├── .idea
├── .gitignore
├── PDS-CSVTU-Sem2.iml
├── inspectionProfiles
│ └── profiles_settings.xml
├── misc.xml
├── modules.xml
└── vcs.xml
├── .vscode
└── settings.json
├── Basics_Of_Tensorflow.ipynb
├── Computer_Vision_TensorFlow
├── .ipynb_checkpoints
│ └── 01_Basics_Of_Tensorflow-checkpoint.ipynb
└── 01_Basics_Of_Tensorflow.ipynb
├── Concept_Implementations
├── Ascii_Unicode.py
├── Operators.py
├── Taking_Input.py
├── capitalize_name.py
├── data_types.py
├── end_sep.py
├── f_string.py
├── f_strings.py
├── hello.py
├── hello2.py
├── ok.py
├── okay.txt
├── python_Learnings.ipynb
├── removing_whitespaces.py
├── test.py
├── typecasting.py
└── variables_1.py
├── Keras_Basics
├── .ipynb_checkpoints
│ └── Untitled-checkpoint.ipynb
├── 01_Basics.py
└── Untitled.ipynb
├── LICENSE
├── Neural_Network_from_scratch.ipynb
├── Pandas
└── 01_Pandas_basics.ipynb
├── Practice_Problems
├── Celcius_To_Faren.py
└── Tut_py_cdh.ipynb
├── README.md
├── basic_problem_practices
├── file.txt
└── problem_practices.ipynb
└── numpy
├── 01_numpy_basics.ipynb
├── 02_numpy_advanced.ipynb
└── 03_Numpy_Tricks.ipynb
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 | # Editor-based HTTP Client requests
5 | /httpRequests/
6 | # Datasource local storage ignored files
7 | /dataSources/
8 | /dataSources.local.xml
9 |
--------------------------------------------------------------------------------
/.idea/PDS-CSVTU-Sem2.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.vscode/settings.json:
--------------------------------------------------------------------------------
1 | {
2 | "python.testing.unittestArgs": [
3 | "-v",
4 | "-s",
5 | ".",
6 | "-p",
7 | "*test.py"
8 | ],
9 | "python.testing.pytestEnabled": false,
10 | "python.testing.unittestEnabled": true
11 | }
--------------------------------------------------------------------------------
/Basics_Of_Tensorflow.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "colab_type": "text",
7 | "id": "view-in-github"
8 | },
9 | "source": [
10 | "
"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 1,
16 | "id": "initial_id",
17 | "metadata": {
18 | "ExecuteTime": {
19 | "end_time": "2024-06-09T14:10:46.770853Z",
20 | "start_time": "2024-06-09T14:10:46.648525Z"
21 | },
22 | "collapsed": true,
23 | "id": "initial_id"
24 | },
25 | "outputs": [],
26 | "source": [
27 | "import tensorflow as tf"
28 | ]
29 | },
30 | {
31 | "cell_type": "code",
32 | "execution_count": 2,
33 | "id": "1a56e97d3f7b7d11",
34 | "metadata": {
35 | "colab": {
36 | "base_uri": "https://localhost:8080/"
37 | },
38 | "id": "1a56e97d3f7b7d11",
39 | "outputId": "79f59a24-3ce6-4647-a48d-66e7782d289d"
40 | },
41 | "outputs": [
42 | {
43 | "name": "stdout",
44 | "output_type": "stream",
45 | "text": [
46 | "tf.Tensor(8, shape=(), dtype=int32)\n"
47 | ]
48 | }
49 | ],
50 | "source": [
51 | "tensor_zero_d = tf.constant(8)\n",
52 | "print(tensor_zero_d)"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": 3,
58 | "id": "qZ0x0rYqYO2J",
59 | "metadata": {
60 | "colab": {
61 | "base_uri": "https://localhost:8080/"
62 | },
63 | "id": "qZ0x0rYqYO2J",
64 | "outputId": "72ee9286-aca9-4469-d8f3-cc16a24a62d7"
65 | },
66 | "outputs": [
67 | {
68 | "name": "stdout",
69 | "output_type": "stream",
70 | "text": [
71 | "tf.Tensor([ 2 0 -3], shape=(3,), dtype=int32)\n"
72 | ]
73 | }
74 | ],
75 | "source": [
76 | "tensor_one_d = tf.constant([2,0,-3])\n",
77 | "print(tensor_one_d)"
78 | ]
79 | },
80 | {
81 | "cell_type": "code",
82 | "execution_count": 4,
83 | "id": "qydCUy6GYs1w",
84 | "metadata": {
85 | "colab": {
86 | "base_uri": "https://localhost:8080/"
87 | },
88 | "id": "qydCUy6GYs1w",
89 | "outputId": "de1a0aac-8f9f-4b36-f461-009ed584b6fe"
90 | },
91 | "outputs": [
92 | {
93 | "name": "stdout",
94 | "output_type": "stream",
95 | "text": [
96 | "tf.Tensor(\n",
97 | "[[1 2 3]\n",
98 | " [4 5 6]\n",
99 | " [7 8 9]], shape=(3, 3), dtype=int32)\n"
100 | ]
101 | }
102 | ],
103 | "source": [
104 | "tensor_two_d = tf.constant([\n",
105 | " [1,2,3],\n",
106 | " [4,5,6],\n",
107 | " [7,8,9]\n",
108 | "])\n",
109 | "print(tensor_two_d)"
110 | ]
111 | },
112 | {
113 | "cell_type": "code",
114 | "execution_count": 5,
115 | "id": "gXv7d0EgZHki",
116 | "metadata": {
117 | "id": "gXv7d0EgZHki"
118 | },
119 | "outputs": [],
120 | "source": [
121 | "tensor_three_d = tf.constant([\n",
122 | "\n",
123 | " [[1,2,3],\n",
124 | " [3,5,-1]],\n",
125 | "\n",
126 | " [[10,3,4],\n",
127 | " [1,5,6]],\n",
128 | "\n",
129 | " [[6,5,3],\n",
130 | " [45,76,9]],\n",
131 | "\n",
132 | " [[2,5,3],\n",
133 | " [5,4,5]]\n",
134 | "])"
135 | ]
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": 6,
140 | "id": "nfAEckN5OMIo",
141 | "metadata": {
142 | "id": "nfAEckN5OMIo"
143 | },
144 | "outputs": [],
145 | "source": [
146 | "tensor_four_d = tf.constant([\n",
147 | " [\n",
148 | "\n",
149 | " [[1,2,3],\n",
150 | " [3,5,-1]],\n",
151 | "\n",
152 | " [[10,3,4],\n",
153 | " [1,5,6]],\n",
154 | "\n",
155 | " [[6,5,3],\n",
156 | " [45,76,9]],\n",
157 | "\n",
158 | " [[2,5,3],\n",
159 | " [5,4,5]]\n",
160 | "],\n",
161 | " [\n",
162 | "\n",
163 | " [[1,2,3],\n",
164 | " [3,5,-1]],\n",
165 | "\n",
166 | " [[10,3,4],\n",
167 | " [1,5,6]],\n",
168 | "\n",
169 | " [[6,5,3],\n",
170 | " [45,76,9]],\n",
171 | "\n",
172 | " [[2,5,3],\n",
173 | " [5,4,5]]\n",
174 | "],\n",
175 | " [\n",
176 | "\n",
177 | " [[1,2,3],\n",
178 | " [3,5,-1]],\n",
179 | "\n",
180 | " [[10,3,4],\n",
181 | " [1,5,6]],\n",
182 | "\n",
183 | " [[6,5,3],\n",
184 | " [45,76,9]],\n",
185 | "\n",
186 | " [[2,5,3],\n",
187 | " [5,4,5]]\n",
188 | "]\n",
189 | "])"
190 | ]
191 | },
192 | {
193 | "cell_type": "code",
194 | "execution_count": 7,
195 | "id": "46cc0f50",
196 | "metadata": {},
197 | "outputs": [],
198 | "source": [
199 | "import numpy as np\n"
200 | ]
201 | },
202 | {
203 | "cell_type": "code",
204 | "execution_count": 8,
205 | "id": "d5711469",
206 | "metadata": {},
207 | "outputs": [],
208 | "source": [
209 | "arr = np.array([1,2,3,4,5,6,7,8,9])\n",
210 | "coverted_tensor = tf.convert_to_tensor(arr)"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": 9,
216 | "id": "5d321f95",
217 | "metadata": {},
218 | "outputs": [
219 | {
220 | "name": "stdout",
221 | "output_type": "stream",
222 | "text": [
223 | "tf.Tensor([1 2 3 4 5 6 7 8 9], shape=(9,), dtype=int32)\n"
224 | ]
225 | }
226 | ],
227 | "source": [
228 | "print(coverted_tensor)"
229 | ]
230 | },
231 | {
232 | "cell_type": "code",
233 | "execution_count": 10,
234 | "id": "7bf34052",
235 | "metadata": {},
236 | "outputs": [],
237 | "source": [
238 | "eye_tensor = tf.eye(\n",
239 | " num_rows=4,\n",
240 | " num_columns=None,\n",
241 | " batch_shape=None,\n",
242 | " dtype=tf.dtypes.float32,\n",
243 | " name=None\n",
244 | ")"
245 | ]
246 | },
247 | {
248 | "cell_type": "code",
249 | "execution_count": 11,
250 | "id": "4544f2ef",
251 | "metadata": {},
252 | "outputs": [
253 | {
254 | "name": "stdout",
255 | "output_type": "stream",
256 | "text": [
257 | "tf.Tensor(\n",
258 | "[[1. 0. 0. 0.]\n",
259 | " [0. 1. 0. 0.]\n",
260 | " [0. 0. 1. 0.]\n",
261 | " [0. 0. 0. 1.]], shape=(4, 4), dtype=float32)\n"
262 | ]
263 | }
264 | ],
265 | "source": [
266 | "print(eye_tensor)"
267 | ]
268 | },
269 | {
270 | "cell_type": "code",
271 | "execution_count": 12,
272 | "id": "abb07c3c",
273 | "metadata": {},
274 | "outputs": [
275 | {
276 | "name": "stdout",
277 | "output_type": "stream",
278 | "text": [
279 | "tf.Tensor(\n",
280 | "[[1. 0. 0. 0. 0. 0.]\n",
281 | " [0. 1. 0. 0. 0. 0.]\n",
282 | " [0. 0. 1. 0. 0. 0.]\n",
283 | " [0. 0. 0. 1. 0. 0.]], shape=(4, 6), dtype=float32)\n"
284 | ]
285 | }
286 | ],
287 | "source": [
288 | "eye_tensor1 = tf.eye(\n",
289 | " num_rows=4,\n",
290 | " num_columns=6,\n",
291 | " batch_shape=None,\n",
292 | " dtype=tf.dtypes.float32,\n",
293 | " name=None\n",
294 | ")\n",
295 | "print(eye_tensor1)"
296 | ]
297 | },
298 | {
299 | "cell_type": "code",
300 | "execution_count": 13,
301 | "id": "0103e9d5",
302 | "metadata": {},
303 | "outputs": [
304 | {
305 | "name": "stdout",
306 | "output_type": "stream",
307 | "text": [
308 | "tf.Tensor(\n",
309 | "[[[1. 0. 0. 0.]\n",
310 | " [0. 1. 0. 0.]\n",
311 | " [0. 0. 1. 0.]\n",
312 | " [0. 0. 0. 1.]]\n",
313 | "\n",
314 | " [[1. 0. 0. 0.]\n",
315 | " [0. 1. 0. 0.]\n",
316 | " [0. 0. 1. 0.]\n",
317 | " [0. 0. 0. 1.]]], shape=(2, 4, 4), dtype=float32)\n"
318 | ]
319 | }
320 | ],
321 | "source": [
322 | "eye_tensor2 = tf.eye(\n",
323 | " num_rows=4,\n",
324 | " num_columns=None,\n",
325 | " batch_shape=[2],\n",
326 | " dtype=tf.dtypes.float32,\n",
327 | " name=None\n",
328 | ")\n",
329 | "print(eye_tensor2)"
330 | ]
331 | },
332 | {
333 | "cell_type": "code",
334 | "execution_count": 14,
335 | "id": "39d7dac2",
336 | "metadata": {},
337 | "outputs": [],
338 | "source": [
339 | "filled_tensor = tf.fill([2,3], 8)"
340 | ]
341 | },
342 | {
343 | "cell_type": "code",
344 | "execution_count": 15,
345 | "id": "4cc9ec02",
346 | "metadata": {},
347 | "outputs": [
348 | {
349 | "name": "stdout",
350 | "output_type": "stream",
351 | "text": [
352 | "tf.Tensor(\n",
353 | "[[8 8 8]\n",
354 | " [8 8 8]], shape=(2, 3), dtype=int32)\n"
355 | ]
356 | }
357 | ],
358 | "source": [
359 | "print(filled_tensor)"
360 | ]
361 | },
362 | {
363 | "cell_type": "code",
364 | "execution_count": 16,
365 | "id": "793f5e60",
366 | "metadata": {},
367 | "outputs": [
368 | {
369 | "data": {
370 | "text/plain": [
371 | ""
372 | ]
373 | },
374 | "execution_count": 16,
375 | "metadata": {},
376 | "output_type": "execute_result"
377 | }
378 | ],
379 | "source": [
380 | "tf.shape(tensor_four_d)"
381 | ]
382 | },
383 | {
384 | "cell_type": "code",
385 | "execution_count": 17,
386 | "id": "6e6ea28b",
387 | "metadata": {},
388 | "outputs": [
389 | {
390 | "data": {
391 | "text/plain": [
392 | ""
393 | ]
394 | },
395 | "execution_count": 17,
396 | "metadata": {},
397 | "output_type": "execute_result"
398 | }
399 | ],
400 | "source": [
401 | "tf.size(tensor_four_d)"
402 | ]
403 | },
404 | {
405 | "cell_type": "code",
406 | "execution_count": 20,
407 | "id": "13451544",
408 | "metadata": {},
409 | "outputs": [],
410 | "source": [
411 | "# random tensors\n",
412 | "\n",
413 | "randome_tensor = tf.random.normal(\n",
414 | " [3,2,2],\n",
415 | " mean =0.0,\n",
416 | " stddev=1.0,\n",
417 | " dtype=tf.dtypes.float32,\n",
418 | " seed=None,\n",
419 | " name=None\n",
420 | ")"
421 | ]
422 | },
423 | {
424 | "cell_type": "code",
425 | "execution_count": 21,
426 | "id": "396737c0",
427 | "metadata": {},
428 | "outputs": [
429 | {
430 | "name": "stdout",
431 | "output_type": "stream",
432 | "text": [
433 | "tf.Tensor(\n",
434 | "[[[-0.94215214 -0.68370026]\n",
435 | " [ 0.15898167 -0.9476472 ]]\n",
436 | "\n",
437 | " [[ 0.5433289 -0.74997306]\n",
438 | " [ 0.7603781 0.90746987]]\n",
439 | "\n",
440 | " [[ 0.47381338 -0.22523715]\n",
441 | " [-0.25446403 0.23084885]]], shape=(3, 2, 2), dtype=float32)\n"
442 | ]
443 | }
444 | ],
445 | "source": [
446 | "print(randome_tensor)"
447 | ]
448 | },
449 | {
450 | "cell_type": "code",
451 | "execution_count": 22,
452 | "id": "0acbe1b7",
453 | "metadata": {},
454 | "outputs": [],
455 | "source": [
456 | "#uniform tensor\n",
457 | "uniform_tensor = tf.random.uniform(\n",
458 | " [2,4,5],\n",
459 | " minval = 0,\n",
460 | " maxval = None,\n",
461 | " dtype = tf.dtypes.float32,\n",
462 | " seed = None,\n",
463 | " name = None\n",
464 | ")"
465 | ]
466 | },
467 | {
468 | "cell_type": "code",
469 | "execution_count": 23,
470 | "id": "d891b113",
471 | "metadata": {},
472 | "outputs": [
473 | {
474 | "name": "stdout",
475 | "output_type": "stream",
476 | "text": [
477 | "tf.Tensor(\n",
478 | "[[[0.5950475 0.664094 0.8105799 0.7654351 0.0633949 ]\n",
479 | " [0.05833912 0.13866317 0.17369008 0.06138539 0.25493038]\n",
480 | " [0.5600575 0.15159655 0.27926755 0.9447837 0.486354 ]\n",
481 | " [0.10908127 0.7079065 0.0742588 0.9124538 0.348966 ]]\n",
482 | "\n",
483 | " [[0.07500505 0.50155103 0.8346634 0.42695498 0.9723712 ]\n",
484 | " [0.01290166 0.93380535 0.0856235 0.9937459 0.25540137]\n",
485 | " [0.6791761 0.38062 0.726624 0.80450785 0.3083142 ]\n",
486 | " [0.5216892 0.08864832 0.02486145 0.4966612 0.9902508 ]]], shape=(2, 4, 5), dtype=float32)\n"
487 | ]
488 | }
489 | ],
490 | "source": [
491 | "print(uniform_tensor)"
492 | ]
493 | },
494 | {
495 | "cell_type": "markdown",
496 | "id": "44da8a8c",
497 | "metadata": {},
498 | "source": [
499 | "## Tensor Indexing"
500 | ]
501 | },
502 | {
503 | "cell_type": "code",
504 | "execution_count": 25,
505 | "id": "85ef8057",
506 | "metadata": {},
507 | "outputs": [
508 | {
509 | "name": "stdout",
510 | "output_type": "stream",
511 | "text": [
512 | "tf.Tensor([1 2 3 4 5 6 7 8 9], shape=(9,), dtype=int32)\n",
513 | "tf.Tensor(1, shape=(), dtype=int32)\n",
514 | "tf.Tensor(2, shape=(), dtype=int32)\n",
515 | "tf.Tensor(3, shape=(), dtype=int32)\n",
516 | "tf.Tensor(4, shape=(), dtype=int32)\n",
517 | "tf.Tensor(5, shape=(), dtype=int32)\n",
518 | "tf.Tensor(6, shape=(), dtype=int32)\n",
519 | "tf.Tensor(7, shape=(), dtype=int32)\n",
520 | "tf.Tensor(8, shape=(), dtype=int32)\n",
521 | "tf.Tensor(9, shape=(), dtype=int32)\n"
522 | ]
523 | }
524 | ],
525 | "source": [
526 | "tensor_indexed = tf.constant([1,2,3,4,5,6,7,8,9])\n",
527 | "print(tensor_indexed)\n",
528 | "print(tensor_indexed[0])\n",
529 | "print(tensor_indexed[1])\n",
530 | "print(tensor_indexed[2])\n",
531 | "print(tensor_indexed[3])\n",
532 | "print(tensor_indexed[4])\n",
533 | "print(tensor_indexed[5])\n",
534 | "print(tensor_indexed[6])\n",
535 | "print(tensor_indexed[7])\n",
536 | "print(tensor_indexed[8])"
537 | ]
538 | },
539 | {
540 | "cell_type": "code",
541 | "execution_count": 26,
542 | "id": "f8c1596f",
543 | "metadata": {},
544 | "outputs": [
545 | {
546 | "name": "stdout",
547 | "output_type": "stream",
548 | "text": [
549 | "tf.Tensor([1 2 3], shape=(3,), dtype=int32)\n"
550 | ]
551 | }
552 | ],
553 | "source": [
554 | "print(tensor_indexed[0:3])"
555 | ]
556 | },
557 | {
558 | "cell_type": "code",
559 | "execution_count": 27,
560 | "id": "50779865",
561 | "metadata": {},
562 | "outputs": [
563 | {
564 | "name": "stdout",
565 | "output_type": "stream",
566 | "text": [
567 | "tf.Tensor([1 3 5 7], shape=(4,), dtype=int32)\n"
568 | ]
569 | }
570 | ],
571 | "source": [
572 | "print(tensor_indexed[0:8:2])"
573 | ]
574 | },
575 | {
576 | "cell_type": "code",
577 | "execution_count": null,
578 | "id": "7ecf0fd0",
579 | "metadata": {},
580 | "outputs": [],
581 | "source": [
582 | "#timestamp = 1:22:00"
583 | ]
584 | }
585 | ],
586 | "metadata": {
587 | "colab": {
588 | "include_colab_link": true,
589 | "provenance": []
590 | },
591 | "kernelspec": {
592 | "display_name": "Python 3",
593 | "language": "python",
594 | "name": "python3"
595 | },
596 | "language_info": {
597 | "codemirror_mode": {
598 | "name": "ipython",
599 | "version": 3
600 | },
601 | "file_extension": ".py",
602 | "mimetype": "text/x-python",
603 | "name": "python",
604 | "nbconvert_exporter": "python",
605 | "pygments_lexer": "ipython3",
606 | "version": "3.12.4"
607 | }
608 | },
609 | "nbformat": 4,
610 | "nbformat_minor": 5
611 | }
612 |
--------------------------------------------------------------------------------
/Computer_Vision_TensorFlow/.ipynb_checkpoints/01_Basics_Of_Tensorflow-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "initial_id",
7 | "metadata": {
8 | "ExecuteTime": {
9 | "end_time": "2024-06-11T14:39:05.184563Z",
10 | "start_time": "2024-06-11T14:39:04.499328Z"
11 | }
12 | },
13 | "outputs": [],
14 | "source": [
15 | "import tensorflow as tf"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": null,
21 | "id": "1a56e97d3f7b7d11",
22 | "metadata": {},
23 | "outputs": [],
24 | "source": []
25 | }
26 | ],
27 | "metadata": {
28 | "kernelspec": {
29 | "display_name": "Python 3 (ipykernel)",
30 | "language": "python",
31 | "name": "python3"
32 | },
33 | "language_info": {
34 | "codemirror_mode": {
35 | "name": "ipython",
36 | "version": 3
37 | },
38 | "file_extension": ".py",
