├── .gitignore
├── LICENSE
├── PTB3_examples
└── photocells.m
├── README.md
├── extra
├── small_cidlab_logo.png
└── small_hnl_logo.png
└── nunez_etal2017_mathpsych
├── EEG_R
└── svderp.R
├── ewmav2.m
├── jagsins.mat
├── model1.jags
├── model2.jags
├── model3.jags
├── paper_figures
└── pdm3b_trialsortplot.m
├── pdm3b_demo.m
├── pdm3b_model1.m
├── pdm3b_model2.m
├── pdm3b_model3.m
└── visual_stimuli
├── makebardirec.m
└── pdmexp3_public.m
/.gitignore:
--------------------------------------------------------------------------------
1 | #Ignore Temporary files
2 | *~
3 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
--------------------------------------------------------------------------------
/PTB3_examples/photocells.m:
--------------------------------------------------------------------------------
1 | function photocells
2 | %% README
3 |
4 | %THIS PROGRAM WILL NOT WORK WITHOUT SPECIFIC CHANGES FOR YOUR SOFTWARE AND HARDWARE
5 |
6 | %This program serves as examples of steady-state visual evoked
7 | %potential (SSVEP) stimuli. See the two papers for a description of example
8 | %experimental paradigms
9 | %
10 | %In order to replicate this experimental stimulus, you will need to run
11 | %Psychtoolbox 3 on Linux with a good video card, and then test
12 | %the frequency of the "photocell" squares in each corner of the screen to
13 | %ensure the intended frequencies of the flickering stimuli and thus possible SSVEP
14 | %responses (SSVEPs could also depend upon subject behavior, brain state,
15 | %contrast, luminance, etc. and must be tested with preliminary studies)
16 |
17 | %% Possible Citations
18 | % Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differences in attention influence perceptual decision making. Frontiers in psychology, 8.
19 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
20 |
21 | %% Copyright 2016 Michael D. Nunez
22 |
23 | %This program is free software: you can redistribute it and/or modify
24 | % it under the terms of the GNU General Public License as published by
25 | % the Free Software Foundation, either version 3 of the License, or
26 | % (at your option) any later version.
27 | %
28 | % This program is distributed in the hope that it will be useful,
29 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
30 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 | % GNU General Public License for more details.
32 | %
33 | % You should have received a copy of the GNU General Public License
34 | % along with this program. If not, see .
35 | %
36 | %% Record of revisions:
37 | % Date Programmers Description of change
38 | % ==== ================= =====================
39 | % 03/09/2016 Michael Nunez Original code
40 |
41 | %% Initial Code
42 |
43 | PsychJavaTrouble;
44 |
45 | AssertOpenGL; %Issue warning if PTB3 with non-openGL used
46 |
47 | if ~IsLinux
48 | error('This program was written to run on Ubuntu Linux.');
49 | end
50 |
51 | %% Experimenter Prompt
52 |
53 | %Inputs Prompt and Output Setup
54 | %Experimenter Prompt
55 | Screenres = get(0,'Screensize');
56 |
57 | prompt1={'Window Pointer:',...
58 | 'Screen Length (x-axis):','Screen Width (y-axis):','Refresh Rate (fps):',...
59 | 'Flicker1 Freq (Hz):','Flicker2 Freq (Hz):','Number of Trials:'};
60 | def1={'0',num2str(Screenres(3)),num2str(Screenres(4)),'120','40','30','10'};
61 | studytitle='Photocell Test';
62 |
63 |
64 | lineNo=1;
65 | answer=inputdlg(prompt1,studytitle,lineNo,def1);
66 |
67 | %Window Pointer / 'Home Screen'. 0 - the primary monitor; 1 - the secondary monitor.
68 | whichScreen = str2num(answer{1});
69 | %Screen resolution on the x-axis
70 | xres = str2num(answer{2});
71 |
72 | %Screen resolution on the y-axis
73 | yres = str2num(answer{3});
74 |
75 | %This should be the same as the Refresh Rate shown in the Display
76 | %Properties on the computer. Always check before running the experiment to
77 | %match flicker frequency.
78 | %This code is currently set up to only handle multiples of 60 fps.
79 | refrate = str2num(answer{4});
80 | realrefrate = Screen(0,'FrameRate');
81 | if refrate ~= Screen(0,'FrameRate')
82 | error(['The real screen refresh rate is set to ',num2str(realrefrate),...
83 | 'Hz while the proposed screen refresh rate is ',num2str(refrate),'Hz.']);
84 | end
85 |
86 | %Flicker1 frequency (Hz)
87 | noisehz = str2num(answer{5});
88 |
89 |
90 | %Flicker2 frequency (Hz)
91 | flickerhz = str2num(answer{6});
92 |
93 | %Number of Trials
94 | trialnum = str2num(answer{7});
95 |
96 | %% Code
97 |
98 |
99 | %Colors
100 | txtcolor = round([0 .6 .6]*255); %Teal
101 | black = [0 0 0];
102 | white = [255 255 255];
103 | gray = 255*sqrt([.5 .5 .5]);
104 | blackwhite{1} = black;
105 | blackwhite{2} = white;
106 |
107 | % Load fonts
108 | myfont = '-bitstream-courier 14 pitch-bold-i-normal--0-0-0-0-m-0-ascii-0';
109 | fontsize = 26;
110 |
111 | %Define photocell placement
112 | k = 0;
113 | photorect = [0 0 100 90];
114 | for m = 1:6
115 | pRect(m,:) = CenterRectOnPoint(photorect,50,50+k);
116 | k = k + 160;
117 | end
118 |
119 |
120 | %The following TRY, CATCH, END statement ends psychtoolbox if an error occurs
121 | try
122 | %Open a fullscreen window on the first screen with black background
123 | PsychImaging('PrepareConfiguration');
124 | PsychImaging('AddTask', 'General', 'UseVirtualFramebuffer');
125 | [wptr,windowRect] = PsychImaging('OpenWindow', whichScreen,gray);
126 | PsychGPUControl('FullScreenWindowDisablesCompositor', 1);
127 |
128 | %This vector defines the Flicker 1 frequency for our image
129 | noiseflic = [];
130 | for i=1:ceil(4*noisehz)
131 | noiseflic = [noiseflic 1 zeros(1,(round(refrate/noisehz)- 1))];
132 | end
133 |
134 | %This vector defines the Flicker 2 frequency for our image
135 | gaborflic = [];
136 | for i=1:ceil(4*flickerhz)
137 | gaborflic = [gaborflic 2*ones(1,round(refrate/2/flickerhz)) ones(1,round(refrate/2/flickerhz))];
138 | end
139 |
140 | %Inter-trial interval, 1500ms to 2000ms
141 | intertrial = 1.5 + rand(1,trialnum)*.5;
142 |
143 | %Calculate the number of frames in a cycle of an image flicker
144 | numCycleFrames = ceil(refrate*1.2) + ceil(refrate*rand(1,trialnum)*.8);
145 |
146 | Screen('TextFont',wptr,'Arial');
147 | Screen('TextSize',wptr,18);
148 | ShowCursor(0); % arrow cursor
149 | sessiontext = 'Spacebar to continue';
150 |
151 | HideCursor;
152 | Screen('TextSize', wptr, fontsize);
153 | Screen('TextFont', wptr, myfont);
154 | Screen('DrawText',wptr, sessiontext,(xres - length(sessiontext)*9)/2,yres*(5/12),txtcolor);
155 | Screen(wptr,'FillRect',black,pRect');
156 | Screen('Flip',wptr);
157 |
158 |
159 | %Wait for spacebar
160 | FlushEvents('keyDown');
161 | [char,when] = GetChar; %Wait for keypress to continue
162 | notspace=1;
163 | while notspace
164 | switch char
165 | case ' '
166 | notspace =0;
167 | otherwise
168 | [char,when] = GetChar; %Wait for keypress to continue
169 | notspace =1;
170 | end
171 | end
172 |
173 | %Initialize timer
174 | tic;
175 | for trials = 1:trialnum
176 |
177 | %Display rush loops (Rush is apparently obsolete in PTB3, test this)
178 | Priority(MaxPriority(wptr)); %New to PTB3
179 |
180 | %Loop: Flicker 1 in photocells 1 and 5 from top
181 | %Flicker 2 in photocells 2 and 6 from top
182 | %Photocells 3 and 4 give one impulse for the beginning of a trial
183 | noisenum = 0;
184 | bwswitch = 1;
185 | for i = 1:numCycleFrames(trials)
186 | if noiseflic(i)
187 | noisenum = noisenum + 1;
188 | bwswitch = mod(bwswitch,2) + 1; %Changes 1 to 2 and vica versa
189 | end
190 | if i == 1
191 | Screen(wptr,'FillRect',white,pRect([3 4],:)');
192 | else
193 | Screen(wptr,'FillRect',black,pRect([3 4],:)');
194 | end
195 | Screen(wptr,'FillRect',blackwhite{bwswitch},pRect([1 5],:)');
196 | Screen(wptr,'FillRect',blackwhite{gaborflic(i)},pRect([2 6],:)');
197 | Screen('Flip',wptr);
198 | end
199 |
200 | %Change all photocells to black after the trial has ended
201 | Screen(wptr,'FillRect',black,pRect');
202 | Screen('Flip',wptr);
203 |
204 | pause(intertrial(trials));
205 | end
206 |
207 | catch me
208 | ShowCursor;
209 | Screen('CloseAll');
210 | rethrow(me); %rethrow reproduces the original error, stored in the object 'me'
211 | end
212 |
213 | ShowCursor;
214 | Screen('CloseAll');
215 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | ### Citation
4 |
5 | Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017).
6 | [How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.](https://sci-hub.st/https://www.sciencedirect.com/science/article/abs/pii/S0022249616000316)
7 | Journal of Mathematical Psychology, 76, 117-130.
8 |
9 | [Preprint](https://www.researchgate.net/publication/298275031_How_attention_influences_perceptual_decision_making_Single-trial_EEG_correlates_of_drift-diffusion_model_parameters)
10 |
11 | [Elsevier source](https://www.sciencedirect.com/science/article/abs/pii/S0022249616000316)
12 |
13 | # mcntoolbox
14 | #### (Repository version 0.3.4)
15 | The Mathematical Cognitive Neuroscience Toolbox (mcntoolbox).
16 |
17 | **Authors: Michael D. Nunez, Joachim Vandekerckhove, and Ramesh Srinivasan from the Cognitive Sciences Department at the University of California, Irvine**
18 |
19 | ### Description
20 |
21 | Mcntoolbox provides users interested in EEG and quick decision making a set of example scripts for steady-state visual evoked potential (SSVEP) stimulus generation and integrated drift-diffusion model fitting with EEG using MATLAB. All example scripts are written in MATLAB. One R script is included as an example of single-trial ERP estimation.
22 |
23 | Please see the repository [pyhddmjags](https://github.com/mdnunez/pyhddmjags) for cleaner implementations using Python.
24 |
25 | ### Data
26 |
27 | The shortcut to the pre-calculated EEG measures and raw behavioral data presented in Nunez et al. (2017) JMP paper is [here](https://github.com/mdnunez/mcntoolbox/raw/master/nunez_etal2017_mathpsych/jagsins.mat).
28 |
29 | ### Prerequisites
30 |
31 | [MATLAB](https://www.mathworks.com/)
32 |
33 | [MCMC Sampling Program: JAGS](http://mcmc-jags.sourceforge.net/)
34 |
35 | [Program: JAGS Wiener module](https://sourceforge.net/projects/jags-wiener/)
36 |
37 | [MATLAB Repository Trinity for calling JAGS from MATLAB](https://github.com/joachimvandekerckhove/trinity)
38 |
39 | ### Possible prerequisites
40 |
41 | [DMAT](https://ppw.kuleuven.be/okp/software/dmat/) ( Now unnecessary but was previously necessary for the exponential moving average function ewmav2() in previous versions )
42 |
43 | [R](https://www.r-project.org/) (for single-trial ERP estimation)
44 |
45 | ### License
46 |
47 | mcntoolbox is licensed under the GNU General Public License v3.0 and written by Michael D. Nunez, Joachim Vandekerckhove, and Ramesh Srinivasan from the Cognitive Sciences Department at the University of California, Irvine.
48 |
49 | ### Further Reading
50 |
51 | Nunez, M. D., Gosai, A., Vandekerckhove, J., & Srinivasan, R. (2019).
52 | [The latency of a visual evoked potential tracks the onset of decision making.](https://sci-hub.st/https://www.sciencedirect.com/science/article/pii/S1053811919303386) NeuroImage. doi: 10.1016/j.neuroimage.2019.04.052
53 |
54 | Lui, K. K., Nunez, M. D., Cassidy, J. M., Vandekerckhove, J., Cramer, S. C., & Srinivasan, R. (2020).
55 | [Timing of readiness potentials reflect a decision-making process in the human brain.](https://sci-hub.st/https://link.springer.com/article/10.1007/s42113-020-00097-5) Computational Brain & Behavior.
56 |
57 | Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015).
58 | [Individual differences in attention influence perceptual decision making.](https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00018/full)
59 | Frontiers in Psychology, 8.
60 |
--------------------------------------------------------------------------------
/extra/small_cidlab_logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mdnunez/mcntoolbox/6471f712dd7710ccb0505dbbd74c2db69c7267ce/extra/small_cidlab_logo.png
--------------------------------------------------------------------------------
/extra/small_hnl_logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mdnunez/mcntoolbox/6471f712dd7710ccb0505dbbd74c2db69c7267ce/extra/small_hnl_logo.png
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/EEG_R/svderp.R:
--------------------------------------------------------------------------------
1 | ## svderp.R provides an example of how to use singular value decomposition (SVD) to find single-trial event-related potentials (ERPs)
2 |
3 | ##Embedded in the script is a simple function to compute single-trial ERPs in R
4 |
5 | ## Citation:
6 | # Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
7 |
8 | ## Copyright 2015 Michael D. Nunez
9 |
10 | #This program is free software: you can redistribute it and/or modify
11 | # it under the terms of the GNU General Public License as published by
12 | # the Free Software Foundation, either version 3 of the License, or
13 | # (at your option) any later version.
14 | #
15 | # This program is distributed in the hope that it will be useful,
16 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 | # GNU General Public License for more details.
19 | #
20 | # You should have received a copy of the GNU General Public License
21 | # along with this program. If not, see .
