└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # Awesome-Autonomous-Driving-Papers
2 | ---
3 | This repository provides awesome research papers for autonomous driving perception.
4 | I have tried my best to keep this repository up to date. If you do find a problem or have any suggestions, please raise this as
5 | an issue or make a pull request with information (format of the repo): Research paper title, datasets, metrics, objects, source code, publisher, and year.
6 |
7 |
8 | This summary is categorized into:
9 | - [Datasets](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#Datasets)
10 | - [LiDAR-based 3D Object Detection](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#1-lidar-based-3d-object-detection)
11 | - [Single-stage detectors](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#11-single-stage-detectors)
12 | - [Two-stage detectors](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#12-two-stage-detectors)
13 | - [Monocular Image-based 3D Object Detection](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#2-monocular-image-based-3d-object-detection)
14 | - [LiDAR and RGB Images fusion](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#3-lidar-and-rgb-images-fusion)
15 | - [Pseudo-LiDAR](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#4-pseudo-lidar)
16 | - [Training tricks](https://github.com/maudzung/Awesome-Autonomous-Driving-Papers#5-training-tricks)
17 |
18 | _**Abbreviations**_
19 | - **AP-2D**: **A**verage **P**recision for 2D detection (on RGB-image space)
20 | - **AP-3D**: **A**verage **P**recision for 3D detection
21 | - **AP-BEV**: **A**verage **P**recision for Birds Eye View
22 | - **AOS**: **A**verage **O**rientation **S**imilarity _(if 2D bounding box available)_
23 |
24 | ## Datasets
25 | - [KITTI](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d)
26 | - [Waymo Open Dataset](https://waymo.com/open/)
27 | - [nuScenes](https://www.nuscenes.org)
28 | - [Lift](https://self-driving.lyft.com/level5/data/)
29 |
30 | ## 1. LiDAR-based 3D Object Detection
31 |
32 | ### 1.1 Single-stage detectors
33 |
34 |
| Research Paper | 38 |Datasets | 39 |Metrics | 40 |Objects | 41 |Source Code | 42 |Publisher | 43 |Year | 44 |
|---|---|---|---|---|---|---|
| “HorizonLiDAR3D”: 1st Place Solution for Waymo Open Dataset Challenge - 3D Detection and Domain Adaptation | 47 |
|
48 |
|
49 | Cars, Pedestrians, Cyclists | 50 |--- | 51 |ArXiv | 52 |2020 | 53 |
| Structure Aware Single-stage 3D Object Detection from Point Cloud (SA-SSD) | 56 |
|
57 |
|
58 | Cars | 59 |PyTorch | 60 |CVPR | 61 |2020 | 62 |
| 3DSSD: Point-based 3D Single Stage Object Detector | 65 |
|
66 |
|
67 | Cars | 68 |PyTorch | 69 |CVPR | 70 |2020 | 71 |
| LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving | 74 |
|
75 |
|
76 | Cars | 77 |--- | 78 |CVPR | 79 |2019 | 80 |
| PointPillars: Fast Encoders for Object Detection from Point Clouds | 83 |
|
84 |
|
85 | Cars, Pedestrians, Cyclists | 86 |PyTorch | 87 |CVPR | 88 |2019 | 89 |
| SECOND: Sparsely Embedded Convolutional Detection | 92 |
|
93 |
|
94 | Cars, Pedestrians, Cyclists | 95 |PyTorch | 96 |Sensors | 97 |2018 | 98 |
| Complex-YOLO: an euler-region-proposal for real-time 3d object detection on point clouds | 101 |
|
102 |
|
103 | Cars, Pedestrians, Cyclists | 104 |PyTorch | 105 |ECCV | 106 |2018 | 107 |
| YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud | 110 |
|
111 |
|
112 | Cars, Pedestrians, Cyclists | 113 |PyTorch | 114 |ECCV | 115 |2018 | 116 |
| Pixor: Real-time 3d object detection from point clouds | 119 |
|
120 |
|
121 | Cars | 122 |PyTorch | 123 |CVPR | 124 |2018 | 125 |
| VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection | 128 |
|
129 |
|
130 | Cars, Pedestrians, Cyclists | 131 |PyTorch Tensorflow | 132 |CVPR | 133 |2018 | 134 |
| 3D Fully Convolutional Network using PointCloud data for Vehicle Detection | 137 |
|
138 |
|
139 | Cars | 140 |Tensorflow | 141 |IROS | 142 |2017 | 143 |
| Research Paper | 155 |Datasets | 156 |Metrics | 157 |Objects | 158 |Source Code | 159 |Publisher | 160 |Year | 161 |
|---|---|---|---|---|---|---|
| PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection | 164 |
|
165 |
|
166 | Cars | 167 |PyTorch | 168 |CVPR | 169 |2020 | 170 |
| Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud | 173 |
|
174 |
|
