├── images
├── cifar_gt.png
├── cifar_ig.png
├── mnist_gt.png
├── mnist_ig.png
├── cifar_gt
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── 4.png
│ ├── 5.png
│ └── 6.png
├── cifar_ig
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── 4.png
│ ├── 5.png
│ └── 6.png
├── cifar_ours.png
├── mnist_gt
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── 4.png
│ ├── 5.png
│ └── 6.png
├── mnist_ig
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── 4.png
│ ├── 5.png
│ └── 6.png
├── mnist_ours.png
├── cifar_ours
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── 4.png
│ ├── 5.png
│ └── 6.png
└── mnist_ours
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── 4.png
│ ├── 5.png
│ └── 6.png
├── logs
└── Experiment3
│ ├── MNIST_ig
│ ├── gt_0.png
│ ├── gt_1.png
│ ├── gt_2.png
│ ├── gt_3.png
│ ├── gt_4.png
│ ├── gt_5.png
│ ├── gt_6.png
│ ├── gt_7.png
│ ├── gt_8.png
│ ├── gt_9.png
│ ├── gt_10.png
│ ├── gt_11.png
│ ├── gt_12.png
│ ├── gt_13.png
│ ├── gt_14.png
│ ├── gt_15.png
│ ├── gt_16.png
│ ├── gt_17.png
│ ├── gt_18.png
│ ├── gt_19.png
│ ├── gt_20.png
│ ├── gt_21.png
│ ├── gt_22.png
│ ├── gt_23.png
│ ├── gt_24.png
│ ├── gt_25.png
│ ├── gt_26.png
│ ├── gt_27.png
│ ├── gt_28.png
│ ├── gt_29.png
│ ├── gt_30.png
│ ├── gt_31.png
│ ├── gt_32.png
│ ├── gt_33.png
│ ├── gt_34.png
│ ├── gt_35.png
│ ├── gt_36.png
│ ├── gt_37.png
│ ├── gt_38.png
│ ├── gt_39.png
│ ├── gt_40.png
│ ├── gt_41.png
│ ├── gt_42.png
│ ├── gt_43.png
│ ├── gt_44.png
│ ├── gt_45.png
│ ├── gt_46.png
│ ├── gt_47.png
│ ├── gt_48.png
│ ├── gt_49.png
│ ├── rec_0.png
│ ├── rec_1.png
│ ├── rec_10.png
│ ├── rec_11.png
│ ├── rec_12.png
│ ├── rec_13.png
│ ├── rec_14.png
│ ├── rec_15.png
│ ├── rec_16.png
│ ├── rec_17.png
│ ├── rec_18.png
│ ├── rec_19.png
│ ├── rec_2.png
│ ├── rec_20.png
│ ├── rec_21.png
│ ├── rec_22.png
│ ├── rec_23.png
│ ├── rec_24.png
│ ├── rec_25.png
│ ├── rec_26.png
│ ├── rec_27.png
│ ├── rec_28.png
│ ├── rec_29.png
│ ├── rec_3.png
│ ├── rec_30.png
│ ├── rec_31.png
│ ├── rec_32.png
│ ├── rec_33.png
│ ├── rec_34.png
│ ├── rec_35.png
│ ├── rec_36.png
│ ├── rec_37.png
│ ├── rec_38.png
│ ├── rec_39.png
│ ├── rec_4.png
│ ├── rec_40.png
│ ├── rec_41.png
│ ├── rec_42.png
│ ├── rec_43.png
│ ├── rec_44.png
│ ├── rec_45.png
│ ├── rec_46.png
│ ├── rec_47.png
│ ├── rec_48.png
│ ├── rec_49.png
│ ├── rec_5.png
│ ├── rec_6.png
│ ├── rec_7.png
│ ├── rec_8.png
│ ├── rec_9.png
│ ├── help.sh
│ └── exp1.log
│ ├── MNIST_ours
│ ├── gt_0.png
│ ├── gt_1.png
│ ├── gt_10.png
│ ├── gt_11.png
│ ├── gt_12.png
│ ├── gt_13.png
│ ├── gt_14.png
│ ├── gt_15.png
│ ├── gt_16.png
│ ├── gt_17.png
│ ├── gt_18.png
│ ├── gt_19.png
│ ├── gt_2.png
│ ├── gt_20.png
│ ├── gt_21.png
│ ├── gt_22.png
│ ├── gt_23.png
│ ├── gt_24.png
│ ├── gt_25.png
│ ├── gt_26.png
│ ├── gt_27.png
│ ├── gt_28.png
│ ├── gt_29.png
│ ├── gt_3.png
│ ├── gt_30.png
│ ├── gt_31.png
│ ├── gt_32.png
│ ├── gt_33.png
│ ├── gt_34.png
│ ├── gt_35.png
│ ├── gt_36.png
│ ├── gt_37.png
│ ├── gt_38.png
│ ├── gt_39.png
│ ├── gt_4.png
│ ├── gt_40.png
│ ├── gt_41.png
│ ├── gt_42.png
│ ├── gt_43.png
│ ├── gt_44.png
│ ├── gt_45.png
│ ├── gt_46.png
│ ├── gt_47.png
│ ├── gt_48.png
│ ├── gt_49.png
│ ├── gt_5.png
│ ├── gt_6.png
│ ├── gt_7.png
│ ├── gt_8.png
│ ├── gt_9.png
│ ├── rec_0.png
│ ├── rec_1.png
│ ├── rec_2.png
│ ├── rec_3.png
│ ├── rec_4.png
│ ├── rec_5.png
│ ├── rec_6.png
│ ├── rec_7.png
│ ├── rec_8.png
│ ├── rec_9.png
│ ├── rec_10.png
│ ├── rec_11.png
│ ├── rec_12.png
│ ├── rec_13.png
│ ├── rec_14.png
│ ├── rec_15.png
│ ├── rec_16.png
│ ├── rec_17.png
│ ├── rec_18.png
│ ├── rec_19.png
│ ├── rec_20.png
│ ├── rec_21.png
│ ├── rec_22.png
│ ├── rec_23.png
│ ├── rec_24.png
│ ├── rec_25.png
│ ├── rec_26.png
│ ├── rec_27.png
│ ├── rec_28.png
│ ├── rec_29.png
│ ├── rec_30.png
│ ├── rec_31.png
│ ├── rec_32.png
│ ├── rec_33.png
│ ├── rec_34.png
│ ├── rec_35.png
│ ├── rec_36.png
│ ├── rec_37.png
│ ├── rec_38.png
│ ├── rec_39.png
│ ├── rec_40.png
│ ├── rec_41.png
│ ├── rec_42.png
│ ├── rec_43.png
│ ├── rec_44.png
│ ├── rec_45.png
│ ├── rec_46.png
│ ├── rec_47.png
│ ├── rec_48.png
│ ├── rec_49.png
│ ├── help.sh
│ └── exp1.log
│ ├── cifar100_ig
│ ├── gt_0.png
│ ├── gt_1.png
│ ├── gt_2.png
│ ├── gt_3.png
│ ├── gt_4.png
│ ├── gt_5.png
│ ├── gt_6.png
│ ├── gt_7.png
│ ├── gt_8.png
│ ├── gt_9.png
│ ├── gt_10.png
│ ├── gt_11.png
│ ├── gt_12.png
│ ├── gt_13.png
│ ├── gt_14.png
│ ├── gt_15.png
│ ├── rec_0.png
│ ├── rec_1.png
│ ├── rec_10.png
│ ├── rec_11.png
│ ├── rec_12.png
│ ├── rec_13.png
│ ├── rec_14.png
│ ├── rec_15.png
│ ├── rec_2.png
│ ├── rec_3.png
│ ├── rec_4.png
│ ├── rec_5.png
│ ├── rec_6.png
│ ├── rec_7.png
│ ├── rec_8.png
│ ├── rec_9.png
│ ├── help.sh
│ └── exp1.log
│ └── cifar100_ours
│ ├── gt_0.png
│ ├── gt_1.png
│ ├── gt_2.png
│ ├── gt_3.png
│ ├── gt_4.png
│ ├── gt_5.png
│ ├── gt_6.png
│ ├── gt_7.png
│ ├── gt_8.png
│ ├── gt_9.png
│ ├── gt_10.png
│ ├── gt_11.png
│ ├── gt_12.png
│ ├── gt_13.png
│ ├── gt_14.png
│ ├── gt_15.png
│ ├── rec_0.png
│ ├── rec_1.png
│ ├── rec_10.png
│ ├── rec_11.png
│ ├── rec_12.png
│ ├── rec_13.png
│ ├── rec_14.png
│ ├── rec_15.png
│ ├── rec_2.png
│ ├── rec_3.png
│ ├── rec_4.png
│ ├── rec_5.png
│ ├── rec_6.png
│ ├── rec_7.png
│ ├── rec_8.png
│ ├── rec_9.png
│ ├── help.sh
│ └── exp1.log
├── README_md_files
└── f67ab870-3e10-11ed-9ab9-579d6cfc3a57.jpeg
├── .idea
├── .gitignore
├── inspectionProfiles
│ ├── profiles_settings.xml
│ └── Project_Default.xml
├── modules.xml
├── source_code.iml
└── deployment.xml
├── requirements.txt
├── consts.py
├── medianfilt.py
├── cal_metrics.py
├── defense.py
├── loss.py
├── metrics.py
├── scheduler.py
├── methods.py
├── options.py
└── new_logs
├── ExtremeDistribution
├── exp1.log
├── exp2.log
├── exp3.log
└── exp4.log
└── TrainingStage
└── MNIST
├── exp5.log
├── exp6.log
├── exp4.log
├── exp1.log
├── exp2.log
└── exp3.log
/images/cifar_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt.png
--------------------------------------------------------------------------------
/images/cifar_ig.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig.png
--------------------------------------------------------------------------------
/images/mnist_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt.png
--------------------------------------------------------------------------------
/images/mnist_ig.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig.png
--------------------------------------------------------------------------------
/images/cifar_gt/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt/1.png
--------------------------------------------------------------------------------
/images/cifar_gt/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt/2.png
--------------------------------------------------------------------------------
/images/cifar_gt/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt/3.png
--------------------------------------------------------------------------------
/images/cifar_gt/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt/4.png
--------------------------------------------------------------------------------
/images/cifar_gt/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt/5.png
--------------------------------------------------------------------------------
/images/cifar_gt/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_gt/6.png
--------------------------------------------------------------------------------
/images/cifar_ig/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig/1.png
--------------------------------------------------------------------------------
/images/cifar_ig/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig/2.png
--------------------------------------------------------------------------------
/images/cifar_ig/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig/3.png
--------------------------------------------------------------------------------
/images/cifar_ig/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig/4.png
--------------------------------------------------------------------------------
/images/cifar_ig/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig/5.png
--------------------------------------------------------------------------------
/images/cifar_ig/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ig/6.png
--------------------------------------------------------------------------------
/images/cifar_ours.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours.png
--------------------------------------------------------------------------------
/images/mnist_gt/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt/1.png
--------------------------------------------------------------------------------
/images/mnist_gt/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt/2.png
--------------------------------------------------------------------------------
/images/mnist_gt/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt/3.png
--------------------------------------------------------------------------------
/images/mnist_gt/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt/4.png
--------------------------------------------------------------------------------
/images/mnist_gt/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt/5.png
--------------------------------------------------------------------------------
/images/mnist_gt/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_gt/6.png
--------------------------------------------------------------------------------
/images/mnist_ig/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig/1.png
--------------------------------------------------------------------------------
/images/mnist_ig/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig/2.png
--------------------------------------------------------------------------------
/images/mnist_ig/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig/3.png
--------------------------------------------------------------------------------
/images/mnist_ig/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig/4.png
--------------------------------------------------------------------------------
/images/mnist_ig/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig/5.png
--------------------------------------------------------------------------------
/images/mnist_ig/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ig/6.png
--------------------------------------------------------------------------------
/images/mnist_ours.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours.png
--------------------------------------------------------------------------------
/images/cifar_ours/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours/1.png
--------------------------------------------------------------------------------
/images/cifar_ours/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours/2.png
--------------------------------------------------------------------------------
/images/cifar_ours/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours/3.png
--------------------------------------------------------------------------------
/images/cifar_ours/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours/4.png
--------------------------------------------------------------------------------
/images/cifar_ours/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours/5.png
--------------------------------------------------------------------------------
/images/cifar_ours/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/cifar_ours/6.png
--------------------------------------------------------------------------------
/images/mnist_ours/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours/1.png
--------------------------------------------------------------------------------
/images/mnist_ours/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours/2.png
--------------------------------------------------------------------------------
/images/mnist_ours/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours/3.png
--------------------------------------------------------------------------------
/images/mnist_ours/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours/4.png
--------------------------------------------------------------------------------
/images/mnist_ours/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours/5.png
--------------------------------------------------------------------------------
/images/mnist_ours/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/images/mnist_ours/6.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_16.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_17.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_17.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_18.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_18.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_19.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_19.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_20.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_20.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_21.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_21.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_22.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_22.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_23.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_24.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_24.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_25.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_25.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_26.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_26.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_27.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_27.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_28.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_28.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_29.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_29.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_30.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_30.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_31.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_31.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_32.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_32.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_33.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_33.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_34.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_34.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_35.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_35.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_36.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_36.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_37.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_37.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_38.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_38.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_39.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_39.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_40.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_40.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_41.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_41.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_42.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_42.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_43.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_43.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_44.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_44.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_45.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_45.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_46.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_46.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_47.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_47.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_48.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_48.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/gt_49.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/gt_49.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_16.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_17.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_17.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_18.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_18.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_19.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_19.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_20.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_20.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_21.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_21.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_22.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_22.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_23.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_24.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_24.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_25.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_25.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_26.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_26.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_27.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_27.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_28.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_28.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_29.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_29.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_30.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_30.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_31.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_31.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_32.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_32.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_33.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_33.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_34.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_34.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_35.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_35.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_36.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_36.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_37.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_37.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_38.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_38.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_39.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_39.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_40.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_40.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_41.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_41.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_42.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_42.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_43.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_43.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_44.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_44.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_45.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_45.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_46.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_46.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_47.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_47.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_48.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_48.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_49.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_49.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/rec_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ig/rec_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_16.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_17.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_17.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_18.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_18.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_19.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_19.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_20.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_20.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_21.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_21.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_22.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_22.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_23.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_24.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_24.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_25.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_25.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_26.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_26.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_27.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_27.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_28.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_28.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_29.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_29.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_30.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_30.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_31.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_31.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_32.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_32.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_33.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_33.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_34.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_34.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_35.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_35.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_36.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_36.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_37.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_37.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_38.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_38.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_39.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_39.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_40.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_40.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_41.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_41.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_42.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_42.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_43.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_43.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_44.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_44.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_45.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_45.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_46.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_46.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_47.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_47.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_48.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_48.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_49.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_49.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/gt_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/gt_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_16.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_17.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_17.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_18.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_18.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_19.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_19.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_20.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_20.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_21.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_21.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_22.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_22.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_23.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_24.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_24.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_25.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_25.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_26.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_26.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_27.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_27.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_28.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_28.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_29.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_29.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_30.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_30.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_31.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_31.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_32.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_32.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_33.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_33.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_34.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_34.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_35.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_35.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_36.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_36.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_37.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_37.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_38.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_38.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_39.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_39.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_40.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_40.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_41.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_41.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_42.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_42.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_43.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_43.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_44.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_44.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_45.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_45.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_46.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_46.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_47.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_47.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_48.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_48.png
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/rec_49.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/MNIST_ours/rec_49.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/gt_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/gt_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/rec_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ig/rec_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_9.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/gt_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/gt_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_0.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_1.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_10.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_11.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_12.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_13.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_14.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_15.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_2.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_3.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_4.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_5.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_6.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_7.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_8.png
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/rec_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/logs/Experiment3/cifar100_ours/rec_9.png
--------------------------------------------------------------------------------
/README_md_files/f67ab870-3e10-11ed-9ab9-579d6cfc3a57.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mankasto/iLRG/HEAD/README_md_files/f67ab870-3e10-11ed-9ab9-579d6cfc3a57.jpeg
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/help.sh:
--------------------------------------------------------------------------------
1 | python3 main.py --model dnn --num_images 50 --dataset MNIST_GRAY --num_classes 10 --num_tries 1 --rec_img --restarts 3 --signed --boxed --tv 1e-4 --save_image
2 |
3 |
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/help.sh:
--------------------------------------------------------------------------------
1 | python3 main.py --model dnn --num_images 50 --dataset MNIST_GRAY --num_classes 10 --num_tries 1 --rec_img --restarts 3 --signed --boxed --tv 1e-4 --save_image --fix_labels
2 |
3 |
--------------------------------------------------------------------------------
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 | # Editor-based HTTP Client requests
5 | /httpRequests/
6 | # Datasource local storage ignored files
7 | /dataSources/
8 | /dataSources.local.xml
9 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | cvxopt==1.3.0
2 | lpips==0.1.4
3 | numpy~=1.22.3
4 | opencv_python==4.5.5.64
5 | scikit_learn==1.1.2
6 | torch~=1.7.0+cu110
7 | torchvision~=0.8.1+cu110
8 |
9 | sklearn~=0.0
10 | scikit-learn~=1.1.1
11 | scipy~=1.8.0
12 | opencv-python~=4.5.5.64
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/help.sh:
--------------------------------------------------------------------------------
1 | python3 main.py --model resnet18 --num_images 16 --dataset CIFAR100 --num_classes 100 --num_tries 1 --rec_img --restarts 1 --signed --boxed --tv 1e-4 --save_image --max_iterations 24000 --tv 8e-3 --fix_labels --seed 6666 --distribution random2 --num_target_cls 12 --exp_name cifar100_12cls
2 |
3 |
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/help.sh:
--------------------------------------------------------------------------------
1 | python3 main.py --model resnet18 --num_images 16 --dataset CIFAR100 --num_classes 100 --num_tries 1 --rec_img --restarts 1 --signed --boxed --tv 1e-4 --save_image --max_iterations 24000 --tv 8e-3 --fix_labels --seed 8888 --distribution random2 --num_target_cls 10 --exp_name cifar100_10cls
2 |
3 |
--------------------------------------------------------------------------------
/.idea/source_code.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/consts.py:
--------------------------------------------------------------------------------
1 | """Setup constants."""
