├── .github └── FUNDING.yml ├── docs ├── requirements.txt ├── index.rst └── conf.py ├── omnihuman ├── data │ ├── avatar_3d │ │ ├── __init__.py │ │ ├── types.py │ │ └── avatar_3d.py │ └── __init__.py ├── models │ ├── text │ │ ├── __init__.py │ │ └── embeddings.py │ └── __init__.py ├── utils │ ├── __init__.py │ └── io.py └── __init__.py ├── .readthedocs.yaml ├── pyproject.toml ├── README.md ├── .gitignore ├── LICENSE └── poetry.lock /.github/FUNDING.yml: -------------------------------------------------------------------------------- 1 | custom: ["https://www.paypal.com/donate/?hosted_button_id=7SNGNSKUQXQW2"] 2 | -------------------------------------------------------------------------------- /docs/requirements.txt: -------------------------------------------------------------------------------- 1 | sphinx==7.4.7 2 | sphinx-copybutton==0.5.2 3 | sphinx_rtd_theme==2.0.0 4 | sphinx-rtd-dark-mode==1.3.0 5 | . -------------------------------------------------------------------------------- /omnihuman/data/avatar_3d/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | data.avatar_3d subpackage 3 | ========================= 4 | """ 5 | 6 | from omnihuman.data.avatar_3d import avatar_3d, types 7 | -------------------------------------------------------------------------------- /omnihuman/data/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | Data Subpackage 3 | =============== 4 | 5 | This subpackage contains the code used in preparing the dataset. 6 | """ 7 | 8 | from omnihuman.data.avatar_3d.avatar_3d import Avatar3D 9 | -------------------------------------------------------------------------------- /omnihuman/models/text/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | models.text subpackage 3 | ====================== 4 | 5 | This subpackage contains neural components for the text modality. 6 | """ 7 | 8 | from omnihuman.models.text import embeddings 9 | -------------------------------------------------------------------------------- /omnihuman/models/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | Models Subpackage 3 | ================= 4 | 5 | This subpackage contains the deep learning models for processing text, human images and human videos. 6 | """ 7 | 8 | from omnihuman.models import text 9 | -------------------------------------------------------------------------------- /omnihuman/utils/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | Utils Subpackage 3 | ================ 4 | 5 | This subpackage contains the utility functions for omnihuman package. 6 | """ 7 | 8 | from omnihuman.utils.io import fetch_pretrained_weights, read_frames 9 | -------------------------------------------------------------------------------- /omnihuman/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | OmniHuman 3 | ========= 4 | 5 | Python deep learning package for all things human body and text. 6 | """ 7 | 8 | __all__ = ["data", "utils", "models"] 9 | 10 | from omnihuman import data, models, utils 11 | -------------------------------------------------------------------------------- /docs/index.rst: -------------------------------------------------------------------------------- 1 | .. OmniHuman documentation master file, created by 2 | sphinx-quickstart on Sat Aug 24 17:23:04 2024. 3 | You can adapt this file completely to your liking, but it should at least 4 | contain the root `toctree` directive. 5 | 6 | OmniHuman documentation 7 | ======================= 8 | 9 | AI model that understands text and humanoids. 10 | 11 | .. image:: https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github 12 | :target: https://github.com/mdsrqbl/omnihuman 13 | :alt: GitHub Repository 14 | 15 | .. toctree:: 16 | :maxdepth: 2 17 | :caption: Contents: 18 | 19 | Getting Started 20 | OmniHuman Package 21 | -------------------------------------------------------------------------------- /.readthedocs.yaml: -------------------------------------------------------------------------------- 1 | # .readthedocs.yaml 2 | # Read the Docs configuration file 3 | # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details 4 | 5 | # Required 6 | version: 2 7 | 8 | # Set the OS, Python version and other tools you might need 9 | build: 10 | os: ubuntu-22.04 11 | tools: 12 | python: "3.11" 13 | jobs: 14 | pre_build: 15 | - sphinx-apidoc -o docs -e . 16 | 17 | # Build documentation in the "docs/" directory with Sphinx 18 | sphinx: 19 | configuration: docs/conf.py 20 | 21 | # Optionally build your docs in additional formats such as PDF and ePub 22 | formats: [] 23 | 24 | # Optional but recommended, declare the Python requirements required 25 | # to build your documentation 26 | # See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html 27 | python: 28 | install: 29 | - requirements: docs/requirements.txt 30 | -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [tool.poetry] 2 | name = "omnihuman" 3 | version = "0.1.3" 4 | description = "AI model that understands text and humanoids." 5 | authors = ["Mudassar Iqbal "] 6 | license = "Apache 2.0" 7 | readme = "README.md" 8 | documentation = "https://omnihuman.readthedocs.io/" 9 | repository = "https://github.com/mdsrqbl/omnihuman.git" 10 | homepage = "https://github.com/mdsrqbl/omnihuman.git" 11 | keywords = ["ai", "nlp", "text", "humanoids", "pose", "computer-vision"] 12 | 13 | [tool.poetry.dependencies] 14 | python = ">=3.8" 15 | transformers = "^4.51.3" 16 | torch = "^2.2.2" 17 | torchvision = [ 18 | { version = "^0.17.2", python = "<3.12" }, 19 | { version = ">=0.18", python = ">=3.12" }, 20 | ] 21 | 22 | [build-system] 23 | requires = ["poetry-core"] 24 | build-backend = "poetry.core.masonry.api" 25 | 26 | [tool.isort] 27 | profile = "black" 28 | 29 | [tool.black] 30 | line-length = 120 31 | -------------------------------------------------------------------------------- /omnihuman/data/avatar_3d/types.py: -------------------------------------------------------------------------------- 1 | """Types for the FBX parser.""" 2 | 3 | from typing import List, Tuple, TypeAlias, TypedDict 4 | 5 | # Type aliases for repeated tuple shapes 6 | Vector3: TypeAlias = Tuple[float, float, float] # (x, y, z) 7 | BoneAndChildren: TypeAlias = Tuple[str, List[str]] # (bone_name, [child_bone_names]) 8 | Influence: TypeAlias = Tuple[str, float] # (bone_name, weight) 9 | FrameBones: TypeAlias = List[Vector3] # one frame of bone positions 10 | FrameVertices: TypeAlias = List[Vector3] # one frame of vertex positions 11 | 12 | 13 | # Intermediate structures 14 | class ArmatureDict(TypedDict): 15 | name: str 16 | bones: List[BoneAndChildren] 17 | rest: FrameBones # rest pose per bone 18 | animation: List[FrameBones] # list of frames, each a list of Vec3 per bone 19 | 20 | 21 | class MeshDict(TypedDict): 22 | name: str 23 | influences: List[List[Influence]] # per vertex, list of bone‐weight pairs 24 | rest: FrameVertices # rest pose per vertex 25 | animation: List[FrameVertices] # per frame, list of Vec3 per vertex 26 | 27 | 28 | class OtherObjectDict(TypedDict): 29 | name: str 30 | type: str 31 | 32 | 33 | # Top‐level parsed structure 34 | class FBXDict(TypedDict): 35 | armatures: List[ArmatureDict] 36 | meshes: List[MeshDict] 37 | others: List[OtherObjectDict] 38 | -------------------------------------------------------------------------------- /omnihuman/utils/io.py: -------------------------------------------------------------------------------- 1 | """ 2 | IO Module 3 | ========= 4 | 5 | This module provides utility functions for reading and writing files. 6 | 7 | Functions: 8 | ---------- 9 | - read_frames: Read frames from image or video file as 4D tensor (n_frames, n_channels, height, width). 10 | - fetch_pretrained_weights: Downloads & reads specific tensors from a Hugging Face Hub repository. 11 | """ 12 | 13 | __all__ = ["read_frames", "fetch_pretrained_weights"] 14 | 15 | from mimetypes import guess_type 16 | from typing import Dict 17 | 18 | import torch 19 | from huggingface_hub import hf_hub_download 20 | from safetensors import safe_open 21 | from torchvision.io import read_image, read_video 22 | 23 | 24 | def read_frames(path: str) -> torch.Tensor: 25 | """Read frames from image or video file as 4D tensor (n_frames, n_channels, height, width). 26 | 27 | Args: 28 | path (str): Where the image or video file is located. 29 | 30 | Raises: 31 | ValueError: If the file type is neither image nor video. 32 | 33 | Returns: 34 | torch.Tensor: Frames as 4d torch tensor of shape (n_frames, n_channels, height, width). 