22 |
23 | ###Record of Revisions###
24 | # Date Authors Description of change
25 | # ==== ================= =====================
26 | # 12/11/15 Michael D. Nunez Original Code
27 |
28 | #######
29 | ###This function calculates single trial ERPs using the SVD method###
30 | svderp <- function(eeg,trialmarks,trialsamps,baseline=NULL,comp=1) {
31 | #eeg is a vector that marks the point of reference of each trial
32 | #trialsamps + trialmarks[i] gives the indices of specific trials
33 | #baseline + trialmarks[i] are the indices for baselining each trial
34 | #comp is the component number to compute, comp = 1 will have the highest percent of variance explained
35 |
36 | ntrials <- length(trialmarks)
37 | eegsum <- array(data=0,dim=c(length(trialsamps),dim(eeg)[2]))
38 |
39 | #Calculate ERP
40 | if(is.null(baseline)) {
41 | #No baseline
42 | for (i in 1:ntrials) {
43 | eegsum <- eegsum + eeg[trialmarks[i] + trialsamps,]
44 | }
45 | } else {
46 | #Baseline
47 | for (i in 1:ntrials) {
48 | baseline <- t(as.array(apply(eeg[trialmarks[i] + trialsamps,],2,mean)))
49 | eegsum <- eegsum + eeg[trialmarks[i] + trialsamps,] - baseline[rep(1,length(trialsamps)),]
50 | }
51 | }
52 |
53 | erp <- eegsum/ntrials #The ERP is the mean of EEG across trials, time-locked to specific events
54 |
55 | #SVD of ERP (equivalent to PCA)
56 | svdouts <- svd(erp)
57 |
58 | #Percent of variance explained by each principal component
59 | perexp = (svdouts$d^2)/sum(svdouts$d^2);
60 |
61 | #nchan*1 weights for each electrode is just the right singular vector for the specific component
62 | #Note that the weight vector's sign is arbitrary, it may have to be changed to reflect the ERP
63 | weights <- svdouts$v[,comp]
64 |
65 |
66 | #Single-trial ERPs
67 | sterp = eeg %*% weights
68 |
69 | #Use trialmarks to find single-trial ERPs in svderp$sterp via svderp$sterp[trialmarks(i) + trialsamps,]
70 |
71 | #Return ERP, percent of variance explained by component comp, nchan*1 weight vector, and single-trial erps
72 | outs <- list("erp" = erp, "pexp" = perexp, "w"=weights,"sterp" = sterp)
73 | return(outs)
74 |
75 | }
76 | #######
77 |
78 | ##The following code simulates EEG data with an embedded response to external stimuli and compares the raw EEG at one channel with a high signal-to-noise ratio to the single-trial ERP
79 |
80 | set.seed(380)
81 |
82 | ntrials <- 100
83 | nchans <- 128
84 | triallen <- 1000
85 |
86 | trialt <- 1:triallen
87 |
88 | #Simulated ERP
89 | trueerp <- 1000*sin(trialt*2*pi*(4/triallen))*dnorm(trialt,mean=triallen/5,sd=triallen*.15)-sin(trialt*2*pi*(1/triallen))
90 |
91 | #Simulated EEG
92 | eeg <- array(dim = c(triallen*ntrials,nchans))
93 |
94 | chanweights <- rep(0,1,nchans)
95 | chanweights[21:30] <- -c(rep(5,5),rep(10,5))
96 | chanweights[81:90] <- c(rep(5,5),rep(10,5))
97 |
98 | for (k in 1:ntrials) {
99 | for (c in 1:nchans) {
100 | eeg[(1:triallen)+(k-1)*triallen,c] <- trueerp*chanweights[c] + rnorm(triallen,sd = 30)
101 | }
102 | }
103 |
104 | trialmarks <- seq(1,triallen*ntrials,triallen) #This vector marks the point of reference of each trial
105 | trialsamps <- 0:(triallen-1) #This vector + trialmarks[i] gives the indices of specific trials
106 |
107 | svdouts <- svderp(eeg,trialmarks,trialsamps,comp=1) #Compute the single-trial ERP
108 |
109 |
110 | ####Plots
111 | par(mfrow=c(3,1))
112 | #Plots the first trial of EEG of one of the best electrodes for the stimulus response
113 | plot(1:triallen,eeg[1:triallen,90],'l',xlab='',ylab=expression(paste(mu,"V")),main = '1st Trial and Best Channel of Raw EEG',cex.lab=2,cex.axis=2,cex.main=2,cex.sub=2)
114 | #Plots the ERP at one of the best electrodes
115 | plot(1:triallen,svdouts$erp[,90],'l',xlab='',ylab=expression(paste(mu,"V")),main = 'Best Channel of ERP',cex.lab=2,cex.axis=2,cex.main=2,cex.sub=2)
116 | #Plots the first trial of the single-trial ERP
117 | plot(1:triallen,svdouts$sterp[1:triallen,],'l',xlab='Time Post-Stimulus (ms)',ylab=expression(paste(mu,"V")),main = '1st Trial of Single-trial ERP',cex.lab=2,cex.axis=2,cex.main=2,cex.sub=2)
118 |
119 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/ewmav2.m:
--------------------------------------------------------------------------------
1 | function [cutoff,dmatewmaplot]=ewmav2(data,L,l,s)
2 | % EWMAV2 Determine RT cut-off with the EWMA method
3 | % [CUTOFF, DMATEWMAPLOT] = EWMAV2(DATA,LIMITS,LAMBDA,SIGMA), where DATA
4 | % is a regular N-by-3 data matrix, and LIMITS, LAMBDA, and SIGMA are
5 | % parameters for the Exponentially Weighted Moving Average algorithm as
6 | % described in the DMAT Manual.
7 | % CUTOFF is the cut-off value below which RT values are censored.
8 | % DMATEWMAPLOT is a structure that can be used as input for PLOTEWMA.
9 | %
10 | % See also PLOTEWMA, OUTLIERTREATMENT.
11 | %
12 | % Author: Joachim Vandekerckhove (joachim.vandekerckhove@psy.kuleuven.be)
13 | % Part of the DMA Toolbox. Please read the End User License Agreement,
14 | % contained in 'dmateula.txt' or by invoking the DMATLICENSE command.
15 | % See also http://ppw.kuleuven.be/okp/dmatoolbox.
16 |
17 | % Note: If you like one-liners, sort the data into XX. Then,
18 | % cutoff=T(find(diff(filter(l,[1 (l-1)],XX,(1-l)/2)'<.5+L*s*...
19 | % sqrt(l/(2-l)*(1-(1-l).^(2*(1:size(XX,1))))))==-1,1,'first'));
20 | % jv
21 |
22 | % %% Check input
23 | % if ~isvaliddataset(data,3) && ~isvaliddataset(data,2)
24 | % error('DMAT:ewmav2:invalidDataSet',...
25 | % 'Data set is not valid Nx3 data matrix.')
26 | % end
27 | % if ~isscalar(l)
28 | % error('DMAT:ewmav2:incorrectInput','''Lambda'' should be a scalar.')
29 | % end
30 | % if ~isscalar(L)
31 | % error('DMAT:ewmav2:incorrectInput','''Limits'' should be a scalar.')
32 | % end
33 | % if ~isscalar(s)
34 | % error('DMAT:ewmav2:incorrectInput','''Sigma'' should be a scalar.')
35 | % end
36 |
37 | %% Sort data
38 | [T,I]=sort(data(:,end));
39 | X=data(I,end-1);
40 |
41 | %% Define constants
42 | cutoff=0;
43 |
44 | %% Apply EWMA filter
45 | ucl=.5+L*s*sqrt(l/(2-l)*(1-(1-l).^(2*(1:size(X,1)))));
46 | lcl=.5-L*s*sqrt(l/(2-l)*(1-(1-l).^(2*(1:size(X,1)))));
47 | z=filter(l,[1 (l-1)],X,(1-l)/2)';
48 | vv=find(diff(zcutoff)],...
62 | 'BlueY',[ucl(vv) z(T>cutoff)],...
63 | 'RedX',[T(T.
20 |
21 | model {
22 | # No effect on b (bias between responses)
23 | # b <- .5
24 | # Boundary separation kept constant
25 | # a <- 1
26 |
27 | # Effect on T_er (preprocessing /nondecision time)
28 | # Varies by subject
29 | tsd ~ dgamma(5, 20)
30 | ttau <- pow(tsd, -2)
31 | for (c2 in 1:3) {
32 | tmu[c2] ~ dnorm(.3, 1)T(0,3)
33 | for (sub in 1:nsubs) {
34 | t[c2,sub] ~ dnorm(tmu[c2], ttau)
35 | }
36 | }
37 |
38 | # Effect on s (diffusion coefficient)
39 | # Varies by subject
40 | ssd ~ dgamma(5, 20)
41 | stau <- pow(ssd, -2)
42 | for (c2 in 1:3) {
43 | smu[c2] ~ dnorm(.6, 1/4)T(0,4)
44 | for (sub in 1:nsubs) {
45 | s[c2,sub] ~ dnorm(smu[c2], stau)
46 | }
47 | }
48 |
49 | # Effect on v (drift rate)
50 | # Varies by subject
51 | vsd ~ dgamma(5, 5)
52 | vtau <- pow(vsd, -2)
53 | for (c2 in 1:3) {
54 | vmu[c2] ~ dnorm(1.5, 1/16)T(-9,9)
55 | for (sub in 1:nsubs) {
56 | v[c2,sub] ~ dnorm(vmu[c2], vtau)
57 | }
58 | }
59 |
60 | # Likelihood
61 | for (i in 1:n)
62 | {
63 |
64 | y[i] ~ dwiener(1/s[noise[i],subject[i]], t[noise[i],subject[i]], 0.5, v[noise[i],subject[i]]/s[noise[i],subject[i]])
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/model2.jags:
--------------------------------------------------------------------------------
1 | ## Citation
2 | # Nunez, M. D., Vandekerckhove, J., & Srinivasan, R.
3 | # How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.
4 | # Journal of Mathematical Psychology, 76, 117-130. (2017).
5 |
6 | ## Copyright 2015 Michael D. Nunez
7 |
8 | #This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 |
21 | model {
22 | # No effect on b (bias between responses)
23 | # b <- .5
24 | # Boundary separation kept constant
25 | # a <- 1
26 |
27 | # 1 unit increase of eegfield{f} is associated with this additive effect on t
28 | for (f in 1:4) {
29 | tbetasd[f] ~ dgamma(5, .2)
30 | tbetatau[f] <- pow(tbetasd[f], -2)
31 | for (c2 in 1:3) {
32 | tbetamu[c2,f] ~ dnorm(0,.0001)
33 | for (sub in 1:nsubs) {
34 | tbeta[c2,sub,f] ~ dnorm(tbetamu[c2,f],tbetatau[f])
35 | }
36 | }
37 | }
38 |
39 | # Effect on Ter (non-decision time)
40 | # Varies by subject
41 | tsd ~ dgamma(5, .2)
42 | ttau <- pow(tsd, -2)
43 | for (c2 in 1:3) {
44 | tmu[c2] ~ dnorm(0,.0001)
45 | for (sub in 1:nsubs) {
46 | talpha[c2,sub] ~ dnorm(tmu[c2], ttau)
47 | }
48 | }
49 |
50 | # Effect on s (diffusion coefficient)
51 | # Varies by subject
52 | ssd ~ dgamma(5, 20)
53 | stau <- pow(ssd, -2)
54 | for (c2 in 1:3) {
55 | smu[c2] ~ dnorm(.6, 1/4)T(0,4)
56 | for (sub in 1:nsubs) {
57 | s[c2,sub] ~ dnorm(smu[c2], stau)
58 | }
59 | }
60 |
61 | # 1 unit increase of eegfield{f} is associated with this additive effect on v
62 | for (f in 1:4) {
63 | vbetasd[f] ~ dgamma(5, .2)
64 | vbetatau[f] <- pow(vbetasd[f], -2)
65 | for (c2 in 1:3) {
66 | vbetamu[c2,f] ~ dnorm(0,.0001)
67 | for (sub in 1:nsubs) {
68 | vbeta[c2,sub,f] ~ dnorm(vbetamu[c2,f],vbetatau[f])
69 | }
70 | }
71 | }
72 |
73 | # Effect on v (diffusion process between trials)
74 | # Varies by condition and subject
75 | vsd ~ dgamma(5, .2)
76 | vtau <- pow(vsd, -2)
77 | for (c2 in 1:3) {
78 | vmu[c2] ~ dnorm(0,.0001)
79 | for (sub in 1:nsubs) {
80 | valpha[c2,sub] ~ dnorm(vmu[c2], vtau)
81 | }
82 | }
83 |
84 | # Likelihood
85 | for (i in 1:n)
86 | {
87 |
88 | v[i] <- valpha[noise[i],subject[i]] + p200trialerpc1n[i]*vbeta[noise[i],subject[i],1] + p200trialerplatc1n[i]*vbeta[noise[i],subject[i],2] + n200trialerpc1r[i]*vbeta[noise[i],subject[i],3] + n200trialerplatc1r[i]*vbeta[noise[i],subject[i],4]
89 |
90 |
91 | t[i] <- talpha[noise[i],subject[i]] + p200trialerpc1n[i]*tbeta[noise[i],subject[i],1] + p200trialerplatc1n[i]*tbeta[noise[i],subject[i],2] + n200trialerpc1r[i]*tbeta[noise[i],subject[i],3] + n200trialerplatc1r[i]*tbeta[noise[i],subject[i],4]
92 |
93 | y[i] ~ dwiener(1/s[noise[i],subject[i]], t[i], 0.5, v[i]/s[noise[i],subject[i]])
94 | }
95 | }
96 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/model3.jags:
--------------------------------------------------------------------------------
1 | ## Citation
2 | # Nunez, M. D., Vandekerckhove, J., & Srinivasan, R.
3 | # How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.
4 | # Journal of Mathematical Psychology, 76, 117-130. (2017).