2 | cifar10_mean = [0.4914672374725342, 0.4822617471218109, 0.4467701315879822]
3 | cifar10_std = [0.24703224003314972, 0.24348513782024384, 0.26158785820007324]
4 | cifar100_mean = [0.5071598291397095, 0.4866936206817627, 0.44120192527770996]
5 | cifar100_std = [0.2673342823982239, 0.2564384639263153, 0.2761504650115967]
6 | mnist_mean = (0.13066373765468597,)
7 | mnist_std = (0.30810782313346863,)
8 | imagenet_mean = [0.485, 0.456, 0.406]
9 | imagenet_std = [0.229, 0.224, 0.225]
10 |
--------------------------------------------------------------------------------
/.idea/deployment.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ig/exp1.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-09-04-20:56:54
2 | log_dir: exp_res
3 | cpu: False
4 | num_tries: 1
5 | num_images: 50
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | analysis: False
11 | ablation1: False
12 | ablation2: False
13 | ablation3: False
14 | ablation4: False
15 | data_path: data
16 | dataset: MNIST_GRAY
17 | split: train
18 | distribution: random
19 | start_id: 0
20 | num_classes: 10
21 | num_uniform_cls: 32
22 | model: dnn
23 | trained_model: False
24 | iter_train: False
25 | epochs: 10
26 | iters: 1000
27 | batch_size: 128
28 | optimizer: SGD
29 | lr: 0.1
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | dim: 300
42 | n_hidden: 1
43 | defense: False
44 | defense_method: dp
45 | noise_std: 0.001
46 | clip_bound: 4
47 | sparse_ratio: 10
48 | prune_ratio: 10
49 | rec_img: True
50 | fix_labels: False
51 | gt_labels: False
52 | optim: ig
53 | restarts: 3
54 | cost_fn: sim
55 | indices: def
56 | weights: equal
57 | rec_lr: None
58 | rec_optimizer: adam
59 | signed: True
60 | boxed: True
61 | scoring_choice: loss
62 | init: randn
63 | tv: 0.0001
64 | l2: 1e-06
65 | max_iterations: 8000
66 | loss_thresh: 0.0001
67 | save_image: True
68 | image_path: images
69 | table_path: tables
70 |
71 | Start Experiment 1
72 | ***************************************************************
73 | Ground-truth Labels: 0,1,2,3,4,5,6,7,8,9
74 | Ground-truth Num of Instances: 7,2,2,3,6,9,1,4,7,9
75 | Our Recovered Labels: 0,1,2,3,4,5,6,7,8,9 | LeAcc: 1.000
76 | Our Recovered Num of Instances: 7,2,2,3,6,9,1,4,7,9 | LnAcc: 1.000 | IRec: 1.000
77 |
78 | Start reconstructing images
79 | End reconstructing images
80 | ---------------------------------------------------------------
81 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
82 |
--------------------------------------------------------------------------------
/logs/Experiment3/MNIST_ours/exp1.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-09-04-21:00:57
2 | log_dir: exp_res
3 | cpu: False
4 | num_tries: 1
5 | num_images: 50
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | analysis: False
11 | ablation1: False
12 | ablation2: False
13 | ablation3: False
14 | ablation4: False
15 | data_path: data
16 | dataset: MNIST_GRAY
17 | split: train
18 | distribution: random
19 | start_id: 0
20 | num_classes: 10
21 | num_uniform_cls: 32
22 | model: dnn
23 | trained_model: False
24 | iter_train: False
25 | epochs: 10
26 | iters: 1000
27 | batch_size: 128
28 | optimizer: SGD
29 | lr: 0.1
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | dim: 300
42 | n_hidden: 1
43 | defense: False
44 | defense_method: dp
45 | noise_std: 0.001
46 | clip_bound: 4
47 | sparse_ratio: 10
48 | prune_ratio: 10
49 | rec_img: True
50 | fix_labels: True
51 | gt_labels: False
52 | optim: ig
53 | restarts: 3
54 | cost_fn: sim
55 | indices: def
56 | weights: equal
57 | rec_lr: None
58 | rec_optimizer: adam
59 | signed: True
60 | boxed: True
61 | scoring_choice: loss
62 | init: randn
63 | tv: 0.0001
64 | l2: 1e-06
65 | max_iterations: 8000
66 | loss_thresh: 0.0001
67 | save_image: True
68 | image_path: images
69 | table_path: tables
70 |
71 | Start Experiment 1
72 | ***************************************************************
73 | Ground-truth Labels: 0,1,2,3,4,5,6,7,8,9
74 | Ground-truth Num of Instances: 7,2,2,3,6,9,1,4,7,9
75 | Our Recovered Labels: 0,1,2,3,4,5,6,7,8,9 | LeAcc: 1.000
76 | Our Recovered Num of Instances: 7,2,2,3,6,9,1,4,7,9 | LnAcc: 1.000 | IRec: 1.000
77 |
78 | Start reconstructing images
79 | End reconstructing images
80 | ---------------------------------------------------------------
81 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
82 |
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ours/exp1.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-09-18-23:15:59
2 | exp_name: cifar100_10cls
3 | cpu: False
4 | num_tries: 1
5 | num_images: 16
6 | seed: 8888
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | analysis: False
11 | data_path: data
12 | dataset: CIFAR100
13 | split: train
14 | distribution: random2
15 | start_id: 0
16 | num_classes: 100
17 | num_uniform_cls: 32
18 | num_target_cls: 10
19 | max_size: 32
20 | model: resnet18
21 | trained_model: False
22 | iter_train: False
23 | iters: 1000
24 | epochs: 10
25 | batch_size: 128
26 | lr: 0.1
27 | optimizer: SGD
28 | scheduler: linear
29 | weight_decay: 0.0005
30 | warmup: False
31 | epoch_interval: 10
32 | iter_interval: 100
33 | mid_save: False
34 | model_path: models
35 | dryrun: False
36 | batchnorm: False
37 | dropout: False
38 | silu: False
39 | leaky_relu: False
40 | n_dim: 300
41 | n_hidden: 1
42 | defense: False
43 | defense_method: dp
44 | noise_std: 0.001
45 | clip_bound: 4
46 | sparse_ratio: 10
47 | prune_ratio: 10
48 | rec_img: True
49 | fix_labels: True
50 | gt_labels: False
51 | optim: ig
52 | restarts: 1
53 | cost_fn: sim
54 | indices: def
55 | weights: equal
56 | rec_lr: None
57 | rec_optimizer: adam
58 | signed: True
59 | boxed: True
60 | scoring_choice: loss
61 | init: randn
62 | tv: 0.008
63 | l2: 1e-06
64 | max_iterations: 24000
65 | loss_thresh: 0.0001
66 | save_image: True
67 | log_dir: logs/cifar100_10cls
68 | image_dir: images/cifar100_10cls
69 |
70 | Start Experiment 1
71 | start_id: 0
72 | ***************************************************************
73 | Ground-truth Labels: 8,9,11,16,22,34,45,53,57,86
74 | Ground-truth Num of Instances: 4,2,1,1,1,1,1,3,1,1
75 | Our Recovered Labels: 8,9,11,16,22,34,45,53,57,86 | LeAcc: 1.000
76 | Our Recovered Num of Instances: 4,2,1,1,1,1,1,3,1,1 | LnAcc: 1.000 | IRec: 1.000
77 |
78 | Start reconstructing images
79 | End reconstructing images
80 | ---------------------------------------------------------------
81 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
82 |
--------------------------------------------------------------------------------
/logs/Experiment3/cifar100_ig/exp1.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-09-19-09:08:59
2 | exp_name: cifar100_10cls_ig
3 | cpu: False
4 | num_tries: 1
5 | num_images: 16
6 | seed: 8888
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | analysis: False
11 | data_path: data
12 | dataset: CIFAR100
13 | split: train
14 | distribution: random2
15 | start_id: 0
16 | num_classes: 100
17 | num_uniform_cls: 32
18 | num_target_cls: 10
19 | max_size: 32
20 | model: resnet18
21 | trained_model: False
22 | iter_train: False
23 | iters: 1000
24 | epochs: 10
25 | batch_size: 128
26 | lr: 0.1
27 | optimizer: SGD
28 | scheduler: linear
29 | weight_decay: 0.0005
30 | warmup: False
31 | epoch_interval: 10
32 | iter_interval: 100
33 | mid_save: False
34 | model_path: models
35 | dryrun: False
36 | batchnorm: False
37 | dropout: False
38 | silu: False
39 | leaky_relu: False
40 | n_dim: 300
41 | n_hidden: 1
42 | defense: False
43 | defense_method: dp
44 | noise_std: 0.001
45 | clip_bound: 4
46 | sparse_ratio: 10
47 | prune_ratio: 10
48 | rec_img: True
49 | fix_labels: False
50 | gt_labels: False
51 | optim: ig
52 | restarts: 1
53 | cost_fn: sim
54 | indices: def
55 | weights: equal
56 | rec_lr: None
57 | rec_optimizer: adam
58 | signed: True
59 | boxed: True
60 | scoring_choice: loss
61 | init: randn
62 | tv: 0.008
63 | l2: 1e-06
64 | max_iterations: 24000
65 | loss_thresh: 0.0001
66 | save_image: True
67 | log_dir: logs/cifar100_10cls_ig
68 | image_dir: images/cifar100_10cls_ig
69 |
70 | Start Experiment 1
71 | start_id: 0
72 | ***************************************************************
73 | Ground-truth Labels: 8,9,11,16,22,34,45,53,57,86
74 | Ground-truth Num of Instances: 4,2,1,1,1,1,1,3,1,1
75 | Our Recovered Labels: 8,9,11,16,22,34,45,53,57,86 | LeAcc: 1.000
76 | Our Recovered Num of Instances: 4,2,1,1,1,1,1,3,1,1 | LnAcc: 1.000 | IRec: 1.000
77 |
78 | Start reconstructing images
79 | End reconstructing images
80 | ---------------------------------------------------------------
81 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
82 |
--------------------------------------------------------------------------------
/medianfilt.py:
--------------------------------------------------------------------------------
1 | """This is code for median pooling from https://gist.github.com/rwightman.
2 |
3 | https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598
4 | """
5 | import torch.nn as nn
6 | import torch.nn.functional as F
7 | from torch.nn.modules.utils import _pair, _quadruple
8 |
9 |
10 | class MedianPool2d(nn.Module):
11 | """Median pool (usable as median filter when stride=1) module.
12 |
13 | Args:
14 | kernel_size: size of pooling kernel, int or 2-tuple
15 | stride: pool stride, int or 2-tuple
16 | padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad
17 | same: override padding and enforce same padding, boolean
18 | """
19 |
20 | def __init__(self, kernel_size=3, stride=1, padding=0, same=True):
21 | """Initialize with kernel_size, stride, padding."""
22 | super().__init__()
23 | self.k = _pair(kernel_size)
24 | self.stride = _pair(stride)
25 | self.padding = _quadruple(padding) # convert to l, r, t, b
26 | self.same = same
27 |
28 | def _padding(self, x):
29 | if self.same:
30 | ih, iw = x.size()[2:]
31 | if ih % self.stride[0] == 0:
32 | ph = max(self.k[0] - self.stride[0], 0)
33 | else:
34 | ph = max(self.k[0] - (ih % self.stride[0]), 0)
35 | if iw % self.stride[1] == 0:
36 | pw = max(self.k[1] - self.stride[1], 0)
37 | else:
38 | pw = max(self.k[1] - (iw % self.stride[1]), 0)
39 | pl = pw // 2
40 | pr = pw - pl
41 | pt = ph // 2
42 | pb = ph - pt
43 | padding = (pl, pr, pt, pb)
44 | else:
45 | padding = self.padding
46 | return padding
47 |
48 | def forward(self, x):
49 | # using existing pytorch functions and tensor ops so that we get autograd,
50 | # would likely be more efficient to implement from scratch at C/Cuda level
51 | x = F.pad(x, self._padding(x), mode='reflect')
52 | x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1])
53 | x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0]
54 | return x
55 |
--------------------------------------------------------------------------------
/cal_metrics.py:
--------------------------------------------------------------------------------
1 | import os
2 | import cv2
3 | import lpips
4 | import torch
5 | import numpy as np
6 |
7 |
8 | def get_images(images_list, img_size=28):
9 | images = []
10 | for image_path in images_list:
11 | image = cv2.imread(image_path)
12 | image = cv2.resize(image, (img_size, img_size))
13 | image = image.astype(np.float32) / 255
14 | image = torch.from_numpy(image)
15 | image = image.permute(2, 0, 1)
16 | images.append(image)
17 | images = torch.stack(images).to(device)
18 | return images
19 |
20 |
21 | def psnr(img_batch, ref_batch, batched=False, factor=1.0):
22 | """Standard PSNR."""
23 |
24 | def get_psnr(img_in, img_ref):
25 | mse = ((img_in - img_ref) ** 2).mean()
26 | if mse > 0 and torch.isfinite(mse):
27 | return 10 * torch.log10(factor ** 2 / mse)
28 | elif not torch.isfinite(mse):
29 | return img_batch.new_tensor(float('nan'))
30 | else:
31 | return img_batch.new_tensor(float('inf'))
32 |
33 | if batched:
34 | psnr = get_psnr(img_batch.detach(), ref_batch)
35 | else:
36 | [B, C, m, n] = img_batch.shape
37 | psnrs = []
38 | for sample in range(B):
39 | psnrs.append(get_psnr(img_batch.detach()[sample, :, :, :], ref_batch[sample, :, :, :]))
40 | psnr = torch.stack(psnrs, dim=0).mean()
41 |
42 | return psnr.item()
43 |
44 |
45 | if __name__ == '__main__':
46 | device = 'cuda:0'
47 | dataset = 'mnist'
48 | lpips_loss = lpips.LPIPS(net='vgg', spatial=False).to(device)
49 | x = [os.path.join(f'images/{dataset}_gt', _) for _ in os.listdir(f'images/{dataset}_gt')]
50 | y = [os.path.join(f'images/{dataset}_ig', _) for _ in os.listdir(f'images/{dataset}_ig')]
51 | z = [os.path.join(f'images/{dataset}_ours', _) for _ in os.listdir(f'images/{dataset}_ours')]
52 | x = get_images(x, 28 if dataset == 'mnist' else 32)
53 | y = get_images(y, 28 if dataset == 'mnist' else 32)
54 | z = get_images(z, 28 if dataset == 'mnist' else 32)
55 | with torch.no_grad():
56 | lpips_score = lpips_loss(y, x).squeeze().mean()
57 | lpips_score2 = lpips_loss(z, x).squeeze().mean()
58 | psnr1 = psnr(y, x)
59 | psnr2 = psnr(z, x)
60 | print('LPIPS: IG-%.2f; Ours-%.2f' % (lpips_score.item(), lpips_score2.item()))
61 | print('PSNR: IG-%.2f; Ours-%.2f' % (psnr1, psnr2))
62 |
--------------------------------------------------------------------------------
/defense.py:
--------------------------------------------------------------------------------
1 | """
2 | Defense methods. code from https://github.com/zhuohangli/GGL
3 | Including:
4 | - Additive noise
5 | - Gradient clipping
6 | - Gradient compression
7 | - Representation perturbation
8 | """
9 | import numpy as np
10 | import torch
11 |
12 | params = {'dp': 'noise_std', 'clip': 'clip_bound', 'sparse': 'sparse_ratio', 'perturb': 'prune_rate'}
13 |
14 |
15 | def additive_noise(input_gradient, std=0.1):
16 | """
17 | Additive noise mechanism for differential privacy
18 | """
19 | gradient = [grad + torch.normal(torch.zeros_like(grad), std * torch.ones_like(grad)) for grad in input_gradient]
20 | return gradient
21 |
22 |
23 | def gradient_clipping(input_gradient, bound=4):
24 | """
25 | Gradient clipping (clip by norm)
26 | """
27 | max_norm = float(bound)
28 | norm_type = 2.0 # np.inf
29 | device = input_gradient[0].device
30 |
31 | if norm_type == np.inf:
32 | norms = [g.abs().max().to(device) for g in input_gradient]
33 | total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
34 | else:
35 | total_norm = torch.norm(torch.stack([torch.norm(g, norm_type).to(device) for g in input_gradient]), norm_type)
36 | clip_coef = max_norm / (total_norm + 1e-6)
37 | clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
38 |
39 | gradient = [g.mul_(clip_coef_clamped.to(device)) for g in input_gradient]
40 | return gradient
41 |
42 |
43 | def gradient_compression(input_gradient, percentage=10):
44 | """
45 | Prune by percentage
46 | """
47 | device = input_gradient[0].device
48 | gradient = [None] * len(input_gradient)
49 | for i in range(len(input_gradient)):
50 | grad_tensor = input_gradient[i].clone().cpu().numpy()
51 | flattened_weights = np.abs(grad_tensor.flatten())
52 | thresh = np.percentile(flattened_weights, percentage)
53 | grad_tensor = np.where(abs(grad_tensor) < thresh, 0, grad_tensor)
54 | gradient[i] = torch.Tensor(grad_tensor).to(device)
55 | return gradient
56 |
57 |
58 | def perturb_representation(input_gradient, model, ground_truth, pruning_rate=10):
59 | """
60 | Defense proposed in the Soteria paper.
61 | param:
62 | - input_gradient: the input_gradient
63 | - model: the ResNet-18 model
64 | - ground_truth: the benign image (for learning perturbed representation)
65 | - pruning_rate: the prune percentage
66 | Note: This implementation only works for ResNet-18
67 | """
68 | device = input_gradient[0].device
69 |
70 | gt_data = ground_truth.clone()
71 | gt_data.requires_grad = True
72 |
73 | out, feature_graph = model(gt_data)
74 |
75 | deviation_target = torch.zeros_like(feature_graph)
76 | deviation_x_norm = torch.zeros_like(feature_graph)
77 | for f in range(deviation_x_norm.size(1)):
78 | deviation_target[:, f] = 1
79 | feature_graph.backward(deviation_target, retain_graph=True)
80 | deviation_f1_x = gt_data.grad.data
81 | deviation_x_norm[:, f] = torch.norm(deviation_f1_x.view(deviation_f1_x.size(0), -1), dim=1) / (
82 | (feature_graph.data[:, f]) + 1e-10)
83 | model.zero_grad()
84 | gt_data.grad.data.zero_()
85 | deviation_target[:, f] = 0
86 |
87 | # prune r_i corresponding to smallest ||dr_i/dX||/||r_i||
88 | deviation_x_norm_sum = deviation_x_norm.sum(axis=0)
89 | thresh = np.percentile(deviation_x_norm_sum.flatten().cpu().numpy(), pruning_rate)
90 | mask = np.where(abs(deviation_x_norm_sum.cpu()) < thresh, 0, 1).astype(np.float32)
91 |
92 | print('Soteria mask: ', sum(mask))
93 |
94 | gradient = [grad for grad in input_gradient]
95 | # apply mask
96 | gradient[-2] = gradient[-2] * torch.Tensor(mask).to(device)
97 | return gradient
98 |
--------------------------------------------------------------------------------
/loss.py:
--------------------------------------------------------------------------------
1 | """Define various loss functions and bundle them with appropriate metrics."""