35 | """ 36 | 37 | file_type = guess_type(path)[0] or "" 38 | if file_type.startswith("image"): 39 | frames = read_image(path) 40 | frames = frames.unsqueeze(0) 41 | elif file_type.startswith("video"): 42 | frames, *_ = read_video(path) 43 | else: 44 | raise ValueError(f"Unsupported file type: '{file_type}' of '{path}'") 45 | 46 | return frames 47 | 48 | 49 | def fetch_pretrained_weights( 50 | repo_id: str, 51 | weight_name_to_file_name: Dict[str, str], 52 | ) -> Dict[str, torch.Tensor]: 53 | """Downloads specific files from a Hugging Face Hub repository and loads specific tensors from them. 54 | 55 | Args: 56 | repo_id (str): Model repository name on Hugging Face Hub (e.g. "organization/their-awesome-model"). 57 | weight_name_to_file_name (Dict[str, str]): mapping of layer name to the shard file that contains its weights (Explore the `model.safetensors.index.json` in the HF model repo for names) 58 | 59 | Returns: 60 | Dict[str, torch.Tensor]: mapping from layer name to its weights tensor 61 | """ 62 | weights = {} 63 | for weight_name, filename in weight_name_to_file_name.items(): 64 | file_path = hf_hub_download(repo_id=repo_id, filename=filename) 65 | with safe_open(file_path, framework="pt", device="cpu") as f: 66 | weights[weight_name] = f.get_tensor(weight_name) 67 | 68 | return weights 69 | -------------------------------------------------------------------------------- /docs/conf.py: -------------------------------------------------------------------------------- 1 | # Configuration file for the Sphinx documentation builder. 2 | # 3 | # For the full list of built-in configuration values, see the documentation: 4 | # https://www.sphinx-doc.org/en/master/usage/configuration.html 5 | 6 | # -- Project information ----------------------------------------------------- 7 | # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information 8 | 9 | project = "OmniHuman" 10 | copyright = "2024, Mudassar Iqbal" 11 | author = "Mudassar Iqbal" 12 | release = "0.1.0" 13 | 14 | # -- General configuration --------------------------------------------------- 15 | # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration 16 | 17 | extensions = [ 18 | "sphinx.ext.autodoc", 19 | "sphinx.ext.autosectionlabel", 20 | "sphinx.ext.autosummary", 21 | "sphinx.ext.coverage", 22 | "sphinx.ext.doctest", 23 | "sphinx.ext.extlinks", 24 | "sphinx.ext.inheritance_diagram", 25 | "sphinx.ext.linkcode", 26 | "sphinx.ext.napoleon", 27 | "sphinx.ext.todo", 28 | "sphinx.ext.viewcode", 29 | "sphinx_copybutton", 30 | "sphinx_rtd_dark_mode", 31 | ] 32 | 33 | templates_path = ["_templates"] 34 | exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] 35 | 36 | default_dark_mode = False 37 | source_encoding = "utf-8" 38 | autosummary_generate = True 39 | intersphinx_mapping = {"python": ("https://docs.python.org/3/", None)} 40 | 41 | from typing import Optional 42 | 43 | import requests 44 | 45 | 46 | def linkcode_resolve(domain, info) -> Optional[str]: 47 | """ 48 | Generates a URL for the given domain and module information. 49 | 50 | Parameters: 51 | domain (str): The domain of the link. 52 | info (dict): The module information. 53 | 54 | Returns: 55 | str | None: The generated URL or None if the URL is not valid. 56 | """ 57 | 58 | if domain != "py": 59 | return None 60 | if not info["module"]: 61 | return None 62 | 63 | filename = info["module"].replace(".", "/") 64 | base_url = "https://github.com/mdsrqbl/omnihuman/blob/main/" 65 | for slug in [filename, f"{filename}/__init__.py", f"{filename}.py"]: 66 | url = base_url + slug 67 | try: 68 | if requests.head(base_url + slug, timeout=20).status_code == 200: 69 | return url 70 | except: 71 | pass 72 | 73 | return None 74 | 75 | 76 | # -- Options for HTML output ------------------------------------------------- 77 | # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output 78 | 79 | html_theme = "sphinx_rtd_theme" 80 | html_static_path = ["_static"] 81 | html_logo = "https://github.com/user-attachments/assets/69a319dc-9880-464e-a895-d04640824a12" 82 | -------------------------------------------------------------------------------- /omnihuman/models/text/embeddings.py: -------------------------------------------------------------------------------- 1 | """Module for Token embeddings.""" 2 | 3 | __all__ = ["pool_embeddings"] 4 | 5 | from typing import Iterable 6 | 7 | import torch 8 | 9 | 10 | def pool_embeddings( 11 | embeddings: Iterable[torch.Tensor], 12 | out_dim: int = 512, 13 | pre_norm: bool = True, 14 | post_norm: bool = True, 15 | ) -> torch.Tensor: 16 | """Combine multiple embedding tables into a single one by concatenating them and reducing the dimensionality in the result. 17 | The vocabulary size of all embeddings **must** be the same. 18 | Pooling is done by first concatenating the embeddings across embed_dim (`shape=(vocabulary_size, sum(e.shape[-1] for e in embeddings))`), 19 | then reshaping them into a 3D tensor of shape (vocabulary_size, out_dim, n), and finally taking the mean across the last dimension. 20 | i.e. The resulting tensor is [[mean(0:n), mean(n:2n), ..., mean(-n:total_embed_size)], ...] so the features from different embedding tables are not mixed. 21 | 22 | Args: 23 | embeddings (Iterable[torch.Tensor]): A list of 2D tensors (vocabulary_size, embedding_dim) to be combined. 24 | out_dim (int, optional): Number of features per token in the output tensor. Defaults to 512. 25 | pre_norm (bool, optional): L2 normalize each input embedding table so that each token's vector has magnitude 1. Defaults to True. 26 | post_norm (bool, optional): L2 normalize the pooled tensor so that each token's vector has magnitude 1. Defaults to True. 27 | 28 | Raises: 29 | ValueError: If the sum of all embedding sizes is smaller than out_dim. 30 | ValueError: If out_dim is not a divisor of the sum of all embedding sizes. 31 | 32 | Returns: 33 | torch.Tensor: The pooled embedding table of shape (vocabulary_size, out_dim). 34 | """ 35 | 36 | stacked_size = sum(e.shape[-1] for e in embeddings) 37 | if stacked_size < out_dim: 38 | raise ValueError(f"{out_dim=} is smaller than the concatenated embedding dimension {stacked_size}") 39 | if stacked_size % out_dim != 0: 40 | raise ValueError(f"{out_dim=} is not a divisor of the concatenated embedding dimension {stacked_size}") 41 | if len(vocab_sizes := {e.shape[-2] for e in embeddings}) != 1: 42 | raise ValueError(f"All embedding tables must have the same vocabulary size. Got {vocab_sizes=}") 43 | 44 | embedding = torch.cat( 45 | [(v32 := v.type(torch.float32)) / (v32.norm(dim=-1, keepdim=True) if pre_norm else 1) for v in embeddings], 46 | dim=-1, 47 | ) 48 | if embedding.shape[1] == out_dim: 49 | return embedding 50 | 51 | embedding = embedding.view(embedding.shape[0], out_dim, -1).mean(dim=-1) 52 | if post_norm: 53 | embedding = embedding / embedding.norm(dim=-1, keepdim=True) 54 | return embedding 55 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # OmniHuman 2 | 3 | > [!IMPORTANT] 4 | >

This is the Original one
this isn't bytedance's plagiarized mock article 😒
#protect_open_source

5 | 6 |
7 | 8 | 9 | 10 | **AI model that understands humanoids and text.** 11 | 12 |
13 | 14 | [![PyPi](https://img.shields.io/pypi/v/omnihuman?logo=pypi)](https://pypi.org/project/omnihuman/) 15 | [![Documentation Status](https://readthedocs.org/projects/omnihuman/badge/?version=latest)](https://omnihuman.readthedocs.io/en/latest/?badge=latest) 16 | [![python](https://img.shields.io/pypi/pyversions/omnihuman?logo=python)](https://pypi.org/project/omnihuman/) 17 | 18 | [![GitHub Repo stars](https://img.shields.io/github/stars/mdsrqbl/omnihuman?logo=github)](https://github.com/mdsrqbl/omnihuman/stargazers) 19 | [![Downloads](https://img.shields.io/pepy/dt/omnihuman?color=purple&logoColor=white&logo=)](https://pepy.tech/projects/omnihuman/)
20 | 21 | | **Support Us** ❤️ | [![PayPal](https://img.shields.io/badge/PayPal-00457C?logo=paypal&logoColor=white)](https://www.paypal.com/donate/?hosted_button_id=7SNGNSKUQXQW2) | 22 | | ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | 23 | 24 |
