├── .DS_Store ├── 2.deep-learning-fundamentals ├── .DS_Store ├── NVIDIA Certification - DL Fundamentals.pdf └── 2.Activation_Functions_in_Tensorflow.ipynb ├── 1.machine-learning-fundamentals ├── .DS_Store ├── machine-learning-fundamentals.pdf ├── SeaPlaneTravel.csv ├── Advertising.csv ├── Social_Network_Ads.csv ├── Wholesale customers data.csv ├── 4. KNN Classifier.ipynb ├── 5. Support Vector Machines.ipynb └── 7. XgBoost.ipynb └── README.md /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/manifoldailearning/NVIDIA-Certified-Associate--Generative-AI-LLMs-NCA-GENL/HEAD/.DS_Store -------------------------------------------------------------------------------- /2.deep-learning-fundamentals/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/manifoldailearning/NVIDIA-Certified-Associate--Generative-AI-LLMs-NCA-GENL/HEAD/2.deep-learning-fundamentals/.DS_Store -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/manifoldailearning/NVIDIA-Certified-Associate--Generative-AI-LLMs-NCA-GENL/HEAD/1.machine-learning-fundamentals/.DS_Store -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/machine-learning-fundamentals.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/manifoldailearning/NVIDIA-Certified-Associate--Generative-AI-LLMs-NCA-GENL/HEAD/1.machine-learning-fundamentals/machine-learning-fundamentals.pdf -------------------------------------------------------------------------------- /2.deep-learning-fundamentals/NVIDIA Certification - DL Fundamentals.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/manifoldailearning/NVIDIA-Certified-Associate--Generative-AI-LLMs-NCA-GENL/HEAD/2.deep-learning-fundamentals/NVIDIA Certification - DL Fundamentals.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # NVIDIA-Certified-Associate -Generative-AI-LLMs-NCA-GENL 2 | A Course by Manifold AI Learning to help the practitioners to prepare for the NVIDIA-Certified Associate - Generative AI LLMs (NCA-GENL) Examination 3 | 4 | Course link - https://www.manifoldailearning.in/courses/NVIDIA-Certified-Associate---Generative-AI-LLMs-NCA-GENL-662e207dd9c42436ec97fde0 5 | 6 | Be a part of Workshops conducted Live for free - 7 | https://www.manifoldailearning.in/courses/Webinar-Learning-Materials--Slides-64df2bc5e4b0267d331f9998 8 | 9 | 10 | Our other best courses: 11 | 12 | MLOps Bootcamp - https://www.manifoldailearning.in/courses/Complete-MLOps-BootCamp-654ddf11e4b004edc19e2649 13 | 14 | MLOps with AWS Bootcamp - 15 | https://www.manifoldailearning.in/courses/Master-Practical-MLOps-for-Data-Scientists--DevOps-on-AWS-65351f01e4b08600bc438698 16 | 17 | 18 | Created by the Top Instructor of Manifold AI Learning - Nachiketh Murthy (https://www.linkedin.com/in/nachiketh-murthy/) 19 | 20 | For support - support@manifoldailearning.in 21 | 22 | Thank you for all your support. Happy Learning!!! -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/SeaPlaneTravel.csv: -------------------------------------------------------------------------------- 1 | Month,#Passengers 2 | 2003-01,112 3 | 2003-02,118 4 | 2003-03,132 5 | 2003-04,129 6 | 2003-05,121 7 | 2003-06,135 8 | 2003-07,148 9 | 2003-08,148 10 | 2003-09,136 11 | 2003-10,119 12 | 2003-11,104 13 | 2003-12,118 14 | 2004-01,115 15 | 2004-02,126 16 | 2004-03,141 17 | 2004-04,135 18 | 2004-05,125 19 | 2004-06,149 20 | 2004-07,170 21 | 2004-08,170 22 | 2004-09,158 23 | 2004-10,133 24 | 2004-11,114 25 | 2004-12,140 26 | 2006-01,145 27 | 2006-02,150 28 | 2006-03,178 29 | 2006-04,163 30 | 2006-05,172 31 | 2006-06,178 32 | 2006-07,199 33 | 2006-08,199 34 | 2006-09,184 35 | 2006-10,162 36 | 2006-11,146 37 | 2006-12,166 38 | 2007-01,171 39 | 2007-02,180 40 | 2007-03,193 41 | 2007-04,181 42 | 2007-05,183 43 | 2007-06,218 44 | 2007-07,230 45 | 2007-08,242 46 | 2007-09,209 47 | 2007-10,191 48 | 2007-11,172 49 | 2007-12,194 50 | 2008-01,196 51 | 2008-02,196 52 | 2008-03,236 53 | 2008-04,235 54 | 2008-05,229 55 | 2008-06,243 56 | 2008-07,264 57 | 2008-08,272 58 | 2008-09,237 59 | 2008-10,211 60 | 2008-11,180 61 | 2008-12,201 62 | 2009-01,204 63 | 2009-02,188 64 | 2009-03,235 65 | 2009-04,227 66 | 2009-05,234 67 | 2009-06,264 68 | 2009-07,302 69 | 2009-08,293 70 | 2009-09,259 71 | 2009-10,229 72 | 2009-11,203 73 | 2009-12,229 74 | 2010-01,242 75 | 2010-02,233 76 | 2010-03,267 77 | 2010-04,269 78 | 2010-05,270 79 | 2010-06,315 80 | 2010-07,364 81 | 2010-08,347 82 | 2010-09,312 83 | 2010-10,274 84 | 2010-11,237 85 | 2010-12,278 86 | 2011-01,284 87 | 2011-02,277 88 | 2011-03,317 89 | 2011-04,313 90 | 2011-05,318 91 | 2011-06,374 92 | 2011-07,413 93 | 2011-08,405 94 | 2011-09,355 95 | 2011-10,306 96 | 2011-11,271 97 | 2011-12,306 98 | 2012-01,315 99 | 2012-02,301 100 | 2012-03,356 101 | 2012-04,348 102 | 2012-05,355 103 | 2012-06,422 104 | 2012-07,465 105 | 2012-08,467 106 | 2012-09,404 107 | 2012-10,347 108 | 2012-11,305 109 | 2012-12,336 110 | 2013-01,340 111 | 2013-02,318 112 | 2013-03,362 113 | 2013-04,348 114 | 2013-05,363 115 | 2013-06,435 116 | 2013-07,491 117 | 2013-08,505 118 | 2013-09,404 119 | 2013-10,359 120 | 2013-11,310 121 | 2013-12,337 122 | 2014-01,360 123 | 2014-02,342 124 | 2014-03,406 125 | 2014-04,396 126 | 2014-05,420 127 | 2014-06,472 128 | 2014-07,548 129 | 2014-08,559 130 | 2014-09,463 131 | 2014-10,407 132 | 2014-11,362 133 | 2014-12,405 134 | 2015-01,417 135 | 2015-02,391 136 | 2015-03,419 137 | 2015-04,461 138 | 2015-05,472 139 | 2015-06,535 140 | 2015-07,622 141 | 2015-08,606 142 | 2015-09,508 143 | 2015-10,461 144 | 2015-11,390 145 | 2015-12,432 146 | -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/Advertising.csv: -------------------------------------------------------------------------------- 1 | ,TV,radio,newspaper,sales 2 | 1,230.1,37.8,69.2,22.1 3 | 2,44.5,39.3,45.1,10.4 4 | 3,17.2,45.9,69.3,9.3 5 | 4,151.5,41.3,58.5,18.5 6 | 5,180.8,10.8,58.4,12.9 7 | 6,8.7,48.9,75,7.2 8 | 7,57.5,32.8,23.5,11.8 9 | 8,120.2,19.6,11.6,13.2 10 | 9,8.6,2.1,1,4.8 11 | 10,199.8,2.6,21.2,10.6 12 | 11,66.1,5.8,24.2,8.6 13 | 12,214.7,24,4,17.4 14 | 13,23.8,35.1,65.9,9.2 15 | 14,97.5,7.6,7.2,9.7 16 | 15,204.1,32.9,46,19 17 | 16,195.4,47.7,52.9,22.4 18 | 17,67.8,36.6,114,12.5 19 | 18,281.4,39.6,55.8,24.4 20 | 19,69.2,20.5,18.3,11.3 21 | 20,147.3,23.9,19.1,14.6 22 | 21,218.4,27.7,53.4,18 23 | 22,237.4,5.1,23.5,12.5 24 | 23,13.2,15.9,49.6,5.6 25 | 24,228.3,16.9,26.2,15.5 26 | 25,62.3,12.6,18.3,9.7 27 | 26,262.9,3.5,19.5,12 28 | 27,142.9,29.3,12.6,15 29 | 28,240.1,16.7,22.9,15.9 30 | 29,248.8,27.1,22.9,18.9 31 | 30,70.6,16,40.8,10.5 32 | 31,292.9,28.3,43.2,21.4 33 | 32,112.9,17.4,38.6,11.9 34 | 33,97.2,1.5,30,9.6 35 | 34,265.6,20,0.3,17.4 36 | 35,95.7,1.4,7.4,9.5 37 | 36,290.7,4.1,8.5,12.8 38 | 37,266.9,43.8,5,25.4 39 | 38,74.7,49.4,45.7,14.7 40 | 39,43.1,26.7,35.1,10.1 41 | 40,228,37.7,32,21.5 42 | 41,202.5,22.3,31.6,16.6 43 | 42,177,33.4,38.7,17.1 44 | 43,293.6,27.7,1.8,20.7 45 | 44,206.9,8.4,26.4,12.9 46 | 45,25.1,25.7,43.3,8.5 47 | 46,175.1,22.5,31.5,14.9 48 | 47,89.7,9.9,35.7,10.6 49 | 48,239.9,41.5,18.5,23.2 50 | 49,227.2,15.8,49.9,14.8 51 | 50,66.9,11.7,36.8,9.7 52 | 51,199.8,3.1,34.6,11.4 53 | 52,100.4,9.6,3.6,10.7 54 | 53,216.4,41.7,39.6,22.6 55 | 54,182.6,46.2,58.7,21.2 56 | 55,262.7,28.8,15.9,20.2 57 | 56,198.9,49.4,60,23.7 58 | 57,7.3,28.1,41.4,5.5 59 | 58,136.2,19.2,16.6,13.2 60 | 59,210.8,49.6,37.7,23.8 61 | 60,210.7,29.5,9.3,18.4 62 | 61,53.5,2,21.4,8.1 63 | 62,261.3,42.7,54.7,24.2 64 | 63,239.3,15.5,27.3,15.7 65 | 64,102.7,29.6,8.4,14 66 | 65,131.1,42.8,28.9,18 67 | 66,69,9.3,0.9,9.3 68 | 67,31.5,24.6,2.2,9.5 69 | 68,139.3,14.5,10.2,13.4 70 | 69,237.4,27.5,11,18.9 71 | 70,216.8,43.9,27.2,22.3 72 | 71,199.1,30.6,38.7,18.3 73 | 72,109.8,14.3,31.7,12.4 74 | 73,26.8,33,19.3,8.8 75 | 74,129.4,5.7,31.3,11 76 | 75,213.4,24.6,13.1,17 77 | 76,16.9,43.7,89.4,8.7 78 | 77,27.5,1.6,20.7,6.9 79 | 78,120.5,28.5,14.2,14.2 80 | 79,5.4,29.9,9.4,5.3 81 | 80,116,7.7,23.1,11 82 | 81,76.4,26.7,22.3,11.8 83 | 82,239.8,4.1,36.9,12.3 84 | 83,75.3,20.3,32.5,11.3 85 | 84,68.4,44.5,35.6,13.6 86 | 85,213.5,43,33.8,21.7 87 | 86,193.2,18.4,65.7,15.2 88 | 87,76.3,27.5,16,12 89 | 88,110.7,40.6,63.2,16 90 | 89,88.3,25.5,73.4,12.9 91 | 90,109.8,47.8,51.4,16.7 92 | 91,134.3,4.9,9.3,11.2 93 | 92,28.6,1.5,33,7.3 94 | 93,217.7,33.5,59,19.4 95 | 94,250.9,36.5,72.3,22.2 96 | 95,107.4,14,10.9,11.5 97 | 96,163.3,31.6,52.9,16.9 98 | 97,197.6,3.5,5.9,11.7 99 | 98,184.9,21,22,15.5 100 | 99,289.7,42.3,51.2,25.4 101 | 100,135.2,41.7,45.9,17.2 102 | 101,222.4,4.3,49.8,11.7 103 | 102,296.4,36.3,100.9,23.8 104 | 103,280.2,10.1,21.4,14.8 105 | 104,187.9,17.2,17.9,14.7 106 | 105,238.2,34.3,5.3,20.7 107 | 106,137.9,46.4,59,19.2 108 | 107,25,11,29.7,7.2 109 | 108,90.4,0.3,23.2,8.7 110 | 109,13.1,0.4,25.6,5.3 111 | 110,255.4,26.9,5.5,19.8 112 | 111,225.8,8.2,56.5,13.4 113 | 112,241.7,38,23.2,21.8 114 | 113,175.7,15.4,2.4,14.1 115 | 114,209.6,20.6,10.7,15.9 116 | 115,78.2,46.8,34.5,14.6 117 | 116,75.1,35,52.7,12.6 118 | 117,139.2,14.3,25.6,12.2 119 | 118,76.4,0.8,14.8,9.4 120 | 119,125.7,36.9,79.2,15.9 121 | 120,19.4,16,22.3,6.6 122 | 121,141.3,26.8,46.2,15.5 123 | 122,18.8,21.7,50.4,7 124 | 123,224,2.4,15.6,11.6 125 | 124,123.1,34.6,12.4,15.2 126 | 125,229.5,32.3,74.2,19.7 127 | 126,87.2,11.8,25.9,10.6 128 | 127,7.8,38.9,50.6,6.6 129 | 128,80.2,0,9.2,8.8 130 | 129,220.3,49,3.2,24.7 131 | 130,59.6,12,43.1,9.7 132 | 131,0.7,39.6,8.7,1.6 133 | 132,265.2,2.9,43,12.7 134 | 133,8.4,27.2,2.1,5.7 135 | 134,219.8,33.5,45.1,19.6 136 | 135,36.9,38.6,65.6,10.8 137 | 136,48.3,47,8.5,11.6 138 | 137,25.6,39,9.3,9.5 139 | 138,273.7,28.9,59.7,20.8 140 | 139,43,25.9,20.5,9.6 141 | 140,184.9,43.9,1.7,20.7 142 | 141,73.4,17,12.9,10.9 143 | 142,193.7,35.4,75.6,19.2 144 | 143,220.5,33.2,37.9,20.1 145 | 144,104.6,5.7,34.4,10.4 146 | 145,96.2,14.8,38.9,11.4 147 | 146,140.3,1.9,9,10.3 148 | 147,240.1,7.3,8.7,13.2 149 | 148,243.2,49,44.3,25.4 150 | 149,38,40.3,11.9,10.9 151 | 150,44.7,25.8,20.6,10.1 152 | 151,280.7,13.9,37,16.1 153 | 152,121,8.4,48.7,11.6 154 | 153,197.6,23.3,14.2,16.6 155 | 154,171.3,39.7,37.7,19 156 | 155,187.8,21.1,9.5,15.6 157 | 156,4.1,11.6,5.7,3.2 158 | 157,93.9,43.5,50.5,15.3 159 | 158,149.8,1.3,24.3,10.1 160 | 159,11.7,36.9,45.2,7.3 161 | 160,131.7,18.4,34.6,12.9 162 | 161,172.5,18.1,30.7,14.4 163 | 162,85.7,35.8,49.3,13.3 164 | 163,188.4,18.1,25.6,14.9 165 | 164,163.5,36.8,7.4,18 166 | 165,117.2,14.7,5.4,11.9 167 | 166,234.5,3.4,84.8,11.9 168 | 167,17.9,37.6,21.6,8 169 | 168,206.8,5.2,19.4,12.2 170 | 169,215.4,23.6,57.6,17.1 171 | 170,284.3,10.6,6.4,15 172 | 171,50,11.6,18.4,8.4 173 | 172,164.5,20.9,47.4,14.5 174 | 173,19.6,20.1,17,7.6 175 | 174,168.4,7.1,12.8,11.7 176 | 175,222.4,3.4,13.1,11.5 177 | 176,276.9,48.9,41.8,27 178 | 177,248.4,30.2,20.3,20.2 179 | 178,170.2,7.8,35.2,11.7 180 | 179,276.7,2.3,23.7,11.8 181 | 180,165.6,10,17.6,12.6 182 | 181,156.6,2.6,8.3,10.5 183 | 182,218.5,5.4,27.4,12.2 184 | 183,56.2,5.7,29.7,8.7 185 | 184,287.6,43,71.8,26.2 186 | 185,253.8,21.3,30,17.6 187 | 186,205,45.1,19.6,22.6 188 | 187,139.5,2.1,26.6,10.3 189 | 188,191.1,28.7,18.2,17.3 190 | 189,286,13.9,3.7,15.9 191 | 190,18.7,12.1,23.4,6.7 192 | 191,39.5,41.1,5.8,10.8 193 | 192,75.5,10.8,6,9.9 194 | 193,17.2,4.1,31.6,5.9 195 | 194,166.8,42,3.6,19.6 196 | 195,149.7,35.6,6,17.3 197 | 196,38.2,3.7,13.8,7.6 198 | 197,94.2,4.9,8.1,9.7 199 | 198,177,9.3,6.4,12.8 200 | 199,283.6,42,66.2,25.5 201 | 200,232.1,8.6,8.7,13.4 202 | -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/Social_Network_Ads.csv: -------------------------------------------------------------------------------- 1 | Age,EstimatedSalary,Purchased 2 | 19,19000,0 3 | 35,20000,0 4 | 26,43000,0 5 | 27,57000,0 6 | 19,76000,0 7 | 27,58000,0 8 | 27,84000,0 9 | 32,150000,1 10 | 25,33000,0 11 | 35,65000,0 12 | 26,80000,0 13 | 26,52000,0 14 | 20,86000,0 15 | 32,18000,0 16 | 18,82000,0 17 | 29,80000,0 18 | 47,25000,1 19 | 45,26000,1 20 | 46,28000,1 21 | 48,29000,1 22 | 45,22000,1 23 | 47,49000,1 24 | 48,41000,1 25 | 45,22000,1 26 | 46,23000,1 27 | 47,20000,1 28 | 49,28000,1 29 | 47,30000,1 30 | 29,43000,0 31 | 31,18000,0 32 | 31,74000,0 33 | 27,137000,1 34 | 21,16000,0 35 | 28,44000,0 36 | 27,90000,0 37 | 35,27000,0 38 | 33,28000,0 39 | 30,49000,0 40 | 26,72000,0 41 | 27,31000,0 42 | 27,17000,0 43 | 33,51000,0 44 | 35,108000,0 45 | 30,15000,0 46 | 28,84000,0 47 | 23,20000,0 48 | 25,79000,0 49 | 27,54000,0 50 | 30,135000,1 51 | 31,89000,0 52 | 24,32000,0 53 | 18,44000,0 54 | 29,83000,0 55 | 35,23000,0 56 | 27,58000,0 57 | 24,55000,0 58 | 23,48000,0 59 | 28,79000,0 60 | 22,18000,0 61 | 32,117000,0 62 | 27,20000,0 63 | 25,87000,0 64 | 23,66000,0 65 | 32,120000,1 66 | 59,83000,0 67 | 24,58000,0 68 | 24,19000,0 69 | 23,82000,0 70 | 22,63000,0 71 | 31,68000,0 72 | 25,80000,0 73 | 24,27000,0 74 | 20,23000,0 75 | 33,113000,0 76 | 32,18000,0 77 | 34,112000,1 78 | 18,52000,0 79 | 22,27000,0 80 | 28,87000,0 81 | 26,17000,0 82 | 30,80000,0 83 | 39,42000,0 84 | 20,49000,0 85 | 35,88000,0 86 | 30,62000,0 87 | 31,118000,1 88 | 24,55000,0 89 | 28,85000,0 90 | 26,81000,0 91 | 35,50000,0 92 | 22,81000,0 93 | 30,116000,0 94 | 26,15000,0 95 | 29,28000,0 96 | 29,83000,0 97 | 35,44000,0 98 | 35,25000,0 99 | 28,123000,1 100 | 35,73000,0 101 | 28,37000,0 102 | 27,88000,0 103 | 28,59000,0 104 | 32,86000,0 105 | 33,149000,1 106 | 19,21000,0 107 | 21,72000,0 108 | 26,35000,0 109 | 27,89000,0 110 | 26,86000,0 111 | 38,80000,0 112 | 39,71000,0 113 | 37,71000,0 114 | 38,61000,0 115 | 37,55000,0 116 | 42,80000,0 117 | 40,57000,0 118 | 35,75000,0 119 | 36,52000,0 120 | 40,59000,0 121 | 41,59000,0 122 | 36,75000,0 123 | 37,72000,0 124 | 40,75000,0 125 | 35,53000,0 126 | 41,51000,0 127 | 39,61000,0 128 | 42,65000,0 129 | 26,32000,0 130 | 30,17000,0 131 | 26,84000,0 132 | 31,58000,0 133 | 33,31000,0 134 | 30,87000,0 135 | 21,68000,0 136 | 28,55000,0 137 | 23,63000,0 138 | 20,82000,0 139 | 30,107000,1 140 | 28,59000,0 141 | 19,25000,0 142 | 19,85000,0 143 | 18,68000,0 144 | 35,59000,0 145 | 30,89000,0 146 | 34,25000,0 147 | 24,89000,0 148 | 27,96000,1 149 | 41,30000,0 150 | 29,61000,0 151 | 20,74000,0 152 | 26,15000,0 153 | 41,45000,0 154 | 31,76000,0 155 | 36,50000,0 156 | 40,47000,0 157 | 31,15000,0 158 | 46,59000,0 159 | 29,75000,0 160 | 26,30000,0 161 | 32,135000,1 162 | 32,100000,1 163 | 25,90000,0 164 | 37,33000,0 165 | 35,38000,0 166 | 33,69000,0 167 | 18,86000,0 168 | 22,55000,0 169 | 35,71000,0 170 | 29,148000,1 171 | 29,47000,0 172 | 21,88000,0 173 | 34,115000,0 174 | 26,118000,0 175 | 34,43000,0 176 | 34,72000,0 177 | 23,28000,0 178 | 35,47000,0 179 | 25,22000,0 180 | 24,23000,0 181 | 31,34000,0 182 | 26,16000,0 183 | 31,71000,0 184 | 32,117000,1 