting the correct preodiction in top-k ranks based on predicted score
278 |
279 | """
280 | left_results = self.predict(split=split, mode='tail_batch')
281 | right_results = self.predict(split=split, mode='head_batch')
282 | results = get_combined_results(left_results, right_results)
283 | self.logger.info('[Epoch {} {}]: MRR: Tail : {:.5}, Head : {:.5}, Avg : {:.5}'.format(epoch, split, results['left_mrr'], results['right_mrr'], results['mrr']))
284 | return results
285 |
286 | def predict(self, split='valid', mode='tail_batch'):
287 | """
288 | Function to run model evaluation for a given mode
289 |
290 | Parameters
291 | ----------
292 | split: (string) If split == 'valid' then evaluate on the validation set, else the test set
293 | mode: (string): Can be 'head_batch' or 'tail_batch'
294 |
295 | Returns
296 | -------
297 | resutls: The evaluation results containing the following:
298 | results['mr']: Average of ranks_left and ranks_right
299 | results['mrr']: Mean Reciprocal Rank
300 | results['hits@k']: Probability of getting the correct preodiction in top-k ranks based on predicted score
301 |
302 | """
303 | self.model.eval()
304 |
305 | with torch.no_grad():
306 | results = {}
307 | train_iter = iter(self.data_iter['{}_{}'.format(split, mode.split('_')[0])])
308 |
309 | for step, batch in enumerate(train_iter):
310 | sub, rel, obj, label = self.read_batch(batch, split)
311 | pred = self.model.forward(sub, rel)
312 | b_range = torch.arange(pred.size()[0], device=self.device)
313 | target_pred = pred[b_range, obj]
314 | pred = torch.where(label.byte(), -torch.ones_like(pred) * 10000000, pred)
315 | pred[b_range, obj] = target_pred
316 | ranks = 1 + torch.argsort(torch.argsort(pred, dim=1, descending=True), dim=1, descending=False)[b_range, obj]
317 |
318 | ranks = ranks.float()
319 | results['count'] = torch.numel(ranks) + results.get('count', 0.0)
320 | results['mr'] = torch.sum(ranks).item() + results.get('mr', 0.0)
321 | results['mrr'] = torch.sum(1.0/ranks).item() + results.get('mrr', 0.0)
322 | for k in range(10):
323 | results['hits@{}'.format(k+1)] = torch.numel(ranks[ranks <= (k+1)]) + results.get('hits@{}'.format(k+1), 0.0)
324 |
325 | if step % 100 == 0:
326 | self.logger.info('[{}, {} Step {}]\t{}'.format(split.title(), mode.title(), step, self.p.name))
327 |
328 | return results
329 |
330 |
331 | def run_epoch(self, epoch, val_mrr = 0):
332 | """
333 | Function to run one epoch of training
334 |
335 | Parameters
336 | ----------
337 | epoch: current epoch count
338 |
339 | Returns
340 | -------
341 | loss: The loss value after the completion of one epoch
342 | """
343 | self.model.train()
344 | losses = []
345 | train_iter = iter(self.data_iter['train'])
346 |
347 | for step, batch in enumerate(train_iter):
348 | self.optimizer.zero_grad()
349 | sub, rel, obj, label = self.read_batch(batch, 'train')
350 |
351 | pred = self.model.forward(sub, rel)
352 | loss = self.model.loss(pred, label)
353 |
354 | loss.backward()
355 | self.optimizer.step()
356 | losses.append(loss.item())
357 |
358 | if step % 100 == 0:
359 | self.logger.info('[E:{}| {}]: Train Loss:{:.5}, Val MRR:{:.5}\t{}'.format(epoch, step, np.mean(losses), self.best_val_mrr, self.p.name))
360 |
361 | loss = np.mean(losses)
362 | self.logger.info('[Epoch:{}]: Training Loss:{:.4}\n'.format(epoch, loss))
363 | return loss
364 |
365 |
366 | def fit(self):
367 | """
368 | Function to run training and evaluation of model
369 |
370 | Parameters
371 | ----------
372 |
373 | Returns
374 | -------
375 | """
376 | self.best_val_mrr, self.best_val, self.best_epoch, val_mrr = 0., {}, 0, 0.
377 | save_path = os.path.join('./checkpoints', self.p.name)
378 |
379 | if self.p.restore:
380 | self.load_model(save_path)
381 | self.logger.info('Successfully Loaded previous model')
382 |
383 | kill_cnt = 0
384 | for epoch in range(self.p.max_epochs):
385 | train_loss = self.run_epoch(epoch, val_mrr)
386 | val_results = self.evaluate('valid', epoch)
387 |
388 | if val_results['mrr'] > self.best_val_mrr:
389 | self.best_val = val_results
390 | self.best_val_mrr = val_results['mrr']
391 | self.best_epoch = epoch
392 | self.save_model(save_path)
393 | kill_cnt = 0
394 | else:
395 | kill_cnt += 1
396 | if kill_cnt % 10 == 0 and self.p.gamma > 5:
397 | self.p.gamma -= 5
398 | self.logger.info('Gamma decay on saturation, updated value of gamma: {}'.format(self.p.gamma))
399 | if kill_cnt > 25:
400 | self.logger.info("Early Stopping!!")
