├── .gitattributes ├── .gitignore ├── LICENSE ├── README.md ├── README.tr-TR.md ├── data ├── dnnmodel │ ├── MobileNetSSD_deploy.caffemodel │ └── MobileNetSSD_deploy.prototxt ├── haarcascade files │ ├── haarcascade_eye.xml │ ├── haarcascade_eye_tree_eyeglasses.xml │ ├── haarcascade_frontalcatface.xml │ ├── haarcascade_frontalcatface_extended.xml │ ├── haarcascade_frontalface_alt.xml │ ├── haarcascade_frontalface_alt2.xml │ ├── haarcascade_frontalface_alt_tree.xml │ ├── haarcascade_frontalface_default.xml │ ├── haarcascade_fullbody.xml │ ├── haarcascade_lefteye_2splits.xml │ ├── haarcascade_licence_plate_rus_16stages.xml │ ├── haarcascade_lowerbody.xml │ ├── haarcascade_mcs_eyepair_big.xml │ ├── haarcascade_mcs_eyepair_small.xml │ ├── haarcascade_mcs_leftear.xml │ ├── haarcascade_mcs_lefteye.xml │ ├── haarcascade_mcs_mouth.xml │ ├── haarcascade_mcs_nose.xml │ ├── haarcascade_mcs_rightear.xml │ ├── haarcascade_mcs_righteye.xml │ ├── haarcascade_mcs_upperbody.xml │ ├── haarcascade_profileface.xml │ ├── haarcascade_righteye_2splits.xml │ ├── haarcascade_russian_plate_number.xml │ ├── haarcascade_smile.xml │ └── haarcascade_upperbody.xml └── sample images │ ├── aile.jpg │ ├── balon.jpg │ ├── kapadokya.jpg │ ├── muz.jpg │ └── sonuc.jpg ├── doc ├── (Haarcascade)Rapid Object Detection using a Boosted Cascade of Simple.pdf ├── OpenCV Nesne Tespiti.pptx └── websites.txt ├── res ├── color_based.png ├── dnn.png ├── opencv_dnn.png ├── template-matching-sonuc.jpg └── template.png └── src ├── ColorBasedObjectTracker ├── Detector.java └── Panel.java ├── DeepNeuralNetwork ├── Application.java ├── DnnObject.java └── DnnProcessor.java ├── FaceAndEyeDetection └── DetectFace.java └── TemplateMatchingObjectDetection └── TemplateMatching.java /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | 4 | # Custom for Visual Studio 5 | *.cs diff=csharp 6 | 7 | # Standard to msysgit 8 | *.doc diff=astextplain 9 | *.DOC diff=astextplain 10 | *.docx diff=astextplain 11 | *.DOCX diff=astextplain 12 | *.dot diff=astextplain 13 | *.DOT diff=astextplain 14 | *.pdf diff=astextplain 15 | *.PDF diff=astextplain 16 | *.rtf diff=astextplain 17 | *.RTF diff=astextplain 18 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | *.class 2 | 3 | # Mobile Tools for Java (J2ME) 4 | .mtj.tmp/ 5 | 6 | # Package Files # 7 | *.jar 8 | *.war 9 | *.ear 10 | 11 | # virtual machine crash logs, see http://www.java.com/en/download/help/error_hotspot.xml 12 | hs_err_pid* 13 | 14 | # ========================= 15 | # Operating System Files 16 | # ========================= 17 | 18 | # OSX 19 | # ========================= 20 | 21 | .DS_Store 22 | .AppleDouble 23 | .LSOverride 24 | 25 | # Thumbnails 26 | ._* 27 | 28 | # Files that might appear in the root of a volume 29 | .DocumentRevisions-V100 30 | .fseventsd 31 | .Spotlight-V100 32 | .TemporaryItems 33 | .Trashes 34 | .VolumeIcon.icns 35 | 36 | # Directories potentially created on remote AFP share 37 | .AppleDB 38 | .AppleDesktop 39 | Network Trash Folder 40 | Temporary Items 41 | .apdisk 42 | 43 | # Windows 44 | # ========================= 45 | 46 | # Windows image file caches 47 | Thumbs.db 48 | ehthumbs.db 49 | 50 | # Folder config file 51 | Desktop.ini 52 | 53 | # Recycle Bin used on file shares 54 | $RECYCLE.BIN/ 55 | 56 | # Windows Installer files 57 | *.cab 58 | *.msi 59 | *.msm 60 | *.msp 61 | 62 | # Windows shortcuts 63 | *.lnk 64 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2019 Mesut Pişkin 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | English | [Türkçe](./README.tr-TR.md) 2 | 3 | 4 |
5 | 6 |

Object Detection with OpenCV

7 | 8 | Image Processing and Computer Vision Documentation Project (EN, TR) 9 | 10 | 11 | 12 |
13 | 14 | *** 15 | 16 | ### Examples 17 | 18 | There are three examples in the repository. 19 | 20 | 1. [Haar Cascade] - Object detection face and eye etc. 21 | 2. [Color Detection] - Object detection and tracking using object color. 22 | 3. [Template Matching] - Object detection with template matching. 23 | 4. [Deep Learning] - Object detection with deep neural network (DNN). 24 | 25 | 26 | 27 | ## Example 1: Face And Eye Detection 28 | 29 | 30 | *Source code location: src/FaceAndEyeDetection/* 31 | 32 | Object detection examples with haar cascade classifier algorithm (Face, eyes, mouth, other objects etc.). Cascade Classifier Training http://docs.opencv.org/3.1.0/dc/d88/tutorial_traincascade.html 33 | 34 | **What is Haar cascade?** 35 | Haar cascade classifier 36 | Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones in their paper, "Rapid Object Detection using a Boosted Cascade of Simple Features" in 2001. It is a machine learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images. 37 | 38 | **Requirements** 39 | 40 | - OpenCV 3.x Version 41 | - Java > 6 Version 42 | 43 | Face and eye detection by the camera using haar cascade algorithm. 44 | 45 | **Video:** 46 | 47 | 48 | 49 | 50 | 51 | ## Example 2: Object Detection and Tracking Using Color 52 | 53 | *Source code location: src/ColorBasedObjectTracker/* 54 | 55 | An example of an application where OpenCV is used to detect objects based on color differences. 56 | 57 | **Requirements** 58 | 59 | - OpenCV >2.x Version 60 | - Java >6 Version 61 | 62 | 63 | 64 | ## Example 3: Object Detection with Template Matching 65 | 66 | *Source code location: src/TemplateMatchingObjectDetection/* 67 | 68 | Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch). 69 | 70 | **Requirements** 71 | 72 | - OpenCV 3.x Version 73 | - Java >6 Version 74 | 75 | My blog post for [template matching.](http://mesutpiskin.com/blog/opencv-template-matching-ile-nesne-tespiti.html) 76 | 77 | 78 | 79 | 80 | 81 | ## Example 4: Object Detection with DNN 82 | 83 | *Source code location: src/DeepNeuralNetwork/* 84 | 85 | - OpenCV > 3.3 Version 86 | 87 | In this tutorial you will learn how to use opencv dnn module for image classification by using MobileNetSSD_deploy trained network. My blog post for [deep neural network.](http://mesutpiskin.com/blog/opencv-derin-ogrenme-nesne-tanima.html) 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | [haar cascade]: # 100 | [color detection]: # 101 | [template matching]: # 102 | [deep learning]: # -------------------------------------------------------------------------------- /README.tr-TR.md: -------------------------------------------------------------------------------- 1 | [English](./README.md) | Türkçe 2 | 3 |
4 | 5 |

OpenCV ile Nesne Tespiti

6 | 7 | Görüntü İşleme ve Bilgisayarlı Görü Kılavuzu (EN, TR) 8 | 9 | 10 | 11 |
12 | 13 | *** 14 | 15 | ### Örnekler 16 | 17 | Bu repository altında aşağıdaki yöntemlere ilişkin örnekler bulunmaktadır. 18 | 19 | 1. [Haar Cascade] - Yüz, göz, burun vb. nesne tanıma. 20 | 2. [Renk Tespiti] - Nesne rengi tespiti ve renk ile nesne takibi. 21 | 3. [Template Matching] - Template matching / Şablon eşleştirme yöntemi kullanarak nesne tespiti. 22 | 4. [Derin öğrenme] - Derin sinir ağı (DNN) ile nesne tespiti. 23 | 24 | 25 | 26 | ## Örnek 1: Yüz ve Göz Tespiti 27 | 28 | 29 | *Kaynak kod dizini: src/FaceAndEyeDetection/* 30 | 31 | Object detection Örneks with haar cascade classifier algorithm (Face, eyes, mouth, other objects etc.). Cascade Classifier Training http://docs.opencv.org/3.1.0/dc/d88/tutorial_traincascade.html 32 | 33 | **What is Haar cascade?** 34 | Haar cascade classifier 35 | Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones in their paper, "Rapid Object Detection using a Boosted Cascade of Simple Features" in 2001. It is a machine learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images. 36 | 37 | **Gereksinimler** 38 | 39 | - OpenCV 3.x Versiyon 40 | - Java > 6 Versiyon 41 | 42 | Face and eye detection by the camera using haar cascade algorithm. 43 | 44 | **Video:** 45 | 46 | 47 | 48 | 49 | 50 | ## Örnek 2: Renk Tespiti ve Nesne Takibi 51 | 52 | *Kaynak kod dizini: src/ColorBasedObjectTracker/* 53 | 54 | An Örnek of an application where OpenCV is used to detect objects based on color differences. 55 | 56 | **Gereksinimler** 57 | 58 | - OpenCV >2.x Versiyon 59 | - Java >6 Versiyon 60 | 61 | 62 | 63 | ## Örnek 3: Template Matching ile Nesne Tespiti 64 | 65 | *Kaynak kod dizini: src/TemplateMatchingObjectDetection/* 66 | 67 | Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch). 68 | 69 | **Gereksinimler** 70 | 71 | - OpenCV 3.x Versiyon 72 | - Java >6 Versiyon 73 | 74 | My blog post for [template matching.](http://mesutpiskin.com/blog/opencv-template-matching-ile-nesne-tespiti.html) 75 | 76 | 77 | 78 | 79 | 80 | ## Örnek 4: Derin Sinir Ağı DNN ile Nesne Tespiti 81 | 82 | *Kaynak kod dizini: src/DeepNeuralNetwork/* 83 | 84 | - OpenCV > 3.3 Versiyon 85 | 86 | In this tutorial you will learn how to use opencv dnn module for image classification by using MobileNetSSD_deploy trained network. My blog post for [deep neural network.](http://mesutpiskin.com/blog/opencv-derin-ogrenme-nesne-tanima.html) 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | [haar cascade]: # 99 | [renk tespiti]: # 100 | [template matching]: # 101 | [derin öğrenme]: # -------------------------------------------------------------------------------- /data/dnnmodel/MobileNetSSD_deploy.caffemodel: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/dnnmodel/MobileNetSSD_deploy.caffemodel -------------------------------------------------------------------------------- /data/dnnmodel/MobileNetSSD_deploy.prototxt: -------------------------------------------------------------------------------- 1 | name: "MobileNet-SSD" 2 | input: "data" 3 | input_shape { 4 | dim: 1 5 | dim: 3 6 | dim: 300 7 | dim: 300 8 | } 9 | layer { 10 | name: "conv0" 11 | type: "Convolution" 12 | bottom: "data" 13 | top: "conv0" 14 | param { 15 | lr_mult: 1.0 16 | decay_mult: 1.0 17 | } 18 | param { 19 | lr_mult: 2.0 20 | decay_mult: 0.0 21 | } 22 | convolution_param { 23 | num_output: 32 24 | pad: 1 25 | kernel_size: 3 26 | stride: 2 27 | weight_filler { 28 | type: "msra" 29 | } 30 | bias_filler { 31 | type: "constant" 32 | value: 0.0 33 | } 34 | } 35 | } 36 | layer { 37 | name: "conv0/relu" 38 | type: "ReLU" 39 | bottom: "conv0" 40 | top: "conv0" 41 | } 42 | layer { 43 | name: "conv1/dw" 44 | type: "Convolution" 45 | bottom: "conv0" 46 | top: "conv1/dw" 47 | param { 48 | lr_mult: 1.0 49 | decay_mult: 1.0 50 | } 51 | param { 52 | lr_mult: 2.0 53 | decay_mult: 0.0 54 | } 55 | convolution_param { 56 | num_output: 32 57 | pad: 1 58 | kernel_size: 3 59 | group: 32 60 | engine: CAFFE 61 | weight_filler { 62 | type: "msra" 63 | } 64 | bias_filler { 65 | type: "constant" 66 | value: 0.0 67 | } 68 | } 69 | } 70 | layer { 71 | name: "conv1/dw/relu" 72 | type: "ReLU" 73 | bottom: "conv1/dw" 74 | top: "conv1/dw" 75 | } 76 | layer { 77 | name: "conv1" 78 | type: "Convolution" 79 | bottom: "conv1/dw" 80 | top: "conv1" 81 | param { 82 | lr_mult: 1.0 83 | decay_mult: 1.0 84 | } 85 | param { 86 | lr_mult: 2.0 87 | decay_mult: 0.0 88 | } 89 | convolution_param { 90 | num_output: 64 91 | kernel_size: 1 92 | weight_filler { 93 | type: "msra" 94 | } 95 | bias_filler { 96 | type: "constant" 97 | value: 0.0 98 | } 99 | } 100 | } 101 | layer { 102 | name: "conv1/relu" 103 | type: "ReLU" 104 | bottom: "conv1" 105 | top: "conv1" 106 | } 107 | layer { 108 | name: "conv2/dw" 109 | type: "Convolution" 110 | bottom: "conv1" 111 | top: "conv2/dw" 112 | param { 113 | lr_mult: 1.0 114 | decay_mult: 1.0 115 | } 116 | param { 117 | lr_mult: 2.0 118 | decay_mult: 0.0 119 | } 120 | convolution_param { 121 | num_output: 64 122 | pad: 1 123 | kernel_size: 3 124 | stride: 2 125 | group: 64 126 | engine: CAFFE 127 | weight_filler { 128 | type: "msra" 129 | } 130 | bias_filler { 131 | type: "constant" 132 | value: 0.0 133 | } 134 | } 135 | } 136 | layer { 137 | name: "conv2/dw/relu" 138 | type: "ReLU" 139 | bottom: "conv2/dw" 140 | top: "conv2/dw" 141 | } 142 | layer { 143 | name: "conv2" 144 | type: "Convolution" 145 | bottom: "conv2/dw" 146 | top: "conv2" 147 | param { 148 | lr_mult: 1.0 149 | decay_mult: 1.0 150 | } 151 | param { 152 | lr_mult: 2.0 153 | decay_mult: 0.0 154 | } 155 | convolution_param { 156 | num_output: 128 157 | kernel_size: 1 158 | weight_filler { 159 | type: "msra" 160 | } 161 | bias_filler { 162 | type: "constant" 163 | value: 0.0 164 | } 165 | } 166 | } 167 | layer { 168 | name: "conv2/relu" 169 | type: "ReLU" 170 | bottom: "conv2" 171 | top: "conv2" 172 | } 173 | layer { 174 | name: "conv3/dw" 175 | type: "Convolution" 176 | bottom: "conv2" 177 | top: "conv3/dw" 178 | param { 179 | lr_mult: 1.0 180 | decay_mult: 1.0 181 | } 182 | param { 183 | lr_mult: 2.0 184 | decay_mult: 0.0 185 | } 186 | convolution_param { 187 | num_output: 128 188 | pad: 1 189 | kernel_size: 3 190 | group: 128 191 | engine: CAFFE 192 | weight_filler { 193 | type: "msra" 194 | } 195 | bias_filler { 196 | type: "constant" 197 | value: 0.0 198 | } 199 | } 200 | } 201 | layer { 202 | name: "conv3/dw/relu" 203 | type: "ReLU" 204 | bottom: "conv3/dw" 205 | top: "conv3/dw" 206 | } 207 | layer { 208 | name: "conv3" 209 | type: "Convolution" 210 | bottom: "conv3/dw" 211 | top: "conv3" 212 | param { 213 | lr_mult: 1.0 214 | decay_mult: 1.0 215 | } 216 | param { 217 | lr_mult: 2.0 218 | decay_mult: 0.0 219 | } 220 | convolution_param { 221 | num_output: 128 222 | kernel_size: 1 223 | weight_filler { 224 | type: "msra" 225 | } 226 | bias_filler { 227 | type: "constant" 228 | value: 0.0 229 | } 230 | } 231 | } 232 | layer { 233 | name: "conv3/relu" 234 | type: "ReLU" 235 | bottom: "conv3" 236 | top: "conv3" 237 | } 238 | layer { 239 | name: "conv4/dw" 240 | type: "Convolution" 241 | bottom: "conv3" 242 | top: "conv4/dw" 243 | param { 244 | lr_mult: 1.0 245 | decay_mult: 1.0 246 | } 247 | param { 248 | lr_mult: 2.0 249 | decay_mult: 0.0 250 | } 251 | convolution_param { 252 | num_output: 128 253 | pad: 1 254 | kernel_size: 3 255 | stride: 2 256 | group: 128 257 | engine: CAFFE 258 | weight_filler { 259 | type: "msra" 260 | } 261 | bias_filler { 262 | type: "constant" 263 | value: 0.0 264 | } 265 | } 266 | } 267 | layer { 268 | name: "conv4/dw/relu" 269 | type: "ReLU" 270 | bottom: "conv4/dw" 271 | top: "conv4/dw" 272 | } 273 | layer { 274 | name: "conv4" 275 | type: "Convolution" 276 | bottom: "conv4/dw" 277 | top: "conv4" 278 | param { 279 | lr_mult: 1.0 280 | decay_mult: 1.0 281 | } 282 | param { 283 | lr_mult: 2.0 284 | decay_mult: 0.0 285 | } 286 | convolution_param { 287 | num_output: 256 288 | kernel_size: 1 289 | weight_filler { 290 | type: "msra" 291 | } 292 | bias_filler { 293 | type: "constant" 294 | value: 0.0 295 | } 296 | } 297 | } 298 | layer { 299 | name: "conv4/relu" 300 | type: "ReLU" 301 | bottom: "conv4" 302 | top: "conv4" 303 | } 304 | layer { 305 | name: "conv5/dw" 306 | type: "Convolution" 307 | bottom: "conv4" 308 | top: "conv5/dw" 309 | param { 310 | lr_mult: 1.0 311 | decay_mult: 1.0 312 | } 313 | param { 314 | lr_mult: 2.0 315 | decay_mult: 0.0 316 | } 317 | convolution_param { 318 | num_output: 256 319 | pad: 1 320 | kernel_size: 3 321 | group: 256 322 | engine: CAFFE 323 | weight_filler { 324 | type: "msra" 325 | } 326 | bias_filler { 327 | type: "constant" 328 | value: 0.0 329 | } 330 | } 331 | } 332 | layer { 333 | name: "conv5/dw/relu" 334 | type: "ReLU" 335 | bottom: "conv5/dw" 336 | top: "conv5/dw" 337 | } 338 | layer { 339 | name: "conv5" 340 | type: "Convolution" 341 | bottom: "conv5/dw" 342 | top: "conv5" 343 | param { 344 | lr_mult: 1.0 345 | decay_mult: 1.0 346 | } 347 | param { 348 | lr_mult: 2.0 349 | decay_mult: 0.0 350 | } 351 | convolution_param { 352 | num_output: 256 353 | kernel_size: 1 354 | weight_filler { 355 | type: "msra" 356 | } 357 | bias_filler { 358 | type: "constant" 359 | value: 0.0 360 | } 361 | } 362 | } 363 | layer { 364 | name: "conv5/relu" 365 | type: "ReLU" 366 | bottom: "conv5" 367 | top: "conv5" 368 | } 369 | layer { 370 | name: "conv6/dw" 371 | type: "Convolution" 372 | bottom: "conv5" 373 | top: "conv6/dw" 374 | param { 375 | lr_mult: 1.0 376 | decay_mult: 1.0 377 | } 378 | param { 379 | lr_mult: 2.0 380 | decay_mult: 0.0 381 | } 382 | convolution_param { 383 | num_output: 256 384 | pad: 1 385 | kernel_size: 3 386 | stride: 2 387 | group: 256 388 | engine: CAFFE 389 | weight_filler { 390 | type: "msra" 391 | } 392 | bias_filler { 393 | type: "constant" 394 | value: 0.0 395 | } 396 | } 397 | } 398 | layer { 399 | name: "conv6/dw/relu" 400 | type: "ReLU" 401 | bottom: "conv6/dw" 402 | top: "conv6/dw" 403 | } 404 | layer { 405 | name: "conv6" 406 | type: "Convolution" 407 | bottom: "conv6/dw" 408 | top: "conv6" 409 | param { 410 | lr_mult: 1.0 411 | decay_mult: 1.0 412 | } 413 | param { 414 | lr_mult: 2.0 415 | decay_mult: 0.0 416 | } 417 | convolution_param { 418 | num_output: 512 419 | kernel_size: 1 420 | weight_filler { 421 | type: "msra" 422 | } 423 | bias_filler { 424 | type: "constant" 425 | value: 0.0 426 | } 427 | } 428 | } 429 | layer { 430 | name: "conv6/relu" 431 | type: "ReLU" 432 | bottom: "conv6" 433 | top: "conv6" 434 | } 435 | layer { 436 | name: "conv7/dw" 437 | type: "Convolution" 438 | bottom: "conv6" 439 | top: "conv7/dw" 440 | param { 441 | lr_mult: 1.0 442 | decay_mult: 1.0 443 | } 444 | param { 445 | lr_mult: 2.0 446 | decay_mult: 0.0 447 | } 448 | convolution_param { 449 | num_output: 512 450 | pad: 1 451 | kernel_size: 3 452 | group: 512 453 | engine: CAFFE 454 | weight_filler { 455 | type: "msra" 456 | } 457 | bias_filler { 458 | type: "constant" 459 | value: 0.0 460 | } 461 | } 462 | } 463 | layer { 464 | name: "conv7/dw/relu" 465 | type: "ReLU" 466 | bottom: "conv7/dw" 467 | top: "conv7/dw" 468 | } 469 | layer { 470 | name: "conv7" 471 | type: "Convolution" 472 | bottom: "conv7/dw" 473 | top: "conv7" 474 | param { 475 | lr_mult: 1.0 476 | decay_mult: 1.0 477 | } 478 | param { 479 | lr_mult: 2.0 480 | decay_mult: 0.0 481 | } 482 | convolution_param { 483 | num_output: 512 484 | kernel_size: 1 485 | weight_filler { 486 | type: "msra" 487 | } 488 | bias_filler { 489 | type: "constant" 490 | value: 0.0 491 | } 492 | } 493 | } 494 | layer { 495 | name: "conv7/relu" 496 | type: "ReLU" 497 | bottom: "conv7" 498 | top: "conv7" 499 | } 500 | layer { 501 | name: "conv8/dw" 502 | type: "Convolution" 503 | bottom: "conv7" 504 | top: "conv8/dw" 505 | param { 506 | lr_mult: 1.0 507 | decay_mult: 1.0 508 | } 509 | param { 510 | lr_mult: 2.0 511 | decay_mult: 0.0 512 | } 513 | convolution_param { 514 | num_output: 512 515 | pad: 1 516 | kernel_size: 3 517 | group: 512 518 | engine: CAFFE 519 | weight_filler { 520 | type: "msra" 521 | } 522 | bias_filler { 523 | type: "constant" 524 | value: 0.0 525 | } 526 | } 527 | } 528 | layer { 529 | name: "conv8/dw/relu" 530 | type: "ReLU" 531 | bottom: "conv8/dw" 532 | top: "conv8/dw" 533 | } 534 | layer { 535 | name: "conv8" 536 | type: "Convolution" 537 | bottom: "conv8/dw" 538 | top: "conv8" 539 | param { 540 | lr_mult: 1.0 541 | decay_mult: 1.0 542 | } 543 | param { 544 | lr_mult: 2.0 545 | decay_mult: 0.0 546 | } 547 | convolution_param { 548 | num_output: 512 549 | kernel_size: 1 550 | weight_filler { 551 | type: "msra" 552 | } 553 | bias_filler { 554 | type: "constant" 555 | value: 0.0 556 | } 557 | } 558 | } 559 | layer { 560 | name: "conv8/relu" 561 | type: "ReLU" 562 | bottom: "conv8" 563 | top: "conv8" 564 | } 565 | layer { 566 | name: "conv9/dw" 567 | type: "Convolution" 568 | bottom: "conv8" 569 | top: "conv9/dw" 570 | param { 571 | lr_mult: 1.0 572 | decay_mult: 1.0 573 | } 574 | param { 575 | lr_mult: 2.0 576 | decay_mult: 0.0 577 | } 578 | convolution_param { 579 | num_output: 512 580 | pad: 1 581 | kernel_size: 3 582 | group: 512 583 | engine: CAFFE 584 | weight_filler { 585 | type: "msra" 586 | } 587 | bias_filler { 588 | type: "constant" 589 | value: 0.0 590 | } 591 | } 592 | } 593 | layer { 594 | name: "conv9/dw/relu" 595 | type: "ReLU" 596 | bottom: "conv9/dw" 597 | top: "conv9/dw" 598 | } 599 | layer { 600 | name: "conv9" 601 | type: "Convolution" 602 | bottom: "conv9/dw" 603 | top: "conv9" 604 | param { 605 | lr_mult: 1.0 606 | decay_mult: 1.0 607 | } 608 | param { 609 | lr_mult: 2.0 610 | decay_mult: 0.0 611 | } 612 | convolution_param { 613 | num_output: 512 614 | kernel_size: 1 615 | weight_filler { 616 | type: "msra" 617 | } 618 | bias_filler { 619 | type: "constant" 620 | value: 0.0 621 | } 622 | } 623 | } 624 | layer { 625 | name: "conv9/relu" 626 | type: "ReLU" 627 | bottom: "conv9" 628 | top: "conv9" 629 | } 630 | layer { 631 | name: "conv10/dw" 632 | type: "Convolution" 633 | bottom: "conv9" 634 | top: "conv10/dw" 635 | param { 636 | lr_mult: 1.0 637 | decay_mult: 1.0 638 | } 639 | param { 640 | lr_mult: 2.0 641 | decay_mult: 0.0 642 | } 643 | convolution_param { 644 | num_output: 512 645 | pad: 1 646 | kernel_size: 3 647 | group: 512 648 | engine: CAFFE 649 | weight_filler { 650 | type: "msra" 651 | } 652 | bias_filler { 653 | type: "constant" 654 | value: 0.0 655 | } 656 | } 657 | } 658 | layer { 659 | name: "conv10/dw/relu" 660 | type: "ReLU" 661 | bottom: "conv10/dw" 662 | top: "conv10/dw" 663 | } 664 | layer { 665 | name: "conv10" 666 | type: "Convolution" 667 | bottom: "conv10/dw" 668 | top: "conv10" 669 | param { 670 | lr_mult: 1.0 671 | decay_mult: 1.0 672 | } 673 | param { 674 | lr_mult: 2.0 675 | decay_mult: 0.0 676 | } 677 | convolution_param { 678 | num_output: 512 679 | kernel_size: 1 680 | weight_filler { 681 | type: "msra" 682 | } 683 | bias_filler { 684 | type: "constant" 685 | value: 0.0 686 | } 687 | } 688 | } 689 | layer { 690 | name: "conv10/relu" 691 | type: "ReLU" 692 | bottom: "conv10" 693 | top: "conv10" 694 | } 695 | layer { 696 | name: "conv11/dw" 697 | type: "Convolution" 698 | bottom: "conv10" 699 | top: "conv11/dw" 700 | param { 701 | lr_mult: 1.0 702 | decay_mult: 1.0 703 | } 704 | param { 705 | lr_mult: 2.0 706 | decay_mult: 0.0 707 | } 708 | convolution_param { 709 | num_output: 512 710 | pad: 1 711 | kernel_size: 3 712 | group: 512 713 | engine: CAFFE 714 | weight_filler { 715 | type: "msra" 716 | } 717 | bias_filler { 718 | type: "constant" 719 | value: 0.0 720 | } 721 | } 722 | } 723 | layer { 724 | name: "conv11/dw/relu" 725 | type: "ReLU" 726 | bottom: "conv11/dw" 727 | top: "conv11/dw" 728 | } 729 | layer { 730 | name: "conv11" 731 | type: "Convolution" 732 | bottom: "conv11/dw" 733 | top: "conv11" 734 | param { 735 | lr_mult: 1.0 736 | decay_mult: 1.0 737 | } 738 | param { 739 | lr_mult: 2.0 740 | decay_mult: 0.0 741 | } 742 | convolution_param { 743 | num_output: 512 744 | kernel_size: 1 745 | weight_filler { 746 | type: "msra" 747 | } 748 | bias_filler { 749 | type: "constant" 750 | value: 0.0 751 | } 752 | } 753 | } 754 | layer { 755 | name: "conv11/relu" 756 | type: "ReLU" 757 | bottom: "conv11" 758 | top: "conv11" 759 | } 760 | layer { 761 | name: "conv12/dw" 762 | type: "Convolution" 763 | bottom: "conv11" 764 | top: "conv12/dw" 765 | param { 766 | lr_mult: 1.0 767 | decay_mult: 1.0 768 | } 769 | param { 770 | lr_mult: 2.0 771 | decay_mult: 0.0 772 | } 773 | convolution_param { 774 | num_output: 512 775 | pad: 1 776 | kernel_size: 3 777 | stride: 2 778 | group: 512 779 | engine: CAFFE 780 | weight_filler { 781 | type: "msra" 782 | } 783 | bias_filler { 784 | type: "constant" 785 | value: 0.0 786 | } 787 | } 788 | } 789 | layer { 790 | name: "conv12/dw/relu" 791 | type: "ReLU" 792 | bottom: "conv12/dw" 793 | top: "conv12/dw" 794 | } 795 | layer { 796 | name: "conv12" 797 | type: "Convolution" 798 | bottom: "conv12/dw" 799 | top: "conv12" 800 | param { 801 | lr_mult: 1.0 802 | decay_mult: 1.0 803 | } 804 | param { 805 | lr_mult: 2.0 806 | decay_mult: 0.0 807 | } 808 | convolution_param { 809 | num_output: 1024 810 | kernel_size: 1 811 | weight_filler { 812 | type: "msra" 813 | } 814 | bias_filler { 815 | type: "constant" 816 | value: 0.0 817 | } 818 | } 819 | } 820 | layer { 821 | name: "conv12/relu" 822 | type: "ReLU" 823 | bottom: "conv12" 824 | top: "conv12" 825 | } 826 | layer { 827 | name: "conv13/dw" 828 | type: "Convolution" 829 | bottom: "conv12" 830 | top: "conv13/dw" 831 | param { 832 | lr_mult: 1.0 833 | decay_mult: 1.0 834 | } 835 | param { 836 | lr_mult: 2.0 837 | decay_mult: 0.0 838 | } 839 | convolution_param { 840 | num_output: 1024 841 | pad: 1 842 | kernel_size: 3 843 | group: 1024 844 | engine: CAFFE 845 | weight_filler { 846 | type: "msra" 847 | } 848 | bias_filler { 849 | type: "constant" 850 | value: 0.0 851 | } 852 | } 853 | } 854 | layer { 855 | name: "conv13/dw/relu" 856 | type: "ReLU" 857 | bottom: "conv13/dw" 858 | top: "conv13/dw" 859 | } 860 | layer { 861 | name: "conv13" 862 | type: "Convolution" 863 | bottom: "conv13/dw" 864 | top: "conv13" 865 | param { 866 | lr_mult: 1.0 867 | decay_mult: 1.0 868 | } 869 | param { 870 | lr_mult: 2.0 871 | decay_mult: 0.0 872 | } 873 | convolution_param { 874 | num_output: 1024 875 | kernel_size: 1 876 | weight_filler { 877 | type: "msra" 878 | } 879 | bias_filler { 880 | type: "constant" 881 | value: 0.0 882 | } 883 | } 884 | } 885 | layer { 886 | name: "conv13/relu" 887 | type: "ReLU" 888 | bottom: "conv13" 889 | top: "conv13" 890 | } 891 | layer { 892 | name: "conv14_1" 893 | type: "Convolution" 894 | bottom: "conv13" 895 | top: "conv14_1" 896 | param { 897 | lr_mult: 1.0 898 | decay_mult: 1.0 899 | } 900 | param { 901 | lr_mult: 2.0 902 | decay_mult: 0.0 903 | } 904 | convolution_param { 905 | num_output: 256 906 | kernel_size: 1 907 | weight_filler { 908 | type: "msra" 909 | } 910 | bias_filler { 911 | type: "constant" 912 | value: 0.0 913 | } 914 | } 915 | } 916 | layer { 917 | name: "conv14_1/relu" 918 | type: "ReLU" 919 | bottom: "conv14_1" 920 | top: "conv14_1" 921 | } 922 | layer { 923 | name: "conv14_2" 924 | type: "Convolution" 925 | bottom: "conv14_1" 926 | top: "conv14_2" 927 | param { 928 | lr_mult: 1.0 929 | decay_mult: 1.0 930 | } 931 | param { 932 | lr_mult: 2.0 933 | decay_mult: 0.0 934 | } 935 | convolution_param { 936 | num_output: 512 937 | pad: 1 938 | kernel_size: 3 939 | stride: 2 940 | weight_filler { 941 | type: "msra" 942 | } 943 | bias_filler { 944 | type: "constant" 945 | value: 0.0 946 | } 947 | } 948 | } 949 | layer { 950 | name: "conv14_2/relu" 951 | type: "ReLU" 952 | bottom: "conv14_2" 953 | top: "conv14_2" 954 | } 955 | layer { 956 | name: "conv15_1" 957 | type: "Convolution" 958 | bottom: "conv14_2" 959 | top: "conv15_1" 960 | param { 961 | lr_mult: 1.0 962 | decay_mult: 1.0 963 | } 964 | param { 965 | lr_mult: 2.0 966 | decay_mult: 0.0 967 | } 968 | convolution_param { 969 | num_output: 128 970 | kernel_size: 1 971 | weight_filler { 972 | type: "msra" 973 | } 974 | bias_filler { 975 | type: "constant" 976 | value: 0.0 977 | } 978 | } 979 | } 980 | layer { 981 | name: "conv15_1/relu" 982 | type: "ReLU" 983 | bottom: "conv15_1" 984 | top: "conv15_1" 985 | } 986 | layer { 987 | name: "conv15_2" 988 | type: "Convolution" 989 | bottom: "conv15_1" 990 | top: "conv15_2" 991 | param { 992 | lr_mult: 1.0 993 | decay_mult: 1.0 994 | } 995 | param { 996 | lr_mult: 2.0 997 | decay_mult: 0.0 998 | } 999 | convolution_param { 1000 | num_output: 256 1001 | pad: 1 1002 | kernel_size: 3 1003 | stride: 2 1004 | weight_filler { 1005 | type: "msra" 1006 | } 1007 | bias_filler { 1008 | type: "constant" 1009 | value: 0.0 1010 | } 1011 | } 1012 | } 1013 | layer { 1014 | name: "conv15_2/relu" 1015 | type: "ReLU" 1016 | bottom: "conv15_2" 1017 | top: "conv15_2" 1018 | } 1019 | layer { 1020 | name: "conv16_1" 1021 | type: "Convolution" 1022 | bottom: "conv15_2" 1023 | top: "conv16_1" 1024 | param { 1025 | lr_mult: 1.0 1026 | decay_mult: 1.0 1027 | } 1028 | param { 1029 | lr_mult: 2.0 1030 | decay_mult: 0.0 1031 | } 1032 | convolution_param { 1033 | num_output: 128 1034 | kernel_size: 1 1035 | weight_filler { 1036 | type: "msra" 1037 | } 