39 | "mimetype": "text/x-python",
40 | "name": "python",
41 | "nbconvert_exporter": "python",
42 | "pygments_lexer": "ipython3",
43 | "version": "3.11.5"
44 | }
45 | },
46 | "nbformat": 4,
47 | "nbformat_minor": 5
48 | }
49 |
--------------------------------------------------------------------------------
/Computer_Vision_TensorFlow/01_Basics_Of_Tensorflow.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "initial_id",
7 | "metadata": {
8 | "ExecuteTime": {
9 | "end_time": "2024-06-11T14:39:05.184563Z",
10 | "start_time": "2024-06-11T14:39:04.499328Z"
11 | }
12 | },
13 | "outputs": [],
14 | "source": [
15 | "import tensorflow as tf"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": null,
21 | "id": "1a56e97d3f7b7d11",
22 | "metadata": {},
23 | "outputs": [],
24 | "source": []
25 | }
26 | ],
27 | "metadata": {
28 | "kernelspec": {
29 | "display_name": "Python 3 (ipykernel)",
30 | "language": "python",
31 | "name": "python3"
32 | },
33 | "language_info": {
34 | "codemirror_mode": {
35 | "name": "ipython",
36 | "version": 3
37 | },
38 | "file_extension": ".py",
39 | "mimetype": "text/x-python",
40 | "name": "python",
41 | "nbconvert_exporter": "python",
42 | "pygments_lexer": "ipython3",
43 | "version": "3.11.5"
44 | }
45 | },
46 | "nbformat": 4,
47 | "nbformat_minor": 5
48 | }
49 |
--------------------------------------------------------------------------------
/Concept_Implementations/Ascii_Unicode.py:
--------------------------------------------------------------------------------
1 | #Ascii and Unicode values of a character
2 | # Ascii values of a character
3 | print(ord('a'))
4 | print(ord('A'))
5 | # Unicode values of a character
6 | print(ord('€'))
7 | print(ord('¥'))
8 | # Character of an Ascii value
9 | print(chr(97))
10 | print(chr(65))
11 | # Character of a Unicode value
12 | print(chr(8364))
13 | print(chr(165))
14 | # Output:
15 | # 97
16 | # 65
17 | # 8364
18 | # 165
19 | # a
20 | # A
21 | # €
22 | # ¥
23 |
--------------------------------------------------------------------------------
/Concept_Implementations/Operators.py:
--------------------------------------------------------------------------------
1 | #Operators in Python :-
2 |
3 | #Arithmetic Operators :-
4 | #Addition :-
5 | a = 10
6 | b = 20
7 | c = a + b
8 | print("Addition of a and b is : ", c)
9 | #Subtraction :-
10 | c = a - b
11 | print("Subtraction of a and b is : ", c)
12 | #Multiplication :-
13 | c = a * b
14 | print("Multiplication of a and b is : ", c)
15 | #Division :-
16 | c = a / b
17 | print("Division of a and b is : ", c)
18 | #Modulus :-
19 | c = a % b
20 | print("Modulus of a and b is : ", c)
21 | #Floor Division :-
22 | c = a // b
23 | print("Floor Division of a and b is : ", c)
24 | #Exponentiation :-
25 | c = a ** b
26 | print("Exponentiation of a and b is : ", c)
27 | #Comparison Operators :-
28 | #Equal to :-
29 | a = 10
30 | b = 20
31 | if a == b:
32 | print("a is equal to b")
33 | else:
34 | print("a is not equal to b")
35 | #Not Equal to :-
36 | if a != b:
37 | print("a is not equal to b")
38 | else:
39 | print("a is equal to b")
40 | #Greater than :-
41 | if a > b:
42 | print("a is greater than b")
43 | else:
44 | print("a is not greater than b")
45 | #Less than :-
46 | if a < b:
47 | print("a is less than b")
48 | else:
49 | print("a is not less than b")
50 | #Greater than or equal to :-
51 | if a >= b:
52 | print("a is greater than or equal to b")
53 | else:
54 | print("a is not greater than or equal to b")
55 | #Less than or equal to :-
56 | if a <= b:
57 | print("a is less than or equal to b")
58 | else:
59 | print("a is not less than or equal to b")
60 | #Logical Operators :-
61 | #AND :-
62 | a = 10
63 | b = 20
64 | c = 30
65 | if a > b and a > c:
66 | print("a is the greatest")
67 | elif b > a and b > c:
68 | print("b is the greatest")
69 | else:
70 | print("c is the greatest")
71 | #OR :-
72 | if a > b or a > c:
73 | print("a is the greatest")
74 | elif b > a or b > c:
75 | print("b is the greatest")
76 | else:
77 | print("c is the greatest")
78 | #NOT :-
79 | if not a > b:
80 | print("a is not greater than b")
81 | else:
82 | print("a is greater than b")
83 | #Assignment Operators :-
84 | #Equal to :-
85 | a = 10
86 | b = 20
87 | c = a
88 | print("c is : ", c)
89 | #Addition :-
90 | c += a
91 | print("c is : ", c)
92 | #Subtraction :-
93 | c -= a
94 | print("c is : ", c)
95 | #Multiplication :-
96 | c *= a
97 | print("c is : ", c)
98 | #Division :-
99 | c /= a
100 | print("c is : ", c)
101 | #Modulus :-
102 | c %= a
103 | print("c is : ", c)
104 | #Floor Division :-
105 | c //= a
106 | print("c is : ", c)
107 | #Exponentiation :-
108 | c **= a
109 | print("c is : ", c)
110 | #Bitwise Operators :-
111 | #AND :-
112 | a = 10
113 | b = 20
114 | c = a & b
115 | print("c is : ", c)
116 | #OR :-
117 | c = a | b
118 | print("c is : ", c)
119 | #XOR :-
120 | c = a ^ b
121 | print("c is : ", c)
122 | #NOT :-
123 | c = ~a
124 | print("c is : ", c)
125 | #Left Shift :-
126 | c = a << 2
127 | print("c is : ", c)
128 | #Right Shift :-
129 | c = a >> 2
130 | print("c is : ", c)
131 | #Identity Operators :-
132 | #is :-
133 | a = 10
134 | b = 20
135 | if a is b:
136 | print("a and b are same")
137 | else:
138 | print("a and b are not same")
139 | #is not :-
140 | if a is not b:
141 | print("a and b are not same")
142 | else:
143 | print("a and b are same")
144 | #Membership Operators :-
145 | #in :-
146 | a = [10, 20, 30, 40, 50]
147 | if 10 in a:
148 | print("10 is in a")
149 | else:
150 | print("10 is not in a")
151 | #not in :-
152 | if 10 not in a:
153 | print("10 is not in a")
154 | else:
155 | print("10 is in a")
156 | #Ternary Operator :-
157 | a = 10
158 | b = 20
159 | c = a if a > b else b
160 | print("c is : ", c)
161 | #Operator Precedence :-
162 | #Precedence of Operators :-
163 | #1. Parentheses ()
164 | #2. Exponentiation **
165 | #3. Complement ~, Unary +, Unary -
166 | #4. Multiplication *, Division /, Floor Division //, Modulus %
167 | #5. Addition +, Subtraction -
168 | #6. Right to Left
169 | #7. Left Shift <<, Right Shift >>
170 | #8. Bitwise AND &
171 | #9. Bitwise XOR ^
172 | #10. Bitwise OR |
173 | #11. Comparison Operators
174 | #12. Logical Operators
175 | #13. Assignment Operators
176 | #14. Identity Operators
177 | #15. Membership Operators
178 | #16. Ternary Operator
179 | #17. Comma ,
180 |
--------------------------------------------------------------------------------
/Concept_Implementations/Taking_Input.py:
--------------------------------------------------------------------------------
1 | #Taking input from user
2 | name = input("What's your name ? ")
3 | print("Hello ", name)
4 | #Taking integer input from user
5 | age = int(input("What's your age ? "))
6 | print("Your age is ", age)
7 | #Taking float input from user
8 | height = float(input("What's your height ? "))
9 | print("Your height is ", height)
10 | #Taking boolean input from user
11 | is_student = bool(input("Are you a student ? "))
12 | print("Are you a student ? ", is_student)
13 | #Taking complex input from user
14 | complex_number = complex(input("Enter a complex number : "))
15 | print("Complex number is ", complex_number)
16 | #Taking list input from user
17 | list = list(input("Enter a list : "))
18 | print("List is ", list)
19 | #Taking tuple input from user
20 | tuple = tuple(input("Enter a tuple : "))
21 | print("Tuple is ", tuple)
22 | #Taking set input from user
23 | set = set(input("Enter a set : "))
24 | print("Set is ", set)
25 | #Taking dictionary input from user
26 | dict = dict(input("Enter a dictionary : "))
27 | print("Dictionary is ", dict)
28 | #Taking string input from user
29 | string = str(input("Enter a string : "))
30 | print("String is ", string)
31 | #Taking multiple inputs from user
32 | name, age = input("Enter your name and age : ").split()
33 | print("Your name is ", name)
34 | print("Your age is ", age)
35 | #Taking multiple integer inputs from user
36 | x, y = map(int, input("Enter two numbers : ").split())
37 | print("Sum is ", x+y)
38 | #Taking multiple float inputs from user
39 | x, y = map(float, input("Enter two numbers : ").split())
40 | print("Sum is ", x+y)
41 | #Taking multiple boolean inputs from user
42 | x, y = map(bool, input("Enter two boolean values : ").split())
43 | print("Sum is ", x+y)
44 | #Taking multiple complex inputs from user
45 | x, y = map(complex, input("Enter two complex numbers : ").split())
46 | print("Sum is ", x+y)
47 | #Taking multiple list inputs from user
48 | x, y = map(list, input("Enter two lists : ").split())
49 | print("Sum is ", x+y)
50 | #Taking multiple tuple inputs from user
51 | x, y = map(tuple, input("Enter two tuples : ").split())
52 | print("Sum is ", x+y)
53 | #Taking multiple set inputs from user
54 | x, y = map(set, input("Enter two sets : ").split())
55 | print("Sum is ", x+y)
56 | #Taking multiple dictionary inputs from user
57 | x, y = map(dict, input("Enter two dictionaries : ").split())
58 | print("Sum is ", x+y)
59 | #Taking multiple string inputs from user
60 | x, y = map(str, input("Enter two strings : ").split())
61 | print("Sum is ", x+y)
--------------------------------------------------------------------------------
/Concept_Implementations/capitalize_name.py:
--------------------------------------------------------------------------------
1 | # ASk user input
2 | name = input("What is your name deer ?")
3 |
4 | # Capitalize the name
5 |
6 | name = name.capitalize()
7 |
8 | # capitalize() capitalizes the first letter of the string
9 |
10 |
11 | print(f"Hello {name}!")
12 |
--------------------------------------------------------------------------------
/Concept_Implementations/data_types.py:
--------------------------------------------------------------------------------
1 | #Numeric Data Types
2 | #int
3 | int = 100
4 | print("This is ",type(int))
5 | #float
6 | float = 100.0
7 | print("This is ",type(float))
8 | #complex
9 | complex = 1+2j
10 | print("This is ",type(complex))
11 | #Sequence Data Types
12 | #String
13 | string = "Hello"
14 | print("This is ",type(string))
15 | #List
16 | list = [1,2,3,4,5]
17 | print("This is ",type(list))
18 | #Tuple
19 | tuple = (1,2,3,4,5)
20 | print("This is ",type(tuple))
21 | #Set
22 | set = {1,2,3,4,5}
23 | print("This is ",type(set))
24 | #Dictionary
25 | dict = {"name":"John", "age":25}
26 | print("This is ",type(dict))
27 | #Boolean Data Type
28 | boolean = True
29 | print("This is ",type(boolean))
30 |
31 |
--------------------------------------------------------------------------------
/Concept_Implementations/end_sep.py:
--------------------------------------------------------------------------------
1 | #printing with separator
2 | print("Hello", "World", sep="***")
3 | # printing with end
4 | print("Hello", end=" ")
5 | print("World")
6 | # printing with end and separator
7 | print("Hello", "World", sep="***", end="!!!")
8 |
--------------------------------------------------------------------------------
/Concept_Implementations/f_string.py:
--------------------------------------------------------------------------------
1 | # Ask user for there name and age and print it using f-string
2 |
3 | name = input("Enter your name: ")
4 | age = input("Enter your age: ")
5 | print(f"Hello {name}, you are {age} years old.")
6 |
7 | # Output:
8 | # Enter your name: John
9 | # Enter your age: 25
10 | # Hello John, you are 25 years old.
11 |
--------------------------------------------------------------------------------
/Concept_Implementations/f_strings.py:
--------------------------------------------------------------------------------
1 | # Ask user for name and age and print a message with that information
2 | name = input("What is your name? ")
3 | age = input("What is your age? ")
4 | print(f"Hello {name}! You are {age} years old.")
5 |
--------------------------------------------------------------------------------
/Concept_Implementations/hello.py:
--------------------------------------------------------------------------------
1 | print("Hello World")
--------------------------------------------------------------------------------
/Concept_Implementations/hello2.py:
--------------------------------------------------------------------------------
1 | name = input("WHat's your name ? ")
2 | print("Hello ", name)
--------------------------------------------------------------------------------
/Concept_Implementations/ok.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import numpy as np
3 | import argparse
4 |
5 | def resize_image(image, height):
6 | """Resize the image while maintaining aspect ratio."""
7 | ratio = height / image.shape[0]
8 | return cv2.resize(image, (int(ratio * image.shape[1]), height))
9 |
10 | def preprocess_image(image):
11 | """Preprocess the image for document detection."""
12 | # Convert to grayscale
13 | gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
14 |
15 | # Bilateral Filter to reduce noise and preserve edges
16 | filtered = cv2.bilateralFilter(gray, 11, 50, 50)
17 |
18 | # Adaptive Thresholding to create binary image
19 | binary = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 4)
20 |
21 | # Median Blur to further remove noise
22 | blurred = cv2.medianBlur(binary, 11)
23 |
24 | # Add a black border to handle edge cases
25 | bordered = cv2.copyMakeBorder(blurred, 4, 4, 4, 4, cv2.BORDER_CONSTANT, value=[0, 0, 0])
26 |
27 | return bordered
28 |
29 | def detect_document(image):
30 | """Detect document corners in the preprocessed image."""
31 | # Detect edges using Canny edge detector
32 | edges = cv2.Canny(image, 200, 250)
33 |
34 | # Find contours in the edge-detected image
35 | _, contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
36 |
37 | # Sort contours by area and select the largest 10
38 | contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
39 |
40 | # Iterate through contours and approximate polygon
41 | for cnt in contours:
42 | perimeter = cv2.arcLength(cnt, True)
43 | approx = cv2.approxPolyDP(cnt, 0.03 * perimeter, True)
44 |
45 | # If the contour has 4 corners, it's likely the document
46 | if len(approx) == 4:
47 | return approx.reshape(4, 2)
48 |
49 | return None
50 |
51 | def transform_image(image, corners):
52 | """Transform the image to correct perspective."""
53 | # Define target points for perspective transformation
54 | height = max(np.linalg.norm(corners[0] - corners[1]), np.linalg.norm(corners[2] - corners[3]))
55 | width = max(np.linalg.norm(corners[1] - corners[2]), np.linalg.norm(corners[3] - corners[0]))
56 | target = np.array([[0, 0], [0, height], [width, height], [width, 0]], np.float32)
57 |
58 | # Calculate perspective transformation matrix
59 | M = cv2.getPerspectiveTransform(corners, target)
60 |
61 | # Warp the image to correct perspective
62 | return cv2.warpPerspective(image, M, (int(width), int(height)))
63 |
64 | def main():
65 | # Construct the argument parser and parse the arguments
66 | ap = argparse.ArgumentParser()
67 | ap.add_argument("-img", "--image", required=True, help="Path to the image")
68 | args = vars(ap.parse_args())
69 |
70 | # Load the image
71 | image = cv2.imread(args['image'])
72 |
73 | # Resize the image
74 | image = resize_image(image, 800)
75 |
76 | # Preprocess the image
77 | preprocessed_image = preprocess_image(image.copy())
78 |
79 | # Detect document corners
80 | corners = detect_document(preprocessed_image)
81 | if corners is None:
82 | print("No document found.")
83 | return
84 |
85 | # Transform the image
86 | transformed_image = transform_image(image, corners)
87 |
88 | # Display the original and transformed images
89 | cv2.imshow("Original Image", image)
90 | cv2.imshow("Transformed Image", transformed_image)
91 | cv2.waitKey(0)
92 | cv2.destroyAllWindows()
93 |
94 | if __name__ == "__main__":
95 | main()
96 |
--------------------------------------------------------------------------------
/Concept_Implementations/okay.txt:
--------------------------------------------------------------------------------
1 | Hello, World!Hello, World!