2 |
3 | import torch
4 | import numpy as np
5 |
6 |
7 | class Loss:
8 | """Abstract class, containing necessary methods.
9 |
10 | Abstract class to collect information about the 'higher-level' loss function, used to train an energy-based model
11 | containing the evaluation of the loss function, its gradients w.r.t. to first and second argument and evaluations
12 | of the actual metric that is targeted.
13 |
14 | """
15 |
16 | def __init__(self):
17 | """Init."""
18 | pass
19 |
20 | def __call__(self, reference, argmin):
21 | """Return l(x, y)."""
22 | raise NotImplementedError()
23 | return value, name, format
24 |
25 | def metric(self, reference, argmin):
26 | """The actually sought metric."""
27 | raise NotImplementedError()
28 | return value, name, format
29 |
30 |
31 | class PSNR(Loss):
32 | """A classical MSE target.
33 |
34 | The minimized criterion is MSE Loss, the actual metric is average PSNR.
35 | """
36 |
37 | def __init__(self):
38 | """Init with torch MSE."""
39 | self.loss_fn = torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')
40 |
41 | def __call__(self, x=None, y=None):
42 | """Return l(x, y)."""
43 | name = 'MSE'
44 | pf_fmt = '.6f'
45 | if x is None:
46 | return name, pf_fmt
47 | else:
48 | value = 0.5 * self.loss_fn(x, y)
49 | return value, name, pf_fmt
50 |
51 | def metric(self, x=None, y=None):
52 | """The actually sought metric."""
53 | name = 'avg PSNR'
54 | pf_fmt = '.3f'
55 | if x is None:
56 | return name, pf_fmt
57 | else:
58 | value = self.psnr_compute(x, y)
59 | return value, name, pf_fmt
60 |
61 | @staticmethod
62 | def psnr_compute(img_batch, ref_batch, batched=False, factor=1.0):
63 | """Standard PSNR."""
64 |
65 | def get_psnr(img_in, img_ref):
66 | mse = ((img_in - img_ref) ** 2).mean()
67 | if mse > 0 and torch.isfinite(mse):
68 | return (10 * torch.log10(factor ** 2 / mse)).item()
69 | elif not torch.isfinite(mse):
70 | return float('nan')
71 | else:
72 | return float('inf')
73 |
74 | if batched:
75 | psnr = get_psnr(img_batch.detach(), ref_batch)
76 | else:
77 | [B, C, m, n] = img_batch.shape
78 | psnrs = []
79 | for sample in range(B):
80 | psnrs.append(get_psnr(img_batch.detach()[sample, :, :, :], ref_batch[sample, :, :, :]))
81 | psnr = np.mean(psnrs)
82 |
83 | return psnr
84 |
85 |
86 | class Classification(Loss):
87 | """A classical NLL loss for classification. Evaluation has the softmax baked in.
88 |
89 | The minimized criterion is cross entropy, the actual metric is total accuracy.
90 | """
91 |
92 | def __init__(self):
93 | """Init with torch MSE."""
94 | self.loss_fn = torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100,
95 | reduce=None, reduction='mean')
96 |
97 | def __call__(self, x=None, y=None):
98 | """Return l(x, y)."""
99 | name = 'CrossEntropy'
100 | pf_fmt = '1.5f'
101 | if x is None:
102 | return name, pf_fmt
103 | else:
104 | value = self.loss_fn(x, y)
105 | return value, name, pf_fmt
106 |
107 | def metric(self, x=None, y=None):
108 | """The actually sought metric."""
109 | name = 'Accuracy'
110 | pf_fmt = '6.2%'
111 | if x is None:
112 | return name, pf_fmt
113 | else:
114 | value = (x.data.argmax(dim=1) == y).sum().float() / y.shape[0]
115 | return value.detach(), name, pf_fmt
116 |
--------------------------------------------------------------------------------
/metrics.py:
--------------------------------------------------------------------------------
1 | """This is code based on https://sudomake.ai/inception-score-explained/."""
2 | import torch
3 | import torchvision
4 |
5 | from collections import defaultdict
6 |
7 |
8 | class InceptionScore(torch.nn.Module):
9 | """Class that manages and returns the inception score of images."""
10 |
11 | def __init__(self, batch_size=32, setup=dict(device=torch.device('cpu'), dtype=torch.float)):
12 | """Initialize with setup and target inception batch size."""
13 | super().__init__()
14 | self.preprocessing = torch.nn.Upsample(size=(299, 299), mode='bilinear', align_corners=False)
15 | self.model = torchvision.models.inception_v3(pretrained=True).to(**setup)
16 | self.model.eval()
17 | self.batch_size = batch_size
18 |
19 | def forward(self, image_batch):
20 | """Image batch should have dimensions BCHW and should be normalized.
21 |
22 | B should be divisible by self.batch_size.
23 | """
24 | B, C, H, W = image_batch.shape
25 | batches = B // self.batch_size
26 | scores = []
27 | for batch in range(batches):
28 | input = self.preprocessing(image_batch[batch * self.batch_size: (batch + 1) * self.batch_size])
29 | scores.append(self.model(input))
30 | prob_yx = torch.nn.functional.softmax(torch.cat(scores, 0), dim=1)
31 | entropy = torch.where(prob_yx > 0, -prob_yx * prob_yx.log(), torch.zeros_like(prob_yx))
32 | return entropy.sum()
33 |
34 |
35 | def psnr(img_batch, ref_batch, batched=False, factor=1.0):
36 | """Standard PSNR."""
37 |
38 | def get_psnr(img_in, img_ref):
39 | mse = ((img_in - img_ref) ** 2).mean()
40 | if mse > 0 and torch.isfinite(mse):
41 | return 10 * torch.log10(factor ** 2 / mse)
42 | elif not torch.isfinite(mse):
43 | return img_batch.new_tensor(float('nan'))
44 | else:
45 | return img_batch.new_tensor(float('inf'))
46 |
47 | if batched:
48 | psnr = get_psnr(img_batch.detach(), ref_batch)
49 | else:
50 | [B, C, m, n] = img_batch.shape
51 | psnrs = []
52 | for sample in range(B):
53 | psnrs.append(get_psnr(img_batch.detach()[sample, :, :, :], ref_batch[sample, :, :, :]))
54 | psnr = torch.stack(psnrs, dim=0).mean()
55 |
56 | return psnr.item()
57 |
58 |
59 | def total_variation(x):
60 | """Anisotropic TV."""
61 | dx = torch.mean(torch.abs(x[:, :, :, :-1] - x[:, :, :, 1:]))
62 | dy = torch.mean(torch.abs(x[:, :, :-1, :] - x[:, :, 1:, :]))
63 | return dx + dy
64 |
65 |
66 | def group_consistency(x, group_x):
67 | mean_group_x = sum(group_x) / len(group_x)
68 | return torch.norm(x - mean_group_x, p=3)
69 |
70 |
71 | def activation_errors(model, x1, x2):
72 | """Compute activation-level error metrics for every module in the network."""
73 | model.eval()
74 |
75 | device = next(model.parameters()).device
76 |
77 | hooks = []
78 | data = defaultdict(dict)
79 | inputs = torch.cat((x1, x2), dim=0)
80 | separator = x1.shape[0]
81 |
82 | def check_activations(self, input, output):
83 | module_name = str(*[name for name, mod in model.named_modules() if self is mod])
84 | try:
85 | layer_inputs = input[0].detach()
86 | residual = (layer_inputs[:separator] - layer_inputs[separator:]).pow(2)
87 | se_error = residual.sum()
88 | mse_error = residual.mean()
89 | sim = torch.nn.functional.cosine_similarity(layer_inputs[:separator].flatten(),
90 | layer_inputs[separator:].flatten(),
91 | dim=0, eps=1e-8).detach()
92 | data['se'][module_name] = se_error.item()
93 | data['mse'][module_name] = mse_error.item()
94 | data['sim'][module_name] = sim.item()
95 | except (KeyboardInterrupt, SystemExit):
96 | raise
97 | except AttributeError:
98 | pass
99 |
100 | for name, module in model.named_modules():
101 | hooks.append(module.register_forward_hook(check_activations))
102 |
103 | try:
104 | outputs = model(inputs.to(device))
105 | for hook in hooks:
106 | hook.remove()
107 | except Exception as e:
108 | for hook in hooks:
109 | hook.remove()
110 | raise
111 |
112 | return data
113 |
--------------------------------------------------------------------------------
/scheduler.py:
--------------------------------------------------------------------------------
1 | """This file is part of https://github.com/ildoonet/pytorch-gradual-warmup-lr.
2 |
3 | MIT License
4 |
5 | Copyright (c) 2019 Ildoo Kim
6 |
7 | Permission is hereby granted, free of charge, to any person obtaining a copy
8 | of this software and associated documentation files (the "Software"), to deal
9 | in the Software without restriction, including without limitation the rights
10 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 | copies of the Software, and to permit persons to whom the Software is
12 | furnished to do so, subject to the following conditions:
13 |
14 | The above copyright notice and this permission notice shall be included in all
15 | copies or substantial portions of the Software.
16 |
17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 | SOFTWARE.
24 |
25 | """
26 | from torch.optim.lr_scheduler import _LRScheduler
27 | from torch.optim.lr_scheduler import ReduceLROnPlateau
28 |
29 |
30 | class GradualWarmupScheduler(_LRScheduler):
31 | """Gradually warm-up(increasing) learning rate in optimizer.
32 |
33 | Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'.
34 |
35 | Args:
36 | optimizer (Optimizer): Wrapped optimizer.
37 | multiplier: target learning rate = base lr * multiplier
38 | total_epoch: target learning rate is reached at total_epoch, gradually
39 | after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
40 |
41 | """
42 |
43 | def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
44 | """Initialize the warm-up start.
45 |
46 | Usage:
47 |
48 | scheduler_normal = torch.optim.lr_scheduler.MultiStepLR(optimizer)
49 | scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=8, total_epoch=10, after_scheduler=scheduler_normal)
50 | """
51 | self.multiplier = multiplier
52 | if self.multiplier < 1.:
53 | raise ValueError('multiplier should be greater thant or equal to 1.')
54 | self.total_epoch = total_epoch
55 | self.after_scheduler = after_scheduler
56 | self.finished = False
57 | super().__init__(optimizer)
58 |
59 | def get_lr(self):
60 | if self.last_epoch > self.total_epoch:
61 | if self.after_scheduler:
62 | if not self.finished:
63 | self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
64 | self.finished = True
65 | return self.after_scheduler.get_lr()
66 | return [base_lr * self.multiplier for base_lr in self.base_lrs]
67 |
68 | return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in
69 | self.base_lrs]
70 |
71 | def step_ReduceLROnPlateau(self, metrics, epoch=None):
72 | if epoch is None:
73 | epoch = self.last_epoch + 1
74 | self.last_epoch = epoch if epoch != 0 else 1 # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning
75 | if self.last_epoch <= self.total_epoch:
76 | warmup_lr = [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in
77 | self.base_lrs]
78 | for param_group, lr in zip(self.optimizer.param_groups, warmup_lr):
79 | param_group['lr'] = lr
80 | else:
81 | if epoch is None:
82 | self.after_scheduler.step(metrics, None)
83 | else:
84 | self.after_scheduler.step(metrics, epoch - self.total_epoch)
85 |
86 | def step(self, epoch=None, metrics=None):
87 | if type(self.after_scheduler) != ReduceLROnPlateau:
88 | if self.finished and self.after_scheduler:
89 | if epoch is None:
90 | self.after_scheduler.step(None)
91 | else:
92 | self.after_scheduler.step(epoch - self.total_epoch)
93 | else:
94 | return super(GradualWarmupScheduler, self).step(epoch)
95 | else:
96 | self.step_ReduceLROnPlateau(metrics, epoch)
97 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/Project_Default.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
--------------------------------------------------------------------------------
/methods.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 |
4 |
5 | def solve_lp(A, b, c):
6 | from cvxopt import matrix, solvers
7 | solvers.options['show_progress'] = False
8 | np.random.seed(None)
9 | for _ in range(1):
10 | A, b, c = matrix(A), matrix(b), matrix(c)
11 | sol = solvers.lp(c, A, b)
12 | x = sol['x']
13 | if x is not None:
14 | ret = A * x
15 | if ret[0] < -0.1 and np.max(ret[1:]) < 1e-2 and np.count_nonzero(np.array(ret[1:]) <= 0) > 0.5 * len(ret):
16 | return True
17 | return False
18 |
19 |
20 | def solve_perceptron(X, y, fit_intercept=True, max_iter=1000, tol=1e-3, eta0=1.):
21 | from sklearn.linear_model import Perceptron
22 | clf = Perceptron(fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, eta0=eta0)
23 | clf.fit(X, y)
24 | if not fit_intercept:
25 | pass
26 | if clf.score(X, y) > 0.9:
27 | return True
28 | return False
29 |
30 |
31 | def svd_infer(A, num_classes=1000, gt_k=None, epsilon=1e-8):
32 | m, n = np.shape(A)
33 | B, s, C = np.linalg.svd(A, full_matrices=False)
34 | pred_k = np.linalg.matrix_rank(A)
35 | k = min(gt_k, pred_k)
36 | C = C[:k, :].astype(np.double)
37 | # Find x: x @ C has only one positive element
38 | # Filter possible labels using perceptron algorithm
39 | bow = []
40 | for i in range(n):
41 | if i in bow:
42 | continue
43 | indices = [j for j in range(n) if j != i]
44 | np.random.shuffle(indices)
45 | if solve_perceptron(
46 | X=np.concatenate([C[:, i:i + 1], C[:, indices[:num_classes - 1]]], 1).transpose(),
47 | y=np.array([1 if j == 0 else -1 for j in range(num_classes)]),
48 | fit_intercept=True,
49 | max_iter=1000,
50 | tol=1e-3
51 | ):
52 | bow.append(i)
53 | # Get the final set with linear programming
54 | ret_bow = []
55 | for i in bow:
56 | if i in ret_bow:
57 | continue
58 | indices = [j for j in range(n) if j != i]
59 | D = np.concatenate([C[:, i:i + 1], C[:, indices]], 1)
60 | indices2 = np.argsort(np.linalg.norm(D[:, 1:], axis=0))
61 | A = np.concatenate([D[:, 0:1], -D[:, 1 + indices2]], 1).transpose()
62 | if solve_lp(
63 | A=A,
64 | b=np.array([-epsilon] + [0] * len(indices2)),
65 | c=np.array(C[:, i:i + 1])
66 | ):
67 | ret_bow.append(i)
68 | return ret_bow
69 |
70 |
71 | # Extended GradientInversion, w_grad: m * n.
72 | def gi_infer(w_grad):
73 | ret = (torch.min(w_grad, dim=0)[0] < 0).nonzero(as_tuple=False).squeeze().numpy()
74 | ret = [ret] if ret.shape == () else ret
75 | return ret
76 |
77 |
78 | # Extended iDLG
79 | def idlg_infer(w_grad):
80 | ret = (torch.sum(w_grad, dim=0) < 0).nonzero(as_tuple=False).squeeze().numpy()
81 | ret = [ret] if ret.shape == () else ret
82 | return ret
83 |
84 |
85 | # Recover embeddings
86 | def get_emb(grad_w, grad_b, exp_thre=10):
87 | # Split scientific count notation
88 | sc_grad_b = '%e' % grad_b
89 | sc_grad_w = ['%e' % w for w in grad_w]
90 | real_b, exp_b = float(sc_grad_b.split('e')[0]), int(sc_grad_b.split('e')[1])
91 | real_w, exp_w = np.array([float(sc_w.split('e')[0]) for sc_w in sc_grad_w]), \
92 | np.array([int(sc_w.split('e')[1]) for sc_w in sc_grad_w])
93 | # Deal with 0 case
94 | if real_b == 0.:
95 | real_b = 1
96 | exp_b = -64
97 | # Deal with exponent value
98 | exp = exp_w - exp_b
99 | exp = np.where(exp > exp_thre, exp_thre, exp)
100 | exp = np.where(exp < -1 * exp_thre, -1 * exp_thre, exp)
101 |
102 | def get_exp(x):
103 | return 10 ** x if x >= 0 else 1. / 10 ** (-x)
104 |
105 | exp = np.array(list(map(get_exp, exp)))
106 | # Calculate recovered average embeddings for batch_i (samples of class i)
107 | res = (1. / real_b) * real_w * exp
108 | res = torch.from_numpy(res).to(torch.float32)
109 | return res
110 |
111 |
112 | # Recover Labels
113 | def iLRG(probs, grad_b, n_classes, n_images):
114 | # Solve linear equations to recover labels
115 | coefs, values = [], []
116 | # Add the first equation: k1+k2+...+kc=K
117 | coefs.append([1 for _ in range(n_classes)])
118 | values.append(n_images)
119 | # Add the following equations
120 | for i in range(n_classes):
121 | coef = []
122 | for j in range(n_classes):
123 | if j != i:
124 | coef.append(probs[j][i].item())
125 | else:
126 | coef.append(probs[j][i].item() - 1)
127 | coefs.append(coef)
128 | values.append(n_images * grad_b[i])
129 | # Convert into numpy ndarray
130 | coefs = np.array(coefs)
131 | values = np.array(values)
132 | # Solve with Moore-Penrose pseudoinverse
133 | res_float = np.linalg.pinv(coefs).dot(values)
134 | # Filter negative values
135 | res = np.where(res_float > 0, res_float, 0)
136 | # Round values
137 | res = np.round(res).astype(int)
138 | res = np.where(res <= n_images, res, 0)
139 | err = res - res_float
140 | num_mod = np.sum(res) - n_images
141 | if num_mod > 0:
142 | inds = np.argsort(-err)
143 | mod_inds = inds[:num_mod]
144 | mod_res = res.copy()
145 | mod_res[mod_inds] -= 1
146 | elif num_mod < 0:
147 | inds = np.argsort(err)
148 | mod_inds = inds[:num_mod]
149 | mod_res = res.copy()
150 | mod_res[mod_inds] += 1
151 | else:
152 | mod_res = res
153 |
154 | return res, mod_res
155 |
156 |
157 | # Have Known about which labels exist
158 | def sim_iLRG(probs, grad_b, exist_labels, n_images):
159 | # Solve linear equations to recover labels
160 | coefs, values = [], []
161 | # Add the first equation: k1+k2+...+kc=K
162 | coefs.append([1 for _ in range(len(exist_labels))])
163 | values.append(n_images)
164 | # Add the following equations
165 | for i in exist_labels:
166 | coef = []
167 | for j in exist_labels:
168 | if j != i:
169 | coef.append(probs[j][i].item())
170 | else:
171 | coef.append(probs[j][i].item() - 1)
172 | coefs.append(coef)
173 | values.append(n_images * grad_b[i])
174 | # Convert into numpy ndarray
175 | coefs = np.array(coefs)
176 | values = np.array(values)
177 | # Solve with Moore-Penrose pseudoinverse
178 | res_float = np.linalg.pinv(coefs).dot(values)
179 | # Filter negative values
180 | res = np.where(res_float > 0, res_float, 0)
181 | # Round values
182 | res = np.round(res).astype(int)
183 | res = np.where(res <= n_images, res, 0)
184 | err = res - res_float
185 | num_mod = np.sum(res) - n_images
186 | if num_mod > 0:
187 | inds = np.argsort(-err)
188 | mod_inds = inds[:num_mod]
189 | mod_res = res.copy()
190 | mod_res[mod_inds] -= 1
191 | elif num_mod < 0:
192 | inds = np.argsort(err)
193 | mod_inds = inds[:num_mod]
194 | mod_res = res.copy()
195 | mod_res[mod_inds] += 1
196 | else:
197 | mod_res = res
198 |
199 | return res, mod_res
200 |
--------------------------------------------------------------------------------
/options.py:
--------------------------------------------------------------------------------
1 | """Parser options."""