25 | 26 | --- 27 | 28 | 1. [OmniHuman](#omnihuman) 29 | 1. [Installation](#installation) 30 | 2. [Usage](#usage) 31 | 3. [Citation \& License](#citation--license) 32 | 33 | ## Installation 34 | 35 | ```bash 36 | pip install omnihuman 37 | ``` 38 | 39 | or install editable from source 40 | 41 | ```bash 42 | git clone https://github.com/mdsrqbl/omnihuman.git 43 | cd omnihuman 44 | pip install -e . 45 | ``` 46 | 47 | ## Usage 48 | 49 | ```python 50 | import omnihuman 51 | import PIL.Image 52 | 53 | text = "Raise both hands and clap overhead." 54 | frames = omnihuman.read_frames("path/to/image.jpg") # (1, channels, height, width) 55 | # frames = omnihuman.read_frames("path/to/video.mp4") # (n_frames, channels, height, width) 56 | 57 | # model = omnihuman.OmniHuman() 58 | # frames = model.generate_video(text, frames) 59 | 60 | PIL.Image.fromarray(frames[-1].permute(1,2,0).numpy()).show() 61 | ``` 62 | 63 | Full documentation is available at [omnihuman.readTheDocs.io](https://omnihuman.readthedocs.io/en/latest/). 64 | 65 | ## Citation & License 66 | 67 | ```bibtex 68 | @misc{mdsr2024omnihuman, 69 | author = {Mudassar Iqbal}, 70 | title = {OmniHuman: AI model that understands text and humanoids.}, 71 | year = {2024}, 72 | publisher = {GitHub}, 73 | howpublished = {\url{https://github.com/mdsrqbl/omnihuman}} 74 | } 75 | ``` 76 | 77 | This project is licensed under Apache License 2.0 - see the [LICENSE](https://github.com/mdsrqbl/omnihuman/blob/main/LICENSE) file for details. 78 | 79 | You are permitted to use the library & models, create modified versions, or incorporate pieces of the code into your own work. Your product or research, whether commercial or non-commercial, must provide appropriate credit to the original author(s) by citing this repository & research papers. And although it follows common sense, you can not steal namespace and must put in the effort to give your work an original name. 80 | 81 | Stay tuned for research papers! 82 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | share/python-wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | MANIFEST 28 | .DS_Store 29 | *.pt 30 | 31 | # PyInstaller 32 | # Usually these files are written by a python script from a template 33 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 34 | *.manifest 35 | *.spec 36 | 37 | # Installer logs 38 | pip-log.txt 39 | pip-delete-this-directory.txt 40 | 41 | # Unit test / coverage reports 42 | htmlcov/ 43 | .tox/ 44 | .nox/ 45 | .coverage 46 | .coverage.* 47 | .cache 48 | nosetests.xml 49 | coverage.xml 50 | *.cover 51 | *.py,cover 52 | .hypothesis/ 53 | .pytest_cache/ 54 | cover/ 55 | 56 | # Translations 57 | *.mo 58 | *.pot 59 | 60 | # Django stuff: 61 | *.log 62 | local_settings.py 63 | db.sqlite3 64 | db.sqlite3-journal 65 | 66 | # Flask stuff: 67 | instance/ 68 | .webassets-cache 69 | 70 | # Scrapy stuff: 71 | .scrapy 72 | 73 | # Sphinx documentation 74 | docs/_build/ 75 | 76 | # PyBuilder 77 | .pybuilder/ 78 | target/ 79 | 80 | # Jupyter Notebook 81 | .ipynb_checkpoints 82 | 83 | # IPython 84 | profile_default/ 85 | ipython_config.py 86 | 87 | # pyenv 88 | # For a library or package, you might want to ignore these files since the code is 89 | # intended to run in multiple environments; otherwise, check them in: 90 | # .python-version 91 | 92 | # pipenv 93 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 94 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 95 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 96 | # install all needed dependencies. 97 | #Pipfile.lock 98 | 99 | # poetry 100 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. 101 | # This is especially recommended for binary packages to ensure reproducibility, and is more 102 | # commonly ignored for libraries. 103 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control 104 | #poetry.lock 105 | 106 | # pdm 107 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. 108 | #pdm.lock 109 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it 110 | # in version control. 111 | # https://pdm.fming.dev/latest/usage/project/#working-with-version-control 112 | .pdm.toml 113 | .pdm-python 114 | .pdm-build/ 115 | 116 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm 117 | __pypackages__/ 118 | 119 | # Celery stuff 120 | celerybeat-schedule 121 | celerybeat.pid 122 | 123 | # SageMath parsed files 124 | *.sage.py 125 | 126 | # Environments 127 | .env 128 | .venv 129 | env/ 130 | venv/ 131 | omni_env/ 132 | ENV/ 133 | env.bak/ 134 | venv.bak/ 135 | 136 | # Spyder project settings 137 | .spyderproject 138 | .spyproject 139 | 140 | # Rope project settings 141 | .ropeproject 142 | 143 | # mkdocs documentation 144 | /site 145 | 146 | # mypy 147 | .mypy_cache/ 148 | .dmypy.json 149 | dmypy.json 150 | 151 | # Pyre type checker 152 | .pyre/ 153 | 154 | # pytype static type analyzer 155 | .pytype/ 156 | 157 | # Cython debug symbols 158 | cython_debug/ 159 | 160 | # PyCharm 161 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can 162 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore 163 | # and can be added to the global gitignore or merged into this file. For a more nuclear 164 | # option (not recommended) you can uncomment the following to ignore the entire idea folder. 165 | #.idea/ 166 | 167 | # VS Code 168 | .vscode/ 169 | 170 | # Documentation 171 | docs/make.bat 172 | docs/Makefile 173 | -------------------------------------------------------------------------------- /omnihuman/data/avatar_3d/avatar_3d.py: -------------------------------------------------------------------------------- 1 | """Wrapper for 3D point-cloud animations""" 2 | 3 | from typing import Tuple 4 | 5 | try: 6 | import bpy 7 | except ImportError: 8 | bpy = None 9 | 10 | from omnihuman.data.avatar_3d.types import ArmatureDict, FBXDict, MeshDict 11 | 12 | 13 | def assert_bpy_is_imported(): 14 | """Check if the Blender Python API (bpy) is available.""" 15 | if bpy is None: 16 | raise ModuleNotFoundError("Blender Python API (bpy) is not available. Please run `pip install bpy`.") 17 | 18 | 19 | class Avatar3D: 20 | @classmethod 21 | def parse_fbx(cls, path: str, precision=5) -> FBXDict: 22 | assert_bpy_is_imported() 23 | 24 | # clear existing scene # todo: beware multithreading 25 | bpy.ops.object.select_all(action="SELECT") 26 | bpy.ops.object.delete(use_global=False) 27 | 28 | # import FBX 29 | bpy.ops.import_scene.fbx(filepath=path) 30 | scene = bpy.context.scene 31 | depsgraph = bpy.context.evaluated_depsgraph_get() 32 | 33 | start, end = cls.extract_frame_range(scene) 34 | 35 | parsed = { 36 | "armatures": [], 37 | "meshes": [], 38 | "others": [], 39 | } 40 | 41 | for obj in scene.objects: 42 | if obj.type == "ARMATURE": 43 | parsed["armatures"].append(cls._parse_armature(obj, scene, start, end, precision=precision)) 44 | elif obj.type == "MESH": 45 | parsed["meshes"].append(cls._parse_mesh(obj, scene, depsgraph, start, end, precision=precision)) 46 | else: 47 | parsed["others"].append({"name": obj.name, "type": obj.type}) 48 | 49 | # todo: clean up 50 | 51 | return parsed 52 | 53 | @staticmethod 54 | def extract_frame_range(scene) -> Tuple[int, int]: 55 | """frame numbers where the animation starts and ends (1-indexed in Blender)""" 56 | first = scene.frame_start 57 | final = scene.frame_end 58 | 59 | # try to determine frame range from action keyframes 60 | if ( 61 | (armature := next((o for o in scene.objects if o.type == "ARMATURE"), None)) 62 | and armature.animation_data 63 | and armature.animation_data.action 64 | and (keyframes := [kp.co.x for fc in armature.animation_data.action.fcurves for kp in fc.keyframe_points]) 65 | ): 66 | first = int(min(keyframes)) 67 | final = int(max(keyframes)) 68 | 69 | return first, final 70 | 71 | @staticmethod 72 | def _parse_armature(armature, scene, start=0, end=1000, precision=5) -> ArmatureDict: 73 | assert_bpy_is_imported() 74 | 75 | parsed = { 76 | "name": armature.name, 77 | "bones": [(b.name, [c.name for c in b.children]) for b in armature.data.bones], 78 | "rest": [ 79 | [round(c, precision) for c in tuple(armature.matrix_world @ bone.head_local)] 80 | for bone in armature.data.bones 81 | ], 82 | "animation": [], 83 | } 84 | for idx in range(start, end + 1): 85 | scene.frame_set(idx) 86 | bpy.context.view_layer.update() 87 | parsed["animation"].append( 88 | [ 89 | [round(c, precision) for c in tuple(armature.matrix_world @ armature.pose.bones[name].head)] 90 | for name, _ in parsed["bones"] 91 | ] 92 | ) 93 | 94 | return parsed 95 | 96 | @staticmethod 97 | def _parse_mesh(mesh, scene, depsgraph, start=0, end=1000, precision=5) -> MeshDict: 98 | assert_bpy_is_imported() 99 | 100 | parsed = { 101 | "name": mesh.name, 102 | "influences": [ 103 | sorted( 104 | ((mesh.vertex_groups[g.group].name, round(g.weight, precision)) for g in v.groups), 105 | key=lambda item: -item[-1], 106 | ) 107 | for v in mesh.data.vertices 108 | ], 109 | "rest": [[round(c, precision) for c in tuple(mesh.matrix_world @ v.co)] for v in mesh.data.vertices], 110 | "animation": [], 111 | } 112 | for idx in range(start, end + 1): 113 | scene.frame_set(idx) 114 | bpy.context.view_layer.update() 115 | eval_obj = mesh.evaluated_get(depsgraph) 116 | eval_mesh = eval_obj.to_mesh() 117 | parsed["animation"].append( 118 | [[round(c, precision) for c in tuple(mesh.matrix_world @ v.co)] for v in eval_mesh.vertices] 119 | ) 120 | eval_obj.to_mesh_clear() 121 | 122 | return parsed 123 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright 2024 Mudassar Iqbal 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /poetry.lock: -------------------------------------------------------------------------------- 1 | # This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. 