├── .gitignore
├── LICENSE
├── Probability Matrix Factorization.ipynb
├── README.md
└── matrix_factorization.png
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env/
88 | venv/
89 | ENV/
90 | env.bak/
91 | venv.bak/
92 |
93 | # Spyder project settings
94 | .spyderproject
95 | .spyproject
96 |
97 | # Rope project settings
98 | .ropeproject
99 |
100 | # mkdocs documentation
101 | /site
102 |
103 | # mypy
104 | .mypy_cache/
105 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 Mat Leonard
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/Probability Matrix Factorization.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Implementing Probabilistic Matrix Factorization in PyTorch\n",
8 | "\n",
9 | "From this paper: https://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf.\n",
10 | "\n",
11 | "Data from here: https://grouplens.org/datasets/movielens/\n",
12 | "\n",
13 | "Our goal here is to find feature vectors for our users and movies that allow us to compare them. We start with a big matrix $R$ of movie ratings, with users as rows and movies as columns. Since users don't rate all movies, this is a pretty sparse matrix with a lot of missing values. \n",
14 | "\n",
15 | "What we can do is factor $R$ into two matrices $U$ and $V$ representing latent feature vectors for users and movies. With these latent features, we can compare users with each other, movies with each other, and predict ratings for movies users haven't seen.\n",
16 | "\n",
17 | "\n",
18 | "\n",
19 | "The big idea behind this paper is that we're going to treat the latent vectors as parameters in a Bayesian model. As a reminder, Bayes theorem:\n",
20 | "\n",
21 | "$$\n",
22 | "\\large P(\\theta \\mid D) \\propto P(D \\mid \\theta) P(\\theta)\n",
23 | "$$\n",
24 | "\n",
25 | "In our model we try to predict the rating matrix $R$ with $U$ and $V$\n",
26 | "\n",
27 | "$$ \\large \\hat{R} = U^T V$$\n",
28 | "\n",
29 | "In our model we assume the ratings are drawn from a normal distribution with mean $\\hat{R}$. What's really cool is that we can place priors on our latent features. \n",
30 | "\n",
31 | "$$\n",
32 | "\\begin{aligned}\n",
33 | "R &\\sim \\mathrm{Normal}(U^T V, \\sigma^2) \\\\\n",
34 | "U &\\sim \\mathrm{Normal}(0, \\sigma_U^2) \\\\\n",
35 | "V &\\sim \\mathrm{Normal}(0, \\sigma_V^2)\n",
36 | "\\end{aligned}\n",
37 | "$$\n",
38 | "\n",
39 | "The authors of the paper go further and build a hierachical structure for the user vectors\n",
40 | "\n",
41 | "$$\n",
42 | "\\begin{aligned}\n",
43 | "U_i &= Y_i + \\frac{\\sum_k^M I_{ik}W_k}{\\sum_k^M I_{ik}} \\\\\n",
44 | "Y &\\sim \\mathrm{Normal}(0, \\sigma_U^2) \\\\\n",
45 | "W &\\sim \\mathrm{Normal}(0, \\sigma_W^2)\n",
46 | "\\end{aligned}\n",
47 | "$$\n",
48 | "\n",
49 | "With this model, we can maximize the posterior probability with respect to $U$ and $V$, or $V$, $Y$, and $W$ for the hierarchical model. In effect this is just a linear model with fancy regularization.\n",
50 | "\n",
51 | "The authors also do things like converting the ratings to be between 0 and 1, then taking the sigmoid of $U^T V$. For empirical reasons."