2 |
3 | import argparse
4 |
5 |
6 | def options():
7 | """Construct the central argument parser, filled with useful defaults."""
8 | parser = argparse.ArgumentParser(description='Instance-wise Batch Label Restoration and Image Reconstruction')
9 |
10 | # Basic settings
11 | parser.add_argument('--exp_name', default='Experiment', type=str)
12 | parser.add_argument('--cpu', action='store_true', help='Use cpu')
13 | parser.add_argument('--num_tries', default=50, type=int, help='Repetition times of an experiment')
14 | parser.add_argument('--num_images', default=24, type=int,
15 | help='How many images should be recovered from the given gradient / Restoration batchsize')
16 | parser.add_argument('--seed', default=12, type=int, help='Random seed')
17 | parser.add_argument('--alpha', default=1, type=float, help='Factor for scaling outputs')
18 | parser.add_argument('--simplified', action='store_true',
19 | help='Use simplified method, given class-wise label existences')
20 | parser.add_argument('--compare', action='store_true',
21 | help='Compare our method with others')
22 | parser.add_argument('--estimate', action='store_true',
23 | help='Use 1/n to estimate probabilities')
24 | parser.add_argument('--analysis', action='store_true',
25 | help='Error analysis about four approximations and recovered embeddings & probs, etc')
26 | parser.add_argument('--ratio', default=0.00, type=float, help='Filter ratio to compute mean values')
27 |
28 | # Data settings
29 | parser.add_argument('--data_path', default='data', type=str)
30 | parser.add_argument('--dataset', default='CIFAR100', type=str)
31 | parser.add_argument('--split', default='train', type=str, help='Part of splitted dataset, default train')
32 | parser.add_argument('--distribution', default='random', type=str, help='Data distribution of a training batch,'
33 | 'random, extreme, balanced, unique')
34 | parser.add_argument('--start_id', default=0, type=int,
35 | help='The beginning image id for collecting data with extreme and balanced distribution')
36 | parser.add_argument('--num_classes', default=100, type=int)
37 | parser.add_argument('--num_uniform_cls', default=32, type=int,
38 | help='Num of classes for collecting data with balanced distribution')
39 | parser.add_argument('--num_target_cls', default=5, type=int,
40 | help='Num of classes for collecting data with random2 distribution')
41 | parser.add_argument('--max_size', default=32, type=int,
42 | help='Max batch size for ImageNet')
43 |
44 | # Model settings
45 | parser.add_argument('--model', default='lenet5', type=str, help='model name.')
46 | parser.add_argument('--trained_model', action='store_true', help='Use a trained model.')
47 | ## Training settings
48 | parser.add_argument('--iter_train', action='store_true',
49 | help='Train model with iterations setting instead of epochs')
50 | parser.add_argument('--iters', default=1000, type=int,
51 | help='If using a trained model, how many iterations was it trained?')
52 | parser.add_argument('--epochs', default=10, type=int,
53 | help='If using a trained model, how many epochs was it trained?')
54 | parser.add_argument('--batch_size', default=128, type=int,
55 | help='Batchsize for training, so is validation')
56 | parser.add_argument('--lr', default=0.1, type=float, help='Recommend 0.001 for adam series and 0.1 for sgd')
57 | parser.add_argument('--optimizer', default='SGD', type=str, help='AdamW, SGD, linear')
58 | parser.add_argument('--scheduler', default='linear', type=str, help='linear')
59 | parser.add_argument('--weight_decay', default=5e-4, help='Usually 5e-4')
60 | parser.add_argument('--warmup', action='store_true', help='Use warmup scheduler')
61 | parser.add_argument('--epoch_interval', default=10, type=int,
62 | help='How many epochs to validate or save models')
63 | parser.add_argument('--iter_interval', default=100, type=int,
64 | help='How many iterations to validate or save models')
65 | parser.add_argument('--mid_save', action='store_true', help='Save middle trained models')
66 | parser.add_argument('--model_path', default='models', type=str)
67 | parser.add_argument('--dryrun', action='store_true', help='Run everything for just one step to test functionality')
68 | ## End training settings
69 | parser.add_argument('--batchnorm', action='store_true', help='Use batchnorm for lenet5 model')
70 | parser.add_argument('--dropout', action='store_true', help='Use dropout for vgg16 model')
71 | parser.add_argument('--silu', action='store_true', help='Use silu activation, may occur negative values')
72 | parser.add_argument('--leaky_relu', action='store_true',
73 | help='Use leaky relu activation, may occur negative values')
74 | parser.add_argument('--n_dim', default=300, type=int,
75 | help='Dimension of embedding (the input of classification layer)')
76 | parser.add_argument('--n_hidden', default=1, type=int,
77 | help='Num of hidden layers')
78 |
79 | # Defense settings
80 | parser.add_argument('--defense', action='store_true', help='Defense against the attack')
81 | parser.add_argument('--defense_method', default='dp', type=str,
82 | help='dp(additive noise) or clip or sparse or perturb(soteria)')
83 | parser.add_argument('--noise_std', default=0.001, type=float)
84 | parser.add_argument('--clip_bound', default=4, type=int)
85 | parser.add_argument('--sparse_ratio', default=10, type=int)
86 | parser.add_argument('--prune_ratio', default=10, type=int)
87 |
88 | # Rec images settings
89 | parser.add_argument('--rec_img', action='store_true', help='Reconstruct images based on our attack, here IG')
90 | parser.add_argument('--fix_labels', action='store_true', help='Fix labels')
91 | parser.add_argument('--gt_labels', action='store_true', help='Fix labels with the gt')
92 | parser.add_argument('--optim', default='ig', type=str, help='IG or DLG')
93 | parser.add_argument('--restarts', default=1, type=int, help='How many restarts to run')
94 | parser.add_argument('--cost_fn', default='sim', type=str, help='Choice of cost function')
95 | parser.add_argument('--indices', default='def', type=str, help='Choice of indices from the parameter list')
96 | parser.add_argument('--weights', default='equal', type=str, help='Weigh the parameter list differently')
97 | parser.add_argument('--rec_lr', default=None, type=float, help='Learning rate for reconstruction')
98 | parser.add_argument('--rec_optimizer', default='adam', type=str, help='Optimizer for reconstruction')
99 | parser.add_argument('--signed', action='store_true', help='Use signed gradients, recommend true')
100 | parser.add_argument('--boxed', action='store_true', help='Use box constraints, recommend true')
101 | parser.add_argument('--scoring_choice', default='loss', type=str,
102 | help='How to find the best image between all restarts')
103 | parser.add_argument('--init', default='randn', type=str, help='Choice of image initialization')
104 | parser.add_argument('--tv', default=1e-6, type=float, help='Weight of TV penalty')
105 | parser.add_argument('--l2', default=1e-6, type=float, help='Weight of l2 norm')
106 | parser.add_argument('--max_iterations', default=8000, type=int, help='Max iterations of reconstruction')
107 | parser.add_argument('--loss_thresh', default=1e-4, type=float, help='Loss threshold for early stopping')
108 |
109 | # Files and folders:
110 | parser.add_argument('--save_image', action='store_true', help='Save the output to a file.')
111 | # parser.add_argument('--image_dir', default='images/Experiment', type=str)
112 | return parser
113 |
--------------------------------------------------------------------------------
/new_logs/ExtremeDistribution/exp1.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-13-15:29:16
2 | exp_name: extreme_distribution
3 | cpu: False
4 | num_tries: 20
5 | num_images: 24
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: CIFAR100
15 | split: train
16 | distribution: custom_imbalanced
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: vgg16
23 | trained_model: False
24 | iter_train: False
25 | iters: 1000
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/extreme_distribution
70 | image_dir: images/extreme_distribution
71 |
72 | Start Experiment 1
73 | start_id: 0
74 | 0/24, Acc for this batch: 0.000
75 | ***************************************************************
76 | Ground-truth Labels: 0,18,92
77 | Ground-truth Num of Instances: 1,22,1
78 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
79 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
80 | Start Experiment 2
81 | start_id: 2558
82 | 0/24, Acc for this batch: 0.000
83 | ***************************************************************
84 | Ground-truth Labels: 0,18,92
85 | Ground-truth Num of Instances: 1,22,1
86 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
87 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
88 | Start Experiment 3
89 | start_id: 4787
90 | 0/24, Acc for this batch: 0.000
91 | ***************************************************************
92 | Ground-truth Labels: 0,18,92
93 | Ground-truth Num of Instances: 1,22,1
94 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
95 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
96 | Start Experiment 4
97 | start_id: 7650
98 | 0/24, Acc for this batch: 0.000
99 | ***************************************************************
100 | Ground-truth Labels: 0,18,92
101 | Ground-truth Num of Instances: 1,22,1
102 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
103 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
104 | Start Experiment 5
105 | start_id: 9719
106 | 0/24, Acc for this batch: 0.000
107 | ***************************************************************
108 | Ground-truth Labels: 0,18,92
109 | Ground-truth Num of Instances: 1,22,1
110 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
111 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
112 | Start Experiment 6
113 | start_id: 11524
114 | 0/24, Acc for this batch: 0.000
115 | ***************************************************************
116 | Ground-truth Labels: 0,18,92
117 | Ground-truth Num of Instances: 1,22,1
118 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
119 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
120 | Start Experiment 7
121 | start_id: 13404
122 | 0/24, Acc for this batch: 0.000
123 | ***************************************************************
124 | Ground-truth Labels: 0,18,92
125 | Ground-truth Num of Instances: 1,22,1
126 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
127 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
128 | Start Experiment 8
129 | start_id: 15175
130 | 0/24, Acc for this batch: 0.000
131 | ***************************************************************
132 | Ground-truth Labels: 0,18,92
133 | Ground-truth Num of Instances: 1,22,1
134 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
135 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
136 | Start Experiment 9
137 | start_id: 18032
138 | 0/24, Acc for this batch: 0.000
139 | ***************************************************************
140 | Ground-truth Labels: 0,18,92
141 | Ground-truth Num of Instances: 1,22,1
142 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
143 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
144 | Start Experiment 10
145 | start_id: 20144
146 | 0/24, Acc for this batch: 0.000
147 | ***************************************************************
148 | Ground-truth Labels: 0,18,92
149 | Ground-truth Num of Instances: 1,22,1
150 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
151 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
152 | Start Experiment 11
153 | start_id: 21878
154 | 0/24, Acc for this batch: 0.000
155 | ***************************************************************
156 | Ground-truth Labels: 0,18,92
157 | Ground-truth Num of Instances: 1,22,1
158 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
159 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
160 | Start Experiment 12
161 | start_id: 24329
162 | 0/24, Acc for this batch: 0.000
163 | ***************************************************************
164 | Ground-truth Labels: 0,18,92
165 | Ground-truth Num of Instances: 1,22,1
166 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
167 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
168 | Start Experiment 13
169 | start_id: 27170
170 | 0/24, Acc for this batch: 0.000
171 | ***************************************************************
172 | Ground-truth Labels: 0,18,92
173 | Ground-truth Num of Instances: 1,22,1
174 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
175 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
176 | Start Experiment 14
177 | start_id: 29035
178 | 0/24, Acc for this batch: 0.000
179 | ***************************************************************
180 | Ground-truth Labels: 0,18,92
181 | Ground-truth Num of Instances: 1,22,1
182 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
183 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
184 | Start Experiment 15
185 | start_id: 31531
186 | 0/24, Acc for this batch: 0.000
187 | ***************************************************************
188 | Ground-truth Labels: 0,18,92
189 | Ground-truth Num of Instances: 1,22,1
190 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
191 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
192 | Start Experiment 16
193 | start_id: 32828
194 | 0/24, Acc for this batch: 0.000
195 | ***************************************************************
196 | Ground-truth Labels: 0,18,92
197 | Ground-truth Num of Instances: 1,22,1
198 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
199 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
200 | Start Experiment 17
201 | start_id: 35248
202 | 0/24, Acc for this batch: 0.000
203 | ***************************************************************
204 | Ground-truth Labels: 0,18,92
205 | Ground-truth Num of Instances: 1,22,1
206 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
207 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
208 | Start Experiment 18
209 | start_id: 36762
210 | 0/24, Acc for this batch: 0.000
211 | ***************************************************************
212 | Ground-truth Labels: 0,18,92
213 | Ground-truth Num of Instances: 1,22,1
214 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
215 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
216 | Start Experiment 19
217 | start_id: 38499
218 | 0/24, Acc for this batch: 0.000
219 | ***************************************************************
220 | Ground-truth Labels: 0,18,92
221 | Ground-truth Num of Instances: 1,22,1
222 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
223 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
224 | Start Experiment 20
225 | start_id: 40499
226 | 0/24, Acc for this batch: 0.000
227 | ***************************************************************
228 | Ground-truth Labels: 0,18,92
229 | Ground-truth Num of Instances: 1,22,1
230 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
231 | Our Recovered Num of Instances: 1,22,1 | LnAcc: 1.000 | IRec: 1.000
232 | ---------------------------------------------------------------
233 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
234 | Mean Rec Instances: Class 0-1, Class 18-22, Class 92-1
235 |
--------------------------------------------------------------------------------
/new_logs/ExtremeDistribution/exp2.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-13-15:34:12
2 | exp_name: extreme_distribution
3 | cpu: False
4 | num_tries: 20
5 | num_images: 72
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: CIFAR100
15 | split: train
16 | distribution: custom_imbalanced
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: vgg16
23 | trained_model: False
24 | iter_train: False
25 | iters: 1000
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/extreme_distribution
70 | image_dir: images/extreme_distribution
71 |
72 | Start Experiment 1
73 | start_id: 0
74 | 0/72, Acc for this batch: 0.000
75 | ***************************************************************
76 | Ground-truth Labels: 0,18,92
77 | Ground-truth Num of Instances: 1,70,1
78 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
79 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
80 | Start Experiment 2
81 | start_id: 8219
82 | 0/72, Acc for this batch: 0.000
83 | ***************************************************************
84 | Ground-truth Labels: 0,18,92
85 | Ground-truth Num of Instances: 1,70,1
86 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
87 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
88 | Start Experiment 3
89 | start_id: 14103
90 | 0/72, Acc for this batch: 0.000
91 | ***************************************************************
92 | Ground-truth Labels: 0,18,92
93 | Ground-truth Num of Instances: 1,70,1
94 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
95 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
96 | Start Experiment 4
97 | start_id: 21107
98 | 0/72, Acc for this batch: 0.000
99 | ***************************************************************
100 | Ground-truth Labels: 0,18,92
101 | Ground-truth Num of Instances: 1,70,1
102 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
103 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
104 | Start Experiment 5
105 | start_id: 28379
106 | 0/72, Acc for this batch: 0.000
107 | ***************************************************************
108 | Ground-truth Labels: 0,18,92
109 | Ground-truth Num of Instances: 1,70,1
110 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
111 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
112 | Start Experiment 6
113 | start_id: 35005
114 | 0/72, Acc for this batch: 0.000
115 | ***************************************************************
116 | Ground-truth Labels: 0,18,92
117 | Ground-truth Num of Instances: 1,70,1
118 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
119 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
120 | Start Experiment 7
121 | start_id: 40753
122 | 0/72, Acc for this batch: 0.000
123 | ***************************************************************
124 | Ground-truth Labels: 0,18,92
125 | Ground-truth Num of Instances: 1,70,1
126 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
127 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
128 | Start Experiment 8
129 | start_id: 48233
130 | 0/72, Acc for this batch: 0.000
131 | ***************************************************************
132 | Ground-truth Labels: 0,18,92
133 | Ground-truth Num of Instances: 1,70,1
134 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
135 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
136 | Start Experiment 9
137 | start_id: 6746
138 | 0/72, Acc for this batch: 0.000
139 | ***************************************************************
140 | Ground-truth Labels: 0,18,92
141 | Ground-truth Num of Instances: 1,70,1
142 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
143 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
144 | Start Experiment 10
145 | start_id: 13278
146 | 0/72, Acc for this batch: 0.000
147 | ***************************************************************
148 | Ground-truth Labels: 0,18,92
149 | Ground-truth Num of Instances: 1,70,1
150 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
151 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
152 | Start Experiment 11
153 | start_id: 20262
154 | 0/72, Acc for this batch: 0.000
155 | ***************************************************************
156 | Ground-truth Labels: 0,18,92
157 | Ground-truth Num of Instances: 1,70,1
158 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
159 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
160 | Start Experiment 12
161 | start_id: 27699
162 | 0/72, Acc for this batch: 0.000
163 | ***************************************************************
164 | Ground-truth Labels: 0,18,92
165 | Ground-truth Num of Instances: 1,70,1
166 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
167 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
168 | Start Experiment 13
169 | start_id: 33607
170 | 0/72, Acc for this batch: 0.000
171 | ***************************************************************
172 | Ground-truth Labels: 0,18,92
173 | Ground-truth Num of Instances: 1,70,1
174 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
175 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
176 | Start Experiment 14
177 | start_id: 39522
178 | 0/72, Acc for this batch: 0.000
179 | ***************************************************************
180 | Ground-truth Labels: 0,18,92
181 | Ground-truth Num of Instances: 1,70,1
182 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
183 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
184 | Start Experiment 15
185 | start_id: 46885
186 | 0/72, Acc for this batch: 0.000
187 | ***************************************************************
188 | Ground-truth Labels: 0,18,92
189 | Ground-truth Num of Instances: 1,70,1
190 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
191 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
192 | Start Experiment 16
193 | start_id: 5471
194 | 0/72, Acc for this batch: 0.000
195 | ***************************************************************
196 | Ground-truth Labels: 0,18,92
197 | Ground-truth Num of Instances: 1,70,1
198 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
199 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
200 | Start Experiment 17
201 | start_id: 12620
202 | 0/72, Acc for this batch: 0.000
203 | ***************************************************************
204 | Ground-truth Labels: 0,18,92
205 | Ground-truth Num of Instances: 1,70,1
206 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
207 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
208 | Start Experiment 18
209 | start_id: 19493
210 | 0/72, Acc for this batch: 0.000
211 | ***************************************************************
212 | Ground-truth Labels: 0,18,92
213 | Ground-truth Num of Instances: 1,70,1
214 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
215 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
216 | Start Experiment 19
217 | start_id: 26757
218 | 0/72, Acc for this batch: 0.000
219 | ***************************************************************
220 | Ground-truth Labels: 0,18,92
221 | Ground-truth Num of Instances: 1,70,1
222 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
223 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
224 | Start Experiment 20
225 | start_id: 32828
226 | 0/72, Acc for this batch: 0.000
227 | ***************************************************************
228 | Ground-truth Labels: 0,18,92
229 | Ground-truth Num of Instances: 1,70,1
230 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
231 | Our Recovered Num of Instances: 1,70,1 | LnAcc: 1.000 | IRec: 1.000
232 | ---------------------------------------------------------------
233 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
234 | Mean Rec Instances: Class 0-1, Class 18-70, Class 92-1
235 |
--------------------------------------------------------------------------------
/new_logs/TrainingStage/MNIST/exp5.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-17-09:19:51
2 | exp_name: train_stage2
3 | cpu: False
4 | num_tries: 20
5 | num_images: 8
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: MNIST_GRAY
15 | split: train
16 | distribution: random
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: dnn
23 | trained_model: True
24 | iter_train: True
25 | iters: 600
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/train_stage2
70 | image_dir: images/train_stage2
71 |
72 | Model loaded from file dnn_MNIST_GRAY_Iter600.pth.