175 | Cars (1 model), Pedestrians and Cyclists(1 model) | 176 |Tensorflow | 177 |CVPR | 178 |2020 | 179 |
| 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds | 182 |
|
183 |
|
184 | Cars | 185 |--- | 186 |ArXiv | 187 |2020 | 188 |
| PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud | 191 |
|
192 |
|
193 | Cars, Pedestrians, Cyclists | 194 |PyTorch | 195 |CVPR | 196 |2019 | 197 |
| Patch Refinement - Localized 3D Object Detection | 200 |
|
201 |
|
202 | Cars, Pedestrians, Cyclists | 203 |--- | 204 |ArXiv | 205 |2019 | 206 |
| StarNet: Targeted Computation for Object Detection in Point Clouds | 209 |
|
210 |
|
211 | Cars, Pedestrians, Cyclists | 212 |PyTorch | 213 |ArXiv | 214 |2019 | 215 |
| Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud | 218 |
|
219 |
|
220 | Cars, Pedestrians, Cyclists | 221 |PyTorch | 222 |ArXiv | 223 |2019 | 224 |
| Fast Point R-CNN | 227 |
|
228 |
|
229 | Cars, Pedestrians, Cyclists | 230 |--- | 231 |ICCV | 232 |2019 | 233 |
| STD: Sparse-to-Dense 3D Object Detector for Point Cloud | 236 |
|
237 |
|
238 | Cars, Pedestrians, Cyclists | 239 |--- | 240 |ICCV | 241 |2019 | 242 |
| Three-dimensional Backbone Network for 3D Object Detection in Traffic Scenes | 245 |
|
246 |
|
247 | Cars, Pedestrians, Cyclists | 248 |PyTorch | 249 |ICCV | 250 |2019 | 251 |
| Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection | 254 |
|
255 |
|
256 | Cars, Pedestrians, Cyclists | 257 |PyTorch | 258 |IROS | 259 |2019 | 260 |
| Frustum PointNets for 3D Object Detection from RGB-D Data | 263 |
|
264 |
|
265 | Cars, Pedestrians, Cyclists | 266 |Tensorflow | 267 |CVPR | 268 |2018 | 269 |
| Research Paper | 280 |Datasets | 281 |Metrics | 282 |Objects | 283 |Source Code | 284 |Publisher | 285 |Year | 286 |
|---|---|---|---|---|---|---|
| RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving | 289 |
|
290 |
|
291 | Cars | 292 |PyTorch | 293 |ECCV | 294 |2020 | 295 |
| Stereo R-CNN based 3D Object Detection for Autonomous Driving | 298 |
|
299 |
|
300 | Cars | 301 |PyTorch | 302 |CVPR | 303 |2019 | 304 |
| M3D-RPN: Monocular 3D Region Proposal Network for Object Detection | 307 |
|
308 |
|
309 | Cars, Pedestrians, Cyclists | 310 |PyTorch | 311 |ICCV | 312 |2019 | 313 |
| Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors | 316 |
|
317 |
|
318 | Cars, Pedestrians, Cyclists | 319 |--- | 320 |ArXiv | 321 |2019 | 322 |
| 3D Bounding Box Estimation Using Deep Learning and Geometry | 325 |
|
326 |
|
327 | Cars, Cyclists | 328 |PyTorch | 329 |CVPR | 330 |2017 | 331 |
| Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image | 334 |
|
335 | Cars | 337 |--- | 338 |CVPR | 339 |2017 | 340 ||
| Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image | 343 |
|
344 |
|
345 | Cars | 346 |Link | 347 |ICRA | 348 |2017 | 349 |
| Research Paper | 359 |Datasets | 360 |Metrics | 361 |Objects | 362 |Source Code | 363 |Publisher | 364 |Year | 365 |
|---|---|---|---|---|---|---|
| ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes | 368 |
|
369 |
|
370 | 37 object categories | 371 |PyTorch | 372 |CVPR | 373 |2020 | 374 |
| Multi-Task Multi-Sensor Fusion for 3D Object Detection | 377 |
|
378 |
|
379 | Cars, Pedestrians, Cyclists | 380 |PyTorch | 381 |CVPR | 382 |2019 | 383 |
| Research Paper | 394 |Datasets | 395 |Metrics | 396 |Objects | 397 |Source Code | 398 |Publisher | 399 |Year | 400 |
|---|---|---|---|---|---|---|
| Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving | 403 |
|
404 |
|
405 | Cars, Pedestrians, Cyclists | 406 |PyTorch | 407 |ICLR | 408 |2020 | 409 |
| Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving | 412 |
|
413 |
|
414 | Cars, Pedestrians, Cyclists | 415 |PyTorch | 416 |CVPR | 417 |2019 | 418 |
| Research Paper | 429 |Datasets | 430 |Metrics | 431 |Objects | 432 |Source Code | 433 |Publisher | 434 |Year | 435 |
|---|---|---|---|---|---|---|
| PPBA: Improving 3D Object Detection through Progressive Population Based Augmentation | 438 |
|
439 |
|
440 | Cars, Pedestrians, Cyclists | 441 |--- | 442 |ArXiv | 443 |2020 | 444 |
| Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection | 447 |
|
448 |
|
449 | 10 object categories | 450 |PyTorch | 451 |ArXiv | 452 |2019 | 453 |
| Weighted Point Cloud Augmentation for Neural Network Training Data Class-Imbalance | 456 |
|
457 | 459 | | --- | 460 |ArXiv | 461 |2019 | 462 |