--------------------------------------------------------------------------------
/Concept_Implementations/python_Learnings.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 7,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stdout",
10 | "output_type": "stream",
11 | "text": [
12 | "HEllo, World!\n"
13 | ]
14 | }
15 | ],
16 | "source": [
17 | "print(\"HEllo, World!\")"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 8,
23 | "metadata": {},
24 | "outputs": [],
25 | "source": [
26 | "import numpy as np "
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": 9,
32 | "metadata": {},
33 | "outputs": [],
34 | "source": [
35 | "import pandas as pd"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": 10,
41 | "metadata": {},
42 | "outputs": [
43 | {
44 | "name": "stdout",
45 | "output_type": "stream",
46 | "text": [
47 | "Requirement already satisfied: matplotlib in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (3.9.1)\n",
48 | "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (1.2.1)\n",
49 | "Requirement already satisfied: cycler>=0.10 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (0.12.1)\n",
50 | "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (4.53.1)\n",
51 | "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (1.4.5)\n",
52 | "Requirement already satisfied: numpy>=1.23 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (2.0.1)\n",
53 | "Requirement already satisfied: packaging>=20.0 in c:\\users\\abhi\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib) (24.1)\n",
54 | "Requirement already satisfied: pillow>=8 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (10.4.0)\n",
55 | "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (3.1.2)\n",
56 | "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n",
57 | "Requirement already satisfied: six>=1.5 in c:\\users\\abhi\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n"
58 | ]
59 | },
60 | {
61 | "name": "stderr",
62 | "output_type": "stream",
63 | "text": [
64 | "\n",
65 | "[notice] A new release of pip is available: 24.0 -> 24.2\n",
66 | "[notice] To update, run: python.exe -m pip install --upgrade pip\n"
67 | ]
68 | }
69 | ],
70 | "source": [
71 | "!pip install matplotlib"
72 | ]
73 | },
74 | {
75 | "cell_type": "code",
76 | "execution_count": 11,
77 | "metadata": {},
78 | "outputs": [],
79 | "source": [
80 | "import matplotlib.pyplot as plt"
81 | ]
82 | },
83 | {
84 | "cell_type": "markdown",
85 | "metadata": {},
86 | "source": [
87 | "## Variables"
88 | ]
89 | },
90 | {
91 | "cell_type": "code",
92 | "execution_count": 12,
93 | "metadata": {},
94 | "outputs": [],
95 | "source": [
96 | "a = 1\n",
97 | "b ='1'\n",
98 | "c = \"1\"\n",
99 | "d = 1.0"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": 13,
105 | "metadata": {},
106 | "outputs": [
107 | {
108 | "name": "stdout",
109 | "output_type": "stream",
110 | "text": [
111 | "\n",
112 | "\n",
113 | "\n",
114 | "\n"
115 | ]
116 | }
117 | ],
118 | "source": [
119 | "print(type(a))\n",
120 | "print(type(b))\n",
121 | "print(type(c))\n",
122 | "print(type(d))"
123 | ]
124 | },
125 | {
126 | "cell_type": "code",
127 | "execution_count": 14,
128 | "metadata": {},
129 | "outputs": [
130 | {
131 | "name": "stdout",
132 | "output_type": "stream",
133 | "text": [
134 | "1\n",
135 | "1\n",
136 | "1\n",
137 | "1.0\n"
138 | ]
139 | }
140 | ],
141 | "source": [
142 | "print(a)\n",
143 | "print(b)\n",
144 | "print(c)\n",
145 | "print(d)"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": 15,
151 | "metadata": {},
152 | "outputs": [
153 | {
154 | "name": "stdout",
155 | "output_type": "stream",
156 | "text": [
157 | "Python\n",
158 | "P\n",
159 | "y\n",
160 | "t\n",
161 | "h\n",
162 | "o\n",
163 | "n\n"
164 | ]
165 | }
166 | ],
167 | "source": [
168 | "x ='Python'\n",
169 | "print(x)\n",
170 | "print(x[0])\n",
171 | "print(x[1])\n",
172 | "print(x[2])\n",
173 | "print(x[3])\n",
174 | "print(x[4])\n",
175 | "print(x[5])\n"
176 | ]
177 | },
178 | {
179 | "cell_type": "code",
180 | "execution_count": 16,
181 | "metadata": {},
182 | "outputs": [],
183 | "source": [
184 | "var_1, var_2, var_3 = 10, 20, 30"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": 17,
190 | "metadata": {},
191 | "outputs": [],
192 | "source": [
193 | "var_1 = var_2 = var_3 = 40"
194 | ]
195 | },
196 | {
197 | "cell_type": "markdown",
198 | "metadata": {},
199 | "source": [
200 | "## Comments"
201 | ]
202 | },
203 | {
204 | "cell_type": "code",
205 | "execution_count": 18,
206 | "metadata": {},
207 | "outputs": [],
208 | "source": [
209 | "# This is example of single line comment"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": 19,
215 | "metadata": {},
216 | "outputs": [
217 | {
218 | "data": {
219 | "text/plain": [
220 | "'This is example of multi line comment'"
221 | ]
222 | },
223 | "execution_count": 19,
224 | "metadata": {},
225 | "output_type": "execute_result"
226 | }
227 | ],
228 | "source": [
229 | "'''This is example of multi line comment'''"
230 | ]
231 | },
232 | {
233 | "cell_type": "markdown",
234 | "metadata": {},
235 | "source": [
236 | "## Datatype"
237 | ]
238 | },
239 | {
240 | "cell_type": "code",
241 | "execution_count": 20,
242 | "metadata": {},
243 | "outputs": [],
244 | "source": [
245 | "d1 = 5\n",
246 | "d2 = 'abhinav'\n",
247 | "d3 = 5.0\n",
248 | "d4 = True\n",
249 | "d5 = 5+3j\n",
250 | "d6 = [1,2,3,4,5]\n",
251 | "d7 = (1,2,3,4,5)\n",
252 | "d8 = {1:'one', 2:'two', 3:'three'}\n",
253 | "d9 = {1,2,3,4,5}\n",
254 | "d10 = None"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 21,
260 | "metadata": {},
261 | "outputs": [
262 | {
263 | "name": "stdout",
264 | "output_type": "stream",
265 | "text": [
266 | "\n",
267 | "\n",
268 | "\n",
269 | "\n",
270 | "\n",
271 | "\n",
272 | "\n",
273 | "\n",
274 | "\n",
275 | "\n"
276 | ]
277 | }
278 | ],
279 | "source": [
280 | "print(type(d1))\n",
281 | "print(type(d2))\n",
282 | "print(type(d3))\n",
283 | "print(type(d4))\n",
284 | "print(type(d5))\n",
285 | "print(type(d6))\n",
286 | "print(type(d7))\n",
287 | "print(type(d8))\n",
288 | "print(type(d9))\n",
289 | "print(type(d10))"
290 | ]
291 | },
292 | {
293 | "cell_type": "markdown",
294 | "metadata": {},
295 | "source": [
296 | "## String"
297 | ]
298 | },
299 | {
300 | "cell_type": "code",
301 | "execution_count": 22,
302 | "metadata": {},
303 | "outputs": [
304 | {
305 | "name": "stdout",
306 | "output_type": "stream",
307 | "text": [
308 | "This is example of multi line string\n"
309 | ]
310 | }
311 | ],
312 | "source": [
313 | "A = '''This is example of multi line string'''\n",
314 | "print(A)"
315 | ]
316 | },
317 | {
318 | "cell_type": "code",
319 | "execution_count": 23,
320 | "metadata": {},
321 | "outputs": [
322 | {
323 | "name": "stdout",
324 | "output_type": "stream",
325 | "text": [
326 | "36\n"
327 | ]
328 | }
329 | ],
330 | "source": [
331 | "print(len(A))"
332 | ]
333 | },
334 | {
335 | "cell_type": "markdown",
336 | "metadata": {},
337 | "source": [
338 | "## Type Conversion"
339 | ]
340 | },
341 | {
342 | "cell_type": "code",
343 | "execution_count": 24,
344 | "metadata": {},
345 | "outputs": [
346 | {
347 | "name": "stdout",
348 | "output_type": "stream",
349 | "text": [
350 | "30.0\n"
351 | ]
352 | }
353 | ],
354 | "source": [
355 | "## implicit type conversion\n",
356 | "a = 10\n",
357 | "b = 20.0\n",
358 | "c = a + b\n",
359 | "print(c)"
360 | ]
361 | },
362 | {
363 | "cell_type": "code",
364 | "execution_count": 25,
365 | "metadata": {},
366 | "outputs": [
367 | {
368 | "name": "stdout",
369 | "output_type": "stream",
370 | "text": [
371 | "30\n",
372 | "\n"
373 | ]
374 | }
375 | ],
376 | "source": [
377 | "## explicit type conversion\n",
378 | "a = 10\n",
379 | "b = '20'\n",
380 | "c = a + int(b)\n",
381 | "print(c)"
382 | ]
383 | },
384 | {
385 | "cell_type": "markdown",
386 | "metadata": {},
387 | "source": [
388 | "## Operators"
389 | ]
390 | },
391 | {
392 | "cell_type": "code",
393 | "execution_count": 26,
394 | "metadata": {},
395 | "outputs": [],
396 | "source": [
397 | "# Arithmetic Operators\n",
398 | "a = 10\n",
399 | "b = 20"
400 | ]
401 | },
402 | {
403 | "cell_type": "code",
404 | "execution_count": 27,
405 | "metadata": {},
406 | "outputs": [
407 | {
408 | "name": "stdout",
409 | "output_type": "stream",
410 | "text": [
411 | "30\n",
412 | "-10\n",
413 | "200\n",
414 | "0.5\n",
415 | "10\n",
416 | "100000000000000000000\n",
417 | "0\n"
418 | ]
419 | }
420 | ],
421 | "source": [
422 | "print(a+b)\n",
423 | "print(a-b)\n",
424 | "print(a*b)\n",
425 | "print(a/b)\n",
426 | "print(a%b)\n",
427 | "print(a**b)\n",
428 | "print(a//b)\n"
429 | ]
430 | },
431 | {
432 | "cell_type": "code",
433 | "execution_count": 28,
434 | "metadata": {},
435 | "outputs": [],
436 | "source": [
437 | "# Comparison Operators\n",
438 | "a = 10\n",
439 | "b = 20"
440 | ]
441 | },
442 | {
443 | "cell_type": "code",
444 | "execution_count": 29,
445 | "metadata": {},
446 | "outputs": [
447 | {
448 | "name": "stdout",
449 | "output_type": "stream",
450 | "text": [
451 | "False\n",
452 | "True\n",
453 | "False\n",
454 | "True\n",
455 | "False\n",
456 | "True\n"
457 | ]
458 | }
459 | ],
460 | "source": [
461 | "print(a==b)\n",
462 | "print(a!=b)\n",
463 | "print(a>b)\n",
464 | "print(a=b)\n",
466 | "print(a<=b)\n"
467 | ]
468 | },
469 | {
470 | "cell_type": "code",
471 | "execution_count": 30,
472 | "metadata": {},
473 | "outputs": [],
474 | "source": [
475 | "# assignment operators\n",
476 | "a = 10\n",
477 | "b = 20"
478 | ]
479 | },
480 | {
481 | "cell_type": "code",
482 | "execution_count": 31,
483 | "metadata": {},
484 | "outputs": [
485 | {
486 | "name": "stdout",
487 | "output_type": "stream",
488 | "text": [
489 | "30\n",
490 | "10\n",
491 | "200\n",
492 | "10.0\n",
493 | "10.0\n",
494 | "1e+20\n",
495 | "5e+18\n"
496 | ]
497 | }
498 | ],
499 | "source": [
500 | "a += b\n",
501 | "print(a)\n",
502 | "a -= b \n",
503 | "print(a)\n",
504 | "a *= b\n",
505 | "print(a)\n",
506 | "a /= b\n",
507 | "print(a) \n",
508 | "a %= b\n",
509 | "print(a)\n",
510 | "a **= b\n",
511 | "print(a)\n",
512 | "a //= b\n",
513 | "print(a)\n"
514 | ]
515 | },
516 | {
517 | "cell_type": "code",
518 | "execution_count": 32,
519 | "metadata": {},
520 | "outputs": [
521 | {
522 | "data": {
523 | "text/plain": [
524 | "False"
525 | ]
526 | },
527 | "execution_count": 32,
528 | "metadata": {},
529 | "output_type": "execute_result"
530 | }
531 | ],
532 | "source": [
533 | "# Logical Operators\n",
534 | "a = True\n",
535 | "b = False\n",
536 | "a and b\n",
537 | "a or b\n",
538 | "not a\n"
539 | ]
540 | },
541 | {
542 | "cell_type": "code",
543 | "execution_count": 33,
544 | "metadata": {},
545 | "outputs": [
546 | {
547 | "name": "stdout",
548 | "output_type": "stream",
549 | "text": [
550 | "False\n"
551 | ]
552 | }
553 | ],
554 | "source": [
555 | "a = 10\n",
556 | "b = 20\n",
557 | "print(a<2 and b>3)"
558 | ]
559 | },
560 | {
561 | "cell_type": "markdown",
562 | "metadata": {},
563 | "source": [
564 | "## Bitwise Ops"
565 | ]
566 | },
567 | {
568 | "cell_type": "code",
569 | "execution_count": 34,
570 | "metadata": {},
571 | "outputs": [
572 | {
573 | "name": "stdout",
574 | "output_type": "stream",
575 | "text": [
576 | "0\n",
577 | "30\n",
578 | "30\n"
579 | ]
580 | }
581 | ],
582 | "source": [
583 | "# Bitwise Operators\n",
584 | "a = 10 \n",
585 | "b = 20\n",
586 | "print(a & b)\n",
587 | "print(a | b)\n",
588 | "print(a ^ b)\n"
589 | ]
590 | },
591 | {
592 | "cell_type": "markdown",
593 | "metadata": {},
594 | "source": [
595 | "## Input and Output"
596 | ]
597 | },
598 | {
599 | "cell_type": "code",
600 | "execution_count": 35,
601 | "metadata": {},
602 | "outputs": [
603 | {
604 | "name": "stdout",
605 | "output_type": "stream",
606 | "text": [
607 | "1\n",
608 | "\n"
609 | ]
610 | }
611 | ],
612 | "source": [
613 | "num = input(\"Enter the number: \")\n",
614 | "print(num)\n",
615 | "print(type(num))"
616 | ]
617 | },
618 | {
619 | "cell_type": "code",
620 | "execution_count": 36,
621 | "metadata": {},
622 | "outputs": [
623 | {
624 | "name": "stdout",
625 | "output_type": "stream",
626 | "text": [
627 | "1\n",
628 | "\n"
629 | ]
630 | }
631 | ],
632 | "source": [
633 | "num = int(input(\"Enter the number: \"))\n",
634 | "print(num)\n",
635 | "print(type(num))"
636 | ]
637 | },
638 | {
639 | "cell_type": "markdown",
640 | "metadata": {},
641 | "source": [
642 | "## If...Else"
643 | ]
644 | },
645 | {
646 | "cell_type": "code",
647 | "execution_count": 37,
648 | "metadata": {},
649 | "outputs": [],
650 | "source": [
651 | "var1 = 10\n",
652 | "var2 = 20"
653 | ]
654 | },
655 | {
656 | "cell_type": "code",
657 | "execution_count": 38,
658 | "metadata": {},
659 | "outputs": [
660 | {
661 | "name": "stdout",
662 | "output_type": "stream",
663 | "text": [
664 | "var2 is greater than var1\n"
665 | ]
666 | }
667 | ],
668 | "source": [
669 | "if var1 > var2:\n",
670 | " print(\"var1 is greater than var2\")\n",
671 | "else:\n",
672 | " print(\"var2 is greater than var1\")"
673 | ]
674 | },
675 | {
676 | "cell_type": "code",
677 | "execution_count": 39,
678 | "metadata": {},
679 | "outputs": [
680 | {
681 | "name": "stdout",
682 | "output_type": "stream",
683 | "text": [
684 | "var1 is not equal to var2\n"
685 | ]
686 | }
687 | ],
688 | "source": [
689 | "if var1 != var2:\n",
690 | " print(\"var1 is not equal to var2\")\n",
691 | "else:\n",
692 | " print(\"var1 is equal to var2\")"
693 | ]
694 | },
695 | {
696 | "cell_type": "code",
697 | "execution_count": 40,
698 | "metadata": {},
699 | "outputs": [
700 | {
701 | "name": "stdout",
702 | "output_type": "stream",
703 | "text": [
704 | "var2 is greater than var1\n"
705 | ]
706 | }
707 | ],
708 | "source": [
709 | "if var1 == var2:\n",
710 | " print(\"var1 is equal to var2\")\n",
711 | "elif var1 > var2:\n",
712 | " print(\"var1 is greater than var2\")\n",
713 | "else:\n",
714 | " print(\"var2 is greater than var1\")"
715 | ]
716 | },
717 | {
718 | "cell_type": "markdown",
719 | "metadata": {},
720 | "source": [
721 | "## Loops"
722 | ]
723 | },
724 | {
725 | "cell_type": "code",
726 | "execution_count": 41,
727 | "metadata": {},
728 | "outputs": [
729 | {
730 | "name": "stdout",
731 | "output_type": "stream",
732 | "text": [
733 | "P\n",
734 | "y\n",
735 | "t\n",
736 | "h\n",
737 | "o\n",
738 | "n\n"
739 | ]
740 | }
741 | ],
742 | "source": [
743 | "## For loop\n",
744 | "abc = 'Python'\n",
745 | "for i in abc:\n",
746 | " print(i)\n",
747 | " "
748 | ]
749 | },
750 | {
751 | "cell_type": "code",
752 | "execution_count": 42,
753 | "metadata": {},
754 | "outputs": [
755 | {
756 | "name": "stdout",
757 | "output_type": "stream",
758 | "text": [
759 | "Python\n",
760 | "Java\n",
761 | "C++\n"
762 | ]
763 | }
764 | ],
765 | "source": [
766 | "abc = ['Python', 'Java', 'C++']\n",
767 | "for i in abc:\n",
768 | " print(i)"
769 | ]
770 | },
771 | {
772 | "cell_type": "code",
773 | "execution_count": 43,
774 | "metadata": {},
775 | "outputs": [
776 | {
777 | "name": "stdout",
778 | "output_type": "stream",
779 | "text": [
780 | "Python\n",
781 | "Java\n",
782 | "C++\n"
783 | ]
784 | }
785 | ],
786 | "source": [
787 | "abc = ('Python', 'Java', 'C++') \n",
788 | "for i in abc:\n",
789 | " print(i)"
790 | ]
791 | },
792 | {
793 | "cell_type": "code",
794 | "execution_count": 44,
795 | "metadata": {},
796 | "outputs": [
797 | {
798 | "name": "stdout",
799 | "output_type": "stream",
800 | "text": [
801 | "Python\n",
802 | "C++\n",
803 | "Java\n"
804 | ]
805 | }
806 | ],
807 | "source": [
808 | "abc = {'Python', 'Java', 'C++'}\n",
809 | "for i in abc:\n",
810 | " print(i)"
811 | ]
812 | },
813 | {
814 | "cell_type": "code",
815 | "execution_count": 45,
816 | "metadata": {},
817 | "outputs": [
818 | {
819 | "name": "stdout",
820 | "output_type": "stream",
821 | "text": [
822 | "name\n",
823 | "age\n",
824 | "city\n"
825 | ]
826 | }
827 | ],
828 | "source": [
829 | "abc = {'name':'Abhinav', 'age':25, 'city':'Delhi'}\n",
830 | "for i in abc:\n",
831 | " print(i)"
832 | ]
833 | },
834 | {
835 | "cell_type": "code",
836 | "execution_count": 46,
837 | "metadata": {},
838 | "outputs": [
839 | {
840 | "name": "stdout",
841 | "output_type": "stream",
842 | "text": [
843 | "1\n",
844 | "2\n",
845 | "3\n",
846 | "4\n",
847 | "5\n"
848 | ]
849 | }
850 | ],
851 | "source": [
852 | "abc = (1,2,3,4,5) \n",
853 | "for i in abc:\n",
854 | " print(i)"
855 | ]
856 | },
857 | {
858 | "cell_type": "code",
859 | "execution_count": 47,
860 | "metadata": {},
861 | "outputs": [
862 | {
863 | "name": "stdout",
864 | "output_type": "stream",
865 | "text": [
866 | "1\n",
867 | "2\n"
868 | ]
869 | }
870 | ],
871 | "source": [
872 | "for i in abc:\n",
873 | " if i == 3:\n",
874 | " break\n",
875 | " print(i)"
876 | ]
877 | },
878 | {
879 | "cell_type": "code",
880 | "execution_count": 48,
881 | "metadata": {},
882 | "outputs": [
883 | {
884 | "name": "stdout",
885 | "output_type": "stream",
886 | "text": [
887 | "1\n",
888 | "2\n",
889 | "4\n",
890 | "5\n"
891 | ]
892 | }
893 | ],
894 | "source": [
895 | "for i in abc:\n",
896 | " if i == 3:\n",
897 | " continue\n",
898 | " print(i)"
899 | ]
900 | },
901 | {
902 | "cell_type": "code",
903 | "execution_count": 1,
904 | "metadata": {},
905 | "outputs": [
906 | {
907 | "name": "stdout",
908 | "output_type": "stream",
909 | "text": [
910 | "0\n",
911 | "1\n",
912 | "2\n",
913 | "3\n",
914 | "4\n",
915 | "5\n",
916 | "6\n",
917 | "7\n",
918 | "8\n",
919 | "9\n"
920 | ]
921 | }
922 | ],
923 | "source": [
924 | "for i in range(10):\n",
925 | " print(i)"
926 | ]
927 | },
928 | {
929 | "cell_type": "code",
930 | "execution_count": 2,
931 | "metadata": {},
932 | "outputs": [
933 | {
934 | "name": "stdout",
935 | "output_type": "stream",
936 | "text": [
937 | "1\n",
938 | "2\n",
939 | "3\n",
940 | "4\n",
941 | "5\n",
942 | "6\n",
943 | "7\n",
944 | "8\n",
945 | "9\n"
946 | ]
947 | }
948 | ],
949 | "source": [
950 | "for i in range(1,10):\n",
951 | " print(i)"
952 | ]
953 | },
954 | {
955 | "cell_type": "code",
956 | "execution_count": 3,
957 | "metadata": {},
958 | "outputs": [
959 | {
960 | "name": "stdout",
961 | "output_type": "stream",
962 | "text": [
963 | "1\n",
964 | "3\n",
965 | "5\n",
966 | "7\n",
967 | "9\n"
968 | ]
969 | }
970 | ],
971 | "source": [
972 | "for i in range(1,10,2):\n",
973 | " print(i)"
974 | ]
975 | },
976 | {
977 | "cell_type": "code",
978 | "execution_count": 4,
979 | "metadata": {},
980 | "outputs": [
981 | {
982 | "name": "stdout",
983 | "output_type": "stream",
984 | "text": [
985 | "0 0\n",
986 | "0 1\n",
987 | "0 2\n",
988 | "1 0\n",
989 | "1 1\n",
990 | "1 2\n",
991 | "2 0\n",
992 | "2 1\n",
993 | "2 2\n"
994 | ]
995 | }
996 | ],
997 | "source": [
998 | "# nested loop\n",
999 | "for i in range(3):\n",
1000 | " for j in range(3):\n",
1001 | " print(i,j)"
1002 | ]
1003 | },
1004 | {
1005 | "cell_type": "code",
1006 | "execution_count": 5,
1007 | "metadata": {},
1008 | "outputs": [
1009 | {
1010 | "name": "stdout",
1011 | "output_type": "stream",
1012 | "text": [
1013 | "0 0\n",
1014 | "1 1\n",
1015 | "2 2\n"
1016 | ]
1017 | }
1018 | ],
1019 | "source": [
1020 | "for i in range(3):\n",
1021 | " for j in range(3):\n",
1022 | " if i == j:\n",
1023 | " print(i,j)"
1024 | ]
1025 | },
1026 | {
1027 | "cell_type": "code",
1028 | "execution_count": 6,
1029 | "metadata": {},
1030 | "outputs": [
1031 | {
1032 | "name": "stdout",
1033 | "output_type": "stream",
1034 | "text": [
1035 | "1\n",
1036 | "2\n",
1037 | "3\n",
1038 | "4\n",
1039 | "5\n",
1040 | "6\n",
1041 | "7\n",
1042 | "8\n",
1043 | "9\n",
1044 | "10\n"
1045 | ]
1046 | }
1047 | ],
1048 | "source": [
1049 | "# While loop\n",
1050 | "i = 1\n",
1051 | "while i<=10:\n",
1052 | " print(i)\n",
1053 | " i += 1"
1054 | ]
1055 | },
1056 | {
1057 | "cell_type": "code",
1058 | "execution_count": 7,
1059 | "metadata": {},
1060 | "outputs": [
1061 | {
1062 | "name": "stdout",
1063 | "output_type": "stream",
1064 | "text": [
1065 | "1\n",
1066 | "2\n",
1067 | "3\n",
1068 | "4\n"
1069 | ]
1070 | }
1071 | ],
1072 | "source": [
1073 | "i = 1 \n",
1074 | "while i<=10:\n",
1075 | " if i == 5:\n",
1076 | " break\n",
1077 | " print(i)\n",
1078 | " i += 1"
1079 | ]
1080 | },
1081 | {
1082 | "cell_type": "code",
1083 | "execution_count": 8,
1084 | "metadata": {},
1085 | "outputs": [
1086 | {
1087 | "name": "stdout",
1088 | "output_type": "stream",
1089 | "text": [
1090 | "1\n",
1091 | "2\n",
1092 | "3\n",
1093 | "4\n",
1094 | "6\n",
1095 | "7\n",
1096 | "8\n",
1097 | "9\n",
1098 | "10\n"
1099 | ]
1100 | }
1101 | ],
1102 | "source": [
1103 | "i = 1\n",
1104 | "while i<=10:\n",
1105 | " if i == 5:\n",
1106 | " i += 1\n",
1107 | " continue\n",
1108 | " print(i)\n",
1109 | " i += 1"
1110 | ]
1111 | },
1112 | {
1113 | "cell_type": "markdown",
1114 | "metadata": {},
1115 | "source": [
1116 | "## List"
1117 | ]
1118 | },
1119 | {
1120 | "cell_type": "code",
1121 | "execution_count": 11,
1122 | "metadata": {},
1123 | "outputs": [
1124 | {
1125 | "name": "stdout",