2 | 3 | [[package]] 4 | name = "filelock" 5 | version = "3.15.4" 6 | description = "A platform independent file lock." 7 | optional = false 8 | python-versions = ">=3.8" 9 | files = [ 10 | {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, 11 | {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, 12 | ] 13 | 14 | [package.extras] 15 | docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] 16 | testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] 17 | typing = ["typing-extensions (>=4.8)"] 18 | 19 | [[package]] 20 | name = "fsspec" 21 | version = "2024.6.1" 22 | description = "File-system specification" 23 | optional = false 24 | python-versions = ">=3.8" 25 | files = [ 26 | {file = "fsspec-2024.6.1-py3-none-any.whl", hash = "sha256:3cb443f8bcd2efb31295a5b9fdb02aee81d8452c80d28f97a6d0959e6cee101e"}, 27 | {file = "fsspec-2024.6.1.tar.gz", hash = "sha256:fad7d7e209dd4c1208e3bbfda706620e0da5142bebbd9c384afb95b07e798e49"}, 28 | ] 29 | 30 | [package.extras] 31 | abfs = ["adlfs"] 32 | adl = ["adlfs"] 33 | arrow = ["pyarrow (>=1)"] 34 | dask = ["dask", "distributed"] 35 | dev = ["pre-commit", "ruff"] 36 | doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] 37 | dropbox = ["dropbox", "dropboxdrivefs", "requests"] 38 | full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] 39 | fuse = ["fusepy"] 40 | gcs = ["gcsfs"] 41 | git = ["pygit2"] 42 | github = ["requests"] 43 | gs = ["gcsfs"] 44 | gui = ["panel"] 45 | hdfs = ["pyarrow (>=1)"] 46 | http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] 47 | libarchive = ["libarchive-c"] 48 | oci = ["ocifs"] 49 | s3 = ["s3fs"] 50 | sftp = ["paramiko"] 51 | smb = ["smbprotocol"] 52 | ssh = ["paramiko"] 53 | test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] 54 | test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] 55 | test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] 56 | tqdm = ["tqdm"] 57 | 58 | [[package]] 59 | name = "jinja2" 60 | version = "3.1.4" 61 | description = "A very fast and expressive template engine." 62 | optional = false 63 | python-versions = ">=3.7" 64 | files = [ 65 | {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, 66 | {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, 67 | ] 68 | 69 | [package.dependencies] 70 | MarkupSafe = ">=2.0" 71 | 72 | [package.extras] 73 | i18n = ["Babel (>=2.7)"] 74 | 75 | [[package]] 76 | name = "markupsafe" 77 | version = "2.1.5" 78 | description = "Safely add untrusted strings to HTML/XML markup." 79 | optional = false 80 | python-versions = ">=3.7" 81 | files = [ 82 | {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, 83 | {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, 84 | {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, 85 | {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, 86 | {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, 87 | {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, 88 | {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, 89 | {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, 90 | {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, 91 | {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, 92 | {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, 93 | {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, 94 | {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, 95 | {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, 96 | {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, 97 | {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, 98 | {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, 99 | {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, 100 | {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, 101 | {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, 102 | {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, 103 | {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, 104 | {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, 105 | {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, 106 | {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, 107 | {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, 108 | {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, 109 | {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, 110 | {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, 111 | {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, 112 | {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, 113 | {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, 114 | {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, 115 | {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, 116 | {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, 117 | {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, 118 | {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, 119 | {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, 120 | {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, 121 | {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, 122 | {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, 123 | {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, 124 | {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, 125 | {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, 126 | {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, 127 | {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, 128 | {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, 129 | {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, 130 | {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, 131 | {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, 132 | {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, 133 | {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, 134 | {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, 135 | {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, 136 | {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, 137 | {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, 138 | {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, 139 | {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, 140 | {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, 141 | {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, 142 | ] 143 | 144 | [[package]] 145 | name = "mpmath" 146 | version = "1.3.0" 147 | description = "Python library for arbitrary-precision floating-point arithmetic" 148 | optional = false 149 | python-versions = "*" 150 | files = [ 151 | {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, 152 | {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, 153 | ] 154 | 155 | [package.extras] 156 | develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] 157 | docs = ["sphinx"] 158 | gmpy = ["gmpy2 (>=2.1.0a4)"] 159 | tests = ["pytest (>=4.6)"] 160 | 161 | [[package]] 162 | name = "networkx" 163 | version = "3.1" 164 | description = "Python package for creating and manipulating graphs and networks" 165 | optional = false 166 | python-versions = ">=3.8" 167 | files = [ 168 | {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, 169 | {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, 170 | ] 171 | 172 | [package.extras] 173 | default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] 174 | developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] 175 | doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] 176 | extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] 177 | test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] 178 | 179 | [[package]] 180 | name = "numpy" 181 | version = "1.24.4" 182 | description = "Fundamental package for array computing in Python" 183 | optional = false 184 | python-versions = ">=3.8" 185 | files = [ 186 | {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, 187 | {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, 188 | {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, 189 | {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, 190 | {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, 191 | {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, 192 | {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, 193 | {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, 194 | {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, 195 | {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, 196 | {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, 197 | {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, 198 | {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, 199 | {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, 200 | {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, 201 | {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, 202 | {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, 203 | {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, 204 | {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, 205 | {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, 206 | {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, 207 | {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, 208 | {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, 209 | {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, 210 | {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, 211 | {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, 212 | {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, 213 | {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, 214 | ] 215 | 216 | [[package]] 217 | name = "nvidia-cublas-cu12" 218 | version = "12.1.3.1" 219 | description = "CUBLAS native runtime libraries" 220 | optional = false 221 | python-versions = ">=3" 222 | files = [ 223 | {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, 224 | {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, 225 | ] 226 | 227 | [[package]] 228 | name = "nvidia-cuda-cupti-cu12" 229 | version = "12.1.105" 230 | description = "CUDA profiling tools runtime libs." 231 | optional = false 232 | python-versions = ">=3" 233 | files = [ 234 | {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, 235 | {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, 236 | ] 237 | 238 | [[package]] 239 | name = "nvidia-cuda-nvrtc-cu12" 240 | version = "12.1.105" 241 | description = "NVRTC native runtime libraries" 242 | optional = false 243 | python-versions = ">=3" 244 | files = [ 245 | {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, 246 | {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, 247 | ] 248 | 249 | [[package]] 250 | name = "nvidia-cuda-runtime-cu12" 251 | version = "12.1.105" 252 | description = "CUDA Runtime native Libraries" 253 | optional = false 254 | python-versions = ">=3" 255 | files = [ 256 | {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, 257 | {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, 258 | ] 259 | 260 | [[package]] 261 | name = "nvidia-cudnn-cu12" 262 | version = "8.9.2.26" 263 | description = "cuDNN runtime libraries" 264 | optional = false 265 | python-versions = ">=3" 266 | files = [ 267 | {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, 268 | ] 269 | 270 | [package.dependencies] 271 | nvidia-cublas-cu12 = "*" 272 | 273 | [[package]] 274 | name = "nvidia-cudnn-cu12" 275 | version = "9.1.0.70" 276 | description = "cuDNN runtime libraries" 277 | optional = false 278 | python-versions = ">=3" 279 | files = [ 280 | {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f"}, 281 | {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-win_amd64.whl", hash = "sha256:6278562929433d68365a07a4a1546c237ba2849852c0d4b2262a486e805b977a"}, 282 | ] 283 | 284 | [package.dependencies] 285 | nvidia-cublas-cu12 = "*" 286 | 287 | [[package]] 288 | name = "nvidia-cufft-cu12" 289 | version = "11.0.2.54" 290 | description = "CUFFT native runtime libraries" 291 | optional = false 292 | python-versions = ">=3" 293 | files = [ 294 | {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, 295 | {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, 296 | ] 297 | 298 | [[package]] 299 | name = "nvidia-curand-cu12" 300 | version = "10.3.2.106" 301 | description = "CURAND native runtime libraries" 302 | optional = false 303 | python-versions = ">=3" 304 | files = [ 305 | {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, 306 | {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, 307 | ] 308 | 309 | [[package]] 310 | name = "nvidia-cusolver-cu12" 311 | version = "11.4.5.107" 312 | description = "CUDA solver native runtime libraries" 313 | optional = false 314 | python-versions = ">=3" 315 | files = [ 316 | {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, 317 | {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, 318 | ] 319 | 320 | [package.dependencies] 321 | nvidia-cublas-cu12 = "*" 322 | nvidia-cusparse-cu12 = "*" 323 | nvidia-nvjitlink-cu12 = "*" 324 | 325 | [[package]] 326 | name = "nvidia-cusparse-cu12" 327 | version = "12.1.0.106" 328 | description = "CUSPARSE native runtime libraries" 329 | optional = false 330 | python-versions = ">=3" 331 | files = [ 332 | {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, 333 | {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, 334 | ] 335 | 336 | [package.dependencies] 337 | nvidia-nvjitlink-cu12 = "*" 338 | 339 | [[package]] 340 | name = "nvidia-nccl-cu12" 341 | version = "2.19.3" 342 | description = "NVIDIA Collective Communication Library (NCCL) Runtime" 343 | optional = false 344 | python-versions = ">=3" 345 | files = [ 346 | {file = "nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl", hash = "sha256:a9734707a2c96443331c1e48c717024aa6678a0e2a4cb66b2c364d18cee6b48d"}, 347 | ] 348 | 349 | [[package]] 350 | name = "nvidia-nccl-cu12" 351 | version = "2.20.5" 352 | description = "NVIDIA Collective Communication Library (NCCL) Runtime" 353 | optional = false 354 | python-versions = ">=3" 355 | files = [ 356 | {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"}, 357 | {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"}, 358 | ] 359 | 360 | [[package]] 361 | name = "nvidia-nvjitlink-cu12" 362 | version = "12.6.20" 363 | description = "Nvidia JIT LTO Library" 364 | optional = false 365 | python-versions = ">=3" 366 | files = [ 367 | {file = "nvidia_nvjitlink_cu12-12.6.20-py3-none-manylinux2014_aarch64.whl", hash = "sha256:84fb38465a5bc7c70cbc320cfd0963eb302ee25a5e939e9f512bbba55b6072fb"}, 368 | {file = "nvidia_nvjitlink_cu12-12.6.20-py3-none-manylinux2014_x86_64.whl", hash = "sha256:562ab97ea2c23164823b2a89cb328d01d45cb99634b8c65fe7cd60d14562bd79"}, 369 | {file = "nvidia_nvjitlink_cu12-12.6.20-py3-none-win_amd64.whl", hash = "sha256:ed3c43a17f37b0c922a919203d2d36cbef24d41cc3e6b625182f8b58203644f6"}, 370 | ] 371 | 372 | [[package]] 373 | name = "nvidia-nvtx-cu12" 374 | version = "12.1.105" 375 | description = "NVIDIA Tools Extension" 376 | optional = false 377 | python-versions = ">=3" 378 | files = [ 379 | {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, 380 | {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, 381 | ] 382 | 383 | [[package]] 384 | name = "pillow" 385 | version = "10.4.0" 386 | description = "Python Imaging Library (Fork)" 387 | optional = false 388 | python-versions = ">=3.8" 389 | files = [ 390 | {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, 391 | {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, 392 | {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, 393 | {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, 394 | {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, 395 | {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, 396 | {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, 397 | {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, 398 | {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, 399 | {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, 400 | {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, 401 | {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, 402 | {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, 403 | {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, 