73 | Start Experiment 1
74 | start_id: 0
75 | 8/8, Acc for this batch: 1.000
76 | ***************************************************************
77 | Ground-truth Labels: 0,3,4,5,8
78 | Ground-truth Num of Instances: 3,1,2,1,1
79 | Our Recovered Labels: 0,4,5,6 | LeAcc: 0.700
80 | Our Recovered Num of Instances: 2,3,2,1 | LnAcc: 0.400 | IRec: 0.625
81 | Start Experiment 2
82 | start_id: 11879
83 | 8/8, Acc for this batch: 1.000
84 | ***************************************************************
85 | Ground-truth Labels: 0,1,2,5,7,9
86 | Ground-truth Num of Instances: 1,1,1,2,1,2
87 | Our Recovered Labels: 0 | LeAcc: 0.500
88 | Our Recovered Num of Instances: 1 | LnAcc: 0.500 | IRec: 0.125
89 | Start Experiment 3
90 | start_id: 41168
91 | 7/8, Acc for this batch: 0.875
92 | ***************************************************************
93 | Ground-truth Labels: 0,4,5,7,9
94 | Ground-truth Num of Instances: 1,2,1,1,3
95 | Our Recovered Labels: 0,4,9 | LeAcc: 0.800
96 | Our Recovered Num of Instances: 1,6,2 | LnAcc: 0.600 | IRec: 0.625
97 | Start Experiment 4
98 | start_id: 12852
99 | 8/8, Acc for this batch: 1.000
100 | ***************************************************************
101 | Ground-truth Labels: 0,1,4,5,8,9
102 | Ground-truth Num of Instances: 1,1,1,2,2,1
103 | Our Recovered Labels: 4,5,8 | LeAcc: 0.700
104 | Our Recovered Num of Instances: 1,3,2 | LnAcc: 0.600 | IRec: 0.625
105 | Start Experiment 5
106 | start_id: 49967
107 | 8/8, Acc for this batch: 1.000
108 | ***************************************************************
109 | Ground-truth Labels: 0,2,3,5,9
110 | Ground-truth Num of Instances: 1,1,2,1,3
111 | Our Recovered Labels: 3,5,9 | LeAcc: 0.800
112 | Our Recovered Num of Instances: 2,1,5 | LnAcc: 0.700 | IRec: 0.750
113 | Start Experiment 6
114 | start_id: 13121
115 | 8/8, Acc for this batch: 1.000
116 | ***************************************************************
117 | Ground-truth Labels: 4,5,6,7,8
118 | Ground-truth Num of Instances: 1,1,1,1,4
119 | Our Recovered Labels: 7 | LeAcc: 0.600
120 | Our Recovered Num of Instances: 1 | LnAcc: 0.600 | IRec: 0.125
121 | Start Experiment 7
122 | start_id: 58442
123 | 7/8, Acc for this batch: 0.875
124 | ***************************************************************
125 | Ground-truth Labels: 1,2,3,4,5,6,7
126 | Ground-truth Num of Instances: 1,1,1,1,1,1,2
127 | Our Recovered Labels: 2,3,4,5,7 | LeAcc: 0.800
128 | Our Recovered Num of Instances: 2,1,1,2,2 | LnAcc: 0.600 | IRec: 0.750
129 | Start Experiment 8
130 | start_id: 17366
131 | 7/8, Acc for this batch: 0.875
132 | ***************************************************************
133 | Ground-truth Labels: 0,1,6,8,9
134 | Ground-truth Num of Instances: 3,1,2,1,1
135 | Our Recovered Labels: 0,6,9 | LeAcc: 0.800
136 | Our Recovered Num of Instances: 8,1,1 | LnAcc: 0.600 | IRec: 0.625
137 | Start Experiment 9
138 | start_id: 35251
139 | 8/8, Acc for this batch: 1.000
140 | ***************************************************************
141 | Ground-truth Labels: 2,3,5,6,7,9
142 | Ground-truth Num of Instances: 2,1,1,1,2,1
143 | Our Recovered Labels: 2,5,7 | LeAcc: 0.700
144 | Our Recovered Num of Instances: 2,1,6 | LnAcc: 0.600 | IRec: 0.625
145 | Start Experiment 10
146 | start_id: 39317
147 | 8/8, Acc for this batch: 1.000
148 | ***************************************************************
149 | Ground-truth Labels: 1,2,3,5,6,7,9
150 | Ground-truth Num of Instances: 1,2,1,1,1,1,1
151 | Our Recovered Labels: 2,4,7,9 | LeAcc: 0.500
152 | Our Recovered Num of Instances: 3,1,1,2 | LnAcc: 0.300 | IRec: 0.500
153 | Start Experiment 11
154 | start_id: 32817
155 | 8/8, Acc for this batch: 1.000
156 | ***************************************************************
157 | Ground-truth Labels: 1,2,4,7,8,9
158 | Ground-truth Num of Instances: 1,1,1,3,1,1
159 | Our Recovered Labels: | LeAcc: 0.400
160 | Our Recovered Num of Instances: | LnAcc: 0.400 | IRec: 0.000
161 | Start Experiment 12
162 | start_id: 12441
163 | 7/8, Acc for this batch: 0.875
164 | ***************************************************************
165 | Ground-truth Labels: 2,4,7,8,9
166 | Ground-truth Num of Instances: 2,1,2,2,1
167 | Our Recovered Labels: 2,6,8,9 | LeAcc: 0.700
168 | Our Recovered Num of Instances: 1,1,4,2 | LnAcc: 0.400 | IRec: 0.500
169 | Start Experiment 13
170 | start_id: 33651
171 | 7/8, Acc for this batch: 0.875
172 | ***************************************************************
173 | Ground-truth Labels: 2,3,5,6,7,8
174 | Ground-truth Num of Instances: 1,2,1,1,2,1
175 | Our Recovered Labels: 0,7,8 | LeAcc: 0.500
176 | Our Recovered Num of Instances: 4,1,1 | LnAcc: 0.400 | IRec: 0.250
177 | Start Experiment 14
178 | start_id: 17000
179 | 7/8, Acc for this batch: 0.875
180 | ***************************************************************
181 | Ground-truth Labels: 0,1,3,6,8,9
182 | Ground-truth Num of Instances: 2,2,1,1,1,1
183 | Our Recovered Labels: 0,3,9 | LeAcc: 0.700
184 | Our Recovered Num of Instances: 8,1,1 | LnAcc: 0.600 | IRec: 0.500
185 | Start Experiment 15
186 | start_id: 43072
187 | 8/8, Acc for this batch: 1.000
188 | ***************************************************************
189 | Ground-truth Labels: 0,1,3,4,5,8
190 | Ground-truth Num of Instances: 3,1,1,1,1,1
191 | Our Recovered Labels: | LeAcc: 0.400
192 | Our Recovered Num of Instances: | LnAcc: 0.400 | IRec: 0.000
193 | Start Experiment 16
194 | start_id: 32079
195 | 6/8, Acc for this batch: 0.750
196 | ***************************************************************
197 | Ground-truth Labels: 1,3,5,6,7,8,9
198 | Ground-truth Num of Instances: 1,1,1,2,1,1,1
199 | Our Recovered Labels: 9 | LeAcc: 0.400
200 | Our Recovered Num of Instances: 1 | LnAcc: 0.400 | IRec: 0.125
201 | Start Experiment 17
202 | start_id: 59661
203 | 6/8, Acc for this batch: 0.750
204 | ***************************************************************
205 | Ground-truth Labels: 3,4,5,6,8,9
206 | Ground-truth Num of Instances: 1,2,1,1,1,2
207 | Our Recovered Labels: 3,5,6,7,9 | LeAcc: 0.700
208 | Our Recovered Num of Instances: 1,2,2,2,2 | LnAcc: 0.500 | IRec: 0.625
209 | Start Experiment 18
210 | start_id: 44664
211 | 7/8, Acc for this batch: 0.875
212 | ***************************************************************
213 | Ground-truth Labels: 1,5,6,7,8,9
214 | Ground-truth Num of Instances: 1,1,2,1,1,2
215 | Our Recovered Labels: 5,6,7,8,9 | LeAcc: 0.900
216 | Our Recovered Num of Instances: 1,3,1,1,2 | LnAcc: 0.800 | IRec: 0.875
217 | Start Experiment 19
218 | start_id: 57949
219 | 7/8, Acc for this batch: 0.875
220 | ***************************************************************
221 | Ground-truth Labels: 0,2,3,5,8,9
222 | Ground-truth Num of Instances: 1,2,2,1,1,1
223 | Our Recovered Labels: 2,9 | LeAcc: 0.600
224 | Our Recovered Num of Instances: 1,1 | LnAcc: 0.500 | IRec: 0.250
225 | Start Experiment 20
226 | start_id: 27278
227 | 8/8, Acc for this batch: 1.000
228 | ***************************************************************
229 | Ground-truth Labels: 0,1,3,5,6,7,8
230 | Ground-truth Num of Instances: 1,1,1,1,1,2,1
231 | Our Recovered Labels: 0,5 | LeAcc: 0.500
232 | Our Recovered Num of Instances: 7,1 | LnAcc: 0.400 | IRec: 0.250
233 | ---------------------------------------------------------------
234 | Mean Ours LeAcc: 0.635 | Mean Ours LnAcc: 0.515 | Mean Ours IRec: 0.438
235 |
--------------------------------------------------------------------------------
/new_logs/TrainingStage/MNIST/exp6.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-17-09:20:03
2 | exp_name: train_stage2
3 | cpu: False
4 | num_tries: 20
5 | num_images: 8
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: MNIST_GRAY
15 | split: train
16 | distribution: random
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: dnn
23 | trained_model: True
24 | iter_train: True
25 | iters: 500
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/train_stage2
70 | image_dir: images/train_stage2
71 |
72 | Model loaded from file dnn_MNIST_GRAY_Iter500.pth.
73 | Start Experiment 1
74 | start_id: 0
75 | 8/8, Acc for this batch: 1.000
76 | ***************************************************************
77 | Ground-truth Labels: 0,3,4,5,8
78 | Ground-truth Num of Instances: 3,1,2,1,1
79 | Our Recovered Labels: 0,4,5 | LeAcc: 0.800
80 | Our Recovered Num of Instances: 2,2,4 | LnAcc: 0.600 | IRec: 0.625
81 | Start Experiment 2
82 | start_id: 11879
83 | 8/8, Acc for this batch: 1.000
84 | ***************************************************************
85 | Ground-truth Labels: 0,1,2,5,7,9
86 | Ground-truth Num of Instances: 1,1,1,2,1,2
87 | Our Recovered Labels: 0 | LeAcc: 0.500
88 | Our Recovered Num of Instances: 1 | LnAcc: 0.500 | IRec: 0.125
89 | Start Experiment 3
90 | start_id: 41168
91 | 8/8, Acc for this batch: 1.000
92 | ***************************************************************
93 | Ground-truth Labels: 0,4,5,7,9
94 | Ground-truth Num of Instances: 1,2,1,1,3
95 | Our Recovered Labels: 0,4 | LeAcc: 0.700
96 | Our Recovered Num of Instances: 1,7 | LnAcc: 0.600 | IRec: 0.375
97 | Start Experiment 4
98 | start_id: 12852
99 | 8/8, Acc for this batch: 1.000
100 | ***************************************************************
101 | Ground-truth Labels: 0,1,4,5,8,9
102 | Ground-truth Num of Instances: 1,1,1,2,2,1
103 | Our Recovered Labels: 5,8,9 | LeAcc: 0.700
104 | Our Recovered Num of Instances: 2,3,7 | LnAcc: 0.500 | IRec: 0.625
105 | Start Experiment 5
106 | start_id: 49967
107 | 8/8, Acc for this batch: 1.000
108 | ***************************************************************
109 | Ground-truth Labels: 0,2,3,5,9
110 | Ground-truth Num of Instances: 1,1,2,1,3
111 | Our Recovered Labels: 3,5,9 | LeAcc: 0.800
112 | Our Recovered Num of Instances: 3,1,4 | LnAcc: 0.600 | IRec: 0.750
113 | Start Experiment 6
114 | start_id: 13121
115 | 8/8, Acc for this batch: 1.000
116 | ***************************************************************
117 | Ground-truth Labels: 4,5,6,7,8
118 | Ground-truth Num of Instances: 1,1,1,1,4
119 | Our Recovered Labels: 7,8 | LeAcc: 0.700
120 | Our Recovered Num of Instances: 3,8 | LnAcc: 0.500 | IRec: 0.625
121 | Start Experiment 7
122 | start_id: 58442
123 | 6/8, Acc for this batch: 0.750
124 | ***************************************************************
125 | Ground-truth Labels: 1,2,3,4,5,6,7
126 | Ground-truth Num of Instances: 1,1,1,1,1,1,2
127 | Our Recovered Labels: 2,3,7 | LeAcc: 0.600
128 | Our Recovered Num of Instances: 7,1,2 | LnAcc: 0.500 | IRec: 0.500
129 | Start Experiment 8
130 | start_id: 17366
131 | 7/8, Acc for this batch: 0.875
132 | ***************************************************************
133 | Ground-truth Labels: 0,1,6,8,9
134 | Ground-truth Num of Instances: 3,1,2,1,1
135 | Our Recovered Labels: 6,9 | LeAcc: 0.700
136 | Our Recovered Num of Instances: 1,1 | LnAcc: 0.600 | IRec: 0.250
137 | Start Experiment 9
138 | start_id: 35251
139 | 6/8, Acc for this batch: 0.750
140 | ***************************************************************
141 | Ground-truth Labels: 2,3,5,6,7,9
142 | Ground-truth Num of Instances: 2,1,1,1,2,1
143 | Our Recovered Labels: 2,5,7 | LeAcc: 0.700
144 | Our Recovered Num of Instances: 1,7,3 | LnAcc: 0.400 | IRec: 0.500
145 | Start Experiment 10
146 | start_id: 39317
147 | 8/8, Acc for this batch: 1.000
148 | ***************************************************************
149 | Ground-truth Labels: 1,2,3,5,6,7,9
150 | Ground-truth Num of Instances: 1,2,1,1,1,1,1
151 | Our Recovered Labels: 2,4,7,9 | LeAcc: 0.500
152 | Our Recovered Num of Instances: 3,1,1,2 | LnAcc: 0.300 | IRec: 0.500
153 | Start Experiment 11
154 | start_id: 32817
155 | 8/8, Acc for this batch: 1.000
156 | ***************************************************************
157 | Ground-truth Labels: 1,2,4,7,8,9
158 | Ground-truth Num of Instances: 1,1,1,3,1,1
159 | Our Recovered Labels: | LeAcc: 0.400
160 | Our Recovered Num of Instances: | LnAcc: 0.400 | IRec: 0.000
161 | Start Experiment 12
162 | start_id: 12441
163 | 7/8, Acc for this batch: 0.875
164 | ***************************************************************
165 | Ground-truth Labels: 2,4,7,8,9
166 | Ground-truth Num of Instances: 2,1,2,2,1
167 | Our Recovered Labels: 2,6,8,9 | LeAcc: 0.700
168 | Our Recovered Num of Instances: 1,1,4,2 | LnAcc: 0.400 | IRec: 0.500
169 | Start Experiment 13
170 | start_id: 33651
171 | 5/8, Acc for this batch: 0.625
172 | ***************************************************************
173 | Ground-truth Labels: 2,3,5,6,7,8
174 | Ground-truth Num of Instances: 1,2,1,1,2,1
175 | Our Recovered Labels: 0,3,5,7,8 | LeAcc: 0.700
176 | Our Recovered Num of Instances: 1,4,1,1,1 | LnAcc: 0.500 | IRec: 0.625
177 | Start Experiment 14
178 | start_id: 17000
179 | 7/8, Acc for this batch: 0.875
180 | ***************************************************************
181 | Ground-truth Labels: 0,1,3,6,8,9
182 | Ground-truth Num of Instances: 2,2,1,1,1,1
183 | Our Recovered Labels: 9 | LeAcc: 0.500
184 | Our Recovered Num of Instances: 1 | LnAcc: 0.500 | IRec: 0.125
185 | Start Experiment 15
186 | start_id: 43072
187 | 7/8, Acc for this batch: 0.875
188 | ***************************************************************
189 | Ground-truth Labels: 0,1,3,4,5,8
190 | Ground-truth Num of Instances: 3,1,1,1,1,1
191 | Our Recovered Labels: 1,3,4,5,8 | LeAcc: 0.900
192 | Our Recovered Num of Instances: 3,2,2,1,1 | LnAcc: 0.600 | IRec: 0.625
193 | Start Experiment 16
194 | start_id: 32079
195 | 6/8, Acc for this batch: 0.750
196 | ***************************************************************
197 | Ground-truth Labels: 1,3,5,6,7,8,9
198 | Ground-truth Num of Instances: 1,1,1,2,1,1,1
199 | Our Recovered Labels: 3,9 | LeAcc: 0.500
200 | Our Recovered Num of Instances: 1,1 | LnAcc: 0.500 | IRec: 0.250
201 | Start Experiment 17
202 | start_id: 59661
203 | 5/8, Acc for this batch: 0.625
204 | ***************************************************************
205 | Ground-truth Labels: 3,4,5,6,8,9
206 | Ground-truth Num of Instances: 1,2,1,1,1,2
207 | Our Recovered Labels: 3,5,6,7,9 | LeAcc: 0.700
208 | Our Recovered Num of Instances: 1,2,2,1,2 | LnAcc: 0.500 | IRec: 0.625
209 | Start Experiment 18
210 | start_id: 44664
211 | 6/8, Acc for this batch: 0.750
212 | ***************************************************************
213 | Ground-truth Labels: 1,5,6,7,8,9
214 | Ground-truth Num of Instances: 1,1,2,1,1,2
215 | Our Recovered Labels: 6,8,9 | LeAcc: 0.700
216 | Our Recovered Num of Instances: 4,2,2 | LnAcc: 0.500 | IRec: 0.625
217 | Start Experiment 19
218 | start_id: 57949
219 | 8/8, Acc for this batch: 1.000
220 | ***************************************************************
221 | Ground-truth Labels: 0,2,3,5,8,9
222 | Ground-truth Num of Instances: 1,2,2,1,1,1
223 | Our Recovered Labels: 2,3,5,9 | LeAcc: 0.800
224 | Our Recovered Num of Instances: 1,5,1,1 | LnAcc: 0.600 | IRec: 0.625
225 | Start Experiment 20
226 | start_id: 27278
227 | 8/8, Acc for this batch: 1.000
228 | ***************************************************************
229 | Ground-truth Labels: 0,1,3,5,6,7,8
230 | Ground-truth Num of Instances: 1,1,1,1,1,2,1
231 | Our Recovered Labels: 0,3 | LeAcc: 0.500
232 | Our Recovered Num of Instances: 3,5 | LnAcc: 0.300 | IRec: 0.250
233 | ---------------------------------------------------------------
234 | Mean Ours LeAcc: 0.655 | Mean Ours LnAcc: 0.495 | Mean Ours IRec: 0.456
235 |
--------------------------------------------------------------------------------
/new_logs/TrainingStage/MNIST/exp4.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-17-09:15:55
2 | exp_name: train_stage2
3 | cpu: False
4 | num_tries: 20
5 | num_images: 8
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: MNIST_GRAY
15 | split: train
16 | distribution: random
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: dnn
23 | trained_model: True
24 | iter_train: True
25 | iters: 700
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/train_stage2
70 | image_dir: images/train_stage2
71 |
72 | Model loaded from file dnn_MNIST_GRAY_Iter700.pth.