1038 | bias_filler { 1039 | type: "constant" 1040 | value: 0.0 1041 | } 1042 | } 1043 | } 1044 | layer { 1045 | name: "conv16_1/relu" 1046 | type: "ReLU" 1047 | bottom: "conv16_1" 1048 | top: "conv16_1" 1049 | } 1050 | layer { 1051 | name: "conv16_2" 1052 | type: "Convolution" 1053 | bottom: "conv16_1" 1054 | top: "conv16_2" 1055 | param { 1056 | lr_mult: 1.0 1057 | decay_mult: 1.0 1058 | } 1059 | param { 1060 | lr_mult: 2.0 1061 | decay_mult: 0.0 1062 | } 1063 | convolution_param { 1064 | num_output: 256 1065 | pad: 1 1066 | kernel_size: 3 1067 | stride: 2 1068 | weight_filler { 1069 | type: "msra" 1070 | } 1071 | bias_filler { 1072 | type: "constant" 1073 | value: 0.0 1074 | } 1075 | } 1076 | } 1077 | layer { 1078 | name: "conv16_2/relu" 1079 | type: "ReLU" 1080 | bottom: "conv16_2" 1081 | top: "conv16_2" 1082 | } 1083 | layer { 1084 | name: "conv17_1" 1085 | type: "Convolution" 1086 | bottom: "conv16_2" 1087 | top: "conv17_1" 1088 | param { 1089 | lr_mult: 1.0 1090 | decay_mult: 1.0 1091 | } 1092 | param { 1093 | lr_mult: 2.0 1094 | decay_mult: 0.0 1095 | } 1096 | convolution_param { 1097 | num_output: 64 1098 | kernel_size: 1 1099 | weight_filler { 1100 | type: "msra" 1101 | } 1102 | bias_filler { 1103 | type: "constant" 1104 | value: 0.0 1105 | } 1106 | } 1107 | } 1108 | layer { 1109 | name: "conv17_1/relu" 1110 | type: "ReLU" 1111 | bottom: "conv17_1" 1112 | top: "conv17_1" 1113 | } 1114 | layer { 1115 | name: "conv17_2" 1116 | type: "Convolution" 1117 | bottom: "conv17_1" 1118 | top: "conv17_2" 1119 | param { 1120 | lr_mult: 1.0 1121 | decay_mult: 1.0 1122 | } 1123 | param { 1124 | lr_mult: 2.0 1125 | decay_mult: 0.0 1126 | } 1127 | convolution_param { 1128 | num_output: 128 1129 | pad: 1 1130 | kernel_size: 3 1131 | stride: 2 1132 | weight_filler { 1133 | type: "msra" 1134 | } 1135 | bias_filler { 1136 | type: "constant" 1137 | value: 0.0 1138 | } 1139 | } 1140 | } 1141 | layer { 1142 | name: "conv17_2/relu" 1143 | type: "ReLU" 1144 | bottom: "conv17_2" 1145 | top: "conv17_2" 1146 | } 1147 | layer { 1148 | name: "conv11_mbox_loc" 1149 | type: "Convolution" 1150 | bottom: "conv11" 1151 | top: "conv11_mbox_loc" 1152 | param { 1153 | lr_mult: 1.0 1154 | decay_mult: 1.0 1155 | } 1156 | param { 1157 | lr_mult: 2.0 1158 | decay_mult: 0.0 1159 | } 1160 | convolution_param { 1161 | num_output: 12 1162 | kernel_size: 1 1163 | weight_filler { 1164 | type: "msra" 1165 | } 1166 | bias_filler { 1167 | type: "constant" 1168 | value: 0.0 1169 | } 1170 | } 1171 | } 1172 | layer { 1173 | name: "conv11_mbox_loc_perm" 1174 | type: "Permute" 1175 | bottom: "conv11_mbox_loc" 1176 | top: "conv11_mbox_loc_perm" 1177 | permute_param { 1178 | order: 0 1179 | order: 2 1180 | order: 3 1181 | order: 1 1182 | } 1183 | } 1184 | layer { 1185 | name: "conv11_mbox_loc_flat" 1186 | type: "Flatten" 1187 | bottom: "conv11_mbox_loc_perm" 1188 | top: "conv11_mbox_loc_flat" 1189 | flatten_param { 1190 | axis: 1 1191 | } 1192 | } 1193 | layer { 1194 | name: "conv11_mbox_conf" 1195 | type: "Convolution" 1196 | bottom: "conv11" 1197 | top: "conv11_mbox_conf" 1198 | param { 1199 | lr_mult: 1.0 1200 | decay_mult: 1.0 1201 | } 1202 | param { 1203 | lr_mult: 2.0 1204 | decay_mult: 0.0 1205 | } 1206 | convolution_param { 1207 | num_output: 63 1208 | kernel_size: 1 1209 | weight_filler { 1210 | type: "msra" 1211 | } 1212 | bias_filler { 1213 | type: "constant" 1214 | value: 0.0 1215 | } 1216 | } 1217 | } 1218 | layer { 1219 | name: "conv11_mbox_conf_perm" 1220 | type: "Permute" 1221 | bottom: "conv11_mbox_conf" 1222 | top: "conv11_mbox_conf_perm" 1223 | permute_param { 1224 | order: 0 1225 | order: 2 1226 | order: 3 1227 | order: 1 1228 | } 1229 | } 1230 | layer { 1231 | name: "conv11_mbox_conf_flat" 1232 | type: "Flatten" 1233 | bottom: "conv11_mbox_conf_perm" 1234 | top: "conv11_mbox_conf_flat" 1235 | flatten_param { 1236 | axis: 1 1237 | } 1238 | } 1239 | layer { 1240 | name: "conv11_mbox_priorbox" 1241 | type: "PriorBox" 1242 | bottom: "conv11" 1243 | bottom: "data" 1244 | top: "conv11_mbox_priorbox" 1245 | prior_box_param { 1246 | min_size: 60.0 1247 | aspect_ratio: 2.0 1248 | flip: true 1249 | clip: false 1250 | variance: 0.1 1251 | variance: 0.1 1252 | variance: 0.2 1253 | variance: 0.2 1254 | offset: 0.5 1255 | } 1256 | } 1257 | layer { 1258 | name: "conv13_mbox_loc" 1259 | type: "Convolution" 1260 | bottom: "conv13" 1261 | top: "conv13_mbox_loc" 1262 | param { 1263 | lr_mult: 1.0 1264 | decay_mult: 1.0 1265 | } 1266 | param { 1267 | lr_mult: 2.0 1268 | decay_mult: 0.0 1269 | } 1270 | convolution_param { 1271 | num_output: 24 1272 | kernel_size: 1 1273 | weight_filler { 1274 | type: "msra" 1275 | } 1276 | bias_filler { 1277 | type: "constant" 1278 | value: 0.0 1279 | } 1280 | } 1281 | } 1282 | layer { 1283 | name: "conv13_mbox_loc_perm" 1284 | type: "Permute" 1285 | bottom: "conv13_mbox_loc" 1286 | top: "conv13_mbox_loc_perm" 1287 | permute_param { 1288 | order: 0 1289 | order: 2 1290 | order: 3 1291 | order: 1 1292 | } 1293 | } 1294 | layer { 1295 | name: "conv13_mbox_loc_flat" 1296 | type: "Flatten" 1297 | bottom: "conv13_mbox_loc_perm" 1298 | top: "conv13_mbox_loc_flat" 1299 | flatten_param { 1300 | axis: 1 1301 | } 1302 | } 1303 | layer { 1304 | name: "conv13_mbox_conf" 1305 | type: "Convolution" 1306 | bottom: "conv13" 1307 | top: "conv13_mbox_conf" 1308 | param { 1309 | lr_mult: 1.0 1310 | decay_mult: 1.0 1311 | } 1312 | param { 1313 | lr_mult: 2.0 1314 | decay_mult: 0.0 1315 | } 1316 | convolution_param { 1317 | num_output: 126 1318 | kernel_size: 1 1319 | weight_filler { 1320 | type: "msra" 1321 | } 1322 | bias_filler { 1323 | type: "constant" 1324 | value: 0.0 1325 | } 1326 | } 1327 | } 1328 | layer { 1329 | name: "conv13_mbox_conf_perm" 1330 | type: "Permute" 1331 | bottom: "conv13_mbox_conf" 1332 | top: "conv13_mbox_conf_perm" 1333 | permute_param { 1334 | order: 0 1335 | order: 2 1336 | order: 3 1337 | order: 1 1338 | } 1339 | } 1340 | layer { 1341 | name: "conv13_mbox_conf_flat" 1342 | type: "Flatten" 1343 | bottom: "conv13_mbox_conf_perm" 1344 | top: "conv13_mbox_conf_flat" 1345 | flatten_param { 1346 | axis: 1 1347 | } 1348 | } 1349 | layer { 1350 | name: "conv13_mbox_priorbox" 1351 | type: "PriorBox" 1352 | bottom: "conv13" 1353 | bottom: "data" 1354 | top: "conv13_mbox_priorbox" 1355 | prior_box_param { 1356 | min_size: 105.0 1357 | max_size: 150.0 1358 | aspect_ratio: 2.0 1359 | aspect_ratio: 3.0 1360 | flip: true 1361 | clip: false 1362 | variance: 0.1 1363 | variance: 0.1 1364 | variance: 0.2 1365 | variance: 0.2 1366 | offset: 0.5 1367 | } 1368 | } 1369 | layer { 1370 | name: "conv14_2_mbox_loc" 1371 | type: "Convolution" 1372 | bottom: "conv14_2" 1373 | top: "conv14_2_mbox_loc" 1374 | param { 1375 | lr_mult: 1.0 1376 | decay_mult: 1.0 1377 | } 1378 | param { 1379 | lr_mult: 2.0 1380 | decay_mult: 0.0 1381 | } 1382 | convolution_param { 1383 | num_output: 24 1384 | kernel_size: 1 1385 | weight_filler { 1386 | type: "msra" 1387 | } 1388 | bias_filler { 1389 | type: "constant" 1390 | value: 0.0 1391 | } 1392 | } 1393 | } 1394 | layer { 1395 | name: "conv14_2_mbox_loc_perm" 1396 | type: "Permute" 1397 | bottom: "conv14_2_mbox_loc" 1398 | top: "conv14_2_mbox_loc_perm" 1399 | permute_param { 1400 | order: 0 1401 | order: 2 1402 | order: 3 1403 | order: 1 1404 | } 1405 | } 1406 | layer { 1407 | name: "conv14_2_mbox_loc_flat" 1408 | type: "Flatten" 1409 | bottom: "conv14_2_mbox_loc_perm" 1410 | top: "conv14_2_mbox_loc_flat" 1411 | flatten_param { 1412 | axis: 1 1413 | } 1414 | } 1415 | layer { 1416 | name: "conv14_2_mbox_conf" 1417 | type: "Convolution" 1418 | bottom: "conv14_2" 1419 | top: "conv14_2_mbox_conf" 1420 | param { 1421 | lr_mult: 1.0 1422 | decay_mult: 1.0 1423 | } 1424 | param { 1425 | lr_mult: 2.0 1426 | decay_mult: 0.0 1427 | } 1428 | convolution_param { 1429 | num_output: 126 1430 | kernel_size: 1 1431 | weight_filler { 1432 | type: "msra" 1433 | } 1434 | bias_filler { 1435 | type: "constant" 1436 | value: 0.0 1437 | } 1438 | } 1439 | } 1440 | layer { 1441 | name: "conv14_2_mbox_conf_perm" 1442 | type: "Permute" 1443 | bottom: "conv14_2_mbox_conf" 1444 | top: "conv14_2_mbox_conf_perm" 1445 | permute_param { 1446 | order: 0 1447 | order: 2 1448 | order: 3 1449 | order: 1 1450 | } 1451 | } 1452 | layer { 1453 | name: "conv14_2_mbox_conf_flat" 1454 | type: "Flatten" 1455 | bottom: "conv14_2_mbox_conf_perm" 1456 | top: "conv14_2_mbox_conf_flat" 1457 | flatten_param { 1458 | axis: 1 1459 | } 1460 | } 1461 | layer { 1462 | name: "conv14_2_mbox_priorbox" 1463 | type: "PriorBox" 1464 | bottom: "conv14_2" 1465 | bottom: "data" 1466 | top: "conv14_2_mbox_priorbox" 1467 | prior_box_param { 1468 | min_size: 150.0 1469 | max_size: 195.0 1470 | aspect_ratio: 2.0 1471 | aspect_ratio: 3.0 1472 | flip: true 1473 | clip: false 1474 | variance: 0.1 1475 | variance: 0.1 1476 | variance: 0.2 1477 | variance: 0.2 1478 | offset: 0.5 1479 | } 1480 | } 1481 | layer { 1482 | name: "conv15_2_mbox_loc" 1483 | type: "Convolution" 1484 | bottom: "conv15_2" 1485 | top: "conv15_2_mbox_loc" 1486 | param { 1487 | lr_mult: 1.0 1488 | decay_mult: 1.0 1489 | } 1490 | param { 1491 | lr_mult: 2.0 1492 | decay_mult: 0.0 1493 | } 1494 | convolution_param { 1495 | num_output: 24 1496 | kernel_size: 1 1497 | weight_filler { 1498 | type: "msra" 1499 | } 1500 | bias_filler { 1501 | type: "constant" 1502 | value: 0.0 1503 | } 1504 | } 1505 | } 1506 | layer { 1507 | name: "conv15_2_mbox_loc_perm" 1508 | type: "Permute" 1509 | bottom: "conv15_2_mbox_loc" 1510 | top: "conv15_2_mbox_loc_perm" 1511 | permute_param { 1512 | order: 0 1513 | order: 2 1514 | order: 3 1515 | order: 1 1516 | } 1517 | } 1518 | layer { 1519 | name: "conv15_2_mbox_loc_flat" 1520 | type: "Flatten" 1521 | bottom: "conv15_2_mbox_loc_perm" 1522 | top: "conv15_2_mbox_loc_flat" 1523 | flatten_param { 1524 | axis: 1 1525 | } 1526 | } 1527 | layer { 1528 | name: "conv15_2_mbox_conf" 1529 | type: "Convolution" 1530 | bottom: "conv15_2" 1531 | top: "conv15_2_mbox_conf" 1532 | param { 1533 | lr_mult: 1.0 1534 | decay_mult: 1.0 1535 | } 1536 | param { 1537 | lr_mult: 2.0 1538 | decay_mult: 0.0 1539 | } 1540 | convolution_param { 1541 | num_output: 126 1542 | kernel_size: 1 1543 | weight_filler { 1544 | type: "msra" 1545 | } 1546 | bias_filler { 1547 | type: "constant" 1548 | value: 0.0 1549 | } 1550 | } 1551 | } 1552 | layer { 1553 | name: "conv15_2_mbox_conf_perm" 1554 | type: "Permute" 1555 | bottom: "conv15_2_mbox_conf" 1556 | top: "conv15_2_mbox_conf_perm" 1557 | permute_param { 1558 | order: 0 1559 | order: 2 1560 | order: 3 1561 | order: 1 1562 | } 1563 | } 1564 | layer { 1565 | name: "conv15_2_mbox_conf_flat" 1566 | type: "Flatten" 1567 | bottom: "conv15_2_mbox_conf_perm" 1568 | top: "conv15_2_mbox_conf_flat" 1569 | flatten_param { 1570 | axis: 1 1571 | } 1572 | } 1573 | layer { 1574 | name: "conv15_2_mbox_priorbox" 1575 | type: "PriorBox" 1576 | bottom: "conv15_2" 1577 | bottom: "data" 1578 | top: "conv15_2_mbox_priorbox" 1579 | prior_box_param { 1580 | min_size: 195.0 1581 | max_size: 240.0 1582 | aspect_ratio: 2.0 1583 | aspect_ratio: 3.0 1584 | flip: true 1585 | clip: false 1586 | variance: 0.1 1587 | variance: 0.1 1588 | variance: 0.2 1589 | variance: 0.2 1590 | offset: 0.5 1591 | } 1592 | } 1593 | layer { 1594 | name: "conv16_2_mbox_loc" 1595 | type: "Convolution" 1596 | bottom: "conv16_2" 1597 | top: "conv16_2_mbox_loc" 1598 | param { 1599 | lr_mult: 1.0 1600 | decay_mult: 1.0 1601 | } 1602 | param { 1603 | lr_mult: 2.0 1604 | decay_mult: 0.0 1605 | } 1606 | convolution_param { 1607 | num_output: 24 1608 | kernel_size: 1 1609 | weight_filler { 1610 | type: "msra" 1611 | } 1612 | bias_filler { 1613 | type: "constant" 1614 | value: 0.0 1615 | } 1616 | } 1617 | } 1618 | layer { 1619 | name: "conv16_2_mbox_loc_perm" 1620 | type: "Permute" 1621 | bottom: "conv16_2_mbox_loc" 1622 | top: "conv16_2_mbox_loc_perm" 1623 | permute_param { 1624 | order: 0 1625 | order: 2 1626 | order: 3 1627 | order: 1 1628 | } 1629 | } 1630 | layer { 1631 | name: "conv16_2_mbox_loc_flat" 1632 | type: "Flatten" 1633 | bottom: "conv16_2_mbox_loc_perm" 1634 | top: "conv16_2_mbox_loc_flat" 1635 | flatten_param { 1636 | axis: 1 1637 | } 1638 | } 1639 | layer { 1640 | name: "conv16_2_mbox_conf" 1641 | type: "Convolution" 1642 | bottom: "conv16_2" 1643 | top: "conv16_2_mbox_conf" 1644 | param { 1645 | lr_mult: 1.0 1646 | decay_mult: 1.0 1647 | } 1648 | param { 1649 | lr_mult: 2.0 1650 | decay_mult: 0.0 1651 | } 1652 | convolution_param { 1653 | num_output: 126 1654 | kernel_size: 1 1655 | weight_filler { 1656 | type: "msra" 1657 | } 1658 | bias_filler { 1659 | type: "constant" 1660 | value: 0.0 1661 | } 1662 | } 1663 | } 1664 | layer { 1665 | name: "conv16_2_mbox_conf_perm" 1666 | type: "Permute" 1667 | bottom: "conv16_2_mbox_conf" 1668 | top: "conv16_2_mbox_conf_perm" 1669 | permute_param { 1670 | order: 0 1671 | order: 2 1672 | order: 3 1673 | order: 1 1674 | } 1675 | } 1676 | layer { 1677 | name: "conv16_2_mbox_conf_flat" 1678 | type: "Flatten" 1679 | bottom: "conv16_2_mbox_conf_perm" 1680 | top: "conv16_2_mbox_conf_flat" 1681 | flatten_param { 1682 | axis: 1 1683 | } 1684 | } 1685 | layer { 1686 | name: "conv16_2_mbox_priorbox" 1687 | type: "PriorBox" 1688 | bottom: "conv16_2" 1689 | bottom: "data" 1690 | top: "conv16_2_mbox_priorbox" 1691 | prior_box_param { 1692 | min_size: 240.0 1693 | max_size: 285.0 1694 | aspect_ratio: 2.0 1695 | aspect_ratio: 3.0 1696 | flip: true 1697 | clip: false 1698 | variance: 0.1 1699 | variance: 0.1 1700 | variance: 0.2 1701 | variance: 0.2 1702 | offset: 0.5 1703 | } 1704 | } 1705 | layer { 1706 | name: "conv17_2_mbox_loc" 1707 | type: "Convolution" 1708 | bottom: "conv17_2" 1709 | top: "conv17_2_mbox_loc" 1710 | param { 1711 | lr_mult: 1.0 1712 | decay_mult: 1.0 1713 | } 1714 | param { 1715 | lr_mult: 2.0 1716 | decay_mult: 0.0 1717 | } 1718 | convolution_param { 1719 | num_output: 24 1720 | kernel_size: 1 1721 | weight_filler { 1722 | type: "msra" 1723 | } 1724 | bias_filler { 1725 | type: "constant" 1726 | value: 0.0 1727 | } 1728 | } 1729 | } 1730 | layer { 1731 | name: "conv17_2_mbox_loc_perm" 1732 | type: "Permute" 1733 | bottom: "conv17_2_mbox_loc" 1734 | top: "conv17_2_mbox_loc_perm" 1735 | permute_param { 1736 | order: 0 1737 | order: 2 1738 | order: 3 1739 | order: 1 1740 | } 1741 | } 1742 | layer { 1743 | name: "conv17_2_mbox_loc_flat" 1744 | type: "Flatten" 1745 | bottom: "conv17_2_mbox_loc_perm" 1746 | top: "conv17_2_mbox_loc_flat" 1747 | flatten_param { 1748 | axis: 1 1749 | } 1750 | } 1751 | layer { 1752 | name: "conv17_2_mbox_conf" 1753 | type: "Convolution" 1754 | bottom: "conv17_2" 1755 | top: "conv17_2_mbox_conf" 1756 | param { 1757 | lr_mult: 1.0 1758 | decay_mult: 1.0 1759 | } 1760 | param { 1761 | lr_mult: 2.0 1762 | decay_mult: 0.0 1763 | } 1764 | convolution_param { 1765 | num_output: 126 1766 | kernel_size: 1 1767 | weight_filler { 1768 | type: "msra" 1769 | } 1770 | bias_filler { 1771 | type: "constant" 1772 | value: 0.0 1773 | } 1774 | } 1775 | } 1776 | layer { 1777 | name: "conv17_2_mbox_conf_perm" 1778 | type: "Permute" 1779 | bottom: "conv17_2_mbox_conf" 1780 | top: "conv17_2_mbox_conf_perm" 1781 | permute_param { 1782 | order: 0 1783 | order: 2 1784 | order: 3 1785 | order: 1 1786 | } 1787 | } 1788 | layer { 1789 | name: "conv17_2_mbox_conf_flat" 1790 | type: "Flatten" 1791 | bottom: "conv17_2_mbox_conf_perm" 1792 | top: "conv17_2_mbox_conf_flat" 1793 | flatten_param { 1794 | axis: 1 1795 | } 1796 | } 1797 | layer { 1798 | name: "conv17_2_mbox_priorbox" 1799 | type: "PriorBox" 1800 | bottom: "conv17_2" 1801 | bottom: "data" 1802 | top: "conv17_2_mbox_priorbox" 1803 | prior_box_param { 1804 | min_size: 285.0 1805 | max_size: 300.0 1806 | aspect_ratio: 2.0 1807 | aspect_ratio: 3.0 1808 | flip: true 1809 | clip: false 1810 | variance: 0.1 1811 | variance: 0.1 1812 | variance: 0.2 1813 | variance: 0.2 1814 | offset: 0.5 1815 | } 1816 | } 1817 | layer { 1818 | name: "mbox_loc" 1819 | type: "Concat" 1820 | bottom: "conv11_mbox_loc_flat" 1821 | bottom: "conv13_mbox_loc_flat" 1822 | bottom: "conv14_2_mbox_loc_flat" 1823 | bottom: "conv15_2_mbox_loc_flat" 1824 | bottom: "conv16_2_mbox_loc_flat" 1825 | bottom: "conv17_2_mbox_loc_flat" 1826 | top: "mbox_loc" 1827 | concat_param { 1828 | axis: 1 1829 | } 1830 | } 1831 | layer { 1832 | name: "mbox_conf" 1833 | type: "Concat" 1834 | bottom: "conv11_mbox_conf_flat" 1835 | bottom: "conv13_mbox_conf_flat" 1836 | bottom: "conv14_2_mbox_conf_flat" 1837 | bottom: "conv15_2_mbox_conf_flat" 1838 | bottom: "conv16_2_mbox_conf_flat" 1839 | bottom: "conv17_2_mbox_conf_flat" 1840 | top: "mbox_conf" 1841 | concat_param { 1842 | axis: 1 1843 | } 1844 | } 1845 | layer { 1846 | name: "mbox_priorbox" 1847 | type: "Concat" 1848 | bottom: "conv11_mbox_priorbox" 1849 | bottom: "conv13_mbox_priorbox" 1850 | bottom: "conv14_2_mbox_priorbox" 1851 | bottom: "conv15_2_mbox_priorbox" 1852 | bottom: "conv16_2_mbox_priorbox" 1853 | bottom: "conv17_2_mbox_priorbox" 1854 | top: "mbox_priorbox" 1855 | concat_param { 1856 | axis: 2 1857 | } 1858 | } 1859 | layer { 1860 | name: "mbox_conf_reshape" 1861 | type: "Reshape" 1862 | bottom: "mbox_conf" 1863 | top: "mbox_conf_reshape" 1864 | reshape_param { 1865 | shape { 1866 | dim: 0 1867 | dim: -1 1868 | dim: 21 1869 | } 1870 | } 1871 | } 1872 | layer { 1873 | name: "mbox_conf_softmax" 1874 | type: "Softmax" 1875 | bottom: "mbox_conf_reshape" 1876 | top: "mbox_conf_softmax" 1877 | softmax_param { 1878 | axis: 2 1879 | } 1880 | } 1881 | layer { 1882 | name: "mbox_conf_flatten" 1883 | type: "Flatten" 1884 | bottom: "mbox_conf_softmax" 1885 | top: "mbox_conf_flatten" 1886 | flatten_param { 1887 | axis: 1 1888 | } 1889 | } 1890 | layer { 1891 | name: "detection_out" 1892 | type: "DetectionOutput" 1893 | bottom: "mbox_loc" 1894 | bottom: "mbox_conf_flatten" 1895 | bottom: "mbox_priorbox" 1896 | top: "detection_out" 1897 | include { 1898 | phase: TEST 1899 | } 1900 | detection_output_param { 1901 | num_classes: 21 1902 | share_location: true 1903 | background_label_id: 0 1904 | nms_param { 1905 | nms_threshold: 0.45 1906 | top_k: 100 1907 | } 1908 | code_type: CENTER_SIZE 1909 | keep_top_k: 100 1910 | confidence_threshold: 0.25 1911 | } 1912 | } 1913 | -------------------------------------------------------------------------------- /data/haarcascade files/haarcascade_licence_plate_rus_16stages.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 64 16 7 | 8 | <_> 9 | 10 | 11 | <_> 12 | 13 | <_> 14 | 15 | 16 | 17 | <_> 18 | 32 2 8 6 -1. 19 | <_> 20 | 32 4 8 2 3. 21 | 0 22 | 1.6915600746870041e-002 23 | -9.5547717809677124e-001 24 | 8.9129137992858887e-001 25 | <_> 26 | 27 | <_> 28 | 29 | 30 | 31 | <_> 32 | 0 4 6 10 -1. 33 | <_> 34 | 3 4 3 10 2. 35 | 0 36 | 2.4228349328041077e-002 37 | -9.2089319229125977e-001 38 | 8.8723921775817871e-001 39 | <_> 40 | 41 | <_> 42 | 43 | 44 | 45 | <_> 46 | 55 0 8 6 -1. 47 | <_> 48 | 55 0 4 3 2. 49 | <_> 50 | 59 3 4 3 2. 51 | 0 52 | -1.0168660432100296e-002 53 | 8.8940089941024780e-001 54 | -7.7847331762313843e-001 55 | <_> 56 | 57 | <_> 58 | 59 | 60 | 61 | <_> 62 | 44 7 4 9 -1. 63 | <_> 64 | 44 10 4 3 3. 65 | 0 66 | 2.0863260142505169e-003 67 | -8.7998157739639282e-001 68 | 5.8651781082153320e-001 69 | -2.0683259963989258e+000 70 | -1 71 | -1 72 | <_> 73 | 74 | 75 | <_> 76 | 77 | <_> 78 | 79 | 80 | 81 | <_> 82 | 29 1 16 4 -1. 83 | <_> 84 | 29 3 16 2 2. 85 | 0 86 | 2.9062159359455109e-002 87 | -8.7765061855316162e-001 88 | 8.5373121500015259e-001 89 | <_> 90 | 91 | <_> 92 | 93 | 94 | 95 | <_> 96 | 0 5 9 8 -1. 97 | <_> 98 | 3 5 3 8 3. 99 | 0 100 | 2.3903399705886841e-002 101 | -9.2079448699951172e-001 102 | 7.5155001878738403e-001 103 | <_> 104 | 105 | <_> 106 | 107 | 108 | 109 | <_> 110 | 44 0 20 14 -1. 111 | <_> 112 | 44 0 10 7 2. 113 | <_> 114 | 54 7 10 7 2. 115 | 0 116 | -3.5404648631811142e-002 117 | 6.7834627628326416e-001 118 | -9.0937072038650513e-001 119 | <_> 120 | 121 | <_> 122 | 123 | 124 | 125 | <_> 126 | 41 7 6 9 -1. 127 | <_> 128 | 43 7 2 9 3. 129 | 0 130 | 6.2988721765577793e-003 131 | -8.1054258346557617e-001 132 | 5.8985030651092529e-001 133 | <_> 134 | 135 | <_> 136 | 137 | 138 | 139 | <_> 140 | 0 4 21 4 -1. 141 | <_> 142 | 7 4 7 4 3. 143 | 0 144 | 3.4959490876644850e-003 145 | -9.7632282972335815e-001 146 | 4.5473039150238037e-001 147 | -1.6632349491119385e+000 148 | 0 149 | -1 150 | <_> 151 | 152 | 153 | <_> 154 | 155 | <_> 156 | 157 | 158 | 159 | <_> 160 | 31 2 11 6 -1. 161 | <_> 162 | 31 4 11 2 3. 163 | 0 164 | 2.3864099755883217e-002 165 | -9.3137168884277344e-001 166 | 8.2478952407836914e-001 167 | <_> 168 | 169 | <_> 170 | 171 | 172 | 173 | <_> 174 | 56 3 6 11 -1. 175 | <_> 176 | 59 3 3 11 2. 177 | 0 178 | -2.5775209069252014e-002 179 | 8.5526448488235474e-001 180 | -8.7574672698974609e-001 181 | <_> 182 | 183 | <_> 184 | 185 | 186 | 187 | <_> 188 | 32 14 32 2 -1. 189 | <_> 190 | 32 15 32 1 2. 191 | 0 192 | -1.0646049864590168e-002 193 | 8.5167151689529419e-001 194 | -6.7789041996002197e-001 195 | <_> 196 | 197 | <_> 198 | 199 | 200 | 201 | <_> 202 | 0 2 8 14 -1. 203 | <_> 204 | 4 2 4 14 2. 205 | 0 206 | 2.7000989764928818e-002 207 | -8.0041092634201050e-001 208 | 6.4893317222595215e-001 209 | <_> 210 | 211 | <_> 212 | 213 | 214 | 215 | <_> 216 | 19 0 22 6 -1. 217 | <_> 218 | 19 0 11 3 2. 219 | <_> 220 | 30 3 11 3 2. 221 | 0 222 | 5.2989721298217773e-003 223 | -9.5342522859573364e-001 224 | 5.0140267610549927e-001 225 | -1.3346730470657349e+000 226 | 1 227 | -1 228 | <_> 229 | 230 | 231 | <_> 232 | 233 | <_> 234 | 235 | 236 | 237 | <_> 238 | 56 0 6 6 -1. 239 | <_> 240 | 56 0 3 3 2. 241 | <_> 242 | 59 3 3 3 2. 243 | 0 244 | -6.9233630783855915e-003 245 | 8.2654470205307007e-001 246 | -8.5396027565002441e-001 247 | <_> 248 | 249 | <_> 250 | 251 | 252 | 253 | <_> 254 | 32 0 14 12 -1. 255 | <_> 256 | 32 0 7 6 2. 257 | <_> 258 | 39 6 7 6 2. 259 | 0 260 | 1.2539249658584595e-001 261 | -1.2996139936149120e-002 262 | -3.2377028808593750e+003 263 | <_> 264 | 265 | <_> 266 | 267 | 268 | 269 | <_> 270 | 2 1 43 4 -1. 271 | <_> 272 | 2 3 43 2 2. 273 | 0 274 | 6.3474893569946289e-002 275 | -6.4648061990737915e-001 276 | 8.2302427291870117e-001 277 | <_> 278 | 279 | <_> 280 | 281 | 282 | 283 | <_> 284 | 34 10 30 5 -1. 285 | <_> 286 | 44 10 10 5 3. 287 | 0 288 | 4.2217150330543518e-002 289 | -7.5190877914428711e-001 290 | 6.3705182075500488e-001 291 | <_> 292 | 293 | <_> 294 | 295 | 296 | 297 | <_> 298 | 0 9 9 5 -1. 299 | <_> 300 | 3 9 3 5 3. 301 | 0 302 | 2.0000640302896500e-002 303 | -6.2077498435974121e-001 304 | 6.1317932605743408e-001 305 | -1.6521669626235962e+000 306 | 2 307 | -1 308 | <_> 309 | 310 | 311 | <_> 312 | 313 | <_> 314 | 315 | 316 | 317 | <_> 318 | 2 1 43 6 -1. 319 | <_> 320 | 2 3 43 2 3. 321 | 0 322 | 9.2297486960887909e-002 323 | -7.2764229774475098e-001 324 | 8.0554759502410889e-001 325 | <_> 326 | 327 | <_> 328 | 329 | 330 | 331 | <_> 332 | 53 4 9 8 -1. 333 | <_> 334 | 56 4 3 8 3. 335 | 0 336 | 2.7613969519734383e-002 337 | -7.0769268274307251e-001 338 | 7.3315787315368652e-001 339 | <_> 340 | 341 | <_> 342 | 343 | 344 | 345 | <_> 346 | 36 4 14 8 -1. 347 | <_> 348 | 36 4 7 4 2. 349 | <_> 350 | 43 8 7 4 2. 351 | 0 352 | 1.2465449981391430e-002 353 | -8.4359270334243774e-001 354 | 5.7046437263488770e-001 355 | <_> 356 | 357 | <_> 358 | 359 | 360 | 361 | <_> 362 | 14 14 49 2 -1. 363 | <_> 364 | 14 15 49 1 2. 365 | 0 366 | -2.3886829614639282e-002 367 | 8.2656508684158325e-001 368 | -5.2783298492431641e-001 369 | -1.4523630142211914e+000 370 | 3 371 | -1 372 | <_> 373 | 374 | 375 | <_> 376 | 377 | <_> 378 | 379 | 380 | 381 | <_> 382 | 0 5 4 9 -1. 383 | <_> 384 | 2 5 2 9 2. 385 | 0 386 | 1.8821349367499352e-002 387 | -8.1122857332229614e-001 388 | 6.9127470254898071e-001 389 | <_> 390 | 391 | <_> 392 | 393 | 394 | 395 | <_> 396 | 21 1 38 4 -1. 397 | <_> 398 | 21 3 38 2 2. 399 | 0 400 | 6.1703320592641830e-002 401 | -7.6482647657394409e-001 402 | 6.4212161302566528e-001 403 | <_> 404 | 405 | <_> 406 | 407 | 408 | 409 | <_> 410 | 44 12 18 3 -1. 411 | <_> 412 | 53 12 9 3 2. 413 | 0 414 | -1.6298670321702957e-002 415 | 5.0207728147506714e-001 416 | -8.4020161628723145e-001 417 | <_> 418 | 419 | <_> 420 | 421 | 422 | 423 | <_> 424 | 10 4 9 3 -1. 425 | <_> 426 | 13 4 3 3 3. 427 | 0 428 | -4.9458951689302921e-003 429 | 6.1991941928863525e-001 430 | -6.1633539199829102e-001 431 | <_> 432 | 433 | <_> 434 | 435 | 436 | 437 | <_> 438 | 40 4 10 4 -1. 439 | <_> 440 | 45 4 5 4 2. 441 | 0 442 | -5.1894597709178925e-003 443 | 4.4975179433822632e-001 444 | -8.0651968717575073e-001 445 | <_> 446 | 447 | <_> 448 | 449 | 450 | 451 | <_> 452 | 17 14 47 2 -1. 453 | <_> 454 | 17 15 47 1 2. 455 | 0 456 | -1.8824130296707153e-002 457 | 6.1992841958999634e-001 458 | -5.5643159151077271e-001 459 | <_> 460 | 461 | <_> 462 | 463 | 464 | 465 | <_> 466 | 8 5 4 7 -1. 467 | <_> 468 | 10 5 2 7 2. 469 | 0 470 | 5.6571601890027523e-003 471 | -4.8346561193466187e-001 472 | 6.8647360801696777e-001 473 | -2.2358059883117676e+000 474 | 4 475 | -1 476 | <_> 477 | 478 | 479 | <_> 480 | 481 | <_> 482 | 483 | 484 | 485 | <_> 486 | 56 0 6 6 -1. 487 | <_> 488 | 56 0 3 3 2. 489 | <_> 490 | 59 3 3 3 2. 491 | 0 492 | -9.1503243893384933e-003 493 | 6.8174481391906738e-001 494 | -7.7866071462631226e-001 495 | <_> 496 | 497 | <_> 498 | 499 | 500 | 501 | <_> 502 | 0 0 6 6 -1. 503 | <_> 504 | 0 0 3 3 2. 505 | <_> 506 | 3 3 3 3 2. 507 | 0 508 | 7.4933180585503578e-003 509 | -6.8696027994155884e-001 510 | 6.6913938522338867e-001 511 | <_> 512 | 513 | <_> 514 | 515 | 516 | 517 | <_> 518 | 13 4 48 2 -1. 519 | <_> 520 | 29 4 16 2 3. 521 | 0 522 | 4.5296419411897659e-002 523 | -7.3576509952545166e-001 524 | 5.9453499317169189e-001 525 | <_> 526 | 527 | <_> 528 | 529 | 530 | 531 | <_> 532 | 42 1 6 15 -1. 533 | <_> 534 | 42 6 6 5 3. 535 | 0 536 | 1.1669679544866085e-002 537 | -8.4733831882476807e-001 538 | 4.5461329817771912e-001 539 | <_> 540 | 541 | <_> 542 | 543 | 544 | 545 | <_> 546 | 30 8 3 5 -1. 547 | <_> 548 | 31 8 1 5 3. 549 | 0 550 | 2.5769430212676525e-003 551 | -5.8270388841629028e-001 552 | 7.7900522947311401e-001 553 | <_> 554 | 555 | <_> 556 | 557 | 558 | 559 | <_> 560 | 55 10 8 6 -1. 561 | <_> 562 | 55 13 8 3 2. 563 | 0 564 | -1.4139170525595546e-003 565 | 4.5126929879188538e-001 566 | -9.0696328878402710e-001 567 | -1.8782069683074951e+000 568 | 5 569 | -1 570 | <_> 571 | 572 | 573 | <_> 574 | 575 | <_> 576 | 577 | 578 | 579 | <_> 580 | 4 6 4 7 -1. 581 | <_> 582 | 6 6 2 7 2. 583 | 0 584 | -5.3149578161537647e-003 585 | 6.5218788385391235e-001 586 | -7.9464268684387207e-001 587 | <_> 588 | 589 | <_> 590 | 591 | 592 | 593 | <_> 594 | 56 3 6 8 -1. 595 | <_> 596 | 59 3 3 8 2. 597 | 0 598 | -2.2906960919499397e-002 599 | 6.6433382034301758e-001 600 | -7.3633247613906860e-001 601 | <_> 602 | 603 | <_> 604 | 605 | 606 | 607 | <_> 608 | 37 2 4 6 -1. 609 | <_> 610 | 37 4 4 2 3. 611 | 0 612 | 9.4887977465987206e-003 613 | -8.2612031698226929e-001 614 | 4.9333500862121582e-001 615 | <_> 616 | 617 | <_> 618 | 619 | 620 | 621 | <_> 622 | 0 10 30 6 -1. 623 | <_> 624 | 0 12 30 2 3. 625 | 0 626 | 4.5138411223888397e-002 627 | -5.4704028367996216e-001 628 | 7.6927912235260010e-001 629 | <_> 630 | 631 | <_> 632 | 633 | 634 | 635 | <_> 636 | 0 4 21 12 -1. 637 | <_> 638 | 7 4 7 12 3. 639 | 0 640 | 2.5049019604921341e-002 641 | -8.6739641427993774e-001 642 | 5.2807968854904175e-001 643 | -1.0597369670867920e+000 644 | 6 645 | -1 646 | <_> 647 | 648 | 649 | <_> 650 | 651 | <_> 652 | 653 | 654 | 655 | <_> 656 | 44 0 1 14 -1. 657 | <_> 658 | 44 7 1 7 2. 659 | 0 660 | 6.6414438188076019e-003 661 | -7.7290147542953491e-001 662 | 6.9723731279373169e-001 663 | <_> 664 | 665 | <_> 666 | 667 | 668 | 669 | <_> 670 | 54 3 4 3 -1. 671 | <_> 672 | 56 3 2 3 2. 