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 1,
57 | "metadata": {},
58 | "outputs": [],
59 | "source": [
60 | "import pandas as pd\n",
61 | "import torch"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": 3,
67 | "metadata": {},
68 | "outputs": [],
69 | "source": [
70 | "ratings = pd.read_csv('ml-latest-small/ratings.csv')"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": 4,
76 | "metadata": {},
77 | "outputs": [
78 | {
79 | "data": {
80 | "text/html": [
81 | "
\n",
82 | "\n",
95 | "
\n",
96 | " \n",
97 | " \n",
98 | " | \n",
99 | " userId | \n",
100 | " movieId | \n",
101 | " rating | \n",
102 | " timestamp | \n",
103 | "
\n",
104 | " \n",
105 | " \n",
106 | " \n",
107 | " count | \n",
108 | " 100836.000000 | \n",
109 | " 100836.000000 | \n",
110 | " 100836.000000 | \n",
111 | " 1.008360e+05 | \n",
112 | "
\n",
113 | " \n",
114 | " mean | \n",
115 | " 326.127564 | \n",
116 | " 19435.295718 | \n",
117 | " 3.501557 | \n",
118 | " 1.205946e+09 | \n",
119 | "
\n",
120 | " \n",
121 | " std | \n",
122 | " 182.618491 | \n",
123 | " 35530.987199 | \n",
124 | " 1.042529 | \n",
125 | " 2.162610e+08 | \n",
126 | "
\n",
127 | " \n",
128 | " min | \n",
129 | " 1.000000 | \n",
130 | " 1.000000 | \n",
131 | " 0.500000 | \n",
132 | " 8.281246e+08 | \n",
133 | "
\n",
134 | " \n",
135 | " 25% | \n",
136 | " 177.000000 | \n",
137 | " 1199.000000 | \n",
138 | " 3.000000 | \n",
139 | " 1.019124e+09 | \n",
140 | "
\n",
141 | " \n",
142 | " 50% | \n",
143 | " 325.000000 | \n",
144 | " 2991.000000 | \n",
145 | " 3.500000 | \n",
146 | " 1.186087e+09 | \n",
147 | "
\n",
148 | " \n",
149 | " 75% | \n",
150 | " 477.000000 | \n",
151 | " 8122.000000 | \n",
152 | " 4.000000 | \n",
153 | " 1.435994e+09 | \n",
154 | "
\n",
155 | " \n",
156 | " max | \n",
157 | " 610.000000 | \n",
158 | " 193609.000000 | \n",
159 | " 5.000000 | \n",
160 | " 1.537799e+09 | \n",
161 | "
\n",
162 | " \n",
163 | "
\n",
164 | "
"
165 | ],
166 | "text/plain": [
167 | " userId movieId rating timestamp\n",
168 | "count 100836.000000 100836.000000 100836.000000 1.008360e+05\n",
169 | "mean 326.127564 19435.295718 3.501557 1.205946e+09\n",
170 | "std 182.618491 35530.987199 1.042529 2.162610e+08\n",
171 | "min 1.000000 1.000000 0.500000 8.281246e+08\n",
172 | "25% 177.000000 1199.000000 3.000000 1.019124e+09\n",
173 | "50% 325.000000 2991.000000 3.500000 1.186087e+09\n",
174 | "75% 477.000000 8122.000000 4.000000 1.435994e+09\n",
175 | "max 610.000000 193609.000000 5.000000 1.537799e+09"
176 | ]
177 | },
178 | "execution_count": 4,
179 | "metadata": {},
180 | "output_type": "execute_result"
181 | }
182 | ],
183 | "source": [
184 | "ratings.describe()"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": 5,
190 | "metadata": {},
191 | "outputs": [],
192 | "source": [
193 | "rating_matrix = ratings.pivot(index='userId', columns='movieId', values='rating')\n",
194 | "n_users, n_movies = rating_matrix.shape\n",
195 | "# Scaling ratings to between 0 and 1, this helps our model by constraining predictions\n",
196 | "min_rating, max_rating = ratings['rating'].min(), ratings['rating'].max()\n",
197 | "rating_matrix = (rating_matrix - min_rating) / (max_rating - min_rating)"
198 | ]