404 | {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, 405 | {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, 406 | {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, 407 | {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, 408 | {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, 409 | {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, 410 | {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, 411 | {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, 412 | {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, 413 | {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, 414 | {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, 415 | {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, 416 | {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, 417 | {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, 418 | {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, 419 | {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, 420 | {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, 421 | {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, 422 | {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, 423 | {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, 424 | {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, 425 | {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, 426 | {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, 427 | {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, 428 | {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, 429 | {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, 430 | {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, 431 | {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, 432 | {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, 433 | {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, 434 | {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, 435 | {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, 436 | {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, 437 | {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, 438 | {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, 439 | {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, 440 | {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, 441 | {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, 442 | {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, 443 | {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, 444 | {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, 445 | {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, 446 | {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, 447 | {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, 448 | {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, 449 | {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, 450 | {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, 451 | {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, 452 | {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, 453 | {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, 454 | {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, 455 | {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, 456 | {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, 457 | {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, 458 | {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, 459 | {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, 460 | {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, 461 | {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, 462 | {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, 463 | {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, 464 | {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, 465 | {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, 466 | {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, 467 | {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, 468 | {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, 469 | {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, 470 | ] 471 | 472 | [package.extras] 473 | docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] 474 | fpx = ["olefile"] 475 | mic = ["olefile"] 476 | tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] 477 | typing = ["typing-extensions"] 478 | xmp = ["defusedxml"] 479 | 480 | [[package]] 481 | name = "sympy" 482 | version = "1.13.2" 483 | description = "Computer algebra system (CAS) in Python" 484 | optional = false 485 | python-versions = ">=3.8" 486 | files = [ 487 | {file = "sympy-1.13.2-py3-none-any.whl", hash = "sha256:c51d75517712f1aed280d4ce58506a4a88d635d6b5dd48b39102a7ae1f3fcfe9"}, 488 | {file = "sympy-1.13.2.tar.gz", hash = "sha256:401449d84d07be9d0c7a46a64bd54fe097667d5e7181bfe67ec777be9e01cb13"}, 489 | ] 490 | 491 | [package.dependencies] 492 | mpmath = ">=1.1.0,<1.4" 493 | 494 | [package.extras] 495 | dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] 496 | 497 | [[package]] 498 | name = "torch" 499 | version = "2.2.2" 500 | description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" 501 | optional = false 502 | python-versions = ">=3.8.0" 503 | files = [ 504 | {file = "torch-2.2.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:bc889d311a855dd2dfd164daf8cc903a6b7273a747189cebafdd89106e4ad585"}, 505 | {file = "torch-2.2.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:15dffa4cc3261fa73d02f0ed25f5fa49ecc9e12bf1ae0a4c1e7a88bbfaad9030"}, 506 | {file = "torch-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:11e8fe261233aeabd67696d6b993eeb0896faa175c6b41b9a6c9f0334bdad1c5"}, 507 | {file = "torch-2.2.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:b2e2200b245bd9f263a0d41b6a2dab69c4aca635a01b30cca78064b0ef5b109e"}, 508 | {file = "torch-2.2.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:877b3e6593b5e00b35bbe111b7057464e76a7dd186a287280d941b564b0563c2"}, 509 | {file = "torch-2.2.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:ad4c03b786e074f46606f4151c0a1e3740268bcf29fbd2fdf6666d66341c1dcb"}, 510 | {file = "torch-2.2.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:32827fa1fbe5da8851686256b4cd94cc7b11be962862c2293811c94eea9457bf"}, 511 | {file = "torch-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:f9ef0a648310435511e76905f9b89612e45ef2c8b023bee294f5e6f7e73a3e7c"}, 512 | {file = "torch-2.2.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:95b9b44f3bcebd8b6cd8d37ec802048c872d9c567ba52c894bba90863a439059"}, 513 | {file = "torch-2.2.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:49aa4126ede714c5aeef7ae92969b4b0bbe67f19665106463c39f22e0a1860d1"}, 514 | {file = "torch-2.2.2-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:cf12cdb66c9c940227ad647bc9cf5dba7e8640772ae10dfe7569a0c1e2a28aca"}, 515 | {file = "torch-2.2.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:89ddac2a8c1fb6569b90890955de0c34e1724f87431cacff4c1979b5f769203c"}, 516 | {file = "torch-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:451331406b760f4b1ab298ddd536486ab3cfb1312614cfe0532133535be60bea"}, 517 | {file = "torch-2.2.2-cp312-none-macosx_10_9_x86_64.whl", hash = "sha256:eb4d6e9d3663e26cd27dc3ad266b34445a16b54908e74725adb241aa56987533"}, 518 | {file = "torch-2.2.2-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:bf9558da7d2bf7463390b3b2a61a6a3dbb0b45b161ee1dd5ec640bf579d479fc"}, 519 | {file = "torch-2.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd2bf7697c9e95fb5d97cc1d525486d8cf11a084c6af1345c2c2c22a6b0029d0"}, 520 | {file = "torch-2.2.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b421448d194496e1114d87a8b8d6506bce949544e513742b097e2ab8f7efef32"}, 521 | {file = "torch-2.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:3dbcd563a9b792161640c0cffe17e3270d85e8f4243b1f1ed19cca43d28d235b"}, 522 | {file = "torch-2.2.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:31f4310210e7dda49f1fb52b0ec9e59382cfcb938693f6d5378f25b43d7c1d29"}, 523 | {file = "torch-2.2.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:c795feb7e8ce2e0ef63f75f8e1ab52e7fd5e1a4d7d0c31367ade1e3de35c9e95"}, 524 | {file = "torch-2.2.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:a6e5770d68158d07456bfcb5318b173886f579fdfbf747543901ce718ea94782"}, 525 | {file = "torch-2.2.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:67dcd726edff108e2cd6c51ff0e416fd260c869904de95750e80051358680d24"}, 526 | {file = "torch-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:539d5ef6c4ce15bd3bd47a7b4a6e7c10d49d4d21c0baaa87c7d2ef8698632dfb"}, 527 | {file = "torch-2.2.