673 | 0 674 | 2.4703629314899445e-003 675 | -7.4289917945861816e-001 676 | 6.6825848817825317e-001 677 | <_> 678 | 679 | <_> 680 | 681 | 682 | 683 | <_> 684 | 32 0 30 6 -1. 685 | <_> 686 | 32 0 15 3 2. 687 | <_> 688 | 47 3 15 3 2. 689 | 0 690 | -2.2910499945282936e-002 691 | 4.3986389040946960e-001 692 | -9.0588808059692383e-001 693 | <_> 694 | 695 | <_> 696 | 697 | 698 | 699 | <_> 700 | 0 8 9 7 -1. 701 | <_> 702 | 3 8 3 7 3. 703 | 0 704 | 3.4193221479654312e-002 705 | -6.9507479667663574e-001 706 | 6.2501090764999390e-001 707 | <_> 708 | 709 | <_> 710 | 711 | 712 | 713 | <_> 714 | 30 10 3 3 -1. 715 | <_> 716 | 31 10 1 3 3. 717 | 0 718 | 1.5060020377859473e-003 719 | -6.8670761585235596e-001 720 | 8.2241541147232056e-001 721 | <_> 722 | 723 | <_> 724 | 725 | 726 | 727 | <_> 728 | 21 3 24 4 -1. 729 | <_> 730 | 29 3 8 4 3. 731 | 0 732 | 1.9838380467263050e-005 733 | -9.2727631330490112e-001 734 | 6.4723730087280273e-001 735 | <_> 736 | 737 | <_> 738 | 739 | 740 | 741 | <_> 742 | 42 3 12 6 -1. 743 | <_> 744 | 46 3 4 6 3. 745 | 0 746 | -2.2170299416757189e-005 747 | 5.6555831432342529e-001 748 | -9.6788132190704346e-001 749 | -1.4993519783020020e+000 750 | 7 751 | -1 752 | <_> 753 | 754 | 755 | <_> 756 | 757 | <_> 758 | 759 | 760 | 761 | <_> 762 | 56 9 6 6 -1. 763 | <_> 764 | 59 9 3 6 2. 765 | 0 766 | -1.1395259760320187e-002 767 | 7.1383631229400635e-001 768 | -8.7429678440093994e-001 769 | <_> 770 | 771 | <_> 772 | 773 | 774 | 775 | <_> 776 | 6 4 1 6 -1. 777 | <_> 778 | 6 7 1 3 2. 779 | 0 780 | -2.1864590235054493e-003 781 | 8.5311782360076904e-001 782 | -6.4777731895446777e-001 783 | <_> 784 | 785 | <_> 786 | 787 | 788 | 789 | <_> 790 | 0 0 12 4 -1. 791 | <_> 792 | 0 0 6 2 2. 793 | <_> 794 | 6 2 6 2 2. 795 | 0 796 | 2.3193720262497663e-003 797 | -7.6411879062652588e-001 798 | 7.1867972612380981e-001 799 | <_> 800 | 801 | <_> 802 | 803 | 804 | 805 | <_> 806 | 43 12 18 2 -1. 807 | <_> 808 | 52 12 9 2 2. 809 | 0 810 | -7.9916073009371758e-003 811 | 6.6442942619323730e-001 812 | -7.9540950059890747e-001 813 | <_> 814 | 815 | <_> 816 | 817 | 818 | 819 | <_> 820 | 9 5 2 8 -1. 821 | <_> 822 | 10 5 1 8 2. 823 | 0 824 | 1.4212740352377295e-003 825 | -6.3904231786727905e-001 826 | 7.5050598382949829e-001 827 | -8.4829801321029663e-001 828 | 8 829 | -1 830 | <_> 831 | 832 | 833 | <_> 834 | 835 | <_> 836 | 837 | 838 | 839 | <_> 840 | 1 9 6 3 -1. 841 | <_> 842 | 3 9 2 3 3. 843 | 0 844 | 6.4091659151017666e-003 845 | -8.8425230979919434e-001 846 | 9.9953681230545044e-001 847 | <_> 848 | 849 | <_> 850 | 851 | 852 | 853 | <_> 854 | 56 8 2 8 -1. 855 | <_> 856 | 56 12 2 4 2. 857 | 0 858 | -6.3316390151157975e-004 859 | 8.3822172880172729e-001 860 | -9.8322170972824097e-001 861 | <_> 862 | 863 | <_> 864 | 865 | 866 | 867 | <_> 868 | 24 2 6 13 -1. 869 | <_> 870 | 26 2 2 13 3. 871 | 0 872 | -6.4947169448714703e-005 873 | 1. 874 | -9.1822808980941772e-001 875 | <_> 876 | 877 | <_> 878 | 879 | 880 | 881 | <_> 882 | 33 7 24 4 -1. 883 | <_> 884 | 41 7 8 4 3. 885 | 0 886 | 5.3404141217470169e-003 887 | -9.4317251443862915e-001 888 | 9.0425151586532593e-001 889 | -6.0007210820913315e-002 890 | 9 891 | -1 892 | <_> 893 | 894 | 895 | <_> 896 | 897 | <_> 898 | 899 | 900 | 901 | <_> 902 | 1 1 57 4 -1. 903 | <_> 904 | 1 3 57 2 2. 905 | 0 906 | 1.0755469650030136e-001 907 | -7.1647202968597412e-001 908 | 8.7827038764953613e-001 909 | <_> 910 | 911 | <_> 912 | 913 | 914 | 915 | <_> 916 | 0 2 6 14 -1. 917 | <_> 918 | 3 2 3 14 2. 919 | 0 920 | 3.1668949872255325e-002 921 | -8.7051069736480713e-001 922 | 5.8807212114334106e-001 923 | <_> 924 | 925 | <_> 926 | 927 | 928 | 929 | <_> 930 | 52 3 6 10 -1. 931 | <_> 932 | 54 3 2 10 3. 933 | 0 934 | -1.0572380386292934e-002 935 | 6.2438100576400757e-001 936 | -7.4027371406555176e-001 937 | <_> 938 | 939 | <_> 940 | 941 | 942 | 943 | <_> 944 | 1 14 61 2 -1. 945 | <_> 946 | 1 15 61 1 2. 947 | 0 948 | -2.7396259829401970e-002 949 | 8.9776748418807983e-001 950 | -5.2986758947372437e-001 951 | <_> 952 | 953 | <_> 954 | 955 | 956 | 957 | <_> 958 | 28 0 11 12 -1. 959 | <_> 960 | 28 4 11 4 3. 961 | 0 962 | 2.5918649509549141e-002 963 | -8.6482518911361694e-001 964 | 5.3121817111968994e-001 965 | -9.6125108003616333e-001 966 | 10 967 | -1 968 | <_> 969 | 970 | 971 | <_> 972 | 973 | <_> 974 | 975 | 976 | 977 | <_> 978 | 22 1 41 4 -1. 979 | <_> 980 | 22 3 41 2 2. 981 | 0 982 | 7.1039132773876190e-002 983 | -7.5719678401947021e-001 984 | 7.5645631551742554e-001 985 | <_> 986 | 987 | <_> 988 | 989 | 990 | 991 | <_> 992 | 41 6 6 8 -1. 993 | <_> 994 | 43 6 2 8 3. 995 | 0 996 | 7.6241148635745049e-003 997 | -7.9783838987350464e-001 998 | 7.1733069419860840e-001 999 | <_> 1000 | 1001 | <_> 1002 | 1003 | 1004 | 1005 | <_> 1006 | 50 9 14 5 -1. 1007 | <_> 1008 | 57 9 7 5 2. 1009 | 0 1010 | -2.7092639356851578e-002 1011 | 6.0071170330047607e-001 1012 | -8.4794402122497559e-001 1013 | <_> 1014 | 1015 | <_> 1016 | 1017 | 1018 | 1019 | <_> 1020 | 4 1 12 5 -1. 1021 | <_> 1022 | 10 1 6 5 2. 1023 | 0 1024 | -8.1267888890579343e-004 1025 | 5.9364068508148193e-001 1026 | -8.9295238256454468e-001 1027 | <_> 1028 | 1029 | <_> 1030 | 1031 | 1032 | 1033 | <_> 1034 | 37 9 3 3 -1. 1035 | <_> 1036 | 38 9 1 3 3. 1037 | 0 1038 | 8.3705072756856680e-004 1039 | -6.4887362718582153e-001 1040 | 7.8537952899932861e-001 1041 | -1.0618970394134521e+000 1042 | 11 1043 | -1 1044 | <_> 1045 | 1046 | 1047 | <_> 1048 | 1049 | <_> 1050 | 1051 | 1052 | 1053 | <_> 1054 | 54 0 10 6 -1. 1055 | <_> 1056 | 54 0 5 3 2. 1057 | <_> 1058 | 59 3 5 3 2. 1059 | 0 1060 | -9.7556859254837036e-003 1061 | 7.6982218027114868e-001 1062 | -8.5293501615524292e-001 1063 | <_> 1064 | 1065 | <_> 1066 | 1067 | 1068 | 1069 | <_> 1070 | 47 0 6 11 -1. 1071 | <_> 1072 | 49 0 2 11 3. 1073 | 0 1074 | -8.6617246270179749e-003 1075 | 8.4029090404510498e-001 1076 | -7.1949690580368042e-001 1077 | <_> 1078 | 1079 | <_> 1080 | 1081 | 1082 | 1083 | <_> 1084 | 19 2 20 2 -1. 1085 | <_> 1086 | 19 3 20 1 2. 1087 | 0 1088 | 1.6897840425372124e-002 1089 | -5.3601992130279541e-001 1090 | 9.5484441518783569e-001 1091 | <_> 1092 | 1093 | <_> 1094 | 1095 | 1096 | 1097 | <_> 1098 | 14 4 6 11 -1. 1099 | <_> 1100 | 17 4 3 11 2. 1101 | 0 1102 | 4.7526158596156165e-005 1103 | -7.6412862539291382e-001 1104 | 7.5398761034011841e-001 1105 | <_> 1106 | 1107 | <_> 1108 | 1109 | 1110 | 1111 | <_> 1112 | 31 9 33 2 -1. 1113 | <_> 1114 | 42 9 11 2 3. 1115 | 0 1116 | 6.5607670694589615e-003 1117 | -9.9346441030502319e-001 1118 | 6.4864277839660645e-001 1119 | -7.3307347297668457e-001 1120 | 12 1121 | -1 1122 | <_> 1123 | 1124 | 1125 | <_> 1126 | 1127 | <_> 1128 | 1129 | 1130 | 1131 | <_> 1132 | 6 1 53 6 -1. 1133 | <_> 1134 | 6 3 53 2 3. 1135 | 0 1136 | 1.0103269666433334e-001 1137 | -7.3275578022003174e-001 1138 | 8.4619927406311035e-001 1139 | <_> 1140 | 1141 | <_> 1142 | 1143 | 1144 | 1145 | <_> 1146 | 49 9 4 6 -1. 1147 | <_> 1148 | 49 9 2 3 2. 1149 | <_> 1150 | 51 12 2 3 2. 1151 | 0 1152 | -2.8920811018906534e-004 1153 | 7.1564781665802002e-001 1154 | -8.8221758604049683e-001 1155 | <_> 1156 | 1157 | <_> 1158 | 1159 | 1160 | 1161 | <_> 1162 | 0 9 30 7 -1. 1163 | <_> 1164 | 10 9 10 7 3. 1165 | 0 1166 | 1.0838840156793594e-002 1167 | -8.7420248985290527e-001 1168 | 6.0648679733276367e-001 1169 | <_> 1170 | 1171 | <_> 1172 | 1173 | 1174 | 1175 | <_> 1176 | 40 4 6 2 -1. 1177 | <_> 1178 | 42 4 2 2 3. 1179 | 0 1180 | 5.0803890917450190e-004 1181 | -9.0554022789001465e-001 1182 | 6.4213967323303223e-001 1183 | <_> 1184 | 1185 | <_> 1186 | 1187 | 1188 | 1189 | <_> 1190 | 1 9 6 1 -1. 1191 | <_> 1192 | 3 9 2 1 3. 1193 | 0 1194 | 2.3357039317488670e-003 1195 | -9.2574918270111084e-001 1196 | 8.6384928226470947e-001 1197 | <_> 1198 | 1199 | <_> 1200 | 1201 | 1202 | 1203 | <_> 1204 | 47 3 4 10 -1. 1205 | <_> 1206 | 47 8 4 5 2. 1207 | 0 1208 | 8.0239427916239947e-005 1209 | -9.9618428945541382e-001 1210 | 9.5355111360549927e-001 1211 | <_> 1212 | 1213 | <_> 1214 | 1215 | 1216 | 1217 | <_> 1218 | 31 5 30 11 -1. 1219 | <_> 1220 | 41 5 10 11 3. 1221 | 0 1222 | 3.2030208967626095e-003 1223 | -1. 1224 | 1.0001050233840942e+000 1225 | <_> 1226 | 1227 | <_> 1228 | 1229 | 1230 | 1231 | <_> 1232 | 0 0 2 1 -1. 1233 | <_> 1234 | 1 0 1 1 2. 1235 | 0 1236 | 0. 1237 | 0. 1238 | -1. 1239 | <_> 1240 | 1241 | <_> 1242 | 1243 | 1244 | 1245 | <_> 1246 | 21 3 42 5 -1. 1247 | <_> 1248 | 35 3 14 5 3. 1249 | 0 1250 | 2.6143440045416355e-003 1251 | -1. 1252 | 1.0002139806747437e+000 1253 | <_> 1254 | 1255 | <_> 1256 | 1257 | 1258 | 1259 | <_> 1260 | 0 0 2 1 -1. 1261 | <_> 1262 | 1 0 1 1 2. 1263 | 0 1264 | 0. 1265 | 0. 1266 | -1. 1267 | <_> 1268 | 1269 | <_> 1270 | 1271 | 1272 | 1273 | <_> 1274 | 8 5 30 9 -1. 1275 | <_> 1276 | 8 8 30 3 3. 1277 | 0 1278 | -7.0475979009643197e-004 1279 | 1. 1280 | -9.9976968765258789e-001 1281 | <_> 1282 | 1283 | <_> 1284 | 1285 | 1286 | 1287 | <_> 1288 | 3 12 33 3 -1. 1289 | <_> 1290 | 14 12 11 3 3. 1291 | 0 1292 | 2.1271279547363520e-003 1293 | -9.9694627523422241e-001 1294 | 1.0002720355987549e+000 1295 | <_> 1296 | 1297 | <_> 1298 | 1299 | 1300 | 1301 | <_> 1302 | 0 0 3 2 -1. 1303 | <_> 1304 | 1 0 1 2 3. 1305 | 0 1306 | -2.4224430671893060e-004 1307 | 1. 1308 | -1. 1309 | <_> 1310 | 1311 | <_> 1312 | 1313 | 1314 | 1315 | <_> 1316 | 46 4 3 8 -1. 1317 | <_> 1318 | 47 4 1 8 3. 1319 | 0 1320 | 7.4700301047414541e-004 1321 | -9.9108231067657471e-001 1322 | 9.9941182136535645e-001 1323 | -1.0991690158843994e+000 1324 | 13 1325 | -1 1326 | <_> 1327 | 1328 | 1329 | <_> 1330 | 1331 | <_> 1332 | 1333 | 1334 | 1335 | <_> 1336 | 1 2 6 5 -1. 1337 | <_> 1338 | 3 2 2 5 3. 1339 | 0 1340 | 1.7227890202775598e-003 1341 | -9.3608891963958740e-001 1342 | 8.7251222133636475e-001 1343 | <_> 1344 | 1345 | <_> 1346 | 1347 | 1348 | 1349 | <_> 1350 | 0 3 18 5 -1. 1351 | <_> 1352 | 6 3 6 5 3. 1353 | 0 1354 | 2.7599320746958256e-003 1355 | -9.9757021665573120e-001 1356 | 1.0000289678573608e+000 1357 | <_> 1358 | 1359 | <_> 1360 | 1361 | 1362 | 1363 | <_> 1364 | 3 1 6 14 -1. 1365 | <_> 1366 | 6 1 3 14 2. 1367 | 0 1368 | -8.9444358309265226e-005 1369 | 1. 1370 | -9.9264812469482422e-001 1371 | <_> 1372 | 1373 | <_> 1374 | 1375 | 1376 | 1377 | <_> 1378 | 3 6 2 10 -1. 1379 | <_> 1380 | 3 11 2 5 2. 1381 | 0 1382 | -2.7962020249105990e-004 1383 | 8.2833290100097656e-001 1384 | -9.8444151878356934e-001 1385 | <_> 1386 | 1387 | <_> 1388 | 1389 | 1390 | 1391 | <_> 1392 | 42 0 4 6 -1. 1393 | <_> 1394 | 42 0 2 3 2. 1395 | <_> 1396 | 44 3 2 3 2. 1397 | 0 1398 | -2.7560539820115082e-005 1399 | 1. 1400 | -9.9543339014053345e-001 1401 | -9.1314977407455444e-001 1402 | 14 1403 | -1 1404 | 1405 | -------------------------------------------------------------------------------- /data/haarcascade files/haarcascade_mcs_leftear.xml: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/haarcascade files/haarcascade_mcs_leftear.xml -------------------------------------------------------------------------------- /data/haarcascade files/haarcascade_mcs_rightear.xml: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/haarcascade files/haarcascade_mcs_rightear.xml -------------------------------------------------------------------------------- /data/haarcascade files/haarcascade_russian_plate_number.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | BOOST 5 | HAAR 6 | 20 7 | 60 8 | 9 | GAB 10 | 9.9500000476837158e-001 11 | 5.0000000000000000e-001 12 | 9.4999999999999996e-001 13 | 1 14 | 100 15 | 16 | 0 17 | 1 18 | ALL 19 | 20 20 | 21 | 22 | <_> 23 | 6 24 | -1.3110191822052002e+000 25 | 26 | <_> 27 | 28 | 0 -1 193 1.0079263709485531e-002 29 | 30 | -8.1339186429977417e-001 5.0277775526046753e-001 31 | <_> 32 | 33 | 0 -1 94 -2.2060684859752655e-002 34 | 35 | 7.9418992996215820e-001 -5.0896102190017700e-001 36 | <_> 37 | 38 | 0 -1 18 -4.8777908086776733e-002 39 | 40 | 7.1656656265258789e-001 -4.1640335321426392e-001 41 | <_> 42 | 43 | 0 -1 35 1.0387318208813667e-002 44 | 45 | 3.7618312239646912e-001 -8.5504144430160522e-001 46 | <_> 47 | 48 | 0 -1 191 -9.4083719886839390e-004 49 | 50 | 4.2658549547195435e-001 -5.7729166746139526e-001 51 | <_> 52 | 53 | 0 -1 48 -8.2391249015927315e-003 54 | 55 | 8.2346975803375244e-001 -3.7503159046173096e-001 56 | 57 | <_> 58 | 6 59 | -1.1759783029556274e+000 60 | 61 | <_> 62 | 63 | 0 -1 21 1.7386786639690399e-001 64 | 65 | -6.8139964342117310e-001 6.0767590999603271e-001 66 | <_> 67 | 68 | 0 -1 28 -1.9797295331954956e-002 69 | 70 | 7.8072130680084229e-001 -4.4399836659431458e-001 71 | <_> 72 | 73 | 0 -1 46 -1.0154811898246408e-003 74 | 75 | 3.3383268117904663e-001 -7.6357340812683105e-001 76 | <_> 77 | 78 | 0 -1 138 2.4954911321401596e-002 79 | 80 | -3.9979115128517151e-001 6.8620890378952026e-001 81 | <_> 82 | 83 | 0 -1 25 2.8837744612246752e-003 84 | 85 | -2.7928480505943298e-001 7.9980146884918213e-001 86 | <_> 87 | 88 | 0 -1 26 -3.8839362561702728e-002 89 | 90 | -7.8442335128784180e-001 3.4929576516151428e-001 91 | 92 | <_> 93 | 6 94 | -1.7856997251510620e+000 95 | 96 | <_> 97 | 98 | 0 -1 34 2.7977079153060913e-002 99 | 100 | -5.8424139022827148e-001 6.6850829124450684e-001 101 | <_> 102 | 103 | 0 -1 171 1.9148588180541992e-002 104 | 105 | -6.5457659959793091e-001 4.0804430842399597e-001 106 | <_> 107 | 108 | 0 -1 7 1.1955041438341141e-002 109 | 110 | -4.2002618312835693e-001 5.6217432022094727e-001 111 | <_> 112 | 113 | 0 -1 45 -2.1218564361333847e-002 114 | 115 | 7.1812576055526733e-001 -3.0354043841362000e-001 116 | <_> 117 | 118 | 0 -1 108 2.0117280655540526e-004 119 | 120 | -6.1749500036239624e-001 3.5549193620681763e-001 121 | <_> 122 | 123 | 0 -1 122 3.9725980604998767e-004 124 | 125 | -2.6844096183776855e-001 7.6771658658981323e-001 126 | 127 | <_> 128 | 9 129 | -1.1837021112442017e+000 130 | 131 | <_> 132 | 133 | 0 -1 202 -1.3291766867041588e-002 134 | 135 | 4.5248869061470032e-001 -5.8849954605102539e-001 136 | <_> 137 | 138 | 0 -1 79 -4.8353265970945358e-002 139 | 140 | 7.0951640605926514e-001 -3.2546108961105347e-001 141 | <_> 142 | 143 | 0 -1 22 2.6532993651926517e-003 144 | 145 | -2.5343564152717590e-001 7.6588714122772217e-001 146 | <_> 147 | 148 | 0 -1 66 -3.8548894226551056e-002 149 | 150 | 5.8126109838485718e-001 -3.0813106894493103e-001 151 | <_> 152 | 153 | 0 -1 41 -6.8602780811488628e-004 154 | 155 | 2.6361095905303955e-001 -7.2226840257644653e-001 156 | <_> 157 | 158 | 0 -1 69 -2.5726919993758202e-002 159 | 160 | -8.7153857946395874e-001 1.9438524544239044e-001 161 | <_> 162 | 163 | 0 -1 24 8.4192806389182806e-004 164 | 165 | -3.6150649189949036e-001 5.2065432071685791e-001 166 | <_> 167 | 168 | 0 -1 62 -2.6956878136843443e-003 169 | 170 | 5.9945529699325562e-001 -2.8344830870628357e-001 171 | <_> 172 | 173 | 0 -1 112 3.0572075396776199e-002 174 | 175 | -3.0688971281051636e-001 5.7261526584625244e-001 176 | 177 | <_> 178 | 8 179 | -1.4687808752059937e+000 180 | 181 | <_> 182 | 183 | 0 -1 5 3.1486168503761292e-002 184 | 185 | -5.7836848497390747e-001 3.7931033968925476e-001 186 | <_> 187 | 188 | 0 -1 150 2.8311354108154774e-003 189 | 190 | -5.7888329029083252e-001 3.2841828465461731e-001 191 | <_> 192 | 193 | 0 -1 76 -4.2060948908329010e-002 194 | 195 | 5.5578106641769409e-001 -3.2662427425384521e-001 196 | <_> 197 | 198 | 0 -1 115 6.2936875037848949e-003 199 | 200 | -2.1032968163490295e-001 7.8646916151046753e-001 201 | <_> 202 | 203 | 0 -1 51 7.0570126175880432e-002 204 | 205 | -4.3683132529258728e-001 4.0298295021057129e-001 206 | <_> 207 | 208 | 0 -1 135 2.5173835456371307e-003 209 | 210 | -2.0461565256118774e-001 8.2858163118362427e-001 211 | <_> 212 | 213 | 0 -1 102 1.5648975968360901e-003 214 | 215 | -2.4848082661628723e-001 6.0209411382675171e-001 216 | <_> 217 | 218 | 0 -1 177 -3.5970686003565788e-003 219 | 220 | 2.3294737935066223e-001 -6.5612471103668213e-001 221 | 222 | <_> 223 | 9 224 | -1.1029583215713501e+000 225 | 226 | <_> 227 | 228 | 0 -1 27 -1.1257569491863251e-001 229 | 230 | 3.3181819319725037e-001 -5.3901344537734985e-001 231 | <_> 232 | 233 | 0 -1 142 3.8014666642993689e-003 234 | 235 | -3.6430206894874573e-001 4.5984184741973877e-001 236 | <_> 237 | 238 | 0 -1 57 9.8789634648710489e-004 239 | 240 | -2.6661416888237000e-001 5.6971323490142822e-001 241 | <_> 242 | 243 | 0 -1 55 2.1719809621572495e-002 244 | 245 | 1.8432702124118805e-001 -8.2999354600906372e-001 246 | <_> 247 | 248 | 0 -1 111 5.1051773130893707e-002 249 | 250 | 1.4391148090362549e-001 -9.4541704654693604e-001 251 | <_> 252 | 253 | 0 -1 164 1.8956036074087024e-003 254 | 255 | -6.0830104351043701e-001 2.6091885566711426e-001 256 | <_> 257 | 258 | 0 -1 81 -5.8700828813016415e-003 259 | 260 | 6.9104760885238647e-001 -2.6916843652725220e-001 261 | <_> 262 | 263 | 0 -1 116 -1.1522199492901564e-003 264 | 265 | -6.9503885507583618e-001 2.4749211966991425e-001 266 | <_> 267 | 268 | 0 -1 90 -5.1933946087956429e-003 269 | 270 | 5.8551025390625000e-001 -3.0389472842216492e-001 271 | 272 | <_> 273 | 9 274 | -9.0274518728256226e-001 275 | 276 | <_> 277 | 278 | 0 -1 205 -1.4383997768163681e-002 279 | 280 | 4.5400592684745789e-001 -4.9917897582054138e-001 281 | <_> 282 | 283 | 0 -1 114 -3.3369414508342743e-002 284 | 285 | -9.3247985839843750e-001 1.4586758613586426e-001 286 | <_> 287 | 288 | 0 -1 128 5.2380945999175310e-004 289 | 290 | -2.8349643945693970e-001 6.4983856678009033e-001 291 | <_> 292 | 293 | 0 -1 143 6.1231426661834121e-004 294 | 295 | -1.8502233922481537e-001 6.5052211284637451e-001 296 | <_> 297 | 298 | 0 -1 49 1.7017847858369350e-003 299 | 300 | 2.2008989751338959e-001 -7.2277534008026123e-001 301 | <_> 302 | 303 | 0 -1 133 2.6139442343264818e-003 304 | 305 | 1.8238025903701782e-001 -7.6262325048446655e-001 306 | <_> 307 | 308 | 0 -1 43 -2.0020073279738426e-003 309 | 310 | 5.6799399852752686e-001 -2.8219676017761230e-001 311 | <_> 312 | 313 | 0 -1 119 1.9273828947916627e-003 314 | 315 | -2.0913636684417725e-001 7.9203850030899048e-001 316 | <_> 317 | 318 | 0 -1 134 -9.4476283993571997e-004 319 | 320 | -8.2361942529678345e-001 2.4256958067417145e-001 321 | 322 | <_> 323 | 10 324 | -1.4518526792526245e+000 325 | 326 | <_> 327 | 328 | 0 -1 162 1.6756314784288406e-002 329 | 330 | -6.9359332323074341e-001 5.1373954862356186e-002 331 | <_> 332 | 333 | 0 -1 16 2.4082964286208153e-002 334 | 335 | -3.3989402651786804e-001 4.5332714915275574e-001 336 | <_> 337 | 338 | 0 -1 186 1.2284796684980392e-003 339 | 340 | -2.2297365963459015e-001 6.1439812183380127e-001 341 | <_> 342 | 343 | 0 -1 59 -1.4379122294485569e-003 344 | 345 | -6.9444245100021362e-001 2.0446482300758362e-001 346 | <_> 347 | 348 | 0 -1 185 -1.8713285680860281e-003 349 | 350 | 6.7942184209823608e-001 -2.7580419182777405e-001 351 | <_> 352 | 353 | 0 -1 190 -4.7389674000442028e-003 354 | 355 | -7.0437240600585938e-001 2.6915156841278076e-001 356 | <_> 357 | 358 | 0 -1 156 7.4071279959753156e-004 359 | 360 | -2.9220902919769287e-001 5.3538239002227783e-001 361 | <_> 362 | 363 | 0 -1 11 -2.2739455103874207e-001 364 | 365 | 6.6916191577911377e-001 -2.1987228095531464e-001 366 | <_> 367 | 368 | 0 -1 155 -1.0255509987473488e-003 369 | 370 | 6.3346290588378906e-001 -2.2717863321304321e-001 371 | <_> 372 | 373 | 0 -1 167 2.4775355122983456e-003 374 | 375 | -5.4297816753387451e-001 3.1877547502517700e-001 376 | 377 | <_> 378 | 11 379 | -1.3153649568557739e+000 380 | 381 | <_> 382 | 383 | 0 -1 6 1.9131936132907867e-002 384 | 385 | -6.0168600082397461e-001 1.9141913950443268e-001 386 | <_> 387 | 388 | 0 -1 42 -4.5855185016989708e-003 389 | 390 | 2.1901632845401764e-001 -5.7136750221252441e-001 391 | <_> 392 | 393 | 0 -1 53 -1.9026801455765963e-003 394 | 395 | -8.0075079202651978e-001 1.6502076387405396e-001 396 | <_> 397 | 398 | 0 -1 19 -3.2767035067081451e-002 399 | 400 | 5.1496404409408569e-001 -2.5474679470062256e-001 401 | <_> 402 | 403 | 0 -1 129 6.3941581174731255e-004 404 | 405 | -1.9851709902286530e-001 6.7218667268753052e-001 406 | <_> 407 | 408 | 0 -1 201 1.5573646873235703e-002 409 | 410 | -1.7564551532268524e-001 7.0536541938781738e-001 411 | <_> 412 | 413 | 0 -1 200 9.5508026424795389e-004 414 | 415 | -1.9691802561283112e-001 6.1125624179840088e-001 416 | <_> 417 | 418 | 0 -1 67 9.0427603572607040e-003 419 | 420 | 1.6518253087997437e-001 -8.7012130022048950e-001 421 | <_> 422 | 423 | 0 -1 77 8.1576988101005554e-002 424 | 425 | 1.4075902104377747e-001 -8.4871828556060791e-001 426 | <_> 427 | 428 | 0 -1 166 -5.1994959358125925e-004 429 | 430 | 2.1803210675716400e-001 -5.4628211259841919e-001 431 | <_> 432 | 433 | 0 -1 70 -2.3009868338704109e-002 434 | 435 | -7.9586231708526611e-001 1.5989699959754944e-001 436 | 437 | <_> 438 | 13 439 | -1.4625015258789063e+000 440 | 441 | <_> 442 | 443 | 0 -1 1 2.6759501546621323e-002 444 | 445 | -6.0482984781265259e-001 1.4906832575798035e-001 446 | <_> 447 | 448 | 0 -1 165 3.0343931168317795e-002 449 | 450 | -4.7357541322708130e-001 2.6279065012931824e-001 451 | <_> 452 | 453 | 0 -1 161 1.2678599450737238e-003 454 | 455 | -1.9493983685970306e-001 6.9734728336334229e-001 456 | <_> 457 | 458 | 0 -1 30 1.8607920501381159e-003 459 | 460 | 1.5611934661865234e-001 -9.0542370080947876e-001 461 | <_> 462 | 463 | 0 -1 157 -1.3872641138732433e-003 464 | 465 | 5.3263407945632935e-001 -3.0192303657531738e-001 466 | <_> 467 | 468 | 0 -1 180 -6.9969398900866508e-003 469 | 470 | -9.4549953937530518e-001 1.5575224161148071e-001 471 | <_> 472 | 473 | 0 -1 158 1.1245720088481903e-003 474 | 475 | -2.6688691973686218e-001 5.5608308315277100e-001 476 | <_> 477 | 478 | 0 -1 160 -2.8279949910938740e-003 479 | 480 | -9.1861122846603394e-001 1.3309663534164429e-001 481 | <_> 482 | 483 | 0 -1 58 7.1019242750480771e-004 484 | 485 | -3.0977895855903625e-001 4.3846300244331360e-001 486 | <_> 487 | 488 | 0 -1 8 -4.1933014988899231e-002 489 | 490 | -8.9102542400360107e-001 1.5866196155548096e-001 491 | <_> 492 | 493 | 0 -1 87 1.6568358987569809e-002 494 | 495 | 1.2731756269931793e-001 -8.5553413629531860e-001 496 | <_> 497 | 498 | 0 -1 64 2.0309074316173792e-003 499 | 500 | -2.3260365426540375e-001 6.7330485582351685e-001 501 | <_> 502 | 503 | 0 -1 159 -1.7069760942831635e-003 504 | 505 | -7.1925789117813110e-001 1.9108834862709045e-001 506 | 507 | <_> 508 | 14 509 | -1.4959813356399536e+000 510 | 511 | <_> 512 | 513 | 0 -1 4 1.4695923775434494e-002 514 | 515 | -6.2167906761169434e-001 2.1172638237476349e-001 516 | <_> 517 | 518 | 0 -1 50 -1.6501215286552906e-003 519 | 520 | 1.9353884458541870e-001 -5.7780367136001587e-001 521 | <_> 522 | 523 | 0 -1 123 7.0121872704476118e-004 524 | 525 | -2.2979106009006500e-001 5.3033334016799927e-001 526 | <_> 527 | 528 | 0 -1 52 9.4158272258937359e-004 529 | 530 | 1.6849038004875183e-001 -7.4897718429565430e-001 531 | <_> 532 | 533 | 0 -1 124 -2.0684124901890755e-003 534 | 535 | 6.7936712503433228e-001 -1.9317412376403809e-001 536 | <_> 537 | 538 | 0 -1 23 -1.8305826233699918e-004 539 | 540 | -7.0275229215621948e-001 1.7971208691596985e-001 541 | <_> 542 | 543 | 0 -1 198 5.5587477982044220e-004 544 | 545 | -2.4448128044605255e-001 5.0703984498977661e-001 546 | <_> 547 | 548 | 0 -1 152 4.3448276119306684e-004 549 | 550 | 1.3497908413410187e-001 -8.5621362924575806e-001 551 | <_> 552 | 553 | 0 -1 197 -1.2359691318124533e-003 554 | 555 | 6.1710417270660400e-001 -2.2301279008388519e-001 556 | <_> 557 | 558 | 0 -1 153 -6.9627340417355299e-004 559 | 560 | -6.4706987142562866e-001 2.3951497673988342e-001 561 | <_> 562 | 563 | 0 -1 175 1.0683680884540081e-003 564 | 565 | -2.8343605995178223e-001 4.9318629503250122e-001 566 | <_> 567 | 568 | 0 -1 168 1.7104238213505596e-004 569 | 570 | -2.7171039581298828e-001 4.2520308494567871e-001 571 | <_> 572 | 573 | 0 -1 144 8.2368971779942513e-003 574 | 575 | 1.6359315812587738e-001 -7.3864609003067017e-001 576 | <_> 577 | 578 | 0 -1 131 -5.9884190559387207e-003 579 | 580 | 3.8030940294265747e-001 -3.0763563513755798e-001 581 | 582 | <_> 583 | 9 584 | -1.1183819770812988e+000 585 | 586 | <_> 587 | 588 | 0 -1 187 -1.4863962307572365e-002 589 | 590 | 1.1989101022481918e-001 -6.6138857603073120e-001 591 | <_> 592 | 593 | 0 -1 117 2.4736612103879452e-003 594 | 595 | -5.2778661251068115e-001 2.3012125492095947e-001 596 | <_> 597 | 598 | 0 -1 71 -4.8899287357926369e-003 599 | 600 | 6.0186779499053955e-001 -2.0681641995906830e-001 601 | <_> 602 | 603 | 0 -1 174 1.5796069055795670e-002 604 | 605 | 1.4610521495342255e-001 -8.2099527120590210e-001 606 | <_> 607 | 608 | 0 -1 104 5.9720675926655531e-004 609 | 610 | -2.3587301373481750e-001 4.8323699831962585e-001 611 | <_> 612 | 613 | 0 -1 103 -1.9448818638920784e-003 614 | 615 | 6.4417767524719238e-001 -2.0953170955181122e-001 616 | <_> 617 | 618 | 0 -1 154 1.9433414854574949e-004 619 | 620 | 2.0600238442420959e-001 -7.2418999671936035e-001 621 | <_> 622 | 623 | 0 -1 163 -1.5097535215318203e-002 624 | 625 | -8.7151485681533813e-001 1.2594890594482422e-001 626 | <_> 627 | 628 | 0 -1 82 -3.9843879640102386e-003 629 | 630 | 4.3801131844520569e-001 -2.9676589369773865e-001 631 | 632 | <_> 633 | 12 634 | -1.5434337854385376e+000 635 | 636 | <_> 637 | 638 | 0 -1 105 1.1273270938545465e-003 639 | 640 | -4.7976878285408020e-001 3.6627906560897827e-001 641 | <_> 642 | 643 | 0 -1 95 9.7806821577250957e-004 644 | 645 | -2.7689707279205322e-001 5.1295894384384155e-001 646 | <_> 647 | 648 | 0 -1 15 1.6528377309441566e-002 649 | 650 | -4.5259797573089600e-001 2.4290211498737335e-001 651 | <_> 652 | 653 | 0 -1 137 1.1040373938158154e-003 654 | 655 | -3.2714816927909851e-001 3.4566244482994080e-001 656 | <_> 657 | 658 | 0 -1 109 -1.7780361231416464e-003 659 | 660 | -6.9511681795120239e-001 1.8829824030399323e-001 661 | <_> 662 | 663 | 0 -1 92 4.6280334936454892e-004 664 | 665 | -2.3864887654781342e-001 5.3136289119720459e-001 666 | <_> 667 | 668 | 0 -1 100 -1.4975425438024104e-004 669 | 670 | -6.6509884595870972e-001 2.1483559906482697e-001 671 | <_> 672 | 673 | 0 -1 83 -1.4625370968133211e-003 674 | 675 | 2.6556470990180969e-001 -4.9002227187156677e-001 676 | <_> 677 | 678 | 0 -1 14 -2.6019819779321551e-004 679 | 680 | -7.0160359144210815e-001 1.6359129548072815e-001 681 | <_> 682 | 683 | 0 -1 14 2.2371641534846276e-004 684 | 685 | 1.2919521331787109e-001 -6.9767206907272339e-001 686 | <_> 687 | 688 | 0 -1 194 -1.0447315871715546e-002 689 | 690 | 2.1837629377841949e-001 -4.6482038497924805e-001 691 | <_> 692 | 693 | 0 -1 20 -9.2897024005651474e-003 694 | 695 | 6.4918082952499390e-001 -2.0495061576366425e-001 696 | 697 | <_> 698 | 12 699 | -1.4440233707427979e+000 700 | 701 | <_> 702 | 703 | 0 -1 9 8.5356216877698898e-003 704 | 705 | -5.3151458501815796e-001 2.2357723116874695e-001 706 | <_> 707 | 708 | 0 -1 182 1.5294685726985335e-003 709 | 710 | -6.0895460844039917e-001 1.7429886758327484e-001 711 | <_> 712 | 713 | 0 -1 40 1.8610086990520358e-003 714 | 715 | -2.5480428338050842e-001 4.2150071263313293e-001 716 | <_> 717 | 718 | 0 -1 176 1.5735558699816465e-003 719 | 720 | -1.6832062602043152e-001 4.8567819595336914e-001 721 | <_> 722 | 723 | 0 -1 179 -6.7992787808179855e-004 724 | 725 | 3.9894598722457886e-001 -3.0744269490242004e-001 726 | <_> 727 | 728 | 0 -1 151 4.9857296049594879e-002 729 | 730 | -1.5370152890682220e-001 6.7523348331451416e-001 731 | <_> 732 | 733 | 0 -1 139 -2.8339058160781860e-002 734 | 735 | 5.0540882349014282e-001 -2.9473617672920227e-001 736 | <_> 737 | 738 | 0 -1 72 -7.7956825494766235e-002 739 | 740 | 4.0387043356895447e-001 -3.0287107825279236e-001 741 | <_> 742 | 743 | 0 -1 89 -3.6115488037467003e-003 744 | 745 | 6.3856112957000732e-001 -1.6917882859706879e-001 746 | <_> 747 | 748 | 0 -1 207 3.3940275898203254e-004 749 | 750 | 1.3713537156581879e-001 -7.8120291233062744e-001 751 | <_> 752 | 753 | 0 -1 39 4.0043061599135399e-003 754 | 755 | 1.5233094990253448e-001 -6.3939732313156128e-001 756 | <_> 757 | 758 | 0 -1 65 -4.4601649278774858e-004 759 | 760 | 2.1333815157413483e-001 -4.7728902101516724e-001 761 | 762 | <_> 763 | 13 764 | -1.2532578706741333e+000 765 | 766 | <_> 767 | 768 | 0 -1 204 -2.0341124385595322e-002 769 | 770 | 2.4170616269111633e-001 -4.9161517620086670e-001 771 | <_> 772 | 773 | 0 -1 169 8.9040049351751804e-004 774 | 775 | -2.8570893406867981e-001 4.2666998505592346e-001 776 | <_> 777 | 778 | 0 -1 60 -3.3259526826441288e-003 779 | 780 | 4.2626520991325378e-001 -2.3811897635459900e-001 781 | <_> 782 | 783 | 0 -1 38 -3.1714607030153275e-002 784 | 785 | -8.5494768619537354e-001 1.1712870001792908e-001 786 | <_> 787 | 788 | 0 -1 31 -1.1553820222616196e-002 789 | 790 | 2.2675493359565735e-001 -4.9640509486198425e-001 791 | <_> 792 | 793 | 0 -1 80 -6.7727260291576385e-002 794 | 795 | -8.6705064773559570e-001 9.8765812814235687e-002 796 | <_> 797 | 798 | 0 -1 63 -3.1611192971467972e-003 799 | 800 | 3.9449846744537354e-001 -2.8210711479187012e-001 801 | <_> 802 | 803 | 0 -1 149 4.3221906526014209e-004 804 | 805 | 1.1805476248264313e-001 -9.0178310871124268e-001 806 | <_> 807 | 808 | 0 -1 188 -2.2296360111795366e-004 809 | 810 | 1.7324598133563995e-001 -5.2877873182296753e-001 811 | <_> 812 | 813 | 0 -1 120 -2.1440195851027966e-003 814 | 815 | 5.5513423681259155e-001 -1.9791823625564575e-001 816 | <_> 817 | 818 | 0 -1 113 -4.5122690498828888e-003 819 | 820 | 5.5083745718002319e-001 -1.8810540437698364e-001 821 | <_> 822 | 823 | 0 -1 130 -3.5149464383721352e-003 824 | 825 | 5.5467557907104492e-001 -2.2856147587299347e-001 826 | <_> 827 | 828 | 0 -1 121 -4.4786706566810608e-003 829 | 830 | -7.9106998443603516e-001 1.7836479842662811e-001 831 | 832 | <_> 833 | 15 834 | -1.1898330450057983e+000 835 | 836 | <_> 837 | 838 | 0 -1 0 1.5206767246127129e-002 839 | 840 | -4.9173194169998169e-001 2.7093595266342163e-001 841 | <_> 842 | 843 | 0 -1 125 6.9564773002639413e-004 844 | 845 | -2.3066598176956177e-001 5.4028344154357910e-001 846 | <_> 847 | 848 | 0 -1 125 -8.3668017759919167e-004 849 | 850 | 4.4658055901527405e-001 -2.7778497338294983e-001 851 | <_> 852 | 853 | 0 -1 91 -3.8321319967508316e-002 854 | 855 | -7.9069298505783081e-001 1.8700349330902100e-001 856 | <_> 857 | 858 | 0 -1 207 -2.1063965687062591e-004 859 | 860 | -6.3163763284683228e-001 1.8656146526336670e-001 861 | <_> 862 | 863 | 0 -1 61 3.6907330155372620e-002 864 | 865 | 9.9319733679294586e-002 -7.6762360334396362e-001 866 | <_> 867 | 868 | 0 -1 85 8.1071127206087112e-003 869 | 870 | -2.8561261296272278e-001 3.4748569130897522e-001 871 | <_> 872 | 873 | 0 -1 189 6.2815943965688348e-004 874 | 875 | 1.6656193137168884e-001 -5.4635977745056152e-001 876 | <_> 877 | 878 | 0 -1 86 2.8582263621501625e-004 879 | 880 | -2.4100163578987122e-001 4.5410770177841187e-001 881 | <_> 882 | 883 | 0 -1 173 -1.9862279295921326e-002 884 | 885 | -9.4317340850830078e-001 1.2513674795627594e-001 886 | <_> 887 | 888 | 0 -1 96 1.1506280861794949e-003 889 | 890 | -2.4514634907245636e-001 4.6452957391738892e-001 891 | <_> 892 | 893 | 0 -1 29 2.3451185552403331e-004 894 | 895 | 1.2489952147006989e-001 -8.0278074741363525e-001 896 | <_> 897 | 898 | 0 -1 101 6.7837134702131152e-004 899 | 900 | -2.5017899274826050e-001 4.3841627240180969e-001 901 | <_> 902 | 903 | 0 -1 17 3.1583159579895437e-004 904 | 905 | 1.5951988101005554e-001 -7.4524724483489990e-001 906 | <_> 907 | 908 | 0 -1 110 7.2623658925294876e-003 909 | 910 | 1.2511830031871796e-001 -6.5659755468368530e-001 911 | 912 | <_> 913 | 15 914 | -1.2416906356811523e+000 915 | 916 | <_> 917 | 918 | 0 -1 2 7.5144092552363873e-003 919 | 920 | -5.9518074989318848e-001 5.3793102502822876e-002 921 | <_> 922 | 923 | 0 -1 98 -6.4494344405829906e-004 924 | 925 | 2.0429474115371704e-001 -4.3661779165267944e-001 926 | <_> 927 | 928 | 0 -1 196 3.3831471228040755e-004 929 | 930 | -2.1566553413867950e-001 4.7118204832077026e-001 931 | <_> 932 | 933 | 0 -1 73 2.8320802375674248e-003 934 | 935 | 1.3322307169437408e-001 -8.3729231357574463e-001 936 | <_> 937 | 938 | 0 -1 199 1.6218879027292132e-003 939 | 940 | -2.0889574289321899e-001 4.7114694118499756e-001 941 | <_> 942 | 943 | 0 -1 10 2.7122153551317751e-004 944 | 945 | 1.1475630849599838e-001 -7.8029519319534302e-001 946 | <_> 947 | 948 | 0 -1 170 8.8358242064714432e-003 949 | 950 | 1.2460929155349731e-001 -7.6791721582412720e-001 951 | <_> 952 | 953 | 0 -1 106 9.7634072881191969e-004 954 | 955 | -2.0806105434894562e-001 5.1318311691284180e-001 956 | <_> 957 | 958 | 0 -1 107 -2.1239042282104492e-002 959 | 960 | -8.7171542644500732e-001 1.2721680104732513e-001 961 | <_> 962 | 963 | 0 -1 97 7.1797124110162258e-004 964 | 965 | -3.0763280391693115e-001 3.7504923343658447e-001 966 | <_> 967 | 968 | 0 -1 32 2.7504155412316322e-002 969 | 970 | 1.5651945769786835e-001 -7.9516488313674927e-001 971 | <_> 972 | 973 | 0 -1 178 1.0624636197462678e-003 974 | 975 | 1.3473348319530487e-001 -6.9174814224243164e-001 976 | <_> 977 | 978 | 0 -1 33 -8.1248432397842407e-002 979 | 980 | -8.5117286443710327e-001 1.0601779073476791e-001 981 | <_> 982 | 983 | 0 -1 140 -2.2936165332794189e-002 984 | 985 | 3.9202499389648438e-001 -2.9867398738861084e-001 986 | <_> 987 | 988 | 0 -1 146 -1.3326616026461124e-003 989 | 990 | 4.7240665555000305e-001 -2.6287403702735901e-001 991 | 992 | <_> 993 | 13 994 | -1.3383979797363281e+000 995 | 996 | <_> 997 | 998 | 0 -1 3 3.2254494726657867e-002 999 | 1000 | -6.5151512622833252e-001 7.9947575926780701e-002 1001 | <_> 1002 | 1003 | 0 -1 172 -1.1810796568170190e-003 1004 | 1005 | 2.5173431634902954e-001 -4.5536977052688599e-001 1006 | <_> 1007 | 1008 | 0 -1 88 8.0361258005723357e-004 1009 | 1010 | -2.1178695559501648e-001 4.9318632483482361e-001 1011 | <_> 1012 | 1013 | 0 -1 93 6.6201295703649521e-004 1014 | 1015 | -1.9441033899784088e-001 4.6225026249885559e-001 1016 | <_> 1017 | 1018 | 0 -1 84 3.4565184614621103e-004 1019 | 1020 | -2.1175089478492737e-001 4.6985754370689392e-001 1021 | <_> 1022 | 1023 | 0 -1 132 -5.6433549616485834e-004 1024 | 1025 | -7.9713624715805054e-001 1.8714086711406708e-001 1026 | <_> 1027 | 1028 | 0 -1 56 5.8492692187428474e-004 1029 | 1030 | -3.9330720901489258e-001 2.4242231249809265e-001 1031 | <_> 1032 | 1033 | 0 -1 13 2.5043603032827377e-002 1034 | 1035 | 1.3490234315395355e-001 -7.5923883914947510e-001 1036 | <_> 1037 | 1038 | 0 -1 37 -1.8510785885155201e-003 1039 | 1040 | 4.1279399394989014e-001 -2.7271771430969238e-001 1041 | <_> 1042 | 1043 | 0 -1 68 -2.5741360150277615e-004 1044 | 1045 | -6.3662034273147583e-001 1.8135882914066315e-001 1046 | <_> 1047 | 1048 | 0 -1 184 -1.5121832489967346e-002 1049 | 1050 | 2.5249326229095459e-001 -3.8438034057617188e-001 1051 | <_> 1052 | 1053 | 0 -1 203 -1.5006031841039658e-002 1054 | 1055 | -8.4878319501876831e-001 1.1718367785215378e-001 1056 | <_> 1057 | 1058 | 0 -1 74 4.9880752339959145e-004 1059 | 1060 | -2.6755046844482422e-001 4.5769825577735901e-001 1061 | 1062 | <_> 1063 | 12 1064 | -1.2097512483596802e+000 1065 | 1066 | <_> 1067 | 1068 | 0 -1 195 -1.1614991351962090e-002 1069 | 1070 | 1.4465409517288208e-001 -5.9521216154098511e-001 1071 | <_> 1072 | 1073 | 0 -1 75 3.9767110138200223e-004 1074 | 1075 | -4.2697989940643311e-001 2.4382311105728149e-001 1076 | <_> 1077 | 1078 | 0 -1 47 -4.6969857066869736e-002 1079 | 1080 | -9.3969690799713135e-001 1.2196484953165054e-001 1081 | <_> 1082 | 1083 | 0 -1 136 5.5550434626638889e-004 1084 | 1085 | -1.8246935307979584e-001 6.5156191587448120e-001 1086 | <_> 1087 | 1088 | 0 -1 99 2.9468833236023784e-004 1089 | 1090 | 1.5099152922630310e-001 -7.8840750455856323e-001 1091 | <_> 1092 | 1093 | 0 -1 44 1.2439775280654430e-002 1094 | 1095 | 1.4981375634670258e-001 -7.5917595624923706e-001 1096 | <_> 1097 | 1098 | 0 -1 147 6.6337559837847948e-004 1099 | 1100 | -2.5185841321945190e-001 5.9387433528900146e-001 1101 | <_> 1102 | 1103 | 0 -1 148 -6.8454549182206392e-004 1104 | 1105 | 5.1199448108673096e-001 -2.5247576832771301e-001 1106 | <_> 1107 | 1108 | 0 -1 141 1.4808592386543751e-003 1109 | 1110 | 2.2439701855182648e-001 -5.8184891939163208e-001 1111 | <_> 1112 | 1113 | 0 -1 12 6.0307271778583527e-003 1114 | 1115 | -4.3553912639617920e-001 2.8183382749557495e-001 1116 | <_> 1117 | 1118 | 0 -1 78 -1.9170897081494331e-002 1119 | 1120 | -8.5707378387451172e-001 1.4850790798664093e-001 1121 | <_> 1122 | 1123 | 0 -1 122 3.0278289341367781e-004 1124 | 1125 | -3.1547480821609497e-001 4.1798374056816101e-001 1126 | 1127 | <_> 1128 | 10 1129 | -1.2253109216690063e+000 1130 | 1131 | <_> 1132 | 1133 | 0 -1 181 4.6847470104694366e-002 1134 | 1135 | -4.9239391088485718e-001 5.2287584543228149e-001 1136 | <_> 1137 | 1138 | 0 -1 118 2.2181579843163490e-003 1139 | 1140 | -4.2569425702095032e-001 3.6892616748809814e-001 1141 | <_> 1142 | 1143 | 0 -1 145 6.1082182219251990e-004 1144 | 1145 | 1.7654621601104736e-001 -8.2656937837600708e-001 1146 | <_> 1147 | 1148 | 0 -1 127 1.7401995137333870e-002 1149 | 1150 | 2.7770876884460449e-001 -5.6393522024154663e-001 1151 | <_> 1152 | 1153 | 0 -1 54 5.2314018830657005e-004 1154 | 1155 | -3.6257097125053406e-001 4.6126455068588257e-001 1156 | <_> 1157 | 1158 | 0 -1 206 2.1581796463578939e-003 1159 | 1160 | 1.9110183417797089e-001 -6.8012320995330811e-001 1161 | <_> 1162 | 1163 | 0 -1 192 -1.3209994649514556e-003 1164 | 1165 | 6.7618584632873535e-001 -2.6087108254432678e-001 1166 | <_> 1167 | 1168 | 0 -1 126 -1.2237254530191422e-002 1169 | 1170 | -5.7184767723083496e-001 3.0778104066848755e-001 1171 | <_> 1172 | 1173 | 0 -1 36 8.7829465046525002e-003 1174 | 1175 | 1.6890920698642731e-001 -7.8835797309875488e-001 1176 | <_> 1177 | 1178 | 0 -1 183 7.5588272884488106e-003 1179 | 1180 | 1.5143942832946777e-001 -8.2572847604751587e-001 1181 | 1182 | <_> 1183 | 1184 | <_> 1185 | 0 0 10 10 -1. 1186 | <_> 1187 | 0 0 5 5 2. 1188 | <_> 1189 | 5 5 5 5 2. 1190 | 0 1191 | <_> 1192 | 1193 | <_> 1194 | 0 0 12 16 -1. 1195 | <_> 1196 | 6 0 6 16 2. 1197 | 0 1198 | <_> 1199 | 1200 | <_> 1201 | 0 3 10 6 -1. 1202 | <_> 1203 | 5 3 5 6 2. 1204 | 0 1205 | <_> 1206 | 1207 | <_> 1208 | 0 3 21 16 -1. 1209 | <_> 1210 | 7 3 7 16 3. 1211 | 0 1212 | <_> 1213 | 1214 | <_> 1215 | 0 4 16 9 -1. 1216 | <_> 1217 | 4 4 8 9 2. 1218 | 0 1219 | <_> 1220 | 1221 | <_> 1222 | 0 4 10 12 -1. 1223 | <_> 1224 | 5 4 5 12 2. 1225 | 0 1226 | <_> 1227 | 1228 | <_> 1229 | 0 7 14 7 -1. 1230 | <_> 1231 | 7 7 7 7 2. 1232 | 0 1233 | <_> 1234 | 1235 | <_> 1236 | 0 9 12 7 -1. 1237 | <_> 1238 | 6 9 6 7 2. 1239 | 0 1240 | <_> 1241 | 1242 | <_> 1243 | 0 9 60 3 -1. 1244 | <_> 1245 | 30 9 30 3 2. 1246 | 0 1247 | <_> 1248 | 1249 | <_> 1250 | 0 10 8 3 -1. 1251 | <_> 1252 | 4 10 4 3 2. 1253 | 0 1254 | <_> 1255 | 1256 | <_> 1257 | 0 11 1 2 -1. 1258 | <_> 1259 | 0 12 1 1 2. 1260 | 0 1261 | <_> 1262 | 1263 | <_> 1264 | 1 0 51 12 -1. 1265 | <_> 1266 | 1 4 51 4 3. 1267 | 0 1268 | <_> 1269 | 1270 | <_> 1271 | 1 3 15 7 -1. 1272 | <_> 1273 | 6 3 5 7 3. 1274 | 0 1275 | <_> 1276 | 1277 | <_> 1278 | 1 7 30 6 -1. 1279 | <_> 1280 | 1 7 15 3 2. 1281 | <_> 1282 | 16 10 15 3 2. 1283 | 0 1284 | <_> 1285 | 1286 | <_> 1287 | 1 12 1 2 -1. 1288 | <_> 1289 | 1 13 1 1 2. 1290 | 0 1291 | <_> 1292 | 1293 | <_> 1294 | 2 2 18 16 -1. 1295 | <_> 1296 | 2 6 18 8 2. 1297 | 0 1298 | <_> 1299 | 1300 | <_> 1301 | 2 3 29 4 -1. 1302 | <_> 1303 | 2 5 29 2 2. 1304 | 0 1305 | <_> 1306 | 1307 | <_> 1308 | 2 9 1 2 -1. 1309 | <_> 1310 | 2 10 1 1 2. 1311 | 0 1312 | <_> 1313 | 1314 | <_> 1315 | 2 14 40 6 -1. 1316 | <_> 1317 | 2 17 40 3 2. 1318 | 0 1319 | <_> 1320 | 1321 | <_> 1322 | 3 0 22 6 -1. 1323 | <_> 1324 | 3 2 22 2 3. 1325 | 0 1326 | <_> 1327 | 1328 | <_> 1329 | 3 2 38 2 -1. 1330 | <_> 1331 | 3 2 19 1 2. 1332 | <_> 1333 | 22 3 19 1 2. 1334 | 0 1335 | <_> 1336 | 1337 | <_> 1338 | 3 4 51 16 -1. 1339 | <_> 1340 | 3 8 51 8 2. 1341 | 0 1342 | <_> 1343 | 1344 | <_> 1345 | 3 7 3 8 -1. 1346 | <_> 1347 | 4 7 1 8 3. 1348 | 0 1349 | <_> 1350 | 1351 | <_> 1352 | 3 9 1 3 -1. 1353 | <_> 1354 | 3 10 1 1 3. 1355 | 0 1356 | <_> 1357 | 1358 | <_> 1359 | 4 8 3 5 -1. 1360 | <_> 1361 | 5 8 1 5 3. 1362 | 0 1363 | <_> 1364 | 1365 | <_> 1366 | 4 8 4 9 -1. 1367 | <_> 1368 | 5 8 2 9 2. 1369 | 0 1370 | <_> 1371 | 1372 | <_> 1373 | 4 11 36 9 -1. 1374 | <_> 1375 | 16 11 12 9 3. 1376 | 0 1377 | <_> 1378 | 1379 | <_> 1380 | 4 14 49 6 -1. 1381 | <_> 1382 | 4 17 49 3 2. 1383 | 0 1384 | <_> 1385 | 1386 | <_> 1387 | 5 0 17 6 -1. 1388 | <_> 1389 | 5 2 17 2 3. 1390 | 0 1391 | <_> 1392 | 1393 | <_> 1394 | 5 1 3 1 -1. 1395 | <_> 1396 | 6 1 1 1 3. 1397 | 0 1398 | <_> 1399 | 1400 | <_> 1401 | 5 1 8 2 -1. 1402 | <_> 1403 | 7 1 4 2 2. 1404 | 0 1405 | <_> 1406 | 1407 | <_> 1408 | 5 2 36 9 -1. 1409 | <_> 1410 | 17 2 12 9 3. 1411 | 0 1412 | <_> 1413 | 1414 | <_> 1415 | 5 3 33 17 -1. 1416 | <_> 1417 | 16 3 11 17 3. 1418 | 0 1419 | <_> 1420 | 1421 | <_> 1422 | 6 0 30 19 -1. 1423 | <_> 1424 | 16 0 10 19 3. 1425 | 0 1426 | <_> 1427 | 1428 | <_> 1429 | 6 3 29 4 -1. 1430 | <_> 1431 | 6 5 29 2 2. 1432 | 0 1433 | <_> 1434 | 1435 | <_> 1436 | 6 4 16 16 -1. 1437 | <_> 1438 | 14 4 8 16 2. 1439 | 0 1440 | <_> 1441 | 1442 | <_> 1443 | 6 9 54 1 -1. 1444 | <_> 1445 | 33 9 27 1 2. 1446 | 0 1447 | <_> 1448 | 1449 | <_> 1450 | 7 0 4 18 -1. 1451 | <_> 1452 | 8 0 2 18 2. 1453 | 0 1454 | <_> 1455 | 1456 | <_> 1457 | 7 3 12 15 -1. 1458 | <_> 1459 | 13 3 6 15 2. 1460 | 0 1461 | <_> 1462 | 1463 | <_> 1464 | 7 4 20 5 -1. 1465 | <_> 1466 | 12 4 10 5 2. 1467 | 0 1468 | <_> 1469 | 1470 | <_> 1471 | 7 4 6 3 -1. 1472 | <_> 1473 | 7 5 6 1 3. 1474 | 0 1475 | <_> 1476 | 1477 | <_> 1478 | 7 4 36 6 -1. 1479 | <_> 1480 | 19 4 12 6 3. 1481 | 0 1482 | <_> 1483 | 1484 | <_> 1485 | 7 5 28 4 -1. 1486 | <_> 1487 | 14 5 14 4 2. 1488 | 0 1489 | <_> 1490 | 1491 | <_> 1492 | 7 7 4 11 -1. 1493 | <_> 1494 | 8 7 2 11 2. 1495 | 0 1496 | <_> 1497 | 1498 | <_> 1499 | 7 9 12 7 -1. 1500 | <_> 1501 | 13 9 6 7 2. 1502 | 0 1503 | <_> 1504 | 1505 | <_> 1506 | 8 1 21 4 -1. 1507 | <_> 1508 | 8 3 21 2 2. 1509 | 0 1510 | <_> 1511 | 1512 | <_> 1513 | 8 4 28 6 -1. 1514 | <_> 1515 | 15 4 14 6 2. 