199 | },
200 | {
201 | "cell_type": "code",
202 | "execution_count": 6,
203 | "metadata": {},
204 | "outputs": [],
205 | "source": [
206 | "# Replacing missing ratings with -1 so we can filter them out later\n",
207 | "rating_matrix[rating_matrix.isnull()] = -1\n",
208 | "rating_matrix = torch.FloatTensor(rating_matrix.values)"
209 | ]
210 | },
211 | {
212 | "cell_type": "code",
213 | "execution_count": 7,
214 | "metadata": {},
215 | "outputs": [
216 | {
217 | "data": {
218 | "text/plain": [
219 | "tensor([[ 0.0067, -0.0105, 0.0074, 0.0099, 0.0122],\n",
220 | " [ 0.0039, -0.0055, -0.0020, -0.0106, 0.0109],\n",
221 | " [ 0.0120, -0.0112, -0.0107, 0.0054, -0.0020],\n",
222 | " ...,\n",
223 | " [-0.0019, -0.0210, 0.0027, 0.0274, -0.0096],\n",
224 | " [ 0.0152, -0.0083, 0.0015, -0.0007, -0.0005],\n",
225 | " [-0.0048, 0.0103, -0.0027, 0.0072, 0.0056]])"
226 | ]
227 | },
228 | "execution_count": 7,
229 | "metadata": {},
230 | "output_type": "execute_result"
231 | }
232 | ],
233 | "source": [
234 | "# This is how we can define our feature matrices\n",
235 | "# We're going to be training these, so we'll need gradients\n",
236 | "latent_vectors = 5\n",
237 | "user_features = torch.randn(n_users, latent_vectors, requires_grad=True)\n",
238 | "user_features.data.mul_(0.01)\n",
239 | "movie_features = torch.randn(n_movies, latent_vectors, requires_grad=True)\n",
240 | "movie_features.data.mul_(0.01)"
241 | ]
242 | },
243 | {
244 | "cell_type": "code",
245 | "execution_count": 8,
246 | "metadata": {},
247 | "outputs": [],
248 | "source": [
249 | "class PMFLoss(torch.nn.Module):\n",
250 | " def __init__(self, lam_u=0.3, lam_v=0.3):\n",
251 | " super().__init__()\n",
252 | " self.lam_u = lam_u\n",
253 | " self.lam_v = lam_v\n",
254 | " \n",
255 | " def forward(self, matrix, u_features, v_features):\n",
256 | " non_zero_mask = (matrix != -1).type(torch.FloatTensor)\n",
257 | " predicted = torch.sigmoid(torch.mm(u_features, v_features.t()))\n",
258 | " \n",
259 | " diff = (matrix - predicted)**2\n",
260 | " prediction_error = torch.sum(diff*non_zero_mask)\n",
261 | "\n",
262 | " u_regularization = self.lam_u * torch.sum(u_features.norm(dim=1))\n",
263 | " v_regularization = self.lam_v * torch.sum(v_features.norm(dim=1))\n",
264 | " \n",
265 | " return prediction_error + u_regularization + v_regularization"
266 | ]
267 | },
268 | {
269 | "cell_type": "code",
270 | "execution_count": 9,
271 | "metadata": {},
272 | "outputs": [],
273 | "source": [
274 | "criterion = PMFLoss()\n",
275 | "loss = criterion(rating_matrix, user_features, movie_features)"
276 | ]
277 | },
278 | {
279 | "cell_type": "code",
280 | "execution_count": null,
281 | "metadata": {},
282 | "outputs": [
283 | {
284 | "name": "stdout",
285 | "output_type": "stream",
286 | "text": [
287 | "Step 0, 8252.830\n",
288 | "Step 50, 2594.168\n",
289 | "Step 100, 1554.992\n",
290 | "Step 150, 1133.337\n",
291 | "Step 200, 949.591\n",
292 | "Step 250, 854.038\n",
293 | "Step 300, 793.739\n",
294 | "Step 350, 751.326\n",
295 | "Step 400, 719.344\n",
296 | "Step 450, 695.155\n",
297 | "Step 500, 676.232\n",
298 | "Step 550, 660.853\n",
299 | "Step 600, 648.111\n",
300 | "Step 650, 637.387\n"
301 | ]