5 |
6 | ## Copyright 2015 Michael D. Nunez
7 |
8 | #This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 |
21 | model {
22 | # No effect on b (bias between responses)
23 | # b <- .5
24 | # Boundary separation kept constant
25 | # a <- 1
26 |
27 | # 1 unit increase of eegfield{f} is associated with this additive effect on t
28 | for (f in 1:4) {
29 | tbetasd[f] ~ dgamma(5, .2)
30 | tbetatau[f] <- pow(tbetasd[f], -2)
31 | for (c2 in 1:3) {
32 | tbetamu[c2,f] ~ dnorm(0,.0001)
33 | for (sub in 1:nsubs) {
34 | tbeta[c2,sub,f] ~ dnorm(tbetamu[c2,f],tbetatau[f])
35 | }
36 | }
37 | }
38 |
39 | # Effect on Ter (non-decision time)
40 | # Varies by subject
41 | tsd ~ dgamma(5, .2)
42 | ttau <- pow(tsd, -2)
43 | for (c2 in 1:3) {
44 | tmu[c2] ~ dnorm(0,.0001)
45 | for (sub in 1:nsubs) {
46 | talpha[c2,sub] ~ dnorm(tmu[c2], ttau)
47 | }
48 | }
49 |
50 | # 1 unit increase of eegfield{f} is associated with this additive effect on s
51 | for (f in 1:4) {
52 | sbetasd[f] ~ dgamma(5, .2)
53 | sbetatau[f] <- pow(sbetasd[f], -2)
54 | for (c2 in 1:3) {
55 | sbetamu[c2,f] ~ dnorm(0,.0001)
56 | for (sub in 1:nsubs) {
57 | sbeta[c2,sub,f] ~ dnorm(sbetamu[c2,f],sbetatau[f])
58 | }
59 | }
60 | }
61 |
62 | # Effect on s (diffusion coefficient)
63 | # Varies by subject
64 | ssd ~ dgamma(5, .2)
65 | stau <- pow(ssd, -2)
66 | for (c2 in 1:3) {
67 | smu[c2] ~ dnorm(0,.0001)
68 | for (sub in 1:nsubs) {
69 | salpha[c2,sub] ~ dnorm(smu[c2], stau)
70 | }
71 | }
72 |
73 | # 1 unit increase of eegfield{f} is associated with this additive effect on v
74 | for (f in 1:4) {
75 | vbetasd[f] ~ dgamma(5, .2)
76 | vbetatau[f] <- pow(vbetasd[f], -2)
77 | for (c2 in 1:3) {
78 | vbetamu[c2,f] ~ dnorm(0,.0001)
79 | for (sub in 1:nsubs) {
80 | vbeta[c2,sub,f] ~ dnorm(vbetamu[c2,f],vbetatau[f])
81 | }
82 | }
83 | }
84 |
85 | # Effect on v (diffusion process between trials)
86 | # Varies by condition and subject
87 | vsd ~ dgamma(5, .2)
88 | vtau <- pow(vsd, -2)
89 | for (c2 in 1:3) {
90 | vmu[c2] ~ dnorm(0,.0001)
91 | for (sub in 1:nsubs) {
92 | valpha[c2,sub] ~ dnorm(vmu[c2], vtau)
93 | }
94 | }
95 |
96 | # Likelihood
97 | for (i in 1:n)
98 | {
99 |
100 | v[i] <- valpha[noise[i],subject[i]] + p200trialerpc1n[i]*vbeta[noise[i],subject[i],1] + p200trialerplatc1n[i]*vbeta[noise[i],subject[i],2] + n200trialerpc1r[i]*vbeta[noise[i],subject[i],3] + n200trialerplatc1r[i]*vbeta[noise[i],subject[i],4]
101 |
102 |
103 | t[i] <- talpha[noise[i],subject[i]] + p200trialerpc1n[i]*tbeta[noise[i],subject[i],1] + p200trialerplatc1n[i]*tbeta[noise[i],subject[i],2] + n200trialerpc1r[i]*tbeta[noise[i],subject[i],3] + n200trialerplatc1r[i]*tbeta[noise[i],subject[i],4]
104 |
105 |
106 | s[i] <- salpha[noise[i],subject[i]] + p200trialerpc1n[i]*sbeta[noise[i],subject[i],1] + p200trialerplatc1n[i]*sbeta[noise[i],subject[i],2] + n200trialerpc1r[i]*sbeta[noise[i],subject[i],3] + n200trialerplatc1r[i]*sbeta[noise[i],subject[i],4]
107 |
108 | y[i] ~ dwiener(1/s[i], t[i], 0.5, v[i]/s[i])
109 | }
110 | }
111 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/paper_figures/pdm3b_trialsortplot.m:
--------------------------------------------------------------------------------
1 | %pdm3b_trialsortplot - Script to create single-trial evoked responses plot, Figure 5 of Nunez et al., 2017 Journal of Mathematical Psychology
2 | %
3 | % Copyright (C) 2016 Michael D. Nunez,
4 | %
5 | % This program is free software: you can redistribute it and/or modify
6 | % it under the terms of the GNU General Public License as published by
7 | % the Free Software Foundation, either version 3 of the License, or
8 | % (at your option) any later version.
9 | %
10 | % This program is distributed in the hope that it will be useful,
11 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | % GNU General Public License for more details.
14 | %
15 | % You should have received a copy of the GNU General Public License
16 | % along with this program. If not, see .
17 |
18 | %% Record of Revisions
19 | % Date Programmers Description of change
20 | % ==== ================= =====================
21 | % 9/28/15 Michael Nunez Original code
22 | % 12/15/15 Michael Nunez Save high quality image
23 | % 2/26/16 Michael Nunez Color bar
24 |
25 | %% Sort single-trial EEG
26 |
27 | load('sublist.mat');
28 | prepdata = load('svdins3b_5.mat');
29 | load('svdinputs8.mat');
30 |
31 | noisetrials = nan(768,540*17);
32 | resptrials = nan(1024,540*17);
33 | noisetrialsrt = nan(768,540*17);
34 | resptrialsrt =nan(1024,540*17);
35 | for s=1:17
36 | thesetrials = (1:540) + 540*(s-1);
37 |
38 | %Sort by max magnitude
39 | [~,tempindx] = sort(prepdata.p200trialerp_c1n(prepdata.subject == s));
40 | noisetrials(:,thesetrials) = squeeze(trialerp{1,s}(:,1,tempindx));
41 | [~,tempindx2] = sort(prepdata.p200trialerp_c1r(prepdata.subject == s));
42 | resptrials(:,thesetrials) = squeeze(trialerp{2,s}(:,1,tempindx2));
43 |
44 | % %Sort by min magnitude
45 | % [~,tempindxrth] = sort(prepdata.rt(prepdata.subject == s & prepdata.noise == .6),2,'descend');
46 | % [~,tempindxrtm] = sort(prepdata.rt(prepdata.subject == s & prepdata.noise == .45),2,'descend');
47 | % [~,tempindxrtl] = sort(prepdata.rt(prepdata.subject == s & prepdata.noise == .3),2,'descend');
48 | % tempindxrt = [tempindxrth tempindxrtm tempindxrtl];
49 | % noisetrialsrt(:,thesetrials) = squeeze(trialerp{1,s}(:,1,tempindxrt));
50 | % resptrialsrt(:,thesetrials) = squeeze(trialerp{2,s}(:,1,tempindxrt));
51 |
52 | %Organize by RT tertiles magnitude
53 | noises = [.6 .45 .3];
54 | for n=1:3
55 | temprt = prepdata.rt(prepdata.subject == s & prepdata.noise == noises(n));
56 | % tert = prctile(temprt,[33 67]);
57 | % noisetrialsrt(:,(1:180)+180*(n-1) + 540*(s-1)) = ...
58 | % [noisetrials(:,(temprt > tert(2))) noisetrials(:,(temprt <= tert(2)) & (temprt > tert(1))) ...
59 | % noisetrials(:,(temprt <= tert(1))) noisetrials(:,isnan(temprt))];
60 | % resptrialsrt(:,(1:180)+180*(n-1) + 540*(s-1)) = ...
61 | % [resptrials(:,(temprt > tert(2))) resptrials(:,(temprt <= tert(2)) & (temprt > tert(1))) ...
62 | % resptrials(:,(temprt <= tert(1))) resptrials(:,isnan(temprt))];
63 | rtmedian = nanmedian(temprt);
64 | noisetrialsrt(:,(1:180)+180*(n-1) + 540*(s-1)) = ...
65 | [noisetrials(:,(temprt > rtmedian)) ...
66 | noisetrials(:,(temprt <= rtmedian)) noisetrials(:,isnan(temprt))];
67 | resptrialsrt(:,(1:180)+180*(n-1) + 540*(s-1)) = ...
68 | [resptrials(:,(temprt > rtmedian)) ...
69 | resptrials(:,(temprt <= rtmedian)) resptrials(:,isnan(temprt))];
70 | end
71 | end
72 |
73 |
74 | %%Find p200 and n200 locations and magnitudes
75 |
76 | n200 = round(150*1.024):round(275*1.024);
77 | p200 = round(150*1.024):round(275*1.024);
78 |
79 | noisetrials = flipud(noisetrials');
80 | resptrials = flipud(resptrials');
81 | noisetrialsrt = flipud(noisetrialsrt');
82 | resptrialsrt = flipud(resptrialsrt');
83 |
84 | noisedelaysrt = zeros(size(noisetrialsrt));
85 | respdelaysrt = zeros(size(resptrialsrt));
86 | [~,nind] = max(noisetrialsrt(:,p200),[],2);
87 | [~,rind] = min(-resptrialsrt(:,n200),[],2);
88 | for n=1:540
89 | noisedelaysrt(n,nind(n)) = 1;
90 | respdelaysrt(n,rind(n)) = 1;
91 | end
92 |
93 | %% Plot single-trial EEG for one subject
94 |
95 | windowsize = round(300*1.024);
96 |
97 | %%Paper figure
98 | whichsub = 12;
99 | thisindx = (1:540) + (whichsub-1)*540;
100 |
101 | xms = [0:50:300];
102 | xsamps = round(xms*1.024);
103 |
104 | fontsize = 20;
105 |
106 | f1 = figure('units','normalized','outerposition',[0 .5 1 .5]);
107 | % f1 = figure('units','normalized','outerposition',[0 0 1 1]);
108 |
109 | subplot(1,2,1);
110 | % subplot(2,2,1);
111 | %sub1 = imagesc(noisetrials(thisindx,1:windowsize),[-100 100]);
112 | sub1 = imagesc(noisetrials(thisindx,1:windowsize),[-90 90]);
113 | set(gca,'XLim',[0 windowsize],'XTick',xsamps,'XTickLabel',xms,'YTickLabel',[],'Fontsize',16);
114 | ylabel('Cue Intervals','Fontsize',fontsize);
115 | xlabel('Delay (ms) following noise onset','Fontsize',fontsize);
116 | line(round([150 150]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
117 | line(round([275 275]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
118 | %line(round([p200loc(whichsub) p200loc(whichsub)]*1.024),[1 540],'Color',[1 1 1],'LineWidth',2,'Linestyle','--');
119 | %line(round([p200loc2(whichsub) p200loc2(whichsub)]*1.024),[1 540],'Color',[0 1 0],'LineWidth',2,'Linestyle','--');
120 |
121 | subplot(1,2,2);
122 | % subplot(2,2,2);
123 | %sub2 = imagesc(-resptrials(thisindx,1:windowsize),[-100 100]);
124 | sub2 = imagesc(-resptrials(thisindx,1:windowsize),[-90 90]);
125 | set(gca,'XLim',[0 windowsize],'XTick',xsamps,'XTickLabel',xms,'YTickLabel',[],'Fontsize',16);
126 | ylabel('Response Intervals','Fontsize',fontsize);
127 | xlabel('Delay (ms) following signal onset','Fontsize',fontsize);
128 | line(round([150 150]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
129 | line(round([275 275]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
130 | %line(round([n200loc(whichsub) n200loc(whichsub)]*1.024),[1 540],'Color',[1 1 1],'LineWidth',2,'Linestyle','--');
131 | %line(round([n200loc2(whichsub) n200loc2(whichsub)]*1.024),[1 540],'Color',[0 1 0],'LineWidth',2,'Linestyle','--');
132 | sub2ax = gca;
133 | originalsize = get(sub2ax,'Position');
134 | cb = colorbar('EastOutside','Fontsize',fontsize,'YTick',[-90 -45 0 45 90]);
135 | yl = ylabel(cb,'\muV','Fontsize',fontsize);
136 | set(yl,'Rotation',270);
137 | set(sub2ax,'Position',originalsize);
138 |
139 |
140 | % subplot(2,2,3);
141 | % %sub3 = imagesc(noisetrialsrt(thisindx,1:windowsize),[-100 100]);
142 | % sub3 = imagesc(noisetrialsrt(thisindx,1:windowsize),[-90 90]);
143 | % %sub3 = imagesc(noisedelaysrt(thisindx,1:windowsize));
144 | % set(gca,'XLim',[0 windowsize],'XTick',xsamps,'XTickLabel',xms,'YTickLabel',[],'Fontsize',16);
145 | % ylabel('Noise Intervals','Fontsize',fontsize);
146 | % xlabel('Delay (ms) following noise onset','Fontsize',fontsize);
147 | % line(round([150 150]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
148 | % line(round([275 275]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
149 | % % line(round([p200loc(whichsub) p200loc(whichsub)]*1.024),[1 540],'Color',[1 1 1],'LineWidth',2,'Linestyle','--');
150 | % % line(round([p200loc2(whichsub) p200loc2(whichsub)]*1.024),[1 540],'Color',[0 1 0],'LineWidth',2,'Linestyle','--');
151 | % templine = downsample(nind(thisindx),10)+153;
152 | % %line(templine,10:10:540,'Color',[0 0 0],'LineWidth',1.5);
153 | % line([0 windowsize], [181 181],'Color','k','LineWidth',2);
154 | % line([0 windowsize], [361 361],'Color','k','LineWidth',2);
155 | %
156 | % subplot(2,2,4);
157 | % %sub4 = imagesc(-resptrialsrt(thisindx,1:windowsize),[-100 100]);
158 | % sub4 = imagesc(-resptrialsrt(thisindx,1:windowsize),[-90 90]);
159 | % set(gca,'XLim',[0 windowsize],'XTick',xsamps,'XTickLabel',xms,'YTickLabel',[],'Fontsize',16);
160 | % ylabel('Response Intervals','Fontsize',fontsize);
161 | % xlabel('Delay (ms) following signal onset','Fontsize',fontsize);
162 | % line(round([150 150]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
163 | % line(round([275 275]*1.024),[1 540],'Color','k','LineWidth',2,'Linestyle','--');
164 | % % line(round([n200loc(whichsub) n200loc(whichsub)]*1.024),[1 540],'Color',[1 1 1],'LineWidth',2,'Linestyle','--');
165 | % % line(round([n200loc2(whichsub) n200loc2(whichsub)]*1.024),[1 540],'Color',[0 1 0],'LineWidth',2,'Linestyle','--');
166 | % templine = downsample(rind(thisindx),10) + 153;
167 | % %line(templine,10:10:540,'Color',[0 0 0],'LineWidth',1.5);
168 | % line([0 windowsize], [181 181],'Color','k','LineWidth',2);
169 | % line([0 windowsize], [361 361],'Color','k','LineWidth',2);
170 |
171 | %% Save figure
172 |
173 | export_fig(f1,'ERPs_single_trials','-opengl','-png','-r200');
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/pdm3b_demo.m:
--------------------------------------------------------------------------------
1 | %% README
2 |
3 | %THIS SCRIPT WILL NOT WORK WITHOUT SPECIFIC PACKAGES AND PROGRAMS
4 | %
5 | %JAGS - Just Another Gibbs Sampler
6 | %http://sourceforge.net/projects/mcmc-jags/
7 | %
8 | %jags-wiener - Wiener distribution functions for JAGS
9 | %http://sourceforge.net/projects/jags-wiener/
10 | %
11 | %DMAT - Diffusion Model Analysis Toolbox (needed function is already included in this repo)
12 | %https://ppw.kuleuven.be/okp/software/dmat/
13 | %
14 | %Trinity
15 | %https://github.com/joachimvandekerckhove/trinity
16 | %
17 | %Others?