185 | 33,43000,0 186 | 33,60000,0 187 | 31,66000,0 188 | 20,82000,0 189 | 33,41000,0 190 | 35,72000,0 191 | 28,32000,0 192 | 24,84000,0 193 | 19,26000,0 194 | 29,43000,0 195 | 19,70000,0 196 | 28,89000,0 197 | 34,43000,0 198 | 30,79000,0 199 | 20,36000,0 200 | 26,80000,0 201 | 35,22000,0 202 | 35,39000,0 203 | 49,74000,0 204 | 39,134000,1 205 | 41,71000,0 206 | 58,101000,1 207 | 47,47000,0 208 | 55,130000,1 209 | 52,114000,0 210 | 40,142000,1 211 | 46,22000,0 212 | 48,96000,1 213 | 52,150000,1 214 | 59,42000,0 215 | 35,58000,0 216 | 47,43000,0 217 | 60,108000,1 218 | 49,65000,0 219 | 40,78000,0 220 | 46,96000,0 221 | 59,143000,1 222 | 41,80000,0 223 | 35,91000,1 224 | 37,144000,1 225 | 60,102000,1 226 | 35,60000,0 227 | 37,53000,0 228 | 36,126000,1 229 | 56,133000,1 230 | 40,72000,0 231 | 42,80000,1 232 | 35,147000,1 233 | 39,42000,0 234 | 40,107000,1 235 | 49,86000,1 236 | 38,112000,0 237 | 46,79000,1 238 | 40,57000,0 239 | 37,80000,0 240 | 46,82000,0 241 | 53,143000,1 242 | 42,149000,1 243 | 38,59000,0 244 | 50,88000,1 245 | 56,104000,1 246 | 41,72000,0 247 | 51,146000,1 248 | 35,50000,0 249 | 57,122000,1 250 | 41,52000,0 251 | 35,97000,1 252 | 44,39000,0 253 | 37,52000,0 254 | 48,134000,1 255 | 37,146000,1 256 | 50,44000,0 257 | 52,90000,1 258 | 41,72000,0 259 | 40,57000,0 260 | 58,95000,1 261 | 45,131000,1 262 | 35,77000,0 263 | 36,144000,1 264 | 55,125000,1 265 | 35,72000,0 266 | 48,90000,1 267 | 42,108000,1 268 | 40,75000,0 269 | 37,74000,0 270 | 47,144000,1 271 | 40,61000,0 272 | 43,133000,0 273 | 59,76000,1 274 | 60,42000,1 275 | 39,106000,1 276 | 57,26000,1 277 | 57,74000,1 278 | 38,71000,0 279 | 49,88000,1 280 | 52,38000,1 281 | 50,36000,1 282 | 59,88000,1 283 | 35,61000,0 284 | 37,70000,1 285 | 52,21000,1 286 | 48,141000,0 287 | 37,93000,1 288 | 37,62000,0 289 | 48,138000,1 290 | 41,79000,0 291 | 37,78000,1 292 | 39,134000,1 293 | 49,89000,1 294 | 55,39000,1 295 | 37,77000,0 296 | 35,57000,0 297 | 36,63000,0 298 | 42,73000,1 299 | 43,112000,1 300 | 45,79000,0 301 | 46,117000,1 302 | 58,38000,1 303 | 48,74000,1 304 | 37,137000,1 305 | 37,79000,1 306 | 40,60000,0 307 | 42,54000,0 308 | 51,134000,0 309 | 47,113000,1 310 | 36,125000,1 311 | 38,50000,0 312 | 42,70000,0 313 | 39,96000,1 314 | 38,50000,0 315 | 49,141000,1 316 | 39,79000,0 317 | 39,75000,1 318 | 54,104000,1 319 | 35,55000,0 320 | 45,32000,1 321 | 36,60000,0 322 | 52,138000,1 323 | 53,82000,1 324 | 41,52000,0 325 | 48,30000,1 326 | 48,131000,1 327 | 41,60000,0 328 | 41,72000,0 329 | 42,75000,0 330 | 36,118000,1 331 | 47,107000,1 332 | 38,51000,0 333 | 48,119000,1 334 | 42,65000,0 335 | 40,65000,0 336 | 57,60000,1 337 | 36,54000,0 338 | 58,144000,1 339 | 35,79000,0 340 | 38,55000,0 341 | 39,122000,1 342 | 53,104000,1 343 | 35,75000,0 344 | 38,65000,0 345 | 47,51000,1 346 | 47,105000,1 347 | 41,63000,0 348 | 53,72000,1 349 | 54,108000,1 350 | 39,77000,0 351 | 38,61000,0 352 | 38,113000,1 353 | 37,75000,0 354 | 42,90000,1 355 | 37,57000,0 356 | 36,99000,1 357 | 60,34000,1 358 | 54,70000,1 359 | 41,72000,0 360 | 40,71000,1 361 | 42,54000,0 362 | 43,129000,1 363 | 53,34000,1 364 | 47,50000,1 365 | 42,79000,0 366 | 42,104000,1 367 | 59,29000,1 368 | 58,47000,1 369 | 46,88000,1 370 | 38,71000,0 371 | 54,26000,1 372 | 60,46000,1 373 | 60,83000,1 374 | 39,73000,0 375 | 59,130000,1 376 | 37,80000,0 377 | 46,32000,1 378 | 46,74000,0 379 | 42,53000,0 380 | 41,87000,1 381 | 58,23000,1 382 | 42,64000,0 383 | 48,33000,1 384 | 44,139000,1 385 | 49,28000,1 386 | 57,33000,1 387 | 56,60000,1 388 | 49,39000,1 389 | 39,71000,0 390 | 47,34000,1 391 | 48,35000,1 392 | 48,33000,1 393 | 47,23000,1 394 | 45,45000,1 395 | 60,42000,1 396 | 39,59000,0 397 | 46,41000,1 398 | 51,23000,1 399 | 50,20000,1 400 | 36,33000,0 401 | 49,36000,1 -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/Wholesale customers data.csv: -------------------------------------------------------------------------------- 1 | Channel,Region,Fresh,Milk,Grocery,Frozen,Detergents_Paper,Delicassen 2 | 2,3,12669,9656,7561,214,2674,1338 3 | 2,3,7057,9810,9568,1762,3293,1776 4 | 2,3,6353,8808,7684,2405,3516,7844 5 | 1,3,13265,1196,4221,6404,507,1788 6 | 2,3,22615,5410,7198,3915,1777,5185 7 | 2,3,9413,8259,5126,666,1795,1451 8 | 2,3,12126,3199,6975,480,3140,545 9 | 2,3,7579,4956,9426,1669,3321,2566 10 | 1,3,5963,3648,6192,425,1716,750 11 | 2,3,6006,11093,18881,1159,7425,2098 12 | 2,3,3366,5403,12974,4400,5977,1744 13 | 2,3,13146,1124,4523,1420,549,497 14 | 2,3,31714,12319,11757,287,3881,2931 15 | 2,3,21217,6208,14982,3095,6707,602 16 | 2,3,24653,9465,12091,294,5058,2168 17 | 1,3,10253,1114,3821,397,964,412 18 | 2,3,1020,8816,12121,134,4508,1080 19 | 1,3,5876,6157,2933,839,370,4478 20 | 2,3,18601,6327,10099,2205,2767,3181 21 | 1,3,7780,2495,9464,669,2518,501 22 | 2,3,17546,4519,4602,1066,2259,2124 23 | 1,3,5567,871,2010,3383,375,569 24 | 1,3,31276,1917,4469,9408,2381,4334 25 | 2,3,26373,36423,22019,5154,4337,16523 26 | 2,3,22647,9776,13792,2915,4482,5778 27 | 2,3,16165,4230,7595,201,4003,57 28 | 1,3,9898,961,2861,3151,242,833 29 | 1,3,14276,803,3045,485,100,518 30 | 2,3,4113,20484,25957,1158,8604,5206 31 | 1,3,43088,2100,2609,1200,1107,823 32 | 1,3,18815,3610,11107,1148,2134,2963 33 | 1,3,2612,4339,3133,2088,820,985 34 | 1,3,21632,1318,2886,266,918,405 35 | 1,3,29729,4786,7326,6130,361,1083 36 | 1,3,1502,1979,2262,425,483,395 37 | 2,3,688,5491,11091,833,4239,436 38 | 1,3,29955,4362,5428,1729,862,4626 39 | 2,3,15168,10556,12477,1920,6506,714 40 | 2,3,4591,15729,16709,33,6956,433 41 | 1,3,56159,555,902,10002,212,2916 42 | 1,3,24025,4332,4757,9510,1145,5864 43 | 1,3,19176,3065,5956,2033,2575,2802 44 | 2,3,10850,7555,14961,188,6899,46 45 | 2,3,630,11095,23998,787,9529,72 46 | 2,3,9670,7027,10471,541,4618,65 47 | 2,3,5181,22044,21531,1740,7353,4985 48 | 2,3,3103,14069,21955,1668,6792,1452 49 | 2,3,44466,54259,55571,7782,24171,6465 50 | 2,3,11519,6152,10868,584,5121,1476 51 | 2,3,4967,21412,28921,1798,13583,1163 52 | 1,3,6269,1095,1980,3860,609,2162 53 | 1,3,3347,4051,6996,239,1538,301 54 | 2,3,40721,3916,5876,532,2587,1278 55 | 2,3,491,10473,11532,744,5611,224 56 | 1,3,27329,1449,1947,2436,204,1333 57 | 1,3,5264,3683,5005,1057,2024,1130 58 | 2,3,4098,29892,26866,2616,17740,1340 59 | 2,3,5417,9933,10487,38,7572,1282 60 | 1,3,13779,1970,1648,596,227,436 61 | 1,3,6137,5360,8040,129,3084,1603 62 | 2,3,8590,3045,7854,96,4095,225 63 | 2,3,35942,38369,59598,3254,26701,2017 64 | 2,3,7823,6245,6544,4154,4074,964 65 | 2,3,9396,11601,15775,2896,7677,1295 66 | 1,3,4760,1227,3250,3724,1247,1145 67 | 2,3,85,20959,45828,36,24231,1423 68 | 1,3,9,1534,7417,175,3468,27 69 | 2,3,19913,6759,13462,1256,5141,834 70 | 1,3,2446,7260,3993,5870,788,3095 71 | 1,3,8352,2820,1293,779,656,144 72 | 1,3,16705,2037,3202,10643,116,1365 73 | 1,3,18291,1266,21042,5373,4173,14472 74 | 1,3,4420,5139,2661,8872,1321,181 75 | 2,3,19899,5332,8713,8132,764,648 76 | 2,3,8190,6343,9794,1285,1901,1780 77 | 1,3,20398,1137,3,4407,3,975 78 | 1,3,717,3587,6532,7530,529,894 79 | 2,3,12205,12697,28540,869,12034,1009 80 | 1,3,10766,1175,2067,2096,301,167 81 | 1,3,1640,3259,3655,868,1202,1653 82 | 1,3,7005,829,3009,430,610,529 83 | 2,3,219,9540,14403,283,7818,156 84 | 2,3,10362,9232,11009,737,3537,2342 85 | 1,3,20874,1563,1783,2320,550,772 86 | 2,3,11867,3327,4814,1178,3837,120 87 | 2,3,16117,46197,92780,1026,40827,2944 88 | 2,3,22925,73498,32114,987,20070,903 89 | 1,3,43265,5025,8117,6312,1579,14351 90 | 1,3,7864,542,4042,9735,165,46 91 | 1,3,24904,3836,5330,3443,454,3178 92 | 1,3,11405,596,1638,3347,69,360 93 | 1,3,12754,2762,2530,8693,627,1117 94 | 2,3,9198,27472,32034,3232,18906,5130 95 | 1,3,11314,3090,2062,35009,71,2698 96 | 2,3,5626,12220,11323,206,5038,244 97 | 1,3,3,2920,6252,440,223,709 98 | 2,3,23,2616,8118,145,3874,217 99 | 1,3,403,254,610,774,54,63 100 | 1,3,503,112,778,895,56,132 101 | 1,3,9658,2182,1909,5639,215,323 102 | 2,3,11594,7779,12144,3252,8035,3029 103 | 2,3,1420,10810,16267,1593,6766,1838 104 | 2,3,2932,6459,7677,2561,4573,1386 105 | 1,3,56082,3504,8906,18028,1480,2498 106 | 1,3,14100,2132,3445,1336,1491,548 107 | 1,3,15587,1014,3970,910,139,1378 108 | 2,3,1454,6337,10704,133,6830,1831 109 | 2,3,8797,10646,14886,2471,8969,1438 110 | 2,3,1531,8397,6981,247,2505,1236 111 | 2,3,1406,16729,28986,673,836,3 112 | 1,3,11818,1648,1694,2276,169,1647 113 | 2,3,12579,11114,17569,805,6457,1519 114 | 1,3,19046,2770,2469,8853,483,2708 115 | 1,3,14438,2295,1733,3220,585,1561 116 | 1,3,18044,1080,2000,2555,118,1266 117 | 1,3,11134,793,2988,2715,276,610 118 | 1,3,11173,2521,3355,1517,310,222 119 | 1,3,6990,3880,5380,1647,319,1160 120 | 1,3,20049,1891,2362,5343,411,933 121 | 1,3,8258,2344,2147,3896,266,635 122 | 1,3,17160,1200,3412,2417,174,1136 123 | 1,3,4020,3234,1498,2395,264,255 124 | 1,3,12212,201,245,1991,25,860 125 | 2,3,11170,10769,8814,2194,1976,143 126 | 1,3,36050,1642,2961,4787,500,1621 127 | 1,3,76237,3473,7102,16538,778,918 128 | 1,3,19219,1840,1658,8195,349,483 129 | 2,3,21465,7243,10685,880,2386,2749 130 | 1,3,140,8847,3823,142,1062,3 131 | 1,3,42312,926,1510,1718,410,1819 132 | 1,3,7149,2428,699,6316,395,911 133 | 1,3,2101,589,314,346,70,310 134 | 1,3,14903,2032,2479,576,955,328 135 | 1,3,9434,1042,1235,436,256,396 136 | 1,3,7388,1882,2174,720,47,537 137 | 1,3,6300,1289,2591,1170,199,326 138 | 1,3,4625,8579,7030,4575,2447,1542 139 | 1,3,3087,8080,8282,661,721,36 140 | 1,3,13537,4257,5034,155,249,3271 141 | 1,3,5387,4979,3343,825,637,929 142 | 1,3,17623,4280,7305,2279,960,2616 143 | 1,3,30379,13252,5189,321,51,1450 144 | 1,3,37036,7152,8253,2995,20,3 145 | 1,3,10405,1596,1096,8425,399,318 146 | 1,3,18827,3677,1988,118,516,201 147 | 2,3,22039,8384,34792,42,12591,4430 148 | 1,3,7769,1936,2177,926,73,520 149 | 1,3,9203,3373,2707,1286,1082,526 150 | 1,3,5924,584,542,4052,283,434 151 | 1,3,31812,1433,1651,800,113,1440 152 | 1,3,16225,1825,1765,853,170,1067 153 | 1,3,1289,3328,2022,531,255,1774 154 | 1,3,18840,1371,3135,3001,352,184 155 | 1,3,3463,9250,2368,779,302,1627 156 | 1,3,622,55,137,75,7,8 157 | 2,3,1989,10690,19460,233,11577,2153 158 | 2,3,3830,5291,14855,317,6694,3182 159 | 1,3,17773,1366,2474,3378,811,418 160 | 2,3,2861,6570,9618,930,4004,1682 161 | 2,3,355,7704,14682,398,8077,303 162 | 2,3,1725,3651,12822,824,4424,2157 163 | 1,3,12434,540,283,1092,3,2233 164 | 1,3,15177,2024,3810,2665,232,610 165 | 2,3,5531,15726,26870,2367,13726,446 166 | 2,3,5224,7603,8584,2540,3674,238 167 | 2,3,15615,12653,19858,4425,7108,2379 168 | 2,3,4822,6721,9170,993,4973,3637 169 | 1,3,2926,3195,3268,405,1680,693 170 | 1,3,5809,735,803,1393,79,429 171 | 1,3,5414,717,2155,2399,69,750 172 | 2,3,260,8675,13430,1116,7015,323 173 | 2,3,200,25862,19816,651,8773,6250 174 | 1,3,955,5479,6536,333,2840,707 175 | 2,3,514,7677,19805,937,9836,716 176 | 1,3,286,1208,5241,2515,153,1442 177 | 2,3,2343,7845,11874,52,4196,1697 178 | 1,3,45640,6958,6536,7368,1532,230 179 | 1,3,12759,7330,4533,1752,20,2631 180 | 1,3,11002,7075,4945,1152,120,395 181 | 1,3,3157,4888,2500,4477,273,2165 182 | 1,3,12356,6036,8887,402,1382,2794 183 | 1,3,112151,29627,18148,16745,4948,8550 184 | 1,3,694,8533,10518,443,6907,156 185 | 1,3,36847,43950,20170,36534,239,47943 186 | 1,3,327,918,4710,74,334,11 187 | 1,3,8170,6448,1139,2181,58,247 188 | 1,3,3009,521,854,3470,949,727 189 | 1,3,2438,8002,9819,6269,3459,3 190 | 2,3,8040,7639,11687,2758,6839,404 191 | 2,3,834,11577,11522,275,4027,1856 192 | 1,3,16936,6250,1981,7332,118,64 193 | 1,3,13624,295,1381,890,43,84 194 | 1,3,5509,1461,2251,547,187,409 195 | 2,3,180,3485,20292,959,5618,666 196 | 1,3,7107,1012,2974,806,355,1142 197 | 1,3,17023,5139,5230,7888,330,1755 198 | 1,1,30624,7209,4897,18711,763,2876 199 | 2,1,2427,7097,10391,1127,4314,1468 200 | 1,1,11686,2154,6824,3527,592,697 201 | 1,1,9670,2280,2112,520,402,347 202 | 2,1,3067,13240,23127,3941,9959,731 203 | 2,1,4484,14399,24708,3549,14235,1681 204 | 1,1,25203,11487,9490,5065,284,6854 205 | 1,1,583,685,2216,469,954,18 206 | 1,1,1956,891,5226,1383,5,1328 207 | 2,1,1107,11711,23596,955,9265,710 208 | 1,1,6373,780,950,878,288,285 209 | 2,1,2541,4737,6089,2946,5316,120 210 | 1,1,1537,3748,5838,1859,3381,806 211 | 2,1,5550,12729,16767,864,12420,797 212 | 1,1,18567,1895,1393,1801,244,2100 213 | 2,1,12119,28326,39694,4736,19410,2870 214 | 1,1,7291,1012,2062,1291,240,1775 215 | 1,1,3317,6602,6861,1329,3961,1215 216 | 2,1,2362,6551,11364,913,5957,791 217 | 1,1,2806,10765,15538,1374,5828,2388 218 | 2,1,2532,16599,36486,179,13308,674 219 | 1,1,18044,1475,2046,2532,130,1158 220 | 2,1,18,7504,15205,1285,4797,6372 221 | 1,1,4155,367,1390,2306,86,130 222 | 1,1,14755,899,1382,1765,56,749 223 | 1,1,5396,7503,10646,91,4167,239 224 | 1,1,5041,1115,2856,7496,256,375 225 | 2,1,2790,2527,5265,5612,788,1360 226 | 1,1,7274,659,1499,784,70,659 227 | 1,1,12680,3243,4157,660,761,786 228 | 2,1,20782,5921,9212,1759,2568,1553 229 | 1,1,4042,2204,1563,2286,263,689 230 | 1,1,1869,577,572,950,4762,203 231 | 1,1,8656,2746,2501,6845,694,980 232 | 2,1,11072,5989,5615,8321,955,2137 233 | 1,1,2344,10678,3828,1439,1566,490 234 | 1,1,25962,1780,3838,638,284,834 235 | 1,1,964,4984,3316,937,409,7 236 | 1,1,15603,2703,3833,4260,325,2563 237 | 1,1,1838,6380,2824,1218,1216,295 238 | 1,1,8635,820,3047,2312,415,225 239 | 1,1,18692,3838,593,4634,28,1215 240 | 1,1,7363,475,585,1112,72,216 241 | 1,1,47493,2567,3779,5243,828,2253 242 | 1,1,22096,3575,7041,11422,343,2564 243 | 1,1,24929,1801,2475,2216,412,1047 244 | 1,1,18226,659,2914,3752,586,578 245 | 1,1,11210,3576,5119,561,1682,2398 246 | 1,1,6202,7775,10817,1183,3143,1970 247 | 2,1,3062,6154,13916,230,8933,2784 248 | 1,1,8885,2428,1777,1777,430,610 249 | 1,1,13569,346,489,2077,44,659 250 | 1,1,15671,5279,2406,559,562,572 251 | 1,1,8040,3795,2070,6340,918,291 252 | 1,1,3191,1993,1799,1730,234,710 253 | 2,1,6134,23133,33586,6746,18594,5121 254 | 1,1,6623,1860,4740,7683,205,1693 255 | 1,1,29526,7961,16966,432,363,1391 256 | 1,1,10379,17972,4748,4686,1547,3265 257 | 1,1,31614,489,1495,3242,111,615 258 | 1,1,11092,5008,5249,453,392,373 259 | 1,1,8475,1931,1883,5004,3593,987 260 | 1,1,56083,4563,2124,6422,730,3321 261 | 1,1,53205,4959,7336,3012,967,818 262 | 1,1,9193,4885,2157,327,780,548 263 | 1,1,7858,1110,1094,6818,49,287 264 | 1,1,23257,1372,1677,982,429,655 265 | 1,1,2153,1115,6684,4324,2894,411 266 | 2,1,1073,9679,15445,61,5980,1265 267 | 1,1,5909,23527,13699,10155,830,3636 268 | 2,1,572,9763,22182,2221,4882,2563 269 | 1,1,20893,1222,2576,3975,737,3628 270 | 2,1,11908,8053,19847,1069,6374,698 271 | 1,1,15218,258,1138,2516,333,204 272 | 1,1,4720,1032,975,5500,197,56 273 | 1,1,2083,5007,1563,1120,147,1550 274 | 1,1,514,8323,6869,529,93,1040 