1126 | "output_type": "stream",
1127 | "text": [
1128 | "[1, 2, 3, 4, 5]\n",
1129 | "\n"
1130 | ]
1131 | }
1132 | ],
1133 | "source": [
1134 | "# List\n",
1135 | "abc = [1,2,3,4,5]\n",
1136 | "print(abc)\n",
1137 | "print(type(abc))\n"
1138 | ]
1139 | },
1140 | {
1141 | "cell_type": "code",
1142 | "execution_count": 12,
1143 | "metadata": {},
1144 | "outputs": [
1145 | {
1146 | "name": "stdout",
1147 | "output_type": "stream",
1148 | "text": [
1149 | "1\n",
1150 | "2\n",
1151 | "3\n",
1152 | "4\n",
1153 | "5\n"
1154 | ]
1155 | }
1156 | ],
1157 | "source": [
1158 | "#accessing elements\n",
1159 | "print(abc[0])\n",
1160 | "print(abc[1])\n",
1161 | "print(abc[2])\n",
1162 | "print(abc[3])\n",
1163 | "print(abc[4])\n"
1164 | ]
1165 | },
1166 | {
1167 | "cell_type": "code",
1168 | "execution_count": 13,
1169 | "metadata": {},
1170 | "outputs": [
1171 | {
1172 | "name": "stdout",
1173 | "output_type": "stream",
1174 | "text": [
1175 | "[10, 2, 3, 4, 5]\n"
1176 | ]
1177 | }
1178 | ],
1179 | "source": [
1180 | "# updating elements\n",
1181 | "abc[0] = 10\n",
1182 | "print(abc)"
1183 | ]
1184 | },
1185 | {
1186 | "cell_type": "code",
1187 | "execution_count": 14,
1188 | "metadata": {},
1189 | "outputs": [
1190 | {
1191 | "name": "stdout",
1192 | "output_type": "stream",
1193 | "text": [
1194 | "[10, 2, 3, 4, 5, 6]\n"
1195 | ]
1196 | }
1197 | ],
1198 | "source": [
1199 | "abc.append(6)\n",
1200 | "print(abc)"
1201 | ]
1202 | },
1203 | {
1204 | "cell_type": "code",
1205 | "execution_count": 18,
1206 | "metadata": {},
1207 | "outputs": [
1208 | {
1209 | "name": "stdout",
1210 | "output_type": "stream",
1211 | "text": [
1212 | "[10, 2, 3, 4, 5, 6]\n"
1213 | ]
1214 | }
1215 | ],
1216 | "source": [
1217 | "defi = abc.copy()\n",
1218 | "print(defi)"
1219 | ]
1220 | },
1221 | {
1222 | "cell_type": "markdown",
1223 | "metadata": {},
1224 | "source": [
1225 | "## Tuple"
1226 | ]
1227 | },
1228 | {
1229 | "cell_type": "code",
1230 | "execution_count": 19,
1231 | "metadata": {},
1232 | "outputs": [
1233 | {
1234 | "name": "stdout",
1235 | "output_type": "stream",
1236 | "text": [
1237 | "(1, 2, 3, 4, 5)\n",
1238 | "\n"
1239 | ]
1240 | }
1241 | ],
1242 | "source": [
1243 | "# tuple\n",
1244 | "abc = (1,2,3,4,5)\n",
1245 | "print(abc)\n",
1246 | "print(type(abc))"
1247 | ]
1248 | },
1249 | {
1250 | "cell_type": "code",
1251 | "execution_count": 20,
1252 | "metadata": {},
1253 | "outputs": [
1254 | {
1255 | "name": "stdout",
1256 | "output_type": "stream",
1257 | "text": [
1258 | "1\n",
1259 | "2\n",
1260 | "3\n",
1261 | "4\n",
1262 | "5\n"
1263 | ]
1264 | }
1265 | ],
1266 | "source": [
1267 | "#accessing elements\n",
1268 | "print(abc[0])\n",
1269 | "print(abc[1])\n",
1270 | "print(abc[2])\n",
1271 | "print(abc[3])\n",
1272 | "print(abc[4])\n"
1273 | ]
1274 | },
1275 | {
1276 | "cell_type": "markdown",
1277 | "metadata": {},
1278 | "source": [
1279 | "## Set"
1280 | ]
1281 | },
1282 | {
1283 | "cell_type": "code",
1284 | "execution_count": 21,
1285 | "metadata": {},
1286 | "outputs": [
1287 | {
1288 | "name": "stdout",
1289 | "output_type": "stream",
1290 | "text": [
1291 | "{1, 2, 3, 4, 5}\n",
1292 | "\n"
1293 | ]
1294 | }
1295 | ],
1296 | "source": [
1297 | "# Set\n",
1298 | "abc = {1,2,3,4,5}\n",
1299 | "print(abc)\n",
1300 | "print(type(abc))\n"
1301 | ]
1302 | },
1303 | {
1304 | "cell_type": "markdown",
1305 | "metadata": {},
1306 | "source": [
1307 | "## Function"
1308 | ]
1309 | },
1310 | {
1311 | "cell_type": "code",
1312 | "execution_count": 22,
1313 | "metadata": {},
1314 | "outputs": [],
1315 | "source": [
1316 | "def function_name():\n",
1317 | " print(\"Hello, World!\")"
1318 | ]
1319 | },
1320 | {
1321 | "cell_type": "code",
1322 | "execution_count": 23,
1323 | "metadata": {},
1324 | "outputs": [
1325 | {
1326 | "name": "stdout",
1327 | "output_type": "stream",
1328 | "text": [
1329 | "Hello, World!\n"
1330 | ]
1331 | }
1332 | ],
1333 | "source": [
1334 | "function_name()\n"
1335 | ]
1336 | },
1337 | {
1338 | "cell_type": "code",
1339 | "execution_count": 24,
1340 | "metadata": {},
1341 | "outputs": [],
1342 | "source": [
1343 | "def function_op(fname, lname):\n",
1344 | " print(fname + \" \" + lname)"
1345 | ]
1346 | },
1347 | {
1348 | "cell_type": "code",
1349 | "execution_count": 25,
1350 | "metadata": {},
1351 | "outputs": [
1352 | {
1353 | "name": "stdout",
1354 | "output_type": "stream",
1355 | "text": [
1356 | "Abhinav shukla\n"
1357 | ]
1358 | }
1359 | ],
1360 | "source": [
1361 | "function_op(\"Abhinav\", \"shukla\")"
1362 | ]
1363 | },
1364 | {
1365 | "cell_type": "code",
1366 | "execution_count": 26,
1367 | "metadata": {},
1368 | "outputs": [],
1369 | "source": [
1370 | "def function2(*names):\n",
1371 | " print(\"The name is \" + names[2])\n",
1372 | " "
1373 | ]
1374 | },
1375 | {
1376 | "cell_type": "code",
1377 | "execution_count": 27,
1378 | "metadata": {},
1379 | "outputs": [
1380 | {
1381 | "name": "stdout",
1382 | "output_type": "stream",
1383 | "text": [
1384 | "The name is Rajesh\n"
1385 | ]
1386 | }
1387 | ],
1388 | "source": [
1389 | "function2(\"Abhinav\", \"Shukla\", \"Rajesh\", \"Rahul\")"
1390 | ]
1391 | },
1392 | {
1393 | "cell_type": "code",
1394 | "execution_count": 28,
1395 | "metadata": {},
1396 | "outputs": [],
1397 | "source": [
1398 | "def function3(name = \"Abhinav\"):\n",
1399 | " print(\"The name is \" + name)"
1400 | ]
1401 | },
1402 | {
1403 | "cell_type": "code",
1404 | "execution_count": 29,
1405 | "metadata": {},
1406 | "outputs": [],
1407 | "source": [
1408 | "def fun(**kwargs):\n",
1409 | " print(\"The name is \" + kwargs[\"name\"])"
1410 | ]
1411 | },
1412 | {
1413 | "cell_type": "code",
1414 | "execution_count": 30,
1415 | "metadata": {},
1416 | "outputs": [
1417 | {
1418 | "name": "stdout",
1419 | "output_type": "stream",
1420 | "text": [
1421 | "The name is Abhinav\n"
1422 | ]
1423 | }
1424 | ],
1425 | "source": [
1426 | "fun(name = \"Abhinav\")"
1427 | ]
1428 | },
1429 | {
1430 | "cell_type": "code",
1431 | "execution_count": 31,
1432 | "metadata": {},
1433 | "outputs": [],
1434 | "source": [
1435 | "def sum(a,b):\n",
1436 | " return a+b\n"
1437 | ]
1438 | },
1439 | {
1440 | "cell_type": "code",
1441 | "execution_count": 32,
1442 | "metadata": {},
1443 | "outputs": [
1444 | {
1445 | "data": {
1446 | "text/plain": [
1447 | "30"
1448 | ]
1449 | },
1450 | "execution_count": 32,
1451 | "metadata": {},
1452 | "output_type": "execute_result"
1453 | }
1454 | ],
1455 | "source": [
1456 | "sum(10,20)"
1457 | ]
1458 | },
1459 | {
1460 | "cell_type": "code",
1461 | "execution_count": 33,
1462 | "metadata": {},
1463 | "outputs": [],
1464 | "source": [
1465 | "# Recursion\n",
1466 | "def fact(n):\n",
1467 | " if n == 1:\n",
1468 | " return 1\n",
1469 | " else:\n",
1470 | " return n*fact(n-1)"
1471 | ]
1472 | },
1473 | {
1474 | "cell_type": "code",
1475 | "execution_count": 34,
1476 | "metadata": {},
1477 | "outputs": [
1478 | {
1479 | "data": {
1480 | "text/plain": [
1481 | "120"
1482 | ]
1483 | },
1484 | "execution_count": 34,
1485 | "metadata": {},
1486 | "output_type": "execute_result"
1487 | }
1488 | ],
1489 | "source": [
1490 | "fact(5)\n"
1491 | ]
1492 | },
1493 | {
1494 | "cell_type": "code",
1495 | "execution_count": 35,
1496 | "metadata": {},
1497 | "outputs": [],
1498 | "source": [
1499 | "def myfunc(n):\n",
1500 | " return lambda a: a*n"
1501 | ]
1502 | },
1503 | {
1504 | "cell_type": "code",
1505 | "execution_count": 36,
1506 | "metadata": {},
1507 | "outputs": [
1508 | {
1509 | "data": {
1510 | "text/plain": [
1511 | "22"
1512 | ]
1513 | },
1514 | "execution_count": 36,
1515 | "metadata": {},
1516 | "output_type": "execute_result"
1517 | }
1518 | ],
1519 | "source": [
1520 | "myfunc(2)(11)"
1521 | ]
1522 | },
1523 | {
1524 | "cell_type": "code",
1525 | "execution_count": 38,
1526 | "metadata": {},
1527 | "outputs": [
1528 | {
1529 | "data": {
1530 | "text/plain": [
1531 | "33"
1532 | ]
1533 | },
1534 | "execution_count": 38,
1535 | "metadata": {},
1536 | "output_type": "execute_result"
1537 | }
1538 | ],
1539 | "source": [
1540 | "myfunc(3)(11)"
1541 | ]
1542 | },
1543 | {
1544 | "cell_type": "code",
1545 | "execution_count": 39,
1546 | "metadata": {},
1547 | "outputs": [
1548 | {
1549 | "data": {
1550 | "text/plain": [
1551 | "44"
1552 | ]
1553 | },
1554 | "execution_count": 39,
1555 | "metadata": {},
1556 | "output_type": "execute_result"
1557 | }
1558 | ],
1559 | "source": [
1560 | "def myfunc(n):\n",
1561 | " return lambda a: a*n*n \n",
1562 | "myfunc(2)(11)"
1563 | ]
1564 | },
1565 | {
1566 | "cell_type": "code",
1567 | "execution_count": 42,
1568 | "metadata": {},
1569 | "outputs": [],
1570 | "source": [
1571 | "def fact(n):\n",
1572 | " if n == 1:\n",
1573 | " print(n)\n",
1574 | " return 1\n",
1575 | " else:\n",
1576 | " print(n,'*',end=' ')\n",
1577 | " return n*fact(n-1)"
1578 | ]
1579 | },
1580 | {
1581 | "cell_type": "code",
1582 | "execution_count": 43,
1583 | "metadata": {},
1584 | "outputs": [
1585 | {
1586 | "name": "stdout",
1587 | "output_type": "stream",
1588 | "text": [
1589 | "5 * 4 * 3 * 2 * 1\n"
1590 | ]
1591 | },
1592 | {
1593 | "data": {
1594 | "text/plain": [
1595 | "120"
1596 | ]
1597 | },
1598 | "execution_count": 43,
1599 | "metadata": {},
1600 | "output_type": "execute_result"
1601 | }
1602 | ],
1603 | "source": [
1604 | "fact(5)"
1605 | ]
1606 | },
1607 | {
1608 | "cell_type": "code",
1609 | "execution_count": 44,
1610 | "metadata": {},
1611 | "outputs": [],
1612 | "source": [
1613 | "# fibonacci series\n",
1614 | "def fib(n):\n",
1615 | " a = 0\n",
1616 | " b = 1\n",
1617 | " if n == 1:\n",
1618 | " print(a)\n",
1619 | " else:\n",
1620 | " print(a)\n",
1621 | " print(b)\n",
1622 | " for i in range(2,n):\n",
1623 | " c = a+b\n",
1624 | " a = b\n",
1625 | " b = c\n",
1626 | " print(c)"
1627 | ]
1628 | },
1629 | {
1630 | "cell_type": "code",
1631 | "execution_count": 45,
1632 | "metadata": {},
1633 | "outputs": [
1634 | {
1635 | "name": "stdout",
1636 | "output_type": "stream",
1637 | "text": [
1638 | "0\n",
1639 | "1\n",
1640 | "1\n",
1641 | "2\n",
1642 | "3\n"
1643 | ]
1644 | }
1645 | ],
1646 | "source": [
1647 | "fib(5)"
1648 | ]
1649 | },
1650 | {
1651 | "cell_type": "code",
1652 | "execution_count": 46,
1653 | "metadata": {},
1654 | "outputs": [],
1655 | "source": [
1656 | "# using recursion for fib"
1657 | ]
1658 | },
1659 | {
1660 | "cell_type": "code",
1661 | "execution_count": 47,
1662 | "metadata": {},
1663 | "outputs": [],
1664 | "source": [
1665 | "def fib_recursion(n):\n",
1666 | " if n <= 1:\n",
1667 | " return n\n",
1668 | " else:\n",
1669 | " return fib_recursion(n-1) + fib_recursion(n-2)"
1670 | ]
1671 | },
1672 | {
1673 | "cell_type": "code",
1674 | "execution_count": 48,
1675 | "metadata": {},
1676 | "outputs": [
1677 | {
1678 | "data": {
1679 | "text/plain": [
1680 | "5"
1681 | ]
1682 | },
1683 | "execution_count": 48,
1684 | "metadata": {},
1685 | "output_type": "execute_result"
1686 | }
1687 | ],
1688 | "source": [
1689 | "fib_recursion(5)"
1690 | ]
1691 | },
1692 | {
1693 | "cell_type": "markdown",
1694 | "metadata": {},
1695 | "source": [
1696 | "# File Handling"
1697 | ]
1698 | },
1699 | {
1700 | "cell_type": "code",
1701 | "execution_count": 1,
1702 | "metadata": {},
1703 | "outputs": [
1704 | {
1705 | "name": "stdout",
1706 | "output_type": "stream",
1707 | "text": [
1708 | "Hello I am Learning Python File handling !!! hue ue !!!\n",
1709 | "\n"
1710 | ]
1711 | }
1712 | ],
1713 | "source": [
1714 | "f = open(\"okay.txt\", \"r\")\n",
1715 | "data = f.read()\n",
1716 | "print(data)\n",
1717 | "print(type(data))"
1718 | ]
1719 | },
1720 | {
1721 | "cell_type": "code",
1722 | "execution_count": 2,
1723 | "metadata": {},
1724 | "outputs": [
1725 | {
1726 | "data": {
1727 | "text/plain": [
1728 | "13"
1729 | ]
1730 | },
1731 | "execution_count": 2,
1732 | "metadata": {},
1733 | "output_type": "execute_result"
1734 | }
1735 | ],
1736 | "source": [
1737 | "f = open(\"okay.txt\", \"w\")\n",
1738 | "f.write(\"Hello, World!\") "
1739 | ]
1740 | },
1741 | {
1742 | "cell_type": "code",
1743 | "execution_count": 6,
1744 | "metadata": {},
1745 | "outputs": [
1746 | {
1747 | "name": "stdout",
1748 | "output_type": "stream",
1749 | "text": [
1750 | "Hello, World!\n"
1751 | ]
1752 | }
1753 | ],
1754 | "source": [
1755 | "f = open(\"okay.txt\", \"r\")\n",
1756 | "data = f.read()\n",
1757 | "print(data)"
1758 | ]
1759 | },
1760 | {
1761 | "cell_type": "code",
1762 | "execution_count": 7,
1763 | "metadata": {},
1764 | "outputs": [
1765 | {
1766 | "name": "stdout",
1767 | "output_type": "stream",
1768 | "text": [
1769 | "Hello, World!Hello, World!\n"
1770 | ]
1771 | }
1772 | ],
1773 | "source": [
1774 | "f = open(\"okay.txt\", \"a\")\n",
1775 | "f.write(\"Hello, World!\")\n",
1776 | "f = open(\"okay.txt\", \"r\")\n",
1777 | "data = f.read() \n",
1778 | "print(data)"
1779 | ]
1780 | },
1781 | {
1782 | "cell_type": "code",
1783 | "execution_count": 8,
1784 | "metadata": {},
1785 | "outputs": [
1786 | {
1787 | "name": "stdout",
1788 | "output_type": "stream",
1789 | "text": [
1790 | "Hello, World!Hello, World!\n"
1791 | ]
1792 | }
1793 | ],
1794 | "source": [
1795 | "# using with statement\n",
1796 | "with open(\"okay.txt\", \"r\") as f:\n",
1797 | " data = f.read()\n",
1798 | " print(data)"
1799 | ]
1800 | },
1801 | {
1802 | "cell_type": "code",
1803 | "execution_count": null,
1804 | "metadata": {},
1805 | "outputs": [],
1806 | "source": []
1807 | }
1808 | ],
1809 | "metadata": {
1810 | "kernelspec": {
1811 | "display_name": "base",
1812 | "language": "python",
1813 | "name": "python3"
1814 | },
1815 | "language_info": {
1816 | "codemirror_mode": {
1817 | "name": "ipython",
1818 | "version": 3
1819 | },
1820 | "file_extension": ".py",
1821 | "mimetype": "text/x-python",
1822 | "name": "python",
1823 | "nbconvert_exporter": "python",
1824 | "pygments_lexer": "ipython3",
1825 | "version": "3.12.4"
1826 | },
1827 | "orig_nbformat": 4
1828 | },
1829 | "nbformat": 4,
1830 | "nbformat_minor": 2
1831 | }
1832 |
--------------------------------------------------------------------------------
/Concept_Implementations/removing_whitespaces.py:
--------------------------------------------------------------------------------
1 | # Ask user for the input
2 |
3 | name = input("what is your name ? ")
4 |
5 | # remove whitespace from the str
6 |
7 | name = name.strip()
8 |
9 | # strip() removes whitespaces from the beginning and end of the string
10 |
11 | print(f"Hello {name}!")
12 | # The output will be "Hello name!" without any whitespaces in the beginning or end of the string
--------------------------------------------------------------------------------
/Concept_Implementations/test.py:
--------------------------------------------------------------------------------
1 | name, age = input("Enter your name and age : ").split()
2 | print("Your name is ", name)
3 | print("Your age is ", age)
--------------------------------------------------------------------------------
/Concept_Implementations/typecasting.py:
--------------------------------------------------------------------------------
1 | #Typecasting in python
2 | #Typecasting is the process of converting one data type to another data type.
3 | #There are two types of typecasting:
4 | #Implicit Typecasting
5 | #Explicit Typecasting
6 | #Implicit Typecasting
7 | #Implicit typecasting is done automatically by the compiler.
8 | #In this type of typecasting, the compiler automatically converts one data type to another data type.
9 | #Implicit typecasting is also known as automatic typecasting.
10 | #Implicit typecasting is done when:
11 | #A smaller data type is converted to a larger data type.
12 | #For example, converting an integer to a float.
13 | #Explicit Typecasting
14 | #Explicit typecasting is done manually by the programmer.
15 | #In this type of typecasting, the programmer manually converts one data type to another data type.
16 | #Explicit typecasting is also known as manual typecasting.
17 | #Explicit typecasting is done when:
18 | #A larger data type is converted to a smaller data type.
19 | #For example, converting a float to an integer.
20 | #Typecasting functions in python
21 | #There are several typecasting functions in python that are used to convert one data type to another data type.
22 | #The following are the typecasting functions in python:
23 | #int(): This function is used to convert a data type to an integer data type.
24 | #float(): This function is used to convert a data type to a float data type.
25 | #str(): This function is used to convert a data type to a string data type.
26 | #bool(): This function is used to convert a data type to a boolean data type.
27 | #list(): This function is used to convert a data type to a list data type.
28 | #tuple(): This function is used to convert a data type to a tuple data type.
29 | #set(): This function is used to convert a data type to a set data type.
30 | #dict(): This function is used to convert a data type to a dictionary data type.
31 | #complex(): This function is used to convert a data type to a complex data type.
32 | #Typecasting examples
33 | #The following are the examples of typecasting in python:
34 | #Converting an integer to a float
35 | x = 10
36 | y = float(x)
37 | print(y)
38 | #Converting a float to an integer
39 | x = 10.5
40 | y = int(x)
41 | print(y)
42 | #Converting a string to an integer
43 | x = "10"
44 | y = int(x)
45 | print(y)
46 | #Converting an integer to a string
47 | x = 10
48 | y = str(x)
49 | print(y)
50 | #Converting a string to a float
51 | x = "10.5"
52 | y = float(x)
53 | print(y)
54 | #Converting a float to a string
55 | x = 10.5
56 | y = str(x)
57 | print(y)
58 | #Converting a string to a boolean
59 | x = "True"
60 | y = bool(x)
61 | print(y)
62 | #Converting a boolean to a string
63 | x = True
64 | y = str(x)
65 | print(y)
66 | #Converting a list to a tuple
67 | x = [10, 20, 30, 40, 50]
68 | y = tuple(x)
69 | print(y)
70 | #Converting a tuple to a list
71 | x = (10, 20, 30, 40, 50)
72 | y = list(x)
73 | print(y)
74 | #Converting a string to a set
75 | x = "hello"
76 | y = set(x)
77 | print(y)
78 | #Converting a set to a string
79 | x = {"h", "e", "l", "l", "o"}
80 | y = str(x)
81 | print(y)
82 | #Converting a dictionary to a string
83 | x = {'name': 'John', 'age': 25}
84 | y = str(x)
85 | print(y)
86 | #Converting a string to a complex number
87 | x = "10+5j"
88 | y = complex(x)
89 | print(y)
90 | #Converting a complex number to a string
91 | x = 10+5j
92 | y = str(x)
93 | print(y)
94 | #Converting a string to a list
95 | x = "hello"
96 | y = list(x)
97 | print(y)
98 | #Converting a list to a string
99 | x = ['h', 'e', 'l', 'l', 'o']
100 | y = str(x)
101 | print(y)
102 | #Converting a string to a tuple
103 | x = "hello"
104 | y = tuple(x)
105 | print(y)
106 | #Converting a tuple to a string
107 | x = ('h', 'e', 'l', 'l', 'o')
108 | y = str(x)
109 | print(y)
110 | #Converting a string to a set
111 | x = "hello"
112 | y = set(x)
113 | print(y)
114 | #Converting a set to a string
115 | x = {'h', 'e', 'l', 'l', 'o'}
116 | y = str(x)
117 | print(y)
118 | #Converting a dictionary to a string
119 | x = {'name': 'John', 'age': 25}
120 | y = str(x)
121 | print(y)
122 | #Converting a string to a complex number
123 | x = "10+5j"
124 | y = complex(x)
125 | print(y)
--------------------------------------------------------------------------------
/Concept_Implementations/variables_1.py:
--------------------------------------------------------------------------------
1 | x = 5
2 | print("This is ",type(x))
3 | y = 5.2
4 | print("This is ",type(y))
5 | z = "Hello"
6 | print("This is ",type(z))
7 | a = True
8 | print("This is ",type(a))
9 | b = False
10 | print("This is ",type(b))
--------------------------------------------------------------------------------
/Keras_Basics/.ipynb_checkpoints/Untitled-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "a32c6c80",
6 | "metadata": {},
7 | "source": [
8 | "# Data Preparation and Processing"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 2,
14 | "id": "90b8fb03",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import numpy as np \n",
19 | "from random import randint\n",
20 | "from sklearn.utils import shuffle\n",
21 | "from sklearn.preprocessing import MinMaxScaler"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 3,
27 | "id": "0940225d",
28 | "metadata": {},
29 | "outputs": [],
30 | "source": [
31 | "train_labels = []\n",
32 | "train_samples = []\n"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "id": "20e0e534",
38 | "metadata": {},
39 | "source": [
40 | "Example data :\\\n",
41 | " -> An Experimental drug was tested on individual from ages 13 to 100 in a clinical trial.\\\n",
42 | " -> The trial had 2100 participants.Half were under 65 years , half were 65 years or older.\\\n",
43 | " -> Around 95 of patients 65 or older experienced side effects.\\\n",
44 | " -> Around 95 of patents under 65 experienced no side effects."