18 |
19 | %% Citation
20 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
21 |
22 | %% Copyright 2015 Michael D. Nunez
23 |
24 | %This program is free software: you can redistribute it and/or modify
25 | % it under the terms of the GNU General Public License as published by
26 | % the Free Software Foundation, either version 3 of the License, or
27 | % (at your option) any later version.
28 | %
29 | % This program is distributed in the hope that it will be useful,
30 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
31 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 | % GNU General Public License for more details.
33 | %
34 | % You should have received a copy of the GNU General Public License
35 | % along with this program. If not, see .
36 |
37 | %% Record of Revisions
38 | % Date Programmers Description of change
39 | % ==== ================= =====================
40 | % 12/29/15 Michael Nunez Original code
41 |
42 | %% Training/Test Split
43 |
44 | %2/3 - 1/3 Training/Test split
45 | oneszeros1 = [zeros(1,360) ones(1,180)];
46 | oneszeros2 = [zeros(1,320) ones(1,160)];
47 |
48 | rng('default');
49 | rng(11);
50 | splitdata1 = [];
51 | for j=1:17
52 | splitdata1 = [splitdata1 oneszeros1(randperm(length(oneszeros1)))];
53 | end
54 |
55 | splitdata2 = [];
56 | for j=1:3
57 | splitdata2 = [splitdata2 oneszeros2(randperm(length(oneszeros2)))];
58 | end
59 |
60 | whichsubs1 = 1:17;
61 | %Note that randperm's use changed after a specific MATLAB version
62 | randsubs1 = whichsubs1(randperm(17,4));
63 |
64 | for j = randsubs1
65 | splitdata1([1:540] + 540*(j-1)) = ones(1,540);
66 | end
67 |
68 | %% Code
69 |
70 | pdm3b_model1('jagsins.mat',splitdata1);
71 |
72 | pdm3b_model2('jagsins.mat',splitdata1,...
73 | {'p200trialerp_c1n' 'p200trialerplat_c1n' 'n200trialerp_c1r' 'n200trialerplat_c1r'});
74 |
75 | pdm3b_model3('jagsins.mat',splitdata1,...
76 | {'p200trialerp_c1n' 'p200trialerplat_c1n' 'n200trialerp_c1r' 'n200trialerplat_c1r'});
77 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/pdm3b_model1.m:
--------------------------------------------------------------------------------
1 | function pdm3b_model1(inputfile,rmtrials,varargin)
2 | %PDM3B_MODEL1 - Runs a new JAGS model without EEG inputs
3 | %
4 | %load jagsins.mat to see structure
5 | %
6 | %Usage: pdm3b_model1('jagsins.mat',rmtrials);
7 | %
8 | %
9 | %Inputs:
10 | % inputfile: name of file that contains .eeg structure with subject
11 | % level EEG fields (i.e. jagsins.mat)
12 | %
13 | %% README
14 |
15 | %THIS PROGRAM WILL NOT WORK WITHOUT SPECIFIC PACKAGES AND PROGRAMS
16 | %
17 | %JAGS - Just Another Gibbs Sampler
18 | %http://sourceforge.net/projects/mcmc-jags/
19 | %
20 | %jags-wiener - Wiener distribution functions for JAGS
21 | %http://sourceforge.net/projects/jags-wiener/
22 | %
23 | %DMAT - Diffusion Model Analysis Toolbox
24 | %https://ppw.kuleuven.be/okp/software/dmat/
25 | %
26 | %Trinity
27 | %https://github.com/joachimvandekerckhove/trinity
28 | %
29 | %GNU Parallel (Optional):
30 | %https://www.gnu.org/software/parallel/
31 |
32 | %% Citation
33 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
34 |
35 | %% Copyright 2015 Michael D. Nunez
36 |
37 | %This program is free software: you can redistribute it and/or modify
38 | % it under the terms of the GNU General Public License as published by
39 | % the Free Software Foundation, either version 3 of the License, or
40 | % (at your option) any later version.
41 | %
42 | % This program is distributed in the hope that it will be useful,
43 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
44 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
45 | % GNU General Public License for more details.
46 | %
47 | % You should have received a copy of the GNU General Public License
48 | % along with this program. If not, see .
49 |
50 | %% Record of Revisions
51 | % Date Programmers Description of change
52 | % ==== ================= =====================
53 | % 8/26/15 Michael Nunez Original code
54 | % 3/04/16 Michael Nunez Added thinning parameter that
55 | % exists in the original fits for the paper, but forgotten here
56 | % 5/03/16 Michael Nunez Works with the new version of Trinity
57 |
58 | %% Initial
59 |
60 | data = load(inputfile);
61 |
62 | %Organize date and time into a string
63 | rightnow = clock;
64 | rightnow = num2cell(rightnow)';
65 | timestr = sprintf('_%i',rightnow{1:5});
66 |
67 | modelname = timestr;
68 | nsamples = 5e3;
69 | nburnin = 2e3;
70 | thin = 10;
71 | nchains =6;
72 | verbosity =1;
73 | parallelit = 0; %Set this to 1 if GNU Parallel is installed
74 | maxcores = 3;
75 | modules = {'wiener' 'dic'};
76 |
77 | %% JAGS code for the diffusion model
78 |
79 | model = {
80 | 'model {'
81 | '# No effect on b (bias between responses)'
82 | '# b <- .5'
83 | '# Boundary separation kept constant'
84 | '# a <- 1'
85 | ''
86 | '# Effect on Ter (preprocessing /nondecision time)'
87 | '# Varies by subject'
88 | 'tsd ~ dgamma(5, 20)' %x=linspace(0, 1, 100); plot(x, gampdf(x, 5, .05))
89 | 'ttau <- pow(tsd, -2)'
90 | 'for (c2 in 1:3) {' %noise
91 | ' tmu[c2] ~ dnorm(.3, 1)T(0,3)' %std = 1
92 | ' for (sub in 1:nsubs) {' %subject
93 | ' t[c2,sub] ~ dnorm(tmu[c2], ttau)'
94 | ' }'
95 | '}'
96 | ''
97 | '# Effect on s (diffusion coefficient)'
98 | '# Varies by subject'
99 | 'ssd ~ dgamma(5, 20)' % x=linspace(0, 1, 100); plot(x, gampdf(x, 5, .05))
100 | 'stau <- pow(ssd, -2)'
101 | 'for (c2 in 1:3) {' %noise
102 | ' smu[c2] ~ dnorm(.6, 1/4)T(0,4)' %std = 2
103 | ' for (sub in 1:nsubs) {' %subject
104 | ' s[c2,sub] ~ dnorm(smu[c2], stau)'
105 | ' }'
106 | '}'
107 | ''
108 | '# Effect on v (drift rate)'
109 | '# Varies by subject'
110 | 'vsd ~ dgamma(5, 5)' % x=linspace(0, 4, 100); plot(x, gampdf(x, 5, .2))
111 | 'vtau <- pow(vsd, -2)'
112 | 'for (c2 in 1:3) {' %noise
113 | ' vmu[c2] ~ dnorm(1.5, 1/16)T(-9,9)' %std = 4
114 | ' for (sub in 1:nsubs) {' %subject
115 | ' v[c2,sub] ~ dnorm(vmu[c2], vtau)'
116 | ' }'
117 | '}'
118 | ''
119 | '# Likelihood'
120 | 'for (i in 1:n)'
121 | '{'
122 | ''
123 | ' y[i] ~ dwiener(1/s[noise[i],subject[i]], t[noise[i],subject[i]], 0.5, v[noise[i],subject[i]]/s[noise[i],subject[i]])'
124 | '}'
125 | '}'
126 | };
127 |
128 | %% Code for Trinity
129 |
130 | params = {'tsd' 'tmu' 't' 'ssd' 'smu' 's' 'vsd' 'vmu' 'v'};
131 |
132 | samprt = data.rt;
133 | rt = samprt/1024; %Reaction time in samples to seconds (not milliseconds)
134 | ntrials = length(data.correct);
135 |
136 | %Remove no answer trials and subjects that were taken out of this model
137 | tremove = isnan(data.correct) | (data.goodtrials == 0); %Remove this last flag if imputing bad trials
138 |
139 | %Remove RTs less than cutoff given by ewmav2
140 | for j=1:length(data.subname)
141 | [cutoff] = ewmav2([data.correct(data.subject == j & ~isnan(rt))' rt(data.subject == j & ~isnan(rt))'],2,.01,.5);
142 | tremove = tremove | (rt < cutoff & data.subject == j);
143 | cutoffs(j) = cutoff;
144 | end
145 | nremove = sum(tremove);
146 |
147 | correct = data.correct;
148 | correct(correct == 0) = -1;
149 | y = correct(~tremove).*rt(~tremove);
150 |
151 | R.subject = data.subject(~tremove);
152 | R.subject = R.subject(:);
153 |
154 | tempc = data.noise;
155 | tempc = tempc(~tremove);
156 | [~, ~, noise] = unique(tempc);
157 |
158 | tempj = data.jitter;
159 | tempj = tempj(~tremove);
160 | [~, ~, jitter] = unique(tempj);
161 |
162 | R.n = ntrials - nremove;
163 | R.nsubs = length(data.subname); %Keep this fixed for the total number of subjects even if removing subjects from modeling
164 | R.y = y(:);
165 | R.jitter = jitter(:);
166 | R.noise = noise(:);
167 |
168 | initstruct = @()struct(...
169 | 'v', randn(3,R.nsubs));
170 |
171 |
172 | %Setup data split index for cross-validation
173 | rmindex = logical(rmtrials(~tremove));
174 |
175 | %Training data
176 | S.nsubs = R.nsubs;
177 | S.subject = R.subject(~rmindex);
178 | S.n = R.n - sum(rmindex);
179 | S.y = R.y(~rmindex);
180 | S.jitter = R.jitter(~rmindex);
181 | S.noise = R.noise(~rmindex);
182 |
183 | %Test data
184 | T.nsubs = R.nsubs;
185 | T.subject = R.subject(rmindex);
186 | T.n = R.n - sum(~rmindex);
187 | T.y = R.y(rmindex);
188 | T.jitter = R.jitter(rmindex);
189 | T.noise = R.noise(rmindex);
190 |
191 | %% Run JAGS
192 | fprintf('Building JAGS model %s and saving output...',modelname);
193 |
194 | tic
195 | [stats, chains, diagnostics, info] = callbayes('jags', ...
196 | 'model', model, ...
197 | 'data', S, ...
198 | 'nsamples', nsamples, ...
199 | 'nburnin', nburnin, ...
200 | 'nchains', nchains, ...
201 | 'thin',thin,...
202 | 'verbosity', verbosity, ...
203 | 'workingdir','wdir', ...
204 | 'monitorparams', params, ...
205 | 'parallel',parallelit, ...
206 | 'maxcores',maxcores, ...
207 | 'modules',modules, ...
208 | 'init', initstruct, ...
209 | varargin{:});
210 |
211 | info.comptime = toc/60;
212 | fprintf('JAGS took %f minutes!\n', info.comptime)
213 |
214 | save(sprintf('jagsmodel%s.mat',modelname),'stats', 'chains', 'diagnostics',...
215 | 'cutoffs','info','params','S','T');
216 |
217 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/pdm3b_model2.m:
--------------------------------------------------------------------------------
1 | function pdm3b_model2(inputfile,rmtrials,eegfields,varargin)
2 | %PDM3B_MODEL2 - Runs a new JAGS Model Type 2 with EEG inputs
3 | %
4 | %load jagsins.mat to see structure
5 | %
6 | %Usage: pdm3b_model2('jagsins.mat',rmtrials,eegfields);
7 | %
8 | %
9 | %Inputs:
10 | % inputfile: name of file that contains .eeg structure with subject
11 | % level EEG fields (i.e. jagsins.mat)
12 | % eegfields: EEG fields of (eeginputfile) to include in model
13 | %
14 | %% README
15 |
16 | %THIS PROGRAM WILL NOT WORK WITHOUT SPECIFIC PACKAGES AND PROGRAMS
17 | %
18 | %JAGS - Just Another Gibbs Sampler
19 | %http://sourceforge.net/projects/mcmc-jags/
20 | %
21 | %jags-wiener - Wiener distribution functions for JAGS
22 | %http://sourceforge.net/projects/jags-wiener/
23 | %
24 | %DMAT - Diffusion Model Analysis Toolbox
25 | %https://ppw.kuleuven.be/okp/software/dmat/
26 | %
27 | %Trinity
28 | %https://github.com/joachimvandekerckhove/trinity
29 | %
30 | %GNU Parallel (Optional):
31 | %https://www.gnu.org/software/parallel/
32 |
33 | %% Citation
34 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
35 |
36 | %% Copyright 2015 Michael D. Nunez
37 |
38 | %This program is free software: you can redistribute it and/or modify
39 | % it under the terms of the GNU General Public License as published by
40 | % the Free Software Foundation, either version 3 of the License, or
41 | % (at your option) any later version.
42 | %
43 | % This program is distributed in the hope that it will be useful,
44 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
45 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
46 | % GNU General Public License for more details.
47 | %
48 | % You should have received a copy of the GNU General Public License
49 | % along with this program. If not, see .
50 |
51 | %% Record of Revisions
52 | % Date Programmers Description of change
53 | % ==== ================= =====================
54 | % 8/31/15 Michael Nunez Original code
55 | % 3/04/16 Michael Nunez Added thinning parameter that
56 | % exists in the original fits for the paper, but forgotten here
57 | % 5/03/16 Michael Nunez Works with the new version of Trinity
58 |
59 | %% Initial
60 |
61 | data = load(inputfile);
62 |
63 | %Organize date and time into a string
64 | rightnow = clock;
65 | rightnow = num2cell(rightnow)';
66 | timestr = sprintf('_%i',rightnow{1:5});
67 |
68 | %EEG effect on model parameters?
