├── A Professional Quant Equity Workflow.pdf
├── LICENSE
├── Lecture-VaR+and+CVaR-.ipynb
├── Lecture-Why+Hedge+I-.ipynb
├── Lecture-Why+Hedge+II.ipynb
└── README.md
/A Professional Quant Equity Workflow.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/marketneutral/lectures/b742de70811c990a6ed4fef73a8e1903fcfa21df/A Professional Quant Equity Workflow.pdf
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "{}"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright {yyyy} {name of copyright owner}
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/Lecture-Why+Hedge+II.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Why You Should Hedge Beta and Sector Exposures (Part II)\n",
8 | "by Jonathan Larkin and Maxwell Margenot\n",
9 | "\n",
10 | "Part of the Quantopian Lecture Series:\n",
11 | "\n",
12 | "* [www.quantopian.com/lectures](https://www.quantopian.com/lectures)\n",
13 | "* [github.com/quantopian/research_public](https://github.com/quantopian/research_public)\n",
14 | "\n",
15 | "Notebook released under the Creative Commons Attribution 4.0 License.\n",
16 | "\n",
17 | "---\n"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "In the first lecture on [Why You Should Hedge Beta and Sector Exposure](quantopian.com/lectures/why-hedge-systematic-risk-part-i), we covered the information coefficient (IC) and effective breadth, providing yet more reasons to make as many independent bets as possible. Here we expand upon the concepts detailed there by decomposing portfolios of varying numbers of securities to further explore the effects of systematic risk."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": 1,
30 | "metadata": {
31 | "collapsed": true
32 | },
33 | "outputs": [],
34 | "source": [
35 | "import numpy as np\n",
36 | "import matplotlib.pyplot as plt"
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {},
42 | "source": [
43 | "## Hedging Beta and Sector Risk is Good for Allocators (Which is Good for You!)\n",
44 | "\n",
45 | "Let's work from two basic beliefs:\n",
46 | "- You would like someone to fund your algorithm\n",
47 | "- The institution that funds your algorithm is not going to allocate 100% of its money to you. In other words, your algorithm is one in a portfolio of algorithms.\n",
48 | "\n",
49 | "The implication of the second belief is subtle. Why should it matter that your high Sharpe algo is part of a portfolio? The key to understanding the importance of this and what it has to do with beta and sector exposure is the following mathematical result:\n",
50 | "\n",
51 | "**In a portfolio, stock specific risk can be diversified out while common factor risk cannot.**"
52 | ]
53 | },
54 | {
55 | "cell_type": "markdown",
56 | "metadata": {},
57 | "source": [
58 | "
\n",
59 | "TL;DR: Beta and sector exposure are **common factors**, i.e., they are among a handful of risk characteristics that are shared among all stocks. Risk exposure to common factors does not diversify away in a portfolio of algos. An allocator will not be able to make a large allocation to you if your algo presents common factor risk. The combination of many algos with modest common factor risk can lead to overwhelming common factor risk at the portfolio level. Allocators do not like this. If you want to get a large capital allocation, you must have low beta and sector exposure consistently over time.\n",
60 | "
\n",
61 | "\n",
62 | "# Foundations\n",
63 | "\n",
64 | "### Single Stock Risk Decomposition\n",
65 | "\n",
66 | "To build intuition, let's posit a single factor model:\n",
67 | "\n",
68 | "$$r_i = \\alpha_i + \\beta_i r_m + \\epsilon_i$$\n",
69 | "\n",
70 | "where $\\alpha_i$ is the intercept, $\\epsilon_i$ is the error, and $r_m$ is the market return. This is the [Capital Asset Pricing Model (CAPM)](https://www.quantopian.com/lectures/the-capital-asset-pricing-model-and-arbitrage-pricing-theory), which posits that the returns to a stock can be attributable to its beta-weighted exposure to the market and a return which is idiosyncratic to that stock. Two important assumptions here are that the $\\epsilon_i$s are uncorrelated to the market and each other across stocks. See the [Lecture on Beta Hedging](https://www.quantopian.com/lectures/beta-hedging) for more background.\n",
71 | "\n",
72 | "In this case, the \"risk\", as measured by the variance, for an individual stock is:\n",
73 | "\n",
74 | "$$\\sigma_i^2 = \\beta_i^2 \\sigma_m^2 + \\sigma_{\\epsilon_i}^2$$\n",
75 | "\n",
76 | "A stocks variance is broken into the **common risk**, $\\beta_i^2\\sigma_m^2$, and **specific risk**, $\\sigma_{\\epsilon_i}$. **Common risk** is risk in the stock driven by market risk which is common among all stocks proportionate to the stock's beta. **Specific risk** is the risk that is unique to that individual stock.\n",
77 | "\n",
78 | "Let's look at two examples and decompose the risk into the percent due to common factor risk."
79 | ]
80 | },
81 | {
82 | "cell_type": "code",
83 | "execution_count": 2,
84 | "metadata": {
85 | "collapsed": false
86 | },
87 | "outputs": [],
88 | "source": [
89 | "def stock_risk(beta, market_vol, idio_vol):\n",
90 | " common_risk = (beta**2)*(market_vol**2)\n",
91 | " specific_risk = idio_vol**2\n",
92 | " total_risk = common_risk + specific_risk\n",
93 | " return total_risk, common_risk/total_risk"
94 | ]
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "We take two separate stocks, each with different market beta exposures and idiosyncratic volatility."
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": 3,
106 | "metadata": {
107 | "collapsed": true
108 | },
109 | "outputs": [],
110 | "source": [
111 | "# Betas\n",
112 | "b1 = 1.2\n",
113 | "b2 = 1.1\n",
114 | "# Market volatility\n",
115 | "market_vol = 0.15\n",
116 | "# Idiosyncratic volatilities\n",
117 | "idio_vol_1 = 0.10 \n",
118 | "idio_vol_2 = 0.07"
119 | ]
120 | },
121 | {
122 | "cell_type": "code",
123 | "execution_count": 4,
124 | "metadata": {
125 | "collapsed": false
126 | },
127 | "outputs": [
128 | {
129 | "name": "stdout",
130 | "output_type": "stream",
131 | "text": [
132 | "Stock 1 risk (annualized standard deviation): 0.2059 \n",
133 | "Stock 1: percent of total risk due to common risk: 0.7642 \n",
134 | "\n",
135 | "Stock 2 risk (annualized standard deviation): 0.1792 \n",
136 | "Stock 2: percent of total risk due to common risk: 0.8475 \n"
137 | ]
138 | }
139 | ],
140 | "source": [
141 | "total_1, pct_common_1 = stock_risk(b1, market_vol, idio_vol_1)\n",
142 | "total_2, pct_common_2 = stock_risk(b2, market_vol, idio_vol_2)\n",
143 | "\n",
144 | "print \"Stock 1 risk (annualized standard deviation): %0.4f \" % np.sqrt(total_1)\n",
145 | "print \"Stock 1: percent of total risk due to common risk: %0.4f \" % pct_common_1\n",
146 | "\n",
147 | "print \"\\nStock 2 risk (annualized standard deviation): %0.4f \" % np.sqrt(total_2)\n",
148 | "print \"Stock 2: percent of total risk due to common risk: %0.4f \" % pct_common_2"
149 | ]
150 | },
151 | {
152 | "cell_type": "markdown",
153 | "metadata": {},
154 | "source": [
155 | "This is just looking at the breakdown of the risk associated with each individual stock. We can combine these into a portfolio to see how their combined volatility is affected by common factor risk."
156 | ]
157 | },
158 | {
159 | "cell_type": "markdown",
160 | "metadata": {},
161 | "source": [
162 | "### Two Stock Portfolio Risk Decomposition\n",
163 | "\n",
164 | "Now let's imagine you have a two stock portfolio with percentage weights $w_1$ and $w_2$. The risk of the portfolio (derived below), $\\Pi$, under the one-factor model is then:\n",
165 | "\n",
166 | "$$\\sigma_{\\Pi}^2 = \\overbrace{\\sigma_m^2\\left( w_1^2\\beta_1^2 + w_2^2\\beta_2^2 + 2w_1w_2\\beta_1\\beta_1 \\right)}^{\\text{common risk}} + \\overbrace{w_1^2\\epsilon_1^2 + w_2^2 \\epsilon_2^2}^{\\text{specifc risk}}$$\n",
167 | "\n",
168 | "This is the simplest possible example of portfolio factor risk, one factor and two assets, yet we can already use it to gain intuition about portfolio risk and hedging."
169 | ]
170 | },
171 | {
172 | "cell_type": "code",
173 | "execution_count": 5,
174 | "metadata": {
175 | "collapsed": true
176 | },
177 | "outputs": [],
178 | "source": [
179 | "# The weights for each security in our portfolio\n",
180 | "w1 = 0.5\n",
181 | "w2 = 0.5"
182 | ]
183 | },
184 | {
185 | "cell_type": "code",
186 | "execution_count": 6,
187 | "metadata": {
188 | "collapsed": true
189 | },
190 | "outputs": [],
191 | "source": [
192 | "def two_stocks_one_factor(w1, w2, b1, b2, market_vol, idio_vol_1, idio_vol_2):\n",
193 | " common_risk = (market_vol**2)*(w1*w1*b1*b1 + w2*w2*b2*b2 + 2*w1*w2*b1*b2)\n",
194 | " specific_risk = w1*w1*idio_vol_1**2 + w2*w2*idio_vol_2**2\n",
195 | " total_risk = common_risk + specific_risk\n",
196 | " return total_risk, common_risk/total_risk"
197 | ]
198 | },
199 | {
200 | "cell_type": "markdown",
201 | "metadata": {},
202 | "source": [
203 | "The risk for a two stock, equally-weighted, long-only portfolio:"
204 | ]
205 | },
206 | {
207 | "cell_type": "code",
208 | "execution_count": 7,
209 | "metadata": {
210 | "collapsed": false
211 | },
212 | "outputs": [
213 | {
214 | "name": "stdout",