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:dff696de90d6f6d1e8200e9892861fd4677306d0ef604cb18f2134186f719f82"}, 528 | {file = "torch-2.2.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:3a4dd910663fd7a124c056c878a52c2b0be4a5a424188058fe97109d4436ee42"}, 529 | ] 530 | 531 | [package.dependencies] 532 | filelock = "*" 533 | fsspec = "*" 534 | jinja2 = "*" 535 | networkx = "*" 536 | nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 537 | nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 538 | nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 539 | nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 540 | nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 541 | nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 542 | nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 543 | nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 544 | nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 545 | nvidia-nccl-cu12 = {version = "2.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 546 | nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 547 | sympy = "*" 548 | triton = {version = "2.2.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} 549 | typing-extensions = ">=4.8.0" 550 | 551 | [package.extras] 552 | opt-einsum = ["opt-einsum (>=3.3)"] 553 | optree = ["optree (>=0.9.1)"] 554 | 555 | [[package]] 556 | name = "torch" 557 | version = "2.4.0" 558 | description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" 559 | optional = false 560 | python-versions = ">=3.8.0" 561 | files = [ 562 | {file = "torch-2.4.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:4ed94583e244af51d6a8d28701ca5a9e02d1219e782f5a01dd401f90af17d8ac"}, 563 | {file = "torch-2.4.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c4ca297b7bd58b506bfd6e78ffd14eb97c0e7797dcd7965df62f50bb575d8954"}, 564 | {file = "torch-2.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2497cbc7b3c951d69b276ca51fe01c2865db67040ac67f5fc20b03e41d16ea4a"}, 565 | {file = "torch-2.4.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:685418ab93730efbee71528821ff54005596970dd497bf03c89204fb7e3f71de"}, 566 | {file = "torch-2.4.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e743adadd8c8152bb8373543964551a7cb7cc20ba898dc8f9c0cdbe47c283de0"}, 567 | {file = "torch-2.4.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:7334325c0292cbd5c2eac085f449bf57d3690932eac37027e193ba775703c9e6"}, 568 | {file = "torch-2.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:97730014da4c57ffacb3c09298c6ce05400606e890bd7a05008d13dd086e46b1"}, 569 | {file = "torch-2.4.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:f169b4ea6dc93b3a33319611fcc47dc1406e4dd539844dcbd2dec4c1b96e166d"}, 570 | {file = "torch-2.4.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:997084a0f9784d2a89095a6dc67c7925e21bf25dea0b3d069b41195016ccfcbb"}, 571 | {file = "torch-2.4.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:bc3988e8b36d1e8b998d143255d9408d8c75da4ab6dd0dcfd23b623dfb0f0f57"}, 572 | {file = "torch-2.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:3374128bbf7e62cdaed6c237bfd39809fbcfaa576bee91e904706840c3f2195c"}, 573 | {file = "torch-2.4.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:91aaf00bfe1ffa44dc5b52809d9a95129fca10212eca3ac26420eb11727c6288"}, 574 | {file = "torch-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cc30457ea5489c62747d3306438af00c606b509d78822a88f804202ba63111ed"}, 575 | {file = "torch-2.4.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a046491aaf96d1215e65e1fa85911ef2ded6d49ea34c8df4d0638879f2402eef"}, 576 | {file = "torch-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:688eec9240f3ce775f22e1e1a5ab9894f3d5fe60f3f586deb7dbd23a46a83916"}, 577 | {file = "torch-2.4.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:3af4de2a618fb065e78404c4ba27a818a7b7957eaeff28c6c66ce7fb504b68b8"}, 578 | {file = "torch-2.4.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:618808d3f610d5f180e47a697d4ec90b810953bb1e020f424b2ac7fb0884b545"}, 579 | {file = "torch-2.4.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed765d232d23566052ba83632ec73a4fccde00b4c94ad45d63b471b09d63b7a7"}, 580 | {file = "torch-2.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:a2feb98ac470109472fb10dfef38622a7ee08482a16c357863ebc7bc7db7c8f7"}, 581 | {file = "torch-2.4.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8940fc8b97a4c61fdb5d46a368f21f4a3a562a17879e932eb51a5ec62310cb31"}, 582 | ] 583 | 584 | [package.dependencies] 585 | filelock = "*" 586 | fsspec = "*" 587 | jinja2 = "*" 588 | networkx = "*" 589 | nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 590 | nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 591 | nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 592 | nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 593 | nvidia-cudnn-cu12 = {version = "9.1.0.70", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 594 | nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 595 | nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 596 | nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 597 | nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 598 | nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 599 | nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} 600 | sympy = "*" 601 | triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} 602 | typing-extensions = ">=4.8.0" 603 | 604 | [package.extras] 605 | opt-einsum = ["opt-einsum (>=3.3)"] 606 | optree = ["optree (>=0.11.0)"] 607 | 608 | [[package]] 609 | name = "torchvision" 610 | version = "0.17.2" 611 | description = "image and video datasets and models for torch deep learning" 612 | optional = false 613 | python-versions = ">=3.8" 614 | files = [ 615 | {file = "torchvision-0.17.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:1f2910fe3c21ad6875b2720d46fad835b2e4b336e9553d31ca364d24c90b1d4f"}, 616 | {file = "torchvision-0.17.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ecc1c503fa8a54fbab777e06a7c228032b8ab78efebf35b28bc8f22f544f51f1"}, 617 | {file = "torchvision-0.17.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:f400145fc108833e7c2fc28486a04989ca742146d7a2a2cc48878ebbb40cdbbd"}, 618 | {file = "torchvision-0.17.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e9e4bed404af33dfc92eecc2b513d21ddc4c242a7fd8708b3b09d3a26aa6f444"}, 619 | {file = "torchvision-0.17.2-cp310-cp310-win_amd64.whl", hash = "sha256:ba2e62f233eab3d42b648c122a3a29c47cc108ca314dfd5cbb59cd3a143fd623"}, 620 | {file = "torchvision-0.17.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:9b83e55ee7d0a1704f52b9c0ac87388e7a6d1d98a6bde7b0b35f9ab54d7bda54"}, 621 | {file = "torchvision-0.17.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e031004a1bc432c980a7bd642f6c189a3efc316e423fc30b5569837166a4e28d"}, 622 | {file = "torchvision-0.17.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:3bbc24b7713e8f22766992562547d8b4b10001208d372fe599255af84bfd1a69"}, 623 | {file = "torchvision-0.17.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:833fd2e4216ced924c8aca0525733fe727f9a1af66dfad7c5be7257e97c39678"}, 624 | {file = "torchvision-0.17.2-cp311-cp311-win_amd64.whl", hash = "sha256:6835897df852fad1015e6a106c167c83848114cbcc7d86112384a973404e4431"}, 625 | {file = "torchvision-0.17.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:14fd1d4a033c325bdba2d03a69c3450cab6d3a625f85cc375781d9237ca5d04d"}, 626 | {file = "torchvision-0.17.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9c3acbebbe379af112b62b535820174277b1f3eed30df264a4e458d58ee4e5b2"}, 627 | {file = "torchvision-0.17.2-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:77d680adf6ce367166a186d2c7fda3a73807ab9a03b2c31a03fa8812c8c5335b"}, 628 | {file = "torchvision-0.17.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:f1c9ab3152cfb27f83aca072cac93a3a4c4e4ab0261cf0f2d516b9868a4e96f3"}, 629 | {file = "torchvision-0.17.2-cp312-cp312-win_amd64.whl", hash = "sha256:3f784381419f3ed3f2ec2aa42fb4aeec5bf4135e298d1631e41c926e6f1a0dff"}, 630 | {file = "torchvision-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b83aac8d78f48981146d582168d75b6c947cfb0a7693f76e219f1926f6e595a3"}, 631 | {file = "torchvision-0.17.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1ece40557e122d79975860a005aa7e2a9e2e6c350a03e78a00ec1450083312fd"}, 632 | {file = "torchvision-0.17.