275 | 1,3,36817,3045,1493,4802,210,1824 276 | 1,3,894,1703,1841,744,759,1153 277 | 1,3,680,1610,223,862,96,379 278 | 1,3,27901,3749,6964,4479,603,2503 279 | 1,3,9061,829,683,16919,621,139 280 | 1,3,11693,2317,2543,5845,274,1409 281 | 2,3,17360,6200,9694,1293,3620,1721 282 | 1,3,3366,2884,2431,977,167,1104 283 | 2,3,12238,7108,6235,1093,2328,2079 284 | 1,3,49063,3965,4252,5970,1041,1404 285 | 1,3,25767,3613,2013,10303,314,1384 286 | 1,3,68951,4411,12609,8692,751,2406 287 | 1,3,40254,640,3600,1042,436,18 288 | 1,3,7149,2247,1242,1619,1226,128 289 | 1,3,15354,2102,2828,8366,386,1027 290 | 1,3,16260,594,1296,848,445,258 291 | 1,3,42786,286,471,1388,32,22 292 | 1,3,2708,2160,2642,502,965,1522 293 | 1,3,6022,3354,3261,2507,212,686 294 | 1,3,2838,3086,4329,3838,825,1060 295 | 2,2,3996,11103,12469,902,5952,741 296 | 1,2,21273,2013,6550,909,811,1854 297 | 2,2,7588,1897,5234,417,2208,254 298 | 1,2,19087,1304,3643,3045,710,898 299 | 2,2,8090,3199,6986,1455,3712,531 300 | 2,2,6758,4560,9965,934,4538,1037 301 | 1,2,444,879,2060,264,290,259 302 | 2,2,16448,6243,6360,824,2662,2005 303 | 2,2,5283,13316,20399,1809,8752,172 304 | 2,2,2886,5302,9785,364,6236,555 305 | 2,2,2599,3688,13829,492,10069,59 306 | 2,2,161,7460,24773,617,11783,2410 307 | 2,2,243,12939,8852,799,3909,211 308 | 2,2,6468,12867,21570,1840,7558,1543 309 | 1,2,17327,2374,2842,1149,351,925 310 | 1,2,6987,1020,3007,416,257,656 311 | 2,2,918,20655,13567,1465,6846,806 312 | 1,2,7034,1492,2405,12569,299,1117 313 | 1,2,29635,2335,8280,3046,371,117 314 | 2,2,2137,3737,19172,1274,17120,142 315 | 1,2,9784,925,2405,4447,183,297 316 | 1,2,10617,1795,7647,1483,857,1233 317 | 2,2,1479,14982,11924,662,3891,3508 318 | 1,2,7127,1375,2201,2679,83,1059 319 | 1,2,1182,3088,6114,978,821,1637 320 | 1,2,11800,2713,3558,2121,706,51 321 | 2,2,9759,25071,17645,1128,12408,1625 322 | 1,2,1774,3696,2280,514,275,834 323 | 1,2,9155,1897,5167,2714,228,1113 324 | 1,2,15881,713,3315,3703,1470,229 325 | 1,2,13360,944,11593,915,1679,573 326 | 1,2,25977,3587,2464,2369,140,1092 327 | 1,2,32717,16784,13626,60869,1272,5609 328 | 1,2,4414,1610,1431,3498,387,834 329 | 1,2,542,899,1664,414,88,522 330 | 1,2,16933,2209,3389,7849,210,1534 331 | 1,2,5113,1486,4583,5127,492,739 332 | 1,2,9790,1786,5109,3570,182,1043 333 | 2,2,11223,14881,26839,1234,9606,1102 334 | 1,2,22321,3216,1447,2208,178,2602 335 | 2,2,8565,4980,67298,131,38102,1215 336 | 2,2,16823,928,2743,11559,332,3486 337 | 2,2,27082,6817,10790,1365,4111,2139 338 | 1,2,13970,1511,1330,650,146,778 339 | 1,2,9351,1347,2611,8170,442,868 340 | 1,2,3,333,7021,15601,15,550 341 | 1,2,2617,1188,5332,9584,573,1942 342 | 2,3,381,4025,9670,388,7271,1371 343 | 2,3,2320,5763,11238,767,5162,2158 344 | 1,3,255,5758,5923,349,4595,1328 345 | 2,3,1689,6964,26316,1456,15469,37 346 | 1,3,3043,1172,1763,2234,217,379 347 | 1,3,1198,2602,8335,402,3843,303 348 | 2,3,2771,6939,15541,2693,6600,1115 349 | 2,3,27380,7184,12311,2809,4621,1022 350 | 1,3,3428,2380,2028,1341,1184,665 351 | 2,3,5981,14641,20521,2005,12218,445 352 | 1,3,3521,1099,1997,1796,173,995 353 | 2,3,1210,10044,22294,1741,12638,3137 354 | 1,3,608,1106,1533,830,90,195 355 | 2,3,117,6264,21203,228,8682,1111 356 | 1,3,14039,7393,2548,6386,1333,2341 357 | 1,3,190,727,2012,245,184,127 358 | 1,3,22686,134,218,3157,9,548 359 | 2,3,37,1275,22272,137,6747,110 360 | 1,3,759,18664,1660,6114,536,4100 361 | 1,3,796,5878,2109,340,232,776 362 | 1,3,19746,2872,2006,2601,468,503 363 | 1,3,4734,607,864,1206,159,405 364 | 1,3,2121,1601,2453,560,179,712 365 | 1,3,4627,997,4438,191,1335,314 366 | 1,3,2615,873,1524,1103,514,468 367 | 2,3,4692,6128,8025,1619,4515,3105 368 | 1,3,9561,2217,1664,1173,222,447 369 | 1,3,3477,894,534,1457,252,342 370 | 1,3,22335,1196,2406,2046,101,558 371 | 1,3,6211,337,683,1089,41,296 372 | 2,3,39679,3944,4955,1364,523,2235 373 | 1,3,20105,1887,1939,8164,716,790 374 | 1,3,3884,3801,1641,876,397,4829 375 | 2,3,15076,6257,7398,1504,1916,3113 376 | 1,3,6338,2256,1668,1492,311,686 377 | 1,3,5841,1450,1162,597,476,70 378 | 2,3,3136,8630,13586,5641,4666,1426 379 | 1,3,38793,3154,2648,1034,96,1242 380 | 1,3,3225,3294,1902,282,68,1114 381 | 2,3,4048,5164,10391,130,813,179 382 | 1,3,28257,944,2146,3881,600,270 383 | 1,3,17770,4591,1617,9927,246,532 384 | 1,3,34454,7435,8469,2540,1711,2893 385 | 1,3,1821,1364,3450,4006,397,361 386 | 1,3,10683,21858,15400,3635,282,5120 387 | 1,3,11635,922,1614,2583,192,1068 388 | 1,3,1206,3620,2857,1945,353,967 389 | 1,3,20918,1916,1573,1960,231,961 390 | 1,3,9785,848,1172,1677,200,406 391 | 1,3,9385,1530,1422,3019,227,684 392 | 1,3,3352,1181,1328,5502,311,1000 393 | 1,3,2647,2761,2313,907,95,1827 394 | 1,3,518,4180,3600,659,122,654 395 | 1,3,23632,6730,3842,8620,385,819 396 | 1,3,12377,865,3204,1398,149,452 397 | 1,3,9602,1316,1263,2921,841,290 398 | 2,3,4515,11991,9345,2644,3378,2213 399 | 1,3,11535,1666,1428,6838,64,743 400 | 1,3,11442,1032,582,5390,74,247 401 | 1,3,9612,577,935,1601,469,375 402 | 1,3,4446,906,1238,3576,153,1014 403 | 1,3,27167,2801,2128,13223,92,1902 404 | 1,3,26539,4753,5091,220,10,340 405 | 1,3,25606,11006,4604,127,632,288 406 | 1,3,18073,4613,3444,4324,914,715 407 | 1,3,6884,1046,1167,2069,593,378 408 | 1,3,25066,5010,5026,9806,1092,960 409 | 2,3,7362,12844,18683,2854,7883,553 410 | 2,3,8257,3880,6407,1646,2730,344 411 | 1,3,8708,3634,6100,2349,2123,5137 412 | 1,3,6633,2096,4563,1389,1860,1892 413 | 1,3,2126,3289,3281,1535,235,4365 414 | 1,3,97,3605,12400,98,2970,62 415 | 1,3,4983,4859,6633,17866,912,2435 416 | 1,3,5969,1990,3417,5679,1135,290 417 | 2,3,7842,6046,8552,1691,3540,1874 418 | 2,3,4389,10940,10908,848,6728,993 419 | 1,3,5065,5499,11055,364,3485,1063 420 | 2,3,660,8494,18622,133,6740,776 421 | 1,3,8861,3783,2223,633,1580,1521 422 | 1,3,4456,5266,13227,25,6818,1393 423 | 2,3,17063,4847,9053,1031,3415,1784 424 | 1,3,26400,1377,4172,830,948,1218 425 | 2,3,17565,3686,4657,1059,1803,668 426 | 2,3,16980,2884,12232,874,3213,249 427 | 1,3,11243,2408,2593,15348,108,1886 428 | 1,3,13134,9347,14316,3141,5079,1894 429 | 1,3,31012,16687,5429,15082,439,1163 430 | 1,3,3047,5970,4910,2198,850,317 431 | 1,3,8607,1750,3580,47,84,2501 432 | 1,3,3097,4230,16483,575,241,2080 433 | 1,3,8533,5506,5160,13486,1377,1498 434 | 1,3,21117,1162,4754,269,1328,395 435 | 1,3,1982,3218,1493,1541,356,1449 436 | 1,3,16731,3922,7994,688,2371,838 437 | 1,3,29703,12051,16027,13135,182,2204 438 | 1,3,39228,1431,764,4510,93,2346 439 | 2,3,14531,15488,30243,437,14841,1867 440 | 1,3,10290,1981,2232,1038,168,2125 441 | 1,3,2787,1698,2510,65,477,52 442 | -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/4. KNN Classifier.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "cabe5af1", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import seaborn as sns\n", 14 | "%matplotlib inline" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 2, 20 | "id": "2ce4e204", 21 | "metadata": {}, 22 | "outputs": [ 23 | { 24 | "data": { 25 | "text/html": [ 26 | "
\n", 27 | "\n", 40 | "\n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | "
AgeEstimatedSalaryPurchased
019190000
135200000
226430000
327570000
419760000
\n", 82 | "
" 83 | ], 84 | "text/plain": [ 85 | " Age EstimatedSalary Purchased\n", 86 | "0 19 19000 0\n", 87 | "1 35 20000 0\n", 88 | "2 26 43000 0\n", 89 | "3 27 57000 0\n", 90 | "4 19 76000 0" 91 | ] 92 | }, 93 | "execution_count": 2, 94 | "metadata": {}, 95 | "output_type": "execute_result" 96 | } 97 | ], 98 | "source": [ 99 | "data = pd.read_csv(\"Social_Network_Ads.csv\")\n", 100 | "data.head()" 101 | ] 102 | }, 103 | { 104 | "cell_type": "code", 105 | "execution_count": 3, 106 | "id": "f6ec42ee", 107 | "metadata": {}, 108 | "outputs": [], 109 | "source": [ 110 | "X = data.drop(columns='Purchased')\n", 111 | "y = data['Purchased']\n", 112 | "\n", 113 | "from sklearn.model_selection import train_test_split\n", 114 | "X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2, random_state=0)\n", 115 | "\n", 116 | "from sklearn.preprocessing import StandardScaler\n", 117 | "ss = StandardScaler()\n", 118 | "X_train_transform = ss.fit_transform(X_train)\n", 119 | "X_test_transform = ss.transform(X_test)" 120 | ] 121 | }, 122 | { 123 | "cell_type": "code", 124 | "execution_count": 5, 125 | "id": "0d5a3a6c", 126 | "metadata": {}, 127 | "outputs": [ 128 | { 129 | "data": { 130 | "text/plain": [ 131 | "" 132 | ] 133 | }, 134 | "execution_count": 5, 135 | "metadata": {}, 136 | "output_type": "execute_result" 137 | }, 138 | { 139 | "data": { 140 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSdUlEQVR4nO3deXiU1fnG8e9kD4EEEkhCIBCWsAmSyBJAfwUlGi3V4opoBdHa2rI2agWqUOsSF7AoUClal7Yg1AVUVBQj4MYegoLIDolAEtasZJuZ3x+TGQiEJclk3pnM/bmuuZJM3nnnmall7pz3OeeYrFarFREREREv4mN0ASIiIiKupgAkIiIiXkcBSERERLyOApCIiIh4HQUgERER8ToKQCIiIuJ1FIBERETE6/gZXYA7slgsHDp0iGbNmmEymYwuR0RERC6B1WqlsLCQmJgYfHwuPMajAFSDQ4cOERsba3QZIiIiUgfZ2dm0bdv2gscoANWgWbNmgO0NDA0NNbgaERERuRQFBQXExsY6PscvRAGoBvbLXqGhoQpAIiIiHuZS2lfUBC0iIiJeRwFIREREvI4CkIiIiHgd9QCJiIi4kMVioby83OgyPJK/vz++vr5OOZcCkIiIiIuUl5ezb98+LBaL0aV4rObNmxMdHV3vdfoUgERERFzAarVy+PBhfH19iY2NvehCfVKd1WqlpKSEvLw8AFq3bl2v8ykAiYiIuEBlZSUlJSXExMTQpEkTo8vxSMHBwQDk5eURGRlZr8thip8iIiIuYDabAQgICDC4Es9mD48VFRX1Oo8CkIiIiAtpj8n6cdb7pwAkIiIiXkcBSERERLyOApCIiIi4RFxcHLNmzTK6DECzwFxvx3KIvw40/VFERDzAkCFDSEhIcEpw2bBhAyEhIfUvygn0KexKX8+Et0fAh+PAYja6GhERkXqzWq1UVlZe0rGtWrVymyUAFIBcqUUcmHwhcwF8oBAkIuLNrFYrJeWVhtysVusl1XjvvfeyevVqXnrpJUwmEyaTiTfffBOTycSnn35Knz59CAwM5JtvvmHPnj38+te/JioqiqZNm9KvXz+++OKLauc7+xKYyWTitdde4+abb6ZJkybEx8fz4YcfOvNtPi9dAnOlnrcCJnjvt7BlIVgtMPwf4OOcfU1ERMRznKow02PaZ4Y8949/S6FJwMUjwEsvvcTOnTvp2bMnf/vb3wDYtm0bAJMnT2bGjBl07NiRFi1akJ2dzS9/+UuefvppAgMD+fe//82NN97Ijh07aNeu3Xmf44knnuD555/nhRdeYPbs2dx9990cOHCA8PBw57zY89AIkKv1vAVue902EvT9Ilj6B40EiYiIWwoLCyMgIIAmTZoQHR1NdHS0Y/Xlv/3tb1x77bV06tSJ8PBwevfuze9//3t69uxJfHw8Tz75JJ06dbroiM69997LyJEj6dy5M8888wxFRUWsX7++wV+bRoCMcNlwMJng3fvg+8VVI0HzwFf/c4iIeItgf19+/FuKYc9dX3379q32c1FREX/961/5+OOPOXz4MJWVlZw6dYqsrKwLnufyyy93fB8SEkJoaKhjv6+GpE9co/T4Ndz2Brw7Bn54B6xWuPmfCkEiIl7CZDJd0mUod3X2bK6HH36YFStWMGPGDDp37kxwcDC33XYb5eXlFzyPv79/tZ9NJhMWi8Xp9Z5Nl8CM1OMmuP0t8PGDre/Ckt+B+dI66UVERFwhICDAsY/ZhXz77bfce++93HzzzfTq1Yvo6Gj279/f8AXWkQKQ0br/Cu74N/j4w9b34P3fKgSJiIjbiIuLY926dezfv5+jR4+ed3QmPj6e999/n8zMTLZs2cJdd93lkpGculIAcgfdhp0OQduWwHv3g7l+u9yKiIg4w8MPP4yvry89evSgVatW5+3pefHFF2nRogWDBg3ixhtvJCUlhSuuuMLF1V46k/VSFwPwIgUFBYSFhZGfn09oaKjrnnjHcvjfPWAut/UI3fov8PW/+ONERMTtlZaWsm/fPjp06EBQUJDR5XisC72Ptfn81giQO+l6PYz4L/gGwI8f2BqkNRIkIiLidIYHoLlz5xIXF0dQUBBJSUkXnPu/bds2br31VuLi4jCZTDXuS5KWlka/fv1o1qwZkZGRDB8+nB07djTgK3CyLikwYoEtBG3/CN65Fyov3EEvIiIitWNoAFq8eDGpqalMnz6djIwMevfuTUpKynnn/5eUlNCxY0eeffZZoqOjazxm9erVjB07lrVr17JixQoqKiq47rrrKC4ubsiX4lxdroM73wbfQPhpmW0kSCFIRETEaQztAUpKSqJfv37MmTMHAIvFQmxsLOPHj2fy5MkXfGxcXByTJk1i0qRJFzzuyJEjREZGsnr1an7xi19cUl2G9QCdbfcX8PZdYC6DrsPg9jfBL8C4ekREpM7UA+QcHt8DVF5ezqZNm0hOTj5djI8PycnJrFmzxmnPk5+fD3DBPUXKysooKCiodnMLnZNh5NvgFwQ7Pob/jYLKMqOrEhER8XiGBaCjR49iNpuJioqqdn9UVBQ5OTlOeQ6LxcKkSZO48sor6dmz53mPS0tLIywszHGLjY11yvM7Reehp0PQzk8VgkRERJzA8CbohjR27Fi2bt3KokWLLnjclClTyM/Pd9yys7NdVOEl6nQNjFxUFYKWw+J7FIJERETqwbAA1LJlS3x9fcnNza12f25u7nkbnGtj3LhxLFu2jJUrV9K2bdsLHhsYGEhoaGi1m9vpdDXctRj8gmHXZ7D4N1BRanRVIiIiHsmwABQQEECfPn1IT0933GexWEhPT2fgwIF1Pq/VamXcuHEsWbKEL7/8kg4dOjijXPfQccgZIehzWHy3QpCIiEgdGHoJLDU1lVdffZW33nqL7du384c//IHi4mLGjBkDwKhRo5gyZYrj+PLycjIzM8nMzKS8vJyDBw+SmZnJ7t27HceMHTuW//73vyxcuJBmzZqRk5NDTk4Op06dcvnraxAdB8Pd74B/E9sssUV3KQSJiEiDGTJkyEVnXNfGvffey/Dhw512vroyNACNGDGCGTNmMG3aNBISEsjMzGT58uWOxuisrCwOHz7sOP7QoUMkJiaSmJjI4cOHmTFjBomJifz2t791HPPKK6+Qn5/PkCFDaN26teO2ePFil7++BtPh/06HoD3psGgkVDSSgCciIuIC2gusBm6zDtDF7P8WFtwOFcW2y2N3vg0BTYyuSkREauCJ6wDde++9vPXWW9Xu27dvH0VFRTzyyCN8/fXXhISEcN111/H3v/+dli1bAvDuu+/yxBNPsHv3bpo0aUJiYiIffPABL7zwAk888US1861cuZIhQ4Zcck0evw6QOEHclfCbd8E/BPaugrfvhPISo6sSEZFLYbVCebExt0sc+3jppZcYOHAgDzzwAIcPH+bw4cM0a9aMa665hsTERDZu3Mjy5cvJzc3ljjvuAODw4cOMHDmS++67j+3bt7Nq1SpuueUWrFYrDz/8MHfccQfXX3+943yDBg1qyHf5vPwMeVZxnvaD4DfvwYLbYN9qeHsEjFyskSAREXdXUQLPxBjz3FMPQUDIRQ8LCwsjICCAJk2aOGZoP/XUUyQmJvLMM884jnv99deJjY1l586dFBUVUVlZyS233EL79u0B6NWrl+PY4OBgysrKnDLjuz40AtQYtB9oC0EBTWHfV7DwDlvCFxERcbItW7awcuVKmjZt6rh169YNgD179tC7d2+GDh1Kr169uP3223n11Vc5ceKEwVWfSyNAjUW7AfCb9+G/t8L+r2HhCNuU+UtI+CIiYgD/JraRGKOeu46Kioq48cYbee655875XevWrfH19WXFihV89913fP7558yePZu//OUvrFu3zq2WplEAakzaJcE9S+C/t9hC0ILb4a7/QWBToysTEZGzmUwe8UdqQEAAZrPZ8fMVV1zBe++9R1xcHH5+NccIk8nElVdeyZVXXsm0adNo3749S5YsITU19ZzzGUWXwBqb2H62EBQYCgeqZomVFRldlYiIeKi4uDjWrVvH/v37OXr0KGPHjuX48eOMHDmSDRs2sGfPHj777DPGjBmD2Wxm3bp1PPPMM2zcuJGsrCzef/99jhw5Qvfu3R3n+/7779mxYwdHjx6loqLCkNelANQYte0L9yyFwDDI+s7WIF1WaHRVIiLigR5++GF8fX3p0aMHrVq1ory8nG+//Raz2cx1111Hr169mDRpEs2bN8fHx4fQ0FC++uorfvnLX9KlSxcee+wxZs6cyQ033ADAAw88QNeuXenbty+tWrXi22+/NeR1aR2gGnjMOkAXc3AT/PtmKMuH2AG2KfOBzYyuSkTEK3niOkDuSOsAycW16QOjlkJQGGSvtTVIlxYYXZWIiIjhFIAauzZXwKgPIKg5ZK9TCBIREUEByDvEJJ4OQT+vt80SK803uioRERHDKAB5i5gEGP0hBLeAnzfAfxSCRETEeykAeZPWvWFUVQg6uBH+c7N2kRcRcTHNPaofZ71/CkDepvXlMPqjqhC0CXZ8YnRFIiJewdfXF4Dy8nKDK/FsJSW2Tb/9/f3rdR6tBO2NontBz1thw2twMMP2vYiINCg/Pz+aNGnCkSNH8Pf3x8dHYxC1YbVaKSkpIS8vj+bNmzsCZV0pAHmrmETb18NbjK1DRMRLmEwmWrduzb59+zhw4IDR5Xis5s2bO2UneQUgb9U6wfb1UCZYLKC/REREGlxAQADx8fG6DFZH/v7+9R75sVMA8latuoFfEJQXwvG90LKz0RWJiHgFHx8frQTtBvRnv7fy9bP1AgEc2mxsLSIiIi6mAOTNHH1AmYaWISIi4moKQN7M0QekESAREfEuCkDe7MyZYBaLsbWIiIi4kAKQN2vZBfyCobwIju02uhoRERGXUQDyZr5+tpWhQZfBRETEqygAeTs1QouIiBdSAPJ2aoQWEREvpADk7RwjQN+DxWxsLSIiIi6iAOTtWsaDfwhUFMPRXUZXIyIi4hIKQN7Ox/d0I7T6gERExEsoAIn6gERExOsoAMnpPqBDmYaWISIi4ioKQAIxCbavOWqEFhER76AAJBDRGQKaQkUJHN1pdDUiIiINTgFIbI3Q0VoRWkREvIcCkNioD0hERLyIApDY2PuANAIkIiJeQAFIbOwjQDk/gLnS2FpEREQamAKQ2IR3goBmUHkKju4wuhoREZEGpQAkNj4+0Lq37XtdBhMRkUZOAUhOc/QBZRpZhYiISINTAJLTHDPBNAIkIiKNmwKQnGYPQLlbwVxhbC0iIiINSAFITmvRAQJDobIUjvxkdDUiIiINRgFITqvWCJ1paCkiIiINyfAANHfuXOLi4ggKCiIpKYn169ef99ht27Zx6623EhcXh8lkYtasWfU+p5xFCyKKiIgXMDQALV68mNTUVKZPn05GRga9e/cmJSWFvLy8Go8vKSmhY8eOPPvss0RHRzvlnHIWex/Q4UxDyxAREWlIhgagF198kQceeIAxY8bQo0cP5s2bR5MmTXj99ddrPL5fv3688MIL3HnnnQQGBjrlnHKW1gm2rzlqhBYRkcbLsABUXl7Opk2bSE5OPl2Mjw/JycmsWbPGpecsKyujoKCg2s1rhXeEwDAwl0HedqOrERERaRCGBaCjR49iNpuJioqqdn9UVBQ5OTkuPWdaWhphYWGOW2xsbJ2ev1EwmSBGK0KLiEjjZngTtDuYMmUK+fn5jlt2drbRJRlLfUAiItLI+Rn1xC1btsTX15fc3Nxq9+fm5p63wbmhzhkYGHjeniKvZO8D0giQiIg0UoaNAAUEBNCnTx/S09Md91ksFtLT0xk4cKDbnNMrOVaE3gaV5cbWIiIi0gAMGwECSE1NZfTo0fTt25f+/fsza9YsiouLGTNmDACjRo2iTZs2pKWlAbYm5x9//NHx/cGDB8nMzKRp06Z07tz5ks4pl6BFHAQ1h9KTkPfj6bWBREREGglDA9CIESM4cuQI06ZNIycnh4SEBJYvX+5oYs7KysLH5/Qg1aFDh0hMTHT8PGPGDGbMmMHgwYNZtWrVJZ1TLoHJZAs9e1fZ+oAUgEREpJExWa1Wq9FFuJuCggLCwsLIz88nNDTU6HKMsWI6fDsL+twLN75kdDUiIiIXVZvPb80Ck5rZ+4DUCC0iIo2QApDUzH7ZK/dHqCwztBQRERFnUwCSmjVvD8EtwFJhmw0mIiLSiCgASc1MJi