69 | for t=1:length(eegfields)
70 | defaulttsv{t} = [1 1 1];
71 | end
72 |
73 | tsv = defaulttsv;
74 | modelname = timestr;
75 | nsamples = 5e3;
76 | nburnin = 2e3;
77 | nchains =6;
78 | thin = 10;
79 | verbosity =1;
80 | parallelit = 0; %Set this to 1 if GNU Parallel is installed
81 | maxcores = 3;
82 | modules = {'wiener' 'dic'};
83 |
84 |
85 | %% JAGS code for the diffusion model
86 |
87 | %Set up string cell array with proper indexing
88 | %Set up cell structure for creating mu equations
89 | tarray = [];
90 | sarray = [];
91 | varray = [];
92 | for f=1:numel(eegfields)
93 | neweegfields{f} = strrep(eegfields{f},'_',''); %JAGS does not like the underscore in a data variable name
94 | covariates{f} = [neweegfields{f} '[i]']; %Subscripts for the .jags code
95 | if tsv{f}(1)
96 | tarray = cat(2,tarray,[covariates(f) num2cell(f)]');
97 | end
98 | if tsv{f}(2)
99 | sarray = cat(2,sarray,[covariates(f) num2cell(f)]');
100 | end
101 | if tsv{f}(3)
102 | varray = cat(2,varray,[covariates(f) num2cell(f)]');
103 | end
104 | end
105 |
106 | model = {
107 | 'model {'
108 | '# No effect on b (bias between responses)'
109 | '# b <- .5'
110 | '# Boundary separation kept constant'
111 | '# a <- 1'
112 | ''
113 | '# 1 unit increase of eegfield{f} is associated with this additive effect on t'
114 | sprintf('for (f in 1:%i) {',size(tarray,2))
115 | 'tbetasd[f] ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
116 | 'tbetatau[f] <- pow(tbetasd[f], -2)'
117 | ' for (c2 in 1:3) {' %noise
118 | ' tbetamu[c2,f] ~ dnorm(0,.0001)' %std = 100
119 | ' for (sub in 1:nsubs) {'
120 | ' tbeta[c2,sub,f] ~ dnorm(tbetamu[c2,f],tbetatau[f])' %std = 100, These should be drawn from a EEG parameter specific distribution with some std parameter
121 | ' }'
122 | ' }'
123 | '}'
124 | ''
125 | '# Effect on Ter (non-decision time)'
126 | '# Varies by subject'
127 | 'tsd ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
128 | 'ttau <- pow(tsd, -2)'
129 | 'for (c2 in 1:3) {' %noise
130 | ' tmu[c2] ~ dnorm(0,.0001)' %std = 100
131 | ' for (sub in 1:nsubs) {'
132 | ' talpha[c2,sub] ~ dnorm(tmu[c2], ttau)'
133 | ' }'
134 | '}'
135 | ''
136 | '# Effect on s (diffusion coefficient)'
137 | '# Varies by subject'
138 | 'ssd ~ dgamma(5, 20)' % x=linspace(0, 1, 100); plot(x, gampdf(x, 5, .05))
139 | 'stau <- pow(ssd, -2)'
140 | 'for (c2 in 1:3) {' %noise
141 | ' smu[c2] ~ dnorm(.6, 1/4)T(0,4)' %std = 2
142 | ' for (sub in 1:nsubs) {' %subject
143 | ' s[c2,sub] ~ dnorm(smu[c2], stau)'
144 | ' }'
145 | '}'
146 | ''
147 | '# 1 unit increase of eegfield{f} is associated with this additive effect on v'
148 | sprintf('for (f in 1:%i) {',size(tarray,2))
149 | 'vbetasd[f] ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
150 | 'vbetatau[f] <- pow(vbetasd[f], -2)'
151 | ' for (c2 in 1:3) {' %noise
152 | ' vbetamu[c2,f] ~ dnorm(0,.0001)' %std = 100
153 | ' for (sub in 1:nsubs) {' %subject
154 | ' vbeta[c2,sub,f] ~ dnorm(vbetamu[c2,f],vbetatau[f])' %std = 100, These should be drawn from a EEG parameter specific distribution with some std parameter
155 | ' }'
156 | ' }'
157 | '}'
158 | ''
159 | '# Effect on v (diffusion process between trials)'
160 | '# Varies by condition and subject'
161 | 'vsd ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
162 | 'vtau <- pow(vsd, -2)'
163 | 'for (c2 in 1:3) {' %noise
164 | ' vmu[c2] ~ dnorm(0,.0001)' %std = 100
165 | ' for (sub in 1:nsubs) {'
166 | ' valpha[c2,sub] ~ dnorm(vmu[c2], vtau)'
167 | ' }'
168 | '}'
169 | ''
170 | '# Likelihood'
171 | 'for (i in 1:n)'
172 | '{'
173 | ''
174 | sprintf('v[i] <- valpha[noise[i],subject[i]]%s',sprintf(' + %s*vbeta[noise[i],subject[i],%i]',sarray{:}))
175 | ''
176 | ''
177 | sprintf('t[i] <- talpha[noise[i],subject[i]]%s',sprintf(' + %s*tbeta[noise[i],subject[i],%i]',sarray{:}))
178 | ''
179 | ' y[i] ~ dwiener(1/s[noise[i],subject[i]], t[i], 0.5, v[i]/s[noise[i],subject[i]])'
180 | '}'
181 | '}'
182 | };
183 |
184 | %% Code for Trinity
185 |
186 | params = {'tsd' 'tmu' 'talpha' 'tbeta' 'tbetamu' 'tbetasd' 'ssd' 'smu' 's' ...
187 | 'vsd' 'vmu' 'valpha' 'vbeta' 'vbetamu' 'vbetasd'};
188 |
189 | samprt = data.rt;
190 | rt = samprt/1024; %Reaction time in samples to seconds (not milliseconds)
191 | ntrials = length(data.correct);
192 |
193 | %Remove no answer trials and subjects that weretaken out of this model
194 | tremove = isnan(data.correct) | (data.goodtrials == 0); %Remove this last flag if imputing bad trials
195 |
196 | %Remove RTs less than cutoff given by ewmav2
197 | for j=1:length(data.subname)
198 | [cutoff] = ewmav2([data.correct(data.subject == j & ~isnan(rt))' rt(data.subject == j & ~isnan(rt))'],2,.01,.5);
199 | tremove = tremove | (rt < cutoff & data.subject == j);
200 | cutoffs(j) = cutoff;
201 | end
202 | nremove = sum(tremove);
203 |
204 | correct = data.correct;
205 | correct(correct == 0) = -1;
206 | y = correct(~tremove).*rt(~tremove);
207 |
208 | R.subject = data.subject(~tremove);
209 | R.subject = R.subject(:);
210 |
211 | tempc = data.noise;
212 | tempc = tempc(~tremove);
213 | [~, ~, noise] = unique(tempc);
214 |
215 | tempj = data.jitter;
216 | tempj = tempj(~tremove);
217 | [~, ~, jitter] = unique(tempj);
218 |
219 | R.n = ntrials - nremove;
220 | R.nsubs = length(data.subname); %Keep this fixed for the total number of subjects even if removing subjects from modeling
221 | R.y = y(:);
222 | R.jitter = jitter(:);
223 | R.noise = noise(:);
224 |
225 | initstruct = @()struct(...
226 | 'valpha', randn(3,R.nsubs),'talpha', .1 + rand(3,R.nsubs)*.2);
227 |
228 |
229 | for f=1:numel(eegfields)
230 | R.(neweegfields{f}) = data.(eegfields{f})(~tremove)';
231 | end
232 |
233 |
234 | %Setup data split index for cross-validation
235 | rmindex = logical(rmtrials(~tremove));
236 |
237 | %Training data
238 | S.nsubs = R.nsubs;
239 | S.subject = R.subject(~rmindex);
240 | S.n = R.n - sum(rmindex);
241 | S.y = R.y(~rmindex);
242 | S.jitter = R.jitter(~rmindex);
243 | S.noise = R.noise(~rmindex);
244 | for f=1:numel(eegfields)
245 | S.(neweegfields{f}) = R.(neweegfields{f})(~rmindex);
246 | end
247 |
248 | %Test data
249 | T.nsubs = R.nsubs;
250 | T.subject = R.subject(rmindex);
251 | T.n = R.n - sum(~rmindex);
252 | T.y = R.y(rmindex);
253 | T.jitter = R.jitter(rmindex);
254 | T.noise = R.noise(rmindex);
255 | for f=1:numel(eegfields)
256 | T.(neweegfields{f}) = R.(neweegfields{f})(rmindex);
257 | end
258 |
259 | %% Run JAGS
260 |
261 | fprintf('Building JAGS model %s and saving output...',modelname);
262 |
263 | tic
264 | [stats, chains, diagnostics, info] = callbayes('jags', ...
265 | 'model', model, ...
266 | 'data', S, ...
267 | 'nsamples', nsamples, ...
268 | 'nburnin', nburnin, ...
269 | 'nchains', nchains, ...
270 | 'thin',thin,...
271 | 'verbosity', verbosity, ...
272 | 'workingdir','wdir', ...
273 | 'monitorparams', params, ...
274 | 'parallel',parallelit, ...
275 | 'maxcores',maxcores, ...
276 | 'modules',modules, ...
277 | 'init', initstruct, ...
278 | varargin{:});
279 |
280 | info.comptime = toc/60;
281 | fprintf('JAGS took %f minutes!\n', info.comptime)
282 |
283 | save(sprintf('jagsmodel%s.mat',modelname),'stats', 'chains', 'diagnostics',...
284 | 'cutoffs','info','params','S','T','tsv');
285 |
286 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/pdm3b_model3.m:
--------------------------------------------------------------------------------
1 | function pdm3b_model3(inputfile,rmtrials,eegfields,varargin)
2 | %PDM3B_MODEL3 - Runs a new JAGS Model Type 3 with EEG inputs
3 | %
4 | %load jagsins.mat to see structure
5 | %
6 | %Usage: pdm3b_model3('jagsins.mat',rmtrials,eegfields);
7 | %
8 | %
9 | %Inputs:
10 | % inputfile: name of file that contains .eeg structure with subject
11 | % level EEG fields (i.e. jagsins.mat)
12 | % eegfields: EEG fields of (eeginputfile) to include in model
13 | %
14 | %% README
15 |
16 | %THIS PROGRAM WILL NOT WORK WITHOUT SPECIFIC PACKAGES AND PROGRAMS
17 | %
18 | %JAGS - Just Another Gibbs Sampler
19 | %http://sourceforge.net/projects/mcmc-jags/
20 | %
21 | %jags-wiener - Wiener distribution functions for JAGS
22 | %http://sourceforge.net/projects/jags-wiener/
23 | %
24 | %DMAT - Diffusion Model Analysis Toolbox
25 | %https://ppw.kuleuven.be/okp/software/dmat/
26 | %
27 | %Trinity
28 | %https://github.com/joachimvandekerckhove/trinity
29 | %
30 | %GNU Parallel (Optional):
31 | %https://www.gnu.org/software/parallel/
32 |
33 | %% Citation
34 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
35 |
36 | %% Copyright 2015 Michael D. Nunez
37 |
38 | %This program is free software: you can redistribute it and/or modify
39 | % it under the terms of the GNU General Public License as published by
40 | % the Free Software Foundation, either version 3 of the License, or
41 | % (at your option) any later version.
42 | %
43 | % This program is distributed in the hope that it will be useful,
44 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
45 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
46 | % GNU General Public License for more details.
47 | %
48 | % You should have received a copy of the GNU General Public License
49 | % along with this program. If not, see .
50 |
51 | %% Record of Revisions
52 | % Date Programmers Description of change
53 | % ==== ================= =====================
54 | % 8/31/15 Michael Nunez Original code
55 | % 3/04/16 Michael Nunez Added thinning parameter that
56 | % exists in the original fits for the paper, but forgotten here
57 | % 5/03/16 Michael Nunez Works with the new version of Trinity
58 |
59 | %% Initial
60 |
61 | data = load(inputfile);
62 |
63 | %Organize date and time into a string
64 | rightnow = clock;
65 | rightnow = num2cell(rightnow)';
66 | timestr = sprintf('_%i',rightnow{1:5});
67 |
68 | %EEG effect on model parameters?
69 | for t=1:length(eegfields)
70 | defaulttsv{t} = [1 1 1];
71 | end
72 |
73 | tsv = defaulttsv;
74 | modelname = timestr;
75 | nsamples = 5e3;
76 | nburnin = 2e3;
77 | nchains =6;
78 | thin =10;
79 | verbosity =1;
80 | parallelit = 0; %Set this to 1 if GNU Parallel is installed
81 | maxcores = 3;
82 | modules = {'wiener' 'dic'};
83 |
84 | %% JAGS code for the diffusion model
85 |
86 | %Set up string cell array with proper indexing
87 | %Set up cell structure for creating mu equations
88 | tarray = [];
89 | sarray = [];
90 | varray = [];
91 | for f=1:numel(eegfields)
92 | neweegfields{f} = strrep(eegfields{f},'_',''); %JAGS does not like the underscore in a data variable name
93 | covariates{f} = [neweegfields{f} '[i]']; %Subscripts for the .jags code
94 | if tsv{f}(1)
95 | tarray = cat(2,tarray,[covariates(f) num2cell(f)]');
96 | end
97 | if tsv{f}(2)
98 | sarray = cat(2,sarray,[covariates(f) num2cell(f)]');
99 | end
100 | if tsv{f}(3)
101 | varray = cat(2,varray,[covariates(f) num2cell(f)]');
102 | end
103 | end
104 |
105 | model = {
106 | 'model {'
107 | '# No effect on b (bias between responses)'
108 | '# b <- .5'
109 | '# Boundary separation kept constant'
110 | '# a <- 1'
111 | ''
112 | '# 1 unit increase of eegfield{f} is associated with this additive effect on t'
113 | sprintf('for (f in 1:%i) {',size(tarray,2))
114 | 'tbetasd[f] ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
115 | 'tbetatau[f] <- pow(tbetasd[f], -2)'
116 | ' for (c2 in 1:3) {' %noise
117 | ' tbetamu[c2,f] ~ dnorm(0,.0001)' %std = 100
118 | ' for (sub in 1:nsubs) {'
119 | ' tbeta[c2,sub,f] ~ dnorm(tbetamu[c2,f],tbetatau[f])' %std = 100, These should be drawn from a EEG parameter specific distribution with some std parameter
120 | ' }'
121 | ' }'
122 | '}'
123 | ''
124 | '# Effect on Ter (non-decision time)'
125 | '# Varies by subject'
126 | 'tsd ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
127 | 'ttau <- pow(tsd, -2)'
128 | 'for (c2 in 1:3) {' %noise
129 | ' tmu[c2] ~ dnorm(0,.0001)' %std = 100
130 | ' for (sub in 1:nsubs) {'
131 | ' talpha[c2,sub] ~ dnorm(tmu[c2], ttau)'
132 | ' }'
133 | '}'
134 | ''
135 | '# 1 unit increase of eegfield{f} is associated with this additive effect on s'
136 | sprintf('for (f in 1:%i) {',size(tarray,2))
137 | 'sbetasd[f] ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
138 | 'sbetatau[f] <- pow(sbetasd[f], -2)'
139 | ' for (c2 in 1:3) {' %noise
140 | ' sbetamu[c2,f] ~ dnorm(0,.0001)' %std = 100
141 | ' for (sub in 1:nsubs) {'
142 | ' sbeta[c2,sub,f] ~ dnorm(sbetamu[c2,f],sbetatau[f])' %std = 100, These should be drawn from a EEG parameter specific distribution with some std parameter
143 | ' }'
144 | ' }'
145 | '}'
146 | ''
147 | '# Effect on s (diffusion coefficient)'
148 | '# Varies by subject'
149 | 'ssd ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
150 | 'stau <- pow(ssd, -2)'
151 | 'for (c2 in 1:3) {' %noise
152 | ' smu[c2] ~ dnorm(0,.0001)' %std = 100
153 | ' for (sub in 1:nsubs) {'
154 | ' salpha[c2,sub] ~ dnorm(smu[c2], stau)'
155 | ' }'
156 | '}'
157 | ''
158 | '# 1 unit increase of eegfield{f} is associated with this additive effect on v'
159 | sprintf('for (f in 1:%i) {',size(tarray,2))
160 | 'vbetasd[f] ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
161 | 'vbetatau[f] <- pow(vbetasd[f], -2)'
162 | ' for (c2 in 1:3) {' %noise
163 | ' vbetamu[c2,f] ~ dnorm(0,.0001)' %std = 100
164 | ' for (sub in 1:nsubs) {' %subject
165 | ' vbeta[c2,sub,f] ~ dnorm(vbetamu[c2,f],vbetatau[f])' %std = 100, These should be drawn from a EEG parameter specific distribution with some std parameter
166 | ' }'
167 | ' }'
168 | '}'
169 | ''
170 | '# Effect on v (diffusion process between trials)'
171 | '# Varies by condition and subject'
172 | 'vsd ~ dgamma(5, .2)' % x=linspace(0, 100, 100); plot(x, gampdf(x, 5, 5))
173 | 'vtau <- pow(vsd, -2)'
174 | 'for (c2 in 1:3) {' %noise
175 | ' vmu[c2] ~ dnorm(0,.0001)' %std = 100
176 | ' for (sub in 1:nsubs) {'
177 | ' valpha[c2,sub] ~ dnorm(vmu[c2], vtau)'
178 | ' }'
179 | '}'
180 | ''
181 | '# Likelihood'
182 | 'for (i in 1:n)'
183 | '{'
184 | ''
185 | sprintf('v[i] <- valpha[noise[i],subject[i]]%s',sprintf(' + %s*vbeta[noise[i],subject[i],%i]',sarray{:}))
186 | ''
187 | ''
188 | sprintf('t[i] <- talpha[noise[i],subject[i]]%s',sprintf(' + %s*tbeta[noise[i],subject[i],%i]',sarray{:}))
189 | ''
190 | ''
191 | sprintf('s[i] <- salpha[noise[i],subject[i]]%s',sprintf(' + %s*sbeta[noise[i],subject[i],%i]',sarray{:}))
192 | ''
193 | ' y[i] ~ dwiener(1/s[i], t[i], 0.5, v[i]/s[i])'
194 | '}'
195 | '}'
196 | };
197 |
198 | %% Code for Trinity
199 |
200 | params = {'tsd' 'tmu' 'talpha' 'tbeta' 'tbetamu' 'tbetasd' ...