302 | }
303 | ],
304 | "source": [
305 | "# Actual training loop now\n",
306 | "\n",
307 | "latent_vectors = 30\n",
308 | "user_features = torch.randn(n_users, latent_vectors, requires_grad=True)\n",
309 | "user_features.data.mul_(0.01)\n",
310 | "movie_features = torch.randn(n_movies, latent_vectors, requires_grad=True)\n",
311 | "movie_features.data.mul_(0.01)\n",
312 | "\n",
313 | "pmferror = PMFLoss(lam_u=0.05, lam_v=0.05)\n",
314 | "optimizer = torch.optim.Adam([user_features, movie_features], lr=0.01)\n",
315 | "for step, epoch in enumerate(range(1000)):\n",
316 | " optimizer.zero_grad()\n",
317 | " loss = pmferror(rating_matrix, user_features, movie_features)\n",
318 | " loss.backward()\n",
319 | " optimizer.step()\n",
320 | " if step % 50 == 0:\n",
321 | " print(f\"Step {step}, {loss:.3f}\")"
322 | ]
323 | },
324 | {
325 | "cell_type": "code",
326 | "execution_count": 34,
327 | "metadata": {},
328 | "outputs": [
329 | {
330 | "name": "stdout",
331 | "output_type": "stream",
332 | "text": [
333 | "Predictions: \n",
334 | " tensor([4., 2., 4., 4., 3., 5., 3., 4., 5., 3., 3., 4., 2., 4., 4., 3., 4., 3.,\n",
335 | " 3., 3., 5., 3., 3., 4., 3., 5., 3., 3., 5., 5., 3., 4., 4., 1., 3., 4.,\n",
336 | " 3., 4., 2., 5., 3., 3., 3., 5., 3., 4., 3.], grad_fn=)\n",
337 | "Truth: \n",
338 | " tensor([4., 2., 4., 4., 3., 5., 3., 4., 5., 3., 3., 4., 2., 5., 4., 3., 4., 3.,\n",
339 | " 3., 3., 5., 3., 3., 4., 3., 5., 3., 3., 5., 5., 3., 4., 5., 1., 3., 4.,\n",
340 | " 3., 4., 2., 5., 3., 3., 3., 5., 3., 4., 3.])\n"
341 | ]
342 | }
343 | ],
344 | "source": [
345 | "# Checking if our model can reproduce the true user ratings\n",
346 | "user_idx = 7\n",
347 | "user_ratings = rating_matrix[user_idx, :]\n",
348 | "true_ratings = user_ratings != -1\n",
349 | "predictions = torch.sigmoid(torch.mm(user_features[user_idx, :].view(1, -1), movie_features.t()))\n",
350 | "predicted_ratings = (predictions.squeeze()[true_ratings]*(max_rating - min_rating) + min_rating).round()\n",
351 | "actual_ratings = (user_ratings[true_ratings]*(max_rating - min_rating) + min_rating).round()\n",
352 | "\n",
353 | "print(\"Predictions: \\n\", predicted_ratings)\n",
354 | "print(\"Truth: \\n\", actual_ratings)"
355 | ]
356 | }
357 | ],
358 | "metadata": {
359 | "kernelspec": {
360 | "display_name": "Python 3",
361 | "language": "python",
362 | "name": "python3"
363 | },
364 | "language_info": {
365 | "codemirror_mode": {
366 | "name": "ipython",
367 | "version": 3
368 | },
369 | "file_extension": ".py",
370 | "mimetype": "text/x-python",
371 | "name": "python",
372 | "nbconvert_exporter": "python",
373 | "pygments_lexer": "ipython3",
374 | "version": "3.6.8"
375 | }
376 | },
377 | "nbformat": 4,
378 | "nbformat_minor": 2
379 | }
380 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # pmf-pytorch
2 | Probabilistic Matrix Factorization in PyTorch
3 |
--------------------------------------------------------------------------------
/matrix_factorization.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mcleonard/pmf-pytorch/9640e701807f85e008e5716096285c122037bde5/matrix_factorization.png
--------------------------------------------------------------------------------