2IKCIijZYCkJyfFkQUEZFGSgFIzs/RCJ1paBkiIiLOpgAk52dvhM77ESpKDS1FRETEmRSA5PzCYqFJBFgqIU+N0CIi0ngoAMn5mUzqAxIREacrrTBTUl5paA2GboUhHiAmEfakqw9IRKSWDuef4rElW9mRW0hiuxYkdQhnQMcIOrUKwWQyGV2eS50qN5ORdYJ1e4+xdu9xMrNP8viNPbhnQHvDalIAkguz9wEpAImIXLKVO/JIXZzJiZIKAH4+cYqPthwCoGXTQJI6hjOgKhB1jmza6AJRSXklmw6cYN3e46zde4wtP5+kwlx9561tB/MNqs5GAUguzD4T7Mh2qDgF/sHG1iMi4sYqzBZmfL6Df67eC8BlMaFMSu7Cj4cKWLv3GBlZJzhaVMbH3x/m4+8PAxAREmALRB0jSOoQQXxkU3x8PCsQFZfZAs/avcdYt+84W7JPUmmpHniiQ4MYYH+dHSOIi2hiULU22gy1BtoM9QxWK7zQGUqOwm/ToW1foysSEXFLB0+eYvzCDDKyTgIwemB7pvyyO0H+vo5jyirNbMnOrwoKx9h04ASlFZZq5wkPCaB/XLgtLHSKoEtkM7cLREVllWzcf5x1+2wjPD/8nH9O4IkJC6oKO7bQ0y68SYOPdNXm81sjQHJh9hWhd6+wNUIrAImInGPFj7k8/M4W8k9V0CzIj+dvvZwberU+57hAP1/6dwinf4dwIJ6ySjPf/5zv6I3ZdOAEx4vLWb4th+XbcgBo3sSfpA7hJHWIYEDHCLpFuz4QFZZWsLFqhGft3uNsPZiP+azA06Z5sCPsDOwYQdsWwW59aU8BSC4uJqEqAGUaXYmIiFspr7Tw3PKf+Nc3+wDo3TaM2SOvoN0lXt4J9POlX1w4/eLCGXeN7Xw/HDzJ2qremY37T3CypILPtuXy2bZcAMKC/enfwX7JLJzurUPxdXIgKiitYOP+46zde5x1e4/xw8F8zso7tG0RzICOEY46YsONvaRVWwpAcnGOFaE1FV5ExC77eAnjFmaw5WdbM+99V3Zg8g3dCPCr+wozAX4+9GkfTp/24Yy9ujMVZgs/HKy6ZLb3OBv3Hyf/VAUrfsxlxY+2QBQa5OcIRAM6RtQpEOWfqmDDvuOs22cb4dl26NzA0y68CQM62kaikjqG07aFZwWes6kHqAbqATpL/kH4ew8w+cKUnyHAs/+jFxGpr+VbD/PIu99TWFpJWLA/M27vzbU9ohr8eSvMFrYezHf03mzcf4Kisurr6TQL8qN/XLjjclSP1qH4+VYPZfklFazff9zRi7TtUAFnp4G4iCa2y26dbKEnprn7T4Kpzee3AlANFIDOYrXCjC5QnAf3r4DY/kZX1CDKKs2s2XOMxHYtCAv2N7oct7Ejp5CfcgqMLsPtBPr5kBDbguiwIKNLcQvHisr44WA+XaKaecQHZV2VVphJ+2Q7b605AEBiu+bMHplo2GhIpdnCtqoZZuv2HWfDvuMUnhWImgb60S+uBf06hHO0sJy1e4+xPefcwNOhZcjpWVodIjzyv20FoHpSAKrBgtth1+dwwwuQ9Dujq3Gq0gozizdk88qqPeQUlNI6LIjZIxPpGxdudGmGMluszP5yFy+n7zpnKFxO88S/kp3haFGZY42XdfuOsTO3CAB/XxO39WnLH4d09riekIvZf7SYsQsz2HbI9gfB7wd35OHruuLv6z6bKpgtVseU+3X7bKGosLTmFZc7tgpx9O8M6BhBVKjnBZ6zKQDVkwJQDVY+A6ufg953wc2vGF2NU5RWmFm0PotXVu8ht6AMAB8TWKzg62Pioeu68OAvOrnd9FNXyCssZdKiTL7bcwyAhNjmhAT6XuRR3uVEcQU/5RSct0/CvtZJm0YSiPIKS1m393SPyO68onOOadM8mIMnTwHg52MLQmOvbhxB6KMth5jy/g8UlVXSook/L96RwNXdIo0u66LMFivbD59eg6hFkwBH6IlsBIHnbApA9aQAVIMdn8Lbd0JkD/jjGqOrqZfSCjML12Uxb/Ue8gptwad1WBB/HNKJYZfH8MRH2/gg07Zi6y+6tOLFO3rTsmmgkSW71De7jjJp8WaOFpXTJMCXp4b35JYr2hpdlls6c6bM2r3H2FrDTJnY8GDH9GVPmimTV1DK2qo+k3V7j7HnSPE5x3SLbuZovO3fIZzwkAA27j/OS+m7+HrXUcAWhG65og3jro6/5JlR7qS0wszflv3IwnVZAPSLa8HLIxNpHdY4gm1jowBUTwpANSg4DC92A5NPVSN0iNEV1dqpcjML1h3gn1/t5UhV8IkJC+IPV3fmjr5tCfSzjXBYrVb+tzGb6R9uo7TCQmSzQF4emciAjhFGlt/gKs0WZn2xi7mrdmO12j7c5tx1BZ0jmxpdmscoLK1g4/4TrN134bVS7IvDudNaKTn5pVWjO7bZRnuPVg88JhN0jw511N4/LpwWIQHnPd+mA8eZ9cXpIOTrY+LmxDaMu7ozcS0949+PPUeKGLsgg59yCjGZYOyQzkxKjj+noVjchwJQPSkAnceMrlCUA/d9Du2SjK7mktmDz7zVezlaZAs+bZoH88erO3Fbn9PB52w7cgoZuzCD3XlF+JhgUnIXxl7d2enrbbiDnPxSJizazPp9xwEY2b8d02/sUW0FW6k9+2q5a6suHX3/83kWj7Ov6dIx3CWr5YJto0572Fm79xj7j5VU+73JZNvGwT561T8unLAmtZ8ckJF1gpe+2MXqnUcAWxAantCGcdd0poMbB6Elm3/mL0u2UlJuJiIkgFl3JvB/8a2MLksuQgGonhSAzmPhCNi5HK5/DgY8aHQ1F1VSXsl/1x5g/ld7OVpUDtg+bMZd05lbr2h7SWt1lJRXMu2Dbby76WcAruwcwd9HJBDZrPFcO1+1I4/U/23heHE5IQG+pN16OTf1jjG6rEbpUvZLam3fPqAqFLWPcE4gOnjyVNVqw7bnPnBW4PExwWUxYY7+pb5x4U6dDbk56wQvp+9i5Y4jjuezB6GOrdxnlPFUuZnpH27lfxtt/58f2DGCl+5MaJT9Mo2RAlA9KQCdx6pnYVUa9B4JN88zuprzKimv5D9rbMHnWLEt+LRtEcy4qztzyyUGn7O9t+lnHlu6lVMVZlo2DeSlOxO4snNLZ5fuUhVmCzM/38m81XsA21/7c+66wq3/Km9sSsoryThwsmp7gZp3zI4KDXRMSx7QMZwOLUMuKRD9fKLEsYrv2n3HyD5+qtrvfUzQq00YSR1t5+0bF05oUMMv/5CZfZKX03fx5U95jjpu6h3DuGviDb/cujO3kLELMtiVV4TJBBOHxjP+mvhGOerbWCkA1ZMC0HnsWA5vj4BW3WDsOqOrOUdxWSX/XnOAV7/ey/Gq4NMuvAnjru7MzVe0qfdU1d15hYxdsJkdubZ+gPFXd2bCUM/sBzh48hQT3t7MpgMnABg1sD1Tz9q0UVzvVLmZjKwTjn2hMrNPUm6uvlFmZLNAR2gZ0DGCjlWB9ecTpxz7NK3de8wxG8vO18dEzzZnjPC0b0EzFwSe8/n+Z1sQ+mK7LQiZqoLQ+Gs60zmymUtrsVqtvLPpZ6Z9sJXSCgutmtn+yBnUybP/yPFGCkD1pAB0HoU5MLOrrRF6cjYEusewdVFZJW99t5/Xvt7LiZIKANpH2ILP8MT6B58zlVaYeeKjbby9PhuA/h3CmT0y0aPWz/jix1wefncLJ0suvGmjGK+0whaI7CM5m7NPUl5ZPRC1bBpIoJ/POYHHz8dEr7ZhjstpfePCaRrofrsfbT2Yz0vpuxzbOphM8KvLY5hwTWfioxo+CBWXVfL40q28v/kgAP8X35IX70igVTPvmfnZmCgA1ZMC0AXM7AaFh2HMcmg/0NBSCksrHCM+J6uCT1xEE8ZdE8/whJgGHZn5IPMgU9//geJyM+EhAbx4R2+GdHXvNUHKKy08v/wnXqvjpo1ivNIKM5nZJx3Ny5uyTjgCkZ+Pid6xzR29Q33atyDEDQPP+Ww9mM/L6bv4/Iwg9MterZlwTTxdoxsmCG0/XMDYhRnsPVKMjwkeuq4rfxjsnWt/NRYKQPWkAHQBb4+EHZ/A9c/CgD8YUkJBaQVvfbuf177ZR/4pW/Dp2DKEcdd05qbeDRt8zrT3SBHjFm7mx8O2VWH/MKQTqdd2catVYe2yj5cw7u3NbMk+CThn00YxXlmlmS3Z+VSaLSS0a06TAM8JPOez7VA+s9N3s3xbjuO+Yb1aM35oZ7pFO+ffY6vVytvrs3nio22UVVqIDg3i5ZGJ9O/g3au/NwYKQPWkAHQBq56DVc/A5SPglvkufeqC0gre+GY///pmLwVVS7t3bBXChGviubF3jCGNiqUVZp7+eDv/WWvbF6hP+xbMHpnoVtshnLlpY2iQHzNu7811l0UbXZbIBW0/XMDsL3fxyQ+ng9ANPaOZMDSe7q3r/u9yYWkFU5ds5aMttsVOh3RtxYt3JBB+gTWNxHMoANWTAtAF7PwcFt4OLbvCuPUuecr8UxW88e0+Xv9mnyP4dGoVwoSh8fzqcmOCz9k+/v4wk9/7nsKySpo38Wfm7b0Z2r3hd4a+kLJKM8987D6bNorUxU85BcxO380nWw87Nu9MuSyKCUPjuSwmrFbn2nown3ELM9h/rARfHxN/TunKA//XUZe8GhEFoHpSALqAojyYEQ+YYEo2BDZck2J+SQX/+nYfb3y7z7GZX3xkU8YPjWdYr9ZuEXzOdOBYMeMWbuaHg/kA/PaqDvz5emMuM+0/Wsy4tzPYetB9N20UqY2duYW8nL6Lj384HYSu62ELQj3bXDgIWa1W/rP2AE8t20652UKb5sG8PDKRPu1buKBycSUFoHpSALqIF3tAwUG49xOIu9Lppz9ZUs6/vtnHm9/up7DMFny6RDVlwtB4ftmztVv/tVZWaebZT3/ijW/3A7ZNRGePTHTp/k/Lvj/E5Pc8b9NGkUuxK7eQ2V/u5qPvDzmCUHL3KCYOjadX23ODUP6pCia/9z2fbs1xHDvj9stp3kSXvBojBaB6UgC6iLfvgh0fQ8ozMHCs0057orgq+Hy3n6Kq4NM1qhkTk+O5/rJotw4+Z/tsWw6PvLOFgqq+mxdu701KA/fdlFaYeXLZjyzQpo3iBXbnVQWhLYccG9AO7RbJxOR4Lm/bHIAt2ScZ93YG2cdP4e9rYvIN3bnvyji32HtNGoYCUD0pAF3E6hdg5VPQ63a49bV6n+54cTmvfb2Xt77bT3G5GbBtxDlxaDwpHhZ8zvTziRLGLdxMZtXMq3sHxTHll93Ou/dYfZy9aeMfh3TiT8ldPHKRRpHa2HOkiDlf7uaDzIOOIHR111Zc3rY5/1i1mwqzldjwYOaMvILesc0NrVUangJQPSkAXcSuFbDgNoiIh/Eb63yaY0VlvPr1Pv69Zj8lVcGnR+tQJgyN57oeUR4bfM5UYbbwwmc7mP/VXsC29cCcuxJpH+G87SaWbj7I1CU/ODZt/PuIBH7RRZs2infZWxWElp4RhMA2c+zZWy936r5m4r4UgOpJAegiio7AjM627ydnQ1Dt3qNjRWXM/3ov/1lzoFrwmZQcz7U9ohrl8PSXP+WS+r+q1ZcD/Xj21ssZdnn9Vl8+VW7mrx9uY/FG26rUAzqG8/Kdidq0UbzavqPFzPlyN9/uPsofr+7EPQPaN8p/U6RmCkD1pAB0Cf7eE/Kz4d6PIe6qS3rI0aIy5n9lCz6nKmzBp2ebUCYO7UJy98hG/4/Uoar9tzZW7b/1mwHteGxYjzrtv7Urt5CxCzPYmWvbtHHCNfFMGKpNG0XEu9Xm89vzlw0VY7TubQtAhzZfNAAdKSxj/ld7+O/aLEfwubxtGBOHxnNNt8YffOximgez6HcDeHHFTv6xyvZ+bDpwkrl3JdKx1aXvq/bOxmymfbCNUxVm26aNIxIY5OE704uIuJoCkNRNTCL8tAwOZZ73kLzCUv65ei8L1h2gtMK2X1HvtmFMSu7CkK6tvCb4nMnP14c/X9+NpI4RpC7OZPvhAm6c/Q3P3NKLXye0ueBji8sqefyDrbyfoU0bRUTqSwFI6iYmwfb10OZzfpVXUMorq/ewcF0WZVUbNSbENmdicjxDunhn8Dnb4C6t+GTi/zFx0WbW7j3OxEWZrNlzjOk3XkZwwLmXxH7KKWDsggz2VG3amHptF/44pHOjaBQXETGCApDUTetE29fje6A0H4LCyC0o5ZVVe3h7/engc0W75kxM7sIv4lsq+JwlKjSIBb8dwEvpu5j95S4Wbchmc9ZJ5t6dSOdI2wrbVquVRRuy+euHtk0bo0IDefnORJI6RhhcvYiIZ1MAkroJiYCwdpCfxfHdG3hpTzRvb8imvCr49GnfgknJ8VzVWcHnQnx9TKRe24WkDuFMXJTJjtxCbpz9LU8O78n1PaOZ+v4PfHjGpo0zb+9NRFNd8hIRqS/NAquBZoFdmlP/vYvg3R/zrPlu5lUMA2yrD08c2oUrO0co+NRSXmEpf1qcybe7jwHQvIk/J0sq8PUx8UhKV36nTRtFRC6oNp/fhi8TO3fuXOLi4ggKCiIpKYn16y+8w/g777xDt27dCAoKolevXnzyySfVfl9UVMS4ceNo27YtwcHB9OjRg3nz5jXkS/A6B0+e4rGlP/CPHbbLNJexh/4dwln42yT+9/uBXKXLXXUS2SyIf9+XxEPXdsHHBCdLKogJC+J/vx/Ag4M7KfyIiDiRoZfAFi9eTGpqKvPmzSMpKYlZs2aRkpLCjh07iIw8d/PG7777jpEjR5KWlsavfvUrFi5cyPDhw8nIyKBnz54ApKam8uWXX/Lf//6XuLg4Pv/8c/74xz8SExPDTTfd5OqX2Kj8fKKEf6zawzsbs6kwW7nKpwP4QnLzw9z4+4FGl9co+PqYGD80nkGdI/hu9zHuGdhemzaKiDQAQy+BJSUl0a9fP+bMmQOAxWIhNjaW8ePHM3ny5HOOHzFiBMXFxSxbtsxx34ABA0hISHCM8vTs2ZMRI0bw+OOPO47p06cPN9xwA0899dQl1aVLYNVlH7cFn3c32YIPwMCOETx0VUv6/q+P7aBH90NwC+OKFBERr+cRl8DKy8vZtGkTycnJp4vx8SE5OZk1a9bU+Jg1a9ZUOx4gJSWl2vGDBg3iww8/5ODBg1itVlauXMnOnTu57rrrzltLWVkZBQUF1W5iCz6T3/ueq2es4u31WVSYrVzZOYL//X4gb/9uAH17dIbm7W0HH95ibLEiIiK1YNglsKNHj2I2m4mKiqp2f1RUFD/99FONj8nJyanx+JycHMfPs2fP5ne/+x1t27bFz88PHx8fXn31VX7xi1+ct5a0tDSeeOKJeryaxiXrWAlzVu7i/YyDVFbtKnhV55ZMTI6nX1x49YNjEuDkAduCiB2HuLpUERGROml00+Bnz57N2rVr+fDDD2nfvj1fffUVY8eOJSYm5pzRI7spU6aQmprq+LmgoIDY2FhXlew2DhyzbSL4/uaDmKuCz//Ft2RScjx92ofX/KCYRPjxgxoXRBQREXFXhgWgli1b4uvrS25ubrX7c3NziY6OrvEx0dHRFzz+1KlTTJ06lSVLljBsmG1a9uWXX05mZiYzZsw4bwAKDAwkMNB711bZf7SY2V/uZmnm6eAzuEsrJgyNp0/7i/T1tE6wfT2c2aA1ioiIOJNhPUABAQH06dOH9PR0x30Wi4X09HQGDqx5RtHAgQOrHQ+wYsUKx/EVFRVUVFTg41P9Zfn6+mKxWJz8Cjzf3iNFpC7O5JqZq3gv42fMFitDurZiyR8H8dZ9/S8efuD0lhgn9kPJ8YYsV0RExGkMvQSWmprK6NGj6du3L/3792fWrFkUFxczZswYAEaNGkWbNm1IS0sDYOLEiQwePJiZM2cybNgwFi1axMaNG5k/fz4AoaGhDB48mEceeYTg4GDat2/P6tWr+fe//82LL75o2Ot0R/O/2sOzn/5E1YAP13SLZMLQeBJim9fuRMEtoEWcLQAd3gKdrnZypSIiIs5naAAaMWIER44cYdq0aeTk5JCQkMDy5csdjc5ZWVnVRnMGDRrEwoULeeyxx5g6dSrx8fEsXbrUsQYQwKJFi5gyZQp33303x48fp3379jz99NM8+OCDLn997mzBuiwsVtulroeu68LlbZvX/WQxibYAdGizApCIiHgEbYVRg8a+DtCpcjM9pi/HaoUNf0mmVbN69j99+xKsmAY9fg13/Ns5RYqIiNSSR6wDJMbZc6QIqxVaNPGnZVMnrDJsb4TWTDAREfEQCkBeaGduIQDxUc2cs2dX6962ryez1AgtIiIeQQHIC+3MLQKgS1RT55wwuDmEd7R9r1EgERHxAApAXmhX1QhQl6hmzjtpTKLtq9YDEhERD6AA5IV25lVdAot0YgBSH5CIiHgQBSAvU1JeSfbxU4ATL4HB6RGgQ9oUVURE3J8CkJfZnWfr/4kICSCiqRO3/2h9ue1rfhYUH3PeeUVERBqAApCXsTdAxztz9AcgKAwiOtu+P6zLYCIi4t4UgLxMgzRA26kPSEREPIQCkJdxrAEU6eQRIDijDyjT+ecWERFxIgUgL3P6ElgDjADZd4ZXABIRETenAORFissqOXjSPgOsAQJQ9OWACQp+hqIjzj+/iIiIkygAeRH7DLCWTQMID3HCHmBnCwo9oxE60/nnFxERcRIFIC9yuv+nAUZ/7Bx9QGqEFhER96UA5EV25Tl5D7CaqA9IREQ8gAKQFzlzF/gGoxEgERHxAApAXmSXYxf4BgxA9kbowkNQmNtwzyMiIlIPCkBeoqjaDLAGvAQW2BRadrF9r0ZoERFxUwpAXsK+AnSrZoE0b9IAM8DOpAURRUTEzSkAeYnTl78acPTHztEIrT4gERFxTwpAXsIlU+Dt7CNAugQmIiJuSgHIS+zMc0EDtF10LzD5QOFhKMxp+OcTERGpJQUgL3F6F3gXXAILCIGWXW3fqw9IRETckAKQFygoreBwfinQwGsAnUl9QCIi4sZqHYAqKirw8/Nj69atDVGPNAB7A3RUaCBhwf6ueVItiCgiIm6s1gHI39+fdu3aYTabG6IeaQCnL3+5aPQHoHWC7evhTLBaXfe8IiIil6BOl8D+8pe/MHXqVI4fP+7seqQB7KwaAXLJDDA7eyN0Ua6tGVpERMSN+NXlQXPmzGH37t3ExMTQvn17QkJCqv0+IyPDKcWJc+zKs+8B5oIGaLuAJtCqG+T9aGuEDo1x3XOLiIhcRJ0C0PDhw51chjSkna6cAXammMSqALQZuv3Stc8tIiJyAXUKQNOnT3d2HdJA8k9VkFtQBkBnV14CA1sfUOYCLYgoIiJup04ByG7Tpk1s374dgMsuu4zExESnFCXOs7vq8ld0aJDrZoDZnTkTzGoFk8m1zy8iInIedQpAeXl53HnnnaxatYrmzZsDcPLkSa6++moWLVpEq1atnFmj1IOjAdrVl78AonuCyReKj0DBIQhr4/oaREREalCnWWDjx4+nsLCQbdu2cfz4cY4fP87WrVspKChgwoQJzq5R6mGnEVPg7fyDIbK77XutByQiIm6kTgFo+fLl/OMf/6B79+6O+3r06MHcuXP59NNPnVac1J9Ld4GviX1FaPUBiYiIG6lTALJYLPj7n9tP4u/vj8ViqXdR4jyOXeCNGAGC0wsiagRIRETcSJ0C0DXXXMPEiRM5dOiQ476DBw/ypz/9iaFDhzqtOKmf/JIK8gptM8DiI40aAbrC9vVQplaEFhERt1GnADRnzhwKCgqIi4ujU6dOdOrUiQ4dOlBQUMDs2bOdXaPU0c6qGWAxYUE0C3LxDDC7qMvAxw9KjkL+z8bUICIicpY6zQKLjY0lIyODL774gp9++gmA7t27k5yc7NTipH4Mv/wF4B9ka4TO+cHWB9Q81rhaREREqtQ6AFVUVBAcHExmZibXXnst1157bUPUJU5geAO0XesEWwA6tBm632hsLSIiImg3+EbNLUaA4IwFETMNLUNERMROu8E3YjsdI0BGB6AE21f7itAiIiIG027wjdSJ4nKOFhk8A8wuqif4+MOp43AyC1q0N7YeERHxetoNvpGyX/5q0zyYkMB6bflWf36BVY3Q39saoRWARETEYLX+ZKysrMRkMnHffffRtm3bhqhJnGBnnps0QNvFJNoC0KHN0OPXRlcjIiJertY9QH5+frzwwgtUVlY2RD3iJLvcpQHaztEHlGlkFSIiIkA9VoJevXq1UwqYO3cucXFxBAUFkZSUxPr16y94/DvvvEO3bt0ICgqiV69efPLJJ+ccs337dm666SbCwsIICQmhX79+ZGVlOaVeT+GYAWZ0/4+dYyaYGqFFRMR4dWoOueGGG5g8eTI//PADffr0OacJ+qabbrqk8yxevJjU1FTmzZtHUlISs2bNIiUlhR07dhAZGXnO8d999x0jR44kLS2NX/3qVyxcuJDhw4eTkZFBz549AdizZw9XXXUV999/P0888QShoaFs27aNoKCgurxUj7U7z01mgNlF9rA1QpeehJMHoEWc0RWJiIgXM1mttf9z3Mfn/ANHJpPpktcISkpKol+/fsyZMwewbbIaGxvL+PHjmTx58jnHjxgxguLiYpYtW+a4b8CAASQkJDBv3jwA7rzzTvz9/fnPf/5zya+nrKyMsrIyx88FBQXExsaSn59PaGjoJZ/HXRwvLueKJ1cAsO2JFOOboO3+OdjWBH37m3DZzUZXIyIijUxBQQFhYWGX9Pld593gz3e71PBTXl7Opk2bqm2f4ePjQ3JyMmvWrKnxMWvWrDlnu42UlBTH8RaLhY8//pguXbqQkpJCZGQkSUlJLF269IK1pKWlERYW5rjFxnr2dg32y19tW7jBDLAzqQ9IRETcRK0C0C9/+Uvy8/MdPz/77LOcPHnS8fOxY8fo0aPHJZ3r6NGjmM1moqKiqt0fFRVFTk5OjY/Jycm54PF5eXkUFRXx7LPPcv311/P5559z8803c8stt1ywZ2nKlCnk5+c7btnZ2Zf0GtyVvQHabS5/2Z3ZByQiImKgWg0PfPbZZ9UuFT3zzDPccccdNG/eHLBNkd+xY4dTC6wNi8UCwK9//Wv+9Kc/AZCQkMB3333HvHnzGDx4cI2PCwwMJDAw0GV1NjT7CtDx7jIF3s4egA5n2hqhTSZDyxEREe9VqxGgs9uF6tA+5NCyZUt8fX3Jzc2tdn9ubi7R0dE1PiY6OvqCx7ds2RI/P79zRqG6d+/uVbPA7JfAukS62QhQq+7gGwCl+XBin9HViIiIF6tTD5AzBAQE0KdPH9LT0x33WSwW0tPTGThwYI2PGThwYLXjAVasWOE4PiAggH79+p0zCrVz507at/ee1Yd3udsMMDu/ANu2GKA+IBERMVStLoGZTCZMZ122OPvn2khNTWX06NH07duX/v37M2vWLIqLixkzZgwAo0aNok2bNqSlpQEwceJEBg8ezMyZMxk2bBiLFi1i48aNzJ8/33HORx55hBEjRvCLX/yCq6++muXLl/PRRx+xatWqOtfpSY4WlXG8uByTCTq7yxpAZ4pJgEMZtj6gnrcYXY2IiHipWgUgq9XKvffe6+iXKS0t5cEHH3SsA3Rmf9ClGDFiBEeOHGHatGnk5OSQkJDA8uXLHY3OWVlZ1abcDxo0iIULF/LYY48xdepU4uPjWbp0qWMNIICbb76ZefPmkZaWxoQJE+jatSvvvfceV111Va1q81T2y1+xLZoQHOBrcDU1OLMPSERExCC1WgfIPjJzMW+88UadC3IHtVlHwN289d1+pn+4jeTukbw2up/R5Zzr8Pfwz/+DwDB4dD9cYE0pERGR2qjN53etRoA8Pdh4g53utgfY2SK7g28glFU1Qkd0MroiERHxQvrzu5HZletmu8Cfzdcfou2N0FoPSEREjKEA1IhYrVZ25tk3QXXTESDQgogiImI4BaBG5EhRGSdLKvBx1xlgdq0TbF8PbzG0DBER8V4KQI2I/fJXu/AmBPm74QwwO8cIUCZUrd4tIiLiSgpAjYjbN0DbteoGfkFQXgjH9xpdjYiIeCEFoEbEsQeYO1/+AvD1g+hetu/VByQiIgZQAGpEdue56S7wNXH0AWUaWYWIiHgpBaBGwmq1uu8u8DXRTDARETGQAlAjcaSwjPxTthlgnVp5QgBKsH09vEWN0CIi4nIKQI2EffSnfUSIe88As2vZFfyCobwIju02uhoREfEyCkCNhGMGmLs3QNv5+kHry23fqw9IRERcTAGokdjlSQ3QdvZGaPUBiYiIiykANRIe1QBtd+aCiCIiIi6kANQI2GaAeeAIULVGaLOhpYiIiHdRAGoEcgvKKCytxNfHRMdWIUaXc+ladgH/JlBRrEZoERFxKQWgRsA++tM+ogmBfh4wA8zOxxeiqxqh1QckIiIupADUCDguf0V60OUvOy2IKCIiBvAzugCpP/su8F08qQHazt4HtHc1fP+OoaWIiIgLtep6ejkUAygANQI78zxkF/ia2EeAjmyH939rbC0iIuI6V6UqAEndWa1WdjtGgDwwALXsYvs/wcFNRlciIiKuFN7B0KdXAPJwh/NLKSyrxM/HRIeWHjQDzM5kguTpRlchIiJeRk3QHs7eAB3XMoQAP/3PKSIicin0ienhdud5cAO0iIiIQRSAPJx9BKizJ06BFxERMYgCkIfb6clT4EVERAyiAOTBrFbrGZfANAIkIiJyqRSAPNih/FKKqmaAxUV44AwwERERgygAeTB7/08HzQATERGpFX1qerBd9j3AdPlLRESkVhSAPJi9ATpeDdAiIiK1ogDkwTQCJCIiUjcKQB7KYrGyS4sgioiI1IkCkIc6ePIUJeVm/H1NtNcMMBERkVpRAPJQu/Jsl786tmyKv6/+ZxQREakNfXJ6KDVAi4iI1J0CkIfaqQZoERGROlMA8lC7tAeYiIhInSkAeSCL5fQeYPEaARIREak1BSAP9POJU5yqMBPg60P78CZGlyMiIuJxFIA8kGMGWKsQ/DQDTEREpNb06emBTs8A0+UvERGRulAA8kCOLTAi1QAtIiJSFwpAHmhn1SUwjQCJiIjUjVsEoLlz5xIXF0dQUBBJSUmsX7/+gse/8847dOvWjaCgIHr16sUnn3xy3mMffPBBTCYTs2bNcnLVxjhzBpimwIuIiNSN4QFo8eLFpKamMn36dDIyMujduzcpKSnk5eXVePx3333HyJEjuf/++9m8eTPDhw9n+PDhbN269ZxjlyxZwtq1a4mJiWnol+Ey2SdKKK2wEODnoz3ARERE6sjwAPTiiy/ywAMPMGbMGHr06MG8efNo0qQJr7/+eo3Hv/TSS1x//fU88sgjdO/enSeffJIrrriCOXPmVDvu4MGDjB8/ngULFuDv73/BGsrKyigoKKh2c1f2BuhOrZri62MyuBoRERHPZGgAKi8vZ9OmTSQnJzvu8/HxITk5mTVr1tT4mDVr1lQ7HiAlJaXa8RaLhXvuuYdHHnmEyy677KJ1pKWlERYW5rjFxsbW8RU1vNNbYOjyl4iISF0ZGoCOHj2K2WwmKiqq2v1RUVHk5OTU+JicnJyLHv/cc8/h5+fHhAkTLqmOKVOmkJ+f77hlZ2fX8pW4zi7tASYiIlJvfkYX4GybNm3ipZdeIiMjA5Pp0i4RBQYGEhgY2MCVOYdjDSBNgRcREakzQ0eAWrZsia+vL7m5udXuz83NJTo6usbHREdHX/D4r7/+mry8PNq1a4efnx9+fn4cOHCAhx56iLi4uAZ5Ha5itljZc8Q+A0wjQCIiInVlaAAKCAigT58+pKenO+6zWCykp6czcODAGh8zcODAascDrFixwnH8Pffcw/fff09mZqbjFhMTwyOPPMJnn33WcC/GBbKOl1BWaSHQz4dY7QEmIiJSZ4ZfAktNTWX06NH07duX/v37M2vWLIqLixkzZgwAo0aNok2bNqSlpQEwceJEBg8ezMyZMxk2bBiLFi1i48aNzJ8/H4CIiAgiIiKqPYe/vz/R0dF07drVtS/OyewN0J0jNQNMRESkPgwPQCNGjODIkSNMmzaNnJwcEhISWL58uaPROSsrCx+f0wNVgwYNYuHChTz22GNMnTqV+Ph4li5dSs+ePY16CS6jBmgRERHnMFmtVqvRRbibgoICwsLCyM/PJzQ01OhyHCa8vZkPtxziz9d35Y9DOhtdjoiIiFupzee34QshyqVzrAEUqREgERGR+lAA8hCVZgt7jxQDugQmIiJSXwpAHiLreAnlZgvB/r60bRFsdDkiIiIeTQHIQ9gXQOwc2RQfzQATERGpFwUgD2GfAaYVoEVEROpPAchD7Myr2gJD/T8iIiL1pgDkIXZpF3gRERGnUQDyAJoBJiIi4lwKQB5g/7HTM8DaNNcMMBERkfpSAPIAjgboKM0AExERcQYFIA9gnwIfrxWgRUREnEIByAPszFMDtIiIiDMpAHkA7QIvIiLiXApAbq7CbGHfUdsMsHiNAImIiDiFApCb23+0mAqzlZAAzQATERFxFgUgN+fYAyyqGSaTZoCJiIg4gwKQm9tp7//RHmAiIiJOowDk5nblqQFaRETE2RSA3JxjDSA1QIuIiDiNApAbK6+0sP+o9gATERFxNgUgN7b/WDGVFitNA/1oHRZkdDkiIiKNhgKQG7M3QHeObKoZYCIiIk6kAOTG7P0/2gJDRETEuRSA3Ji2wBAREWkYCkBuzH4JLF4BSERExKkUgNxUWaWZ/cdKAF0CExERcTYFIDe172gxZouVZoF+RIdqBpiIiIgzKQC5qTMXQNQMMBEREedSAHJTaoAWERFpOApAbkoN0CIiIg1HAchN7dIaQCIiIg1GAcgNlVaY2X9Me4CJiIg0FAUgN7T3SDEWK4QG+RHZLNDockRERBodBSA3tCvvdAO0ZoCJiIg4nwKQG1IDtIiISMNSAHJD2gRVRESkYSkAuaHdefYApBEgERGRhqAA5GZKK8wcqJoBFq8RIBERkQahAORm9hwpwmKF5k38adVUM8BEREQaggKQm7EvgBgfqT3AREREGooCkJvRDDAREZGGpwDkZhwzwCLV/yMiItJQFIDczJmLIIqIiEjDUAByI6fKzWQdLwF0CUxERKQhuUUAmjt3LnFxcQQFBZGUlMT69esvePw777xDt27dCAoKolevXnzyySeO31VUVPDoo4/Sq1cvQkJCiImJYdSoURw6dKihX0a97TlShNUKLZr407JpgNHliIiINFqGB6DFixeTmprK9OnTycjIoHfv3qSkpJCXl1fj8d999x0jR47k/vvvZ/PmzQwfPpzhw4ezdetWAEpKSsjIyODxxx8nIyOD999/nx07dnDTTTe58mXVyZkN0JoBJiIi0nBMVqvVamQBSUlJ9OvXjzlz5gBgsViIjY1l/PjxTJ48+ZzjR4wYQXFxMcuWLXPcN2DAABISEpg3b16Nz7Fhwwb69+/PgQMHaNeu3Tm/Lysro6yszPFzQUEBsbGx5OfnExoaWt+XeMme/fQn5q3ew28GtOOp4b1c9rwiIiKNQUFBAWFhYZf0+W3oCFB5eTmbNm0iOTnZcZ+Pjw/JycmsWbOmxsesWbOm2vEAKSkp5z0eID8/H5PJRPPmzWv8fVpaGmFhYY5bbGxs7V+ME+zKVQO0iIiIKxgagI4ePYrZbCYqKqra/VFRUeTk5NT4mJycnFodX1payqOPPsrIkSPPmwanTJlCfn6+45adnV2HV1N/O6tmgMVHKgCJiIg0JD+jC2hIFRUV3HHHHVitVl555ZXzHhcYGEhgoLHbTpSUV5J9/BSgXeBFREQamqEBqGXLlvj6+pKbm1vt/tzcXKKjo2t8THR09CUdbw8/Bw4c4Msvv3RpL09d2HeAjwgJIEJ7gImIiDQoQy+BBQQE0KdPH9LT0x33WSwW0tPTGThwYI2PGThwYLXjAVasWFHteHv42bVrF1988QUREREN8wKcyL4CtHaAFxERaXiGXwJLTU1l9OjR9O3bl/79+zNr1iyKi4sZM2YMAKNGjaJNmzakpaUBMHHiRAYPHszMmTMZNmwYixYtYuPGjcyfPx+whZ/bbruNjIwMli1bhtlsdvQHhYeHExDgnuvrqAFaRETEdQwPQCNGjODIkSNMmzaNnJwcEhISWL58uaPROSsrCx+f0wNVgwYNYuHChTz22GNMnTqV+Ph4li5dSs+ePQE4ePAgH374IQAJCQnVnmvlypUMGTLEJa+rtnbl2UeAFIBEREQamuHrALmj2qwj4CxXPfclP584xeLfDSCpo/tfshMREXE3HrMOkNgUl1Xy8wn7DDCNAImIiDQ0BSA3YJ8B1rJpIC1C3LNHSUREpDFRAHIDjj3AIjUDTERExBUUgNyAvQFaCyCKiIi4hgKQGzhzF3gRERFpeApAbmBXrn0ESAFIRETEFRSADFZUVsnBk9oDTERExJUUgAxmXwG6VbNAmjfRDDARERFXUAAy2OnLXxr9ERERcRUFIIOdngKv/h8RERFXUQAy2M48NUCLiIi4mgKQwU7vAq9LYCIiIq6iAGSggtIKDueXAloDSERExJUUgAxkb4COCg0kLNjf4GpERES8hwKQgU5f/tLoj4iIiCspABnIvgeYZoCJiIi4lgKQgXaqAVpERMQQCkAGsvcAqQFaRETEtRSADJJ/qoKcAvsMMI0AiYiIuJICkEF259kuf0WHBhEapBlgIiIirqQAZJCdjstfGv0RERFxNQUgg+zUFHgRERHDKAAZRLvAi4iIGEcByCCOXeA1AiQiIuJyCkAGyC+pIK+wDID4SI0AiYiIuJoCkAF2Vs0AiwkLoplmgImIiLicApABdPlLRETEWApABlADtIiIiLEUgAygESARERFjKQAZYKdjBEgBSERExAgKQC52orico0WaASYiImIkBSAXs1/+atM8mJBAP4OrERER8U4KQC62K08N0CIiIkZTAHKxXdoDTERExHAKQC52ehd4BSARERGjKAC52K48+wiQLoGJiIgYRQHIhY4Xl3O0qByAzpoBJiIiYhgFIBeyzwBr2yKYJgGaASYiImIUBSAXUgO0iIiIe1AAcqHCskqC/H2IV/+PiIiIoUxWq9VqdBHupqCggLCwMPLz8wkNDXXquS0WK2WVFoIDfJ16XhEREW9Xm89vjQC5mI+PSeFHRETEYApAIiIi4nUUgERERMTruEUAmjt3LnFxcQQFBZGUlMT69esvePw777xDt27dCAoKolevXnzyySfVfm+1Wpk2bRqtW7cmODiY5ORkdu3a1ZAvQURERDyI4QFo8eLFpKamMn36dDIyMujduzcpKSnk5eXVePx3333HyJEjuf/++9m8eTPDhw9n+PDhbN261XHM888/z8svv8y8efNYt24dISEhpKSkUFpa6qqXJSIiIm7M8FlgSUlJ9OvXjzlz5gBgsViIjY1l/PjxTJ48+ZzjR4wYQXFxMcuWLXPcN2DAABISEpg3bx5Wq5WYmBgeeughHn74YQDy8/OJiorizTff5M4777xoTQ05C0xEREQahsfMAisvL2fTpk0kJyc77vPx8SE5OZk1a9bU+Jg1a9ZUOx4gJSXFcfy+ffvIycmpdkxYWBhJSUnnPWdZWRkFBQXVbiIiItJ4GRqAjh49itlsJioqqtr9UVFR5OTk1PiYnJycCx5v/1qbc6alpREWFua4xcbG1un1iIiIiGcwvAfIHUyZMoX8/HzHLTs72+iSREREpAEZGoBatmyJr68vubm51e7Pzc0lOjq6xsdER0df8Hj719qcMzAwkNDQ0Go3ERERabwMDUABAQH06dOH9PR0x30Wi4X09HQGDhxY42MGDhxY7XiAFStWOI7v0KED0dHR1Y4pKChg3bp15z2niIiIeBc/owtITU1l9OjR9O3bl/79+zNr1iyKi4sZM2YMAKNGjaJNmzakpaUBMHHiRAYPHszMmTMZNmwYixYtYuPGjcyfPx8Ak8nEpEmTeOqpp4iPj6dDhw48/vjjxMTEMHz4cKNepoiIiLgRwwPQiBEjOHLkCNOmTSMnJ4eEhASWL1/uaGLOysrCx+f0QNWgQYNYuHAhjz32GFOnTiU+Pp6lS5fSs2dPxzF//vOfKS4u5ne/+x0nT57kqquuYvny5QQFBbn89YmIiIj7MXwdIHekdYBEREQ8T20+vw0fAXJH9kyo9YBEREQ8h/1z+1LGdhSAalBYWAig9YBEREQ8UGFhIWFhYRc8RpfAamCxWDh06BDNmjXDZDIZXU6DKCgoIDY2luzsbF3mO4Pel3PpPTmX3pOa6X05l96TczXke2K1WiksLCQmJqZa/3BNNAJUAx8fH9q2bWt0GS6hdY9qpvflXHpPzqX3pGZ6X86l9+RcDfWeXGzkx04rQYuIiIjXUQASERERr6MA5KUCAwOZPn06gYGBRpfiVvS+nEvvybn0ntRM78u59J6cy13eEzVBi4iIiNfRCJCIiIh4HQUgERER8ToKQCIiIuJ1FIBERETE6ygAeZm0tDT69etHs2bNiIyMZPjw4ezYscPostzKs88+i8lkYtKkSUaXYriDBw/ym9/8hoiICIKDg+nVqxcbN240uizDmM1mHn/8cTp06EBwcDCdOnXiySefvKR9hxqLr776ihtvvJGYmBhMJhNLly6t9nur1cq0adNo3bo1wcHBJCcns2vXLmOKdaELvS8VFRU8+uij9OrVi5CQEGJiYhg1ahSHDh0yrmAXuNh/K2d68MEHMZlMzJo1y2X1KQB5mdWrVzN27FjWrl3LihUrqKio4LrrrqO4uNjo0tzChg0b+Oc//8nll19udCmGO3HiBFdeeSX+/v58+umn/Pjjj8ycOZMWLVoYXZphnnvuOV555RXmzJnD9u3bee6553j++eeZPXu20aW5THFxMb1792bu3Lk1/v7555/n5ZdfZt68eaxbt46QkBBSUlIoLS11caWudaH3paSkhIyMDB5//HEyMjJ4//332bFjBzfddJMBlbrOxf5bsVuyZAlr164lJibGRZVVsYpXy8vLswLW1atXG12K4QoLC63x8fHWFStWWAcPHmydOHGi0SUZ6tFHH7VeddVVRpfhVoYNG2a97777qt13yy23WO+++26DKjIWYF2yZInjZ4vFYo2Ojra+8MILjvtOnjxpDQwMtL799tsGVGiMs9+Xmqxfv94KWA8cOOCaogx2vvfk559/trZp08a6detWa/v27a1///vfXVaTRoC8XH5+PgDh4eEGV2K8sWPHMmzYMJKTk40uxS18+OGH9O3bl9tvv53IyEgSExN59dVXjS7LUIMGDSI9PZ2dO3cCsGXLFr755htuuOEGgytzD/v27SMnJ6fa/4fCwsJISkpizZo1BlbmfvLz8zGZTDRv3tzoUgxjsVi45557eOSRR7jssstc/vzaDNWLWSwWJk2axJVXXknPnj2NLsdQixYtIiMjgw0bNhhditvYu3cvr7zyCqmpqUydOpUNGzYwYcIEAgICGD16tNHlGWLy5MkUFBTQrVs3fH19MZvNPP3009x9991Gl+YWcnJyAIiKiqp2f1RUlON3AqWlpTz66KOMHDnSqzdIfe655/Dz82PChAmGPL8CkBcbO3YsW7du5ZtvvjG6FENlZ2czceJEVqxYQVBQkNHluA2LxULfvn155plnAEhMTGTr1q3MmzfPawPQ//73PxYsWMDChQu57LLLyMzMZNKkScTExHjteyK1U1FRwR133IHVauWVV14xuhzDbNq0iZdeeomMjAxMJpMhNegSmJcaN24cy5YtY+XKlbRt29bocgy1adMm8vLyuOKKK/Dz88PPz4/Vq1fz8ssv4+fnh9lsNrpEQ7Ru3ZoePXpUu6979+5kZWUZVJHxHnnkESZPnsydd95Jr169uOeee/jTn/5EWlqa0aW5hejoaAByc3Or3Z+bm+v4nTezh58DBw6wYsUKrx79+frrr8nLy6Ndu3aOf3cPHDjAQw89RFxcnEtq0AiQl7FarYwfP54lS5awatUqOnToYHRJhhs6dCg//PBDtfvGjBlDt27dePTRR/H19TWoMmNdeeWV5yyRsHPnTtq3b29QRcYrKSnBx6f6342+vr5YLBaDKnIvHTp0IDo6mvT0dBISEgAoKChg3bp1/OEPfzC2OIPZw8+uXbtYuXIlERERRpdkqHvuueecfsuUlBTuuecexowZ45IaFIC8zNixY1m4cCEffPABzZo1c1yXDwsLIzg42ODqjNGsWbNzeqBCQkKIiIjw6t6oP/3pTwwaNIhnnnmGO+64g/Xr1zN//nzmz59vdGmGufHGG3n66adp164dl112GZs3b+bFF1/kvvvuM7o0lykqKmL37t2On/ft20dmZibh4eG0a9eOSZMm8dRTTxEfH0+HDh14/PHHiYmJYfjw4cYV7QIXel9at27NbbfdRkZGBsuWLcNsNjv+7Q0PDycgIMCoshvUxf5bOTsE+vv7Ex0dTdeuXV1ToMvmm4lbAGq8vfHGG0aX5lY0Dd7mo48+svbs2dMaGBho7datm3X+/PlGl2SogoIC68SJE63t2rWzBgUFWTt27Gj9y1/+Yi0rKzO6NJdZuXJljf+GjB492mq12qbCP/7449aoqChrYGCgdejQodYdO3YYW7QLXOh92bdv33n/7V25cqXRpTeYi/23cjZXT4M3Wa1etISpiIiICGqCFhERES+kACQiIiJeRwFIREREvI4CkIiIiHgdBSARERHxOgpAIiIi4nUUgERERMTrKACJiIiI11EAEhG3M2TIECZNmuTS51y1ahUmk4mTJ0+69HlFxBgKQCLi0TZt2oTJZGLt2rU1/n7o0KHccsstLq5KRNydApCIeLQ+ffrQu3dvXn/99XN+t3//flauXMn9999vQGUi4s4UgETE7X388ceEhYWxYMGCGn9///33s3jxYkpKSqrd/+abb9K6dWuuv/56/vOf/9C3b1+aNWtGdHQ0d911F3l5eed9zr/+9a8kJCRUu2/WrFnExcVVu++1116je/fuBAUF0a1bN/7xj3/U6TWKiGspAImIW1u4cCEjR45kwYIF3H333TUec/fdd1NWVsa7777ruM9qtfLWW29x77334uvrS0VFBU8++SRbtmxh6dKl7N+/n3vvvbdetS1YsIBp06bx9NNPs337dp555hkef/xx3nrrrXqdV0Qanp/RBYiInM/cuXP5y1/+wkcffcTgwYPPe1x4eDg333wzr7/+OqNGjQJg5cqV7N+/nzFjxgBw3333OY7v2LEjL7/8Mv369aOoqIimTZvWqb7p06czc+ZMR49Rhw4d+PHHH/nnP//J6NGj63ROEXENBSARcUvvvvsueXl5fPvtt/Tr1++ix993332kpKSwZ88eOnXqxOuvv87gwYPp3LkzYGuW/utf/8qWLVs4ceIEFosFgKysLHr06FHr+oqLi9mzZw/3338/DzzwgOP+yspKwsLCan0+EXEtXQITEbeUmJhIq1ateP3117FarRc9fujQobRr144333yTgoIC3n//fUfzc3FxMSkpKYSGhrJgwQI2bNjAkiVLACgvL6/xfD4+Puc8b0VFheP7oqIiAF599VUyMzMdt61bt553RpqIuA+NAImIW+rUqRMzZ85kyJAh+Pr6MmfOnAse7+Pjw5gxY/jXv/5FmzZtCAgI4LbbbgPgp59+4tixYzz77LPExsYCsHHjxguer1WrVuTk5GC1WjGZTABkZmY6fh8VFUVMTAx79+49b2+SiLgvjQCJiNvq0qULK1eu5L333rukhRHHjBnDwYMHmTp1KiNHjiQ4OBiAdu3aERAQwOzZs9m7dy8ffvghTz755AXPNWTIEI4cOcLzzz/Pnj17mDt3Lp9++mm1Y5544gnS0tJ4+eWX2blzJz/88ANvvPEGL774Yp1fs4i4hgKQiLi1rl278uWXX/L222/z0EMPXfDYdu3akZyczIkTJ6o1Pbdq1Yo333yTd955hx49evDss88yY8aMC56re/fu/OMf/2Du3Ln07t2b9evX8/DDD1c75re//S2vvfYab7zxBr169WLw4MG8+eabdOjQoe4vWERcwmS9lIvrIiIiIo2IRoBERETE6ygAiYiIiNdRABIRERGvowAkIiIiXkcBSERERLyOApCIiIh4HQUgERER8ToKQCIiIuJ1FIBERETE6ygAiYiIiNdRABIRERGv8/9CaGW57UUFSgAAAABJRU5ErkJggg==\n", 141 | "text/plain": [ 142 | "
" 143 | ] 144 | }, 145 | "metadata": {}, 146 | "output_type": "display_data" 147 | } 148 | ], 149 | "source": [ 150 | "from sklearn.neighbors import KNeighborsClassifier\n", 151 | "\n", 152 | "train_error= []\n", 153 | "test_error= []\n", 154 | "for k in range(1,15):\n", 155 | " knn= KNeighborsClassifier(n_neighbors=k)\n", 156 | " knn.fit(X_train_transform,y_train)\n", 157 | " y_pred_train= knn.predict(X_train_transform)\n", 158 | " train_error.append(np.mean(y_train!= y_pred_train))\n", 159 | " y_pred_test= knn.predict(X_test_transform)\n", 160 | " test_error.append(np.mean(y_test!= y_pred_test))\n", 161 | "# plt.figure(figsize(10,5))\n", 162 | "plt.plot(range(1,15),train_error,label=\"train\")\n", 163 | "plt.plot(range(1,15),test_error,label=\"test\")\n", 164 | "plt.xlabel('k Value')\n", 165 | "plt.ylabel('Error')\n", 166 | "plt.legend()" 167 | ] 168 | }, 169 | { 170 | "cell_type": "code", 171 | "execution_count": 7, 172 | "id": "e045c364", 173 | "metadata": {}, 174 | "outputs": [ 175 | { 176 | "data": { 177 | "text/html": [ 178 | "
KNeighborsClassifier(n_neighbors=3)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" 179 | ], 180 | "text/plain": [ 181 | "KNeighborsClassifier(n_neighbors=3)" 182 | ] 183 | }, 184 | "execution_count": 7, 185 | "metadata": {}, 186 | "output_type": "execute_result" 187 | } 188 | ], 189 | "source": [ 190 | "# k = 11\n", 191 | "knn = KNeighborsClassifier(n_neighbors=3)\n", 192 | "knn.fit(X_train_transform,y_train)" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 8, 198 | "id": "80af73d4", 199 | "metadata": {}, 200 | "outputs": [ 201 | { 202 | "data": { 203 | "text/plain": [ 204 | "0.95" 205 | ] 206 | }, 207 | "execution_count": 8, 208 | "metadata": {}, 209 | "output_type": "execute_result" 210 | } 211 | ], 212 | "source": [ 213 | "from sklearn.metrics import accuracy_score\n", 214 | "y_pred = knn.predict(X_test_transform)\n", 215 | "accuracy_score(y_test,y_pred)" 216 | ] 217 | }, 218 | { 219 | "cell_type": "code", 220 | "execution_count": null, 221 | "id": "623a74cd", 222 | "metadata": {}, 223 | "outputs": [], 224 | "source": [] 225 | } 226 | ], 227 | "metadata": { 228 | "kernelspec": { 229 | "display_name": "Python 3 (ipykernel)", 230 | "language": "python", 231 | "name": "python3" 232 | }, 233 | "language_info": { 234 | "codemirror_mode": { 235 | "name": "ipython", 236 | "version": 3 237 | }, 238 | "file_extension": ".py", 239 | "mimetype": "text/x-python", 240 | "name": "python", 241 | "nbconvert_exporter": "python", 242 | "pygments_lexer": "ipython3", 243 | "version": "3.9.12" 244 | } 245 | }, 246 | "nbformat": 4, 247 | "nbformat_minor": 5 248 | } 249 | -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/5. Support Vector Machines.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 17, 6 | "id": "2de33bc4", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import seaborn as sns\n", 14 | "%matplotlib inline" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 18, 20 | "id": "b7e8433c", 21 | "metadata": {}, 22 | "outputs": [ 23 | { 24 | "data": { 25 | "text/html": [ 26 | "
\n", 27 | "\n", 40 | "\n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | "
ageworkclassfnlwgteducationeducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
039State-gov77516Bachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States<=50K
150Self-emp-not-inc83311Bachelors13Married-civ-spouseExec-managerialHusbandWhiteMale0013United-States<=50K
238Private215646HS-grad9DivorcedHandlers-cleanersNot-in-familyWhiteMale0040United-States<=50K
353Private23472111th7Married-civ-spouseHandlers-cleanersHusbandBlackMale0040United-States<=50K
428Private338409Bachelors13Married-civ-spouseProf-specialtyWifeBlackFemale0040Cuba<=50K
\n", 154 | "
" 155 | ], 156 | "text/plain": [ 157 | " age workclass fnlwgt education education-num \\\n", 158 | "0 39 State-gov 77516 Bachelors 13 \n", 159 | "1 50 Self-emp-not-inc 83311 Bachelors 13 \n", 160 | "2 38 Private 215646 HS-grad 9 \n", 161 | "3 53 Private 234721 11th 7 \n", 162 | "4 28 Private 338409 Bachelors 13 \n", 163 | "\n", 164 | " marital-status occupation relationship race sex \\\n", 165 | "0 Never-married Adm-clerical Not-in-family White Male \n", 166 | "1 Married-civ-spouse Exec-managerial Husband White Male \n", 167 | "2 Divorced Handlers-cleaners Not-in-family White Male \n", 168 | "3 Married-civ-spouse Handlers-cleaners Husband Black Male \n", 169 | "4 Married-civ-spouse Prof-specialty Wife Black Female \n", 170 | "\n", 171 | " capital-gain capital-loss hours-per-week native-country income \n", 172 | "0 2174 0 40 United-States <=50K \n", 173 | "1 0 0 13 United-States <=50K \n", 174 | "2 0 0 40 United-States <=50K \n", 175 | "3 0 0 40 United-States <=50K \n", 176 | "4 0 0 40 Cuba <=50K " 177 | ] 178 | }, 179 | "execution_count": 18, 180 | "metadata": {}, 181 | "output_type": "execute_result" 182 | } 183 | ], 184 | "source": [ 185 | "df = pd.read_csv(\"income_evaluation.csv\")\n", 186 | "df.head()" 187 | ] 188 | }, 189 | { 190 | "cell_type": "code", 191 | "execution_count": 19, 192 | "id": "78303d81", 193 | "metadata": {}, 194 | "outputs": [ 195 | { 196 | "data": { 197 | "text/plain": [ 198 | "Index(['age', ' workclass', ' fnlwgt', ' education', ' education-num',\n", 199 | " ' marital-status', ' occupation', ' relationship', ' race', ' sex',\n", 200 | " ' capital-gain', ' capital-loss', ' hours-per-week', ' native-country',\n", 201 | " ' income'],\n", 202 | " dtype='object')" 203 | ] 204 | }, 205 | "execution_count": 19, 206 | "metadata": {}, 207 | "output_type": "execute_result" 208 | } 209 | ], 210 | "source": [ 211 | "df.columns" 212 | ] 213 | }, 214 | { 215 | "cell_type": "code", 216 | "execution_count": 20, 217 | "id": "4d28eef5", 218 | "metadata": {}, 219 | "outputs": [ 220 | { 221 | "data": { 222 | "text/plain": [ 223 | " <=50K 24720\n", 224 | " >50K 7841\n", 225 | "Name: income, dtype: int64" 226 | ] 227 | }, 228 | "execution_count": 20, 229 | "metadata": {}, 230 | "output_type": "execute_result" 231 | } 232 | ], 233 | "source": [ 234 | "df[' income'].value_counts()" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": 21, 240 | "id": "3473c261", 241 | "metadata": {}, 242 | "outputs": [ 243 | { 244 | "data": { 245 | "text/plain": [ 246 | "array([' Never-married', ' Married-civ-spouse', ' Divorced',\n", 247 | " ' Married-spouse-absent', ' Separated', ' Married-AF-spouse',\n", 248 | " ' Widowed'], dtype=object)" 249 | ] 250 | }, 251 | "execution_count": 21, 252 | "metadata": {}, 253 | "output_type": "execute_result" 254 | } 255 | ], 256 | "source": [ 257 | "df[' marital-status'].unique()" 258 | ] 259 | }, 260 | { 261 | "cell_type": "code", 262 | "execution_count": 22, 263 | "id": "34e1f61d", 264 | "metadata": {}, 265 | "outputs": [ 266 | { 267 | "data": { 268 | "text/plain": [ 269 | "['age',\n", 270 | " 'workclass',\n", 271 | " 'fnlwgt',\n", 272 | " 'education',\n", 273 | " 'education-num',\n", 274 | " 'marital-status',\n", 275 | " 'occupation',\n", 276 | " 'relationship',\n", 277 | " 'race',\n", 278 | " 'sex',\n", 279 | " 'capital-gain',\n", 280 | " 'capital-loss',\n", 281 | " 'hours-per-week',\n", 282 | " 'native-country',\n", 283 | " 'income']" 284 | ] 285 | }, 286 | "execution_count": 22, 287 | "metadata": {}, 288 | "output_type": "execute_result" 289 | } 290 | ], 291 | "source": [ 292 | "col_names = df.columns\n", 293 | "col_names = [v.strip() for v in col_names]\n", 294 | "col_names" 295 | ] 296 | }, 297 | { 298 | "cell_type": "code", 299 | "execution_count": 23, 300 | "id": "4b509bd8", 301 | "metadata": {}, 302 | "outputs": [], 303 | "source": [ 304 | "df.columns = col_names\n", 305 | "df.drop(columns=\"fnlwgt\",inplace=True)" 306 | ] 307 | }, 308 | { 309 | "cell_type": "code", 310 | "execution_count": 24, 311 | "id": "cfd17372", 312 | "metadata": {}, 313 | "outputs": [ 314 | { 315 | "data": { 316 | "text/html": [ 317 | "
\n", 318 | "\n", 331 | "\n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | "
ageworkclasseducationeducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
039State-govBachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States<=50K
150Self-emp-not-incBachelors13Married-civ-spouseExec-managerialHusbandWhiteMale0013United-States<=50K
238PrivateHS-grad9DivorcedHandlers-cleanersNot-in-familyWhiteMale0040United-States<=50K
353Private11th7Married-civ-spouseHandlers-cleanersHusbandBlackMale0040United-States<=50K
428PrivateBachelors13Married-civ-spouseProf-specialtyWifeBlackFemale0040Cuba<=50K
\n", 439 | "
" 440 | ], 441 | "text/plain": [ 442 | " age workclass education education-num marital-status \\\n", 443 | "0 39 State-gov Bachelors 13 Never-married \n", 444 | "1 50 Self-emp-not-inc Bachelors 13 Married-civ-spouse \n", 445 | "2 38 Private HS-grad 9 Divorced \n", 446 | "3 53 Private 11th 7 Married-civ-spouse \n", 447 | "4 28 Private Bachelors 13 Married-civ-spouse \n", 448 | "\n", 449 | " occupation relationship race sex capital-gain \\\n", 450 | "0 Adm-clerical Not-in-family White Male 2174 \n", 451 | "1 Exec-managerial Husband White Male 0 \n", 452 | "2 Handlers-cleaners Not-in-family White Male 0 \n", 453 | "3 Handlers-cleaners Husband Black Male 0 \n", 454 | "4 Prof-specialty Wife Black Female 0 \n", 455 | "\n", 456 | " capital-loss hours-per-week native-country income \n", 457 | "0 0 40 United-States <=50K \n", 458 | "1 0 13 United-States <=50K \n", 459 | "2 0 40 United-States <=50K \n", 460 | "3 0 40 United-States <=50K \n", 461 | "4 0 40 Cuba <=50K " 462 | ] 463 | }, 464 | "execution_count": 24, 465 | "metadata": {}, 466 | "output_type": "execute_result" 467 | } 468 | ], 469 | "source": [ 470 | "df.head()" 471 | ] 472 | }, 473 | { 474 | "cell_type": "code", 475 | "execution_count": 25, 476 | "id": "b700e726", 477 | "metadata": {}, 478 | "outputs": [ 479 | { 480 | "data": { 481 | "text/plain": [ 482 | "age 0\n", 483 | "workclass 0\n", 484 | "education 0\n", 485 | "education-num 0\n", 486 | "marital-status 0\n", 487 | "occupation 0\n", 488 | "relationship 0\n", 489 | "race 0\n", 490 | "sex 0\n", 491 | "capital-gain 0\n", 492 | "capital-loss 0\n", 493 | "hours-per-week 0\n", 494 | "native-country 0\n", 495 | "income 0\n", 496 | "dtype: int64" 497 | ] 498 | }, 499 | "execution_count": 25, 500 | "metadata": {}, 501 | "output_type": "execute_result" 502 | } 503 | ], 504 | "source": [ 505 | "df.isnull().sum()" 506 | ] 507 | }, 508 | { 509 | "cell_type": "code", 510 | "execution_count": 26, 511 | "id": "eacc0e26", 512 | "metadata": {}, 513 | "outputs": [], 514 | "source": [ 515 | "bins = [16,24,64,90]\n", 516 | "labels=['young','adult','old']\n", 517 | "df['age_types'] = pd.cut(df['age'], bins=bins,labels=labels)\n", 518 | "df['income_num'] = np.where(df['income'] == \" >50K\",1,0).astype('int16')" 519 | ] 520 | }, 521 | { 522 | "cell_type": "code", 523 | "execution_count": 27, 524 | "id": "719aaa18", 525 | "metadata": {}, 526 | "outputs": [ 527 | { 528 | "data": { 529 | "text/html": [ 530 | "
\n", 531 | "\n", 544 | "\n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | "
ageworkclasseducationeducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincomeage_typesincome_num
039State-govBachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States<=50Kadult0
150Self-emp-not-incBachelors13Married-civ-spouseExec-managerialHusbandWhiteMale0013United-States<=50Kadult0
238PrivateHS-grad9DivorcedHandlers-cleanersNot-in-familyWhiteMale0040United-States<=50Kadult0
353Private11th7Married-civ-spouseHandlers-cleanersHusbandBlackMale0040United-States<=50Kadult0
428PrivateBachelors13Married-civ-spouseProf-specialtyWifeBlackFemale0040Cuba<=50Kadult0
\n", 664 | "
" 665 | ], 666 | "text/plain": [ 667 | " age workclass education education-num marital-status \\\n", 668 | "0 39 State-gov Bachelors 13 Never-married \n", 669 | "1 50 Self-emp-not-inc Bachelors 13 Married-civ-spouse \n", 670 | "2 38 Private HS-grad 9 Divorced \n", 671 | "3 53 Private 11th 7 Married-civ-spouse \n", 672 | "4 28 Private Bachelors 13 Married-civ-spouse \n", 673 | "\n", 674 | " occupation relationship race sex capital-gain \\\n", 675 | "0 Adm-clerical Not-in-family White Male 2174 \n", 676 | "1 Exec-managerial Husband White Male 0 \n", 677 | "2 Handlers-cleaners Not-in-family White Male 0 \n", 678 | "3 Handlers-cleaners Husband Black Male 0 \n", 679 | "4 Prof-specialty Wife Black Female 0 \n", 680 | "\n", 681 | " capital-loss hours-per-week native-country income age_types income_num \n", 682 | "0 0 40 United-States <=50K adult 0 \n", 683 | "1 0 13 United-States <=50K adult 0 \n", 684 | "2 0 40 United-States <=50K adult 0 \n", 685 | "3 0 40 United-States <=50K adult 0 \n", 686 | "4 0 40 Cuba <=50K adult 0 " 687 | ] 688 | }, 689 | "execution_count": 27, 690 | "metadata": {}, 691 | "output_type": "execute_result" 692 | } 693 | ], 694 | "source": [ 695 | "df.head()" 696 | ] 697 | }, 698 | { 699 | "cell_type": "code", 700 | "execution_count": 28, 701 | "id": "01261068", 702 | "metadata": {}, 703 | "outputs": [], 704 | "source": [ 705 | "df.loc[df['workclass']=='?', 'workclass']= np.NaN\n", 706 | "df.loc[df['occupation']=='?', 'occupation']= np.NaN\n", 707 | "df.loc[df['native-country']=='?', 'native_country']= np.NaN" 708 | ] 709 | }, 710 | { 711 | "cell_type": "code", 712 | "execution_count": 32, 713 | "id": "d2de6659", 714 | "metadata": {}, 715 | "outputs": [], 716 | "source": [ 717 | "df = df.dropna(axis=1)" 718 | ] 719 | }, 720 | { 721 | "cell_type": "code", 722 | "execution_count": 35, 723 | "id": "2fa5c0d5", 724 | "metadata": {}, 725 | "outputs": [], 726 | "source": [ 727 | "from sklearn.preprocessing import LabelEncoder\n", 728 | "def label_encoder(a):\n", 729 | " le = LabelEncoder()\n", 730 | " df[a] = le.fit_transform(df[a])\n", 731 | "label_list = ['workclass', 'education','marital-status',\n", 732 | " 'occupation', 'relationship', 'race', 'sex','native-country', 'income']\n", 733 | "for i in label_list:\n", 734 | " label_encoder(i)" 735 | ] 736 | }, 737 | { 738 | "cell_type": "code", 739 | "execution_count": 36, 740 | "id": "2522fdf5", 741 | "metadata": {}, 742 | "outputs": [], 743 | "source": [ 744 | "from sklearn.preprocessing import MinMaxScaler" 745 | ] 746 | }, 747 | { 748 | "cell_type": "code", 749 | "execution_count": 37, 750 | "id": "17a89425", 751 | "metadata": {}, 752 | "outputs": [], 753 | "source": [ 754 | "scaler = MinMaxScaler()" 755 | ] 756 | }, 757 | { 758 | "cell_type": "code", 759 | "execution_count": 38, 760 | "id": "87613583", 761 | "metadata": {}, 762 | "outputs": [ 763 | { 764 | "data": { 765 | "text/html": [ 766 | "
MinMaxScaler()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" 767 | ], 768 | "text/plain": [ 769 | "MinMaxScaler()" 770 | ] 771 | }, 772 | "execution_count": 38, 773 | "metadata": {}, 774 | "output_type": "execute_result" 775 | } 776 | ], 777 | "source": [ 778 | "scaler.fit(df.drop(['income','age_types','income_num'],axis=1))" 779 | ] 780 | }, 781 | { 782 | "cell_type": "code", 783 | "execution_count": 39, 784 | "id": "34ed8a08", 785 | "metadata": {}, 786 | "outputs": [], 787 | "source": [ 788 | "scaled_features = scaler.transform(df.drop(['income','age_types','income_num'],axis=1))" 789 | ] 790 | }, 791 | { 792 | "cell_type": "code", 793 | "execution_count": 40, 794 | "id": "80d9d538", 795 | "metadata": {}, 796 | "outputs": [], 797 | "source": [ 798 | "columns=['age', 'workclass', 'education', 'education_num', 'marital_status',\n", 799 | " 'occupation', 'relationship', 'race', 'sex', 'capital_gain',\n", 800 | " 'capital_loss', 'hours_per_week', 'native_country']" 801 | ] 802 | }, 803 | { 804 | "cell_type": "code", 805 | "execution_count": 41, 806 | "id": "b1023508", 807 | "metadata": {}, 808 | "outputs": [ 809 | { 810 | "data": { 811 | "text/html": [ 812 | "
\n", 813 | "\n", 826 | "\n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | "
ageworkclasseducationeducation_nummarital_statusoccupationrelationshipracesexcapital_gaincapital_losshours_per_weeknative_country
00.3013700.8750.6000000.8000000.6666670.0714290.21.01.00.021740.00.3979590.951220
10.4520550.7500.6000000.8000000.3333330.2857140.01.01.00.000000.00.1224490.951220
20.2876710.5000.7333330.5333330.0000000.4285710.21.01.00.000000.00.3979590.951220
30.4931510.5000.0666670.4000000.3333330.4285710.00.51.00.000000.00.3979590.951220
40.1506850.5000.6000000.8000000.3333330.7142861.00.50.00.000000.00.3979590.121951
\n", 928 | "
" 929 | ], 930 | "text/plain": [ 931 | " age workclass education education_num marital_status occupation \\\n", 932 | "0 0.301370 0.875 0.600000 0.800000 0.666667 0.071429 \n", 933 | "1 0.452055 0.750 0.600000 0.800000 0.333333 0.285714 \n", 934 | "2 0.287671 0.500 0.733333 0.533333 0.000000 0.428571 \n", 935 | "3 0.493151 0.500 0.066667 0.400000 0.333333 0.428571 \n", 936 | "4 0.150685 0.500 0.600000 0.800000 0.333333 0.714286 \n", 937 | "\n", 938 | " relationship race sex capital_gain capital_loss hours_per_week \\\n", 939 | "0 0.2 1.0 1.0 0.02174 0.0 0.397959 \n", 940 | "1 0.0 1.0 1.0 0.00000 0.0 0.122449 \n", 941 | "2 0.2 1.0 1.0 0.00000 0.0 0.397959 \n", 942 | "3 0.0 0.5 1.0 0.00000 0.0 0.397959 \n", 943 | "4 1.0 0.5 0.0 0.00000 0.0 0.397959 \n", 944 | "\n", 945 | " native_country \n", 946 | "0 0.951220 \n", 947 | "1 0.951220 \n", 948 | "2 0.951220 \n", 949 | "3 0.951220 \n", 950 | "4 0.121951 " 951 | ] 952 | }, 953 | "execution_count": 41, 954 | "metadata": {}, 955 | "output_type": "execute_result" 956 | } 957 | ], 958 | "source": [ 959 | "df_scaled = pd.DataFrame(scaled_features,columns=columns)\n", 960 | "df_scaled.head()" 961 | ] 962 | }, 963 | { 964 | "cell_type": "code", 965 | "execution_count": 43, 966 | "id": "013bb6eb", 967 | "metadata": {}, 968 | "outputs": [ 969 | { 970 | "name": "stdout", 971 | "output_type": "stream", 972 | "text": [ 973 | "Train Score: 0.8301671378391384\n", 974 | "Test Score: 0.8332987336516504\n" 975 | ] 976 | } 977 | ], 978 | "source": [ 979 | "from imblearn.combine import SMOTETomek\n", 980 | "from imblearn.under_sampling import NearMiss\n", 981 | "\n", 982 | "X = df_scaled\n", 983 | "y= df.income\n", 984 | "\n", 985 | "# Implementing Oversampling for Handling Imbalanced \n", 986 | "smk = SMOTETomek(random_state=42)\n", 987 | "X_res,y_res=smk.fit_resample(X,y)\n", 988 | "\n", 989 | "from sklearn.model_selection import train_test_split\n", 990 | "X_train, X_test, y_train, y_test = train_test_split(X_res,y_res,test_size=0.20,random_state=101,shuffle=True)\n", 991 | "from sklearn.model_selection import cross_val_score\n", 992 | "\n", 993 | "from sklearn.svm import SVC\n", 994 | "svc = SVC(random_state = 101)\n", 995 | "accuracies = cross_val_score(svc, X_train, y_train, cv=5)\n", 996 | "svc.fit(X_train,y_train)\n", 997 | "\n", 998 | "print(\"Train Score:\",np.mean(accuracies))\n", 999 | "print(\"Test Score:\",svc.score(X_test,y_test))" 1000 | ] 1001 | }, 1002 | { 1003 | "cell_type": "code", 1004 | "execution_count": null, 1005 | "id": "40909656", 1006 | "metadata": {}, 1007 | "outputs": [], 1008 | "source": [] 1009 | } 1010 | ], 1011 | "metadata": { 1012 | "kernelspec": { 1013 | "display_name": "Python 3 (ipykernel)", 1014 | "language": "python", 1015 | "name": "python3" 1016 | }, 1017 | "language_info": { 1018 | "codemirror_mode": { 1019 | "name": "ipython", 1020 | "version": 3 1021 | }, 1022 | "file_extension": ".py", 1023 | "mimetype": "text/x-python", 1024 | "name": "python", 1025 | "nbconvert_exporter": "python", 1026 | "pygments_lexer": "ipython3", 1027 | "version": "3.9.12" 1028 | } 1029 | }, 1030 | "nbformat": 4, 1031 | "nbformat_minor": 5 1032 | } 1033 | -------------------------------------------------------------------------------- /1.machine-learning-fundamentals/7. XgBoost.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "b5bfd015", 6 | "metadata": {}, 7 | "source": [ 8 | "# XGBoost" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "id": "33ac4a4b", 15 | "metadata": {}, 16 | "outputs": [ 17 | { 18 | "name": "stdout", 19 | "output_type": "stream", 20 | "text": [ 21 | "Requirement already satisfied: xgboost in /Users/nachikethpro/opt/miniconda3/lib/python3.9/site-packages (1.7.5)\n", 22 | "Requirement already satisfied: numpy in /Users/nachikethpro/opt/miniconda3/lib/python3.9/site-packages (from xgboost) (1.24.1)\n", 23 | "Requirement already satisfied: scipy in /Users/nachikethpro/opt/miniconda3/lib/python3.9/site-packages (from xgboost) (1.10.0)\n" 24 | ] 25 | } 26 | ], 27 | "source": [ 28 | "!pip install xgboost" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 2, 34 | "id": "2de33bc4", 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "import pandas as pd\n", 39 | "import numpy as np\n", 40 | "import matplotlib.pyplot as plt\n", 41 | "import seaborn as sns\n", 42 | "%matplotlib inline" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": 3, 48 | "id": "b7e8433c", 49 | "metadata": {}, 50 | "outputs": [ 51 | { 52 | "data": { 53 | "text/html": [ 54 | "
\n", 55 | "\n", 68 | "\n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | "
ageworkclassfnlwgteducationeducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
039State-gov77516Bachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States<=50K
150Self-emp-not-inc83311Bachelors13Married-civ-spouseExec-managerialHusbandWhiteMale0013United-States<=50K
238Private215646HS-grad9DivorcedHandlers-cleanersNot-in-familyWhiteMale0040United-States<=50K
353Private23472111th7Married-civ-spouseHandlers-cleanersHusbandBlackMale0040United-States<=50K
428Private338409Bachelors13Married-civ-spouseProf-specialtyWifeBlackFemale0040Cuba<=50K