215 | "output_type": "stream",
216 | "text": [
217 | "Portfolio risk (annualized standard deviation): 0.1830 \n",
218 | "Percent of total risk due to common risk: 0.8887\n"
219 | ]
220 | }
221 | ],
222 | "source": [
223 | "total, pct_common = two_stocks_one_factor(w1, w2, b1, b2, market_vol, idio_vol_1, idio_vol_2)\n",
224 | "print \"Portfolio risk (annualized standard deviation): %0.4f \" % np.sqrt(total)\n",
225 | "print \"Percent of total risk due to common risk: %0.4f\" % pct_common"
226 | ]
227 | },
228 | {
229 | "cell_type": "markdown",
230 | "metadata": {},
231 | "source": [
232 | "The astute reader will notice that the proportion of risk in the portfolio due to common factor risk is **larger for the portfolio** than for the weighted sum of the common risk proportion for the two components. To repeat the key point in this lecture: **In a portfolio, stock specific risk diversifies while common factor risk does not.**"
233 | ]
234 | },
235 | {
236 | "cell_type": "markdown",
237 | "metadata": {},
238 | "source": [
239 | "The risk for a two stock, beta-hedged long-short portfolio:"
240 | ]
241 | },
242 | {
243 | "cell_type": "code",
244 | "execution_count": 8,
245 | "metadata": {
246 | "collapsed": false
247 | },
248 | "outputs": [
249 | {
250 | "name": "stdout",
251 | "output_type": "stream",
252 | "text": [
253 | "Portfolio risk (annualized standard deviation): 0.0629 \n",
254 | "Percent of total risk due to common risk: 0.0000\n"
255 | ]
256 | }
257 | ],
258 | "source": [
259 | "w2 = -w1*b1/b2 # set weight 2 such that the portfolio has zero beta\n",
260 | "\n",
261 | "total, pct_common = two_stocks_one_factor(w1, w2, b1, b2, market_vol, idio_vol_1, idio_vol_2)\n",
262 | "print \"Portfolio risk (annualized standard deviation): %0.4f \" % np.sqrt(total)\n",
263 | "print \"Percent of total risk due to common risk: %0.4f\" % pct_common"
264 | ]
265 | },
266 | {
267 | "cell_type": "markdown",
268 | "metadata": {},
269 | "source": [
270 | "Note that we eliminated **all** the common risk with a perfect beta hedge.\n"
271 | ]
272 | },
273 | {
274 | "cell_type": "markdown",
275 | "metadata": {},
276 | "source": [
277 | "# Portfolio Risk\n",
278 | "\n",
279 | "If $X$ is a column vector of n random variables, $X_1,\\dots,X_n$, and $c$ is a column vector of coefficients (constants), then the [variance of the weighted sum](https://en.wikipedia.org/wiki/Variance) $c'X$ is\n",
280 | "\n",
281 | "$$\\text{Var}(c'X) = c'\\Sigma c$$\n",
282 | "\n",
283 | "where $\\Sigma$ is the covariance matrix of the $X$'s.\n",
284 | "\n",
285 | "In our application, $c$ is our stock weight vector $w$ and $\\Sigma$ is the covariance matrix of stock returns.\n",
286 | "\n",
287 | "$$\\sigma_{\\Pi}^2 = w' \\Sigma w$$\n",
288 | "\n",
289 | "Just as we decompose the single stock risk above, we can decompose the covariance matrix to separate *common risk* and *specific risk*\n",
290 | "\n",
291 | "$$\\Sigma = BFB' + D$$\n",
292 | "\n",
293 | "Thus\n",
294 | "\n",
295 | "$$\\sigma_{\\Pi}^2 = w'(BFB' + D)w$$\n",
296 | "$$\\sigma_{\\Pi}^2 = w'BFB'w + w'Dw$$\n",
297 | "\n",
298 | "Which for the two stock portfolio above works out to\n",
299 | "\n",
300 | "\\begin{equation}\n",
301 | "\\sigma_{\\Pi}^2 =\n",
302 | "\\overbrace{\n",
303 | "\\begin{bmatrix} w_1 & w_2 \\end{bmatrix}\n",
304 | "\\begin{bmatrix} \\beta_{1} \\\\ \\beta_{2} \\end{bmatrix} \n",
305 | "\\sigma_m^2\n",
306 | "\\begin{bmatrix} \\beta_{1} & \\beta_{2} \\end{bmatrix}\n",
307 | "\\begin{bmatrix} w_1 \\\\ w_2 \\end{bmatrix}\n",
308 | "}^{\\text{common risk}}\n",
309 | "+ \\overbrace{\\begin{bmatrix} w_1 & w_2 \\end{bmatrix}\n",
310 | "\\begin{bmatrix} \\epsilon_1^2 & 0\\\\ 0 & \\epsilon_2^2 \\end{bmatrix}\n",
311 | "\\begin{bmatrix} w_1 \\\\ w_2 \\end{bmatrix}}^{\\text{specific risk}}\n",
312 | "\\end{equation}\n",
313 | "\n",
314 | "If you work through this matrix multiplication, you get the stated result above\n",
315 | "\n",
316 | "$$\\sigma_{\\Pi}^2 = \\overbrace{\\sigma_m^2\\left( w_1^2\\beta_1^2 + w_2^2\\beta_2^2 + 2w_1w_2\\beta_1\\beta_1 \\right)}^{\\text{common risk}} + \\overbrace{w_1^2\\epsilon_1^2 + w_2^2 \\epsilon_2^2}^{\\text{specifc risk}}$$\n",
317 | "\n",
318 | "### Multi-Factor Models\n",
319 | "\n",
320 | "Of course, we can expand the CAPM to include *additional* risk factors besides market beta. We could posit that there are in total $m$ risks which are *common* to all stocks.\n",
321 | "\n",
322 | "$$r_i = \\alpha_i + \\beta_{1,i} f_1 + \\dots + \\beta_{m,i} f_m + \\epsilon_i$$\n",
323 | "\n",
324 | "or more concisely\n",
325 | "\n",
326 | "$$r_i = \\alpha_i + \\sum_{j=1}^m \\beta_{j,i} f_j + \\epsilon_i$$\n",
327 | "\n",
328 | "or, considering all stocks, $i$, from 1 to N, even more concisely, for a given period $t$,\n",
329 | "\n",
330 | "$$r = \\alpha + Bf + \\epsilon$$\n",
331 | "\n",
332 | "where $r$ is the Nx1 column vector of returns, $B$ is the Nx$m$ matrix of factor betas, $f$ is the Nx1 column of factor returns, and $\\epsilon$ is the Nx1 column vector of idiosyncratic returns. Finally,\n",
333 | "\n",
334 | "$$\\sigma_{\\Pi}^2 = w'BFB'w + w'Dw$$\n",
335 | "\n",
336 | "where $B$ is the Nx$m$ matrix of factor betas, $F$ is the $m$x$m$ covariance matrix of factor returns, and $D$ is a NxN matrix with the $\\epsilon_i$'s on diagonal, and zeros everywhere else.\n",
337 | "\n",
338 | "With this result, *assuming we had a suitable risk model giving us the matrices $B$, $F$, and $D$*, we could calculate our portfolio risk and the proportion of risk coming from common risk.\n",
339 | "\n",
340 | "Likewise, just as we set $w_2$ above in the two stock case to the value that neutralized the exposure to the single factor $\\beta$, in the multi-factor case we could use the factor betas matrix $B$ to construct a portfolio which is neutral to **all** common factors. **A portfolio which is neutral to all common factors has zero common factor risk.**\n"
341 | ]
342 | },
343 | {
344 | "cell_type": "markdown",
345 | "metadata": {},
346 | "source": [
347 | "# Portfolios of Algos\n",
348 | "\n",
349 | "Even without a risk model, we can get some intuition as to how the risk of a portfolio of algos looks.\n",
350 | "\n",
351 | "What does a resulting portfolio of algos look like when the individual algos have non-zero common risk? Taking some inspiration from a recent journal article [The Dangers of Diversification](http://www.iijournals.com/doi/abs/10.3905/jpm.2017.43.2.013?journalCode=jpm) by Garvey, Kahn, and Savi, imagine that each algo has a certain *budget of common risk* it can take. This budget is defined as the percent common risk of total risk in the algo.\n",
352 | "\n",
353 | "In the first case, we assume that all algos have this same budget (and use all the budget!) and the correlation between their common risks is 1.0. This is simular to the case of a single factor model.\n",
354 | "\n"
355 | ]
356 | },
357 | {
358 | "cell_type": "code",
359 | "execution_count": 9,
360 | "metadata": {
361 | "collapsed": false
362 | },
363 | "outputs": [],
364 | "source": [
365 | "def portfolio_risk_decomposition(budget=0.2, correl=1.0, algo_count=2, algo_total_risk=0.04):\n",
366 | " N = algo_count\n",
367 | " \n",
368 | " algo_common_risk = budget*(algo_total_risk**2)\n",
369 | " algo_idio_risk = algo_total_risk**2 - algo_common_risk\n",
370 | "\n",
371 | " w = 1./N\n",
372 | " \n",
373 | " covar = correl*algo_common_risk\n",
374 | " common_risk = N*w*w*algo_common_risk + (N*N - N)*w*w*covar\n",
375 | " idio_risk = algo_idio_risk*w\n",
376 | " total_risk = common_risk + idio_risk\n",
377 | " \n",
378 | " return total_risk, common_risk/total_risk"
379 | ]
380 | },
381 | {
382 | "cell_type": "code",
383 | "execution_count": 10,
384 | "metadata": {
385 | "collapsed": false
386 | },
387 | "outputs": [
388 | {
389 | "name": "stdout",
390 | "output_type": "stream",
391 | "text": [
392 | "Portfolio total risk: 0.0196 \n",
393 | "Portfolio percent of common risk: 0.8333 \n"
394 | ]
395 | }
396 | ],
397 | "source": [
398 | "a, b = portfolio_risk_decomposition(budget=0.2, algo_count=20, correl=1.0, algo_total_risk=0.04)\n",
399 | "print \"Portfolio total risk: %.4f \" % np.sqrt(a)\n",
400 | "print \"Portfolio percent of common risk: %.4f \" % b"
401 | ]
402 | },
403 | {
404 | "cell_type": "code",
405 | "execution_count": 11,
406 | "metadata": {
407 | "collapsed": false
408 | },
409 | "outputs": [
410 | {
411 | "data": {