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": null,
50 | "id": "587b653a",
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "for i in range(50):\n",
55 | " # The ~5% of younger individuals who did experiece side effets\n",
56 | " random_younger = randint(13,64)\n",
57 | " train_samples.append(random_younger)\n",
58 | " train_labels.append(1)\n",
59 | " \n",
60 | " # The ~5% of the older population who did not experience side effects \n",
61 | " random_older = randint(65,100)\n",
62 | " train_samples.append(random_older)\n",
63 | " train_labels.append(0)\n"
64 | ]
65 | }
66 | ],
67 | "metadata": {
68 | "kernelspec": {
69 | "display_name": "Python 3 (ipykernel)",
70 | "language": "python",
71 | "name": "python3"
72 | },
73 | "language_info": {
74 | "codemirror_mode": {
75 | "name": "ipython",
76 | "version": 3
77 | },
78 | "file_extension": ".py",
79 | "mimetype": "text/x-python",
80 | "name": "python",
81 | "nbconvert_exporter": "python",
82 | "pygments_lexer": "ipython3",
83 | "version": "3.11.5"
84 | }
85 | },
86 | "nbformat": 4,
87 | "nbformat_minor": 5
88 | }
89 |
--------------------------------------------------------------------------------
/Keras_Basics/01_Basics.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/maxprogrammer007/PDS-CSVTU-Sem2/b8ef4e1c6df34a90d669228f846de2d222646467/Keras_Basics/01_Basics.py
--------------------------------------------------------------------------------
/Keras_Basics/Untitled.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "a32c6c80",
6 | "metadata": {},
7 | "source": [
8 | "# Data Preparation and Processing"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 2,
14 | "id": "90b8fb03",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import numpy as np \n",
19 | "from random import randint\n",
20 | "from sklearn.utils import shuffle\n",
21 | "from sklearn.preprocessing import MinMaxScaler"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 3,
27 | "id": "0940225d",
28 | "metadata": {},
29 | "outputs": [],
30 | "source": [
31 | "train_labels = []\n",
32 | "train_samples = []\n"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "id": "20e0e534",
38 | "metadata": {},
39 | "source": [
40 | "Example data :\\\n",
41 | " -> An Experimental drug was tested on individual from ages 13 to 100 in a clinical trial.\\\n",
42 | " -> The trial had 2100 participants.Half were under 65 years , half were 65 years or older.\\\n",
43 | " -> Around 95 of patients 65 or older experienced side effects.\\\n",
44 | " -> Around 95 of patents under 65 experienced no side effects."
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": null,
50 | "id": "587b653a",
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "for i in range(50):\n",
55 | " # The ~5% of younger individuals who did experiece side effets\n",
56 | " random_younger = randint(13,64)\n",
57 | " train_samples.append(random_younger)\n",
58 | " train_labels.append(1)\n",
59 | " \n",
60 | " # The ~5% of the older population who did not experience side effects \n",
61 | " random_older = randint(65,100)\n",
62 | " train_samples.append(random_older)\n",
63 | " train_labels.append(0)\n"
64 | ]
65 | }
66 | ],
67 | "metadata": {
68 | "kernelspec": {
69 | "display_name": "Python 3 (ipykernel)",
70 | "language": "python",
71 | "name": "python3"
72 | },
73 | "language_info": {
74 | "codemirror_mode": {
75 | "name": "ipython",
76 | "version": 3
77 | },
78 | "file_extension": ".py",
79 | "mimetype": "text/x-python",
80 | "name": "python",
81 | "nbconvert_exporter": "python",
82 | "pygments_lexer": "ipython3",
83 | "version": "3.11.5"
84 | }
85 | },
86 | "nbformat": 4,
87 | "nbformat_minor": 5
88 | }
89 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/Pandas/01_Pandas_basics.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "f9a55b53ccb4113b",
6 | "metadata": {},
7 | "source": [
8 | "### What is Pandas\n",
9 | "\n",
10 | "Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,\n",
11 | "built on top of the Python programming language."
12 | ]
13 | },
14 | {
15 | "cell_type": "markdown",
16 | "id": "79adff8e219cf00c",
17 | "metadata": {},
18 | "source": [
19 | "### Pandas Series\n",
20 | "\n",
21 | "A Pandas Series is like a column in a table. It is a 1-D array holding data of any type."
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 1,
27 | "id": "7f417016cc90a87a",
28 | "metadata": {
29 | "ExecuteTime": {
30 | "end_time": "2024-06-12T10:41:05.612645Z",
31 | "start_time": "2024-06-12T10:41:04.259822Z"
32 | }
33 | },
34 | "outputs": [],
35 | "source": [
36 | "import pandas as pd\n",
37 | "import numpy as np"
38 | ]
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "id": "c9bf59a3ea2f359e",
43 | "metadata": {},
44 | "source": [
45 | "### Creating a Pandas Series using List"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": 2,
51 | "id": "d203d858a4e4de4f",
52 | "metadata": {
53 | "ExecuteTime": {
54 | "end_time": "2024-06-12T15:43:56.907539Z",
55 | "start_time": "2024-06-12T15:43:56.893979Z"
56 | }
57 | },
58 | "outputs": [],
59 | "source": [
60 | "# string\n",
61 | "s = pd.Series(['a', 'b', 'c', 'd'])"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": 6,
67 | "id": "e6ca67f08a60a0a0",
68 | "metadata": {
69 | "ExecuteTime": {
70 | "end_time": "2024-06-12T15:46:08.451225Z",
71 | "start_time": "2024-06-12T15:46:08.441918Z"
72 | }
73 | },
74 | "outputs": [
75 | {
76 | "name": "stdout",
77 | "output_type": "stream",
78 | "text": [
79 | "0 USA\n",
80 | "1 Canada\n",
81 | "2 Germany\n",
82 | "3 UK\n",
83 | "dtype: object\n"
84 | ]
85 | }
86 | ],
87 | "source": [
88 | "country = ['USA', 'Canada', 'Germany', 'UK']\n",
89 | "s = pd.Series(country)\n",
90 | "print(s)"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": 7,
96 | "id": "20f0a5f8184b2774",
97 | "metadata": {
98 | "ExecuteTime": {
99 | "end_time": "2024-06-12T15:46:12.077931Z",
100 | "start_time": "2024-06-12T15:46:12.070254Z"
101 | }
102 | },
103 | "outputs": [],
104 | "source": [
105 | "# integer\n",
106 | "s = pd.Series([1, 2, 3, 4])\n"
107 | ]
108 | },
109 | {
110 | "cell_type": "code",
111 | "execution_count": 8,
112 | "id": "e53fc2e6637d4d4",
113 | "metadata": {
114 | "ExecuteTime": {
115 | "end_time": "2024-06-12T15:46:13.070008Z",
116 | "start_time": "2024-06-12T15:46:13.065592Z"
117 | }
118 | },
119 | "outputs": [
120 | {
121 | "name": "stdout",
122 | "output_type": "stream",
123 | "text": [
124 | "0 1\n",
125 | "1 2\n",
126 | "2 3\n",
127 | "3 4\n",
128 | "dtype: int64\n"
129 | ]
130 | }
131 | ],
132 | "source": [
133 | "print(s)"
134 | ]
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": 9,
139 | "id": "ebfb8933d5147890",
140 | "metadata": {
141 | "ExecuteTime": {
142 | "end_time": "2024-06-12T16:00:49.693157Z",
143 | "start_time": "2024-06-12T16:00:49.672280Z"
144 | }
145 | },
146 | "outputs": [
147 | {
148 | "name": "stdout",
149 | "output_type": "stream",
150 | "text": [
151 | "Maths 90\n",
152 | "Science 80\n",
153 | "English 70\n",
154 | "History 60\n",
155 | "dtype: int64\n"
156 | ]
157 | }
158 | ],
159 | "source": [
160 | "# custom index\n",
161 | "marks = [90, 80, 70, 60]\n",
162 | "subject = ['Maths', 'Science', 'English', 'History']\n",
163 | "s = pd.Series(marks, index=subject)\n",
164 | "print(s)"
165 | ]
166 | },
167 | {
168 | "cell_type": "code",
169 | "execution_count": 10,
170 | "id": "e2214d8549f1d225",
171 | "metadata": {
172 | "ExecuteTime": {
173 | "end_time": "2024-06-12T16:03:38.466234Z",
174 | "start_time": "2024-06-12T16:03:38.461750Z"
175 | }
176 | },
177 | "outputs": [
178 | {
179 | "name": "stdout",
180 | "output_type": "stream",
181 | "text": [
182 | "Maths 90\n",
183 | "Science 80\n",
184 | "English 70\n",
185 | "History 60\n",
186 | "Name: Marks hai bhai mere, dtype: int64\n"
187 | ]
188 | }
189 | ],
190 | "source": [
191 | "# Setting a name to the Series\n",
192 | "s = pd.Series(marks, index=subject, name='Marks hai bhai mere')\n",
193 | "print(s)"
194 | ]
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": 11,
199 | "id": "4e3359df340ae030",
200 | "metadata": {
201 | "ExecuteTime": {
202 | "end_time": "2024-06-12T16:04:08.272265Z",
203 | "start_time": "2024-06-12T16:04:08.266077Z"
204 | }
205 | },
206 | "outputs": [
207 | {
208 | "name": "stdout",
209 | "output_type": "stream",
210 | "text": [
211 | "0 10\n",
212 | "1 20\n",
213 | "2 30\n",
214 | "3 40\n",
215 | "dtype: int32\n"
216 | ]
217 | }
218 | ],
219 | "source": [
220 | "# Creating a Series from a numpy array\n",
221 | "arr = np.array([10, 20, 30, 40])\n",
222 | "s = pd.Series(arr)\n",
223 | "print(s)"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": 12,
229 | "id": "ae5976da73e6c665",
230 | "metadata": {
231 | "ExecuteTime": {
232 | "end_time": "2024-06-12T16:07:24.418476Z",
233 | "start_time": "2024-06-12T16:07:24.397733Z"
234 | }
235 | },
236 | "outputs": [
237 | {
238 | "data": {
239 | "text/plain": [
240 | "Maths 90\n",
241 | "Science 80\n",
242 | "English 70\n",
243 | "History 60\n",
244 | "Name: Marks hai bhai mere, dtype: int64"
245 | ]
246 | },
247 | "execution_count": 12,
248 | "metadata": {},
249 | "output_type": "execute_result"
250 | }
251 | ],
252 | "source": [
253 | "marks = pd.Series(marks, index=subject, name='Marks hai bhai mere')\n",
254 | "marks\n"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 13,
260 | "id": "c7ae7f64df065aac",
261 | "metadata": {
262 | "ExecuteTime": {
263 | "end_time": "2024-06-12T16:09:15.304393Z",
264 | "start_time": "2024-06-12T16:09:15.287525Z"
265 | }
266 | },
267 | "outputs": [
268 | {
269 | "name": "stdout",
270 | "output_type": "stream",
271 | "text": [
272 | "Maths 90\n",
273 | "Science 80\n",
274 | "English 70\n",
275 | "History 60\n",
276 | "dtype: int64\n"
277 | ]
278 | }
279 | ],
280 | "source": [
281 | "# Series from a dictionary\n",
282 | "marks = {\n",
283 | " 'Maths': 90,\n",
284 | " 'Science': 80,\n",
285 | " 'English': 70,\n",
286 | " 'History': 60\n",
287 | " }\n",
288 | "marks_series = pd.Series(marks)\n",
289 | "print(marks_series)"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": null,
295 | "id": "efbdf7f5af8f503",
296 | "metadata": {},
297 | "outputs": [],
298 | "source": []
299 | }
300 | ],
301 | "metadata": {
302 | "kernelspec": {
303 | "display_name": "Python 3",
304 | "language": "python",
305 | "name": "python3"
306 | },
307 | "language_info": {
308 | "codemirror_mode": {
309 | "name": "ipython",
310 | "version": 2
311 | },
312 | "file_extension": ".py",
313 | "mimetype": "text/x-python",
314 | "name": "python",
315 | "nbconvert_exporter": "python",
316 | "pygments_lexer": "ipython2",
317 | "version": "3.12.4"
318 | }
319 | },
320 | "nbformat": 4,
321 | "nbformat_minor": 5
322 | }
323 |
--------------------------------------------------------------------------------
/Practice_Problems/Celcius_To_Faren.py:
--------------------------------------------------------------------------------
1 | # WAP to convert temperature from Celsius to Fahrenheit
2 | # Formula: F = (C * 9/5) + 32
3 |
4 | def celcius_to_farenheit(celcius):
5 | farenheit = (celcius * 9/5) + 32
6 | return farenheit
7 |
8 | celcius = int(input("Enter temperature in Celcius : "))
9 | farenheit = celcius_to_farenheit(celcius)
10 | print("Temperature in Farenheit is : ", farenheit)
11 |
12 |
--------------------------------------------------------------------------------
/Practice_Problems/Tut_py_cdh.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "metadata": {
5 | "ExecuteTime": {
6 | "end_time": "2024-06-17T00:11:04.300489Z",
7 | "start_time": "2024-06-17T00:11:04.288305Z"
8 | }
9 | },
10 | "cell_type": "code",
11 | "source": [
12 | "import os\n",
13 | "print(\"Hello: \", os.getcwd())\n",
14 | "print(\"Hello\")"
15 | ],
16 | "id": "413c98e88bb0a202",
17 | "outputs": [
18 | {
19 | "name": "stdout",
20 | "output_type": "stream",
21 | "text": [
22 | "Hello: C:\\Users\\Administrator\\Documents\\GitHub\\PDS-CSVTU-Sem2\\Practice_Problems\n",
23 | "Hello\n"
24 | ]
25 | }
26 | ],
27 | "execution_count": 3
28 | },
29 | {
30 | "metadata": {
31 | "ExecuteTime": {
32 | "end_time": "2024-06-17T08:27:56.629815Z",
33 | "start_time": "2024-06-17T08:27:56.622377Z"
34 | }
35 | },
36 | "cell_type": "code",
37 | "source": [
38 | "print(\"5\")\n",
39 | "print(5)\n",
40 | "# printing data type\n",
41 | "print(type(5))\n",
42 | "print(type(\"5\"))\n"
43 | ],
44 | "id": "d0bb4dba44be833b",
45 | "outputs": [
46 | {
47 | "name": "stdout",
48 | "output_type": "stream",
49 | "text": [
50 | "5\n",
51 | "5\n",
52 | "\n",
53 | "\n"
54 | ]
55 | }
56 | ],
57 | "execution_count": 3
58 | },
59 | {
60 | "metadata": {},
61 | "cell_type": "code",
62 | "outputs": [],
63 | "execution_count": null,
64 | "source": "#variables and data types\n",
65 | "id": "533b6443c60d898c"
66 | }
67 | ],
68 | "metadata": {
69 | "kernelspec": {
70 | "display_name": "Python 3",
71 | "language": "python",
72 | "name": "python3"
73 | },
74 | "language_info": {
75 | "codemirror_mode": {
76 | "name": "ipython",
77 | "version": 2
78 | },
79 | "file_extension": ".py",
80 | "mimetype": "text/x-python",
81 | "name": "python",
82 | "nbconvert_exporter": "python",
83 | "pygments_lexer": "ipython2",
84 | "version": "2.7.6"
85 | }
86 | },
87 | "nbformat": 4,
88 | "nbformat_minor": 5
89 | }
90 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # PDS-CSVTU-Sem2
2 | I am storing everything which i did in my python for data science course at UTD , CSVTU
3 |
--------------------------------------------------------------------------------
/basic_problem_practices/file.txt:
--------------------------------------------------------------------------------
1 | hello
2 | hi
3 | bye
4 | kkrh
5 | boom boom
--------------------------------------------------------------------------------
/basic_problem_practices/problem_practices.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# Portfolio Courses - Practice Problems"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 1,
15 | "metadata": {},
16 | "outputs": [
17 | {
18 | "name": "stdout",
19 | "output_type": "stream",
20 | "text": [
21 | "hi\n"
22 | ]
23 | }
24 | ],
25 | "source": [
26 | "#Problem 1 - Reading a specific line from a file\n",
27 | "\n",
28 | "filename = input(\"Enter the file name: \")\n",
29 | "line_number = int(input(\"Enter the line number: \"))\n",
30 | "\n",
31 | "file = open(filename, \"r\")\n",
32 | "lines = file.readlines() # read all lines into a list\n",
33 | "file.close()\n",
34 | "\n",
35 | "total_lines = len(lines) # get the total number of lines in the file\n",
36 | "if line_number > total_lines: # check if the specified line number is greater than the total number of lines\n",
37 | " print(\"The file does not have that many lines.\")\n",
38 | " exit()\n",
39 | "else:\n",
40 | " line = lines[line_number - 1].rstrip('\\n') # get the line at the specified index and remove the newline character\n",
41 | " print(line)"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 2,
47 | "metadata": {},
48 | "outputs": [
49 | {
50 | "name": "stdout",
51 | "output_type": "stream",
52 | "text": [
53 | "The area of the circle is 78.5397\n"
54 | ]
55 | }
56 | ],
57 | "source": [
58 | "#problem 2 = computing area of a cirlce\n",
59 | "\n",
60 | "input_radius = float(input(\"enter the radius of the circle :\"))\n",
61 | "area = round(3.14159 * input_radius ** 2,4)\n",
62 | "print(\"The area of the circle is\", area)\n"
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": null,
68 | "metadata": {},
69 | "outputs": [],
70 | "source": []
71 | }
72 | ],
73 | "metadata": {
74 | "kernelspec": {
75 | "display_name": "Python 3",
76 | "language": "python",
77 | "name": "python3"
78 | },
79 | "language_info": {
80 | "codemirror_mode": {
81 | "name": "ipython",
82 | "version": 3
83 | },
84 | "file_extension": ".py",
85 | "mimetype": "text/x-python",