201 | 'ssd' 'smu' 'salpha' 'sbeta' 'sbetamu' 'sbetasd' ...
202 | 'vsd' 'vmu' 'valpha' 'vbeta' 'vbetamu' 'vbetasd'};
203 |
204 | samprt = data.rt;
205 | rt = samprt/1024; %Reaction time in samples to seconds (not milliseconds)
206 | ntrials = length(data.correct);
207 |
208 | %Remove no answer trials and subjects that weretaken out of this model
209 | tremove = isnan(data.correct) | (data.goodtrials == 0); %Remove this last flag if imputing bad trials
210 |
211 | %Remove RTs less than cutoff given by ewmav2
212 | for j=1:length(data.subname)
213 | [cutoff] = ewmav2([data.correct(data.subject == j & ~isnan(rt))' rt(data.subject == j & ~isnan(rt))'],2,.01,.5);
214 | tremove = tremove | (rt < cutoff & data.subject == j);
215 | cutoffs(j) = cutoff;
216 | end
217 | nremove = sum(tremove);
218 |
219 | correct = data.correct;
220 | correct(correct == 0) = -1;
221 | y = correct(~tremove).*rt(~tremove);
222 |
223 | R.subject = data.subject(~tremove);
224 | R.subject = R.subject(:);
225 |
226 | tempc = data.noise;
227 | tempc = tempc(~tremove);
228 | [~, ~, noise] = unique(tempc);
229 |
230 | tempj = data.jitter;
231 | tempj = tempj(~tremove);
232 | [~, ~, jitter] = unique(tempj);
233 |
234 | R.n = ntrials - nremove;
235 | R.nsubs = length(data.subname); %Keep this fixed for the total number of subjects even if removing subjects from modeling
236 | R.y = y(:);
237 | R.jitter = jitter(:);
238 | R.noise = noise(:);
239 |
240 | initstruct = @()struct(...
241 | 'valpha', randn(3,R.nsubs),'talpha', .1 + rand(3,R.nsubs)*.2, ...
242 | 'salpha', .5 + rand(3,R.nsubs)*.5);
243 |
244 | for f=1:numel(eegfields)
245 | R.(neweegfields{f}) = data.(eegfields{f})(~tremove)';
246 | end
247 |
248 |
249 | %Setup data split index for cross-validation
250 | rmindex = logical(rmtrials(~tremove));
251 |
252 | %Training data
253 | S.nsubs = R.nsubs;
254 | S.subject = R.subject(~rmindex);
255 | S.n = R.n - sum(rmindex);
256 | S.y = R.y(~rmindex);
257 | S.jitter = R.jitter(~rmindex);
258 | S.noise = R.noise(~rmindex);
259 | for f=1:numel(eegfields)
260 | S.(neweegfields{f}) = R.(neweegfields{f})(~rmindex);
261 | end
262 |
263 | %Test data
264 | T.nsubs = R.nsubs;
265 | T.subject = R.subject(rmindex);
266 | T.n = R.n - sum(~rmindex);
267 | T.y = R.y(rmindex);
268 | T.jitter = R.jitter(rmindex);
269 | T.noise = R.noise(rmindex);
270 | for f=1:numel(eegfields)
271 | T.(neweegfields{f}) = R.(neweegfields{f})(rmindex);
272 | end
273 |
274 | %% Run JAGS
275 |
276 | fprintf('Building JAGS model %s and saving output...',modelname);
277 |
278 | tic
279 | [stats, chains, diagnostics, info] = callbayes('jags', ...
280 | 'model', model, ...
281 | 'data', S, ...
282 | 'nsamples', nsamples, ...
283 | 'nburnin', nburnin, ...
284 | 'nchains', nchains, ...
285 | 'thin',thin,...
286 | 'verbosity', verbosity, ...
287 | 'workingdir','wdir', ...
288 | 'monitorparams', params, ...
289 | 'parallel',parallelit, ...
290 | 'maxcores',maxcores, ...
291 | 'modules',modules, ...
292 | 'init', initstruct, ...
293 | varargin{:});
294 |
295 | info.comptime = toc/60;
296 | fprintf('JAGS took %f minutes!\n', info.comptime)
297 |
298 | save(sprintf('jagsmodel%s.mat',modelname),'stats', 'chains', 'diagnostics',...
299 | 'cutoffs','info','params','S','T','tsv');
300 |
301 |
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/visual_stimuli/makebardirec.m:
--------------------------------------------------------------------------------
1 | function barimage = makebardirec(imagesize,barsize,imagetype,jitter,preload, graphit)
2 | %makebardirec - Builds a bar patch oriented in two ways
3 | %
4 | % This function creates a matrix of bars with mean rotation directed
5 | % either north-east or north-west on average
6 | %
7 | %Useage:
8 | % >> barimage = makebardirec(imagesize,density,imagetype,jitter,preload,graphit);
9 | %
10 | %Useage Example:
11 | % >> barimage = makebardirec(600,12,1,0,0,1);
12 | %
13 | %To test try:
14 | % >> a = randi(2,1); b = rand(1)*90; makebardirec(600,12,a,b,0,1);
15 | %
16 | %Inputs:
17 | % imagesize = number of pixels for each side of the image (pixels = imagesize*imagesize) (e.g., 600)
18 | %
19 | % density = density parameter (use of 6 in pdmexp2)
20 | %
21 | % imagetype (optional): default is random
22 | % 1 - lines directed north-east / south-west on average
23 | % 2 - lines directed north-west / south-east on average
24 | %
25 | % jitter (optional): default is 0, which is a figure with 'exact' rotations
26 | % Acceptable values on the range [0 120], corresponding to possible
27 | % degrees of random rotation
28 | %
29 | % preload (optional): default is 0, 1 calls preloaded/(45/135)_(jitter).mat
30 | % file to load the bar image maps
31 | %
32 | % graphit (optional): Graphs the image in grayscale if = 1
33 |
34 | %% README
35 |
36 | %For use with pdmexp3_public
37 |
38 | %% Possible Citations
39 | % Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differences in attention influence perceptual decision making. Frontiers in psychology, 8.
40 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
41 |
42 | %% Copyright 2015 Michael D. Nunez
43 |
44 | %This program is free software: you can redistribute it and/or modify
45 | % it under the terms of the GNU General Public License as published by
46 | % the Free Software Foundation, either version 3 of the License, or
47 | % (at your option) any later version.
48 | %
49 | % This program is distributed in the hope that it will be useful,
50 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
51 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
52 | % GNU General Public License for more details.
53 | %
54 | % You should have received a copy of the GNU General Public License
55 | % along with this program. If not, see .
56 | %
57 | %% Record of revisions:
58 | % Date Programmers Description of change
59 | % ==== ================= =====================
60 | % 5/20/13 Michael Nunez Original code
61 | % 1/1/16 Michael Nunez Defaults better reflect stimuli used in experiments
62 |
63 | %% Arguments
64 |
65 | switch nargin
66 | case 0
67 | imagesize = 600;
68 | barsize = 6;
69 | imagetype = randsample(1:2,1);
70 | jitter = 60;
71 | preload = 0;
72 | graphit = 1;
73 | case 1
74 | barsize = 6;
75 | imagetype = randsample(1:2,1);
76 | jitter = 60;
77 | preload = 0;
78 | graphit = 1;
79 | case 2
80 | imagetype = randsample(1:2,1);
81 | jitter = 60;
82 | preload = 0;
83 | graphit = 1;
84 | case 3
85 | jitter = 60;
86 | preload = 0;
87 | graphit = 1;
88 | case 4
89 | preload = 0;
90 | graphit = 1;
91 | case 5
92 | graphit = 0;
93 | end
94 |
95 | if isempty(imagetype)
96 | imagetype = randsample(1:2,1);
97 | end;
98 |
99 | %% Load Preloaded Bars
100 | if preload
101 | if imagetype == 1
102 | anglefilename = '45';
103 | else
104 | anglefilename = '135';
105 | end
106 | if exist(['preloaded/',anglefilename,'_',num2str(jitter),'.mat']) == 2
107 | load(['preloaded/',anglefilename,'_',num2str(jitter),'.mat']);
108 | eval(['loadedbars = m',anglefilename,'j',num2str(jitter),';']);
109 | else
110 | error('These specific bar image maps do not exist in the subdirectory ''preloaded''.');
111 | end
112 | end
113 |
114 | %% Useful pre-code calculations
115 | halfimage = round(imagesize/2);
116 | halfbar = floor(barsize/2);
117 | halfbarwidth = round(barsize/12);
118 | halfbarlength = floor(barsize/2);
119 |
120 |
121 | %Density calculation
122 | density = 3*barsize; %Density calculation
123 |
124 | %Jitter to radians
125 | jitterrad = jitter*(pi/180);
126 |
127 | %% Circular Display
128 | circlech = ones(imagesize);
129 | xc = 1:imagesize;
130 | yc = 1:imagesize;
131 | z = nan(imagesize);
132 | for i = 1:imagesize
133 | for j = 1:imagesize
134 | z(i,j) = sqrt((xc(i)-halfimage)^2 + (yc(j)-halfimage)^2);
135 | if z(i,j) > round(5*imagesize/12);
136 | circlech(i,j) = 0;
137 | end
138 | end
139 | end
140 |
141 | %% Build a unrotated bar
142 | %patch = zeros(barsize);
143 | patch = zeros(12);
144 | %Contrust bar with length of barsize and width
145 | %2*round(barsize/12)
146 | %patch((halfbar - halfbarlength+1):(halfbar + halfbarlength),(halfbar - halfbarwidth+1):(halfbar + halfbarwidth))= 1;
147 | patch(1:12,6:7) = 1;
148 |
149 | %% Build an oriented bar patch
150 | barimage = zeros(imagesize);
151 |
152 |
153 | [xg,yg]=meshgrid(-halfbar:halfbar,-halfbar:halfbar);
154 |
155 |
156 | %Draw the image with bar patches
157 | for i= 1:(round(imagesize/density)-1) %No longer pixel by pixel (as is in the egg paradigm)
158 | for j = 1:(round(imagesize/density)-1)
159 | %Put some random placement into the bars
160 | randplacex = randi(round(1.5*barsize),1) - round(.75*barsize);
161 | randplacey = randi(round(1.5*barsize),1) - round(.75*barsize);
162 |
163 | %Find the correct indicies
164 | wherey = i*density + randplacey;
165 | wherex = j*density + randplacex;
166 | if all(all(circlech((wherey-halfbar):(wherey+halfbar),(wherex-halfbar):(wherex+halfbar))))
167 |
168 | %Here we insert our rand jitter to the figure angles
169 | randjitter = (2*rand(1)-1)*jitterrad;
170 |
171 | %Radians to angles
172 | randjitter = randjitter*(180/pi);
173 | if imagetype == 1
174 | figangle(i,j) = -45 + randjitter;
175 | elseif imagetype == 2
176 | figangle(i,j) = 45 + randjitter;
177 | end
178 |
179 | if ~preload
180 | %Draw the figure-bar
181 | rotpatch = imrotate(patch, figangle(i,j));
182 | else
183 | %Draw from prerotated images
184 | randindex = randi(length(loadedbars),1);
185 | rotpatch = loadedbars{randindex};
186 | end
187 |
188 | %Find size of rotpatch
189 | [row column] = size(rotpatch);
190 |
191 | %Place the figure-bar into the bar patch
192 | barimage((wherey-floor(row/2)+1):(wherey+ceil(row/2)),(wherex-floor(column/2)+1):(wherex+ceil(row/2))) = rotpatch;
193 | end
194 | end
195 | end
196 |
197 | barimage(barimage == 1) = .5;
198 |
199 | %% Graph the image
200 |
201 | if graphit == 1
202 | %figure;
203 | imagesc(barimage,[0 1]);
204 | colormap(gray);
205 | screensize = get(0,'ScreenSize');
206 | set(gcf,'Position', [1 1 screensize(3) screensize(4)]);
207 | axis('square');
208 | end
--------------------------------------------------------------------------------
/nunez_etal2017_mathpsych/visual_stimuli/pdmexp3_public.m:
--------------------------------------------------------------------------------
1 | function pdmexp3_public(varargin)
2 | %% README
3 |
4 | %THIS PROGRAM WILL NOT WORK WITHOUT SPECIFIC CHANGES FOR YOUR SOFTWARE AND HARDWARE
5 |
6 | %We used this MATLAB program in a visual decision making experiment for the
7 | %two papers below. This program serves as examples of steady-state visual evoked
8 | %potential (SSVEP) stimuli. See the two papers for a description of the
9 | %experimental paradigm
10 | %
11 | %We ran this on a Windows XP machine with Psychtoolbox 2 with a particular
12 | %setup for auditory experiments. Subjects used a Cedrus button box to give responses.
