├── True_eigfunc_Prinz.npz └── README.md /True_eigfunc_Prinz.npz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/markovmodel/deep_rev_msm/master/True_eigfunc_Prinz.npz -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | Deep_rev_msm 2 | Deep learning Markov and Koopman models with physical constraints. 3 | 4 | 5 | ## What is it? 6 | Deep_rev_msm is summarized the implementations of the work presented in the paper "Deep learning Markov and Koopman models with physical constraints." (described in https://arxiv.org/abs/1912.07392). It includes a Jupyter notebook able to reproduce the results presented in the paper and a benchmark file. 7 | 8 | 9 | ## Citation 10 | If you use Deep reversible models presented in this paper in scientific work, please cite: 11 | 12 | Mardt, A., Pasquali, L., Noé, F. & Wu, H. (2019). 13 | Deep learning Markov and Koopman models with physical constraints. 14 | arXiv, 1912.07392. 15 | 16 | ## Installation 17 | 18 | We are using the package vampnet from the repo https://github.com/markovmodel/deeptime/tree/master/vampnet 19 | IMPORTANT: We are using tensorflow 1.14 20 | 21 | This package requires [Tensorflow](https://www.tensorflow.org) to be used. 22 | Please install either tensorflow or tensorflow-gpu. Installation instructions: 23 | 24 | https://www.tensorflow.org/install/ 25 | 26 | To use the notebook yourself, first clone the repository: 27 | 28 | git clone https://github.com/markovmodel/deep_rev_msm.git 29 | 30 | Then you can directly start. 31 | --------------------------------------------------------------------------------