\n", 182 | "
" 183 | ], 184 | "text/plain": [ 185 | " age workclass fnlwgt education education-num \\\n", 186 | "0 39 State-gov 77516 Bachelors 13 \n", 187 | "1 50 Self-emp-not-inc 83311 Bachelors 13 \n", 188 | "2 38 Private 215646 HS-grad 9 \n", 189 | "3 53 Private 234721 11th 7 \n", 190 | "4 28 Private 338409 Bachelors 13 \n", 191 | "\n", 192 | " marital-status occupation relationship race sex \\\n", 193 | "0 Never-married Adm-clerical Not-in-family White Male \n", 194 | "1 Married-civ-spouse Exec-managerial Husband White Male \n", 195 | "2 Divorced Handlers-cleaners Not-in-family White Male \n", 196 | "3 Married-civ-spouse Handlers-cleaners Husband Black Male \n", 197 | "4 Married-civ-spouse Prof-specialty Wife Black Female \n", 198 | "\n", 199 | " capital-gain capital-loss hours-per-week native-country income \n", 200 | "0 2174 0 40 United-States <=50K \n", 201 | "1 0 0 13 United-States <=50K \n", 202 | "2 0 0 40 United-States <=50K \n", 203 | "3 0 0 40 United-States <=50K \n", 204 | "4 0 0 40 Cuba <=50K " 205 | ] 206 | }, 207 | "execution_count": 3, 208 | "metadata": {}, 209 | "output_type": "execute_result" 210 | } 211 | ], 212 | "source": [ 213 | "df = pd.read_csv(\"income_evaluation.csv\")\n", 214 | "df.head()" 215 | ] 216 | }, 217 | { 218 | "cell_type": "code", 219 | "execution_count": 4, 220 | "id": "78303d81", 221 | "metadata": {}, 222 | "outputs": [ 223 | { 224 | "data": { 225 | "text/plain": [ 226 | "Index(['age', ' workclass', ' fnlwgt', ' education', ' education-num',\n", 227 | " ' marital-status', ' occupation', ' relationship', ' race', ' sex',\n", 228 | " ' capital-gain', ' capital-loss', ' hours-per-week', ' native-country',\n", 229 | " ' income'],\n", 230 | " dtype='object')" 231 | ] 232 | }, 233 | "execution_count": 4, 234 | "metadata": {}, 235 | "output_type": "execute_result" 236 | } 237 | ], 238 | "source": [ 239 | "df.columns" 240 | ] 241 | }, 242 | { 243 | "cell_type": "code", 244 | "execution_count": 5, 245 | "id": "4d28eef5", 246 | "metadata": {}, 247 | "outputs": [ 248 | { 249 | "data": { 250 | "text/plain": [ 251 | " <=50K 24720\n", 252 | " >50K 7841\n", 253 | "Name: income, dtype: int64" 254 | ] 255 | }, 256 | "execution_count": 5, 257 | "metadata": {}, 258 | "output_type": "execute_result" 259 | } 260 | ], 261 | "source": [ 262 | "df[' income'].value_counts()" 263 | ] 264 | }, 265 | { 266 | "cell_type": "code", 267 | "execution_count": 6, 268 | "id": "3473c261", 269 | "metadata": {}, 270 | "outputs": [ 271 | { 272 | "data": { 273 | "text/plain": [ 274 | "array([' Never-married', ' Married-civ-spouse', ' Divorced',\n", 275 | " ' Married-spouse-absent', ' Separated', ' Married-AF-spouse',\n", 276 | " ' Widowed'], dtype=object)" 277 | ] 278 | }, 279 | "execution_count": 6, 280 | "metadata": {}, 281 | "output_type": "execute_result" 282 | } 283 | ], 284 | "source": [ 285 | "df[' marital-status'].unique()" 286 | ] 287 | }, 288 | { 289 | "cell_type": "code", 290 | "execution_count": 7, 291 | "id": "34e1f61d", 292 | "metadata": {}, 293 | "outputs": [ 294 | { 295 | "data": { 296 | "text/plain": [ 297 | "['age',\n", 298 | " 'workclass',\n", 299 | " 'fnlwgt',\n", 300 | " 'education',\n", 301 | " 'education-num',\n", 302 | " 'marital-status',\n", 303 | " 'occupation',\n", 304 | " 'relationship',\n", 305 | " 'race',\n", 306 | " 'sex',\n", 307 | " 'capital-gain',\n", 308 | " 'capital-loss',\n", 309 | " 'hours-per-week',\n", 310 | " 'native-country',\n", 311 | " 'income']" 312 | ] 313 | }, 314 | "execution_count": 7, 315 | "metadata": {}, 316 | "output_type": "execute_result" 317 | } 318 | ], 319 | "source": [ 320 | "col_names = df.columns\n", 321 | "col_names = [v.strip() for v in col_names]\n", 322 | "col_names" 323 | ] 324 | }, 325 | { 326 | "cell_type": "code", 327 | "execution_count": 8, 328 | "id": "4b509bd8", 329 | "metadata": {}, 330 | "outputs": [], 331 | "source": [ 332 | "df.columns = col_names\n", 333 | "df.drop(columns=\"fnlwgt\",inplace=True)" 334 | ] 335 | }, 336 | { 337 | "cell_type": "code", 338 | "execution_count": 9, 339 | "id": "cfd17372", 340 | "metadata": {}, 341 | "outputs": [ 342 | { 343 | "data": { 344 | "text/html": [ 345 | "
\n", 346 | "\n", 359 | "\n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | "
ageworkclasseducationeducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
039State-govBachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States<=50K
150Self-emp-not-incBachelors13Married-civ-spouseExec-managerialHusbandWhiteMale0013United-States<=50K
238PrivateHS-grad9DivorcedHandlers-cleanersNot-in-familyWhiteMale0040United-States<=50K
353Private11th7Married-civ-spouseHandlers-cleanersHusbandBlackMale0040United-States<=50K
428PrivateBachelors13Married-civ-spouseProf-specialtyWifeBlackFemale0040Cuba<=50K
\n", 467 | "
" 468 | ], 469 | "text/plain": [ 470 | " age workclass education education-num marital-status \\\n", 471 | "0 39 State-gov Bachelors 13 Never-married \n", 472 | "1 50 Self-emp-not-inc Bachelors 13 Married-civ-spouse \n", 473 | "2 38 Private HS-grad 9 Divorced \n", 474 | "3 53 Private 11th 7 Married-civ-spouse \n", 475 | "4 28 Private Bachelors 13 Married-civ-spouse \n", 476 | "\n", 477 | " occupation relationship race sex capital-gain \\\n", 478 | "0 Adm-clerical Not-in-family White Male 2174 \n", 479 | "1 Exec-managerial Husband White Male 0 \n", 480 | "2 Handlers-cleaners Not-in-family White Male 0 \n", 481 | "3 Handlers-cleaners Husband Black Male 0 \n", 482 | "4 Prof-specialty Wife Black Female 0 \n", 483 | "\n", 484 | " capital-loss hours-per-week native-country income \n", 485 | "0 0 40 United-States <=50K \n", 486 | "1 0 13 United-States <=50K \n", 487 | "2 0 40 United-States <=50K \n", 488 | "3 0 40 United-States <=50K \n", 489 | "4 0 40 Cuba <=50K " 490 | ] 491 | }, 492 | "execution_count": 9, 493 | "metadata": {}, 494 | "output_type": "execute_result" 495 | } 496 | ], 497 | "source": [ 498 | "df.head()" 499 | ] 500 | }, 501 | { 502 | "cell_type": "code", 503 | "execution_count": 10, 504 | "id": "b700e726", 505 | "metadata": {}, 506 | "outputs": [ 507 | { 508 | "data": { 509 | "text/plain": [ 510 | "age 0\n", 511 | "workclass 0\n", 512 | "education 0\n", 513 | "education-num 0\n", 514 | "marital-status 0\n", 515 | "occupation 0\n", 516 | "relationship 0\n", 517 | "race 0\n", 518 | "sex 0\n", 519 | "capital-gain 0\n", 520 | "capital-loss 0\n", 521 | "hours-per-week 0\n", 522 | "native-country 0\n", 523 | "income 0\n", 524 | "dtype: int64" 525 | ] 526 | }, 527 | "execution_count": 10, 528 | "metadata": {}, 529 | "output_type": "execute_result" 530 | } 531 | ], 532 | "source": [ 533 | "df.isnull().sum()" 534 | ] 535 | }, 536 | { 537 | "cell_type": "code", 538 | "execution_count": 11, 539 | "id": "eacc0e26", 540 | "metadata": {}, 541 | "outputs": [], 542 | "source": [ 543 | "bins = [16,24,64,90]\n", 544 | "labels=['young','adult','old']\n", 545 | "df['age_types'] = pd.cut(df['age'], bins=bins,labels=labels)\n", 546 | "df['income_num'] = np.where(df['income'] == \" >50K\",1,0).astype('int16')" 547 | ] 548 | }, 549 | { 550 | "cell_type": "code", 551 | "execution_count": 12, 552 | "id": "719aaa18", 553 | "metadata": {}, 554 | "outputs": [ 555 | { 556 | "data": { 557 | "text/html": [ 558 | "
\n", 559 | "\n", 572 | "\n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | "
ageworkclasseducationeducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincomeage_typesincome_num
039State-govBachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States<=50Kadult0
150Self-emp-not-incBachelors13Married-civ-spouseExec-managerialHusbandWhiteMale0013United-States<=50Kadult0
238PrivateHS-grad9DivorcedHandlers-cleanersNot-in-familyWhiteMale0040United-States<=50Kadult0
353Private11th7Married-civ-spouseHandlers-cleanersHusbandBlackMale0040United-States<=50Kadult0
428PrivateBachelors13Married-civ-spouseProf-specialtyWifeBlackFemale0040Cuba<=50Kadult0
\n", 692 | "
" 693 | ], 694 | "text/plain": [ 695 | " age workclass education education-num marital-status \\\n", 696 | "0 39 State-gov Bachelors 13 Never-married \n", 697 | "1 50 Self-emp-not-inc Bachelors 13 Married-civ-spouse \n", 698 | "2 38 Private HS-grad 9 Divorced \n", 699 | "3 53 Private 11th 7 Married-civ-spouse \n", 700 | "4 28 Private Bachelors 13 Married-civ-spouse \n", 701 | "\n", 702 | " occupation relationship race sex capital-gain \\\n", 703 | "0 Adm-clerical Not-in-family White Male 2174 \n", 704 | "1 Exec-managerial Husband White Male 0 \n", 705 | "2 Handlers-cleaners Not-in-family White Male 0 \n", 706 | "3 Handlers-cleaners Husband Black Male 0 \n", 707 | "4 Prof-specialty Wife Black Female 0 \n", 708 | "\n", 709 | " capital-loss hours-per-week native-country income age_types income_num \n", 710 | "0 0 40 United-States <=50K adult 0 \n", 711 | "1 0 13 United-States <=50K adult 0 \n", 712 | "2 0 40 United-States <=50K adult 0 \n", 713 | "3 0 40 United-States <=50K adult 0 \n", 714 | "4 0 40 Cuba <=50K adult 0 " 715 | ] 716 | }, 717 | "execution_count": 12, 718 | "metadata": {}, 719 | "output_type": "execute_result" 720 | } 721 | ], 722 | "source": [ 723 | "df.head()" 724 | ] 725 | }, 726 | { 727 | "cell_type": "code", 728 | "execution_count": 13, 729 | "id": "01261068", 730 | "metadata": {}, 731 | "outputs": [], 732 | "source": [ 733 | "df.loc[df['workclass']=='?', 'workclass']= np.NaN\n", 734 | "df.loc[df['occupation']=='?', 'occupation']= np.NaN\n", 735 | "df.loc[df['native-country']=='?', 'native_country']= np.NaN" 736 | ] 737 | }, 738 | { 739 | "cell_type": "code", 740 | "execution_count": 14, 741 | "id": "d2de6659", 742 | "metadata": {}, 743 | "outputs": [], 744 | "source": [ 745 | "df = df.dropna(axis=1)" 746 | ] 747 | }, 748 | { 749 | "cell_type": "code", 750 | "execution_count": 15, 751 | "id": "2fa5c0d5", 752 | "metadata": {}, 753 | "outputs": [], 754 | "source": [ 755 | "from sklearn.preprocessing import LabelEncoder\n", 756 | "def label_encoder(a):\n", 757 | " le = LabelEncoder()\n", 758 | " df[a] = le.fit_transform(df[a])\n", 759 | "label_list = ['workclass', 'education','marital-status',\n", 760 | " 'occupation', 'relationship', 'race', 'sex','native-country', 'income']\n", 761 | "for i in label_list:\n", 762 | " label_encoder(i)" 763 | ] 764 | }, 765 | { 766 | "cell_type": "code", 767 | "execution_count": 16, 768 | "id": "2522fdf5", 769 | "metadata": {}, 770 | "outputs": [], 771 | "source": [ 772 | "from sklearn.preprocessing import MinMaxScaler" 773 | ] 774 | }, 775 | { 776 | "cell_type": "code", 777 | "execution_count": 17, 778 | "id": "17a89425", 779 | "metadata": {}, 780 | "outputs": [], 781 | "source": [ 782 | "scaler = MinMaxScaler()" 783 | ] 784 | }, 785 | { 786 | "cell_type": "code", 787 | "execution_count": 18, 788 | "id": "87613583", 789 | "metadata": {}, 790 | "outputs": [ 791 | { 792 | "data": { 793 | "text/html": [ 794 | "
MinMaxScaler()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" 795 | ], 796 | "text/plain": [ 797 | "MinMaxScaler()" 798 | ] 799 | }, 800 | "execution_count": 18, 801 | "metadata": {}, 802 | "output_type": "execute_result" 803 | } 804 | ], 805 | "source": [ 806 | "scaler.fit(df.drop(['income','age_types','income_num'],axis=1))" 807 | ] 808 | }, 809 | { 810 | "cell_type": "code", 811 | "execution_count": 19, 812 | "id": "34ed8a08", 813 | "metadata": {}, 814 | "outputs": [], 815 | "source": [ 816 | "scaled_features = scaler.transform(df.drop(['income','age_types','income_num'],axis=1))" 817 | ] 818 | }, 819 | { 820 | "cell_type": "code", 821 | "execution_count": 20, 822 | "id": "80d9d538", 823 | "metadata": {}, 824 | "outputs": [], 825 | "source": [ 826 | "columns=['age', 'workclass', 'education', 'education_num', 'marital_status',\n", 827 | " 'occupation', 'relationship', 'race', 'sex', 'capital_gain',\n", 828 | " 'capital_loss', 'hours_per_week', 'native_country']" 829 | ] 830 | }, 831 | { 832 | "cell_type": "code", 833 | "execution_count": 21, 834 | "id": "b1023508", 835 | "metadata": {}, 836 | "outputs": [ 837 | { 838 | "data": { 839 | "text/html": [ 840 | "
\n", 841 | "\n", 854 | "\n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | "
ageworkclasseducationeducation_nummarital_statusoccupationrelationshipracesexcapital_gaincapital_losshours_per_weeknative_country
00.3013700.8750.6000000.8000000.6666670.0714290.21.01.00.021740.00.3979590.951220
10.4520550.7500.6000000.8000000.3333330.2857140.01.01.00.000000.00.1224490.951220
20.2876710.5000.7333330.5333330.0000000.4285710.21.01.00.000000.00.3979590.951220
30.4931510.5000.0666670.4000000.3333330.4285710.00.51.00.000000.00.3979590.951220
40.1506850.5000.6000000.8000000.3333330.7142861.00.50.00.000000.00.3979590.121951
\n", 956 | "
