└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Learning Optimal Control 2 | Resources for learning control, optimal control, robotics, reinforcement learning 3 | 4 | This list is everything but complete ... 5 | 6 | ## Lectures/Online courses 7 | 8 | ### Underactuated Robotics MIT 6.832 9 | This lecture held by [Russ Tedrake](https://groups.csail.mit.edu/locomotion/russt.html) is an excellent resource covering very important concepts of optimal control. 10 | 11 | #### Video 12 | - [2015](https://www.youtube.com/playlist?list=PLnWkMhyDLp1CGlkfJqFBLmTs5Nf2RWWGe) 13 | - [2009](https://www.youtube.com/playlist?list=PL58F1D0056F04CF8C) 14 | #### Online course 15 | [edX Underactuated Robotics](https://www.edx.org/course/underactuated-robotics-mitx-6-832x-0) 16 | #### Material 17 | [Working notes for lecture and online course](http://underactuated.csail.mit.edu/underactuated.html) 18 | 19 | --- 20 | 21 | ### UCL Course on RL 22 | 23 | A great introduction to Reinforcement Learning given by David Silver, one of the brains behind DeepMind. 24 | 25 | #### Material 26 | [Lecture slides, exam with answers](http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 27 | 28 | #### Video 29 | - [Lecture 1-10](https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ) 30 | 31 | --- 32 | 33 | ### Deep Reinforcement Learning CS294-112 34 | 35 | #### Material 36 | [Lecture slides, homeworks](http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 37 | 38 | 39 | #### Video 40 | [Lectures](https://www.youtube.com/playlist?list=PLkFD6_40KJIxJMR-j5A1mkxK26gh_qg37) 41 | 42 | --- 43 | 44 | ### Deep RL Bootcamp 45 | 46 | #### Material & Video 47 | [Slides, videos](https://sites.google.com/view/deep-rl-bootcamp/lectures) 48 | 49 | --- 50 | 51 | ### Intelligent control through learning and optimization AMATH / CSE 579 52 | 53 | Besides the lecture slides, [Emo Todorov](http://homes.cs.washington.edu/~todorov/) is also providing a list of relevant papers and general purpose readings. 54 | 55 | #### Material 56 | [https://homes.cs.washington.edu/~todorov/courses/amath579/](https://homes.cs.washington.edu/~todorov/courses/amath579/) 57 | 58 | --- 59 | 60 | ### Reinforcement Learning by Georgia Tech 61 | 62 | #### Online course 63 | [Udacity Reinforcement Learning by Georgia Tech](https://www.udacity.com/course/reinforcement-learning--ud600) 64 | 65 | 66 | ## Blogs 67 | - [Studywolf](https://studywolf.wordpress.com/) 68 | - [WildML](http://www.wildml.com/) 69 | - [argmin blog](http://www.argmin.net) (especially [An Outsider's Tour of Reinforcement Learning](http://www.argmin.net/2018/06/25/outsider-rl/)) 70 | 71 | ## Articles 72 | 73 | - [Reinforcement Learning Algorithms Quick Overview](https://medium.com/@jonathan_hui/rl-reinforcement-learning-algorithms-quick-overview-6bf69736694d) 74 | 75 | ## Tutorials 76 | 77 | ## Videos 78 | 79 | [Deep Reinforcement Learning (David Silver, 2015)](http://videolectures.net/rldm2015_silver_reinforcement_learning/) 80 | 81 | [ICML 2018: Tutorial Session: Optimization Perspectives on Learning to Control (Ben Recht)](https://www.youtube.com/watch?v=hYw_qhLUE0o) 82 | 83 | ## Books 84 | 85 | - [Dynamic Programming and Optimal Control Vol. 1 + 2](http://web.mit.edu/dimitrib/www/dpchapter.html) 86 | - [Reinforcement Learning: An Introduction](https://mitpress.mit.edu/books/reinforcement-learning) ([PDF](http://incompleteideas.net/book/bookdraft2017nov5.pdf)) 87 | - [Neuro-Dynamic Programming](http://web.mit.edu/jnt/www/ndp.html) 88 | - [Probabilistic Robotics](http://www.probabilistic-robotics.org/) 89 | - [Springer Handbook of Robotics](https://www.springer.com/de/book/9783540303015) 90 | - [Robotics - Modelling, Planning, Control](https://www.springer.com/de/book/9781846286414) 91 | 92 | --------------------------------------------------------------------------------