86 | "name": "python",
87 | "nbconvert_exporter": "python",
88 | "pygments_lexer": "ipython3",
89 | "version": "3.12.4"
90 | }
91 | },
92 | "nbformat": 4,
93 | "nbformat_minor": 2
94 | }
95 |
--------------------------------------------------------------------------------
/numpy/01_numpy_basics.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "metadata": {},
5 | "cell_type": "markdown",
6 | "source": [
7 | "# Numpy\n",
8 | "## Numpy is a library for the Python programming language, adding support for large, Multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.\n",
9 | "##\n",
10 | "## Numpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. If you are already familiar with MATLAB, you might find this tutorial useful to get started with Numpy.\n",
11 | "##\n",
12 | "## Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python.\n",
13 | "### also has functions for working in domain of linear algebra, fourier transform, and matrices. \n",
14 | " "
15 | ],
16 | "id": "36b008e704dbf7eb"
17 | },
18 | {
19 | "metadata": {
20 | "ExecuteTime": {
21 | "end_time": "2024-05-28T08:52:03.040075Z",
22 | "start_time": "2024-05-28T08:52:03.036014Z"
23 | }
24 | },
25 | "cell_type": "code",
26 | "source": "import numpy as np",
27 | "id": "ad251f14638628de",
28 | "outputs": [],
29 | "execution_count": 68
30 | },
31 | {
32 | "metadata": {},
33 | "cell_type": "markdown",
34 | "source": [
35 | "## We have imported the numpy library as np. Now we can use the functions in the library by using np.function_name.\n",
36 | "## Arrays are stored in contiguous memory locations. They are faster than lists.\n",
37 | "## Arrays are mutable. We can change the values of the array.\n",
38 | "## Arrays are homogeneous. All the elements of the array should be of the same data type.]\n",
39 | "## Arrays are of fixed size. We cannot increase or decrease the size of the array.\n"
40 | ],
41 | "id": "5c91126c60ffa846"
42 | },
43 | {
44 | "metadata": {
45 | "ExecuteTime": {
46 | "end_time": "2024-05-28T08:52:03.559343Z",
47 | "start_time": "2024-05-28T08:52:03.554015Z"
48 | }
49 | },
50 | "cell_type": "code",
51 | "source": [
52 | "# Creating an array\n",
53 | "a = np.array([1,2,3,4,5])\n",
54 | "print(a) \n",
55 | "print(type(a)) # type of the array\n",
56 | "print(a.shape) # shape of the array \n",
57 | "print(a.dtype) # data type of the array\n",
58 | "print(a.size) # number of elements in the array\n",
59 | "print(a.ndim) # number of dimensions of the array\n",
60 | "print(a.itemsize) # size of each element in the array\n"
61 | ],
62 | "id": "bbb1675fa6a51052",
63 | "outputs": [
64 | {
65 | "name": "stdout",
66 | "output_type": "stream",
67 | "text": [
68 | "[1 2 3 4 5]\n",
69 | "\n",
70 | "(5,)\n",
71 | "int32\n",
72 | "5\n",
73 | "1\n",
74 | "4\n"
75 | ]
76 | }
77 | ],
78 | "execution_count": 69
79 | },
80 | {
81 | "metadata": {
82 | "ExecuteTime": {
83 | "end_time": "2024-05-28T08:52:03.581332Z",
84 | "start_time": "2024-05-28T08:52:03.569972Z"
85 | }
86 | },
87 | "cell_type": "code",
88 | "source": [
89 | "# Addition of arrays\n",
90 | "a = np.array([1,2,3,4,5])\n",
91 | "b = np.array([6,7,8,9,10])\n",
92 | "c = a + b\n",
93 | "print(c)"
94 | ],
95 | "id": "bc7a571526c65c8",
96 | "outputs": [
97 | {
98 | "name": "stdout",
99 | "output_type": "stream",
100 | "text": [
101 | "[ 7 9 11 13 15]\n"
102 | ]
103 | }
104 | ],
105 | "execution_count": 70
106 | },
107 | {
108 | "metadata": {
109 | "ExecuteTime": {
110 | "end_time": "2024-05-28T08:52:03.624131Z",
111 | "start_time": "2024-05-28T08:52:03.619953Z"
112 | }
113 | },
114 | "cell_type": "code",
115 | "source": [
116 | "# Subtraction of arrays\n",
117 | "a = np.array([1,2,3,4,5])\n",
118 | "b = np.array([6,7,8,9,10])\n",
119 | "c = a - b\n",
120 | "print(c)"
121 | ],
122 | "id": "d361ec9ca7450a04",
123 | "outputs": [
124 | {
125 | "name": "stdout",
126 | "output_type": "stream",
127 | "text": [
128 | "[-5 -5 -5 -5 -5]\n"
129 | ]
130 | }
131 | ],
132 | "execution_count": 71
133 | },
134 | {
135 | "metadata": {
136 | "ExecuteTime": {
137 | "end_time": "2024-05-28T08:52:03.678785Z",
138 | "start_time": "2024-05-28T08:52:03.673667Z"
139 | }
140 | },
141 | "cell_type": "code",
142 | "source": [
143 | "# Multiplication of arrays\n",
144 | "a = np.array([1,2,3,4,5])\n",
145 | "b = np.array([6,7,8,9,10])\n",
146 | "c = a * b\n",
147 | "print(c)"
148 | ],
149 | "id": "26d74dce47b598fc",
150 | "outputs": [
151 | {
152 | "name": "stdout",
153 | "output_type": "stream",
154 | "text": [
155 | "[ 6 14 24 36 50]\n"
156 | ]
157 | }
158 | ],
159 | "execution_count": 72
160 | },
161 | {
162 | "metadata": {
163 | "ExecuteTime": {
164 | "end_time": "2024-05-28T08:52:03.719453Z",
165 | "start_time": "2024-05-28T08:52:03.715237Z"
166 | }
167 | },
168 | "cell_type": "code",
169 | "source": [
170 | "# Division of arrays\n",
171 | "a = np.array([1,2,3,4,5])\n",
172 | "b = np.array([6,7,8,9,10])\n",
173 | "c = a / b\n",
174 | "print(c)"
175 | ],
176 | "id": "db4035467cf03053",
177 | "outputs": [
178 | {
179 | "name": "stdout",
180 | "output_type": "stream",
181 | "text": [
182 | "[0.16666667 0.28571429 0.375 0.44444444 0.5 ]\n"
183 | ]
184 | }
185 | ],
186 | "execution_count": 73
187 | },
188 | {
189 | "metadata": {
190 | "ExecuteTime": {
191 | "end_time": "2024-05-28T08:52:03.780625Z",
192 | "start_time": "2024-05-28T08:52:03.776929Z"
193 | }
194 | },
195 | "cell_type": "code",
196 | "source": [
197 | "# Dot product of arrays\n",
198 | "a = np.array([1,2,3,4,5])\n",
199 | "b = np.array([6,7,8,9,10])\n",
200 | "c = np.dot(a,b)\n",
201 | "print(c)"
202 | ],
203 | "id": "f021506251d240d",
204 | "outputs": [
205 | {
206 | "name": "stdout",
207 | "output_type": "stream",
208 | "text": [
209 | "130\n"
210 | ]
211 | }
212 | ],
213 | "execution_count": 74
214 | },
215 | {
216 | "metadata": {
217 | "ExecuteTime": {
218 | "end_time": "2024-05-28T08:52:03.846475Z",
219 | "start_time": "2024-05-28T08:52:03.842187Z"
220 | }
221 | },
222 | "cell_type": "code",
223 | "source": [
224 | "# Creating a 2D array\n",
225 | "a = np.array([[1,2,3],[4,5,6],[7,8,9]])\n",
226 | "print(a)\n"
227 | ],
228 | "id": "660ca08b9717c2bf",
229 | "outputs": [
230 | {
231 | "name": "stdout",
232 | "output_type": "stream",
233 | "text": [
234 | "[[1 2 3]\n",
235 | " [4 5 6]\n",
236 | " [7 8 9]]\n"
237 | ]
238 | }
239 | ],
240 | "execution_count": 75
241 | },
242 | {
243 | "metadata": {
244 | "ExecuteTime": {
245 | "end_time": "2024-05-28T08:52:03.958622Z",
246 | "start_time": "2024-05-28T08:52:03.954950Z"
247 | }
248 | },
249 | "cell_type": "code",
250 | "source": [
251 | "# Accessing elements of a 2D array\n",
252 | "a = np.array([[1,2,3],[4,5,6],[7,8,9]])\n",
253 | "print(a[0,0]) # first element\n",
254 | "print(a[0,1]) # second element\n"
255 | ],
256 | "id": "e1cd81e91e876486",
257 | "outputs": [
258 | {
259 | "name": "stdout",
260 | "output_type": "stream",
261 | "text": [
262 | "1\n",
263 | "2\n"
264 | ]
265 | }
266 | ],
267 | "execution_count": 76
268 | },
269 | {
270 | "metadata": {
271 | "ExecuteTime": {
272 | "end_time": "2024-05-28T08:52:03.996614Z",
273 | "start_time": "2024-05-28T08:52:03.991908Z"
274 | }
275 | },
276 | "cell_type": "code",
277 | "source": [
278 | "# Slicing of a 2D array\n",
279 | "a = np.array([[1,2,3],[4,5,6],[7,8,9]])\n",
280 | "print(a[0:2,0:2]) #irst two rows and first two columns"
281 | ],
282 | "id": "afd150b06d804d4b",
283 | "outputs": [
284 | {
285 | "name": "stdout",
286 | "output_type": "stream",
287 | "text": [
288 | "[[1 2]\n",
289 | " [4 5]]\n"
290 | ]
291 | }
292 | ],
293 | "execution_count": 77
294 | },
295 | {
296 | "metadata": {
297 | "ExecuteTime": {
298 | "end_time": "2024-05-28T08:52:04.077410Z",
299 | "start_time": "2024-05-28T08:52:04.072492Z"
300 | }
301 | },
302 | "cell_type": "code",
303 | "source": [
304 | "# Creating a 4 x 2 matrix\n",
305 | "a = np.array([[1,2],[3,4],[5,6],[7,8]])\n",
306 | "print(a)"
307 | ],
308 | "id": "f509e379e16c222c",
309 | "outputs": [
310 | {
311 | "name": "stdout",
312 | "output_type": "stream",
313 | "text": [
314 | "[[1 2]\n",
315 | " [3 4]\n",
316 | " [5 6]\n",
317 | " [7 8]]\n"
318 | ]
319 | }
320 | ],
321 | "execution_count": 78
322 | },
323 | {
324 | "metadata": {
325 | "ExecuteTime": {
326 | "end_time": "2024-05-28T08:52:04.100456Z",
327 | "start_time": "2024-05-28T08:52:04.094495Z"
328 | }
329 | },
330 | "cell_type": "code",
331 | "source": [
332 | "# 3d Array\n",
333 | "c = np.array([[[1,2,3],[4,5,6]],[[11,12,13],[14,15,16]]])\n",
334 | "print(c)"
335 | ],
336 | "id": "f61d2959b6fb778f",
337 | "outputs": [
338 | {
339 | "name": "stdout",
340 | "output_type": "stream",
341 | "text": [
342 | "[[[ 1 2 3]\n",
343 | " [ 4 5 6]]\n",
344 | "\n",
345 | " [[11 12 13]\n",
346 | " [14 15 16]]]\n"
347 | ]
348 | }
349 | ],
350 | "execution_count": 79
351 | },
352 | {
353 | "metadata": {
354 | "ExecuteTime": {
355 | "end_time": "2024-05-28T08:52:04.160102Z",
356 | "start_time": "2024-05-28T08:52:04.153427Z"
357 | }
358 | },
359 | "cell_type": "code",
360 | "source": [
361 | "#dtype\n",
362 | "\n",
363 | "a = np.array([0,2,3],dtype=bool)\n",
364 | "print(a)\n",
365 | "b = np.array([0,2,3],dtype=complex)\n",
366 | "print(b)"
367 | ],
368 | "id": "87acd9ba181eaa43",
369 | "outputs": [
370 | {
371 | "name": "stdout",
372 | "output_type": "stream",
373 | "text": [
374 | "[False True True]\n",
375 | "[0.+0.j 2.+0.j 3.+0.j]\n"
376 | ]
377 | }
378 | ],
379 | "execution_count": 80
380 | },
381 | {
382 | "metadata": {
383 | "ExecuteTime": {
384 | "end_time": "2024-05-28T08:52:04.216486Z",
385 | "start_time": "2024-05-28T08:52:04.211538Z"
386 | }
387 | },
388 | "cell_type": "code",
389 | "source": [
390 | "# np.arange\n",
391 | "a = np.arange(1,11)\n",
392 | "print(a)\n",
393 | "b = np.arange(1,11,2)\n",
394 | "print(b)"
395 | ],
396 | "id": "5d4829575bb5b5aa",
397 | "outputs": [
398 | {
399 | "name": "stdout",
400 | "output_type": "stream",
401 | "text": [
402 | "[ 1 2 3 4 5 6 7 8 9 10]\n",
403 | "[1 3 5 7 9]\n"
404 | ]
405 | }
406 | ],
407 | "execution_count": 81
408 | },
409 | {
410 | "metadata": {
411 | "ExecuteTime": {
412 | "end_time": "2024-05-28T08:52:04.272997Z",
413 | "start_time": "2024-05-28T08:52:04.268575Z"
414 | }
415 | },
416 | "cell_type": "code",
417 | "source": [
418 | "# with reshape\n",
419 | "\n",
420 | "np.arange(1,11).reshape(2,5)\n"
421 | ],
422 | "id": "e4d2752902602832",
423 | "outputs": [
424 | {
425 | "data": {
426 | "text/plain": [
427 | "array([[ 1, 2, 3, 4, 5],\n",
428 | " [ 6, 7, 8, 9, 10]])"
429 | ]
430 | },
431 | "execution_count": 82,
432 | "metadata": {},
433 | "output_type": "execute_result"
434 | }
435 | ],
436 | "execution_count": 82
437 | },
438 | {
439 | "metadata": {
440 | "ExecuteTime": {
441 | "end_time": "2024-05-28T08:52:04.309947Z",
442 | "start_time": "2024-05-28T08:52:04.306325Z"
443 | }
444 | },
445 | "cell_type": "code",
446 | "source": [
447 | "a =np.arange(1,11).reshape(5,2)\n",
448 | "print(a)\n"
449 | ],
450 | "id": "c49d6f15e1d1e3aa",
451 | "outputs": [
452 | {
453 | "name": "stdout",
454 | "output_type": "stream",
455 | "text": [
456 | "[[ 1 2]\n",
457 | " [ 3 4]\n",
458 | " [ 5 6]\n",
459 | " [ 7 8]\n",
460 | " [ 9 10]]\n"
461 | ]
462 | }
463 | ],
464 | "execution_count": 83
465 | },
466 | {
467 | "metadata": {
468 | "ExecuteTime": {
469 | "end_time": "2024-05-28T08:52:04.349384Z",
470 | "start_time": "2024-05-28T08:52:04.346312Z"
471 | }
472 | },
473 | "cell_type": "code",
474 | "source": [
475 | "# np.ones and np.zeros\n",
476 | "a = np.ones((3,3))\n",
477 | "print(a)"
478 | ],
479 | "id": "ad8ad0006bd04e20",
480 | "outputs": [
481 | {
482 | "name": "stdout",
483 | "output_type": "stream",
484 | "text": [
485 | "[[1. 1. 1.]\n",
486 | " [1. 1. 1.]\n",
487 | " [1. 1. 1.]]\n"
488 | ]
489 | }
490 | ],
491 | "execution_count": 84
492 | },
493 | {
494 | "metadata": {
495 | "ExecuteTime": {
496 | "end_time": "2024-05-28T08:52:04.430532Z",
497 | "start_time": "2024-05-28T08:52:04.427226Z"
498 | }
499 | },
500 | "cell_type": "code",
501 | "source": [
502 | "b = np.zeros((3,3))\n",
503 | "print(b)\n"
504 | ],
505 | "id": "de8aba0fbc37222d",
506 | "outputs": [
507 | {
508 | "name": "stdout",
509 | "output_type": "stream",
510 | "text": [
511 | "[[0. 0. 0.]\n",
512 | " [0. 0. 0.]\n",
513 | " [0. 0. 0.]]\n"
514 | ]
515 | }
516 | ],
517 | "execution_count": 85
518 | },
519 | {
520 | "metadata": {
521 | "ExecuteTime": {
522 | "end_time": "2024-05-28T08:52:04.511259Z",
523 | "start_time": "2024-05-28T08:52:04.507311Z"
524 | }
525 | },
526 | "cell_type": "code",
527 | "source": [
528 | "# np.random\n",
529 | "a = np.random.random((3,3))"
530 | ],
531 | "id": "a46982be62b0d6f9",
532 | "outputs": [],
533 | "execution_count": 86
534 | },
535 | {
536 | "metadata": {
537 | "ExecuteTime": {
538 | "end_time": "2024-05-28T08:52:04.537073Z",
539 | "start_time": "2024-05-28T08:52:04.533651Z"
540 | }
541 | },
542 | "cell_type": "code",
543 | "source": "print(a)",
544 | "id": "8fcb803c0c6b7b0a",
545 | "outputs": [
546 | {
547 | "name": "stdout",
548 | "output_type": "stream",
549 | "text": [
550 | "[[0.6728589 0.09794667 0.2942666 ]\n",
551 | " [0.24164844 0.85593302 0.09477387]\n",
552 | " [0.51547219 0.37220659 0.87810424]]\n"
553 | ]
554 | }
555 | ],
556 | "execution_count": 87
557 | },
558 | {
559 | "metadata": {
560 | "ExecuteTime": {
561 | "end_time": "2024-05-28T08:52:04.576312Z",
562 | "start_time": "2024-05-28T08:52:04.563173Z"
563 | }
564 | },
565 | "cell_type": "code",
566 | "source": [
567 | "# np.linspace\n",
568 | "a = np.linspace(1,10,5) # 5 numbers between 1 and 10\n",
569 | "print(a)"
570 | ],
571 | "id": "4a2c9eea3359082a",
572 | "outputs": [
573 | {
574 | "name": "stdout",
575 | "output_type": "stream",
576 | "text": [
577 | "[ 1. 3.25 5.5 7.75 10. ]\n"
578 | ]
579 | }
580 | ],
581 | "execution_count": 88
582 | },
583 | {
584 | "metadata": {
585 | "ExecuteTime": {
586 | "end_time": "2024-05-28T08:52:04.613912Z",
587 | "start_time": "2024-05-28T08:52:04.610721Z"
588 | }
589 | },
590 | "cell_type": "code",
591 | "source": [
592 | "# np.eye\n",
593 | "a = np.eye(3) # 3 x 3 identity matrix\n",
594 | "print(a)"
595 | ],
596 | "id": "ed89b4894de163d5",
597 | "outputs": [
598 | {
599 | "name": "stdout",
600 | "output_type": "stream",
601 | "text": [
602 | "[[1. 0. 0.]\n",
603 | " [0. 1. 0.]\n",
604 | " [0. 0. 1.]]\n"
605 | ]
606 | }
607 | ],
608 | "execution_count": 89
609 | },
610 | {
611 | "metadata": {
612 | "ExecuteTime": {
613 | "end_time": "2024-05-28T08:52:04.659910Z",
614 | "start_time": "2024-05-28T08:52:04.656458Z"
615 | }
616 | },
617 | "cell_type": "code",
618 | "source": [
619 | "# np.full\n",
620 | "a = np.full((3,3),5) # 3 x 3 matrix with all elements as 5\n",
621 | "print(a)"
622 | ],
623 | "id": "c935d26f21f8075f",
624 | "outputs": [
625 | {
626 | "name": "stdout",
627 | "output_type": "stream",
628 | "text": [
629 | "[[5 5 5]\n",
630 | " [5 5 5]\n",
631 | " [5 5 5]]\n"
632 | ]
633 | }
634 | ],
635 | "execution_count": 90
636 | },
637 | {
638 | "metadata": {
639 | "ExecuteTime": {
640 | "end_time": "2024-05-28T08:52:04.705301Z",
641 | "start_time": "2024-05-28T08:52:04.700504Z"
642 | }
643 | },
644 | "cell_type": "code",
645 | "source": [
646 | "# np.empty\n",
647 | "a = np.empty((3,3)) # 3 x 3 matrix with random values\n",
648 | "print(a)"
649 | ],
650 | "id": "3b6f721e0c3ce53e",
651 | "outputs": [
652 | {
653 | "name": "stdout",
654 | "output_type": "stream",
655 | "text": [
656 | "[[1. 0. 0.]\n",
657 | " [0. 1. 0.]\n",
658 | " [0. 0. 1.]]\n"
659 | ]
660 | }
661 | ],
662 | "execution_count": 91
663 | },
664 | {
665 | "metadata": {},
666 | "cell_type": "markdown",
667 | "source": "# Numpy Attributes\n",
668 | "id": "729feff63e3f3894"
669 | },
670 | {
671 | "metadata": {
672 | "ExecuteTime": {
673 | "end_time": "2024-05-28T08:52:04.756267Z",
674 | "start_time": "2024-05-28T08:52:04.752655Z"