" 957 | ], 958 | "text/plain": [ 959 | " age workclass education education_num marital_status occupation \\\n", 960 | "0 0.301370 0.875 0.600000 0.800000 0.666667 0.071429 \n", 961 | "1 0.452055 0.750 0.600000 0.800000 0.333333 0.285714 \n", 962 | "2 0.287671 0.500 0.733333 0.533333 0.000000 0.428571 \n", 963 | "3 0.493151 0.500 0.066667 0.400000 0.333333 0.428571 \n", 964 | "4 0.150685 0.500 0.600000 0.800000 0.333333 0.714286 \n", 965 | "\n", 966 | " relationship race sex capital_gain capital_loss hours_per_week \\\n", 967 | "0 0.2 1.0 1.0 0.02174 0.0 0.397959 \n", 968 | "1 0.0 1.0 1.0 0.00000 0.0 0.122449 \n", 969 | "2 0.2 1.0 1.0 0.00000 0.0 0.397959 \n", 970 | "3 0.0 0.5 1.0 0.00000 0.0 0.397959 \n", 971 | "4 1.0 0.5 0.0 0.00000 0.0 0.397959 \n", 972 | "\n", 973 | " native_country \n", 974 | "0 0.951220 \n", 975 | "1 0.951220 \n", 976 | "2 0.951220 \n", 977 | "3 0.951220 \n", 978 | "4 0.121951 " 979 | ] 980 | }, 981 | "execution_count": 21, 982 | "metadata": {}, 983 | "output_type": "execute_result" 984 | } 985 | ], 986 | "source": [ 987 | "df_scaled = pd.DataFrame(scaled_features,columns=columns)\n", 988 | "df_scaled.head()" 989 | ] 990 | }, 991 | { 992 | "cell_type": "code", 993 | "execution_count": 22, 994 | "id": "013bb6eb", 995 | "metadata": {}, 996 | "outputs": [], 997 | "source": [ 998 | "from imblearn.combine import SMOTETomek\n", 999 | "from imblearn.under_sampling import NearMiss\n", 1000 | "\n", 1001 | "X = df_scaled\n", 1002 | "y= df.income\n", 1003 | "\n", 1004 | "# Implementing Oversampling for Handling Imbalanced \n", 1005 | "smk = SMOTETomek(random_state=42)\n", 1006 | "X_res,y_res=smk.fit_resample(X,y)\n", 1007 | "\n", 1008 | "from sklearn.model_selection import train_test_split\n", 1009 | "X_train, X_test, y_train, y_test = train_test_split(X_res,y_res,test_size=0.20,random_state=101,shuffle=True)" 1010 | ] 1011 | }, 1012 | { 1013 | "cell_type": "code", 1014 | "execution_count": 23, 1015 | "id": "40909656", 1016 | "metadata": {}, 1017 | "outputs": [], 1018 | "source": [ 1019 | "import xgboost as xgb" 1020 | ] 1021 | }, 1022 | { 1023 | "cell_type": "code", 1024 | "execution_count": 24, 1025 | "id": "4c4f556a", 1026 | "metadata": {}, 1027 | "outputs": [], 1028 | "source": [ 1029 | "dtrain = xgb.DMatrix(X_train, label=y_train, feature_names=X_train.columns)\n", 1030 | "dtest = xgb.DMatrix(X_test, label=y_test, feature_names=X_train.columns)" 1031 | ] 1032 | }, 1033 | { 1034 | "cell_type": "code", 1035 | "execution_count": 26, 1036 | "id": "00379905", 1037 | "metadata": {}, 1038 | "outputs": [], 1039 | "source": [ 1040 | "xgb_params = {\n", 1041 | " 'eta': 0.3,\n", 1042 | " 'max_depth': 6,\n", 1043 | " 'min_child_weight': 1,\n", 1044 | " \n", 1045 | " 'objective': 'binary:logistic',\n", 1046 | " 'nthread': 8,\n", 1047 | " 'seed': 1,\n", 1048 | " 'silent': 1\n", 1049 | "}" 1050 | ] 1051 | }, 1052 | { 1053 | "cell_type": "code", 1054 | "execution_count": 27, 1055 | "id": "b192eb3e", 1056 | "metadata": {}, 1057 | "outputs": [ 1058 | { 1059 | "name": "stdout", 1060 | "output_type": "stream", 1061 | "text": [ 1062 | "[13:07:36] WARNING: /Users/runner/work/xgboost/xgboost/python-package/build/temp.macosx-11.0-arm64-cpython-38/xgboost/src/learner.cc:767: \n", 1063 | "Parameters: { \"silent\" } are not used.\n", 1064 | "\n" 1065 | ] 1066 | } 1067 | ], 1068 | "source": [ 1069 | "model = xgb.train(xgb_params, dtrain, num_boost_round=10)" 1070 | ] 1071 | }, 1072 | { 1073 | "cell_type": "code", 1074 | "execution_count": 28, 1075 | "id": "424f8dca", 1076 | "metadata": {}, 1077 | "outputs": [], 1078 | "source": [ 1079 | "y_pred = model.predict(dtest)" 1080 | ] 1081 | }, 1082 | { 1083 | "cell_type": "code", 1084 | "execution_count": 29, 1085 | "id": "72fa42cd", 1086 | "metadata": {}, 1087 | "outputs": [ 1088 | { 1089 | "data": { 1090 | "text/plain": [ 1091 | "array([0.06784513, 0.08248003, 0.6497586 , 0.9176678 , 0.02431703],\n", 1092 | " dtype=float32)" 1093 | ] 1094 | }, 1095 | "execution_count": 29, 1096 | "metadata": {}, 1097 | "output_type": "execute_result" 1098 | } 1099 | ], 1100 | "source": [ 1101 | "y_pred[:5]" 1102 | ] 1103 | }, 1104 | { 1105 | "cell_type": "code", 1106 | "execution_count": 30, 1107 | "id": "b19e49d6", 1108 | "metadata": {}, 1109 | "outputs": [ 1110 | { 1111 | "data": { 1112 | "text/plain": [ 1113 | "0.9399015348717228" 1114 | ] 1115 | }, 1116 | "execution_count": 30, 1117 | "metadata": {}, 1118 | "output_type": "execute_result" 1119 | } 1120 | ], 1121 | "source": [ 1122 | "from sklearn.metrics import roc_auc_score\n", 1123 | "roc_auc_score(y_test, y_pred)" 1124 | ] 1125 | }, 1126 | { 1127 | "cell_type": "code", 1128 | "execution_count": 31, 1129 | "id": "5b6bae0c", 1130 | "metadata": {}, 1131 | "outputs": [], 1132 | "source": [ 1133 | "watchlist = [(dtrain, 'train'), (dtest, 'test')]" 1134 | ] 1135 | }, 1136 | { 1137 | "cell_type": "code", 1138 | "execution_count": 32, 1139 | "id": "0b3438d4", 1140 | "metadata": {}, 1141 | "outputs": [], 1142 | "source": [ 1143 | "xgb_params = {\n", 1144 | " 'eta': 0.3,\n", 1145 | " 'max_depth': 6,\n", 1146 | " 'min_child_weight': 1,\n", 1147 | " \n", 1148 | " 'objective': 'binary:logistic',\n", 1149 | " 'eval_metric': 'auc',\n", 1150 | " 'nthread': 8,\n", 1151 | " 'seed': 1,\n", 1152 | " 'silent': 1\n", 1153 | "}" 1154 | ] 1155 | }, 1156 | { 1157 | "cell_type": "code", 1158 | "execution_count": 33, 1159 | "id": "cd925feb", 1160 | "metadata": {}, 1161 | "outputs": [], 1162 | "source": [ 1163 | "import warnings \n", 1164 | "warnings.filterwarnings('ignore') " 1165 | ] 1166 | }, 1167 | { 1168 | "cell_type": "code", 1169 | "execution_count": 34, 1170 | "id": "6ffab777", 1171 | "metadata": {}, 1172 | "outputs": [ 1173 | { 1174 | "name": "stdout", 1175 | "output_type": "stream", 1176 | "text": [ 1177 | "[13:10:23] WARNING: /Users/runner/work/xgboost/xgboost/python-package/build/temp.macosx-11.0-arm64-cpython-38/xgboost/src/learner.cc:767: \n", 1178 | "Parameters: { \"silent\" } are not used.\n", 1179 | "\n", 1180 | "[0]\ttrain-auc:0.91291\ttest-auc:0.91128\n", 1181 | "[10]\ttrain-auc:0.94806\ttest-auc:0.94449\n", 1182 | "[20]\ttrain-auc:0.96152\ttest-auc:0.95790\n", 1183 | "[30]\ttrain-auc:0.96850\ttest-auc:0.96393\n", 1184 | "[40]\ttrain-auc:0.97321\ttest-auc:0.96813\n", 1185 | "[50]\ttrain-auc:0.97633\ttest-auc:0.97088\n", 1186 | "[60]\ttrain-auc:0.97958\ttest-auc:0.97373\n", 1187 | "[70]\ttrain-auc:0.98086\ttest-auc:0.97497\n", 1188 | "[80]\ttrain-auc:0.98219\ttest-auc:0.97601\n", 1189 | "[90]\ttrain-auc:0.98324\ttest-auc:0.97659\n", 1190 | "[99]\ttrain-auc:0.98395\ttest-auc:0.97690\n" 1191 | ] 1192 | } 1193 | ], 1194 | "source": [ 1195 | "model = xgb.train(xgb_params, dtrain,\n", 1196 | " num_boost_round=100,\n", 1197 | " evals=watchlist, verbose_eval=10)" 1198 | ] 1199 | }, 1200 | { 1201 | "cell_type": "code", 1202 | "execution_count": null, 1203 | "id": "8f85aa7a", 1204 | "metadata": {}, 1205 | "outputs": [], 1206 | "source": [] 1207 | } 1208 | ], 1209 | "metadata": { 1210 | "kernelspec": { 1211 | "display_name": "Python 3 (ipykernel)", 1212 | "language": "python", 1213 | "name": "python3" 1214 | }, 1215 | "language_info": { 1216 | "codemirror_mode": { 1217 | "name": "ipython", 1218 | "version": 3 1219 | }, 1220 | "file_extension": ".py", 1221 | "mimetype": "text/x-python", 1222 | "name": "python", 1223 | "nbconvert_exporter": "python", 1224 | "pygments_lexer": "ipython3", 1225 | "version": "3.9.12" 1226 | } 1227 | }, 1228 | "nbformat": 4, 1229 | "nbformat_minor": 5 1230 | } 1231 | -------------------------------------------------------------------------------- /2.deep-learning-fundamentals/2.Activation_Functions_in_Tensorflow.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [] 7 | }, 8 | "kernelspec": { 9 | "name": "python3", 10 | "display_name": "Python 3" 11 | }, 12 | "language_info": { 13 | "name": "python" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "Vs8PJe7J7Jal" 21 | }, 22 | "source": [ 23 | "# Activation Functions\n" 24 | ] 25 | }, 26 | { 27 | "cell_type": "markdown", 28 | "metadata": { 29 | "id": "oiUNYAyKFEf7" 30 | }, 31 | "source": [ 32 | "## Sigmoid Activation" 33 | ] 34 | }, 35 | { 36 | "cell_type": "code", 37 | "metadata": { 38 | "id": "jf2uv8yM6yeB" 39 | }, 40 | "source": [ 41 | "#Imports\n", 42 | "import tensorflow as tf\n", 43 | "from tensorflow import keras\n", 44 | "import matplotlib.pyplot as plt\n", 45 | "plt.style.use(\"seaborn\")" 46 | ], 47 | "execution_count": null, 48 | "outputs": [] 49 | }, 50 | { 51 | "cell_type": "code", 52 | "metadata": { 53 | "id": "PLughPw17S15" 54 | }, 55 | "source": [ 56 | "#Generate Data Points\n", 57 | "X = tf.linspace(-10,10,100)\n", 58 | "X" 59 | ], 60 | "execution_count": null, 61 | "outputs": [] 62 | }, 63 | { 64 | "cell_type": "code", 65 | "metadata": { 66 | "id": "DNX3FgKFV90M" 67 | }, 68 | "source": [ 69 | "X.shape" 70 | ], 71 | "execution_count": null, 72 | "outputs": [] 73 | }, 74 | { 75 | "cell_type": "markdown", 76 | "metadata": { 77 | "id": "F_WuF8As7nzc" 78 | }, 79 | "source": [ 80 | "Activations : https://www.tensorflow.org/api_docs/python/tf/keras/activations\n" 81 | ] 82 | }, 83 | { 84 | "cell_type": "markdown", 85 | "metadata": { 86 | "id": "c1Pb3__D72s4" 87 | }, 88 | "source": [ 89 | "sigmoid(x) = 1 / (1 + exp(-x))" 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "metadata": { 95 | "id": "U266pfs17hRq" 96 | }, 97 | "source": [ 98 | "#Activations\n", 99 | "y = tf.keras.activations.sigmoid(X)\n", 100 | "\n", 101 | "#Visualize Graph\n", 102 | "plt.plot(X,y,label = \"sigmoid(x) = 1 / (1 + exp(-x))\" )\n", 103 | "plt.title(\"Sigmoid\")\n", 104 | "plt.xlabel(\"X\")\n", 105 | "plt.ylabel(\"Sigmoid of X\")\n", 106 | "plt.legend()\n", 107 | "plt.show()" 108 | ], 109 | "execution_count": null, 110 | "outputs": [] 111 | }, 112 | { 113 | "cell_type": "markdown", 114 | "metadata": { 115 | "id": "b8wOT7128nXY" 116 | }, 117 | "source": [ 118 | "## Tanh - Hyperbolic Tangent Function" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "metadata": { 124 | "id": "g1bO5AYh8GAf" 125 | }, 126 | "source": [ 127 | "#Activations\n", 128 | "y = tf.keras.activations.tanh(X)\n", 129 | "\n", 130 | "#Visualize Graph\n", 131 | "plt.plot(X,y,label = \"tanh(x)\" )\n", 132 | "plt.title(\"Hyperbolic Tangent\")\n", 133 | "plt.xlabel(\"X\")\n", 134 | "plt.ylabel(\"tanh(x)\")\n", 135 | "plt.legend()\n", 136 | "plt.show()" 137 | ], 138 | "execution_count": null, 139 | "outputs": [] 140 | }, 141 | { 142 | "cell_type": "markdown", 143 | "metadata": { 144 | "id": "rsuW8qf5-yuy" 145 | }, 146 | "source": [ 147 | "## Relu Activation" 148 | ] 149 | }, 150 | { 151 | "cell_type": "markdown", 152 | "metadata": { 153 | "id": "ibVw5_Xm-0hO" 154 | }, 155 | "source": [ 156 | "Relu Activation :\n", 157 | "y = max(x,0)" 158 | ] 159 | }, 160 | { 161 | "cell_type": "code", 162 | "metadata": { 163 | "id": "l8V-0uUK-UcA" 164 | }, 165 | "source": [ 166 | "#Activations\n", 167 | "y = tf.keras.activations.relu(X)\n", 168 | "\n", 169 | "#Visualize Graph\n", 170 | "plt.plot(X,y,label = \"y = max(x,0)\" )\n", 171 | "plt.title(\"Relu\")\n", 172 | "plt.xlabel(\"X\")\n", 173 | "plt.ylabel(\"max(x,0)\")\n", 174 | "plt.legend()\n", 175 | "plt.show()" 176 | ], 177 | "execution_count": null, 178 | "outputs": [] 179 | }, 180 | { 181 | "cell_type": "markdown", 182 | "source": [ 183 | "# Leaky Relu" 184 | ], 185 | "metadata": { 186 | "id": "TZtNRw5Ua6Mg" 187 | } 188 | }, 189 | { 190 | "cell_type": "markdown", 191 | "source": [ 192 | "![image.png]()" 193 | ], 194 | "metadata": { 195 | "id": "n6SKyPNnbSk9" 196 | } 197 | }, 198 | { 199 | "cell_type": "code", 200 | "source": [ 201 | "#Activations\n", 202 | "y = tf.nn.leaky_relu(X)\n", 203 | "\n", 204 | "#Visualize Graph\n", 205 | "plt.plot(X,y )\n", 206 | "plt.title(\"Leaky Relu\")\n", 207 | "plt.xlabel(\"X\")\n", 208 | "plt.ylabel(\"Leaky Relu\")\n", 209 | "plt.legend()\n", 210 | "plt.show()" 211 | ], 212 | "metadata": { 213 | "id": "HXsa5H4Ea8C7" 214 | }, 215 | "execution_count": null, 216 | "outputs": [] 217 | }, 218 | { 219 | "cell_type": "markdown", 220 | "metadata": { 221 | "id": "EQc5WUBL_VHi" 222 | }, 223 | "source": [ 224 | "## Elu Activation Function - Exponential Linear Unit \n", 225 | "\n", 226 | "y = x if x > 0 and alpha * (exp(x) - 1) if x < 0." 227 | ] 228 | }, 229 | { 230 | "cell_type": "code", 231 | "metadata": { 232 | "id": "62sr4LOt_NsZ" 233 | }, 234 | "source": [ 235 | "#Activations\n", 236 | "y = tf.keras.activations.elu(X,alpha = 0.9)\n", 237 | "\n", 238 | "#Visualize Graph\n", 239 | "plt.plot(X,y,label = \"y = x if x>0 else alpha * (exp(x) - 1) if x < 0 \" )\n", 240 | "plt.title(\"Elu\")\n", 241 | "plt.xlabel(\"X\")\n", 242 | "plt.ylabel(\"elu(x)\")\n", 243 | "plt.legend()\n", 244 | "plt.show()" 245 | ], 246 | "execution_count": null, 247 | "outputs": [] 248 | }, 249 | { 250 | "cell_type": "markdown", 251 | "metadata": { 252 | "id": "kvHV8AuX_-GG" 253 | }, 254 | "source": [ 255 | "## SELU Activation Function - Scaled Exponential Linear Unit\n", 256 | "\n", 257 | "if x > 0: return scale * x\n", 258 | "\n", 259 | "if x < 0: return scale * alpha * (exp(x) - 1)\n", 260 | "\n", 261 | "where alpha and scale are pre-defined constants (alpha=1.67326324 and scale=1.05070098)" 262 | ] 263 | }, 264 | { 265 | "cell_type": "code", 266 | "metadata": { 267 | "id": "OVLdS57G_3vO" 268 | }, 269 | "source": [ 270 | "#Activations\n", 271 | "y = tf.keras.activations.selu(X)\n", 272 | "\n", 273 | "#Visualize Graph\n", 274 | "plt.plot(X,y,label = \"selu(x)\" )\n", 275 | "plt.title(\"SELU\")\n", 276 | "plt.xlabel(\"X\")\n", 277 | "plt.ylabel(\"selu(x)\")\n", 278 | "plt.legend()\n", 279 | "plt.show()" 280 | ], 281 | "execution_count": null, 282 | "outputs": [] 283 | }, 284 | { 285 | "cell_type": "markdown", 286 | "metadata": { 287 | "id": "IRyJGq5OEO_n" 288 | }, 289 | "source": [ 290 | "## Swish Activation\n", 291 | "swish(x) = x * sigmoid(x)" 292 | ] 293 | }, 294 | { 295 | "cell_type": "code", 296 | "metadata": { 297 | "id": "-lUOmajvESfo" 298 | }, 299 | "source": [ 300 | "#Activations\n", 301 | "y = tf.keras.activations.swish(X)\n", 302 | "\n", 303 | "#Visualize Graph\n", 304 | "plt.plot(X,y,label = \"swish(x) = x * sigmoid(x)\" )\n", 305 | "plt.title(\"Swish\")\n", 306 | "plt.xlabel(\"X\")\n", 307 | "plt.ylabel(\"swish(x)\")\n", 308 | "plt.legend()\n", 309 | "plt.show()" 310 | ], 311 | "execution_count": null, 312 | "outputs": [] 313 | }, 314 | { 315 | "cell_type": "markdown", 316 | "metadata": { 317 | "id": "ZzfIVJouAwhU" 318 | }, 319 | "source": [ 320 | "## Softmax\n", 321 | "\n", 322 | "converts a vector of values to a probability distribution" 323 | ] 324 | }, 325 | { 326 | "cell_type": "markdown", 327 | "metadata": { 328 | "id": "E0188SOcCG_K" 329 | }, 330 | "source": [ 331 | "![image.png]()" 332 | ] 333 | }, 334 | { 335 | "cell_type": "code", 336 | "metadata": { 337 | "id": "unairtA2Ac95" 338 | }, 339 | "source": [ 340 | "x = tf.constant([150,50,10],dtype=tf.float32)\n", 341 | "x = tf.expand_dims(x,axis=0)\n", 342 | "print(x.shape,x)\n", 343 | "y = tf.keras.activations.softmax(x)\n", 344 | "print(y)" 345 | ], 346 | "execution_count": null, 347 | "outputs": [] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "metadata": { 352 | "id": "IlzbNsfAU6N_" 353 | }, 354 | "source": [ 355 | "tf.math.reduce_sum(y)" 356 | ], 357 | "execution_count": null, 358 | "outputs": [] 359 | }, 360 | { 361 | "cell_type": "code", 362 | "metadata": { 363 | "id": "ZT62fwfzU510" 364 | }, 365 | "source": [], 366 | "execution_count": null, 367 | "outputs": [] 368 | }, 369 | { 370 | "cell_type": "code", 371 | "metadata": { 372 | "id": "Zw6D_vQyA_Ad" 373 | }, 374 | "source": [ 375 | "#he initialiazer\n", 376 | "keras.layers.Dense(10,activation=\"relu\",kernel_initializer=\"he_normal\")" 377 | ], 378 | "execution_count": null, 379 | "outputs": [] 380 | }, 381 | { 382 | "cell_type": "code", 383 | "metadata": { 384 | "id": "yl7x23ga7TIs" 385 | }, 386 | "source": [ 387 | "#Optimizers\n", 388 | "1. SGD - Lowest Speed - Good convergence\n", 389 | "2. Momemtum SGD - Medium Speed - Good convergence\n", 390 | "3. Adagrad - Very high Speed (it stops early) - Convergence quality - lowest\n", 391 | "4. RMSprop - high speed & Medium to high quality\n", 392 | "5. Adam - high speed & Medium to high quality\n", 393 | "\n", 394 | "Nadam\n", 395 | "Adamax" 396 | ], 397 | "execution_count": null, 398 | "outputs": [] 399 | } 400 | ] 401 | } --------------------------------------------------------------------------------