412 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAH6CAYAAADIhOc8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4U2X+//9nmjZplibdF0pbNqHIIgUFHVFAlkIR5kKk\nKFJUUBx1QFxAQcTfCAOKIjIyzojgsAiyKQh8WBRZRFGqICL8QAWhQEv3LWm6pEm+f6Q9NrSFgpQC\nfT+uK9fZ73Ofk6bNq/c591G5XC4XQgghhBBCCNFIeTV0BYQQQgghhBCiIUkoEkIIIYQQQjRqEoqE\nEEIIIYQQjZqEIiGEEEIIIUSjJqFICCGEEEII0ahJKBJCCCGEEEI0ahKKhBA3tNjYWOLj40lISCA+\nPp5hw4bx7bffNnS12Lx5M0VFRZe0zaFDh+jZsydPPvlktWVJSUncddddJCQk0L9/f+69916WLl16\nWXVbs2aNMv7ll1/SvXt3/vGPf1xwm3vuuYcDBw5w6NAhHnvssUva37p164iLiyMhIUGp/6BBg1i/\nfr2yTkJCArm5uRcs49FHH72k/QK0a9eOtLS0S96uJidPnuSHH3645O3sdjtz585lwIABDBgwgP79\n+zN37lzsdvsVqdfVlJqaSmxsrMd7GR8fz+zZs5V1XnzxRXbt2nXBMtq1a3cVaiuEEH/wbugKCCFE\nfVKpVCxbtozQ0FAADhw4wJNPPsnWrVsJCAioUxkulwuVSnVF6/Xuu+/SpUsXDAZDnbf5+uuv6dat\nG2+88UaNyydNmsSgQYMAyM7OZvjw4bRo0YLu3bvXqXyXy4XT6WT27NkMGzYMgB07dpCYmMj48ePr\nVEbHjh1ZuHBhndatKi4ujg8//FCZPnXqFMOHD+eWW26hefPmbN68+aJlXM57dCXf1y+++AKHw8Gt\nt956SdtNnDiRkpIS1qxZg9FopLCwkEmTJjFlyhTefPPNK1a/q8Xb29vj/SoqKmL06NGsWbOGYcOG\n1frzW9WV/rwJIcTFSEuREOKG5nK5qPqM6s6dOxMdHc3BgwcB2L59O4MGDaJv376MGTOG/Px8AObP\nn8+0adMYNmwYS5YsAWDWrFn07t2b/v37s2jRIqXM+fPn079/f+655x5mzpyp7C8pKYnFixczYsQI\n7r77bp5//nkApkyZwsmTJxk1ahQHDhyoVuelS5cycOBAEhISePrpp8nNzWXbtm0sXbqUnTt38sQT\nT1z0uIODg+nfvz/ffPMNAMeOHePBBx9kwIABDBkyhK+//hqA5ORkHnjgAZ577jleeOEFRo8ejcVi\nISEhgaVLl7Jt2zZWrlzJtGnTcLlcSotGQkICkydPpqSkxGO/ycnJ9OvXD4CysjJeffVV+vfvz8CB\nA3njjTeo6/PCmzVrRvPmzfn1118Bd4tfRkYGNpuNv//97yQkJNCvXz+mTZuGw+Hw2NZqtTJo0CA+\n//zzauXu3r2bfv36ce+99/K///1PmX9+S1PVaYvFwqRJk4iPj6dv3758+umn1crduXMnCxYsYNmy\nZcqX/vPfx7y8vGrbHT9+nD179vDmm29iNBoBMJlMzJw5k6FDhwJQUFDAhAkTlBbADz74QNk+NjaW\nNWvWMGjQIHr16sW+fft4/vnnueeee3j88cdxOp2XtN6+ffu47777SEhIYPjw4Rw5ckQ5H8888wwv\nv/wy8fHxDBw4kBMnTlzwPaxkMBjo1q0bx44dA9yfi40bNwIwd+5c+vfvz4ABA3jkkUfIysqqtv3E\niROZMWNGnfYlhBCXS0KREKLRKS8vR6PRcObMGV588UXeeecdvvjiC7p168a0adOU9Xbv3s3ChQt5\n5JFH+Oyzzzh8+DBffPEFa9euZfny5fz888+sX7+ebdu28cknn7B9+3ZOnz7NihUrlDJ27tzJ4sWL\n2bZtG9999x0//vgjM2fOBGDZsmV07tzZo24HDx7kf//7Hx999BGbN28mIiKCuXPnEh8fz8iRI4mP\nj+f999+/pON0uVw8//zzJCUlsWXLFqZPn87zzz+PzWYD4OjRozzwwAPMmTOHmTNnKv/pHzVqFH37\n9mXUqFG89tprbN68mT179rB+/Xr+7//+j8LCQhYvXlxtv5X/5V+8eDEZGRls2bKFTz/9lB9++IFN\nmzbVqe779+/n+PHjdOzY0aPMdevWYTKZ2Lx5M9u2bUOr1fLbb78p27lcLl544QUGDx6shLNKTqeT\nqVOn8o9//EOpR9VAdX7rROX0rFmzUKvVbNu2jdWrV/Puu+9y/Phxj3V79eqlnKsXX3yxxvdxzpw5\n1Y4zOTmZTp064efn5zE/MDCQ22+/HYC3334bs9nM1q1bWb58OR9//LFHmM7Pz2fjxo3079+fcePG\n8cwzz7B161Z+/fVXkpOT67yezWZjwoQJTJs2jc2bNzNmzBiee+45ZfuvvvqKkSNHsm3bNrp166b8\ns+BiMjIy2L59e7Wf9ePHj7N161Y2b97Mli1bSEhIYO/evR7rLFiwAIvFwssvv1ynfQkhxOWSUCSE\naFR2795NdnY2nTt3Zs+ePXTr1o2WLVsCMHz4cHbs2KG0Ztxyyy2YzWbA/YUwPj4eLy8vjEYjmzdv\npkOHDuzatYuhQ4diMBjw8vLi/vvv54svvlD2Fx8fj0ajQafT0axZM86dO6csq6nVZPfu3cTHxyuX\n9t1///1Ka8+lOHPmDNu2baNv376cPXuW7OxsEhISAGjfvj2RkZH8/PPPAPj6+tK1a9c6nbshQ4ag\n1WpRqVTcd999F6zb7t27SUxMRKVSodVqGTRoUK3r//jjjyQkJDBgwABuv/12ZsyYwbvvvktERATw\nx7kKCgri4MGDfPPNN9jtdl5++WViY2OVdebMmUNgYCCPP/54tX2cOnWKsrIy7rjjDgCGDBly0WMG\n2LVrF6NGjQIgICCAvn371tgKdf6xn/8+nv+FH9ytQEFBQRcta8SIEQCYzWb69u3rcR779OkDQJs2\nbYiOjiY6OhqNRkNMTAyZmZl1Xu+nn34iIiKCTp06AdCvXz/y8/M5e/YsAK1ataJt27YA3HzzzbXe\ni1VeXq7cU9SrVy+GDh3KyJEjGThwoMd6fn5+5Ofn89lnn1FYWEhiYiJ//etfPY57y5YtzJ07Vy6n\nE0LUO7mnSAhxwxs1ahRqtRqn00lkZCQLFy5Ep9NhsVj4/vvvlbDgcrkwm83KZU6VgQjc/2U3mUzK\ntK+vL+C+tOrDDz9k9erVyj05gYGBynpVWwC8vLyqXep1vtzcXMLCwpRps9lMTk5OnY7zzTff5D//\n+Q9OpxOz2cxLL71E+/bt+emnnzzqXlmvnJwcgoOD8ff3r1P5ubm5HuVcrG7nr28ymWpdv+o9RatX\nr2bjxo1KeKmqf//+FBYWMm/ePE6ePMngwYN58cUXATh8+DAHDx6stcOFgoIC5RK1yvrX5XK+wsJC\nJkyYgFqtxuVyUVpaSv/+/S+4TV3fx4CAAL777ruLllX1Z9FkMnlcZqbX6wH3z1flOKD8zNd1vby8\nvBp/Tio7uKj6s3x+2VVVvafoxIkTNQYigLCwMN59910WLVrE9OnT6dq1q9Khh8Ph4OWXX6Z58+bo\ndLoLnR4hhLgiJBQJIW54VTtaqCo0NJS//OUvzJs376Jl+Pv7e9wTkpOTg1arJTQ0lHvuuYeHHnro\nitQ1ODhYua8JIC8v76ItCZUmTpyodLRQVVBQEAUFBR7z8vPzCQ4O/lN1y8/Pv2Ddalq/LvscOnQo\nixYtYvv27UrrRlWJiYkkJiaSmZnJuHHj+Oyzz/D29iYsLIz//ve/DB8+nHvuuYf27dt7bGcymbBa\nrcp0Tk6O0gJxfmCter5CQ0P597//TatWrS5a9wsde03nqmvXrrz++utkZWUREhKizLdYLPzvf/9j\n/PjxSlnh4eFKWZf63tVFUFBQtfueKluy6nr/0PlatmxJz549mT9/fo2XwHXt2pWuXbtSUlLC66+/\nzltvvcWECRNQqVR8/PHHvPTSSyxevJhHHnnksvYvhBB1JZfPCSFueLW1BnTv3p39+/dz5swZwN3l\n9T//+c8a1+3duzebNm2irKwMm83GiBEjOH78OL1792bDhg1KhwOrVq3y6Eq6Nt7e3lgslmrze/To\nwRdffKF8KV+1ahW9evWq03HWpmnTpoSFhSn/vT9w4AA5OTnK/Trn18vpdCr3G1XVs2dP5VjLy8tZ\nu3btBevWs2dP1q5dq5S3YcMGevTocdH6qtVqxo0bx1tvvVWtZe29997jk08+AdxhpWnTpkqwqZx+\n6aWXePHFFykrK/PYNiYmBm9vb77//nsAPv30U49tT548SVlZGcXFxWzbtk3Zrnfv3nz88ceA+9Kw\nWbNmcfTo0RrPXWFhIVD9fVy5ciU9e/astk2LFi0YMGAAzz33nNKSlJ+fz3PPPads27NnT1atWgW4\nW42++OKLGsv6szp27EhOTg4//fQTAJs2bSI8PJzIyMhLKuf8z9vf//531q5dq3zOKn3zzTe89tpr\nuFwufH19iY2NVd4PlUpFVFQUM2fO5P333+fUqVOXf2BCCFEHEoqEEDe0C92LEBISwvTp0/n73//O\nwIEDmTFjRo2X+YD7OTndu3cnPj6e++67j2HDhtGpUyf69OlDr169GDJkCAkJCezcuZO77rqrxn1X\nne7fvz8PPPAAW7du9VinY8eOPP7444wYMYKEhASsVisTJkz4U8cJ7l6+PvroIxISEpg5cybz5s1T\nLgGsKjQ0lM6dO9OrVy+lh76qde7Rowf33XcfgwcPJiIigpEjR9a6/6SkJCIiIhg4cCDDhg3jnnvu\nuehlZ5XuvfdefH19WblypUf5f/3rX/nss8+UHvA0Go3HfSgAgwYNomXLlsydO9djvre3N6+99hqT\nJ09m4MCBeHt7K5eRdevWjVtuuYX+/fszduxYjxaqZ555BovFojw/yel00qZNm2p17tWrFytXruSZ\nZ56hY8eOPPbYYx7v47PPPlvjsc6YMYNu3bop644aNYo77riDV155BYAJEyZQUFDAgAEDGDVqFE88\n8YTSCnah973qsrqsp9PpeOedd/jHP/5BQkICK1eu5J133ql1u7rsFyAyMpKhQ4cq3YtXLr/tttso\nLi4mPj6eQYMGsWXLFqXr98p1YmJiePrpp3nxxRfr3HOhEEJcDpWrnn/LHDt2jHHjxvHII49Uu7xk\n7969zJ07F7Vazd13381TTz1Vn1URQgghhBBCiGrqtaWouLiYN954gzvvvLPG5f/85z+ZP38+H3/8\nMd98881lX7MshBBCCCGEEJerXkORVqvl/fffr/GG0DNnzuDv709YWBgqlYoePXpctAceIYQQQggh\nhLjS6jUUeXl5odFoalyWnZ3t0W1tYGCgx/MUhBBCCCGEEOJquGa65K7LrU379++/CjURQgghhBBC\nXM+6dOlySes3WCgKDQ31ePhcRkZGjc8ROd+lHqAQN6r9+/fL50EI5LMgRCX5LAjhdjkNKQ3WJXdk\nZCRFRUWkpaVRXl7Orl276N69e0NVRwghhBBCCNFI1WtL0U8//cTUqVPJzc1FrVazcuVKhg4dStOm\nTenTpw+vvvoqzz33HOB+JkVMTEx9VkcIIYQQQgghqqnXUHTLLbewcePGWpffeuutyoP5hBBCCCEa\nE5fLRWlp6RUts6Sk5IqWJ8S1TqvVXvQB5nXRYJfPCSGEEEI0ZqWlpVc0FLVr1+6KlSXE9eBKfoau\nmd7nhBBCCCEaG61Wi6+vb0NXQ4hGT1qKhBBCCCGEEI2ahCIhhBBCCCFEoyahSAghhBBCCNGoSSgS\nQgghhGjEZs+ezQMPPMCwYcP44osvAEhPTycpKYmRI0fy7LPPYrfbsdvtjB07luHDh3Pw4EFl+6ee\neoqMjIway16+fDnDhw8nKSmJxMREvv32WwBmzZpFamrqJdVz/vz5LF++/JK2SUhIYNasWcp0cnIy\n48ePv6QyzpeTk8Ozzz7L/fffT2JiIhMnTsRisfypMutLu3btGDVqFElJSYwYMYIJEyZgs9kAePrp\np2vdLikpiePHj19w+bBhw5T3df78+XWu0/Llyy9p/Urbtm275G0uhYQiIYQQQohGat++fRw/fpyV\nK1fywQcfMHPmTADmzZtHUlISH330EdHR0axdu5a9e/fSpUsX5s2bx9KlSwHYvXs3sbGxhIWFVSs7\nNTWVNWvW8PHHH7Ns2TJmz57Ne++9B8DkyZOJjIys12M7cuQIMTEx7Nq1y2P+n+2+edKkSfTt25e1\na9eyevVqYmNjee211/5UmfXFZDKxdOlSli1bxooVK2jVqhVLliwB4N///vefKvv1119n2bJlrFq1\nio0bN5KdnX0lqlyrBQsW1Gv50vucEEIIIUQjddttt9GxY0fA/QW6uLgYp9NJcnKy8kW/V69efPjh\nh/Tr14/g4GCCg4MpKCjA6XSydOnSWv/rb7FYKCsro7S0FJ1OR7NmzVi2bBngbml49dVX2bp1KxaL\nhZMnT3LmzBmmTJnCXXfdxYIFC9i8eTNRUVGUl5fz6KOPepQ9d+5cDhw4gMPh4KGHHmLgwIHV9r9p\n0ybi4+P58ssvSU5OpmvXrh7Lz9/H6NGjadu2LS+99BKFhYU4HA6mTp1K27ZtlW1+//13LBYLCQkJ\nyrzRo0crz4favHkzS5Yswdvbm3bt2jFlyhTmz59PXl4eKSkpnD17lmeeeYZPPvmEtLQ0FixYQFpa\nGkuXLkWtVnP06FGeeOIJ9uzZw9GjR5k0aRK9e/eutdyazt2FdOzYkc2bNwNw++23891337F+/XqW\nL1+ORqMhNjaWV155RVnfarUyevRoZs2aRcuWLT3Kcjqdyvvs4+ODXq8nOTmZjz76iH/9618e+/j2\n22+ZOXMmoaGhBAcHK+f8hRdeID09nbi4OLZs2cKuXbs4fvw406dPx8vLC4PBwKxZs1i9ejW//PIL\n48ePV8q+0iQUCSGEEEJcAz7ceIRvfrq0S8ou5s5bIhk9qPbnF3l5eaHT6QBYs2YNPXv2xMvLi+Li\nYnx8fAAICgoiMzOT8PBw9uzZw6lTp4iMjOSTTz5h4MCBvP/++2RlZTFy5EiPABEbG0uHDh3o3bs3\nPXr04O6776Zfv36o1WqP1pr09HQWLFjAnj17WLVqFR07dmTFihV8/vnnWCwW4uPjGT16tLL+Dz/8\nQFpaGsuWLaOsrIz77ruPvn37otFolHVcLhfbtm3jb3/7G+AOSFVDUUFBQY37WLJkCZ06deKxxx7j\n8OHDzJw5Uwly4A5FsbGxHudQpVKh0+mw2Wy88847bNiwAV9fX5588kn27dun7G/hwoXMnTuXzz77\njIULFzJv3jx27NhBbGwsx44dY+vWrSQnJzNx4kR27NjBgQMHWL58OXfccUet5VY9dytXrqwWilwu\nl8f4559/rjzPqvI9+PDDD/nggw8ICwtj3bp1ynN/nE4nL730EuPHj68WiACmTJmCr68vJ0+eZMyY\nMej1eo9yq46//fbbzJkzh9atWzN27FiioqLYs2cPdrudlStXsmvXLqUFa8aMGUyfPp3o6GhWrFjB\nihUreOKJJ1i4cGG9BSKQy+eEEEIIIRq97du38+mnnyqtBFW/2LpcLlQqFbfeeiuZmZnMmDGDBx54\ngO3btxMTE4NarWbatGnMmzevWrlvvPEGH330EW3btmXhwoVKuKn6Zb1Lly4AhIeHY7FYSElJoU2b\nNmg0GoKCgpSWrEo//vgjhw4dYtSoUYwZMwaAzMxMj3WSk5OJiorCbDbTq1cvduzYgcPhUJbXto/D\nhw8r4al9+/akpKR4lKtSqZQWkvOdOnWKZs2aKc+d6tq1K0ePHgVQyg8NDVWCY3BwsHIvUmxsLN7e\n3oSEhNCsWTO0Wq2y/ELlVj13Vqu1Wp2sVqtyT9Gdd96J0WjkoYce8ljn3nvv5amnnmLJkiXcfffd\naLVawH0PV0REBN27d6/xeGfNmsWyZcvYuXOn0hpUm9TUVFq3bg24WycBTpw4QefOnQHo0aMHarUa\ngEOHDjF16lSSkpLYsGEDOTk5gOfPTH2QliIhhBBCiGvA6EHtLtiqU1/27NnDggULWLRoEQaDAQC9\nXk9ZWRkajYaMjAxCQ0MBlE4L5s+fz5gxY0hLS6NJkyZotVqKioqqlV1WVkaLFi1o0aIFI0eOZMCA\nAZw7d85jncovw/DHF98L3fej0WgYOnQoY8eOrXWdTZs2kZKSwpAhQ3C5XJSUlPDNN994PCi3pn14\neXm2F5wfgFq0aFFj+Dty5AheXl4e69vtdmV/VY+xpuO90PK6lltTaPDz81Pu/5o9ezZhYWHVjnHs\n2LEMHjyYrVu38sgjjygtY/7+/uzdu5eCggLMZnO1siv5+PjQo0cP9u/fT7du3TyWlZeXA57ntWo9\nq86vfD90Op1S56r+7L1gFyMtRUIIIYQQjZTVauXNN9/kv//9L35+fsr8O+64Q+nta9u2bR6XZWVk\nZJCSkkLXrl0JDg4mLS2NkpISpYWh0po1a5g8ebLyJbiwsBCXy0VQUNAF6xQZGclvv/2Gw+EgNzeX\nI0eOeCzv2LEjO3bswOVyUVpayowZMzyW2+12du7cyYYNG1i3bh3r16/nlVdeYdOmTRfdR4cOHfju\nu+8AOHjwoNK6Ual58+ZERESwYsUKZd7ixYtZunQpzZo14/Tp00rvbsnJybRv3/6Cx1oXMTExl11u\n1QDy1FNPsXz5cqVDhMplc+fOJTg4mEceeYROnTqRlpYGwKhRo3jssceYPn36Rfdz6NAhmjdvjtFo\nVFrtjh07pgTlsLAwTp06hcvlUi79i46O5ueffwbg66+/VlryYmNj+eqrrwD3PVqV70dtLXRXirQU\nCSGEEEI0Ups3byY/P58JEyYol8nNnj2bcePG8eKLL7Jq1SqaNGnCkCFDlG3+85//MG7cOMB9KdTi\nxYt5+OGHefLJJz3KHjp0KCdPniQxMRG9Xq90XKDRaC74X/+goCDuvfdehg0bRosWLejQoYNHi0Jc\nXBzdunVj+PDhAIwYMcJj+6+++oouXbpgMpmUefHx8cydO5fBgwdfcB9JSUlMnjyZhx9+GJfLxauv\nvlqtfm+//TavvfYaa9asQa/XExsby/Tp09FoNEyaNIkxY8agVqvp0qULnTt3Zu/evXV9O2qk0+mY\nOHHiZZVb9TwbjUYef/xxXn/9dd566y1lmcFgYPjw4ZhMJqKiomjbtq2ybMiQIWzZsoWdO3fSq1cv\nj7InT56MTqfDbrcTGxvLwIEDcblc6PV6HnzwQeLi4pQeBidMmMC4ceOIjIwkPDwcgJ49e7J27Voe\neughunbtir+/P+C+V2natGl88MEH+Pr6MmfOHADatm1LYmIiq1ev/lPns9Zz5arvC/SuoP379yvX\nTgrR2MnnQQg3+SyI61Vlj2VVL+kSbuvWrWPQoEGo1WoGDRrEokWLauz2+1rfh6hdQUEB+/bto1+/\nfmRkZPDoo48qPePVVW2focv5uyAtRUIIIYQQ4pqSlZXFsGHD0Gq1DB48uF7CytXYh6idwWBgy5Yt\nLFq0CJfLxZQpUxq0PtJSJMR1Sj4PQrjJZ0Fcr6SlSIg/50q2FElHC0IIIYQQQohGTUKREEIIIYQQ\nolGTUCSEEEIIIYRo1CQUCSGEEEIIIRo1CUVCCCGEEI1caWkpffv2Zf369QCkp6eTlJTEyJEjefbZ\nZ7Hb7djtdsaOHcvw4cM5ePCgsu1TTz1FRkZGjeUuX76c4cOHk5SURGJiIt9++y0As2bNIjU19ZLq\nOH/+fJYvX35J2yQkJDBr1ixlOjk5mfHjx19SGefLycnh2Wef5f777ycxMZGJEydisVj+VJn1pV27\ndowaNYqkpCRGjBjBhAkTlIfAPv3007Vul5SUxPHjxy+4fNiwYcr7On/+/DrXafny5Ze0fqXKhwnX\nFwlFQgghhBCN3Hvvvac8PBNg3rx5JCUl8dFHHxEdHc3atWvZu3cvXbp0Yd68eSxduhSA3bt3Exsb\nW2N31qmpqaxZs4aPP/6YZcuWMXv2bN577z3A/eDPygd71pcjR44QExPDrl27POZf6MGxdTFp0iT6\n9u3L2rVrWb16NbGxsbz22mt/qsz6YjKZWLp0KcuWLWPFihW0atWKJUuWAPDvf//7T5X9+uuvs2zZ\nMlatWsXGjRvJzs6+ElWu1YIFC+q1fHlOkRBCCCFEI/b7779z8uRJevToocxLTk5Wvuj36tWLDz/8\nkH79+hEcHExwcDAFBQU4nU6WLl1a63/9LRYLZWVllJaWotPpaNasGcuWLQPcLQ2vvvoqW7duxWKx\ncPLkSc6cOcOUKVO46667WLBgAZs3byYqKory8nIeffRRj7Lnzp3LgQMHcDgcPPTQQwwcOLDa/jdt\n2kR8fDxffvklycnJdO3a1WP5+fsYPXo0bdu25aWXXqKwsBCHw8HUqVNp27atx7myWCwkJCQo80aP\nHq10Db1582aWLFmCt7c37dq1Y8qUKcyfP5+8vDxSUlI4e/YszzzzDJ988glpaWksWLCAtLQ0li5d\nilqt5ujRozzxxBPs2bOHo0ePMmnSJHr37l1ruTWduwvp2LGj8oDU22+/ne+++47169ezfPlyNBoN\nsbGxvPLKK8r6VquV0aNHM2vWLFq2bOlRltPpVN5nHx8f9Ho9ycnJfPTRR/zrX//y2Me3337LzJkz\nCQ0NJTg4WDnnL7zwAunp6cTFxbFlyxZ27drF8ePHmT59Ol5eXhgMBmbNmsXq1av55ZdfGD9+vFL2\nlSahSAghhBDiGrDs4Cd8d+bAFS3z9qjOJHUaesF1Zs+ezbRp0/j000+VecXFxfj4+AAQFBREZmYm\n4eHh7Nmzh1OnThEZGcknn3zCwIEDef/998nKymLkyJEeASI2NpYOHTrQu3dvevTowd13302/fv1Q\nq9UerTXp6eksWLCAPXv2sGrVKjp27MiKFSv4/PPPsVgsxMfHM3r0aGX9H374gbS0NJYtW0ZZWRn3\n3Xcfffv2RaPRKOu4XC62bdvG3/72N8AdkKqGooKCghr3sWTJEjp16sRjjz3G4cOHmTlzphLkwB2K\nYmNjPc6umNZcAAAgAElEQVSfSqVCp9Nhs9l455132LBhA76+vjz55JPs27dP2d/ChQuZO3cun332\nGQsXLmTevHns2LGD2NhYjh07xtatW0lOTmbixIns2LGDAwcOsHz5cu64445ay6167lauXFktFFV9\nHKnL5eLzzz+nXbt2Sr0BPvzwQz744APCwsJYt24dpaWlgDv0vPTSS4wfP75aIAKYMmUKvr6+nDx5\nkjFjxqDX6z3KrTr+9ttvM2fOHFq3bs3YsWOJiopiz5492O12Vq5cya5du5QWrBkzZjB9+nSio6NZ\nsWIFK1as4IknnmDhwoX1FohALp8TQgghhGi01q9fz2233UaTJk1qXcflcqFSqbj11lvJzMxkxowZ\nPPDAA2zfvp2YmBjUajXTpk1j3rx51bZ94403+Oijj2jbti0LFy5Uwk3VL+uVD9kMDw/HYrGQkpJC\nmzZt0Gg0BAUF0bFjR48yf/zxRw4dOsSoUaMYM2YMAJmZmR7rJCcnExUVhdlsplevXuzYsQOHw6Es\nr20fhw8fVsJT+/btSUlJ8ShXpVIpLSTnO3XqFM2aNVMeJNq1a1eOHj0KoJQfGhqqBMfg4GDlXqTY\n2Fi8vb0JCQmhWbNmaLVaZfmFyq167qxWa7U6Wa1W5Z6iO++8E6PRyEMPPeSxzr333stTTz3FkiVL\nuPvuu9FqtYD7Hq6IiAi6d+9e4/HOmjWLZcuWsXPnTqU1qDapqam0bt0agNtuuw2AEydO0LlzZwB6\n9OiBWq0G4NChQ0ydOpWkpCQ2bNhATk4O4PkzUx+kpUgIIYQQ4hqQ1GnoRVt1rrTdu3dz9uxZPv/8\nc9LT09FqtYSFhWEwGCgrK0Oj0ZCRkUFoaCiA0mnB/PnzGTNmDGlpaTRp0gStVktRUVG18svKymjR\nogUtWrRg5MiRDBgwgHPnznmsU/llGP744nuh+340Gg1Dhw5l7Nixta6zadMmUlJSGDJkCC6Xi5KS\nEr755hslWNS2Dy8vz/aC8wNQixYtagx/R44cwcvLy2N9u92u7K/qMdZ0vBdaXtdyawoNfn5+yv1f\ns2fPJiwsrNoxjh07lsGDB7N161YeeeQRpWXM39+fvXv3UlBQgNlsrlZ2JR8fH3r06MH+/fvp1q2b\nx7Ly8nLA87xWrWfV+ZXvh06nU+pcVW0/E5lF2TiLXZQ57JQ6yigtL+Ny7hqTliIhhBBCiEZq7ty5\nrFmzhlWrVjFs2DCeeuop7rjjDu644w6lt69t27Z5XJaVkZFBSkoKXbt2JTg4mLS0NEpKSpQWhkpr\n1qxh8uTJypfgwsJCXC4XQUFBF6xTZGQkv/32Gw6Hg9zcXI4cOeKxvGPHjuzYsQOXy0VpaSkzZszw\nWG6329m5cycbNmxg3bp1rF+/nldeeYVNmzZddB8dOnTgu+++A+DgwYNK60al5s2bExERwYoVK5R5\nixcvZunSpTRr1ozTp08rvbslJyfTvn37Cx5rXcTExFx2uVUDyFNPPcXy5cuVDhEql82dO5fg4GAe\neeQROnXqRFpaGgCjRo3iscceY/r06Rfdz6FDh2jevDlGo1FptTt27JgSlMPCwjh16hQul0u59C86\nOpqff/4ZgK+//lppyYuNjeWrr74C3PdoVb4ftbXQ/XP3u0z6fCZTv3yT6bvmMfvr/9Tp3JxPWoqE\nEEIIIYSHcePG8eKLL7Jq1SqaNGnCkCFDlGX/+c9/GDduHOC+FGrx4sU8/PDDPPnkkx5lDB06lJMn\nT5KYmIher1c6LtBoNBdsCQoKCuLee+9l2LBhtGjRgg4dOni0KMTFxdGtWzeGDx8OwIgRIzy2/+qr\nr+jSpQsmk0mZFx8fz9y5cxk8ePAF95GUlMTkyZN5+OGHcblcvPrqq9Xq9/bbb/Paa6+xZs0a9Ho9\nsbGxTJ8+HY1Gw6RJkxgzZgxqtZouXbrQuXNn9u7dW9fTXiOdTsfEiRMvq9yq59loNPL444/z+uuv\n89ZbbynLDAYDw4cPx2QyERUVRdu2bZVlQ4YMYcuWLezcuZNevXp5lD158mR0Oh12u53Y2FgGDhyI\ny+VCr9fz4IMPEhcXp/QwOGHCBMaNG0dkZCTh4eEA9OzZk7Vr1/LQQw/RtWtXpffDKVOmMG3aND74\n4AN8fX2ZM2cOAG3btiUxMZHVq1d71OOOqC641KD11qBRa9CofaB6o+XFz5Wrvi/Qu4L279+vXDsp\nRGMnnwch3OSzIK5XlT2WVb2kS7itW7eOQYMGoVarGTRoEIsWLaqx2+9rfR+idgUFBezbt49+/fqR\nkZHBo48+qvSMV1e1fYYu5++CtBQJIYQQQohrSlZWFsOGDUOr1TJ48OB6CStXYx+idgaDgS1btrBo\n0SJcLhdTpkxp0PpIS5EQ1yn5PAjhJp8Fcb2SliIh/pwr2VIkHS0IIYQQQgghGjW5fE4IIYQQooFU\nPihTCHHpSktLq/V6eLkkFAkhhBBCNIAr9WWu0pEjR2jXrt2fLsfhdFBcXkpxeQkl9hKK7SWUVE6X\nl7qn7SUUl5dSUl5KSXkJJfZSih2llFYsL3WUXda+vb280Xpr0ak1aL21+Pr44quMa9F5a9Gq3eNa\ntRZf74pl3hplvq9ai9Zbg9pLffEdiuuaVquVUCSEEEIIcT1TqVRX/H4irVZLqaMMW1kxNnsxRXYb\nRWXF2CqGRXYbNnsxtrJiiux/zLfZ/3iVOeyXvF+1lxq9j8798tUR6BOA3keHzsfXY6hXpnXovH3R\n+/ii8/GtmNbio/a5oudDiLqSUCSEEEIIcQ0pdzqwldmw2m0UlVWGmSL3sMxGkb1y6F5uqwg7BTYL\nZSc+xOGq+SGXtfH28lbCSpAuAL3GHVL0Nb58MWj0HtM6H5372TBCXMckFAkhhBBCXGEOp+OP8FJm\nw1pWhLVi6J6umG+3UVSxrDLwlJZf2n1GGrUPBh89erUvUaYmGDTuwGLw0aOvMu6e7x4aqgQdjbem\nns6CENcPCUVCCCGEELUod5RjtVeEmtIiJdxYlPHKsGPFWmpT1i22l9R5HypUSgtME7/QigCjx+Cj\ncw81+j/maXRVxt3rVF5yJt3TC3H5JBQJIYQQ4obncrmw2YuxVIQbS5kVS2kRllJrlXlFf4SbMvd0\nySW02mi9tRg1ekL1QRg0eowaQ8VQr0xXHa9cpvfR4aWSp6QI0ZAkFAkhhBDiuuJyuSi2l1BYZsVS\naqWw1HNYGXSqBh5rWVGd77XRemvx0xgIN4a4g4zWoAQao8aAnzJPj5/GqAQd6SRAiOuXhCIhhBBC\nNCiH04Gl1EpBqYXCUiuFpRYKS6xYyqwV05Vhxx10CsusOJyOi5arQuUOMloDYcYQjFp3oPHTGiuG\n7rBj0hrdYUfrDjgSboRofCQUCSGEEOKKcjgdWMqKKCyxUFhqcYedkvNDj3u8oNRCUZmtTuXqfXT4\naY20METjpzVi0hjx0xowaf3c09qKwFMRegw+ery85LI0IcTFSSgSQgghxEWVOewUlBRSUOIOOQUl\nlorpQs/pUguW0iJcuC5YngoVRq2BAF8zMeZITL5+mLRGTFr30Ozrh5/GiKlKyPFWy9cWIUT9kN8u\nQgghRCNV7ignv9QddPJLCskvLnAPq7wqg05delMz+Ogw+foRaQrHpPXDrPXzCDvminGz1g+jxiCt\nOEKIa4aEIiGEEOIG4nK5KCqzkVdSQJ4ScgrILy6sFnisZUUXLEulUmHS+hGqD8Lk64fZ14R/RdDx\n9zVh0vrhXzHfpDXKvThCiOuWhCIhhBDiOuB0ObGWFlWEnULyivPJqwg7uSX55BcXVkwXYHeWX7As\no8aAv6+JZv5N8fc1ucNO5Uv3x7ifxiitOUKIRkFCkRBCCNHASuwl5Bbnk1tcUDH845Vnyye3xN3i\nc6Ee19QqL/x9zUT7RxLgayZA5365A45ZCTxmrZ+06AghxHkkFAkhhBD1xOlyUlhqJceWR44tzx1y\nagg+F7pfR+2lJsDXTIuA6PPCjpnAimGAzoSf1igPABVCiMskoUgIIYS4DC6Xi8JSCzm2fHKK85Tg\nk2PLI6c4nxxbLrnFBZRf4FI2g0ZPsD6QQJ2/50tfOW6WsCOEEFeBhCIhhBCiBiX2ErJteWTZcsgu\nyiPblku2LVcJPbm2vFrv3VGhUu7ZCdT7E6wLqAg6AX+EHl8zGm/NVT4qIYQQNZFQJIQQotFxupwU\nlljIqgg6WUXuYXbl0JZ3wZ7Z/H1NRJsjCdK7w06wPoAgfQBBOvcwwNcsz9QRQojriPzGFkIIccNx\nupzklxSSac0hqyiHzKLsimEOWRWtPbVd1qZVawg2BNIyMIYQfSDBhkCC9ZUvd0uPBB4hhLixyG91\nIYQQ1x2Xy4Wl1EpmUQ5HLb9z5mi2O/BUBKDsotxaL20z+5qI8Y8kRB9EsD7AI/SEGAIxagyoVKqr\nfERCCCEakoQiIYQQ16RyRzmZthwyrFlkWLMrXllkWLPItOVSWl76x8oZf4z6aQxEmyMJMQYRanC/\nQgxBhBqCCdEHyn08QgghqpFQJIQQosHYyopJt2aRUeQOPunWLDIrwk92cR4ul6vaNjofX8KNIRWB\nJ5iS3CK6xMYp4Ufn49sARyKEEOJ6JqFICCFEvbKVFXPOmsk5SwbnLJmcs2aRbskkw5qFpZbODAJ1\n/sQGtyTMEEKYMZgwYwjhRvf4+Ze37d+/ny6RHa/W4QghhLgBSSgSQgjxp5WUl5JuySLdmkmaJYN0\nS5YShApLrdXW9/byJtQQRKug5oQZgj2CT6ghSC5xE0IIcVVJKBJCCFEnTqeTbFsuZwvTSbOkk1aY\nURF8Msktzq+2vpfKi1BDEC0DYwg3hhLhV/EyhhKsD8TLSx5IKoQQ4togoUgIIYSH0vIyzlkySLWk\nk1qYQWphOmmF6aRZM7E77NXWD9YH0iGsDRHGMML9/gg/ofog6bpaCCHEdUH+WgkhRCNVWGLhbGE6\nqYXppFrcwSfVkkF2US4uPDs40Ko1NDWFE2mKINIvjEhTOE38wgg3hsilbkIIIa57EoqEEOIGZy0r\n4mzBOc4UnONMQRpnCtM4W3COglJLtXUDfM3cHHoTkX7hRJrcryamMAJ1/nip5HI3IYQQNyYJRUII\ncYOw2Ys5W3COs4XnOF3gDj5nCtPIKy6otm6oIYguQR1oaopQwk+kXzh6ja4Bai6EEEI0LAlFQghx\nnSl3OkgrTOd0QSqn8lM5U5DKmYJzZNtyq60bpA8gLqIdTU0RRJmbEGVuQqQpHF9vbQPUXAghhLg2\nSSgSQohrmLW0iFP5Z0nJP0tKfiop+Wc5U3iOcme5x3oBvmY6hrWlqTmCqIoA1NQcgd5HWn6EEEKI\ni5FQJIQQ1wCn08k5a6ZH+EnJTyWnOM9jPR8vb6LNTYjxb0qMfyTN/JsSbY7EqDU0UM2FEEKI65+E\nIiGEuMrKnQ7OFqTxe95pfs89ze95pzldkErZed1dB+jMxEW0UwJQjH9TIoyhqL3UDVRzIYQQ4sYk\noUgIIepRuaOcM4Xn+D03xR2C8k5zOj8Ve5XL39ReapqaIpSWn5iKl0lrbMCaCyGEEI2HhCIhhLhC\n7A47Z6q1AKV53P+j9lITbW5Ci4AYWgRE0yIwmmhzE3zUPg1YcyGEEKJxk1AkhBCXweVycc6ayW/Z\nJ/kt9yTHc06RUpCKw+lQ1vH28ibGHEnzwGh3AAqIJsocIQFICCGEqCcOh/OytpNQJIQQdWAtLeJ4\n7il+zTnJ8ZyT/JZ7iqIym7Lc28ubZv5NlfDTIjCGKFME3mr5NSuEEEJcrpLScgqLyigoKqXAWkZh\nURmFVcYLrKUe86zFdv6/EU0veT/y11oIIc5T7nRwOv8sv+Wc4rccd0vQOUumxzphxhDiwtvRKqgZ\nrYNaEOMfKS1AQgghxAW4XC5KyhwUWEvdr6IyCq2l5Fv/CDf51lIKK5YVWMsoszsuWq6XCkwGLQEm\nX5o1MV1W3SQUCSEavcISC8eyT3As+wS/5Zzk97zT2Kv0BKfz8aVjWNuKANScVoHNMPn6NWCNhRBC\niGuDvdxBvsUdavIrw06VoFM1ANU15Gi8vTAZtUSFGTEbtJiMGkwGDWaDFnPFuEkZ12LU+eDlpVK2\n379//yUfh4QiIUSj4nK5yCrK4WjWcY5mH+eXrBOkWtKV5SqVihhzJK2CmnNTYDNuCm5OE78wvFRe\nDVhrIYQQ4upwuVxYi+3kW0rdLyXkuC9PK7C651eGnaKS8ouWqfH2wuynJTrMiNmoxWzUYjJo8DdW\nBBujFv+KeWajFl+NGpVKddFyryQJRUKIG5rT6eR0QRrHso9zrCII5RUXKMt9vbXcEt6WNsGtiA1u\nSavAGHx9fBuwxkIIIcSV5XC6KCwq9Qg6lcEmr8p05TyH03XB8ry8VJgNGkIC9NxUEXLMfpUhR6uE\nncoA1BAh51JJKBJC3FDKHHZO5J7iWNYJjmUf55fs37HZi5XlZq0f3ZrG0TakFbHBrYjxj5SHoQoh\nhLjuOJ0uLLYy8i2l5FlKKoYVIcdSUjF0vwqLSrlIzsFXo8Zs1NIqyh9/oxZ/v4pXxfgfYaf65Wo3\nAglFQojrWrnTwYncUxzO+IXDmb/wa/bvHg9GDTeG0LVpJ2KDW9E2pBXhxpBr/r9VQgghGq/i0nLy\nCt2hJrew5I/AU1gRfqzu8XxrKc6LJB29rzf+Ri2RoUbPcFMRdgKqBB9fbeOOBY376IUQ1x2ny8np\n/DQOZx7j54xfOJr1GyXlpQCoUBHjH0nbkJsqWoJa4q8zN3CNhRBCNHYOp4tCa2XIcbfk5FaEnLzz\nhiVlF+6IQKtRE+CnpU10gNKaE+DnWzH0nNb6yJUQdSWhSAhxTXO5XKRbs/g54xiHM3/hSOavWEqt\nyvImfmG0D21D+7A2tAttjZ/W2IC1FUII0Zg4HE7yK8NOoXtY9ZVX6A4/F2vV8VKB2ailSYiRgIpQ\nE2ByDwNNFYGnYlrXyFt06oucVSHENSfXls/hzF+UIJRjy1OWBekC6NHsdjqExdIutDVB+oAGrKkQ\nQogbkdPposBaSk5FuMkpKCG3oHrgKbBe+F4djbcXgWZf2kQHEGiqGnS0+FcEngA/LSajFvUNdo/O\n9UZCkRCiwZU7yjmWfYIfzx3m4LkjnCk8pyzz0xi4Paoz7UPb0CEsVu4JEkIIcdlcLhdFxXZyagg6\nOQXF7vGCEnItF27Z0WrUBJp8aRJiVMJOkMmXAJMvgX6+BJrd4wZfb/mbdZ2o91A0a9YsfvrpJ1Qq\nFVOmTKFDhw7KsuXLl7Nx40bUajXt27dn8uTJ9V0dIcQ1IseWx4/njvDjucP8nHFMuS9Io/YhLqId\nHcJiaR/ahmj/SHlGkBBCiItyOJzkWUrJKSgmp6CE7IJicgtKlPGcivELPTzUW+3ZshNkdrfmBJrd\n4wF+7qFOK2HnRlOvoej7778nJSWFlStXcuLECV5++WVWrlwJgNVqZdGiRXz55ZeoVCrGjBnDoUOH\n6NixY31WSQjRQMqdDn7JPsGP545w8NwRThekKsvCjSHERbQnLqIdN4fchMZb04A1FUIIca0pszuU\ncJOd737lFpSQU1hCdr478ORbSi54KZu/UUtUmLEi7Oj+CDxVwo/JoJGw00jVayj69ttv6dOnDwAt\nW7aksLCQoqIiDAYDGo0GrVaL1WpFp9NRUlKC2Sy9RAlxI8m15fPjucP8mH6EnzOOUWwvAcBH7UOn\n8JuVIBTuF9rANRVCCNFQSu0OcpSw476MLSu/mJz8P0JQYVFZrdt7q70IMvsS2yxQCTuVw+CKYYDJ\nFx9vuepA1K5eQ1F2djbt27dXpgMCAsjOzlZC0bhx4+jTpw++vr4MHjyYmJiY+qyOEKKeuVwuTuad\nJjn1IPtTfyalSmtQmCGYHjG3E9ekHTeHtEYrrUFCCHHDK3c4yS0oISvfHXSy8mxk5/8RerLyi7HY\nag88Gh81If6+NG9iIsisI8RfR5C/Z+CR1h1xJVzVjhZcrj/aNK1WK++99x6ff/45BoOBhx9+mF9/\n/ZXWrVtfzSoJIf4kp9PJsezjJJ89SHLqT2TbcgHw8fLmlvCbiYtoR6eIdkQYQ+WPlhBC3EBcLheF\nRWVk5RWTlW+rCD3FSujJzi8mr7D2S9q0GjXBZh0tIk0E++vcIce/IviYfQnx12HQ+cjfDnFV1Gso\nCg0NJTs7W5nOzMwkJCQEgN9//52oqCjlkrkuXbpw+PDhi4ai/fv311+FhbjONNTnodzlIMWWyq9F\npzhedBqbw31ZnNZLw83GlrQ2NqO5vikaLx+wwDnLWc5xtkHqKhoH+dsghNuV/CyUO1xYih3kF5VT\nUOSgoMhBvu2P8QJbOeW19FngpQI/vZqmwRrMejUmgzdmvdr9Mqgx6b3RaVRVAo8LsLlfNsi1Qe65\nmssWoj5cViiy2+34+PhcdL0777yT+fPnk5iYyJEjRwgLC0Ov1wMQGRnJ77//TllZGRqNhsOHD3P3\n3XdftMwuXbpcTpWFuOHs37//qn4eiu0l/HjuMMlnD3Lg3GGltzizr4k+zW6jW9NOtAtpjbdaevoX\nV9fV/iwIca261M+CrcROVl4xmXk2MvPcl7ZVTmflu7undtXSymMyaGgWYSYkQE9wRetOsL+OkAD3\nuL+frzx3RzSYy/nnwEW/vUydOpXp06crSf7kyZM8//zzfPrppxctPC4ujnbt2vHAAw+gVquZNm0a\n69atw8/Pjz59+jBmzBiSkpLw9vYmLi6OW2+99ZIPQAhRfwpLLPyQdojkswc5lHGMcmc54L4/qE/L\nu+ga2YnWQc3x8pKbV4UQ4lpjK7GTmVdMZq6NzDwbGRXDzFwbGbm138vj5aUi2OzLzc2DCA3QERKg\ndw/99e7QE6DDVyP/ABM3lov+RIeFhTF+/HjmzJnDhg0beO+993jllVfqvIPnnnvOY7pNmzbKeGJi\nIomJiZdQXSFEfSsqs7Hv7I98nfI9R7J+Ve4FjDFHclvTTnSN7ESMf6Rc4y2EEA2spLScjFyb8vr5\nWD7bfk5Wgo/FZq9xO423FyEBem6K8ickQEdYoJ6QAD0h/jpCA/QEmqWVRzQ+Fw1F48aN49NPP6V/\n//7ExMSwatUq5b4gIcSNocxh50Daz3yd8j0Hzh1WWoRuCmpOt6ZxdG3aiXCjfO6FEOJqKnc4ycor\nJiO36I/wk2MjvWK6wFpTS48VjbcXoYF6booOICxAT2igvmKoIzRQj79RK//YEuI8tYaitWvXekx3\n6tSJrKwsdu/eDcD9999fvzUTQtQrp9PJkaxf2ZOSzL6zPyrPEIoyRdA9pit3xtxGqCGogWsphBA3\nLpfLRYG1jPScIverIvS4A1AR2fnFNfbc5q1WERqgp0UTM2FBBsIC9YQF6snNOE2Pv3TGbJQuqoW4\nVLWGovNvUNJqtTRt2lSZL6FIiOtP5XOE9qR8z97TP5BXUgBAkC6Avi3v5q6Y24g2y6VxQghxpZQ7\nnGTm2UjPdrfwnMt2t/K4h0UUl1bvvk2lgkCT+2GkYYF6wqsEn7BAQ62Xt+3fn46/n/ZqHJYQN5xa\nQ9GsWbOUcZfLhUqloqysjJycHCIiIq5K5YQQV0a6JZOvT3/P1ynfk2bJAMCg0dOnRXe6x3QlNqQl\nXirpLEEIIS6HrcROeo476JyrbPXJKeJcjo3sPFuNrT2+GjXhQQYigg1K8AkPcgef0AA9Gh/11T8Q\nIRqxi95T9P7776PVannggQe47777MBgMdO/enWeeeeZq1E8IcZmsZUV8nfI9X53ax/HcUwD4qH24\nI6oLd8Xcxi3hN+OjvnjX+kIIIaCo2O4OPdlFpOVY3cMsdwjKt5TWuE2gSUubmEAigg1K6IkIco/L\nJW5CXFsuGop27tzJxx9/zPr16+nVqxcTJ05k1KhRV6NuQohL5HK5+CX7BNtPfM23Zw9gd9hRqVTc\nEt6WO6Nvo2vTTuh9dA1dTSGEuCZZbWWkZReRVhF+zmVXhJ/sIgqLqndq4KWC0EA9ca1DiAh2t/pU\nhp6wIL10Wy3EdeSin1Zvb29UKhVfffWVEoacTme9V0wIUXeWUiu7T+3jy9+/JrUwHYBwYwi9W3Sn\nR7Nu+OvMDVxDIYS4NpSUlSutPKlZVlKz3MEnNctac/DxUhEW6O6+ujL4NAk2EhFsIDRAj4+3XHos\nxI3goqHIz8+PsWPHkp6eTlxcHDt37pTmXiGuAS6Xi/8/81e2n/ia787+SLmzHG8vb/4SfSt9WnTn\n5tCb5D4hIUSjVO5wkpFrIzXLSlqWVQlAaVlWsgtKqq1fGXxaRwfQJNhAk2ADERXBJyRAh7dafpcK\ncaO7aCiaM2cOe/fupXPnzgBoNBreeOONeq+YEKJmhSUWdp36js2nvyT3hLv3uCZ+YfRp2Z27m92O\nSWts4BoKIcTVUWAt5WymlbOZ7hafs5kWUjOtpOfacNbQu0Gwv46OrYKJDDHSJMRIkxADkSFGwgL1\nEnyEaORqDUW7d++mR48ebN68GYAdO3Yoy86dOyddcgtxFTldTo5UtAolpx7E4XSgVqm5K6YrvVt0\np21IK2nBFULckModTtJzitzB57wAZLHZq63vp9fQOsqfyFCjO/wEu8NPRLBB7vERQtSq1t8Ov/zy\nCz169Kj2vKJKEoqEqH/W0iK2//41X/7+DRnWLACamiLo07I7pnwt3bve2cA1FEKIK8NWYudsppXT\n6RbOZlqUFqD0nCIc57X6eHmpiAjSc3PzICJDjDQNNSohyGyU5/QIIS5draFo7NixgOfziio5HNUf\nNCaEuHLSrVn83y9fsuvkt5Q6yvBR+9Cj2e30admd1kEtUKlUtf7DQgghrmUF1lJOZ1g4m2HhTKaV\nM+kWzmRayKnhXh+jzoebovxpGupHZGhF+AkxEh5kkA4OhBBXVK2hKCMjg9dff53jx48TFxfH5MmT\n0el0HDt2jJdeeon169dfzXoKccNzd6f9O5t+2c73qT/hwkWQPoDEmwZxT4u/YNDoG7qKQghRJy6X\ni/PCkhMAACAASURBVOz8Es5kuAPPmYzKlxWLrXoPb8H+OuJahxAV5qe8moYaMRnkWT5CiKuj1lD0\n6quv0qNHD5544gk+++wzXn/9dQIDA9m4cSMvv/zy1ayjEDc0h9NBcupBNh3bzm8VD1ltERDNvW36\ncHtUZ7y95KnmQohrk8vlIs9SSsq5Qk5nWDidbiElvZAzGRZsJeUe63qpIDzIwM3NA2kaaiQ63I+m\noe7wo/eVB0kLIRpWraHIarXy4IMPAhAbG0u3bt0YNGgQn332GQaD4apVUIgbVbG9hJ0n9/J/v+4g\nqygHFSpubdKRe9v0kY4ThBDXnAJrqRJ6qg6txZ6dHai9VDQJMRLXxo/oKi0/TYINaHzknzxCiGtT\nraHIy8vzWt3WrVszderUeq+QEDe6HFseW37byfYTX2OzF+Oj9qFvy7sY2KY3TfzCGrp6QohGrri0\nnJT0Qk6lFSotQCnphRRYPS9781JBRLCBDq2CiQ73IybMxP9j777Do6oT7oGfKQnpjfRGQhrpCYFA\nQocAUgRRejEorliwd1BefcEfLPvqLq6guCKuiCIWBFS6UoQQSIA0EggJIb2TPpl6f38E47ISJgIz\nN+V8nodnuTPJ5OAy4Z58m7erNdydrLjeh4i6nU7vTcmfWhPdmSvXirDn4iEkFaZAK+hg28cas8Pu\nxQT/kTxbiIiMTqvVobS6GQVlbeWn4PqvitqWGz5OIgFcHCwQ5O2Afm5toz/erjbwdLbiyA8R9Rgd\nlqK8vDy8/PLLHV6vW7fOsMmIeoisykv4NusnZFZeBNC2pfbUoHEY3i8WpjLOoyciwxIEAXWNyvbS\nU1DW0D71Ta3R3fCxtlamiAxwRD83G/i62cDb1QbeLtYw68PzfYioZ+vwu9yLL754w3VcXJzBwxD1\nJBer8/BVxp72MhTuEoSpQQmIcg3lyCsRGYRGq0NJZRPyS+txpbQBV0rqcaWs/g9T30zlUni7WsPH\nzab9Vz83G9hbm4mUnIhIXB2WohkzZhgzB1GPcbmmADsy9+B8+QUAQKRrCGaHTUVAX1+RkxFRT9Ks\nUKOgrAH5JfW4Utr26+pNRn9cHCwwINShrfy426Cfqw3cHS0hk3HdDxHRbzgeTnSXFFwrwleZe5Ba\nmgEACHMOwuywqRjg5C9yMiLqzgRBQNU1xe+jP6X1yC+p/8PaHxO5FP1creHrbov+HrbwdbeFj5sN\nLM05TZeISB+WIqI7VFhXgh1ZP+B08XkAwABHP8wJn4ZQ50CRkxFRd6PTCSivacbl4jrkFdcjr6Tt\nf/9722sbS1NEBTq1FSB3G/h62MLTyYqjP0REt6nTpUgQBAiC0H7931t2E/U2pQ3l2JH1I5IKUyFA\ngL+DD+aE34sIl2CuGSIivbRaHYqrmm4oP/kl9VAobzz01M3REpGBTvC7Pvrj624DBxszfp8hIrqL\n9Jaijz/+GB9++CGam5sBtJUjiUSC7Oxsg4cj6orKm6rwTdaPOH71NARBgK+dF2aH34uBbmG8SSGi\nm9JodSgsb0RecR3ySuqRV1yH/NIGqNTa9o+RSgAPZ2v4edrCz8MOfp626O9uy+lvRERGoLcUffvt\nt9i9ezfc3d2NkYeoy6pqrsG3WT/hSMEp6AQdvGzdMSfsXgz2iGQZIqJ2Wp2AkspG5BbVIbeoDpeL\n6pBfWn/DBggyqQTertbt5cfPww6+7jbc+pqISCR6v/v269ePhYh6tRa1At9k/YS9ub9Aq9PCw9oV\ns8KmYKjXQEglnEZK1JsJgoCK2hbkFtbhUtG162uB6qBQ/j4CJJNK4ONuA39PO/h7tpWgfq42PPiU\niKgL0VuKgoKC8MILLyA2NhYy2e/fwGfOnGnQYERi0wk6HCtIxrb071Hf2gAny76YE3YvhnsP5po6\nol6qpl5xwwhQblEdGlt+PwNIIgE8na0R4GWHQC87+HvZwdfdlgWIiKiL01uKKisrYWpqivPnz9/w\nOEsR9WSXawqw5exXyK0tgKnMBHPC7sW9QQkwlZuKHY2IjKRVpUFecT0uXq1FztVruFR4DTX1rTd8\njGtfC0QGOCLAyx4B3nbw87CFhRnXABERdTd6S9GaNWsAAHV1dZBIJLC1tTV4KCKx1LU24Mv0Xfjl\nykkAQLxXDBZG3Q9HCweRkxGRIel0Akqrm3Dx6jVcLLyGi1evoaCsATrd77uu2ln3wZBQVwR42SHA\nyx7+XnawseQPSoiIegK9pejs2bN4+eWX0dzcDEEQYGdnh7/97W8IDw83Rj4io9DotNifewQ7sn6A\nQt0Kb1sPPDxwNkJ41hBRj9TYosKl6+Xn4vVRoP88C8hELkWglx2C+jkgqJ89grzt4WRvzk1ViIh6\nKL2l6J133sHGjRsRGNh2c3jhwgW8/fbb2LZtm8HDERlDenk2tpzbgZKGcliaWuDhgXMw3m8EZFKu\nASDqCXQ6AUUVjcguqEV2QS0uXq1FSVXzDR/j1tcSg4JdEOhtj6B+9vB1t4WJnGsHiYh6C72lSCqV\nthciAAgJCblhwwWi7qqyuQafnf8Gp4vPQwIJxvuNwJzwabDpYyV2NCK6A61KDXKL6nChoAbZV9rW\nAzX/xyiQhZkcUYFOCLpegAK97WFr1UfExEREJLZOlaIDBw4gPj4eAHDs2DGWIurWlBoVduXsx66c\ng1Br1Rjg6IeHBs6Br72X2NGI6DY0tGjxa1oJsq/U4kJBLa6U1EP7H2uB3PpaYkioK4J9HBDs4wAv\nF2tIpZwGR0REv9Nbit566y2sWrUKK1asgEQiQVRUFN566y1jZCO6qwRBQHLxOXx2/ltUt9TC3twW\niyLvxzDvwVwnQNRN6HQCrpY34MKVWmRfqUV2QQ0qrykAlAEA5DIJ/L3sEOzjgBBfBwzwcYC9tZm4\noYmIqMvTW4p8fHywefNmY2QhMphaRR02nfkc58qyIJfKcV/wRNwffA/MTHizRNSVabQ65BXXISu/\nBpn5NbhwpfaGqXDWFqYI9DBDXFR/BPs4wN/LDn14JhAREf1JekvRyZMn8cUXX6CxsRGC8Pt0hM8+\n+8ygwYjuBkEQcKLwDDaf/QrNqhZEuATjkZi5cLV2FjsaEd2ESq3FpcJr7SUop6AWrSpt+/NufS0x\nNMwVob59McDHAZ7OVjh79ixiYgJETE1ERN2d3lL05ptv4vHHH4erq6sx8hDdNQ2tjfhX6pdILj6H\nPvI++EvMfCT4DedUOaIuRKHUIKegFpn5NcjKr8HFq9eg0eran/d2tUZo/74I698Xof37oq+tuYhp\niYiop+rU9LkZM2YYIwvRXXOmJA0fndmGemUjgp388UTsg3CxchI7FlGv19KqxoUrtUi/XI2s/Gpc\nLq5vPyBVKgF8PWzbS1CIb1/uCkdEREahtxTNmjULK1asQHR0NOTy3z/8vvvuM2gwotvRrGrBlnM7\ncKwgGSZSORZFPoApgWMhlfK8ESIxKNVa5FypRdrlKqRfrkZuUV17CZLLJAjytkfo9VGgYB8HWJqb\niJyYiIh6I72laNOmTTA3N4dKpWp/TCKRsBRRl5Neno0PTm9FjeIa+tt7Y9mQxfC0dRM7FlGvotbo\ncKnwGtIvVyPjcjWyC2rbp8NJpRIEetkhIsAJEX6OCPKxh5mp3n+GiIiIDE7vv0YmJibYunWrMbIQ\n3ZZWjRKfp32HA5ePQSaRYnbYVNwXfA/kUu5ARWRoWp2AvOK69hKUdaUGyusbI0gkQH8PW0T4OyHC\n3xEhvg6wMONIEBERdT16S9HYsWNx6tQpDBw48Ibpc5yORF1BTlUeNpz+NyqaquBl44YnhyxGfwdv\nsWMR9ViCIKCkqgnnLlYhLbcKmXnVaG7VtD/v7WqNCD9HRAQ4IszPEdYWpiKmJSIi6hy9pWjjxo1Q\nKBQ3PCaRSJCdnW2wUET6qLRq7Mjcgz05hwAA0wZMwJywqTCR8afQRHdbQ7MKablVOHexEucuVaG6\n7vd/E9z6WmJ4lAci/B0R7ucIexue/UVERN2P3lJ07tw5Y+Qg6rT82qt4P/nfKG4og4uVE5YNSUSQ\no5/YsYh6DLVGh5yrtTh3sRLnL1XhcnEdfjumztrCBMMj3REd5IyoACc4O1iIG5aIiOgu0FuKKioq\nsH///j8c3rps2TKDBiP6bzpBh13ZB7Ajcw+0gg4T/UdhQeQMmMm5ZS/RnRAEAcWVTTh/qQrnLlUi\n43J1+4GpMqkEIb59ER3khOhAZ/h52kEm5VlfRETUs+gtRX/5y18QGhoKFxcXY+QhuimFuhUbkv+N\n0yXn0dfcHo/HLkKEa7DYsYi6rWaFGucvVSE1p+IPU+I8nKzaSlCQM8L69+XmCERE1OPpLUV2dnZY\ns2aNMbIQ3VRpYwX+9uuHKGkoR6hzIJ6LewQ2ZtZixyLqVgRBQGF5I1KyK5CSU4HsK7XQXj8v6Lcp\ncVGBzogO5JQ4IiLqffSWonHjxmH37t2Ijo6GTPb7Fsfu7u4GDUYEAGdLM/DeqS1oUSswOXAsFkXe\nDxm32ibqlFalBumXq9uLUNW1ttEgiQQI8LLDoAEuiAl24ZQ4IiLq9fSWotzcXOzZswd2dnbtj0kk\nEhw5csSQuaiX0wk67LywDzsyf4BcJseyIYsx0meI2LGIurzS6iakZFcgNbsSGXnVUGvaDk61NDfB\niCgPDAp2wcAgZ9hZcy0eERHRb/SWorS0NJw5cwampjxrgoxDoW7FhtP/xuni83C0cMCLw5by7CGi\nDqg1WmTm1bSNBmVXoLS6uf05X3cbDAp2QcwAFwzoZw+ZjOfLERER3YzeUhQWFgalUslSREZR1liJ\nv/36IYobyrh+iKgDTS0qnMmuQHJmOc5erIBC2bZTnJmpDEPDXNuLkKOduchJiYiIuodObck9duxY\n+Pn53bCmaNu2bQYNRr3P2dJMvHfqE64fIrqJitoWJGeWITmrHJn5NdBd3yTBra8lJgxxxeBgF4T0\nd4CJnO8ZIiKiP0tvKXrssceMkYN6MUEQsDN7H77K2MP1Q0TXCYKAvOJ6nMoqQ3JmOQrKGtqfC/S2\nw5BQNwwJc4W3izUkEm6SQEREdCf0lqLY2FikpKQgIyMDEokEkZGRiI6ONkY26gX+c/1QXwt7vDTs\nMa4fol5LrdEhI68ayZllOJ1Vjur6VgCAXCZFzABnDAlzQ2yIC/raclocERHR3aS3FK1fvx4nTpxA\nTEwMAGD16tWYMGECli5davBw1LNx/RAR0NKqRkp2BU5lliM1pwItrRoAgJW5CUbHeGJoqBuig5x4\ngCoREZEB6S1FycnJ2L59O6TStl2LNBoNFi5cyFJEd+SG9UMBY7Aw6gHIuX6IeolmhRpnLpTjRHop\nzuZUQnV922xnBwskDPbGkDBXhPj2hZy7xRERERmF3lKk0+naCxEAyOVyzl+n2yYIAnblHMCX6bu4\nfoh6laYWFZKz2orQuYtV0GjbipCXizWGR7ojLtwNPm42/P5KREQkgk5tyf3YY48hPj4eAHDy5EmE\nh4cbPBj1PIIgYFv6TuzOOXh9/dBS9HfoJ3YsIoNpaFYhObMMJ9JLkZZbBY22bcc4HzcbDIt0R3y4\nG7xdbUROSURERHpL0fLly7F3716kpaVBIpFg2rRpmDRpkjGyUQ+iE3T4JPUrHMg7Bg9rV7wx+hk4\nWNiJHYvorqtvUuJUZhl+TStF+uXq9q2z+3vYYliEO4ZFusPDyUrklERERPSfblmKioqK4OXlhSlT\npmDKlClQKBSoqKjg9A76U7Q6LT44sxXHCpLRz84Tr496CrZm/Ok49Rz1TUqcTC/Fr2mlyMyrxvUe\nBH8vu7YiFOEON0dLcUMSERFRhzosRUlJSXjppZewd+9eWFu37QhWVFSEJ554Av/4xz8QFhZmtJDU\nfWm0Grx3agtOFZ9FgIMPXhu1DFamvDmk7k+h1CA5qxxHzxbj3MVKaK83oSBv+7apcRHucHGwEDkl\nERERdUaHpej999/HJ5980l6IACAwMBAffPAB/vrXv+Ljjz82SkDqvlQaFd45+S+cK8tEiFMAXhnx\nBMxNzMSORXTb1Bodzl2qxNGzxUjOKodSpQUA+HnaYlS0J4ZFusPZnkWIiIiou+mwFAmCgMDAwD88\nHhAQAKVSadBQ1P21qlvx118/QFblJUS5huCFYUvRR24qdiyiP02nE5BdUIsjZ4txIq0EjS1qAIBb\nX0uMHOiBUdGe8HLh+VpERETdWYelqKWlpcNPqqurM0gY6hmaVS1Yc2wDLtXkI9YjCs/EPQwTGQ+e\npO5DEAQUlDXg6NliHD1Xguo6BQDAzroPpo3oj1EDPRHgZcf1lURERD1Eh6UoICAAX375JebNm3fD\n4//6178QGRlp8GDUPTW0NmL10fdQUFeMEf1i8UTsg5DxUFbqJsprmnH0XDGOni1BUUUjAMDCTI6E\nwd4YNdAD4f5OkElZhIiIiHqaDkvRyy+/jCeffBK7du1CWFgYdDodzp49CysrK2zatMmYGambqFXU\nYdWR9ShpKEdC/+F4ZNA8SCVS/Z9IJCKFUoMTaSU4dKYIWfk1AAATuRTxEW4YFe2JQcEuMDVhsSci\nIurJOixFTk5O2LFjB5KSkpCbmwuZTIZJkyZh8ODBxsxH3URlcw1W/fIPVDRXY0rgODwY9QCnFlGX\npdMJyLpSg0OnC3EyvRSt1zdMiPB3xJgYT8SFu8PSnFM+iYiIegu9h7fGxcUhLi7OGFmomyptrMCq\nX9ajRnENM0MnY1boVBYi6pIqalvwc0oRDp8pREVt27pJFwcL3D/YG2MHeXELbSIiol5KbykiupXC\nuhKsOvoe6lsbsCBiBqYHTxA7EtENWlUanEwvw+EzhUi/XA0A6GMqw9hBXkiI9Uaob19IuU6IiIio\nV2Mpott2uaYAbx/7J5pVLVgycC4mBowSOxIRgLbd47ILanHodCF+TSuFQqkBAIT274uEwV6Ij3CH\nhRmnxxEREVGbTpWilJQUZGRkQCKRIDIyEtHR0YbORV1cdlUu1h7biFatEk/EPojRvpxiSeKrqVfg\n8Jm26XGl1c0AAEc7c0wb0R9jB3vB3dFK5IRERETUFektRevXr8eJEycQExMDAFi9ejUmTJiApUuX\nGjwcdU35tVfx/46+D41Og2fjliDOK0bsSNSL6XQCzudWYV9SAZKzyqHTCTCVSzF6oCfGDfZChL8T\np8cRERHRLektRcnJydi+fTuk0ratlTUaDRYuXMhS1EtVNddg7fGNUGnVeH7YXzDEk6OGJI76JiUO\nnS7EvlMFKK9p2zTB190Gk+J8MDLak7vHERERUafpLUU6na69EAGAXC7nzmK9VItKgbXHNqCutQGL\no2exEJHRCYKArPwa7E0qwMn0Mmi0OpiayJAw2Bv3xPVDoLc9vz8RERHRn6a3FIWGhuKxxx5DfHw8\nAODkyZMICwszeDDqWjRaDd45uQlFDWWYFDAGkwPHih2JepGmFhV+TinCvlMFKKpoAgB4uVjhnjgf\njI3xgpWFqcgJiYiIqDvTW4pWrFiBvXv3Ii0tDRKJBNOmTcPkyZONkY26CEEQ8FHqF8iouIhB7hFI\njJopdiTqBQRBwKXCa9ibVIDj50qg0uggl0kxMtoDk+J8ENq/L0eFiIiI6K7QW4reffddvPjii5gy\nZUr7YytWrMDbb79t0GDUdezM3ocjV5LQ394bT8c9fMN0SqK7TaHU4EhqEfYlXUV+aT0AwK2vJe6J\n64dxg71ha9VH5IRERETU03RYig4ePIgDBw4gKSkJlZWV7Y9rNBqcOXPGKOFIfMcLTmN7xm44WTjg\n1RFPwEzOG1IyjPKaZvx44goOJl9Fc6sGUqkE8RFuuGeoDyIDuIMcERERGU6HpWjEiBFwcHBAZmYm\n4uJ+P4NGIpFg2bJlRglH4rpQmYsPzmyFhYk5Xh35JOzMbcWORD2MIAi4cKUWu47lITmzDDoBsLfu\ng+mj/DFhiDf62pqLHZGIiIh6gQ5LkZmZGWJiYvD999+jTx+ODvQ2pQ3l+NuJDyEIOrww7FF42bqL\nHYl6ELVGi+PnS7DrWD7yS9qmyPl52mLaCD+MiHKHiVwmckIiIiLqTfSuKWIh6n0aWhux5tgGNKta\n8ETsgwh3GSB2JOoh6hqV2JtUgJ9OXkFdoxJSCRAf4YZpI/wQ4uvAjROIiIhIFHpL0Z1as2ZN+851\ny5cvR3h4ePtz5eXleP7556HRaBASEoI333zT0HFID5VGhb/++gEqmqvxQMhkjPaN0/9JRHrkl9Rj\n9/E8HD1bAo1WB0szOWaM9seUYb5wcbAQOx4RERH1cp0qRdeuXUNxcTHCw8P/cJjrrZw5cwZXr17F\n9u3bkZeXhxUrVmD79u3tz69duxZLlizBuHHjsGrVKpSXl8PV1fX2/iR0x3SCDv9M/hS5NVcwol8s\nZodNFTsSdWNanYDTWeXYczwfGXnVAAAPJ0vcO7w/xg72hnkfg/9MhoiIiKhT9N6V/PDDD3jvvfdg\namqKH374AatWrUJISAhmzZql98WTkpKQkJAAAPDz80NDQwOam5thaWkJQRCQmpqKv//97wCAN954\n4w7/KHSntqXtRHLxOQQ7BeCxwQs5lYluS6tKg4PJhdh1LA8VtS0AgKhAJ0wf6YeBQc7cRY6IiIi6\nHL2laMuWLdi1axceffRRAMArr7yCRYsWdaoUVVdXIywsrP3a3t4e1dXVsLS0RG1tLSwsLPD222/j\nwoULGDRoEJ5//vk7+KPQnThw+Sj2XDwEd2sXvDRsKUxkJmJHom6mqUWFH09cwe7j+WhoVsFULsXE\nof1w74j+6OdqI3Y8IiIiog7pLUXW1tYwN/99W1wzMzOYmNzeDbMgCDf8vrKyEosXL4a7uzseffRR\nHD16FKNGjbrla6Smpt7W16aO5TUX4duyA7CQmeFeh1G4mJkjdiTqpK7wfmhUaJGU04iU3GaoNALM\nTCQYGWaNIYFWsDTTorokF9UlYqeknq4rvBeIugK+F4huj95SZG9vj507d0KpVCIrKws//fQTHBwc\nOvXizs7OqK6ubr+urKyEk5NT++t6eHjA09MTABAXF4fLly/rLUUxMTGd+trUOVeuFeEfP2+FXCbH\nijFPI6Cvr9iRqJNSU1NFfT+UVjfhu18u4/CZUmi0OjjY9MH0kf64J64fLMw40kjGI/Z7gair4HuB\nqM3t/HBA744Jb731FjIyMtDc3IzXX38dSqUSq1ev7tSLDxs2DPv37wcAZGVlwcXFBRYWbTtNyWQy\neHp6orCwsP15X1/ekBtTdUst1h7fAJVGhaeGLGYhok7JL6nHuq0peHztYew/dRVO9uZYNisSH68Y\nj/vH+LMQERERUbejd6TIxsYGK1euvK0Xj46ORmhoKObOnQuZTIaVK1di586dsLa2RkJCApYvX45X\nX30VgiAgMDAQY8eOva2vQ39eq0aJvx7biGuKeiyKfABDvQaKHYm6MEEQkJVfg29+zkVqTiUAwNfd\nBrPGBiI+0h0ybp5ARERE3ZjeUjRq1Kib7kJ25MiRTn2B/948ISgoqP333t7e+OKLLzr1OnR3bT3/\nLa7Wl2C83whMDRondhzqogRBwJnsCnxzOBfZBbUAgND+fTFrXAAGBjlzh0IiIiLqEfSWov8sLWq1\nGklJSVAqlQYNRYaVWpqBg3nH4W3rgcXRs3hjS3+g1Qk4kVaCrw/noqCsAQAwOMQFs8YGIti3c2sK\niYiIiLoLvaXIw8PjhmsfHx8sWbIEixcvNlQmMqD61gZ8eHor5FI5nh76ELfephvodAKSMsrwxYEc\nFJY3QiqVYPRATzwwNgA+btxWm4iIiHomvaUoKSnphuvy8vL2zRGoexEEAZvObEO9shEPRj0AbzsP\n/Z9EvYIgCDidVY5t+3NwpbQBUgkwbrAX5o4PgmtfS7HjERERERmU3lK0cePG9t9LJBJYWVnhrbfe\nMmgoMoyf808gpTQdYc5BmBzITS2orQydvViJbftykFtUB4kEGD3QE3MnBMHDyUrseERERERGobcU\nbd261Rg5yMDKGyvx6flvYGlijieGPAipRO9u7NSDCYKA9NxqbNuf076BwrBId8yfEARvV06TIyIi\not6lw1K0aNGiWy7A/+yzzwwSiO4+rU6Lf57aAqVGiaVDH4ajBRfK92ZZ+TX4fF82MvNqAABDQl2x\n4J4B8HW3FTkZERERkTg6LEVPPPEEAODQoUOQSCQYOnQodDodTp48CXNzc6MFpDu3M3sfcmsLMNx7\nMIb3Gyx2HBLJxau1+HxfDs5fqgIADAp2wYKJA+DvZSdyMiIiIiJxdViK4uLiAACbN2/Gxx9/3P74\nhAkT8Pjjjxs+Gd0Vl2sK8E3WT+hrYY8lMXPFjkMiuFxch237cpCSXQEAiApwwoJ7BmCAD0cMiYiI\niIBOrCkqLy/HlStX4OvrCwAoLCxEUVGRwYPRnWvVKPHPU1sgCAKejE2EpamF2JHIiEqqmvDvHy8g\nKaMMQNuhqwvvGYAwP0eRkxERERF1LXpL0bPPPovFixdDqVRCKpVCKpVi+fLlxshGd2jr+W9R1lSJ\nqUEJCHMJEjsOGUl9kxLbD1zE3qQCaHUCBvSzx8J7ghER4MiDeomIiIhuQm8pSkhIQEJCAurq6iAI\nAuzt7Y2Ri+5QamkGDuYdh7etB+aFTxM7DhmBSq3FnuP52HH4ElpaNXBztMTiKSGIC3djGSIiIiK6\nBb2l6Dd2dlyM3V3Utzbgw9NbIZfK8fTQh2AiMxE7EhmQTifg+PkSfPbTBVReU8DawgR/uS8Mk+J8\nYSLn1utERERE+nS6FFH3IAgCNp3ZhnplIxZFPgBvOw+xI5EBZeXXYPPuTOQW1UEuk+L+0f6YlRAI\nK3MWYSIiIqLO0luKmpqaYGV148n2RUVF8PLyMlgoun0/559ASmk6Qp0DMSVorNhxyEBKqpqw/Vg1\ncoqLAQAjozywaHIwXPtaipyMiIiIqPvRO7fm4YcfRm1tbfv1rl27kJiYaNBQdHvKGyvx6flveHjd\n5gAAIABJREFUYGlijieHJEIq4dSpnqa+SYlNO9Px5LqfkVPcimAfB/zf0yPw0qJBLEREREREt0nv\nSNEzzzyDRx55BGvWrMHmzZtRVlaGL774whjZ6E/Q6rT4Z/KnUGqUWDr0YTha8AyankSl1uKHX/Ox\n49AlNF/fRGFEsBkWTh/GTRSIiIiI7pDeUjRs2DA4Ojpi6dKlGDlyJLZu3WqMXPQn7czeh9yaKxjm\nPQjD+w0WOw7dJYLQtonCv3/8j00UpodhUrwv0tPOsRARERER3QUdlqKXXnrphhsub29vHD16FC+/\n/DIAYN26dYZPR51yuaYA32T9hL7m9lgSM1fsOHSXXC1vwIffpSMzrwZymRQzRvtj9rgAWFmYih2N\niIiIqEfpsBTFx8cbMwfdplaNEv88tQU6QYcnhzwIK1OuK+nuFEoNth+4iF3H8qDVCRgS6opHpodx\nzRARERGRgXRYimbMmAEAUKvVqKmpgaurK3JycpCTk4OJEycaLSDd2tbz36KsqRJTgxIQ5jJA7Dh0\nBwRBwMmMMnz8fQaq61vh7GCBpTPCERviKnY0IiIioh5N75qiV199FePGjUNMTAyeeuopjB8/Hr/8\n8gvWr19vjHx0C+nl2TiYdxzeth6YFz5N7Dh0B0qrmrBpZwbOXqyEXCbFnPGBmDUuEH1MZGJHIyIi\nIurx9JaiiooKTJ48GVu2bMH8+fPx0EMPYfHixUaIRrei0+mw9fy3kECCJ2IfhImMh3V2R0q1Fl8f\nvoRvf74MjVaH6EAnPHZ/BNydrPR/MhERERHdFXpLkUqlgiAIOHjwIN5++20AQEtLi8GD0a0du5qM\nq/UlGOkzBP0dvMWOQ7fh9IVyfLQzAxW1Lehra4a/TA9HfIQbd5QjIiIiMjK9pSg2NhYxMTEYMWIE\nfH198emnn8LX19cY2agDSo0K2zN2w0RmgrmcNtftVNa24KPvM5CcVQ6ZVIIZo/0xd3wgLMw42kdE\nREQkBr2l6MUXX8Sjjz4KGxsbAEBCQgIWLlxo8GDUsR8vHUatog73BU/kIa3diFqjxc4jefjq0CWo\n1FqE9u+Lxx+IQD9XG7GjEREREfVqHZaiTZs2YenSpX84r+g3PKdIHPWtDdiVfQDWfaxw3wDuAthd\npF2qwgffpaOkqgl21n2wbFYkRg/05FQ5IiIioi6gw1IUEhICgOcVdTVfZ/0IhaYVD0fMgYWpudhx\nSI8mhRof78rA4TNFkEqAqcN8sWBSMKzMOVWOiIiIqKvosBSNGDECADB69GjY29vf8FxxcbFhU9FN\nlTaU41Der3CzckaC3wix45AeZy6U4/2v01Db0Ao/T1ssmxUFf087sWMRERER0X/psBSlpKTgueee\ng0qlgr29PT766CN4e3vj888/x0cffYRjx44ZMycB+Dz9e+gEHRZEzoBcyvNruqqmFhX+tSsTP6cU\nQS6TYOGkAXhgTADkMqnY0YiIiIjoJjosRX//+9/x6aefws/PD4cPH8Ybb7wBnU4HW1tbfP3118bM\nSACyq3KRUpKGIEc/DPaIFDsOdeD0hXJs+Po8ahuU8PO0xbNzB8LHjRspEBEREXVlHZYiqVQKPz8/\nAMC4ceOwZs0avPLKKxg/frzRwlEbQRCw9fx3AIBFkfdzcX4X1NSiwkffZ+CX1GLIZRIsmhSM+8f4\nc3SIiIiIqBvosBT99423m5sbC5FIkopScbm2AHFeMQh07C92HPovyZll2PhtGmoblPD3ssOzc6LR\nj6NDRERERN2G3nOKfsPRCXGotWpsS/8eMqkM8yOmix2H/kNjiwof7czAkbPFkMukeHByMO4f7Q8Z\nR4eIiIiIupUOS9G5c+cwevTo9uuamhqMHj0agiBAIpHgyJEjRohH+y8fRVVzDSYHjoWLlZPYcei6\nU5ll2PBNGuoalQjwssOzc6PhzUNYiYiIiLqlDkvRvn37jJmDbqJJ1YxvL+yFhYk5HgiZJHYcAtDQ\n3DY6dPRc2+hQ4pQQzBjlx9EhIiIiom6sw1Lk4eFhzBx0E99d2IdmVQsWRt4P6z5WYsfp9ZIy2tYO\n1TUqEehth2fmcHSIiIiIqCfo9JoiMq7Kpmrsyz0CJwsH3BMwWuw4vZpCqcGmnek4fKYIJnIpHpoa\ngukjOTpERERE1FOwFHVRX2TsgkanwbyI6TCVmYgdp9fKL6nHuq1nUFLVDH9PWzw/PwZeLtZixyIi\nIiKiu0hvKaqvr0dFRQUCAwNx/PhxpKenY/bs2XBy4qJ/Q7lcU4CThSnob++NeO9BYsfplQRBwJ5f\n87FlzwVotDrcN8oPD04OgYmco0NEREREPY3eO7yXXnoJlZWVKCgowNq1a2FnZ4cVK1YYI1uvJAgC\ntqZdP6g16gFIJbwJN7b6JiVWf3Ia//o+E5bmcvzPI0OxZFoYCxERERFRD6X3Lk+hUGD48OHYt28f\nFi5ciAULFkCtVhsjW6+UUpqO7KpcxLiHI9Q5UOw4vU5GXjWeefcITl8oR2SAI957YQwGBbuIHYuI\niIiIDEjv9DmFQoHa2lrs378fGzduhCAIqK+vN0a2Xkej02Jb2k5IJVIsiJwhdpxeRavVYfvBS9hx\n6CIgkbQdxDomADIpDy0mIiIi6un0lqJ7770XEyZMwKxZs+Dm5ob3338fQ4YMMUa2Xufn/F9R2liB\nBL8R8LRxEztOr1F1TYF3vkhFVn4NnO3N8eKCQQj2dRA7FhEREREZid5SlJiYiMTExBuura25+9bd\nplC34uvMH2Em74PZoVPEjtNrnMosw/rt59CkUGNYhDuWzY6ClTl3+yMiIiLqTfSWory8PLz11lvI\nzMyERCJBVFQUVq5ciX79+hkjX6+xK+cA6pWNmB12L+zMbcWO0+Op1Fp8sicLP564AlO5FE/OjMTE\nof0gkXC6HBEREVFvo7cUrVq1Cg8//DBiY2MhCAJOnjyJN998E1u2bDFGvl6htqUOP1w8BHszW0wN\nGid2nB6vqKIR67amoKCsAd6u1nh50SD0c7UROxYRERERiURvKRIEAaNHj26/Hj9+PLZu3WrITL3O\n9szdUGnVeHjgNJjJ+4gdp8cSBAGHThdi0/cZUKq0mBTngyXTw9DHRCZ2NCIiIiISkd5SpFarkZWV\nhdDQUABAeno6tFqtwYP1FlfrinH0yil423pgtM9QseP0WEq1Fhu/ScPPKUWwNDfBc4kDMSzCXexY\nRERERNQF6C1Fr7zyCl544QXU1tZCEAQ4Oztj7dq1xsjWK+zKOQgBAuZH3AeplIeDGkJ1nQJvf3oa\nl4vqEOhth1cWDYazg4XYsYiIiIioi9BbiiIjI7Fv3z40NjZCIpHAysrKGLl6hbrWBiQVpcLDxhXR\nbqFix+mRLlypwZp/n0FdoxIJg73x+AMRMOV0OSIiIiL6D3pL0WuvvfbHT5LL4ePjg7lz58LS0tIg\nwXqDw3m/QqvTYqL/KO56ZgD7kgqwaWc6dALw6H3hmDrcl/+diYiIiOgP9M7XcnNzQ3FxMQICAhAQ\nEIDi4mKYmZmhuLgYL7/8sjEy9khanRYH847DXG6GUVxLdFepNTps/CYNG75Jg3kfE6xaGod7R/Rn\nISIiIiKim9I7UpSWloZPP/0UMlnblKPExEQ8+eST+PDDD7FgwQKDB+ypzpSkoVZRh3v8R8PcxEzs\nOD3GtcZWrP33GVy4UgsfNxu8/vAQuHD9EBERERHdgt5SVFlZiaamJtjath0oqlQqUVJSgqamJjQ1\nNRk8YE+1//