73 | Start Experiment 1
74 | start_id: 0
75 | 8/8, Acc for this batch: 1.000
76 | ***************************************************************
77 | Ground-truth Labels: 0,3,4,5,8
78 | Ground-truth Num of Instances: 3,1,2,1,1
79 | Our Recovered Labels: 0,4,5 | LeAcc: 0.800
80 | Our Recovered Num of Instances: 1,4,2 | LnAcc: 0.500 | IRec: 0.500
81 | Start Experiment 2
82 | start_id: 11879
83 | 8/8, Acc for this batch: 1.000
84 | ***************************************************************
85 | Ground-truth Labels: 0,1,2,5,7,9
86 | Ground-truth Num of Instances: 1,1,1,2,1,2
87 | Our Recovered Labels: 0,1 | LeAcc: 0.600
88 | Our Recovered Num of Instances: 1,2 | LnAcc: 0.500 | IRec: 0.250
89 | Start Experiment 3
90 | start_id: 41168
91 | 7/8, Acc for this batch: 0.875
92 | ***************************************************************
93 | Ground-truth Labels: 0,4,5,7,9
94 | Ground-truth Num of Instances: 1,2,1,1,3
95 | Our Recovered Labels: 0,4,7 | LeAcc: 0.800
96 | Our Recovered Num of Instances: 1,3,2 | LnAcc: 0.600 | IRec: 0.500
97 | Start Experiment 4
98 | start_id: 12852
99 | 8/8, Acc for this batch: 1.000
100 | ***************************************************************
101 | Ground-truth Labels: 0,1,4,5,8,9
102 | Ground-truth Num of Instances: 1,1,1,2,2,1
103 | Our Recovered Labels: 3,4,5,8 | LeAcc: 0.600
104 | Our Recovered Num of Instances: 1,1,3,3 | LnAcc: 0.400 | IRec: 0.625
105 | Start Experiment 5
106 | start_id: 49967
107 | 8/8, Acc for this batch: 1.000
108 | ***************************************************************
109 | Ground-truth Labels: 0,2,3,5,9
110 | Ground-truth Num of Instances: 1,1,2,1,3
111 | Our Recovered Labels: 3,5,9 | LeAcc: 0.800
112 | Our Recovered Num of Instances: 2,1,5 | LnAcc: 0.700 | IRec: 0.750
113 | Start Experiment 6
114 | start_id: 13121
115 | 8/8, Acc for this batch: 1.000
116 | ***************************************************************
117 | Ground-truth Labels: 4,5,6,7,8
118 | Ground-truth Num of Instances: 1,1,1,1,4
119 | Our Recovered Labels: 7,8 | LeAcc: 0.700
120 | Our Recovered Num of Instances: 2,8 | LnAcc: 0.500 | IRec: 0.625
121 | Start Experiment 7
122 | start_id: 58442
123 | 6/8, Acc for this batch: 0.750
124 | ***************************************************************
125 | Ground-truth Labels: 1,2,3,4,5,6,7
126 | Ground-truth Num of Instances: 1,1,1,1,1,1,2
127 | Our Recovered Labels: 2,3,7 | LeAcc: 0.600
128 | Our Recovered Num of Instances: 2,1,1 | LnAcc: 0.400 | IRec: 0.375
129 | Start Experiment 8
130 | start_id: 17366
131 | 7/8, Acc for this batch: 0.875
132 | ***************************************************************
133 | Ground-truth Labels: 0,1,6,8,9
134 | Ground-truth Num of Instances: 3,1,2,1,1
135 | Our Recovered Labels: 2,6,8,9 | LeAcc: 0.700
136 | Our Recovered Num of Instances: 5,1,1,1 | LnAcc: 0.600 | IRec: 0.375
137 | Start Experiment 9
138 | start_id: 35251
139 | 7/8, Acc for this batch: 0.875
140 | ***************************************************************
141 | Ground-truth Labels: 2,3,5,6,7,9
142 | Ground-truth Num of Instances: 2,1,1,1,2,1
143 | Our Recovered Labels: 2,3,5,7 | LeAcc: 0.800
144 | Our Recovered Num of Instances: 2,1,3,2 | LnAcc: 0.700 | IRec: 0.750
145 | Start Experiment 10
146 | start_id: 39317
147 | 8/8, Acc for this batch: 1.000
148 | ***************************************************************
149 | Ground-truth Labels: 1,2,3,5,6,7,9
150 | Ground-truth Num of Instances: 1,2,1,1,1,1,1
151 | Our Recovered Labels: 2,4,7,9 | LeAcc: 0.500
152 | Our Recovered Num of Instances: 3,2,2,2 | LnAcc: 0.200 | IRec: 0.500
153 | Start Experiment 11
154 | start_id: 32817
155 | 8/8, Acc for this batch: 1.000
156 | ***************************************************************
157 | Ground-truth Labels: 1,2,4,7,8,9
158 | Ground-truth Num of Instances: 1,1,1,3,1,1
159 | Our Recovered Labels: 7,8,9 | LeAcc: 0.700
160 | Our Recovered Num of Instances: 1,1,5 | LnAcc: 0.500 | IRec: 0.375
161 | Start Experiment 12
162 | start_id: 12441
163 | 7/8, Acc for this batch: 0.875
164 | ***************************************************************
165 | Ground-truth Labels: 2,4,7,8,9
166 | Ground-truth Num of Instances: 2,1,2,2,1
167 | Our Recovered Labels: 2,7,8,9 | LeAcc: 0.900
168 | Our Recovered Num of Instances: 1,4,1,2 | LnAcc: 0.500 | IRec: 0.625
169 | Start Experiment 13
170 | start_id: 33651
171 | 7/8, Acc for this batch: 0.875
172 | ***************************************************************
173 | Ground-truth Labels: 2,3,5,6,7,8
174 | Ground-truth Num of Instances: 1,2,1,1,2,1
175 | Our Recovered Labels: 0,7,8 | LeAcc: 0.500
176 | Our Recovered Num of Instances: 4,1,1 | LnAcc: 0.400 | IRec: 0.250
177 | Start Experiment 14
178 | start_id: 17000
179 | 7/8, Acc for this batch: 0.875
180 | ***************************************************************
181 | Ground-truth Labels: 0,1,3,6,8,9
182 | Ground-truth Num of Instances: 2,2,1,1,1,1
183 | Our Recovered Labels: 1,8,9 | LeAcc: 0.700
184 | Our Recovered Num of Instances: 7,1,1 | LnAcc: 0.600 | IRec: 0.500
185 | Start Experiment 15
186 | start_id: 43072
187 | 8/8, Acc for this batch: 1.000
188 | ***************************************************************
189 | Ground-truth Labels: 0,1,3,4,5,8
190 | Ground-truth Num of Instances: 3,1,1,1,1,1
191 | Our Recovered Labels: 5 | LeAcc: 0.500
192 | Our Recovered Num of Instances: 2 | LnAcc: 0.400 | IRec: 0.125
193 | Start Experiment 16
194 | start_id: 32079
195 | 7/8, Acc for this batch: 0.875
196 | ***************************************************************
197 | Ground-truth Labels: 1,3,5,6,7,8,9
198 | Ground-truth Num of Instances: 1,1,1,2,1,1,1
199 | Our Recovered Labels: 6,9 | LeAcc: 0.500
200 | Our Recovered Num of Instances: 8,1 | LnAcc: 0.400 | IRec: 0.375
201 | Start Experiment 17
202 | start_id: 59661
203 | 6/8, Acc for this batch: 0.750
204 | ***************************************************************
205 | Ground-truth Labels: 3,4,5,6,8,9
206 | Ground-truth Num of Instances: 1,2,1,1,1,2
207 | Our Recovered Labels: 3,5,6,7,9 | LeAcc: 0.700
208 | Our Recovered Num of Instances: 1,2,2,1,2 | LnAcc: 0.500 | IRec: 0.625
209 | Start Experiment 18
210 | start_id: 44664
211 | 8/8, Acc for this batch: 1.000
212 | ***************************************************************
213 | Ground-truth Labels: 1,5,6,7,8,9
214 | Ground-truth Num of Instances: 1,1,2,1,1,2
215 | Our Recovered Labels: 6,7,8,9 | LeAcc: 0.800
216 | Our Recovered Num of Instances: 2,1,7,2 | LnAcc: 0.700 | IRec: 0.750
217 | Start Experiment 19
218 | start_id: 57949
219 | 7/8, Acc for this batch: 0.875
220 | ***************************************************************
221 | Ground-truth Labels: 0,2,3,5,8,9
222 | Ground-truth Num of Instances: 1,2,2,1,1,1
223 | Our Recovered Labels: 2,9 | LeAcc: 0.600
224 | Our Recovered Num of Instances: 1,2 | LnAcc: 0.400 | IRec: 0.250
225 | Start Experiment 20
226 | start_id: 27278
227 | 8/8, Acc for this batch: 1.000
228 | ***************************************************************
229 | Ground-truth Labels: 0,1,3,5,6,7,8
230 | Ground-truth Num of Instances: 1,1,1,1,1,2,1
231 | Our Recovered Labels: 0 | LeAcc: 0.400
232 | Our Recovered Num of Instances: 2 | LnAcc: 0.300 | IRec: 0.125
233 | ---------------------------------------------------------------
234 | Mean Ours LeAcc: 0.660 | Mean Ours LnAcc: 0.490 | Mean Ours IRec: 0.463
235 |
--------------------------------------------------------------------------------
/new_logs/ExtremeDistribution/exp3.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-13-15:35:47
2 | exp_name: extreme_distribution
3 | cpu: False
4 | num_tries: 20
5 | num_images: 216
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: CIFAR100
15 | split: train
16 | distribution: custom_imbalanced
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: vgg16
23 | trained_model: False
24 | iter_train: False
25 | iters: 1000
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/extreme_distribution
70 | image_dir: images/extreme_distribution
71 |
72 | Start Experiment 1
73 | start_id: 0
74 | 0/216, Acc for this batch: 0.000
75 | ***************************************************************
76 | Ground-truth Labels: 0,18,92
77 | Ground-truth Num of Instances: 1,214,1
78 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
79 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
80 | Start Experiment 2
81 | start_id: 21372
82 | 0/216, Acc for this batch: 0.000
83 | ***************************************************************
84 | Ground-truth Labels: 0,18,92
85 | Ground-truth Num of Instances: 1,214,1
86 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
87 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
88 | Start Experiment 3
89 | start_id: 41345
90 | 0/216, Acc for this batch: 0.000
91 | ***************************************************************
92 | Ground-truth Labels: 0,18,92
93 | Ground-truth Num of Instances: 1,214,1
94 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
95 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
96 | Start Experiment 4
97 | start_id: 14129
98 | 0/216, Acc for this batch: 0.000
99 | ***************************************************************
100 | Ground-truth Labels: 0,18,92
101 | Ground-truth Num of Instances: 1,214,1
102 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
103 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
104 | Start Experiment 5
105 | start_id: 35526
106 | 0/216, Acc for this batch: 0.000
107 | ***************************************************************
108 | Ground-truth Labels: 0,18,92
109 | Ground-truth Num of Instances: 1,214,1
110 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
111 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
112 | Start Experiment 6
113 | start_id: 8219
114 | 0/216, Acc for this batch: 0.000
115 | ***************************************************************
116 | Ground-truth Labels: 0,18,92
117 | Ground-truth Num of Instances: 1,214,1
118 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
119 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
120 | Start Experiment 7
121 | start_id: 28529
122 | 0/216, Acc for this batch: 0.000
123 | ***************************************************************
124 | Ground-truth Labels: 0,18,92
125 | Ground-truth Num of Instances: 1,214,1
126 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
127 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
128 | Start Experiment 8
129 | start_id: 49343
130 | 0/216, Acc for this batch: 0.000
131 | ***************************************************************
132 | Ground-truth Labels: 0,18,92
133 | Ground-truth Num of Instances: 1,214,1
134 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
135 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
136 | Start Experiment 9
137 | start_id: 21336
138 | 0/216, Acc for this batch: 0.000
139 | ***************************************************************
140 | Ground-truth Labels: 0,18,92
141 | Ground-truth Num of Instances: 1,214,1
142 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
143 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
144 | Start Experiment 10
145 | start_id: 41220
146 | 0/216, Acc for this batch: 0.000
147 | ***************************************************************
148 | Ground-truth Labels: 0,18,92
149 | Ground-truth Num of Instances: 1,214,1
150 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
151 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
152 | Start Experiment 11
153 | start_id: 14103
154 | 0/216, Acc for this batch: 0.000
155 | ***************************************************************
156 | Ground-truth Labels: 0,18,92
157 | Ground-truth Num of Instances: 1,214,1
158 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
159 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
160 | Start Experiment 12
161 | start_id: 35396
162 | 0/216, Acc for this batch: 0.000
163 | ***************************************************************
164 | Ground-truth Labels: 0,18,92
165 | Ground-truth Num of Instances: 1,214,1
166 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
167 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
168 | Start Experiment 13
169 | start_id: 7956
170 | 0/216, Acc for this batch: 0.000
171 | ***************************************************************
172 | Ground-truth Labels: 0,18,92
173 | Ground-truth Num of Instances: 1,214,1
174 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
175 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
176 | Start Experiment 14
177 | start_id: 28457
178 | 0/216, Acc for this batch: 0.000
179 | ***************************************************************
180 | Ground-truth Labels: 0,18,92
181 | Ground-truth Num of Instances: 1,214,1
182 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
183 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
184 | Start Experiment 15
185 | start_id: 49146
186 | 0/216, Acc for this batch: 0.000
187 | ***************************************************************
188 | Ground-truth Labels: 0,18,92
189 | Ground-truth Num of Instances: 1,214,1
190 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
191 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
192 | Start Experiment 16
193 | start_id: 21107
194 | 0/216, Acc for this batch: 0.000
195 | ***************************************************************
196 | Ground-truth Labels: 0,18,92
197 | Ground-truth Num of Instances: 1,214,1
198 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
199 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
200 | Start Experiment 17
201 | start_id: 41095
202 | 0/216, Acc for this batch: 0.000
203 | ***************************************************************
204 | Ground-truth Labels: 0,18,92
205 | Ground-truth Num of Instances: 1,214,1
206 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
207 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
208 | Start Experiment 18
209 | start_id: 13914
210 | 0/216, Acc for this batch: 0.000
211 | ***************************************************************
212 | Ground-truth Labels: 0,18,92
213 | Ground-truth Num of Instances: 1,214,1
214 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
215 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
216 | Start Experiment 19
217 | start_id: 35248
218 | 0/216, Acc for this batch: 0.000
219 | ***************************************************************
220 | Ground-truth Labels: 0,18,92
221 | Ground-truth Num of Instances: 1,214,1
222 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
223 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
224 | Start Experiment 20
225 | start_id: 7650
226 | 0/216, Acc for this batch: 0.000
227 | ***************************************************************
228 | Ground-truth Labels: 0,18,92
229 | Ground-truth Num of Instances: 1,214,1
230 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
231 | Our Recovered Num of Instances: 1,214,1 | LnAcc: 1.000 | IRec: 1.000
232 | ---------------------------------------------------------------
233 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
234 | Mean Rec Instances: Class 0-1, Class 18-214, Class 92-1
235 |
--------------------------------------------------------------------------------
/new_logs/ExtremeDistribution/exp4.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-13-15:38:47
2 | exp_name: extreme_distribution
3 | cpu: False
4 | num_tries: 20
5 | num_images: 648
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: CIFAR100
15 | split: train
16 | distribution: custom_imbalanced
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: vgg16
23 | trained_model: False
24 | iter_train: False
25 | iters: 1000
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/extreme_distribution
70 | image_dir: images/extreme_distribution
71 |
72 | Start Experiment 1