13 | %http://psychtoolbox.org/
14 | %http://cedrus.com/responsepads/rb530.htm
15 |
16 | %In order to replicate this experimental stimulus, you may need to port
17 | %this code to Psychtoolbox 3 on Linux with a good video card, and then test
18 | %the frequency of the "photocell" squares in each corner of the screen to
19 | %ensure the intended frequencies of the flickering stimuli and thus possible SSVEP
20 | %responses (SSVEPs could also depend upon subject behavior, brain state,
21 | %contrast, luminance, etc. and must be tested with preliminary studies)
22 |
23 | %% Possible Citations
24 | % Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differences in attention influence perceptual decision making. Frontiers in psychology, 8.
25 | % Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017) How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117-130.
26 |
27 | %% Copyright 2015 Michael D. Nunez
28 |
29 | %This program is free software: you can redistribute it and/or modify
30 | % it under the terms of the GNU General Public License as published by
31 | % the Free Software Foundation, either version 3 of the License, or
32 | % (at your option) any later version.
33 | %
34 | % This program is distributed in the hope that it will be useful,
35 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
36 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 | % GNU General Public License for more details.
38 | %
39 | % You should have received a copy of the GNU General Public License
40 | % along with this program. If not, see .
41 | %
42 | %% Record of revisions:
43 | % Date Programmers Description of change
44 | % ==== ================= =====================
45 | % 12/?/2013 Michael Nunez Original code
46 | % 12/27/2015 Michael Nunez Public comments
47 |
48 | %% Code
49 | if nargin == 1
50 | rundemo = 1;
51 | elseif nargin > 1
52 | error('Too many function inputs.');
53 | else
54 | rundemo = 0;
55 | end
56 |
57 | PTB2;
58 |
59 | %Inputs Prompt and Output Setup
60 | %Experimenter Prompt
61 | Screenres = get(0,'Screensize');
62 |
63 | prompt1={'Subject Number (must begin with letter):','Session Number:','Window Pointer:',...
64 | 'Screen Length (x-axis):','Screen Width (y-axis):','Refresh Rate (fps):','Stimulus Frequencies (Hz <= Refresh Rate):',...
65 | 'Noise Frequency:','Number of Trials:','Trials per Block:','Jitter Levels:','Noise Levels:','Cedrus Port [COM2 ...] or null'};
66 | if rundemo
67 | def1={'SZZ_test','0','0',num2str(Screenres(3)),num2str(Screenres(4)),'120','15','8','36','90','[30 40 50]','[.3 .45 .6]',''};
68 | studytitle='PDM DEMO';
69 | else
70 | def1={'SZZ_test','1','0',num2str(Screenres(3)),num2str(Screenres(4)),'120','15','8','540','90','[60 70 80]','[.3 .45 .6]',''};
71 | studytitle='PDM Experiment 3';
72 | end
73 |
74 | lineNo=1;
75 | answer=inputdlg(prompt1,studytitle,lineNo,def1);
76 | %Subject Number
77 | subnum = answer{1};
78 | %ExpSession Number
79 | sesnum = str2num(answer{2});
80 | output.sesnum = sesnum;
81 | %Window Pointer / 'Home Screen'. 0 - the primary monitor; 1 - the secondary monitor.
82 | whichScreen = str2num(answer{3});
83 | %Screen resolution on the x-axis
84 | xres = str2num(answer{4});
85 | output.xres = xres;
86 | %Screen resolution on the y-axis
87 | yres = str2num(answer{5});
88 | output.yres = yres;
89 | %This should be the same as the Refresh Rate shown in the Display
90 | %Properties on the computer. Always check before running the experiment to
91 | %match flicker frequency.
92 | %This code is currently set up to only handle multiples of 60 fps.
93 | refrate = str2num(answer{6});
94 | realrefrate = Screen(0,'FrameRate');
95 | if refrate ~= Screen(0,'FrameRate')
96 | error(['The real screen refresh rate is set to ',num2str(realrefrate),...
97 | 'Hz while the proposed screen refresh rate is ',num2str(refrate),'Hz.']);
98 | end
99 | output.refrate = refrate;
100 | %Stimulus frequencies(Hz)
101 | flickfreqs = str2num(answer{7});
102 | output.flickfreqs = flickfreqs;
103 | if ~all(round(refrate./flickfreqs) == (refrate./flickfreqs))
104 | %error('The stimulus frequencies should be divisors of the refresh rate.');
105 | end
106 | %Noise frequency (Hz)
107 | noisehz = str2num(answer{8});
108 | output.noisehz = noisehz;
109 | if round(refrate/noisehz) ~= refrate/noisehz
110 | error('The noise frequency should be divisor of the refresh rate.');
111 | end
112 | %Number of Trials
113 | trialnum = str2num(answer{9});
114 |
115 | %Trials per block
116 | output.tperb = str2num(answer{10});
117 | if output.tperb > trialnum
118 | output.tperb = trialnum;
119 | end
120 | block = 1;
121 | %Jitter levels
122 | jitterlvls = str2num(answer{11});
123 | output.jitterlvls = jitterlvls;
124 |
125 | %noise levels
126 | noiselvls = str2num(answer{12});
127 | output.noiselvls = noiselvls;
128 |
129 | %Number of trials should be a multiple of the number of cells
130 | ncells = length(jitterlvls)*length(noiselvls);
131 | if round(trialnum/ncells) ~= trialnum/ncells
132 | error(['The number of trials should be a multiple of ',num2str(ncells)]);
133 | end
134 |
135 | %Cedrus Handle
136 | cport = answer{13};
137 | chandle = CedrusResponseBox('Open',cport);
138 |
139 | %% Code
140 | %Subject Prompt
141 | prompt2={'What is your gender? (''f'' or ''m'')',...
142 | 'Age:','Do you consider yourself right handed, left handed, or both? (''r'',''l'', or''b'')',...
143 | 'Do you have near 20/20 vision or is your vision corrected to near 20/20? (''y'' or ''n'')',...
144 | 'Do you have any personal or family history of epilepsy? (''y'' or ''n'')'
145 | };
146 | demographtitle='Subject Demographics';
147 | lineNo=1;
148 | subdemo=inputdlg(prompt2,demographtitle,lineNo);
149 | switch subdemo{5}
150 | case 'n'
151 | otherwise
152 | error('You have indicated that you have a personal or family history of epilepsy. This experiment involves a fast flickering image. It is recommended that you NOT participate in this study due to a possible risk of seizure. Please discuss your options with the experimenters.');
153 | end
154 | output.gender = subdemo{1};
155 | output.age = str2num(subdemo{2});
156 | output.hand = subdemo{3};
157 | output.vision = subdemo{4};
158 |
159 | %Get date and time that the session begins
160 | output.date = date;
161 | output.start_time = clock;
162 |
163 | %number of rows and columns of image
164 | nCols = 600;
165 | nRows = 600;
166 |
167 | %Initialize estimated accuracy vector, for speed
168 | estcorrect = zeros(1,trialnum);
169 |
170 | %Keyboard keypress variables
171 | advancechar = ' ';
172 | escapechar = 27;
173 |
174 | %Lower bound to wait between trials, in seconds
175 | lboundwait = 2.5;
176 |
177 |
178 | %%%%%THE FOLLOWING IS UNNECESSARY%%%%%%
179 | % Initialize the sound driver:
180 | InitializePsychSound;
181 |
182 | %Load sounds
183 | [ygood, Fsgood] = wavread('chimes.wav'); %Example sounds should be changed to different sound files
184 | [ybad, Fsbad ] = wavread('critical.wav');
185 | ygood = ygood';
186 | ybad = ybad';
187 |
188 | % Open the default audio device [], with default mode [] (==Only playback),
189 | % and a required latencyclass of zero 0 == no low-latency mode, as well as
190 | % a frequency of freq and nrchannels sound channels.
191 | % This returns a handle to the audio device:
192 | goodhand = PsychPortAudio('Open', [], [], 0, Fsgood, size(ygood,1));
193 | badhand = PsychPortAudio('Open', [], [], 0, Fsbad, size(ybad,1));
194 |
195 | % Fill the audio playback buffers with the audio data
196 | PsychPortAudio('FillBuffer', goodhand , ygood);
197 | PsychPortAudio('FillBuffer', badhand, ybad);
198 | %%%%%%%%%USE THIS INSTEAD%%%%%%
199 |
200 | %[ygood, Fsgood] = audioread('chimes.wav');
201 |
202 | %[ybad, Fsbad ] = audioread('critical.wav');
203 |
204 | %goodsound = audioplayer(ygood,Fsgood);
205 | %badsound = audioplayer(ybad,Fsbad);
206 | %%%%%%%%
207 |
208 | %Flush Cedrus Events
209 | CedrusResponseBox('FlushEvents',chandle);
210 |
211 |
212 | %The following TRY, CATCH, END statement ends psychtoolbox if an error
213 | %occurs
214 | try
215 | %opens home window
216 | [wptr windowRect]= Screen(whichScreen ,'OpenWindow',[255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)]);
217 |
218 | %sets size of gabor field that will be pasted onto Screen
219 | imageRect=SetRect(0,0,nCols,nRows);
220 | destRect=CenterRect(imageRect,windowRect);
221 |
222 | %Define photocell placement
223 | PhotoSize = 75;
224 | photorect = [0 0 PhotoSize PhotoSize];
225 | %Photo{4} = [0 0 PhotoSize PhotoSize];
226 | %Photo{3} = [xres-PhotoSize 0 xres PhotoSize];
227 | Photo{2} = [xres-PhotoSize yres-PhotoSize xres yres];
228 | Photo{1} = [0 yres-PhotoSize PhotoSize yres];
229 |
230 | %Creates windows for photocells
231 | owPCWhite = Screen(wptr, 'OpenOffScreenWindow', [255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)], [0 0 PhotoSize PhotoSize]);
232 | Screen(owPCWhite,'FillRect',[255 255 255],[0 0 PhotoSize PhotoSize]);
233 | owPCBlack = Screen(wptr, 'OpenOffScreenWindow', [255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)], [0 0 PhotoSize PhotoSize]);
234 | Screen(owPCBlack,'FillRect',[0 0 0],[0 0 PhotoSize PhotoSize]);
235 |
236 | %Create cross
237 | CrossWidth = 4;
238 | crossx1 = (round(nRows/2 - 3*CrossWidth/2):round(nRows/2 + 3*CrossWidth/2));
239 | crossy1 = (round((nCols)/2 - CrossWidth/2):round((nCols)/2 + CrossWidth/2));
240 | crossx2 = (round(nRows/2 - CrossWidth/2):round(nRows/2 + CrossWidth/2));
241 | crossy2 = (round((nCols)/2 - 3*CrossWidth/2):round((nCols)/2 + 3*CrossWidth/2));
242 |
243 | %Create white cross for flickering image
244 | whitecross = ones(600)*255*sqrt(.5); %Approximately accounts for monitor gamma
245 | whitecross(crossx1,crossy1) = ones(length(crossx1),length(crossy1))*255;
246 | whitecross(crossx2,crossy2) = ones(length(crossx2),length(crossy2))*255;
247 |
248 | %Creates window for white fixation cross with black photocells
249 | ow3 = Screen(wptr,'OpenOffScreenWindow',[255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)]);
250 | Screen(ow3,'PutImage',whitecross,destRect);
251 | Screen(ow3,'FillRect',[1 1 1],Photo{1});
252 | Screen(ow3,'FillRect',[1 1 1],Photo{2});
253 | %Screen(ow3,'FillRect',[1 1 1],Photo{3});
254 | %Screen(ow3,'FillRect',[1 1 1],Photo{4});
255 |
256 | %Black cross for beginning of stimulus
257 | blackcross = whitecross;
258 | blackcross(whitecross == 255) = 1;
259 |
260 | %Creates window for black fixation cross with black photocells
261 | ow2 = Screen(wptr,'OpenOffScreenWindow',[255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)]);
262 | Screen(ow2,'PutImage',blackcross,destRect);
263 | Screen(ow2,'FillRect',[1 1 1],Photo{1});
264 | Screen(ow2,'FillRect',[1 1 1],Photo{2});
265 | %Screen(ow2,'FillRect',[1 1 1],Photo{3});
266 | %Screen(ow2,'FillRect',[1 1 1],Photo{4});
267 |
268 | %Creates a window of a blank gray screen with black photocells
269 | ow4 = Screen(wptr,'OpenOffScreenWindow',[255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)]);
270 | Screen(ow4,'FillRect', 255*sqrt(.5), [0 0 xres yres]);
271 | Screen(ow4,'FillRect',[1 1 1],Photo{1});
272 | Screen(ow4,'FillRect',[1 1 1],Photo{2});
273 | %Screen(ow4,'FillRect',[1 1 1],Photo{3});
274 | %Screen(ow4,'FillRect',[1 1 1],Photo{4});
275 |
276 | %This matrix defines the flicker frequencies for our image
277 | stimflic = zeros( length(flickfreqs) , (round(.75*refrate)+ceil(refrate*2)) );
278 | for j=1:length(flickfreqs)
279 | particflick = [];
280 | for i=1:ceil(flickfreqs(j)*2)
281 | particflick = [particflick 2*ones(1,ceil(refrate/(2*flickfreqs(j)))) ones(1,floor(refrate/(2*flickfreqs(j))))];
282 | end
283 | stimflic(j,:) = [ones(1,round(.75*refrate)) particflick(1:ceil(refrate*2))]; %Does not display flickering bars until 750ms into stimulus
284 | end
285 |
286 | %This vector defines the noise frequency for our image
287 | noiseflic = [];
288 | for i=1:ceil(noisehz*3)
289 | noiseflic = [noiseflic 1 zeros(1,(round(refrate/noisehz)- 1))];