JRAMDEgFEiJ+k5LhfV4e0tyaiub8WwSHc8OycaZn30/hUnIiIiol5O7x3jvHnzMH78\neHh6ekIikaC4uBhLlizBoUOHMHPmTGNk7HEK60qQVXkJ4S5B8LBxFTtOj3AktQj/3HEeaq0OD04O\nxsyxAZwuR0RERESdorcUzZ8/H9OmTUNBQQF0Oh28vb1hZ2dnjGw9Vvsokf9ocYP0AFqtDp/+eAHf\nH82DhZkcryYOxuAQFk0iIiIi6rwOS9H69etv+YnPPPPMXQ/TG7SoFDh29TQcLRwQ4x4udpxurbFF\nhXVbU3D+UhU8nKzw+sOx8HS2FjsWEREREXUzHZai3zZWoLvrSEESlBolHgiZBJmU/41v19WyBry9\n5TTKapoxKNgFLy6IgaW5idixiIiIiKgb6rAULVu27KaPl5SU4PvvvzdYoJ5MJ+iw//JRmEjlGOsb\nL3acbispoxTvfnEWrSotZicEYv7EAZBJuX6IiIiIiG5Pp7bmUqlU2L9/P7777jtcuHAB06dPN3Su\nHimjIgdljZUY5TMUNmac5vVnCYKAHYcu4fN9OehjKsMrDw7C8EgPsWMRERERUTd3y1KUlpaGb7/9\nFvv370dwcDAKCwtx9OhRmJnxXJ3bsS/3CABgoj+34f6ztDoBH36Xjn1JBXC2N8frDw+Br7ut2LGI\niIiIqAfosBRNnToV9vb2mDhxIp566ik4OTnhvvvuYyG6TZVN1Thbmgl/Bx/49/URO063olRr8X+f\np+BUZjn6u9vizb8Mhb0N/x4SERER0d0h7egJd3d3VFZWory8HDU1NQDAc1/uwIG84xAg4J6A0WJH\n6VYaW1R448OTOJVZjgh/R6x5chgLERERERHdVR2OFH300UeoqKjAzp078dRTT8HExASNjY2orq6G\no6OjMTN2eyqNCj/nn4BNHysM9Roodpxuo+qaAv/zryQUVTRiZJQHnp0XDRM5d+wjIiIiorurw5Ei\nAHBxccFjjz2GgwcPYuXKlRg6dCgmTpzIM4r+pBOFKWhSNWNc/+EwlXHb6M64Wt6Al/95DEUVjZg2\nsj9eWBDDQkREREREBtGp3ecAYOjQoRg6dCgaGhrwww8/GDJTjyIIAvblHoFEIsF4vxFix+kWsvJr\nsOqTZDQr1HhoaghmjPbn1E0iIiIiMphOl6Lf2NjYYP78+YbI0iPl1lzBlboixHpEwdHSQew4XV5S\nRhn+7/MUaHUCnps3EGMHeYkdiYiIiIh6uD9diujP2Xf5KADgngBuw63P3qQCfPhtGkxNZFj+UCxi\nBriIHYmIiIiIeoEO1xQdPdp2M//LL78YLUxPU9fagKSiVHjYuCLUOUjsOF2WIAj4Yn8ONn6TBmtL\nU7z9+DAWIiIiIiIymg5HitasWQOpVIr169ff9GyiuLg4gwbrCQ7n/QqtTot7/EdzTUwHtFodPvgu\nHftPXYWLgwX+99E4uDtZiR2LiIiIiHqRDkvRvHnzsHnzZpSUlGDjxo03PCeRSFiK9NDotDiYdxzm\ncjOM9BkidpwuSanW4m9bU5CcVY7+HrZ48xEeykpERERExtdhKUpMTERiYiK2bduGBQsWGDNTj5BS\nkoZaRR3u8R8NcxPe6P+3xhYVVm1ORnZBLSIDHLF8cSwszLhdOREREREZn96NFqZPn44NGzYgIyMD\nEokEUVFRSExMvOmUOvrd/usbLEzkBgt/UHmtBW/+KwlFFU0YGe2BZ+cOhIn8lkdmEREREREZjN47\n0ZUrV6KpqQlz587F7NmzUV1djddff90Y2bqtwroSZFVeQrjLAHjYuIodp0spr2nGK+//iqKKJkwf\n6YcX5sewEBERERGRqPSOFFVXV+Pdd99tvx4zZgwWLVpk0FDd3f72bbhHixukiymvacbyD06guk6B\nBycHY9a4QLEjERERERHpHylSKBRQKBTt1y0tLVAqlQYN1Z01q1pwrCAZjhYOiHELFztOl1FR24Ll\nH5xA1TUWIiIiIiLqWvSOFM2ZMweTJk1CWFgYACArKwvPPPOMwYN1V0cLTkGpVeEB/5GQSjktDLhe\niDb+iqprCiyaxEJERERERF2L3lI0c+ZMDBs2DFlZWZBIJHjjjTfg4sKDNW9GJ+iw//JRmEjlGOsb\nL3acLqHy+ghR5TUFFk4agNkJLERERERE1LXoLUUA4ObmBjc3N0Nn6fYyKnJQ1liJUT5DYWNmLXYc\n0VVeu16Ialuw4J4BmJMQJHYkIiIiIqI/4Pyuu2hf7hEA3GABuF6INp5ARW0L5k8cgLnjWYiIiIiI\nqGsyeClas2YN5s6di3nz5iEjI+OmH/POO+90+x3tKpuqcbY0EwEOPvBz6Cd2HFFVXVNgxQfXC9GE\nIMybwEJERERERF2X3ulzWq0We/bsQWZmJgAgKioKU6dO7dSLnzlzBlevXsX27duRl5eHFStWYPv2\n7Td8TF5eHlJSUmBiYnIb8buOA3nHIEDAxF4+SlRd11aIymtaMHd8EOZNHCB2JCIiIiKiW9I7UrR6\n9Wr8/PPP8PX1hY+PD/bu3YvVq1d36sWTkpKQkJAAAPDz80NDQwOam5tv+Ji//vWveOGFF24jeteh\n0qjwc/5J2PSxQpzXQLHjiKamXoHlG0+grKYZc8YHYv5EjhARERERUdend6QoNzcXn3/+efv1woUL\nMX/+/E69eHV1dftW3gBgb2+P6upqWFpaAgB27tyJuLi4br+Jw4nCFDSpmjEj+B6YyLr3iNftqqlX\n4LXfClFCIBZMHACJRCJ2LCIiIiIivfSWIrVaDZ1O137mjlarhVarva0vJghC++/r6+uxa9cufPLJ\nJygtLb3huVtJTU29ra9tSNnXctBHagrXFrsumc/QGlq0+PRwFWobNRgRao0BTs04e/as2LF6hd74\n943oZvheIGrD9wLR7dFbikaNGoWZM2di8ODBAIDk5GRMnjy5Uy/u7OyM6urq9uvKyko4OTkBAE6d\nOoWamhrMnz8fSqUSRUVFWLt2LV599dVbvmZMTEynvrYxRQvReESnhWkvHCWqqW9bQ1TbqMGscQFY\nNCmYI0RGkpqa2iXfD0TGxvcCURu+F4ja3M4PB/SWoieeeALx8fFIS0uDRCLB//7v/yIiIqJTLz5s\n2DC8//77mD17NrKysuDi4gILCwsAwMSJEzFx4kQAQElJCV577TW9hairkkqkMJX1vt3NaxtaseKD\nkyipasYDY/xZiIiIiIioW+qwFF24cAEhISFISkoCAAQGBgIAmpubkZSUhLi4OL0vHh0djdDQUMyd\nOxcymQwrV67Ezp07YW1t3b4BA3VP1xpaseKDEyipasIDY/yROCWEhYiIiIiIuqUOS9H333+PkJAQ\nbNy48Q/PSSSSTpUiAHj++edvuA4K+uOOZB4eHvjss8869XokvoZmFVZ8eALFlU24fzQLERERERF1\nbx2WouXLlwMAtm7darQw1PUp1Vqs/iQZRRVNmDayPxZPZSEiIiIiou6tw1I0f/78W97sbtu2zSCB\nqOvS6gS8sy0V2QW1GBntgSX3hrEQEREREVG312EpevbZZ42Zg7o4QRCweXcmkjLKEO7niGfnRkMq\nZSEiIiIiou6vw1IUGxvb/vuUlBRkZGRAIpEgMjIS0dHRRglHXceuY3nYczwf3q7WWP5QLEzkMrEj\nERERERHdFXr3kV6/fj3WrVuHyspKVFRUYPXq1di0aZMxslEXcfxcCTbvzoKDjRnefCQOVua97zwm\nIiIiIuq59J5TlJycjO3bt0MqbetPGo0GCxcuxNKlSw0ejsSXmVeNd788C/M+crz5l6FwsjcXOxIR\nERER0V2ld6RIp9O1FyIAkMvlXFzfSxSWN2D1ltMQBAErFsfC191W7EhERERERHed3pGi0NBQPPbY\nY4iPjwcAnDx5EuHh4QYPRuKqqVfgzY9PoVmhxnPzBiIy0EnsSEREREREBqG3FK1YsQJ79+5FWloa\nJBIJpk2bhkmTJhkjG4mkpVWNtz4+haprCjw4ORhjB3mJHYmIiIiIyGA6LEXLli3D+++/j2effRbv\nvfcepkyZYsxcJBK1Roc1n57BldIGTIrzwcyxAWJHIiIiIiIyqA5L0dWrVzFnzhzk5+djwYIFf3ie\nh7f2PIIg4P2vz+N8bhViQ1yxdEY4148RERERUY/XYSn64osvcPHiRaxevRrPPPOMMTORSLbty8HP\nKUUI9LbDSwtjIJPp3YeDiIiIiKjb67AUWVtbY9CgQZgwYcINB7kCwHvvvfeHx6h725dUgK8OXYJb\nX0u88fBQmPXRu9yMiIiIiKhH6PDO99SpUzh16hR2794NtVrd/rharcbOnTvx9NNPGyUgGd7pC+X4\n4Ns02Fia4s1Hh8LOuo/YkYiIiIiIjKbDUtS/f39UVVUBAGQy2e+fIJfj3XffNXwyMopLhdewbmsK\n5HIZVi4ZAndHK7EjEREREREZVYelyNnZGffeey/q6+uxcOFCY2YiIymrbsb/bj4FtVqL5YtjEdTP\nQexIRERERERGp3cl/eHDh6HRaIyRhYyoqUWFN/+VhPomFR67PwJDwtzEjkREREREJAq9q+mtra0x\nZcoUhISEwMTEpP3xdevWGTQYGY5OJ+CdL86itLoZD4zxx6R4X7EjERERERGJRm8pGjNmDMaMGWOM\nLGQkXx26hJTsCgwMcsaiySFixyEiIiIiEpXeUjRjxgwUFxfjwoULkEgkCA0Nhbu7uzGykQGk5lTg\nywM5cLY3xwsLYiCT8nBWIiIiIurd9K4p+vLLL/Hggw/ixx9/xJ49e7Bo0SLs3LnTGNnoLquobcH/\nfZ4KmVSKVxMHw8bSVOxIRERERESi0ztStGvXLuzduxd9+rSdXdPS0oKHHnoIM2bMMHg4untUai3W\n/vs0mhRqLJsVhQAve7EjERERERF1CXpHiuRyeXshAgALC4sbNlyg7mHTzgxcLq7H+FhvTBzaT+w4\nRERERERdht6RIldXV6xatQrx8fEAgF9//RVubty+uTs5kHwVB5Kvor+HLZbeHyF2HCIiIiKiLkVv\nKVq1ahW2bt2K7777DhKJBJGRkVi0aJExstFdcLmoDh9+lw4rcxO8ljgYfUxkYkciIiIiIupS9JYi\npVKJRx991BhZ6C5raFZhzWdnoNHqsHxxLFz7WoodiYiIiIioy+lwTVFKSgqGDx+OiRMnYsqUKSgs\nLDRmLrpDWp2Ad75IRWVtC+aOD8KgYBexIxERERERdUkdlqK///3v2LJlC5KTk/H666/jnXfeMWYu\nukNfHbyIszmViBngjLnjg8SOQ0RERETUZXVYiqRSKQICAgAAcXFxqK2tNVooujMp2RXYfvAinB0s\n8MKCGEh5QCsRERERUYc6LEUSieSW19Q1ldc0451tqZDLpHgtcTCsLXhAKxERERHRrXS40UJ9fT2S\nkpLarxsaGm64jouLM2wy+tOUai3W/PsMmhRqPD07Cv6edmJHIiIiIiLq8josRTY2Nti4cWP7tbW1\ndfu1RCJhKepiBEHAh9+mI7+kHhOG9MP4ITyglYiIiIioMzosRVu3bjVmDrpDB5Kv4tCZQvh72mLp\njHCx4xARERERdRsdrimi7uNS4TV8+F0GrC1M8FpiLEx5QCsRERERUaexFHVz9U1KrP3sDLQ6HV5c\nMAjODhZiRyIiIiIi6lY6LEVHjx4FAPzyyy9GC0N/jlYn4J1tqai6psD8iQMwcICz2JGIiIiIiLqd\nDtcUrVmzBlKpFOvXr4eZmdkfnudGC+LbeeQyzl2qwqBgF8weFyh2HCIiIiKibqnDUjRv3jxs3rwZ\nJSUlN+xCB3D3ua6goKwB2/blwN66D56bN5AHtBIRERER3aYOS1FiYiISExOxbds2LFiwwJiZSA+1\nRoe/f3kWGq0OT82Ogo0lD2glIiIiIrpdHZai30yfPh0bNmxARkYGJBIJoqKikJiYeNMpdWQcXx26\niPySeoyP9cbgEFex4xARERERdWt6d59buXIlmpqaMHfuXMyePRvV1dV4/fXXjZGNbuJS4TV8fTgX\nTvbmeGR6mNhxiIiIiIi6Pb0jRdXV1Xj33Xfbr8eMGYNFixYZNBTdnFKtxT+2n4VOJ+CZOdGwMDMR\nOxIRERERUbend6RIoVBAoVC0X7e0tECpVBo0FN3c53uzUVTRhKnDfREZ4CR2HCIiIiKiHkHvSNGc\nOXMwadIkhIW1TdXKysrCM888Y/BgdKPMvGrsOpYHd0dLJE4JETsOEREREVGPobcUzZw5E8OGDUNW\nVhYkEgneeOMNuLi4GCMbXadQavCP7ecgAfDcvIEwM9X7fxsREREREXVSp+6u3dzc4ObmZugs1IEt\ne7JQUduCmWMDMMDHQew4REREREQ9it41RSSuszmV2JtUAB83G8yfGCR2HCIiIiKiHue2SlFra+vd\nzkE30dSiwns7zkEmleC5eQNhIpeJHYmIiIiIqMfRW4qWLFnyh8cWLFhgkDB0o4++z0BNfSvmTQhC\nfw9bseMQEREREfVIHa4p2r17NzZs2IDS0lKMHj26/XG1Wg1HR0djZOvVkjJK8UtqMQK87DBzbIDY\ncYiIiIiIeqwOS9G0adMwZcoUrFixAk899VT741KpFM7OzkYJ11vVNymx4Zs0mMqleG7eQMhkXPpF\nRERERGQot9x9TiaTYe3atcjJyUFdXR0EQQAAFBQUIC4uzigBextBELDhmzTUN6mwZFoYvFysxY5E\nRERERNSj6d2S++mnn0Z2djZcXV3bH5NIJCxFBnL0bDGSMsoQ2r8vpo3oL3YcIiIiIqIeT28pKi4u\nxsGDB42RpderqVfgw50ZMDOV4dm50ZBKJWJHIiIiIiLq8fQuVvH19YVKpTJGll5NEAS8t+M8mhVq\nLJkWBte+lmJHIiIiIiLqFfSOFEmlUkyZMgURERGQyX4/J2fdunUGDdbbHEi+irM5lRgY5IyJQ/uJ\nHYeIiIiIqNfQW4ri4+MRHx9vjCy9VnlNMzbvzoSluQmenhMFiYTT5oiIiIiIjEVvKZoxYwYuXbqE\nwsJCJCQkoKGhATY2NsbI1ivodAL+sf0cFEotnp8fib625mJHIiIiIiLqVfSWok8//RQ//PADVCoV\nEhISsHHjRtjY2OCJJ54wRr4eb+/JK8jKr0FcuBtGD/QUOw4RERERUa+jd6OFH374ATt27ICtrS0A\n4OWXX8aRI0cMnatXqG9SYuu+HFiayfH4AxGcNkdEREREJAK9pcjS0hJS6e8fJpVKb7gAvtu+AAAW\nZElEQVSm2/fZT9loVqgx/54BsLc2EzsOEREREVGvpHf6nLe3N95//300NDTgwIED+Omnn+Dn52eM\nbD1abtE1HDx9Ff1crTEl3lfsOEREREREvZbeIZ+VK1fC3NwcLi4u2L17N6KiovA///M/xsjWY+l0\nAjbtzIAgAEtnREAm48gbEREREZFY9I4UyWQyREZGYsmSJQCAn3/+GXK53k+jW/gltQgXr17D8Eh3\nhPs7ih2H/n979x5VVZ2wcfw5HMBAvIBwTqO2xqIU8zIhpSkpXpjMKZvMpTIVamWXsdKWjC0VU2tE\nRLuxQqcsW2/qvDGl0VjTGlIb0Ve8oCUqXhrMC2pCSAwKJgm/94/Gs0Tu5PGI+/v5i332Ob/9nG27\nzcNvn30AAABgaQ2aKcrIyHAtb9myRfHx8W4NdS0rPfuT/ucfe+XrY9djw7t7Og4AAABgefWWosOH\nDysuLs61PGPGDOXl5bk11LUsdc0BFZ8+p9FDblFIIN9JBAAAAHhavaXoxx9/VHFxsWs5Pz9f5eXl\nbg11rcrLP61PN36r69v5a8TAmz0dBwAAAIAa8JmiZ555Rvfdd59+9atfqaKiQgUFBUpISLgS2a4p\nxhgtSdutikqjCfd3l6+P3dORAAAAAKgBpWjgwIFau3atcnNzZbPZdNNNN8nPj8u+GmvLnu+089/f\nq1eYQ727Xe/pOAAAAAD+q97L52JjY3Xdddepe/fu6tatG4WoCc79VKF3V+fI227Tkw/0kM1m83Qk\nAAAAAP9V70zRrbfequTkZIWHh8vHx8f1eN++fd0a7Fry8Zf/VkFRmUYOulkdQgI8HQcAAADAReot\nRfv27ZMkbd++3fWYzWajFDVQflGZVn75bwW1bqHR0Z09HQcAAADAJeotRcuXL5f0840CuOyr8Zau\n3qPy85Uaf183+V/nU/8LAAAAAFxR9X6maP/+/XrwwQc1bNgwSdKiRYuUnZ3t9mDXgp3fFGjz7u/U\ntVOQBvbq6Ok4AAAAAGpQbyl6+eWXNW/ePIWEhEiSfve73ykxMdHtwZq78xWVWvLJbtls0lMjuLkC\nAAAAcLWqtxR5e3srLCzMtXzjjTfK27veq+4s77P/O6S8/DO6585OCu3Y1tNxAAAAANSiQaUoLy/P\nNdORkZEhY4zbgzVnP5z+UR98sV8Bfj56ZFhXT8cBAAAAUId6p3xeeOEFTZw4UYcOHVJERIQ6dOig\nBQsWXIlszdb7/9irsh/P6+kHe6p1S19PxwEAAABQh3pLUVhYmD799FMVFRXJ19dXAQF8z05d9h8p\n0rqsPN3YvrXu6dvJ03EAAAAA1KPWUnTmzBktXrxY3377re644w6NGzeOzxLVo7LS6O203ZKkp0b0\nlN2LmysAAAAAV7taP1M0Z84cSdKYMWOUm5urlJSUJm0gMTFRMTEx+sMf/qDdu3dXWbdlyxaNGTNG\nDz30kOLj45s0/tVkzbajys0rVlR4R3W7qZ2n4wAAAABogFqnfo4fP65XXnlFkjRgwACNHz++0YNn\nZWXpyJEjSk1N1cGDBxUfH6/U1FTX+tmzZ2vZsmVyOp2aPHmyNmzYoAEDBjT+XVwFzpSVa9nne3Wd\nr12PDr/V03EAAAAANFCtM0UXXypnt9ubNPjmzZsVHR0tSQoNDVVJSYlKS0td61etWiWn0ylJCgoK\nUnFxcZO2czX43y8OqKS0XKOjO6tdGz9PxwEAAADQQLWWoku/bLQpXz5aWFiooKAg13JgYKAKCwtd\nyxdu2lBQUKDMzExFRUU1ehtXgyPflegfmw6pfXBLPRAV6uk4AAAAABqh1svnvv76aw0cONC1fOrU\nKQ0cOFDGGNlsNq1fv77RG6vp+41OnTqlP/7xj5ozZ47atGnT6DGvBhlfH1NlpdETD/SQj3fTZtUA\nAAAAeEatpeif//znLx7c4XBUmRkqKChQSEiIa/nMmTN64oknFBcXp759+zZozB07dvziXJdbpzYV\nGjckWLayY9qx45in48BCrsbjAfAEjgXgZxwLQNPUWoo6dOjwiwePjIxUSkqKRo8erZycHDmdTvn7\n+7vWz58/X48++qgiIyMbPGZERMQvzgVcC3bs2MHxAIhjAbiAYwH4WVP+OODWLx4KDw9Xt27dFBMT\nI7vdrlmzZiktLU2tWrXSXXfdpdWrV+vo0aP68MMPZbPZNHz4cI0aNcqdkQAAAACgCrd/G+uUKVOq\nLHfp0sX1865du9y9eQAAAACoU613nwMAAAAAK6AUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAA\nS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEA\nAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0\nShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAA\nALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MU\nAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAA\nS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEA\nAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0\nShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAA\nALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MU\nAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAAS6MUAQAAALA0ShEAAAAA\nS/N29wYSExOVnZ0tm82mGTNmqEePHq51mZmZev3112W32zVgwABNnDjR3XEAAAAAoAq3zhRlZWXp\nyJEjSk1N1dy5c5WQkFBlfUJCglJSUvTBBx9o06ZNOnjwoDvjAAAAAEA1bi1FmzdvVnR0tCQpNDRU\nJSUlKi0tlSTl5eWpbdu2cjqdstlsioqK0pYtW9wZBwAAAACqcWspKiwsVFBQkGs5MDBQhYWFNa4L\nCgpSQUGBO+MAAAAAQDVu/0zRxYwxTVp3sR07dlyuOECzx/EA/IxjAfgZxwLQNG4tRQ6HwzUzJEkF\nBQUKCQlxrfv+++9d6/Lz8+VwOOocLyIiwj1BAQAAAFiWWy+fi4yMVHp6uiQpJydHTqdT/v7+kqQO\nHTqotLRUJ06c0Pnz57V+/Xrddddd7owDAAAAANXYTEOvW2ui1157Tdu2bZPdbtesWbO0d+9etWrV\nStHR0dq+fbteeeUVSdI999yj8ePHuzMKAAAAAFTj9lIEAAAAAFczt14+BwAAAABXO0oRAAAAAEuj\nFAEAAACwtCv6PUW/RGJiorKzs2Wz2TRjxgz16NHD05GAK27btm2aPHmybrnlFhlj1KVLF82cOdPT\nsYArav/+/Xruuec0fvx4Pfzwwzp58qSmTp0qY4xCQkK0YMEC+fj4eDom4HaXHgvTp0/Xnj17FBgY\nKEl6/PHHFRUV5eGUgPstWLBAX331lSoqKvTkk0+qR48ejT4vNItSlJWVpSNHjig1NVUHDx5UfHy8\nUlNTPR0L8IjevXsrOTnZ0zEAjzh79qySkpIUGRnpeiw5OVmxsbG6++679frrr2vVqlWKiYnxYErA\n/Wo6FiTpT3/6E0UIlrJ161bl5uYqNTVVxcXFGjFihO6880498sgjGjp0aIPPC83i8rnNmzcrOjpa\nkhQaGqqSkhKVlpZ6OBXgGdwwElbWokULvf322woODnY9tm3bNg0aNEiSNGjQIGVmZnoqHnDF1HQs\nAFZ0xx13uP5Y3Lp1a5WVlSkrK0uDBw+W1PDzQrMoRYWFhQoKCnItBwYGqrCw0IOJAM85ePCgJk6c\nqIcffphf/mA5Xl5e8vX1rfLY2bNnXZdFtGvXTt9//70nogFXVE3HgiStWLFC48aNU1xcnIqLiz2Q\nDLiyvLy85OfnJ0lauXKlBg4c2KTzQrO4fO5S/KUcVvXrX/9azz77rIYNG6a8vDyNHTtWa9askbd3\nszyUgcuO8wOs7Pe//73atm2rsLAwLVmyRG+++aZefPFFT8cCroi1a9dq1apVWrp0qe6++27X4w09\nLzSLmSKHw1FlZqigoEAhISEeTAR4htPp1LBhwyRJN9xwg4KDg5Wfn+/hVIBntWzZUuXl5ZKk/Px8\nORwODycCPOPOO+9UWFiYJGnIkCH65ptvPJwIuDI2btyoJUuW6N1331VAQECTzgvNohRFRkYqPT1d\nkpSTkyOn0yl/f38PpwKuvE8//VQpKSmSpFOnTqmoqEhOp9PDqQDP6tu3r+sckZ6erv79+3s4EeAZ\nkyZN0oEDByT9fJOqzp07ezgR4H5nzpzRwoUL9dZbb6lVq1aSmnZesJlmcq3Ba6+9pm3btslut2vW\nrFnq0qWLpyMBV1xpaani4uL0n//8R8YYPfPMM/wCCEvJzs7WzJkzVVRUJLvdrjZt2mjp0qWaNm2a\nysvL1b59eyUmJsput3s6KuBWNR0LkyZN0l/+8he1bNlSLVu21Lx586p8Jhu4Fn344YdKSUlRp06d\nZIyRzWZTUlKS4uPjG3VeaDalCAAAAADcoVlcPgcAAAAA7kIpAgAAAGBplCIAAAAAlkYpAgAAAGBp\nlCIAAAAAlkYpAgAAAGBplCIAaEaOHz+usLAwffbZZ1UeHzx48GUZPywsTJWVlZdlrNp88cUXio6O\n1qpVq2pc/9JLL6lPnz6ubyOXpLS0NE2dOtUteQoLC/X88883+PlpaWmKjIzU2LFjFRsbqzFjxujN\nN99s9HZXr17t+jkpKUnDhw9XTk5Orc8fPHiw8vLytHHjRr399tuN3h4AoHaUIgBoZjp16qSUlBSV\nlZW5HrPZbJdl7Ms1Tl0yMjI0YcIEjRw5stq68vJyffnll+rXr5/WrFlzRbIFBwfrjTfeaNRrIiMj\ntWzZMi1fvlx//etftWnTJmVkZDT49RUVFVq0aJFree3atUpOTla3bt1qfc2F99+/f3899dRTjcoL\nAKibt6cDAAAaJyQkRP3799eiRYuqzZ6kpaUpMzNTCxculCTFxsZq4sSJstvteuutt+R0OrVnzx79\n5je/0S233KJ169apuLhY77zzjpxOp4wxWrx4sbZu3arS0lItWLBAN998sw4cOKCkpCSdP39e58+f\n16xZsxQWFqbY2Fh17dpVe/fu1fLly6sUl/Xr12vx4sXy8/OTn5+fXnrpJe3cuVMZGRn66quvZLfb\nNWrUqCr509PT1atXL91///1asWKF7r333mrv/0KBaNeunfr166eNGzdq+fLlOnz4sGbPnq3KykpV\nVlZqypQpioiI0Oeff6733ntP/v7+MsYoMTFRHTt2dI13/PhxPfTQQ8rIyND06dPlcDh04MABHTly\nRCNHjtSECRPq/Pfw9vZWeHi4vv32W0VFRWnlypX629/+Jj8/PwUHB+vPf/6zWrZsqYiICI0aNUrl\n5eUqKyvTiRMn9Pjjj6tHjx7Kz8/X9OnTNXPmTJ06darKfnv55ZflcDh04bvWL/43zs7OVlJSknx8\nfGSz2fTiiy8qNDS0cf9BAQAkAwBoNo4dO2ZiY2NNeXm5uffee82hQ4eMMcYMHjzYGGPMxx9/bKZO\nnep6/iOPPGIyMzPN1q1bze23325KSkrMuXPnTM+ePc3f//53Y4wx06ZNM++//74xxpguXbqY9PR0\nY4wxH330kZk0aZIxxpj77rvPHD161BhjzL59+8yIESNc47/xxhvVcp49e9ZERkaa/Px8Y4wxK1as\nMNOnT3dt76OPPqrx/Y0dO9asXbvWlJeXmz59+piTJ09We1/9+/c3ubm5xhhj4uLiTGxsrDHGmMce\ne8yV/cCBA2bIkCHGGGPuv/9+k52dbYwxJjs722RlZVXbp1FRUa5sU6ZMMcYYc/z4cRMREVEt46X7\nuKSkxAwfPtxkZ2ebEydOmKioKFNWVmaMMWb+/PkmJSXFGGNMWFiYyczMrLZNY4wZNGiQOXr0aJ37\n7cJzLt7+0KFDzZ49e4wxxvzrX/9y7QsAQONw+RwANEM+Pj6aOnWq5s6dK0muWYS6hIaGqlWrVvL1\n9VXbtm0VHh4uSXI6nTp9+rTref369ZMkhYeHKzc3V0VFRTp06JDi4+MVGxurhIQElZWVubZ5YZyL\nHT58WCEhIXI4HJKk3r17a/fu3XXmy8vL0759+zRgwAD5+PhoyJAhSktLq/KcH374QefOnXPNhvz2\nt791rdu1a5cre+fOnVVaWqri4mI9+OCDmjZtmpKTk+Xt7a3bb7+9zhy9e/eWJLVv316lpaU17ttN\nmza5PlP03HPPacKECerZs6dycnLUvXt3+fn5SZL69Onjet/GGPXq1avObTdmv50+fVpFRUWuS+4a\nso8BADXj8jkAaKaioqKUmpqqtWvXui5bu/RzNz/99JPrZ7vdXmXdxcsX/+J/8Rg2m02+vr7y9fXV\nsmXLaszh4+NT4+MXj2mMqfczQStXrpSXl5dGjx4tSSorK9P27dv19NNPN2icSx+vrKyUzWbTuHHj\nNHz4cG3YsEGzZ8/WqFGjXNuoyaX7qaZtRkZGasGCBfVmuPS1te2rS19T17Yv3talz/Xy4m+dANAU\n/N8TAJqZi38RnjFjhl599VXXndoCAgL03XffSZJOnTql3NzcRo+/efNmSdKOHTvUuXNnBQQEqGPH\njq4bCRw6dKjKTQJqcuONN6qoqEgnT56UJGVmZuq2226r9fmVlZX65JNPtHTpUqWlpSktLU3p6eny\n8vLS9u3bXc8LDAyUl5eXjh07Jklat26da91tt92mDRs2SJL27t2rwMBAtW7dWq+++qoCAgL0wAMP\n6Nlnn9XOnTsbvC8aMgN3se7duysnJ8d1E4zMzMwaZ9K8vLyqFNYLGrPfAgIC5HA4tGvXrnqfCwCo\nGzNFANDMXDxzcMMNN2jo0KGuWzRHRkbqvffeU0xMjG666aZaL9eqbfbB29tbubm5+uCDD1RcXOy6\nYUNSUpLmzp2rd955R+fPn9f06dPrHKdFixZKSEjQ888/L19fX/n7+2vevHm1vqeNGzcqJCSk2t3X\nYmJi9PHHH7suabPZbHrhhRf05JNPqmPHjuratasKCwslSTNnztTs2bOVmpqqiooKLVy4UDabTYGB\ngYqJiVHr1q1ls9k0c+bMWnM0dD/Vxul0avLkyRo/frxatGghp9OpuLi4amM5HA4FBwdr5MiRWrFi\nhWtdXfutpizz58/X/PnzZbfbZbfbNWfOnEblBQD8zGYa+2cwAAA8aN26derWrZuuv/56vfvuuzpx\n4oRmzZrl6VgAgGaMmSIAQLNSXl6up59+Wq1atZK3t7fmz5/v6UgAgGaOmSIAAAAAlsaNFgAAAABY\nGqUIAAAAgKVRigAAAABYGqUIAAAAgKVRigAAAABY2v8DNT9MSKq2ogUAAAAASUVORK5CYII=\n",
413 | "text/plain": [
414 | ""
415 | ]
416 | },
417 | "metadata": {},
418 | "output_type": "display_data"
419 | }
420 | ],
421 | "source": [
422 | "algos = np.linspace(1,20)\n",
423 | "plt.plot(\n",
424 | " algos,\n",
425 | " portfolio_risk_decomposition(budget=0.2, correl=1.0, algo_count=algos)[1]\n",
426 | ")\n",
427 | "plt.plot(\n",
428 | " algos,\n",
429 | " portfolio_risk_decomposition(budget=0.4, correl=1.0, algo_count=algos)[1]\n",
430 | ")\n",
431 | "plt.ylim([0,1]);\n",
432 | "plt.title('Percent of Portfolio Risk due to Common Risk')\n",
433 | "plt.xlabel('Number of Algos in Portfolio')\n",
434 | "plt.ylabel('Percent of Portfolio of Algos Risk due to Common Risk')\n",
435 | "plt.legend(\n",
436 | " ['20% Single Algo Common Risk Budget', '40% Single Algo Common Risk Budget']\n",
437 | ");"
438 | ]
439 | },
440 | {
441 | "cell_type": "markdown",
442 | "metadata": {
443 | "collapsed": false
444 | },
445 | "source": [
446 | "From this plot, you can see that from the allocator's perspective, a \"small\" budget that allows for 20% of individual algo total risk to be driven by common risk leads to a 20 algo portfolio **with 83%** of it's risk driven by common risk! Ideally an allocator wants you to have **zero common factor risk**."
447 | ]
448 | },
449 | {
450 | "cell_type": "markdown",
451 | "metadata": {
452 | "collapsed": true
453 | },
454 | "source": [
455 | "\n",
456 | "TL;DR: Even if you can't predict portfolio risk and don't have a risk model to decompose risk, you can form a portfolio with **zero common risk** by hedging the beta exposure to common factors. The most important common factors in the US Equity market are market beta and sector beta. Hedge your beta and be sector neutral if you want a large allocation from any allocator.\n",
457 | "
"
458 | ]
459 | },
460 | {
461 | "cell_type": "markdown",
462 | "metadata": {},
463 | "source": [
464 | "*This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. (\"Quantopian\"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.*"
465 | ]
466 | }
467 | ],
468 | "metadata": {
469 | "kernelspec": {
470 | "display_name": "Python 2",
471 | "language": "python",
472 | "name": "python2"
473 | },
474 | "language_info": {
475 | "codemirror_mode": {
476 | "name": "ipython",
477 | "version": 2
478 | },
479 | "file_extension": ".py",
480 | "mimetype": "text/x-python",
481 | "name": "python",
482 | "nbconvert_exporter": "python",
483 | "pygments_lexer": "ipython2",
484 | "version": "2.7.12"
485 | }
486 | },
487 | "nbformat": 4,
488 | "nbformat_minor": 2
489 | }
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # lectures
2 |
3 | This repository contains lectures I authored (or co-authored) that exist within the Quantopian Lecture Series.
4 |
5 | - [**Portfolio Value at Risk and Conditional Value at Risk**](https://github.com/marketneutral/lectures/blob/master/Lecture-VaR%2Band%2BCVaR-.ipynb)
6 | - [**Why You Should Hedge Beta and Sector Exposures (Part I)**](https://github.com/marketneutral/lectures/blob/master/Lecture-Why%2BHedge%2BI-.ipynb)
7 | - [**Why You Should Hedge Beta and Sector Exposures (Part II)**](https://github.com/marketneutral/lectures/blob/master/Lecture-Why%2BHedge%2BII.ipynb)
8 |
--------------------------------------------------------------------------------