73 | start_id: 0
74 | 0/648, Acc for this batch: 0.000
75 | ***************************************************************
76 | Ground-truth Labels: 0,18,92
77 | Ground-truth Num of Instances: 1,646,1
78 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
79 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
80 | Start Experiment 2
81 | start_id: 14513
82 | 0/648, Acc for this batch: 0.000
83 | ***************************************************************
84 | Ground-truth Labels: 0,18,92
85 | Ground-truth Num of Instances: 1,646,1
86 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
87 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
88 | Start Experiment 3
89 | start_id: 30093
90 | 0/648, Acc for this batch: 0.000
91 | ***************************************************************
92 | Ground-truth Labels: 0,18,92
93 | Ground-truth Num of Instances: 1,646,1
94 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
95 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
96 | Start Experiment 4
97 | start_id: 42725
98 | 0/648, Acc for this batch: 0.000
99 | ***************************************************************
100 | Ground-truth Labels: 0,18,92
101 | Ground-truth Num of Instances: 1,646,1
102 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
103 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
104 | Start Experiment 5
105 | start_id: 9646
106 | 0/648, Acc for this batch: 0.000
107 | ***************************************************************
108 | Ground-truth Labels: 0,18,92
109 | Ground-truth Num of Instances: 1,646,1
110 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
111 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
112 | Start Experiment 6
113 | start_id: 22468
114 | 0/648, Acc for this batch: 0.000
115 | ***************************************************************
116 | Ground-truth Labels: 0,18,92
117 | Ground-truth Num of Instances: 1,646,1
118 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
119 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
120 | Start Experiment 7
121 | start_id: 36803
122 | 0/648, Acc for this batch: 0.000
123 | ***************************************************************
124 | Ground-truth Labels: 0,18,92
125 | Ground-truth Num of Instances: 1,646,1
126 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
127 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
128 | Start Experiment 8
129 | start_id: 2558
130 | 0/648, Acc for this batch: 0.000
131 | ***************************************************************
132 | Ground-truth Labels: 0,18,92
133 | Ground-truth Num of Instances: 1,646,1
134 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
135 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
136 | Start Experiment 9
137 | start_id: 17229
138 | 0/648, Acc for this batch: 0.000
139 | ***************************************************************
140 | Ground-truth Labels: 0,18,92
141 | Ground-truth Num of Instances: 1,646,1
142 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
143 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
144 | Start Experiment 10
145 | start_id: 31960
146 | 0/648, Acc for this batch: 0.000
147 | ***************************************************************
148 | Ground-truth Labels: 0,18,92
149 | Ground-truth Num of Instances: 1,646,1
150 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
151 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
152 | Start Experiment 11
153 | start_id: 44939
154 | 0/648, Acc for this batch: 0.000
155 | ***************************************************************
156 | Ground-truth Labels: 0,18,92
157 | Ground-truth Num of Instances: 1,646,1
158 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
159 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
160 | Start Experiment 12
161 | start_id: 11133
162 | 0/648, Acc for this batch: 0.000
163 | ***************************************************************
164 | Ground-truth Labels: 0,18,92
165 | Ground-truth Num of Instances: 1,646,1
166 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
167 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
168 | Start Experiment 13
169 | start_id: 25396
170 | 0/648, Acc for this batch: 0.000
171 | ***************************************************************
172 | Ground-truth Labels: 0,18,92
173 | Ground-truth Num of Instances: 1,646,1
174 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
175 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
176 | Start Experiment 14
177 | start_id: 38677
178 | 0/648, Acc for this batch: 0.000
179 | ***************************************************************
180 | Ground-truth Labels: 0,18,92
181 | Ground-truth Num of Instances: 1,646,1
182 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
183 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
184 | Start Experiment 15
185 | start_id: 4787
186 | 0/648, Acc for this batch: 0.000
187 | ***************************************************************
188 | Ground-truth Labels: 0,18,92
189 | Ground-truth Num of Instances: 1,646,1
190 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
191 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
192 | Start Experiment 16
193 | start_id: 19493
194 | 0/648, Acc for this batch: 0.000
195 | ***************************************************************
196 | Ground-truth Labels: 0,18,92
197 | Ground-truth Num of Instances: 1,646,1
198 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
199 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
200 | Start Experiment 17
201 | start_id: 33289
202 | 0/648, Acc for this batch: 0.000
203 | ***************************************************************
204 | Ground-truth Labels: 0,18,92
205 | Ground-truth Num of Instances: 1,646,1
206 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
207 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
208 | Start Experiment 18
209 | start_id: 47091
210 | 0/648, Acc for this batch: 0.000
211 | ***************************************************************
212 | Ground-truth Labels: 0,18,92
213 | Ground-truth Num of Instances: 1,646,1
214 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
215 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
216 | Start Experiment 19
217 | start_id: 13173
218 | 0/648, Acc for this batch: 0.000
219 | ***************************************************************
220 | Ground-truth Labels: 0,18,92
221 | Ground-truth Num of Instances: 1,646,1
222 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
223 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
224 | Start Experiment 20
225 | start_id: 27898
226 | 0/648, Acc for this batch: 0.000
227 | ***************************************************************
228 | Ground-truth Labels: 0,18,92
229 | Ground-truth Num of Instances: 1,646,1
230 | Our Recovered Labels: 0,18,92 | LeAcc: 1.000
231 | Our Recovered Num of Instances: 1,646,1 | LnAcc: 1.000 | IRec: 1.000
232 | ---------------------------------------------------------------
233 | Mean Ours LeAcc: 1.000 | Mean Ours LnAcc: 1.000 | Mean Ours IRec: 1.000
234 | Mean Rec Instances: Class 0-1, Class 18-646, Class 92-1
235 |
--------------------------------------------------------------------------------
/new_logs/TrainingStage/MNIST/exp1.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-17-09:11:47
2 | exp_name: train_stage2
3 | cpu: False
4 | num_tries: 20
5 | num_images: 8
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: MNIST_GRAY
15 | split: train
16 | distribution: random
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: dnn
23 | trained_model: True
24 | iter_train: True
25 | iters: 1000
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/train_stage2
70 | image_dir: images/train_stage2
71 |
72 | Model loaded from file dnn_MNIST_GRAY_Iter1000.pth.
73 | Start Experiment 1
74 | start_id: 0
75 | 8/8, Acc for this batch: 1.000
76 | ***************************************************************
77 | Ground-truth Labels: 0,3,4,5,8
78 | Ground-truth Num of Instances: 3,1,2,1,1
79 | Our Recovered Labels: 0,4,5 | LeAcc: 0.800
80 | Our Recovered Num of Instances: 1,4,2 | LnAcc: 0.500 | IRec: 0.500
81 | Start Experiment 2
82 | start_id: 11879
83 | 8/8, Acc for this batch: 1.000
84 | ***************************************************************
85 | Ground-truth Labels: 0,1,2,5,7,9
86 | Ground-truth Num of Instances: 1,1,1,2,1,2
87 | Our Recovered Labels: 0,1,9 | LeAcc: 0.700
88 | Our Recovered Num of Instances: 1,2,8 | LnAcc: 0.500 | IRec: 0.500
89 | Start Experiment 3
90 | start_id: 41168
91 | 7/8, Acc for this batch: 0.875
92 | ***************************************************************
93 | Ground-truth Labels: 0,4,5,7,9
94 | Ground-truth Num of Instances: 1,2,1,1,3
95 | Our Recovered Labels: 0,4,7 | LeAcc: 0.800
96 | Our Recovered Num of Instances: 1,2,4 | LnAcc: 0.700 | IRec: 0.500
97 | Start Experiment 4
98 | start_id: 12852
99 | 8/8, Acc for this batch: 1.000
100 | ***************************************************************
101 | Ground-truth Labels: 0,1,4,5,8,9
102 | Ground-truth Num of Instances: 1,1,1,2,2,1
103 | Our Recovered Labels: 3,4,5,8 | LeAcc: 0.600
104 | Our Recovered Num of Instances: 1,1,4,2 | LnAcc: 0.500 | IRec: 0.625
105 | Start Experiment 5
106 | start_id: 49967
107 | 8/8, Acc for this batch: 1.000
108 | ***************************************************************
109 | Ground-truth Labels: 0,2,3,5,9
110 | Ground-truth Num of Instances: 1,1,2,1,3
111 | Our Recovered Labels: 3,5,9 | LeAcc: 0.800
112 | Our Recovered Num of Instances: 2,1,5 | LnAcc: 0.700 | IRec: 0.750
113 | Start Experiment 6
114 | start_id: 13121
115 | 8/8, Acc for this batch: 1.000
116 | ***************************************************************
117 | Ground-truth Labels: 4,5,6,7,8
118 | Ground-truth Num of Instances: 1,1,1,1,4
119 | Our Recovered Labels: 7,8 | LeAcc: 0.700
120 | Our Recovered Num of Instances: 2,8 | LnAcc: 0.500 | IRec: 0.625
121 | Start Experiment 7
122 | start_id: 58442
123 | 6/8, Acc for this batch: 0.750
124 | ***************************************************************
125 | Ground-truth Labels: 1,2,3,4,5,6,7
126 | Ground-truth Num of Instances: 1,1,1,1,1,1,2
127 | Our Recovered Labels: 2,3,7 | LeAcc: 0.600
128 | Our Recovered Num of Instances: 2,1,1 | LnAcc: 0.400 | IRec: 0.375
129 | Start Experiment 8
130 | start_id: 17366
131 | 7/8, Acc for this batch: 0.875
132 | ***************************************************************
133 | Ground-truth Labels: 0,1,6,8,9
134 | Ground-truth Num of Instances: 3,1,2,1,1
135 | Our Recovered Labels: 2,6,8,9 | LeAcc: 0.700
136 | Our Recovered Num of Instances: 4,1,1,1 | LnAcc: 0.600 | IRec: 0.375
137 | Start Experiment 9
138 | start_id: 35251
139 | 7/8, Acc for this batch: 0.875
140 | ***************************************************************
141 | Ground-truth Labels: 2,3,5,6,7,9
142 | Ground-truth Num of Instances: 2,1,1,1,2,1
143 | Our Recovered Labels: 2,3,5,7 | LeAcc: 0.800
144 | Our Recovered Num of Instances: 2,1,2,2 | LnAcc: 0.700 | IRec: 0.750
145 | Start Experiment 10
146 | start_id: 39317
147 | 8/8, Acc for this batch: 1.000
148 | ***************************************************************
149 | Ground-truth Labels: 1,2,3,5,6,7,9
150 | Ground-truth Num of Instances: 1,2,1,1,1,1,1
151 | Our Recovered Labels: 2,4,7,9 | LeAcc: 0.500
152 | Our Recovered Num of Instances: 2,2,2,2 | LnAcc: 0.300 | IRec: 0.500
153 | Start Experiment 11
154 | start_id: 32817
155 | 8/8, Acc for this batch: 1.000
156 | ***************************************************************
157 | Ground-truth Labels: 1,2,4,7,8,9
158 | Ground-truth Num of Instances: 1,1,1,3,1,1
159 | Our Recovered Labels: 7,8,9 | LeAcc: 0.700
160 | Our Recovered Num of Instances: 1,1,7 | LnAcc: 0.500 | IRec: 0.375
161 | Start Experiment 12
162 | start_id: 12441
163 | 7/8, Acc for this batch: 0.875
164 | ***************************************************************
165 | Ground-truth Labels: 2,4,7,8,9
166 | Ground-truth Num of Instances: 2,1,2,2,1
167 | Our Recovered Labels: 2,7,8,9 | LeAcc: 0.900
168 | Our Recovered Num of Instances: 1,3,1,2 | LnAcc: 0.500 | IRec: 0.625
169 | Start Experiment 13
170 | start_id: 33651
171 | 7/8, Acc for this batch: 0.875
172 | ***************************************************************
173 | Ground-truth Labels: 2,3,5,6,7,8
174 | Ground-truth Num of Instances: 1,2,1,1,2,1
175 | Our Recovered Labels: 0,7,8 | LeAcc: 0.500
176 | Our Recovered Num of Instances: 4,1,2 | LnAcc: 0.300 | IRec: 0.250
177 | Start Experiment 14
178 | start_id: 17000
179 | 7/8, Acc for this batch: 0.875
180 | ***************************************************************
181 | Ground-truth Labels: 0,1,3,6,8,9
182 | Ground-truth Num of Instances: 2,2,1,1,1,1
183 | Our Recovered Labels: 3,5,7,8,9 | LeAcc: 0.500
184 | Our Recovered Num of Instances: 2,1,1,3,1 | LnAcc: 0.300 | IRec: 0.375
185 | Start Experiment 15
186 | start_id: 43072
187 | 8/8, Acc for this batch: 1.000
188 | ***************************************************************
189 | Ground-truth Labels: 0,1,3,4,5,8
190 | Ground-truth Num of Instances: 3,1,1,1,1,1
191 | Our Recovered Labels: | LeAcc: 0.400
192 | Our Recovered Num of Instances: | LnAcc: 0.400 | IRec: 0.000
193 | Start Experiment 16
194 | start_id: 32079
195 | 7/8, Acc for this batch: 0.875
196 | ***************************************************************
197 | Ground-truth Labels: 1,3,5,6,7,8,9
198 | Ground-truth Num of Instances: 1,1,1,2,1,1,1
199 | Our Recovered Labels: 9 | LeAcc: 0.400
200 | Our Recovered Num of Instances: 1 | LnAcc: 0.400 | IRec: 0.125
201 | Start Experiment 17
202 | start_id: 59661
203 | 6/8, Acc for this batch: 0.750
204 | ***************************************************************
205 | Ground-truth Labels: 3,4,5,6,8,9
206 | Ground-truth Num of Instances: 1,2,1,1,1,2
207 | Our Recovered Labels: 3,5,6,7,9 | LeAcc: 0.700
208 | Our Recovered Num of Instances: 1,3,2,1,2 | LnAcc: 0.500 | IRec: 0.625
209 | Start Experiment 18
210 | start_id: 44664
211 | 8/8, Acc for this batch: 1.000
212 | ***************************************************************
213 | Ground-truth Labels: 1,5,6,7,8,9
214 | Ground-truth Num of Instances: 1,1,2,1,1,2
215 | Our Recovered Labels: 6,7,8,9 | LeAcc: 0.800
216 | Our Recovered Num of Instances: 4,1,2,2 | LnAcc: 0.600 | IRec: 0.750
217 | Start Experiment 19
218 | start_id: 57949
219 | 8/8, Acc for this batch: 1.000
220 | ***************************************************************
221 | Ground-truth Labels: 0,2,3,5,8,9
222 | Ground-truth Num of Instances: 1,2,2,1,1,1
223 | Our Recovered Labels: 2,9 | LeAcc: 0.600
224 | Our Recovered Num of Instances: 1,1 | LnAcc: 0.500 | IRec: 0.250
225 | Start Experiment 20
226 | start_id: 27278
227 | 8/8, Acc for this batch: 1.000
228 | ***************************************************************
229 | Ground-truth Labels: 0,1,3,5,6,7,8
230 | Ground-truth Num of Instances: 1,1,1,1,1,2,1
231 | Our Recovered Labels: 0 | LeAcc: 0.400
232 | Our Recovered Num of Instances: 2 | LnAcc: 0.300 | IRec: 0.125
233 | ---------------------------------------------------------------
234 | Mean Ours LeAcc: 0.645 | Mean Ours LnAcc: 0.485 | Mean Ours IRec: 0.450
235 |
--------------------------------------------------------------------------------
/new_logs/TrainingStage/MNIST/exp2.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-17-09:15:35
2 | exp_name: train_stage2
3 | cpu: False
4 | num_tries: 20
5 | num_images: 8
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: MNIST_GRAY
15 | split: train
16 | distribution: random
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: dnn
23 | trained_model: True
24 | iter_train: True
25 | iters: 900
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/train_stage2
70 | image_dir: images/train_stage2
71 |
72 | Model loaded from file dnn_MNIST_GRAY_Iter900.pth.