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:32dbeba3987e20f2dc1bce8d1504139fff582898346dfe8ad98d649f97ca78fa"}, 633 | {file = "torchvision-0.17.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:35ba5c1600c3203549d2316422a659bd20c0cfda1b6085eec94fb9f35f55ca43"}, 634 | {file = "torchvision-0.17.2-cp38-cp38-win_amd64.whl", hash = "sha256:2f69570f50b1d195e51bc03feffb7b7728207bc36efcfb1f0813712b2379d881"}, 635 | {file = "torchvision-0.17.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:4868bbfa55758c8107e69a0e7dd5e77b89056035cd38b767ad5b98cdb71c0f0d"}, 636 | {file = "torchvision-0.17.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:efd6d0dd0668e15d01a2cffadc74068433b32cbcf5692e0c4aa15fc5cb250ce7"}, 637 | {file = "torchvision-0.17.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7dc85b397f6c6d9ef12716ce0d6e11ac2b803f5cccff6fe3966db248e7774478"}, 638 | {file = "torchvision-0.17.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d506854c5acd69b20a8b6641f01fe841685a21c5406b56813184f1c9fc94279e"}, 639 | {file = "torchvision-0.17.2-cp39-cp39-win_amd64.whl", hash = "sha256:067095e87a020a7a251ac1d38483aa591c5ccb81e815527c54db88a982fc9267"}, 640 | ] 641 | 642 | [package.dependencies] 643 | numpy = "*" 644 | pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" 645 | torch = "2.2.2" 646 | 647 | [package.extras] 648 | scipy = ["scipy"] 649 | 650 | [[package]] 651 | name = "torchvision" 652 | version = "0.19.0" 653 | description = "image and video datasets and models for torch deep learning" 654 | optional = false 655 | python-versions = ">=3.8" 656 | files = [ 657 | {file = "torchvision-0.19.0-1-cp310-cp310-win_amd64.whl", hash = "sha256:6ed066aae5c50465d7c4761357aefe5dbd2eb7075a33ab8c14b352fc2353ad4c"}, 658 | {file = "torchvision-0.19.0-1-cp311-cp311-win_amd64.whl", hash = "sha256:6b1bce2e4c003d890a18f14ff289528707d918e38539ff890ef02aa31dae1b56"}, 659 | {file = "torchvision-0.19.0-1-cp312-cp312-win_amd64.whl", hash = "sha256:13aee7a46e049c8c1e7d35a0394b0587a7e62ff3d1a822cd2bbbacb675ac4a09"}, 660 | {file = "torchvision-0.19.0-1-cp38-cp38-win_amd64.whl", hash = "sha256:2acc436d043d4f81b3bc6929cbfa4ef1cdae4d8a0b04ec72ec30a497e9a38179"}, 661 | {file = "torchvision-0.19.0-1-cp39-cp39-win_amd64.whl", hash = "sha256:b5f70f5a8bd9c8b00a076bf466b39b5cd679ef62587c47cc048adb04d9c5f155"}, 662 | {file = "torchvision-0.19.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec874ef85dcb24c69e600f6e276af892c80cde3ffdaeb7275efda463242bc2a8"}, 663 | {file = "torchvision-0.19.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:106842b1e475b14d9a04ee0d6f5477d43100e3bb78e9d31e37422384d0d84179"}, 664 | {file = "torchvision-0.19.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d467d434005fd05a227a2ba7af4c591bb67e6d4a97bbd06eda8da83f43e9fd07"}, 665 | {file = "torchvision-0.19.0-cp310-cp310-win_amd64.whl", hash = "sha256:f77ac31f7337d0f6f4b58e65582c6c93b9d9eeec7dfd7478896b5cdc19a2d60d"}, 666 | {file = "torchvision-0.19.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dbf3aa71a3899244fc884303ed3c4604a160824fefac77e82317a5463efc1d9b"}, 667 | {file = "torchvision-0.19.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:ec4162dc71d9db7f0b51d0f92491929c1419605ff436e1305e50de13504a1c30"}, 668 | {file = "torchvision-0.19.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:4e6aa4fa3f0bc3599fa071c149e651a3e6bdd67c9161794478f9f91471c406a2"}, 669 | {file = "torchvision-0.19.0-cp311-cp311-win_amd64.whl", hash = "sha256:ac5525d5cc09e425b5cf5752ecf66eefbbbd8c8cd945198ce35eb01a694e6069"}, 670 | {file = "torchvision-0.19.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c09ef8ed184fa877f6251b620226e74f682b8f1d6b341456428d4955b8d9c670"}, 671 | {file = "torchvision-0.19.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:02f1dd5cfc897957535b41b0258ec452d30de044e20c2de2c75869f7708e7656"}, 672 | {file = "torchvision-0.19.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:be0f27a28b8e9f2ae98a31af34a4bdd2a5bf154d92bd73a5797c8d2156fb3ab6"}, 673 | {file = "torchvision-0.19.0-cp312-cp312-win_amd64.whl", hash = "sha256:a6ba7756f75c80212e51d3576f85ea204589e0c16efdb9b835dd677bc8929a67"}, 674 | {file = "torchvision-0.19.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:854e967a16a9409e941b5bbe5aa357b23f7158bccb9de35ae20fd4945f05ecd1"}, 675 | {file = "torchvision-0.19.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d9afb8a3c3ce99a161a64c2a3b91cb545632a72118053cbfb84e87a02a8dcd02"}, 676 | {file = "torchvision-0.19.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:079a696e0b2cb52e4be30afa8e9b3d7d280f02a2b5ffedd7e821fa1efd1a5a8d"}, 677 | {file = "torchvision-0.19.0-cp38-cp38-win_amd64.whl", hash = "sha256:aaa338ff3a55a8c0f94e0e64eff6fe2af1fc933a95fd43812760e72ea66e986b"}, 678 | {file = "torchvision-0.19.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd1279571d4b68d5a53d9b7a35aedf91c4cb1e0b08099f6a1effa7b25b8c95e7"}, 679 | {file = "torchvision-0.19.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:4d54b5e19b7ebebca7d0b08497b4c6335264cad04c94c05fa35988d9e9eed0c4"}, 680 | {file = "torchvision-0.19.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:5f9a598dcf82bdfc8e4436ce74763b3877dabec3b33f94613b94ede13e3e4dee"}, 681 | {file = "torchvision-0.19.0-cp39-cp39-win_amd64.whl", hash = "sha256:ec1281c10402234d470bfd4d53663d81f4364f293b2f8fe24d4a7a1adc78c90c"}, 682 | ] 683 | 684 | [package.dependencies] 685 | numpy = "*" 686 | pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" 687 | torch = "2.4.0" 688 | 689 | [package.extras] 690 | gdown = ["gdown (>=4.7.3)"] 691 | scipy = ["scipy"] 692 | 693 | [[package]] 694 | name = "triton" 695 | version = "2.2.0" 696 | description = "A language and compiler for custom Deep Learning operations" 697 | optional = false 698 | python-versions = "*" 699 | files = [ 700 | {file = "triton-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2294514340cfe4e8f4f9e5c66c702744c4a117d25e618bd08469d0bfed1e2e5"}, 701 | {file = "triton-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da58a152bddb62cafa9a857dd2bc1f886dbf9f9c90a2b5da82157cd2b34392b0"}, 702 | {file = "triton-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af58716e721460a61886668b205963dc4d1e4ac20508cc3f623aef0d70283d5"}, 703 | {file = "triton-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8fe46d3ab94a8103e291bd44c741cc294b91d1d81c1a2888254cbf7ff846dab"}, 704 | {file = "triton-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8ce26093e539d727e7cf6f6f0d932b1ab0574dc02567e684377630d86723ace"}, 705 | {file = "triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:227cc6f357c5efcb357f3867ac2a8e7ecea2298cd4606a8ba1e931d1d5a947df"}, 706 | ] 707 | 708 | [package.dependencies] 709 | filelock = "*" 710 | 711 | [package.extras] 712 | build = ["cmake (>=3.20)", "lit"] 713 | tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)", "torch"] 714 | tutorials = ["matplotlib", "pandas", "tabulate", "torch"] 715 | 716 | [[package]] 717 | name = "triton" 718 | version = "3.0.0" 719 | description = "A language and compiler for custom Deep Learning operations" 720 | optional = false 721 | python-versions = "*" 722 | files = [ 723 | {file = "triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a"}, 724 | {file = "triton-3.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5ce8520437c602fb633f1324cc3871c47bee3b67acf9756c1a66309b60e3216c"}, 725 | {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, 726 | {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, 727 | {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, 728 | ] 729 | 730 | [package.dependencies] 731 | filelock = "*" 732 | 733 | [package.extras] 734 | build = ["cmake (>=3.20)", "lit"] 735 | tests = ["autopep8", "flake8", "isort", "llnl-hatchet", "numpy", "pytest", "scipy (>=1.7.1)"] 736 | tutorials = ["matplotlib", "pandas", "tabulate"] 737 | 738 | [[package]] 739 | name = "typing-extensions" 740 | version = "4.12.2" 741 | description = "Backported and Experimental Type Hints for Python 3.8+" 742 | optional = false 743 | python-versions = ">=3.8" 744 | files = [ 745 | {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, 746 | {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, 747 | ] 748 | 749 | [metadata] 750 | lock-version = "2.0" 751 | python-versions = ">=3.8,<3.13" 752 | content-hash = "503b9b888c550af99f5e04625a4b3206a2d1b2597f457743f9fc81b02405a4c1" 753 | --------------------------------------------------------------------------------