290 | end
291 | noiseflic = noiseflic(1:ceil(refrate*3));
292 |
293 | %Set seed based on the time. Backwards compatible with older MATLAB
294 | %versions
295 | output.seed = sum(100*clock);
296 | rand('state',output.seed);
297 |
298 | %Randomize frequency display
299 | whichfreq = [];
300 | for freq=1:length(flickfreqs)
301 | whichfreq = [whichfreq freq*ones(1,ceil(trialnum/length(flickfreqs)))];
302 | end
303 | whichfreq = whichfreq(randperm(length(whichfreq)));
304 | output.whichfreq = whichfreq;
305 |
306 | %Define jitter and noise vectors, ensure even cell counts
307 | jitnoise = [];
308 | for j=1:ncells
309 | jitnoise = [jitnoise ones(1,trialnum/ncells)*j];
310 | end
311 | jitnoise = jitnoise(randperm(length(jitnoise)));
312 | jittervec = zeros(1,length(jitnoise));
313 | noisevec = zeros(1,length(jitnoise));
314 | cellmat = reshape(1:ncells,length(jitterlvls),length(noiselvls));
315 | for j=1:length(jitterlvls)
316 | for k=1:length(noiselvls)
317 | jittervec(jitnoise == cellmat(j,k)) = jitterlvls(j);
318 | noisevec(jitnoise == cellmat(j,k)) = noiselvls(k);
319 | end
320 | end
321 | for j=1:length(noiselvls)
322 | end
323 | output.jittervec = jittervec;
324 | output.noisevec = noisevec;
325 |
326 | %Get vector of jitter values
327 | directions = [ones(1,round(trialnum/2)) ones(1,round(trialnum/2))*2];
328 | directions = directions(randperm(length(directions)));
329 | output.directions = directions;
330 |
331 | cut = 0; %Counter for ESC
332 |
333 | %Creates windows for fullimage
334 | for h=1:2
335 | for d=1:ceil(noisehz*3) %3 seconds of display
336 | owf{h,d} = Screen(wptr,'OpenOffScreenWindow',[255*sqrt(.5) 255*sqrt(.5) 255*sqrt(.5)]);
337 | %Place bar photocells in these offscreen windows
338 | if h==1
339 | Screen(owf{h,d},'FillRect',[1 1 1],Photo{2});
340 | else
341 | Screen(owf{h,d},'FillRect',[255 255 255],Photo{2});
342 | end
343 | end
344 | end
345 |
346 | %Set rush loop prioritys to Max
347 | priorityLevel=MaxPriority(whichScreen,'WaitBlanking');
348 |
349 | %Calculate the number of frames in a cycle of an image flicker
350 | numCycleFrames1 = round(.75*refrate) + (round(refrate)+round(refrate*rand(1,trialnum)));
351 | numCycleFrames2 = round(.5*refrate);
352 |
353 | %Output stimulus display time in milliseconds
354 | output.stimtime = (numCycleFrames1./60)*1000;
355 |
356 | %Rush Loop a: Black fixation cross for 750 ms
357 | rushloopa = {
358 | 'Screen(''CopyWindow'', ow2, wptr);'
359 | 'for frames = 1:round(.75*refrate);'
360 | 'Screen(wptr,''WaitBlanking'');'
361 | 'end;'
362 | };
363 |
364 | %Rush Loop 1: Noise for 750ms, noise with bars for 1000ms - 2000ms, accept responses
365 | rushloop1 = {
366 | 'Screen(wptr,''WaitBlanking'');'
367 | 'for i = 1:numCycleFrames1(trials);'
368 | 'if noiseflic(i);'
369 | 'previousnoise = previousnoise + 1;'
370 | 'Screen(''CopyWindow'',owf{stimflic(whichfreq(trials),i),previousnoise},wptr);'
371 | 'Screen(''CopyWindow'',owPCWhite,wptr,photorect,Photo{1});'
372 | 'else;'
373 | 'Screen(''CopyWindow'',owf{stimflic(whichfreq(trials),i),previousnoise},wptr);'
374 | 'Screen(''CopyWindow'',owPCBlack,wptr,photorect,Photo{1});'
375 | 'end;'
376 | 'Screen(wptr,''WaitBlanking'');'
377 | 'end;'
378 | };
379 |
380 | %Rush Loop 2: Keep displaying black fixation cross (only) for 250ms
381 | rushloop2 = {
382 | 'Screen(''CopyWindow'', ow2, wptr);'
383 | 'for frames = 1:round(refrate/4);'
384 | 'Screen(wptr,''WaitBlanking'');'
385 | 'end;'
386 | };
387 |
388 | Screen(wptr,'TextFont','Arial');
389 | Screen(wptr,'TextSize',18);
390 | ShowCursor(0); % arrow cursor
391 | sessiontext = 'Loading images...';
392 | sessiontext2 = 'The experiment will begin shortly';
393 | sessiontext3 = 'The experiment has started! Good luck!';
394 |
395 | Screen('CopyWindow', ow4, wptr);
396 | HideCursor;
397 | Screen(wptr, 'DrawText',sessiontext,(xres - length(sessiontext)*9)/2,yres/2,[1 1 1]);
398 |
399 |
400 | %Load first block's bar field images
401 | for b=1:output.tperb
402 | barimage(:,:,b) = makebardirec(600,6,directions(b),jittervec(b),0); %Get the gabor image color data using makebarimage.m
403 | barimage(barimage == .5) = .15;
404 | end
405 |
406 | %Display second text screen
407 | Screen('CopyWindow', ow4, wptr);
408 | Screen(wptr, 'DrawText',sessiontext2,(xres - length(sessiontext2)*9)/2,yres/2,[1 1 1]);
409 |
410 | %Wait for spacebar
411 | FlushEvents('keyDown');
412 | [char,when] = GetChar; %Wait for keypress to continue
413 | notspace=1;
414 | while notspace
415 | switch char
416 | case ' '
417 | notspace =0;
418 | otherwise
419 | [char,when] = GetChar; %Wait for keypress to continue
420 | notspace =1;
421 | end
422 | end
423 |
424 | %Display third text screen
425 | Screen('CopyWindow', ow4, wptr);
426 | Screen(wptr, 'DrawText',sessiontext3,(xres - length(sessiontext3)*9)/2,yres/2,[1 1 1]);
427 |
428 | %Initialize timer
429 | tic;
430 |
431 | for trials = 1:trialnum
432 | if ~cut %ESC key track
433 |
434 | imageset = cell(2,ceil(noisehz));
435 | trialind = trials-(block-1)*output.tperb;
436 | for f=1:ceil(noisehz)
437 | %Create image of 5% contrast (defined as contrast ratio
438 | %whitest/darkest)
439 | imageset{1,f} = (.5 - (noisevec(trials)/2)) + noisevec(trials)*rand(600);
440 | imageset{2,f} = barimage(:,:,trialind) + imageset{1,f};
441 | %transformation for barimage color values, takes into account
442 | %monitor gamma
443 | imageset{1,f} = 255*sqrt(imageset{1,f}); %The square root is in order to account for monitor gamma. That is, the monitor approximately squares the input stimulus color value
444 | imageset{2,f} = 255*sqrt(imageset{2,f});
445 | %Create black cross ontop of fullimage
446 | imageset{1,f}(crossx1,crossy1) = ones(length(crossx1),length(crossy1));
447 | imageset{1,f}(crossx2,crossy2) = ones(length(crossx2),length(crossy2));
448 | imageset{2,f}(crossx1,crossy1) = ones(length(crossx1),length(crossy1));
449 | imageset{2,f}(crossx2,crossy2) = ones(length(crossx2),length(crossy2));
450 | end
451 |
452 | %Creates windows for fullimage
453 | for q=1:3 %3 seconds of frames
454 | for d=1:ceil(noisehz)
455 | frameind = d + noisehz*(q-1);
456 | Screen(owf{1,frameind},'PutImage',imageset{1,d},destRect);
457 | Screen(owf{2,frameind},'PutImage',imageset{2,d},destRect);
458 | end
459 | end
460 |
461 | %Initialize previous noise
462 | previousnoise = 0;
463 |
464 | %Wait at least lboundwait seconds between trials
465 | output.elapsedtime(trials) = toc;
466 | if output.elapsedtime(trials) < lboundwait
467 | pause(lboundwait-output.elapsedtime(trials));
468 | end
469 | output.fixedtime(trials) = toc;
470 |
471 | CedrusResponseBox('FlushEvents',chandle);
472 |
473 | %Display rush loops
474 | Rush(rushloopa,priorityLevel);
475 | Rush(rushloop1,priorityLevel);
476 | Rush(rushloop2,priorityLevel);
477 |
478 | %Timer to calculate time between the last trial and the next
479 | tic;
480 |
481 | %Show the blank gray Screen
482 | Screen('CopyWindow', ow4, wptr);
483 | Screen(wptr,'WaitBlanking');
484 |
485 | %Play feedback sound
486 | evt = CedrusResponseBox('GetButtons',chandle);
487 | if isempty(evt)
488 | correct = 0;
489 | elseif (evt.button == 5 && directions(trials) == 1) || ...
490 | (evt.button == 3 && directions(trials) == 2)
491 | correct = 1;
492 | else
493 | correct = 0;
494 | end
495 | estcorrect(trials) = correct;
496 | if correct
497 | %play(goodsound,[1 length(ygood)]);
498 | PsychPortAudio('Start', goodhand , 1, 0, 1);
499 |
500 | else
501 | %play(badsound,[1 length(ybad)]);
502 | PsychPortAudio('Start', badhand , 1, 0, 1);
503 | end
504 |
505 | if ~cut
506 | if trials == trialnum
507 | %Show ending screen for 5 seconds
508 | percorrect = sum(estcorrect((trials-output.tperb+1):trials))/output.tperb;
509 | endtext = ['Done! ',...
510 | num2str(round(percorrect*100)),'% correct this block. Thank you for participating!'];
511 | Screen('CopyWindow', ow4, wptr,[0 0 xres yres]);
512 | Screen(wptr, 'DrawText',endtext,(xres - length(endtext)*9)/2,yres/2,[1 1 1]);
513 | %Wait for spacebar to end program
514 | FlushEvents('keyDown');
515 | [char,~] = GetChar; %Wait for keypress to continue
516 | notspace=1;
517 | while notspace
518 | switch char
519 | case advancechar
520 | notspace =0;
521 | otherwise
522 | [char,~] = GetChar; %Wait for keypress to continue
523 | notspace =1;
524 | end
525 | end
526 | elseif trials/output.tperb == round(trials/output.tperb)
527 | %Take a break every 'output.tperb' trials and show ending Screens
528 | percorrect = sum(estcorrect((trials-output.tperb+1):trials))/output.tperb;
529 | trialtext = ['Block ',num2str(block),' complete! ',...
530 | num2str(round(percorrect*100)),'% correct this block. You may now take a break!'];
531 | block = block + 1;
532 | trialtext2 = 'Please wait for the experimenter';
533 | Screen('CopyWindow', ow4, wptr,[0 0 xres yres]);
534 | Screen(wptr, 'DrawText',trialtext,(xres - length(trialtext)*9)/2,yres/2,[1 1 1]);
535 | Screen(wptr, 'DrawText',trialtext2,(xres - length(trialtext2)*9)/2,yres/2 + 32,[1 1 1]);
536 |
537 | %Load first block's images
538 | for b=1:output.tperb %Load first block's images
539 | barimage(:,:,b) = makebardirec(600,6,directions(b+trials),jittervec(b+trials),1); %Get the gabor image color data using makebarimage.m
540 | barimage(barimage == .5) = .15;
541 | end
542 |
543 | %Wait for spacebar
544 | FlushEvents('keyDown');
545 | [char,~] = GetChar; %Wait for keypress to continue
546 | notspace=1;
547 | while notspace
548 | switch char
549 | case advancechar
550 | notspace =0;
551 | Screen('CopyWindow', ow4, wptr);
552 | Screen(wptr, 'DrawText',sessiontext3,(xres - length(sessiontext3)*9)/2,yres/2,[1 1 1]);
553 | %Timer to calculate time between the last trial and the next
554 | tic;
555 | case escapechar %Escape from experiment and save current data (for experimenter)
556 | notspace =0;
557 | RestoreScreen(whichScreen);
558 | ShowCursor;
559 | Screen('Closeall');
560 | output.ESC_time = clock;
561 | output.estcorrect = estcorrect;
562 | eval([subnum,'_ExpSession',num2str(sesnum),'=output;']);
563 | if ~exist('data','dir')
564 | mkdir('data');
565 | end
566 | eval(['save(''data/',subnum,'_Exp_',num2str(output.sesnum),'_',date,'.mat'',''-struct'', ''',subnum,'_ExpSession',num2str(sesnum),''');']);
567 | warning on all;
568 | CedrusResponseBox('Close',chandle);
569 | PsychPortAudio('Close', goodhand);
570 | PsychPortAudio('Close', badhand);
571 | return
572 | otherwise
573 | [char,when] = GetChar; %Wait for keypress to continue
574 | notspace =1;
575 | end
576 | end
577 | end
578 |
579 | end
580 | end
581 | end
582 | catch me
583 | RestoreScreen(whichScreen);
584 | ShowCursor;
585 | Screen('Closeall');
586 | output.error_time = clock;
587 | output.estcorrect = estcorrect;
588 | eval([subnum,'_ExpSession',num2str(sesnum),'=output;']);
589 | if ~exist('data','dir')
590 | mkdir('data');
591 | end
592 | eval(['save(''data/',subnum,'_Exp_',num2str(output.sesnum),'_',date,'.mat'',''-struct'', ''',subnum,'_ExpSession',num2str(sesnum),''');']);
593 | CedrusResponseBox('Close',chandle);
594 | PsychPortAudio('Close', goodhand);
595 | PsychPortAudio('Close', badhand);
596 | rethrow(me); %rethrow reproduces the original error, stored in the object 'me'
597 | end
598 |
599 | RestoreScreen(whichScreen);
600 | ShowCursor;
601 | Screen('Closeall');
602 |
603 | %Output time finished
604 | output.finish_time = clock;
605 |
606 | %Estimated accuracy
607 | output.estcorrect = estcorrect;
608 |
609 | eval([subnum,'_ExpSession',num2str(sesnum),'=output;']);
610 | if ~exist('data','dir')
611 | mkdir('data');
612 | end
613 | eval(['save(''data/',subnum,'_Exp_',num2str(output.sesnum),'_',date,'.mat'',''-struct'', ''',subnum,'_ExpSession',num2str(sesnum),''');']);
614 | warning on all;
615 | CedrusResponseBox('Close',chandle);
616 | %PsychPortAudio('Close', goodhand);
617 | %PsychPortAudio('Close', badhand);
618 |
619 |
620 |
--------------------------------------------------------------------------------