675 | }
676 | },
677 | "cell_type": "code",
678 | "source": [
679 | "a1 = np.arange(10) # 1D array\n",
680 | "print(a1)\n",
681 | "a2 = np.arange(12).reshape(3,4) # 2D array\n",
682 | "print(a2)\n",
683 | "a3 = np.arange(24).reshape(2,3,4) # 3D array\n",
684 | "print(a3)"
685 | ],
686 | "id": "2a25b1c81974fbfc",
687 | "outputs": [
688 | {
689 | "name": "stdout",
690 | "output_type": "stream",
691 | "text": [
692 | "[0 1 2 3 4 5 6 7 8 9]\n",
693 | "[[ 0 1 2 3]\n",
694 | " [ 4 5 6 7]\n",
695 | " [ 8 9 10 11]]\n",
696 | "[[[ 0 1 2 3]\n",
697 | " [ 4 5 6 7]\n",
698 | " [ 8 9 10 11]]\n",
699 | "\n",
700 | " [[12 13 14 15]\n",
701 | " [16 17 18 19]\n",
702 | " [20 21 22 23]]]\n"
703 | ]
704 | }
705 | ],
706 | "execution_count": 92
707 | },
708 | {
709 | "metadata": {
710 | "ExecuteTime": {
711 | "end_time": "2024-05-28T08:52:04.788978Z",
712 | "start_time": "2024-05-28T08:52:04.785345Z"
713 | }
714 | },
715 | "cell_type": "code",
716 | "source": [
717 | "# ndim\n",
718 | "print(a1.ndim) # number of dimensions\n",
719 | "print(a2.ndim)\n",
720 | "print(a3.ndim)"
721 | ],
722 | "id": "981c4443135d39b8",
723 | "outputs": [
724 | {
725 | "name": "stdout",
726 | "output_type": "stream",
727 | "text": [
728 | "1\n",
729 | "2\n",
730 | "3\n"
731 | ]
732 | }
733 | ],
734 | "execution_count": 93
735 | },
736 | {
737 | "metadata": {
738 | "ExecuteTime": {
739 | "end_time": "2024-05-28T08:52:04.865839Z",
740 | "start_time": "2024-05-28T08:52:04.862544Z"
741 | }
742 | },
743 | "cell_type": "code",
744 | "source": [
745 | "# shape\n",
746 | "print(a1.shape) # number of elements in each dimension\n",
747 | "print(a2.shape)\n",
748 | "print(a3.shape)"
749 | ],
750 | "id": "61b08403f451ff5b",
751 | "outputs": [
752 | {
753 | "name": "stdout",
754 | "output_type": "stream",
755 | "text": [
756 | "(10,)\n",
757 | "(3, 4)\n",
758 | "(2, 3, 4)\n"
759 | ]
760 | }
761 | ],
762 | "execution_count": 94
763 | },
764 | {
765 | "metadata": {
766 | "ExecuteTime": {
767 | "end_time": "2024-05-28T08:52:04.893807Z",
768 | "start_time": "2024-05-28T08:52:04.884104Z"
769 | }
770 | },
771 | "cell_type": "code",
772 | "source": [
773 | "# size\n",
774 | "print(a1.size) # number of elements in the array\n",
775 | "print(a2.size)\n",
776 | "print(a3.size)"
777 | ],
778 | "id": "5fab764508b9b168",
779 | "outputs": [
780 | {
781 | "name": "stdout",
782 | "output_type": "stream",
783 | "text": [
784 | "10\n",
785 | "12\n",
786 | "24\n"
787 | ]
788 | }
789 | ],
790 | "execution_count": 95
791 | },
792 | {
793 | "metadata": {
794 | "ExecuteTime": {
795 | "end_time": "2024-05-28T08:52:04.960887Z",
796 | "start_time": "2024-05-28T08:52:04.956726Z"
797 | }
798 | },
799 | "cell_type": "code",
800 | "source": [
801 | "# itemsize\n",
802 | "print(a1.itemsize) # size of each element in the array\n",
803 | "print(a2.itemsize)\n",
804 | "print(a3.itemsize)"
805 | ],
806 | "id": "e40eb03d90696043",
807 | "outputs": [
808 | {
809 | "name": "stdout",
810 | "output_type": "stream",
811 | "text": [
812 | "4\n",
813 | "4\n",
814 | "4\n"
815 | ]
816 | }
817 | ],
818 | "execution_count": 96
819 | },
820 | {
821 | "metadata": {
822 | "ExecuteTime": {
823 | "end_time": "2024-05-28T08:52:05.027806Z",
824 | "start_time": "2024-05-28T08:52:05.024464Z"
825 | }
826 | },
827 | "cell_type": "code",
828 | "source": [
829 | "# dtype\n",
830 | "print(a1.dtype) # data type of the array\n",
831 | "print(a2.dtype)\n",
832 | "print(a3.dtype)"
833 | ],
834 | "id": "3b1d5157a8174410",
835 | "outputs": [
836 | {
837 | "name": "stdout",
838 | "output_type": "stream",
839 | "text": [
840 | "int32\n",
841 | "int32\n",
842 | "int32\n"
843 | ]
844 | }
845 | ],
846 | "execution_count": 97
847 | },
848 | {
849 | "metadata": {},
850 | "cell_type": "markdown",
851 | "source": "# Changing Datatype of Array",
852 | "id": "bf807f6e11a2acae"
853 | },
854 | {
855 | "metadata": {
856 | "ExecuteTime": {
857 | "end_time": "2024-05-28T08:52:05.083397Z",
858 | "start_time": "2024-05-28T08:52:05.080331Z"
859 | }
860 | },
861 | "cell_type": "code",
862 | "source": [
863 | "# astype\n",
864 | "a3.dtype"
865 | ],
866 | "id": "cbe5df8117678818",
867 | "outputs": [
868 | {
869 | "data": {
870 | "text/plain": [
871 | "dtype('int32')"
872 | ]
873 | },
874 | "execution_count": 98,
875 | "metadata": {},
876 | "output_type": "execute_result"
877 | }
878 | ],
879 | "execution_count": 98
880 | },
881 | {
882 | "metadata": {
883 | "ExecuteTime": {
884 | "end_time": "2024-05-28T08:52:05.124700Z",
885 | "start_time": "2024-05-28T08:52:05.120739Z"
886 | }
887 | },
888 | "cell_type": "code",
889 | "source": "a3 = a3.astype(float)",
890 | "id": "aed19e8306c8b27f",
891 | "outputs": [],
892 | "execution_count": 99
893 | },
894 | {
895 | "metadata": {
896 | "ExecuteTime": {
897 | "end_time": "2024-05-28T08:52:05.187051Z",
898 | "start_time": "2024-05-28T08:52:05.183351Z"
899 | }
900 | },
901 | "cell_type": "code",
902 | "source": "a3.dtype",
903 | "id": "67ab6f3de84f09b7",
904 | "outputs": [
905 | {
906 | "data": {
907 | "text/plain": [
908 | "dtype('float64')"
909 | ]
910 | },
911 | "execution_count": 100,
912 | "metadata": {},
913 | "output_type": "execute_result"
914 | }
915 | ],
916 | "execution_count": 100
917 | },
918 | {
919 | "metadata": {},
920 | "cell_type": "markdown",
921 | "source": "# Array Operations",
922 | "id": "af722b622f4eb509"
923 | },
924 | {
925 | "metadata": {
926 | "ExecuteTime": {
927 | "end_time": "2024-05-28T08:52:05.215231Z",
928 | "start_time": "2024-05-28T08:52:05.211381Z"
929 | }
930 | },
931 | "cell_type": "code",
932 | "source": [
933 | "a1 = np.arange(12).reshape(3,4)\n",
934 | "a2 = np.arange(12,24).reshape(3,4)\n",
935 | "\n",
936 | "print(a1)\n",
937 | "print(a2)"
938 | ],
939 | "id": "507703f36620d267",
940 | "outputs": [
941 | {
942 | "name": "stdout",
943 | "output_type": "stream",
944 | "text": [
945 | "[[ 0 1 2 3]\n",
946 | " [ 4 5 6 7]\n",
947 | " [ 8 9 10 11]]\n",
948 | "[[12 13 14 15]\n",
949 | " [16 17 18 19]\n",
950 | " [20 21 22 23]]\n"
951 | ]
952 | }
953 | ],
954 | "execution_count": 101
955 | },
956 | {
957 | "metadata": {
958 | "ExecuteTime": {
959 | "end_time": "2024-05-28T08:52:05.268157Z",
960 | "start_time": "2024-05-28T08:52:05.265011Z"
961 | }
962 | },
963 | "cell_type": "code",
964 | "source": [
965 | "# Scalar operations\n",
966 | "\n",
967 | "# arithmetic operations\n",
968 | "print(a1 + 2)\n",
969 | "print(a1 - 2)\n",
970 | "print(a1 * 2)\n",
971 | "print(a1 / 2)\n"
972 | ],
973 | "id": "f46ba05a28ccccb1",
974 | "outputs": [
975 | {
976 | "name": "stdout",
977 | "output_type": "stream",
978 | "text": [
979 | "[[ 2 3 4 5]\n",
980 | " [ 6 7 8 9]\n",
981 | " [10 11 12 13]]\n",
982 | "[[-2 -1 0 1]\n",
983 | " [ 2 3 4 5]\n",
984 | " [ 6 7 8 9]]\n",
985 | "[[ 0 2 4 6]\n",
986 | " [ 8 10 12 14]\n",
987 | " [16 18 20 22]]\n",
988 | "[[0. 0.5 1. 1.5]\n",
989 | " [2. 2.5 3. 3.5]\n",
990 | " [4. 4.5 5. 5.5]]\n"
991 | ]
992 | }
993 | ],
994 | "execution_count": 102
995 | },
996 | {
997 | "metadata": {
998 | "ExecuteTime": {
999 | "end_time": "2024-05-28T08:52:05.294153Z",
1000 | "start_time": "2024-05-28T08:52:05.290501Z"
1001 | }
1002 | },
1003 | "cell_type": "code",
1004 | "source": [
1005 | "# relational operations\n",
1006 | "print(a1 > 5)\n",
1007 | "print(a1 < 5)\n",
1008 | "print(a1 == 5)\n",
1009 | "print(a1 != 5)\n"
1010 | ],
1011 | "id": "cd4b1ad14cbab764",
1012 | "outputs": [
1013 | {
1014 | "name": "stdout",
1015 | "output_type": "stream",
1016 | "text": [
1017 | "[[False False False False]\n",
1018 | " [False False True True]\n",
1019 | " [ True True True True]]\n",
1020 | "[[ True True True True]\n",
1021 | " [ True False False False]\n",
1022 | " [False False False False]]\n",
1023 | "[[False False False False]\n",
1024 | " [False True False False]\n",
1025 | " [False False False False]]\n",
1026 | "[[ True True True True]\n",
1027 | " [ True False True True]\n",
1028 | " [ True True True True]]\n"
1029 | ]
1030 | }
1031 | ],
1032 | "execution_count": 103
1033 | },
1034 | {
1035 | "metadata": {
1036 | "ExecuteTime": {
1037 | "end_time": "2024-05-28T08:52:05.339764Z",
1038 | "start_time": "2024-05-28T08:52:05.336594Z"
1039 | }
1040 | },
1041 | "cell_type": "code",
1042 | "source": [
1043 | "# Vector operations\n",
1044 | "\n",
1045 | "# arithmetic operations\n",
1046 | "print(a1 + a2)\n",
1047 | "print(a1 - a2)\n",
1048 | "print(a1 * a2)\n",
1049 | "print(a1 / a2)\n",
1050 | " "
1051 | ],
1052 | "id": "eb42d59cad53066d",
1053 | "outputs": [
1054 | {
1055 | "name": "stdout",
1056 | "output_type": "stream",
1057 | "text": [
1058 | "[[12 14 16 18]\n",
1059 | " [20 22 24 26]\n",
1060 | " [28 30 32 34]]\n",
1061 | "[[-12 -12 -12 -12]\n",
1062 | " [-12 -12 -12 -12]\n",
1063 | " [-12 -12 -12 -12]]\n",
1064 | "[[ 0 13 28 45]\n",
1065 | " [ 64 85 108 133]\n",
1066 | " [160 189 220 253]]\n",
1067 | "[[0. 0.07692308 0.14285714 0.2 ]\n",
1068 | " [0.25 0.29411765 0.33333333 0.36842105]\n",
1069 | " [0.4 0.42857143 0.45454545 0.47826087]]\n"
1070 | ]
1071 | }
1072 | ],
1073 | "execution_count": 104
1074 | },
1075 | {
1076 | "metadata": {},
1077 | "cell_type": "markdown",
1078 | "source": "# Numpy Functions",
1079 | "id": "2417331d42e53ac0"
1080 | },
1081 | {
1082 | "metadata": {
1083 | "ExecuteTime": {
1084 | "end_time": "2024-05-28T08:52:05.388151Z",
1085 | "start_time": "2024-05-28T08:52:05.383537Z"
1086 | }
1087 | },
1088 | "cell_type": "code",
1089 | "source": [
1090 | "a1 = np.random.random((3,3))\n",
1091 | "a1 =np.round(a1*100) # round off the elements of the array \n",
1092 | "print(a1)"
1093 | ],
1094 | "id": "6061e7f961d76e43",
1095 | "outputs": [
1096 | {
1097 | "name": "stdout",
1098 | "output_type": "stream",
1099 | "text": [
1100 | "[[65. 24. 58.]\n",
1101 | " [97. 52. 7.]\n",
1102 | " [44. 15. 15.]]\n"
1103 | ]
1104 | }
1105 | ],
1106 | "execution_count": 105
1107 | },
1108 | {
1109 | "metadata": {
1110 | "ExecuteTime": {
1111 | "end_time": "2024-05-28T08:52:05.459233Z",
1112 | "start_time": "2024-05-28T08:52:05.455817Z"
1113 | }
1114 | },
1115 | "cell_type": "code",
1116 | "source": [
1117 | "# max / min / sum / prod\n",
1118 | "print(a1.max()) # maximum element\n",
1119 | "print(a1.min()) # minimum element\n",
1120 | "print(a1.sum()) # sum of all elements\n",
1121 | "print(a1.prod()) # product of all elements"
1122 | ],
1123 | "id": "c0cb8c4248300816",
1124 | "outputs": [
1125 | {
1126 | "name": "stdout",
1127 | "output_type": "stream",
1128 | "text": [
1129 | "97.0\n",
1130 | "7.0\n",
1131 | "377.0\n",
1132 | "31627211616000.0\n"
1133 | ]
1134 | }
1135 | ],
1136 | "execution_count": 106
1137 | },
1138 | {
1139 | "metadata": {
1140 | "ExecuteTime": {
1141 | "end_time": "2024-05-28T08:52:05.537967Z",
1142 | "start_time": "2024-05-28T08:52:05.534021Z"
1143 | }
1144 | },
1145 | "cell_type": "code",
1146 | "source": [
1147 | "# mean / median / std / var\n",
1148 | "print(a1.mean()) # mean\n",
1149 | "print(np.median(a1)) # median\n",
1150 | "print(a1.std()) # standard deviation\n",
1151 | "print(a1.var()) # variance"
1152 | ],
1153 | "id": "3d86bfee4c7a6c4e",
1154 | "outputs": [
1155 | {
1156 | "name": "stdout",
1157 | "output_type": "stream",
1158 | "text": [
1159 | "41.888888888888886\n",
1160 | "44.0\n",
1161 | "27.730626648544884\n",
1162 | "768.9876543209878\n"
1163 | ]
1164 | }
1165 | ],
1166 | "execution_count": 107
1167 | },
1168 | {
1169 | "metadata": {
1170 | "ExecuteTime": {
1171 | "end_time": "2024-05-28T08:52:05.612525Z",
1172 | "start_time": "2024-05-28T08:52:05.607675Z"
1173 | }
1174 | },
1175 | "cell_type": "code",
1176 | "source": [
1177 | "# For each row\n",
1178 | "print(a1.max(axis=1)) # maximum element in each row\n",
1179 | "# 1 -> row"
1180 | ],
1181 | "id": "687cc2eceecb6f26",
1182 | "outputs": [
1183 | {
1184 | "name": "stdout",
1185 | "output_type": "stream",
1186 | "text": [
1187 | "[65. 97. 44.]\n"
1188 | ]
1189 | }
1190 | ],
1191 | "execution_count": 108
1192 | },
1193 | {
1194 | "metadata": {
1195 | "ExecuteTime": {
1196 | "end_time": "2024-05-28T08:52:05.638531Z",
1197 | "start_time": "2024-05-28T08:52:05.634817Z"
1198 | }
1199 | },
1200 | "cell_type": "code",
1201 | "source": [
1202 | "# For each column\n",
1203 | "print(a1.max(axis=0)) # maximum element in each column\n",
1204 | "# 0 -> column"
1205 | ],
1206 | "id": "4628f4bc56145ec4",
1207 | "outputs": [
1208 | {
1209 | "name": "stdout",
1210 | "output_type": "stream",
1211 | "text": [
1212 | "[97. 52. 58.]\n"
1213 | ]
1214 | }
1215 | ],
1216 | "execution_count": 109
1217 | },
1218 | {
1219 | "metadata": {
1220 | "ExecuteTime": {
1221 | "end_time": "2024-05-28T08:52:05.688431Z",
1222 | "start_time": "2024-05-28T08:52:05.684967Z"
1223 | }
1224 | },
1225 | "cell_type": "code",
1226 | "source": [
1227 | "# trigonometric functions\n",
1228 | "print(np.sin(a1))\n",
1229 | "print(np.cos(a1))\n",
1230 | "print(np.tan(a1))\n"
1231 | ],
1232 | "id": "d79acac3ca909b8",
1233 | "outputs": [
1234 | {
1235 | "name": "stdout",
1236 | "output_type": "stream",
1237 | "text": [
1238 | "[[ 0.82682868 -0.90557836 0.99287265]\n",
1239 | " [ 0.37960774 0.98662759 0.6569866 ]\n",
1240 | " [ 0.01770193 0.65028784 0.65028784]]\n",
1241 | "[[-0.56245385 0.42417901 0.11918014]\n",
1242 | " [-0.92514754 -0.16299078 0.75390225]\n",
1243 | " [ 0.99984331 -0.75968791 -0.75968791]]\n",
1244 | "[[-1.47003826 -2.1348967 8.33085685]\n",
1245 | " [-0.4103213 -6.05327238 0.87144798]\n",
1246 | " [ 0.0177047 -0.8559934 -0.8559934 ]]\n"
1247 | ]
1248 | }
1249 | ],
1250 | "execution_count": 110
1251 | },
1252 | {
1253 | "metadata": {
1254 | "ExecuteTime": {
1255 | "end_time": "2024-05-28T08:52:05.749362Z",
1256 | "start_time": "2024-05-28T08:52:05.746124Z"
1257 | }
1258 | },
1259 | "cell_type": "code",
1260 | "source": [
1261 | "# exponential functions\n",
1262 | "print(np.exp(a1))\n",
1263 | "print(np.log(a1))\n",
1264 | "print(np.log10(a1)) # log base 10\n"
1265 | ],
1266 | "id": "8da85b776a95827e",
1267 | "outputs": [
1268 | {
1269 | "name": "stdout",
1270 | "output_type": "stream",
1271 | "text": [
1272 | "[[1.69488924e+28 2.64891221e+10 1.54553894e+25]\n",
1273 | " [1.33833472e+42 3.83100800e+22 1.09663316e+03]\n",
1274 | " [1.28516001e+19 3.26901737e+06 3.26901737e+06]]\n",
1275 | "[[4.17438727 3.17805383 4.06044301]\n",
1276 | " [4.57471098 3.95124372 1.94591015]\n",
1277 | " [3.78418963 2.7080502 2.7080502 ]]\n",
1278 | "[[1.81291336 1.38021124 1.76342799]\n",
1279 | " [1.98677173 1.71600334 0.84509804]\n",
1280 | " [1.64345268 1.17609126 1.17609126]]\n"
1281 | ]
1282 | }
1283 | ],
1284 | "execution_count": 111
1285 | },
1286 | {
1287 | "metadata": {
1288 | "ExecuteTime": {
1289 | "end_time": "2024-05-28T08:52:05.810072Z",
1290 | "start_time": "2024-05-28T08:52:05.804104Z"
1291 | }
1292 | },
1293 | "cell_type": "code",
1294 | "source": [
1295 | "# Dot Products\n",
1296 | "a2 = np.arange(12).reshape(3,4)\n",
1297 | "a3 = np.arange(12,24).reshape(3,4)\n",
1298 | "np.dot(a2,a3.T) # dot product of two arrays a2 and a3 \n"
1299 | ],
1300 | "id": "3710080946844b62",
1301 | "outputs": [
1302 | {
1303 | "data": {
1304 | "text/plain": [
1305 | "array([[ 86, 110, 134],\n",
1306 | " [302, 390, 478],\n",
1307 | " [518, 670, 822]])"
1308 | ]
1309 | },
1310 | "execution_count": 112,
1311 | "metadata": {},
1312 | "output_type": "execute_result"
1313 | }
1314 | ],
1315 | "execution_count": 112
1316 | },
1317 | {
1318 | "metadata": {
1319 | "ExecuteTime": {
1320 | "end_time": "2024-05-28T08:52:05.843040Z",
1321 | "start_time": "2024-05-28T08:52:05.838427Z"
1322 | }
1323 | },
1324 | "cell_type": "code",
1325 | "source": [
1326 | "# Transpose\n",
1327 | "a1.T\n"
1328 | ],
1329 | "id": "82edefb69bd2329a",
1330 | "outputs": [
1331 | {
1332 | "data": {
1333 | "text/plain": [
1334 | "array([[65., 97., 44.],\n",
1335 | " [24., 52., 15.],\n",
1336 | " [58., 7., 15.]])"