401 | break
402 |
403 | self.logger.info('[Epoch {}]: Training Loss: {:.5}, Valid MRR: {:.5}\n\n'.format(epoch, train_loss, self.best_val_mrr))
404 |
405 | self.logger.info('Loading best model, Evaluating on Test data')
406 | self.load_model(save_path)
407 | test_results = self.evaluate('test', epoch)
408 |
409 | if __name__ == '__main__':
410 | parser = argparse.ArgumentParser(description='Parser For Arguments', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
411 |
412 | parser.add_argument('-name', default='testrun', help='Set run name for saving/restoring models')
413 | parser.add_argument('-data', dest='dataset', default='FB15k-237', help='Dataset to use, default: FB15k-237')
414 | parser.add_argument('-model', dest='model', default='compgcn', help='Model Name')
415 | parser.add_argument('-score_func', dest='score_func', default='conve', help='Score Function for Link prediction')
416 | parser.add_argument('-opn', dest='opn', default='corr', help='Composition Operation to be used in CompGCN')
417 |
418 | parser.add_argument('-batch', dest='batch_size', default=128, type=int, help='Batch size')
419 | parser.add_argument('-gamma', type=float, default=40.0, help='Margin')
420 | parser.add_argument('-gpu', type=str, default='0', help='Set GPU Ids : Eg: For CPU = -1, For Single GPU = 0')
421 | parser.add_argument('-epoch', dest='max_epochs', type=int, default=500, help='Number of epochs')
422 | parser.add_argument('-l2', type=float, default=0.0, help='L2 Regularization for Optimizer')
423 | parser.add_argument('-lr', type=float, default=0.001, help='Starting Learning Rate')
424 | parser.add_argument('-lbl_smooth', dest='lbl_smooth', type=float, default=0.1, help='Label Smoothing')
425 | parser.add_argument('-num_workers', type=int, default=10, help='Number of processes to construct batches')
426 | parser.add_argument('-seed', dest='seed', default=41504, type=int, help='Seed for randomization')
427 |
428 | parser.add_argument('-restore', dest='restore', action='store_true', help='Restore from the previously saved model')
429 | parser.add_argument('-bias', dest='bias', action='store_true', help='Whether to use bias in the model')
430 |
431 | parser.add_argument('-num_bases', dest='num_bases', default=-1, type=int, help='Number of basis relation vectors to use')
432 | parser.add_argument('-init_dim', dest='init_dim', default=100, type=int, help='Initial dimension size for entities and relations')
433 | parser.add_argument('-gcn_dim', dest='gcn_dim', default=200, type=int, help='Number of hidden units in GCN')
434 | parser.add_argument('-embed_dim', dest='embed_dim', default=None, type=int, help='Embedding dimension to give as input to score function')
435 | parser.add_argument('-gcn_layer', dest='gcn_layer', default=1, type=int, help='Number of GCN Layers to use')
436 | parser.add_argument('-gcn_drop', dest='dropout', default=0.1, type=float, help='Dropout to use in GCN Layer')
437 | parser.add_argument('-hid_drop', dest='hid_drop', default=0.3, type=float, help='Dropout after GCN')
438 |
439 | # ConvE specific hyperparameters
440 | parser.add_argument('-hid_drop2', dest='hid_drop2', default=0.3, type=float, help='ConvE: Hidden dropout')
441 | parser.add_argument('-feat_drop', dest='feat_drop', default=0.3, type=float, help='ConvE: Feature Dropout')
442 | parser.add_argument('-k_w', dest='k_w', default=10, type=int, help='ConvE: k_w')
443 | parser.add_argument('-k_h', dest='k_h', default=20, type=int, help='ConvE: k_h')
444 | parser.add_argument('-num_filt', dest='num_filt', default=200, type=int, help='ConvE: Number of filters in convolution')
445 | parser.add_argument('-ker_sz', dest='ker_sz', default=7, type=int, help='ConvE: Kernel size to use')
446 |
447 | parser.add_argument('-logdir', dest='log_dir', default='./log/', help='Log directory')
448 | parser.add_argument('-config', dest='config_dir', default='./config/', help='Config directory')
449 | args = parser.parse_args()
450 |
451 | if not args.restore: args.name = args.name + '_' + time.strftime('%d_%m_%Y') + '_' + time.strftime('%H:%M:%S')
452 |
453 | set_gpu(args.gpu)
454 | np.random.seed(args.seed)
455 | torch.manual_seed(args.seed)
456 |
457 | model = Runner(args)
458 | model.fit()
459 |
--------------------------------------------------------------------------------