73 | Start Experiment 1
74 | start_id: 0
75 | 8/8, Acc for this batch: 1.000
76 | ***************************************************************
77 | Ground-truth Labels: 0,3,4,5,8
78 | Ground-truth Num of Instances: 3,1,2,1,1
79 | Our Recovered Labels: 0,4,5 | LeAcc: 0.800
80 | Our Recovered Num of Instances: 1,4,2 | LnAcc: 0.500 | IRec: 0.500
81 | Start Experiment 2
82 | start_id: 11879
83 | 8/8, Acc for this batch: 1.000
84 | ***************************************************************
85 | Ground-truth Labels: 0,1,2,5,7,9
86 | Ground-truth Num of Instances: 1,1,1,2,1,2
87 | Our Recovered Labels: 0,1,9 | LeAcc: 0.700
88 | Our Recovered Num of Instances: 1,2,7 | LnAcc: 0.500 | IRec: 0.500
89 | Start Experiment 3
90 | start_id: 41168
91 | 7/8, Acc for this batch: 0.875
92 | ***************************************************************
93 | Ground-truth Labels: 0,4,5,7,9
94 | Ground-truth Num of Instances: 1,2,1,1,3
95 | Our Recovered Labels: 0,4,7 | LeAcc: 0.800
96 | Our Recovered Num of Instances: 1,2,4 | LnAcc: 0.700 | IRec: 0.500
97 | Start Experiment 4
98 | start_id: 12852
99 | 8/8, Acc for this batch: 1.000
100 | ***************************************************************
101 | Ground-truth Labels: 0,1,4,5,8,9
102 | Ground-truth Num of Instances: 1,1,1,2,2,1
103 | Our Recovered Labels: 3,4,5,8 | LeAcc: 0.600
104 | Our Recovered Num of Instances: 1,1,4,2 | LnAcc: 0.500 | IRec: 0.625
105 | Start Experiment 5
106 | start_id: 49967
107 | 8/8, Acc for this batch: 1.000
108 | ***************************************************************
109 | Ground-truth Labels: 0,2,3,5,9
110 | Ground-truth Num of Instances: 1,1,2,1,3
111 | Our Recovered Labels: 3,5,9 | LeAcc: 0.800
112 | Our Recovered Num of Instances: 2,1,5 | LnAcc: 0.700 | IRec: 0.750
113 | Start Experiment 6
114 | start_id: 13121
115 | 8/8, Acc for this batch: 1.000
116 | ***************************************************************
117 | Ground-truth Labels: 4,5,6,7,8
118 | Ground-truth Num of Instances: 1,1,1,1,4
119 | Our Recovered Labels: 7,8 | LeAcc: 0.700
120 | Our Recovered Num of Instances: 2,8 | LnAcc: 0.500 | IRec: 0.625
121 | Start Experiment 7
122 | start_id: 58442
123 | 6/8, Acc for this batch: 0.750
124 | ***************************************************************
125 | Ground-truth Labels: 1,2,3,4,5,6,7
126 | Ground-truth Num of Instances: 1,1,1,1,1,1,2
127 | Our Recovered Labels: 2,3,7 | LeAcc: 0.600
128 | Our Recovered Num of Instances: 2,1,1 | LnAcc: 0.400 | IRec: 0.375
129 | Start Experiment 8
130 | start_id: 17366
131 | 7/8, Acc for this batch: 0.875
132 | ***************************************************************
133 | Ground-truth Labels: 0,1,6,8,9
134 | Ground-truth Num of Instances: 3,1,2,1,1
135 | Our Recovered Labels: 0,6,9 | LeAcc: 0.800
136 | Our Recovered Num of Instances: 6,1,1 | LnAcc: 0.600 | IRec: 0.625
137 | Start Experiment 9
138 | start_id: 35251
139 | 7/8, Acc for this batch: 0.875
140 | ***************************************************************
141 | Ground-truth Labels: 2,3,5,6,7,9
142 | Ground-truth Num of Instances: 2,1,1,1,2,1
143 | Our Recovered Labels: 2,3,5,7 | LeAcc: 0.800
144 | Our Recovered Num of Instances: 2,1,2,2 | LnAcc: 0.700 | IRec: 0.750
145 | Start Experiment 10
146 | start_id: 39317
147 | 8/8, Acc for this batch: 1.000
148 | ***************************************************************
149 | Ground-truth Labels: 1,2,3,5,6,7,9
150 | Ground-truth Num of Instances: 1,2,1,1,1,1,1
151 | Our Recovered Labels: 2,4,7,9 | LeAcc: 0.500
152 | Our Recovered Num of Instances: 2,2,2,2 | LnAcc: 0.300 | IRec: 0.500
153 | Start Experiment 11
154 | start_id: 32817
155 | 8/8, Acc for this batch: 1.000
156 | ***************************************************************
157 | Ground-truth Labels: 1,2,4,7,8,9
158 | Ground-truth Num of Instances: 1,1,1,3,1,1
159 | Our Recovered Labels: 7,8,9 | LeAcc: 0.700
160 | Our Recovered Num of Instances: 1,1,7 | LnAcc: 0.500 | IRec: 0.375
161 | Start Experiment 12
162 | start_id: 12441
163 | 7/8, Acc for this batch: 0.875
164 | ***************************************************************
165 | Ground-truth Labels: 2,4,7,8,9
166 | Ground-truth Num of Instances: 2,1,2,2,1
167 | Our Recovered Labels: 2,7,8,9 | LeAcc: 0.900
168 | Our Recovered Num of Instances: 1,3,1,2 | LnAcc: 0.500 | IRec: 0.625
169 | Start Experiment 13
170 | start_id: 33651
171 | 7/8, Acc for this batch: 0.875
172 | ***************************************************************
173 | Ground-truth Labels: 2,3,5,6,7,8
174 | Ground-truth Num of Instances: 1,2,1,1,2,1
175 | Our Recovered Labels: 0,7,8 | LeAcc: 0.500
176 | Our Recovered Num of Instances: 4,1,2 | LnAcc: 0.300 | IRec: 0.250
177 | Start Experiment 14
178 | start_id: 17000
179 | 7/8, Acc for this batch: 0.875
180 | ***************************************************************
181 | Ground-truth Labels: 0,1,3,6,8,9
182 | Ground-truth Num of Instances: 2,2,1,1,1,1
183 | Our Recovered Labels: 3,5,7,8,9 | LeAcc: 0.500
184 | Our Recovered Num of Instances: 2,1,1,3,1 | LnAcc: 0.300 | IRec: 0.375
185 | Start Experiment 15
186 | start_id: 43072
187 | 8/8, Acc for this batch: 1.000
188 | ***************************************************************
189 | Ground-truth Labels: 0,1,3,4,5,8
190 | Ground-truth Num of Instances: 3,1,1,1,1,1
191 | Our Recovered Labels: | LeAcc: 0.400
192 | Our Recovered Num of Instances: | LnAcc: 0.400 | IRec: 0.000
193 | Start Experiment 16
194 | start_id: 32079
195 | 7/8, Acc for this batch: 0.875
196 | ***************************************************************
197 | Ground-truth Labels: 1,3,5,6,7,8,9
198 | Ground-truth Num of Instances: 1,1,1,2,1,1,1
199 | Our Recovered Labels: 6,9 | LeAcc: 0.500
200 | Our Recovered Num of Instances: 8,1 | LnAcc: 0.400 | IRec: 0.375
201 | Start Experiment 17
202 | start_id: 59661
203 | 6/8, Acc for this batch: 0.750
204 | ***************************************************************
205 | Ground-truth Labels: 3,4,5,6,8,9
206 | Ground-truth Num of Instances: 1,2,1,1,1,2
207 | Our Recovered Labels: 3,5,6,7,9 | LeAcc: 0.700
208 | Our Recovered Num of Instances: 1,3,2,1,2 | LnAcc: 0.500 | IRec: 0.625
209 | Start Experiment 18
210 | start_id: 44664
211 | 8/8, Acc for this batch: 1.000
212 | ***************************************************************
213 | Ground-truth Labels: 1,5,6,7,8,9
214 | Ground-truth Num of Instances: 1,1,2,1,1,2
215 | Our Recovered Labels: 6,7,8,9 | LeAcc: 0.800
216 | Our Recovered Num of Instances: 4,1,2,2 | LnAcc: 0.600 | IRec: 0.750
217 | Start Experiment 19
218 | start_id: 57949
219 | 8/8, Acc for this batch: 1.000
220 | ***************************************************************
221 | Ground-truth Labels: 0,2,3,5,8,9
222 | Ground-truth Num of Instances: 1,2,2,1,1,1
223 | Our Recovered Labels: 2,9 | LeAcc: 0.600
224 | Our Recovered Num of Instances: 1,1 | LnAcc: 0.500 | IRec: 0.250
225 | Start Experiment 20
226 | start_id: 27278
227 | 8/8, Acc for this batch: 1.000
228 | ***************************************************************
229 | Ground-truth Labels: 0,1,3,5,6,7,8
230 | Ground-truth Num of Instances: 1,1,1,1,1,2,1
231 | Our Recovered Labels: 0 | LeAcc: 0.400
232 | Our Recovered Num of Instances: 2 | LnAcc: 0.300 | IRec: 0.125
233 | ---------------------------------------------------------------
234 | Mean Ours LeAcc: 0.655 | Mean Ours LnAcc: 0.485 | Mean Ours IRec: 0.475
235 |
--------------------------------------------------------------------------------
/new_logs/TrainingStage/MNIST/exp3.log:
--------------------------------------------------------------------------------
1 | running experiments at 2022-11-17-09:15:46
2 | exp_name: train_stage2
3 | cpu: False
4 | num_tries: 20
5 | num_images: 8
6 | seed: 12
7 | alpha: 1
8 | simplified: False
9 | compare: False
10 | estimate: False
11 | analysis: False
12 | ratio: 0.0
13 | data_path: data
14 | dataset: MNIST_GRAY
15 | split: train
16 | distribution: random
17 | start_id: 0
18 | num_classes: 100
19 | num_uniform_cls: 32
20 | num_target_cls: 5
21 | max_size: 32
22 | model: dnn
23 | trained_model: True
24 | iter_train: True
25 | iters: 800
26 | epochs: 10
27 | batch_size: 128
28 | lr: 0.1
29 | optimizer: SGD
30 | scheduler: linear
31 | weight_decay: 0.0005
32 | warmup: False
33 | epoch_interval: 10
34 | iter_interval: 100
35 | mid_save: False
36 | model_path: models
37 | dryrun: False
38 | batchnorm: False
39 | dropout: False
40 | silu: False
41 | leaky_relu: False
42 | n_dim: 300
43 | n_hidden: 1
44 | defense: False
45 | defense_method: dp
46 | noise_std: 0.001
47 | clip_bound: 4
48 | sparse_ratio: 10
49 | prune_ratio: 10
50 | rec_img: False
51 | fix_labels: False
52 | gt_labels: False
53 | optim: ig
54 | restarts: 1
55 | cost_fn: sim
56 | indices: def
57 | weights: equal
58 | rec_lr: None
59 | rec_optimizer: adam
60 | signed: False
61 | boxed: False
62 | scoring_choice: loss
63 | init: randn
64 | tv: 1e-06
65 | l2: 1e-06
66 | max_iterations: 8000
67 | loss_thresh: 0.0001
68 | save_image: False
69 | log_dir: logs/train_stage2
70 | image_dir: images/train_stage2
71 |
72 | Model loaded from file dnn_MNIST_GRAY_Iter800.pth.
73 | Start Experiment 1
74 | start_id: 0
75 | 8/8, Acc for this batch: 1.000
76 | ***************************************************************
77 | Ground-truth Labels: 0,3,4,5,8
78 | Ground-truth Num of Instances: 3,1,2,1,1
79 | Our Recovered Labels: 0,4,5 | LeAcc: 0.800
80 | Our Recovered Num of Instances: 1,4,2 | LnAcc: 0.500 | IRec: 0.500
81 | Start Experiment 2
82 | start_id: 11879
83 | 8/8, Acc for this batch: 1.000
84 | ***************************************************************
85 | Ground-truth Labels: 0,1,2,5,7,9
86 | Ground-truth Num of Instances: 1,1,1,2,1,2
87 | Our Recovered Labels: 0,1,9 | LeAcc: 0.700
88 | Our Recovered Num of Instances: 1,2,7 | LnAcc: 0.500 | IRec: 0.500
89 | Start Experiment 3
90 | start_id: 41168
91 | 7/8, Acc for this batch: 0.875
92 | ***************************************************************
93 | Ground-truth Labels: 0,4,5,7,9
94 | Ground-truth Num of Instances: 1,2,1,1,3
95 | Our Recovered Labels: 0,4,7 | LeAcc: 0.800
96 | Our Recovered Num of Instances: 1,2,4 | LnAcc: 0.700 | IRec: 0.500
97 | Start Experiment 4
98 | start_id: 12852
99 | 8/8, Acc for this batch: 1.000
100 | ***************************************************************
101 | Ground-truth Labels: 0,1,4,5,8,9
102 | Ground-truth Num of Instances: 1,1,1,2,2,1
103 | Our Recovered Labels: 4,5,8 | LeAcc: 0.700
104 | Our Recovered Num of Instances: 2,3,2 | LnAcc: 0.500 | IRec: 0.625
105 | Start Experiment 5
106 | start_id: 49967
107 | 8/8, Acc for this batch: 1.000
108 | ***************************************************************
109 | Ground-truth Labels: 0,2,3,5,9
110 | Ground-truth Num of Instances: 1,1,2,1,3
111 | Our Recovered Labels: 3,5,9 | LeAcc: 0.800
112 | Our Recovered Num of Instances: 2,2,5 | LnAcc: 0.600 | IRec: 0.750
113 | Start Experiment 6
114 | start_id: 13121
115 | 8/8, Acc for this batch: 1.000
116 | ***************************************************************
117 | Ground-truth Labels: 4,5,6,7,8
118 | Ground-truth Num of Instances: 1,1,1,1,4
119 | Our Recovered Labels: 7,8 | LeAcc: 0.700
120 | Our Recovered Num of Instances: 2,8 | LnAcc: 0.500 | IRec: 0.625
121 | Start Experiment 7
122 | start_id: 58442
123 | 6/8, Acc for this batch: 0.750
124 | ***************************************************************
125 | Ground-truth Labels: 1,2,3,4,5,6,7
126 | Ground-truth Num of Instances: 1,1,1,1,1,1,2
127 | Our Recovered Labels: 2,3,7 | LeAcc: 0.600
128 | Our Recovered Num of Instances: 1,1,1 | LnAcc: 0.500 | IRec: 0.375
129 | Start Experiment 8
130 | start_id: 17366
131 | 7/8, Acc for this batch: 0.875
132 | ***************************************************************
133 | Ground-truth Labels: 0,1,6,8,9
134 | Ground-truth Num of Instances: 3,1,2,1,1
135 | Our Recovered Labels: 2,6,8,9 | LeAcc: 0.700
136 | Our Recovered Num of Instances: 4,1,1,1 | LnAcc: 0.600 | IRec: 0.375
137 | Start Experiment 9
138 | start_id: 35251
139 | 7/8, Acc for this batch: 0.875
140 | ***************************************************************
141 | Ground-truth Labels: 2,3,5,6,7,9
142 | Ground-truth Num of Instances: 2,1,1,1,2,1
143 | Our Recovered Labels: 2,3,5,7 | LeAcc: 0.800
144 | Our Recovered Num of Instances: 2,1,3,2 | LnAcc: 0.700 | IRec: 0.750
145 | Start Experiment 10
146 | start_id: 39317
147 | 8/8, Acc for this batch: 1.000
148 | ***************************************************************
149 | Ground-truth Labels: 1,2,3,5,6,7,9
150 | Ground-truth Num of Instances: 1,2,1,1,1,1,1
151 | Our Recovered Labels: 2,4,7,9 | LeAcc: 0.500
152 | Our Recovered Num of Instances: 3,2,1,2 | LnAcc: 0.300 | IRec: 0.500
153 | Start Experiment 11
154 | start_id: 32817
155 | 8/8, Acc for this batch: 1.000
156 | ***************************************************************
157 | Ground-truth Labels: 1,2,4,7,8,9
158 | Ground-truth Num of Instances: 1,1,1,3,1,1
159 | Our Recovered Labels: 7,8,9 | LeAcc: 0.700
160 | Our Recovered Num of Instances: 1,1,6 | LnAcc: 0.500 | IRec: 0.375
161 | Start Experiment 12
162 | start_id: 12441
163 | 7/8, Acc for this batch: 0.875
164 | ***************************************************************
165 | Ground-truth Labels: 2,4,7,8,9
166 | Ground-truth Num of Instances: 2,1,2,2,1
167 | Our Recovered Labels: 2,7,8,9 | LeAcc: 0.900
168 | Our Recovered Num of Instances: 1,3,1,2 | LnAcc: 0.500 | IRec: 0.625
169 | Start Experiment 13
170 | start_id: 33651
171 | 7/8, Acc for this batch: 0.875
172 | ***************************************************************
173 | Ground-truth Labels: 2,3,5,6,7,8
174 | Ground-truth Num of Instances: 1,2,1,1,2,1
175 | Our Recovered Labels: 0,3,7,8 | LeAcc: 0.600
176 | Our Recovered Num of Instances: 4,1,1,2 | LnAcc: 0.300 | IRec: 0.375
177 | Start Experiment 14
178 | start_id: 17000
179 | 7/8, Acc for this batch: 0.875
180 | ***************************************************************
181 | Ground-truth Labels: 0,1,3,6,8,9
182 | Ground-truth Num of Instances: 2,2,1,1,1,1
183 | Our Recovered Labels: 3,5,7,8,9 | LeAcc: 0.500
184 | Our Recovered Num of Instances: 1,1,1,4,1 | LnAcc: 0.400 | IRec: 0.375
185 | Start Experiment 15
186 | start_id: 43072
187 | 8/8, Acc for this batch: 1.000
188 | ***************************************************************
189 | Ground-truth Labels: 0,1,3,4,5,8
190 | Ground-truth Num of Instances: 3,1,1,1,1,1
191 | Our Recovered Labels: | LeAcc: 0.400
192 | Our Recovered Num of Instances: | LnAcc: 0.400 | IRec: 0.000
193 | Start Experiment 16
194 | start_id: 32079
195 | 7/8, Acc for this batch: 0.875
196 | ***************************************************************
197 | Ground-truth Labels: 1,3,5,6,7,8,9
198 | Ground-truth Num of Instances: 1,1,1,2,1,1,1
199 | Our Recovered Labels: 9 | LeAcc: 0.400
200 | Our Recovered Num of Instances: 1 | LnAcc: 0.400 | IRec: 0.125
201 | Start Experiment 17
202 | start_id: 59661
203 | 6/8, Acc for this batch: 0.750
204 | ***************************************************************
205 | Ground-truth Labels: 3,4,5,6,8,9
206 | Ground-truth Num of Instances: 1,2,1,1,1,2
207 | Our Recovered Labels: 3,5,6,7,9 | LeAcc: 0.700
208 | Our Recovered Num of Instances: 1,2,2,1,2 | LnAcc: 0.500 | IRec: 0.625
209 | Start Experiment 18
210 | start_id: 44664
211 | 8/8, Acc for this batch: 1.000
212 | ***************************************************************
213 | Ground-truth Labels: 1,5,6,7,8,9
214 | Ground-truth Num of Instances: 1,1,2,1,1,2
215 | Our Recovered Labels: 6,7,8,9 | LeAcc: 0.800
216 | Our Recovered Num of Instances: 3,1,4,2 | LnAcc: 0.600 | IRec: 0.750
217 | Start Experiment 19
218 | start_id: 57949
219 | 8/8, Acc for this batch: 1.000
220 | ***************************************************************
221 | Ground-truth Labels: 0,2,3,5,8,9
222 | Ground-truth Num of Instances: 1,2,2,1,1,1
223 | Our Recovered Labels: 2,9 | LeAcc: 0.600
224 | Our Recovered Num of Instances: 1,2 | LnAcc: 0.400 | IRec: 0.250
225 | Start Experiment 20
226 | start_id: 27278
227 | 8/8, Acc for this batch: 1.000
228 | ***************************************************************
229 | Ground-truth Labels: 0,1,3,5,6,7,8
230 | Ground-truth Num of Instances: 1,1,1,1,1,2,1
231 | Our Recovered Labels: 0 | LeAcc: 0.400
232 | Our Recovered Num of Instances: 1 | LnAcc: 0.400 | IRec: 0.125
233 | ---------------------------------------------------------------
234 | Mean Ours LeAcc: 0.655 | Mean Ours LnAcc: 0.490 | Mean Ours IRec: 0.456
235 |
--------------------------------------------------------------------------------