1337 | ]
1338 | },
1339 | "execution_count": 113,
1340 | "metadata": {},
1341 | "output_type": "execute_result"
1342 | }
1343 | ],
1344 | "execution_count": 113
1345 | },
1346 | {
1347 | "metadata": {
1348 | "ExecuteTime": {
1349 | "end_time": "2024-05-28T08:52:05.899764Z",
1350 | "start_time": "2024-05-28T08:52:05.891402Z"
1351 | }
1352 | },
1353 | "cell_type": "code",
1354 | "source": [
1355 | "# Inverse\n",
1356 | "np.linalg.inv(a1)\n"
1357 | ],
1358 | "id": "543b9927ab877765",
1359 | "outputs": [
1360 | {
1361 | "data": {
1362 | "text/plain": [
1363 | "array([[-0.02111553, -0.01595395, 0.08909188],\n",
1364 | " [ 0.03588075, 0.04933212, -0.16176057],\n",
1365 | " [ 0.02605812, -0.00253386, -0.03290894]])"
1366 | ]
1367 | },
1368 | "execution_count": 114,
1369 | "metadata": {},
1370 | "output_type": "execute_result"
1371 | }
1372 | ],
1373 | "execution_count": 114
1374 | },
1375 | {
1376 | "metadata": {
1377 | "ExecuteTime": {
1378 | "end_time": "2024-05-28T08:52:05.933515Z",
1379 | "start_time": "2024-05-28T08:52:05.930112Z"
1380 | }
1381 | },
1382 | "cell_type": "code",
1383 | "source": [
1384 | "# round / floor / ceil\n",
1385 | "print(np.round(3.14))\n",
1386 | "print(np.floor(3.14))\n",
1387 | "print(np.ceil(3.14))"
1388 | ],
1389 | "id": "a58c499363acbb4d",
1390 | "outputs": [
1391 | {
1392 | "name": "stdout",
1393 | "output_type": "stream",
1394 | "text": [
1395 | "3.0\n",
1396 | "3.0\n",
1397 | "4.0\n"
1398 | ]
1399 | }
1400 | ],
1401 | "execution_count": 115
1402 | },
1403 | {
1404 | "metadata": {
1405 | "ExecuteTime": {
1406 | "end_time": "2024-05-28T08:52:05.981477Z",
1407 | "start_time": "2024-05-28T08:52:05.977799Z"
1408 | }
1409 | },
1410 | "cell_type": "code",
1411 | "source": [
1412 | "# unique\n",
1413 | "a1 = np.array([1,2,3,4,5,1,2,3,4,5])\n",
1414 | "print(np.unique(a1)) # unique elements in the array\n"
1415 | ],
1416 | "id": "14520231246c2e28",
1417 | "outputs": [
1418 | {
1419 | "name": "stdout",
1420 | "output_type": "stream",
1421 | "text": [
1422 | "[1 2 3 4 5]\n"
1423 | ]
1424 | }
1425 | ],
1426 | "execution_count": 116
1427 | },
1428 | {
1429 | "metadata": {},
1430 | "cell_type": "markdown",
1431 | "source": "# Numpy Indexing and Slicing",
1432 | "id": "504ed6c76483fce6"
1433 | },
1434 | {
1435 | "metadata": {
1436 | "ExecuteTime": {
1437 | "end_time": "2024-05-28T08:52:06.037224Z",
1438 | "start_time": "2024-05-28T08:52:06.034157Z"
1439 | }
1440 | },
1441 | "cell_type": "code",
1442 | "source": [
1443 | "a1 = np.arange(10)\n",
1444 | "a2 = np.arange(12).reshape(3,4)\n",
1445 | "a3 = np.arange(24).reshape(2,3,4)"
1446 | ],
1447 | "id": "c19abe7635bc720e",
1448 | "outputs": [],
1449 | "execution_count": 117
1450 | },
1451 | {
1452 | "metadata": {
1453 | "ExecuteTime": {
1454 | "end_time": "2024-05-28T08:52:06.104413Z",
1455 | "start_time": "2024-05-28T08:52:06.100188Z"
1456 | }
1457 | },
1458 | "cell_type": "code",
1459 | "source": [
1460 | "print(a1[0]) # first element\n",
1461 | "print(a1[-1]) # last element"
1462 | ],
1463 | "id": "adf6da4b28dddaa4",
1464 | "outputs": [
1465 | {
1466 | "name": "stdout",
1467 | "output_type": "stream",
1468 | "text": [
1469 | "0\n",
1470 | "9\n"
1471 | ]
1472 | }
1473 | ],
1474 | "execution_count": 118
1475 | },
1476 | {
1477 | "metadata": {
1478 | "ExecuteTime": {
1479 | "end_time": "2024-05-28T08:52:06.135066Z",
1480 | "start_time": "2024-05-28T08:52:06.132112Z"
1481 | }
1482 | },
1483 | "cell_type": "code",
1484 | "source": "print(a3[0,0,0]) # first element",
1485 | "id": "14e7c180ee2ea97f",
1486 | "outputs": [
1487 | {
1488 | "name": "stdout",
1489 | "output_type": "stream",
1490 | "text": [
1491 | "0\n"
1492 | ]
1493 | }
1494 | ],
1495 | "execution_count": 119
1496 | },
1497 | {
1498 | "metadata": {
1499 | "ExecuteTime": {
1500 | "end_time": "2024-05-28T08:52:06.166963Z",
1501 | "start_time": "2024-05-28T08:52:06.163342Z"
1502 | }
1503 | },
1504 | "cell_type": "code",
1505 | "source": [
1506 | "# Slicing \n",
1507 | "print(a1[0:5]) # first five elements\n",
1508 | "print(a1[:5]) # first five elements\n",
1509 | "print(a1[5:]) # elements from index 5\n",
1510 | "print(a1[::2]) # every second element\n"
1511 | ],
1512 | "id": "1b125f9e8c9eef56",
1513 | "outputs": [
1514 | {
1515 | "name": "stdout",
1516 | "output_type": "stream",
1517 | "text": [
1518 | "[0 1 2 3 4]\n",
1519 | "[0 1 2 3 4]\n",
1520 | "[5 6 7 8 9]\n",
1521 | "[0 2 4 6 8]\n"
1522 | ]
1523 | }
1524 | ],
1525 | "execution_count": 120
1526 | },
1527 | {
1528 | "metadata": {
1529 | "ExecuteTime": {
1530 | "end_time": "2024-05-28T08:52:06.191737Z",
1531 | "start_time": "2024-05-28T08:52:06.188407Z"
1532 | }
1533 | },
1534 | "cell_type": "code",
1535 | "source": [
1536 | "# Slicing 2D array\n",
1537 | "print(a2[0,0]) # first element\n",
1538 | "print(a2[0,0:2]) # first row and first two columns\n"
1539 | ],
1540 | "id": "a105cc622aa0d842",
1541 | "outputs": [
1542 | {
1543 | "name": "stdout",
1544 | "output_type": "stream",
1545 | "text": [
1546 | "0\n",
1547 | "[0 1]\n"
1548 | ]
1549 | }
1550 | ],
1551 | "execution_count": 121
1552 | },
1553 | {
1554 | "metadata": {
1555 | "ExecuteTime": {
1556 | "end_time": "2024-05-28T08:52:06.254547Z",
1557 | "start_time": "2024-05-28T08:52:06.250432Z"
1558 | }
1559 | },
1560 | "cell_type": "code",
1561 | "source": [
1562 | "# Slicing 3D array\n",
1563 | "print(a3[0,0,0]) # first element\n",
1564 | "print(a3[0,0,0:2]) # first row and first two columns\n",
1565 | "print(a3[0,0:2,0:2]) # first two rows and first two columns\n"
1566 | ],
1567 | "id": "3a1b0a3747dae5f",
1568 | "outputs": [
1569 | {
1570 | "name": "stdout",
1571 | "output_type": "stream",
1572 | "text": [
1573 | "0\n",
1574 | "[0 1]\n",
1575 | "[[0 1]\n",
1576 | " [4 5]]\n"
1577 | ]
1578 | }
1579 | ],
1580 | "execution_count": 122
1581 | },
1582 | {
1583 | "metadata": {
1584 | "ExecuteTime": {
1585 | "end_time": "2024-05-28T08:52:06.278595Z",
1586 | "start_time": "2024-05-28T08:52:06.273906Z"
1587 | }
1588 | },
1589 | "cell_type": "code",
1590 | "source": [
1591 | "# Printing corner elements of a 2D array\n",
1592 | "print(a2[0:1,0:2]) # first two rows and first two columns\n"
1593 | ],
1594 | "id": "81cb3440af4f3c4",
1595 | "outputs": [
1596 | {
1597 | "name": "stdout",
1598 | "output_type": "stream",
1599 | "text": [
1600 | "[[0 1]]\n"
1601 | ]
1602 | }
1603 | ],
1604 | "execution_count": 123
1605 | },
1606 | {
1607 | "metadata": {},
1608 | "cell_type": "markdown",
1609 | "source": "# Iterating over Arrays",
1610 | "id": "2147b5334d81dc4e"
1611 | },
1612 | {
1613 | "metadata": {
1614 | "ExecuteTime": {
1615 | "end_time": "2024-05-28T08:52:06.332988Z",
1616 | "start_time": "2024-05-28T08:52:06.328386Z"
1617 | }
1618 | },
1619 | "cell_type": "code",
1620 | "source": "a1",
1621 | "id": "4903361d0bf348e0",
1622 | "outputs": [
1623 | {
1624 | "data": {
1625 | "text/plain": [
1626 | "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
1627 | ]
1628 | },
1629 | "execution_count": 124,
1630 | "metadata": {},
1631 | "output_type": "execute_result"
1632 | }
1633 | ],
1634 | "execution_count": 124
1635 | },
1636 | {
1637 | "metadata": {
1638 | "ExecuteTime": {
1639 | "end_time": "2024-05-28T08:52:06.347223Z",
1640 | "start_time": "2024-05-28T08:52:06.343056Z"
1641 | }
1642 | },
1643 | "cell_type": "code",
1644 | "source": "a2",
1645 | "id": "486da72639ec5ce2",
1646 | "outputs": [
1647 | {
1648 | "data": {
1649 | "text/plain": [
1650 | "array([[ 0, 1, 2, 3],\n",
1651 | " [ 4, 5, 6, 7],\n",
1652 | " [ 8, 9, 10, 11]])"
1653 | ]
1654 | },
1655 | "execution_count": 125,
1656 | "metadata": {},
1657 | "output_type": "execute_result"
1658 | }
1659 | ],
1660 | "execution_count": 125
1661 | },
1662 | {
1663 | "metadata": {
1664 | "ExecuteTime": {
1665 | "end_time": "2024-05-28T08:52:06.368082Z",
1666 | "start_time": "2024-05-28T08:52:06.364505Z"
1667 | }
1668 | },
1669 | "cell_type": "code",
1670 | "source": [
1671 | "for i in a1:\n",
1672 | " print(i)"
1673 | ],
1674 | "id": "2210b6325269578c",
1675 | "outputs": [
1676 | {
1677 | "name": "stdout",
1678 | "output_type": "stream",
1679 | "text": [
1680 | "0\n",
1681 | "1\n",
1682 | "2\n",
1683 | "3\n",
1684 | "4\n",
1685 | "5\n",
1686 | "6\n",
1687 | "7\n",
1688 | "8\n",
1689 | "9\n"
1690 | ]
1691 | }
1692 | ],
1693 | "execution_count": 126
1694 | },
1695 | {
1696 | "metadata": {
1697 | "ExecuteTime": {
1698 | "end_time": "2024-05-28T08:52:06.430399Z",
1699 | "start_time": "2024-05-28T08:52:06.426672Z"
1700 | }
1701 | },
1702 | "cell_type": "code",
1703 | "source": [
1704 | "for i in a2: \n",
1705 | " print(i) # row by row"
1706 | ],
1707 | "id": "de1ac71ecd381c9e",
1708 | "outputs": [
1709 | {
1710 | "name": "stdout",
1711 | "output_type": "stream",
1712 | "text": [
1713 | "[0 1 2 3]\n",
1714 | "[4 5 6 7]\n",
1715 | "[ 8 9 10 11]\n"
1716 | ]
1717 | }
1718 | ],
1719 | "execution_count": 127
1720 | },
1721 | {
1722 | "metadata": {
1723 | "ExecuteTime": {
1724 | "end_time": "2024-05-28T08:52:06.478605Z",
1725 | "start_time": "2024-05-28T08:52:06.475707Z"
1726 | }
1727 | },
1728 | "cell_type": "code",
1729 | "source": [
1730 | "for i in a2.flat: # flatten the array\n",
1731 | " print(i) # element by element"
1732 | ],
1733 | "id": "c60cc9bbec982857",
1734 | "outputs": [
1735 | {
1736 | "name": "stdout",
1737 | "output_type": "stream",
1738 | "text": [
1739 | "0\n",
1740 | "1\n",
1741 | "2\n",
1742 | "3\n",
1743 | "4\n",
1744 | "5\n",
1745 | "6\n",
1746 | "7\n",
1747 | "8\n",
1748 | "9\n",
1749 | "10\n",
1750 | "11\n"
1751 | ]
1752 | }
1753 | ],
1754 | "execution_count": 128
1755 | },
1756 | {
1757 | "metadata": {
1758 | "ExecuteTime": {
1759 | "end_time": "2024-05-28T08:52:06.532035Z",
1760 | "start_time": "2024-05-28T08:52:06.528986Z"
1761 | }
1762 | },
1763 | "cell_type": "code",
1764 | "source": [
1765 | "for i in np.nditer(a2): # default order\n",
1766 | " print(i) # element by element"
1767 | ],
1768 | "id": "2ae39765c4b62f5",
1769 | "outputs": [
1770 | {
1771 | "name": "stdout",
1772 | "output_type": "stream",
1773 | "text": [
1774 | "0\n",
1775 | "1\n",
1776 | "2\n",
1777 | "3\n",
1778 | "4\n",
1779 | "5\n",
1780 | "6\n",
1781 | "7\n",
1782 | "8\n",
1783 | "9\n",
1784 | "10\n",
1785 | "11\n"
1786 | ]
1787 | }
1788 | ],
1789 | "execution_count": 129
1790 | },
1791 | {
1792 | "metadata": {
1793 | "ExecuteTime": {
1794 | "end_time": "2024-05-28T08:52:06.608156Z",
1795 | "start_time": "2024-05-28T08:52:06.602602Z"
1796 | }
1797 | },
1798 | "cell_type": "code",
1799 | "source": [
1800 | "for i in np.nditer(a2,order='F'): # Fortran order\n",
1801 | " print(i) # column by column"
1802 | ],
1803 | "id": "bbf3f403fa9e6bc1",
1804 | "outputs": [
1805 | {
1806 | "name": "stdout",
1807 | "output_type": "stream",
1808 | "text": [
1809 | "0\n",
1810 | "4\n",
1811 | "8\n",
1812 | "1\n",
1813 | "5\n",
1814 | "9\n",
1815 | "2\n",
1816 | "6\n",
1817 | "10\n",
1818 | "3\n",
1819 | "7\n",
1820 | "11\n"
1821 | ]
1822 | }
1823 | ],
1824 | "execution_count": 130
1825 | },
1826 | {
1827 | "metadata": {
1828 | "ExecuteTime": {
1829 | "end_time": "2024-05-28T08:52:06.636870Z",
1830 | "start_time": "2024-05-28T08:52:06.633460Z"
1831 | }
1832 | },
1833 | "cell_type": "code",
1834 | "source": [
1835 | "for i in np.nditer(a2,order='C'): # C order\n",
1836 | " print(i) # row by row"
1837 | ],
1838 | "id": "134d68b3d05f38a8",
1839 | "outputs": [
1840 | {
1841 | "name": "stdout",
1842 | "output_type": "stream",
1843 | "text": [
1844 | "0\n",
1845 | "1\n",
1846 | "2\n",
1847 | "3\n",
1848 | "4\n",
1849 | "5\n",
1850 | "6\n",
1851 | "7\n",
1852 | "8\n",
1853 | "9\n",
1854 | "10\n",
1855 | "11\n"
1856 | ]
1857 | }
1858 | ],
1859 | "execution_count": 131
1860 | },
1861 | {
1862 | "metadata": {
1863 | "ExecuteTime": {
1864 | "end_time": "2024-05-28T08:52:06.676830Z",
1865 | "start_time": "2024-05-28T08:52:06.673421Z"
1866 | }
1867 | },
1868 | "cell_type": "code",
1869 | "source": [
1870 | "for i in np.nditer(a2,flags=['external_loop']): # external loop \n",
1871 | " print(i) # row by row"
1872 | ],
1873 | "id": "34cf95d6fe093239",
1874 | "outputs": [
1875 | {
1876 | "name": "stdout",
1877 | "output_type": "stream",
1878 | "text": [
1879 | "[ 0 1 2 3 4 5 6 7 8 9 10 11]\n"
1880 | ]
1881 | }
1882 | ],
1883 | "execution_count": 132
1884 | },
1885 | {
1886 | "metadata": {},
1887 | "cell_type": "markdown",
1888 | "source": "# Reshaping Arrays\n",
1889 | "id": "ab83d4ecf4450da3"
1890 | },
1891 | {
1892 | "metadata": {
1893 | "ExecuteTime": {
1894 | "end_time": "2024-05-28T08:52:06.719016Z",
1895 | "start_time": "2024-05-28T08:52:06.705158Z"
1896 | }
1897 | },
1898 | "cell_type": "code",
1899 | "source": "a3",
1900 | "id": "891dec7624718f2e",
1901 | "outputs": [
1902 | {
1903 | "data": {
1904 | "text/plain": [
1905 | "array([[[ 0, 1, 2, 3],\n",
1906 | " [ 4, 5, 6, 7],\n",
1907 | " [ 8, 9, 10, 11]],\n",
1908 | "\n",
1909 | " [[12, 13, 14, 15],\n",
1910 | " [16, 17, 18, 19],\n",
1911 | " [20, 21, 22, 23]]])"
1912 | ]
1913 | },
1914 | "execution_count": 133,
1915 | "metadata": {},
1916 | "output_type": "execute_result"
1917 | }
1918 | ],
1919 | "execution_count": 133
1920 | },
1921 | {
1922 | "metadata": {
1923 | "ExecuteTime": {
1924 | "end_time": "2024-05-28T08:52:33.412972Z",
1925 | "start_time": "2024-05-28T08:52:33.396557Z"
1926 | }
1927 | },
1928 | "cell_type": "code",
1929 | "source": "a2.T # transpose the array ",
1930 | "id": "a34d975eb754114a",
1931 | "outputs": [
1932 | {
1933 | "data": {
1934 | "text/plain": [
1935 | "array([[ 0, 4, 8],\n",
1936 | " [ 1, 5, 9],\n",
1937 | " [ 2, 6, 10],\n",
1938 | " [ 3, 7, 11]])"
1939 | ]
1940 | },
1941 | "execution_count": 135,
1942 | "metadata": {},
1943 | "output_type": "execute_result"
1944 | }
1945 | ],
1946 | "execution_count": 135
1947 | },
1948 | {
1949 | "metadata": {
1950 | "ExecuteTime": {
1951 | "end_time": "2024-05-28T08:52:40.838345Z",
1952 | "start_time": "2024-05-28T08:52:40.831508Z"
1953 | }
1954 | },
1955 | "cell_type": "code",
1956 | "source": "a2.reshape(4,3) # reshape the array to 4 x 3",
1957 | "id": "b148895e084780bf",
1958 | "outputs": [
1959 | {
1960 | "data": {
1961 | "text/plain": [
1962 | "array([[ 0, 1, 2],\n",
1963 | " [ 3, 4, 5],\n",
1964 | " [ 6, 7, 8],\n",
1965 | " [ 9, 10, 11]])"
1966 | ]
1967 | },
1968 | "execution_count": 136,
1969 | "metadata": {},
1970 | "output_type": "execute_result"
1971 | }
1972 | ],
1973 | "execution_count": 136
1974 | },
1975 | {
1976 | "metadata": {
1977 | "ExecuteTime": {
1978 | "end_time": "2024-05-28T08:53:51.286478Z",
1979 | "start_time": "2024-05-28T08:53:51.273205Z"
1980 | }
1981 | },
1982 | "cell_type": "code",
1983 | "source": [
1984 | "# ravel\n",
1985 | "\n",
1986 | "a2.ravel() # flatten the array"
1987 | ],
1988 | "id": "811501fc05227300",
1989 | "outputs": [
1990 | {
1991 | "data": {
1992 | "text/plain": [
1993 | "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])"
1994 | ]
1995 | },
1996 | "execution_count": 137,
1997 | "metadata": {},
1998 | "output_type": "execute_result"
1999 | }
2000 | ],
2001 | "execution_count": 137
2002 | },
2003 | {
2004 | "metadata": {},
2005 | "cell_type": "markdown",
2006 | "source": "# Stack Arrays",
2007 | "id": "4fb2cc73573a4b05"
2008 | },
2009 | {
2010 | "metadata": {
2011 | "ExecuteTime": {
2012 | "end_time": "2024-05-28T08:55:38.974024Z",
2013 | "start_time": "2024-05-28T08:55:38.961254Z"
2014 | }
2015 | },
2016 | "cell_type": "code",
2017 | "source": [
2018 | "# Horizontal Stack\n",
2019 | "a1 = np.array([1,2,3])\n",
2020 | "a2 = np.array([4,5,6])\n",
2021 | "np.hstack((a1,a2))\n"
2022 | ],
2023 | "id": "dfce2a360d233602",
2024 | "outputs": [
2025 | {
2026 | "data": {
2027 | "text/plain": [
2028 | "array([1, 2, 3, 4, 5, 6])"
2029 | ]
2030 | },
2031 | "execution_count": 138,
2032 | "metadata": {},
2033 | "output_type": "execute_result"
2034 | }
2035 | ],
2036 | "execution_count": 138
2037 | },
2038 | {
2039 | "metadata": {
2040 | "ExecuteTime": {
2041 | "end_time": "2024-05-28T08:56:01.025860Z",
2042 | "start_time": "2024-05-28T08:56:01.021379Z"
2043 | }
2044 | },
2045 | "cell_type": "code",
2046 | "source": [
2047 | "# Vertical Stack\n",
2048 | "a1 = np.array([1,2,3])\n",
2049 | "a2 = np.array([4,5,6])\n",
2050 | "np.vstack((a1,a2))\n"
2051 | ],
2052 | "id": "c7a3691076753534",
2053 | "outputs": [
2054 | {
2055 | "data": {
2056 | "text/plain": [
2057 | "array([[1, 2, 3],\n",
2058 | " [4, 5, 6]])"
2059 | ]
2060 | },
2061 | "execution_count": 139,
2062 | "metadata": {},
2063 | "output_type": "execute_result"
2064 | }
2065 | ],
2066 | "execution_count": 139
2067 | },
2068 | {
2069 | "metadata": {},
2070 | "cell_type": "markdown",
2071 | "source": "# Splitting Arrays",
2072 | "id": "a641d52bfb1189e6"
2073 | },
2074 | {
2075 | "metadata": {
2076 | "ExecuteTime": {
2077 | "end_time": "2024-05-28T08:59:07.640736Z",
2078 | "start_time": "2024-05-28T08:59:07.632969Z"
2079 | }
2080 | },
2081 | "cell_type": "code",
2082 | "source": [
2083 | "a1 = np.arange(10)\n",
2084 | "np.split(a1,2) # split the array into two equal parts\n"
2085 | ],
2086 | "id": "eba0225f774cf7af",
2087 | "outputs": [
2088 | {
2089 | "data": {
2090 | "text/plain": [
2091 | "[array([0, 1, 2, 3, 4]), array([5, 6, 7, 8, 9])]"
2092 | ]
2093 | },
2094 | "execution_count": 140,
2095 | "metadata": {},
2096 | "output_type": "execute_result"
2097 | }
2098 | ],
2099 | "execution_count": 140
2100 | },
2101 | {
2102 | "metadata": {
2103 | "ExecuteTime": {
2104 | "end_time": "2024-05-28T08:59:54.846217Z",
2105 | "start_time": "2024-05-28T08:59:54.841988Z"
2106 | }
2107 | },
2108 | "cell_type": "code",
2109 | "source": [
2110 | "a2 = np.arange(12).reshape(3,4)\n",
2111 | "np.vsplit(a2,3) # split the array into three equal parts"
2112 | ],
2113 | "id": "7ecd99457691ab5f",
2114 | "outputs": [
2115 | {
2116 | "data": {
2117 | "text/plain": [
2118 | "[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]"
2119 | ]
2120 | },
2121 | "execution_count": 141,
2122 | "metadata": {},
2123 | "output_type": "execute_result"
2124 | }
2125 | ],
2126 | "execution_count": 141
2127 | },
2128 | {
2129 | "metadata": {
2130 | "ExecuteTime": {
2131 | "end_time": "2024-05-28T09:00:12.325792Z",
2132 | "start_time": "2024-05-28T09:00:12.322507Z"
2133 | }
2134 | },
2135 | "cell_type": "code",
2136 | "source": "np.hsplit(a2,2) # split the array into two equal parts",
2137 | "id": "3666172d4df067ea",
2138 | "outputs": [
2139 | {
2140 | "data": {
2141 | "text/plain": [
2142 | "[array([[0, 1],\n",
2143 | " [4, 5],\n",
2144 | " [8, 9]]),\n",
2145 | " array([[ 2, 3],\n",
2146 | " [ 6, 7],\n",
2147 | " [10, 11]])]"
2148 | ]
2149 | },
2150 | "execution_count": 142,
2151 | "metadata": {},
2152 | "output_type": "execute_result"
2153 | }
2154 | ],
2155 | "execution_count": 142
2156 | },
2157 | {
2158 | "metadata": {},
2159 | "cell_type": "markdown",
2160 | "source": [
2161 | "# End of the Notebook\n",
2162 | "\n",
2163 | "## Notebook by - Abhinav Shukla ( @Maxprogrammer007 )"
2164 | ],
2165 | "id": "ed63895e85a51e50"
2166 | }
2167 | ],
2168 | "metadata": {
2169 | "kernelspec": {
2170 | "display_name": "Python 3",
2171 | "language": "python",
2172 | "name": "python3"
2173 | },
2174 | "language_info": {
2175 | "codemirror_mode": {
2176 | "name": "ipython",
2177 | "version": 2
2178 | },
2179 | "file_extension": ".py",
2180 | "mimetype": "text/x-python",
2181 | "name": "python",
2182 | "nbconvert_exporter": "python",
2183 | "pygments_lexer": "ipython2",
2184 | "version": "2.7.6"
2185 | }
2186 | },
2187 | "nbformat": 4,
2188 | "nbformat_minor": 5
2189 | }
2190 |
--------------------------------------------------------------------------------