1516 | 0 1517 | <_> 1518 | 1519 | <_> 1520 | 8 8 38 6 -1. 1521 | <_> 1522 | 8 10 38 2 3. 1523 | 0 1524 | <_> 1525 | 1526 | <_> 1527 | 8 14 25 4 -1. 1528 | <_> 1529 | 8 15 25 2 2. 1530 | 0 1531 | <_> 1532 | 1533 | <_> 1534 | 9 2 12 4 -1. 1535 | <_> 1536 | 12 2 6 4 2. 1537 | 0 1538 | <_> 1539 | 1540 | <_> 1541 | 9 5 24 3 -1. 1542 | <_> 1543 | 15 5 12 3 2. 1544 | 0 1545 | <_> 1546 | 1547 | <_> 1548 | 9 8 40 12 -1. 1549 | <_> 1550 | 9 12 40 4 3. 1551 | 0 1552 | <_> 1553 | 1554 | <_> 1555 | 10 2 8 2 -1. 1556 | <_> 1557 | 12 2 4 2 2. 1558 | 0 1559 | <_> 1560 | 1561 | <_> 1562 | 10 2 9 2 -1. 1563 | <_> 1564 | 13 2 3 2 3. 1565 | 0 1566 | <_> 1567 | 1568 | <_> 1569 | 10 5 3 3 -1. 1570 | <_> 1571 | 11 6 1 1 9. 1572 | 0 1573 | <_> 1574 | 1575 | <_> 1576 | 11 0 32 20 -1. 1577 | <_> 1578 | 19 0 16 20 2. 1579 | 0 1580 | <_> 1581 | 1582 | <_> 1583 | 11 3 1 4 -1. 1584 | <_> 1585 | 11 5 1 2 2. 1586 | 0 1587 | <_> 1588 | 1589 | <_> 1590 | 11 9 4 3 -1. 1591 | <_> 1592 | 12 9 2 3 2. 1593 | 0 1594 | <_> 1595 | 1596 | <_> 1597 | 11 9 3 7 -1. 1598 | <_> 1599 | 12 9 1 7 3. 1600 | 0 1601 | <_> 1602 | 1603 | <_> 1604 | 12 3 9 2 -1. 1605 | <_> 1606 | 15 3 3 2 3. 1607 | 0 1608 | <_> 1609 | 1610 | <_> 1611 | 12 6 6 6 -1. 1612 | <_> 1613 | 14 6 2 6 3. 1614 | 0 1615 | <_> 1616 | 1617 | <_> 1618 | 12 10 42 10 -1. 1619 | <_> 1620 | 26 10 14 10 3. 1621 | 0 1622 | <_> 1623 | 1624 | <_> 1625 | 12 14 11 3 -1. 1626 | <_> 1627 | 12 15 11 1 3. 1628 | 0 1629 | <_> 1630 | 1631 | <_> 1632 | 13 4 6 14 -1. 1633 | <_> 1634 | 15 4 2 14 3. 1635 | 0 1636 | <_> 1637 | 1638 | <_> 1639 | 13 8 3 6 -1. 1640 | <_> 1641 | 14 8 1 6 3. 1642 | 0 1643 | <_> 1644 | 1645 | <_> 1646 | 13 11 32 2 -1. 1647 | <_> 1648 | 21 11 16 2 2. 1649 | 0 1650 | <_> 1651 | 1652 | <_> 1653 | 13 13 25 6 -1. 1654 | <_> 1655 | 13 16 25 3 2. 1656 | 0 1657 | <_> 1658 | 1659 | <_> 1660 | 13 16 21 3 -1. 1661 | <_> 1662 | 20 16 7 3 3. 1663 | 0 1664 | <_> 1665 | 1666 | <_> 1667 | 14 2 3 2 -1. 1668 | <_> 1669 | 15 2 1 2 3. 1670 | 0 1671 | <_> 1672 | 1673 | <_> 1674 | 14 2 24 8 -1. 1675 | <_> 1676 | 20 2 12 8 2. 1677 | 0 1678 | <_> 1679 | 1680 | <_> 1681 | 14 13 36 6 -1. 1682 | <_> 1683 | 23 13 18 6 2. 1684 | 0 1685 | <_> 1686 | 1687 | <_> 1688 | 14 14 8 3 -1. 1689 | <_> 1690 | 14 15 8 1 3. 1691 | 0 1692 | <_> 1693 | 1694 | <_> 1695 | 14 14 45 6 -1. 1696 | <_> 1697 | 14 17 45 3 2. 1698 | 0 1699 | <_> 1700 | 1701 | <_> 1702 | 14 18 9 2 -1. 1703 | <_> 1704 | 17 18 3 2 3. 1705 | 0 1706 | <_> 1707 | 1708 | <_> 1709 | 15 9 4 1 -1. 1710 | <_> 1711 | 16 9 2 1 2. 1712 | 0 1713 | <_> 1714 | 1715 | <_> 1716 | 15 10 19 4 -1. 1717 | <_> 1718 | 15 12 19 2 2. 1719 | 0 1720 | <_> 1721 | 1722 | <_> 1723 | 16 0 28 8 -1. 1724 | <_> 1725 | 16 2 28 4 2. 1726 | 0 1727 | <_> 1728 | 1729 | <_> 1730 | 16 2 36 18 -1. 1731 | <_> 1732 | 28 2 12 18 3. 1733 | 0 1734 | <_> 1735 | 1736 | <_> 1737 | 16 6 24 6 -1. 1738 | <_> 1739 | 22 6 12 6 2. 1740 | 0 1741 | <_> 1742 | 1743 | <_> 1744 | 17 1 24 6 -1. 1745 | <_> 1746 | 17 3 24 2 3. 1747 | 0 1748 | <_> 1749 | 1750 | <_> 1751 | 17 3 15 12 -1. 1752 | <_> 1753 | 22 7 5 4 9. 1754 | 0 1755 | <_> 1756 | 1757 | <_> 1758 | 17 15 11 3 -1. 1759 | <_> 1760 | 17 16 11 1 3. 1761 | 0 1762 | <_> 1763 | 1764 | <_> 1765 | 18 5 6 10 -1. 1766 | <_> 1767 | 20 5 2 10 3. 1768 | 0 1769 | <_> 1770 | 1771 | <_> 1772 | 18 6 18 3 -1. 1773 | <_> 1774 | 24 6 6 3 3. 1775 | 0 1776 | <_> 1777 | 1778 | <_> 1779 | 18 11 3 1 -1. 1780 | <_> 1781 | 19 11 1 1 3. 1782 | 0 1783 | <_> 1784 | 1785 | <_> 1786 | 19 6 32 2 -1. 1787 | <_> 1788 | 27 6 16 2 2. 1789 | 0 1790 | <_> 1791 | 1792 | <_> 1793 | 19 8 3 1 -1. 1794 | <_> 1795 | 20 8 1 1 3. 1796 | 0 1797 | <_> 1798 | 1799 | <_> 1800 | 19 9 14 11 -1. 1801 | <_> 1802 | 26 9 7 11 2. 1803 | 0 1804 | <_> 1805 | 1806 | <_> 1807 | 19 10 3 3 -1. 1808 | <_> 1809 | 20 10 1 3 3. 1810 | 0 1811 | <_> 1812 | 1813 | <_> 1814 | 19 13 7 3 -1. 1815 | <_> 1816 | 19 14 7 1 3. 1817 | 0 1818 | <_> 1819 | 1820 | <_> 1821 | 19 14 13 3 -1. 1822 | <_> 1823 | 19 15 13 1 3. 1824 | 0 1825 | <_> 1826 | 1827 | <_> 1828 | 20 0 15 20 -1. 1829 | <_> 1830 | 25 0 5 20 3. 1831 | 0 1832 | <_> 1833 | 1834 | <_> 1835 | 20 9 3 1 -1. 1836 | <_> 1837 | 21 9 1 1 3. 1838 | 0 1839 | <_> 1840 | 1841 | <_> 1842 | 20 10 3 2 -1. 1843 | <_> 1844 | 21 10 1 2 3. 1845 | 0 1846 | <_> 1847 | 1848 | <_> 1849 | 21 1 21 6 -1. 1850 | <_> 1851 | 21 3 21 2 3. 1852 | 0 1853 | <_> 1854 | 1855 | <_> 1856 | 21 8 4 3 -1. 1857 | <_> 1858 | 22 8 2 3 2. 1859 | 0 1860 | <_> 1861 | 1862 | <_> 1863 | 21 9 3 4 -1. 1864 | <_> 1865 | 22 9 1 4 3. 1866 | 0 1867 | <_> 1868 | 1869 | <_> 1870 | 21 10 4 2 -1. 1871 | <_> 1872 | 22 10 2 2 2. 1873 | 0 1874 | <_> 1875 | 1876 | <_> 1877 | 21 11 24 2 -1. 1878 | <_> 1879 | 27 11 12 2 2. 1880 | 0 1881 | <_> 1882 | 1883 | <_> 1884 | 21 18 4 1 -1. 1885 | <_> 1886 | 22 18 2 1 2. 1887 | 0 1888 | <_> 1889 | 1890 | <_> 1891 | 22 3 4 1 -1. 1892 | <_> 1893 | 23 3 2 1 2. 1894 | 0 1895 | <_> 1896 | 1897 | <_> 1898 | 22 6 2 6 -1. 1899 | <_> 1900 | 22 6 1 3 2. 1901 | <_> 1902 | 23 9 1 3 2. 1903 | 0 1904 | <_> 1905 | 1906 | <_> 1907 | 22 7 3 3 -1. 1908 | <_> 1909 | 23 8 1 1 9. 1910 | 0 1911 | <_> 1912 | 1913 | <_> 1914 | 22 8 3 5 -1. 1915 | <_> 1916 | 23 8 1 5 3. 1917 | 0 1918 | <_> 1919 | 1920 | <_> 1921 | 22 9 3 2 -1. 1922 | <_> 1923 | 23 9 1 2 3. 1924 | 0 1925 | <_> 1926 | 1927 | <_> 1928 | 23 8 3 3 -1. 1929 | <_> 1930 | 24 8 1 3 3. 1931 | 0 1932 | <_> 1933 | 1934 | <_> 1935 | 23 10 3 2 -1. 1936 | <_> 1937 | 24 10 1 2 3. 1938 | 0 1939 | <_> 1940 | 1941 | <_> 1942 | 24 3 20 17 -1. 1943 | <_> 1944 | 29 3 10 17 2. 1945 | 0 1946 | <_> 1947 | 1948 | <_> 1949 | 24 4 14 6 -1. 1950 | <_> 1951 | 31 4 7 6 2. 1952 | 0 1953 | <_> 1954 | 1955 | <_> 1956 | 24 18 9 2 -1. 1957 | <_> 1958 | 27 18 3 2 3. 1959 | 0 1960 | <_> 1961 | 1962 | <_> 1963 | 25 5 8 4 -1. 1964 | <_> 1965 | 25 5 4 4 2. 1966 | 1 1967 | <_> 1968 | 1969 | <_> 1970 | 25 6 22 14 -1. 1971 | <_> 1972 | 36 6 11 14 2. 1973 | 0 1974 | <_> 1975 | 1976 | <_> 1977 | 25 12 28 8 -1. 1978 | <_> 1979 | 25 14 28 4 2. 1980 | 0 1981 | <_> 1982 | 1983 | <_> 1984 | 25 14 9 3 -1. 1985 | <_> 1986 | 25 15 9 1 3. 1987 | 0 1988 | <_> 1989 | 1990 | <_> 1991 | 26 2 27 18 -1. 1992 | <_> 1993 | 35 2 9 18 3. 1994 | 0 1995 | <_> 1996 | 1997 | <_> 1998 | 26 3 22 3 -1. 1999 | <_> 2000 | 26 4 22 1 3. 2001 | 0 2002 | <_> 2003 | 2004 | <_> 2005 | 26 4 8 4 -1. 2006 | <_> 2007 | 30 4 4 4 2. 2008 | 0 2009 | <_> 2010 | 2011 | <_> 2012 | 26 4 20 6 -1. 2013 | <_> 2014 | 31 4 10 6 2. 2015 | 0 2016 | <_> 2017 | 2018 | <_> 2019 | 26 7 1 12 -1. 2020 | <_> 2021 | 22 11 1 4 3. 2022 | 1 2023 | <_> 2024 | 2025 | <_> 2026 | 26 9 3 3 -1. 2027 | <_> 2028 | 27 9 1 3 3. 2029 | 0 2030 | <_> 2031 | 2032 | <_> 2033 | 26 13 9 3 -1. 2034 | <_> 2035 | 26 14 9 1 3. 2036 | 0 2037 | <_> 2038 | 2039 | <_> 2040 | 27 3 15 6 -1. 2041 | <_> 2042 | 32 3 5 6 3. 2043 | 0 2044 | <_> 2045 | 2046 | <_> 2047 | 27 9 3 1 -1. 2048 | <_> 2049 | 28 9 1 1 3. 2050 | 0 2051 | <_> 2052 | 2053 | <_> 2054 | 27 9 3 2 -1. 2055 | <_> 2056 | 28 9 1 2 3. 2057 | 0 2058 | <_> 2059 | 2060 | <_> 2061 | 27 10 3 3 -1. 2062 | <_> 2063 | 28 10 1 3 3. 2064 | 0 2065 | <_> 2066 | 2067 | <_> 2068 | 27 11 3 2 -1. 2069 | <_> 2070 | 28 11 1 2 3. 2071 | 0 2072 | <_> 2073 | 2074 | <_> 2075 | 28 2 10 4 -1. 2076 | <_> 2077 | 28 2 10 2 2. 2078 | 1 2079 | <_> 2080 | 2081 | <_> 2082 | 28 8 32 6 -1. 2083 | <_> 2084 | 28 10 32 2 3. 2085 | 0 2086 | <_> 2087 | 2088 | <_> 2089 | 28 10 3 1 -1. 2090 | <_> 2091 | 29 10 1 1 3. 2092 | 0 2093 | <_> 2094 | 2095 | <_> 2096 | 28 11 3 1 -1. 2097 | <_> 2098 | 29 11 1 1 3. 2099 | 0 2100 | <_> 2101 | 2102 | <_> 2103 | 28 15 5 4 -1. 2104 | <_> 2105 | 28 16 5 2 2. 2106 | 0 2107 | <_> 2108 | 2109 | <_> 2110 | 28 16 23 4 -1. 2111 | <_> 2112 | 28 17 23 2 2. 2113 | 0 2114 | <_> 2115 | 2116 | <_> 2117 | 28 19 6 1 -1. 2118 | <_> 2119 | 30 19 2 1 3. 2120 | 0 2121 | <_> 2122 | 2123 | <_> 2124 | 29 3 9 4 -1. 2125 | <_> 2126 | 32 3 3 4 3. 2127 | 0 2128 | <_> 2129 | 2130 | <_> 2131 | 29 5 9 1 -1. 2132 | <_> 2133 | 32 5 3 1 3. 2134 | 0 2135 | <_> 2136 | 2137 | <_> 2138 | 29 8 3 6 -1. 2139 | <_> 2140 | 30 8 1 6 3. 2141 | 0 2142 | <_> 2143 | 2144 | <_> 2145 | 29 9 3 1 -1. 2146 | <_> 2147 | 30 9 1 1 3. 2148 | 0 2149 | <_> 2150 | 2151 | <_> 2152 | 29 11 10 4 -1. 2153 | <_> 2154 | 29 13 10 2 2. 2155 | 0 2156 | <_> 2157 | 2158 | <_> 2159 | 29 11 26 8 -1. 2160 | <_> 2161 | 29 13 26 4 2. 2162 | 0 2163 | <_> 2164 | 2165 | <_> 2166 | 30 0 16 6 -1. 2167 | <_> 2168 | 30 3 16 3 2. 2169 | 0 2170 | <_> 2171 | 2172 | <_> 2173 | 30 2 30 6 -1. 2174 | <_> 2175 | 30 2 15 3 2. 2176 | <_> 2177 | 45 5 15 3 2. 2178 | 0 2179 | <_> 2180 | 2181 | <_> 2182 | 30 3 9 4 -1. 2183 | <_> 2184 | 33 3 3 4 3. 2185 | 0 2186 | <_> 2187 | 2188 | <_> 2189 | 30 5 9 4 -1. 2190 | <_> 2191 | 30 6 9 2 2. 2192 | 0 2193 | <_> 2194 | 2195 | <_> 2196 | 30 10 3 2 -1. 2197 | <_> 2198 | 31 10 1 2 3. 2199 | 0 2200 | <_> 2201 | 2202 | <_> 2203 | 30 14 18 6 -1. 2204 | <_> 2205 | 36 14 6 6 3. 2206 | 0 2207 | <_> 2208 | 2209 | <_> 2210 | 31 3 4 3 -1. 2211 | <_> 2212 | 32 3 2 3 2. 2213 | 0 2214 | <_> 2215 | 2216 | <_> 2217 | 31 7 4 9 -1. 2218 | <_> 2219 | 32 7 2 9 2. 2220 | 0 2221 | <_> 2222 | 2223 | <_> 2224 | 31 11 3 2 -1. 2225 | <_> 2226 | 32 11 1 2 3. 2227 | 0 2228 | <_> 2229 | 2230 | <_> 2231 | 31 11 3 3 -1. 2232 | <_> 2233 | 32 11 1 3 3. 2234 | 0 2235 | <_> 2236 | 2237 | <_> 2238 | 32 4 3 2 -1. 2239 | <_> 2240 | 33 4 1 2 3. 2241 | 0 2242 | <_> 2243 | 2244 | <_> 2245 | 32 6 18 6 -1. 2246 | <_> 2247 | 32 6 9 3 2. 2248 | <_> 2249 | 41 9 9 3 2. 2250 | 0 2251 | <_> 2252 | 2253 | <_> 2254 | 33 1 22 6 -1. 2255 | <_> 2256 | 33 4 22 3 2. 2257 | 0 2258 | <_> 2259 | 2260 | <_> 2261 | 33 3 4 2 -1. 2262 | <_> 2263 | 34 3 2 2 2. 2264 | 0 2265 | <_> 2266 | 2267 | <_> 2268 | 33 3 4 4 -1. 2269 | <_> 2270 | 34 3 2 4 2. 2271 | 0 2272 | <_> 2273 | 2274 | <_> 2275 | 33 5 4 1 -1. 2276 | <_> 2277 | 34 5 2 1 2. 2278 | 0 2279 | <_> 2280 | 2281 | <_> 2282 | 33 9 3 6 -1. 2283 | <_> 2284 | 34 9 1 6 3. 2285 | 0 2286 | <_> 2287 | 2288 | <_> 2289 | 33 10 3 3 -1. 2290 | <_> 2291 | 34 10 1 3 3. 2292 | 0 2293 | <_> 2294 | 2295 | <_> 2296 | 34 8 4 7 -1. 2297 | <_> 2298 | 35 8 2 7 2. 2299 | 0 2300 | <_> 2301 | 2302 | <_> 2303 | 34 9 3 5 -1. 2304 | <_> 2305 | 35 9 1 5 3. 2306 | 0 2307 | <_> 2308 | 2309 | <_> 2310 | 34 18 9 2 -1. 2311 | <_> 2312 | 37 18 3 2 3. 2313 | 0 2314 | <_> 2315 | 2316 | <_> 2317 | 35 0 8 6 -1. 2318 | <_> 2319 | 37 0 4 6 2. 2320 | 0 2321 | <_> 2322 | 2323 | <_> 2324 | 35 9 3 2 -1. 2325 | <_> 2326 | 36 9 1 2 3. 2327 | 0 2328 | <_> 2329 | 2330 | <_> 2331 | 36 9 24 9 -1. 2332 | <_> 2333 | 42 9 12 9 2. 2334 | 0 2335 | <_> 2336 | 2337 | <_> 2338 | 37 1 16 18 -1. 2339 | <_> 2340 | 41 1 8 18 2. 2341 | 0 2342 | <_> 2343 | 2344 | <_> 2345 | 37 11 20 8 -1. 2346 | <_> 2347 | 42 11 10 8 2. 2348 | 0 2349 | <_> 2350 | 2351 | <_> 2352 | 38 8 15 12 -1. 2353 | <_> 2354 | 38 12 15 4 3. 2355 | 0 2356 | <_> 2357 | 2358 | <_> 2359 | 39 6 12 8 -1. 2360 | <_> 2361 | 45 6 6 8 2. 2362 | 0 2363 | <_> 2364 | 2365 | <_> 2366 | 40 8 8 4 -1. 2367 | <_> 2368 | 40 8 8 2 2. 2369 | 1 2370 | <_> 2371 | 2372 | <_> 2373 | 40 10 3 1 -1. 2374 | <_> 2375 | 41 10 1 1 3. 2376 | 0 2377 | <_> 2378 | 2379 | <_> 2380 | 40 10 3 5 -1. 2381 | <_> 2382 | 41 10 1 5 3. 2383 | 0 2384 | <_> 2385 | 2386 | <_> 2387 | 40 13 12 6 -1. 2388 | <_> 2389 | 43 13 6 6 2. 2390 | 0 2391 | <_> 2392 | 2393 | <_> 2394 | 41 5 7 15 -1. 2395 | <_> 2396 | 41 10 7 5 3. 2397 | 0 2398 | <_> 2399 | 2400 | <_> 2401 | 41 6 12 6 -1. 2402 | <_> 2403 | 45 6 4 6 3. 2404 | 0 2405 | <_> 2406 | 2407 | <_> 2408 | 41 7 12 7 -1. 2409 | <_> 2410 | 45 7 4 7 3. 2411 | 0 2412 | <_> 2413 | 2414 | <_> 2415 | 41 8 12 12 -1. 2416 | <_> 2417 | 45 8 4 12 3. 2418 | 0 2419 | <_> 2420 | 2421 | <_> 2422 | 41 9 3 6 -1. 2423 | <_> 2424 | 42 9 1 6 3. 2425 | 0 2426 | <_> 2427 | 2428 | <_> 2429 | 42 2 3 13 -1. 2430 | <_> 2431 | 43 2 1 13 3. 2432 | 0 2433 | <_> 2434 | 2435 | <_> 2436 | 42 4 18 10 -1. 2437 | <_> 2438 | 42 4 9 5 2. 2439 | <_> 2440 | 51 9 9 5 2. 2441 | 0 2442 | <_> 2443 | 2444 | <_> 2445 | 42 5 18 8 -1. 2446 | <_> 2447 | 42 5 9 4 2. 2448 | <_> 2449 | 51 9 9 4 2. 2450 | 0 2451 | <_> 2452 | 2453 | <_> 2454 | 42 7 2 7 -1. 2455 | <_> 2456 | 43 7 1 7 2. 2457 | 0 2458 | <_> 2459 | 2460 | <_> 2461 | 42 14 12 5 -1. 2462 | <_> 2463 | 46 14 4 5 3. 2464 | 0 2465 | <_> 2466 | 2467 | <_> 2468 | 43 1 10 9 -1. 2469 | <_> 2470 | 40 4 10 3 3. 2471 | 1 2472 | <_> 2473 | 2474 | <_> 2475 | 43 6 6 6 -1. 2476 | <_> 2477 | 43 9 6 3 2. 2478 | 0 2479 | <_> 2480 | 2481 | <_> 2482 | 44 0 8 20 -1. 2483 | <_> 2484 | 46 0 4 20 2. 2485 | 0 2486 | <_> 2487 | 2488 | <_> 2489 | 44 2 16 12 -1. 2490 | <_> 2491 | 44 2 8 6 2. 2492 | <_> 2493 | 52 8 8 6 2. 2494 | 0 2495 | <_> 2496 | 2497 | <_> 2498 | 44 5 3 8 -1. 2499 | <_> 2500 | 45 5 1 8 3. 2501 | 0 2502 | <_> 2503 | 2504 | <_> 2505 | 44 8 3 4 -1. 2506 | <_> 2507 | 45 8 1 4 3. 2508 | 0 2509 | <_> 2510 | 2511 | <_> 2512 | 44 12 16 4 -1. 2513 | <_> 2514 | 52 12 8 4 2. 2515 | 0 2516 | <_> 2517 | 2518 | <_> 2519 | 44 13 10 3 -1. 2520 | <_> 2521 | 49 13 5 3 2. 2522 | 0 2523 | <_> 2524 | 2525 | <_> 2526 | 45 19 9 1 -1. 2527 | <_> 2528 | 48 19 3 1 3. 2529 | 0 2530 | <_> 2531 | 2532 | <_> 2533 | 46 3 8 8 -1. 2534 | <_> 2535 | 50 3 4 8 2. 2536 | 0 2537 | <_> 2538 | 2539 | <_> 2540 | 47 12 10 6 -1. 2541 | <_> 2542 | 52 12 5 6 2. 2543 | 0 2544 | <_> 2545 | 2546 | <_> 2547 | 48 0 4 13 -1. 2548 | <_> 2549 | 49 0 2 13 2. 2550 | 0 2551 | <_> 2552 | 2553 | <_> 2554 | 48 5 3 12 -1. 2555 | <_> 2556 | 45 8 3 6 2. 2557 | 1 2558 | <_> 2559 | 2560 | <_> 2561 | 48 9 12 8 -1. 2562 | <_> 2563 | 54 9 6 8 2. 2564 | 0 2565 | <_> 2566 | 2567 | <_> 2568 | 48 13 12 4 -1. 2569 | <_> 2570 | 54 13 6 4 2. 2571 | 0 2572 | <_> 2573 | 2574 | <_> 2575 | 49 8 3 1 -1. 2576 | <_> 2577 | 50 8 1 1 3. 2578 | 0 2579 | <_> 2580 | 2581 | <_> 2582 | 49 8 3 2 -1. 2583 | <_> 2584 | 50 8 1 2 3. 2585 | 0 2586 | <_> 2587 | 2588 | <_> 2589 | 49 8 3 3 -1. 2590 | <_> 2591 | 50 8 1 3 3. 2592 | 0 2593 | <_> 2594 | 2595 | <_> 2596 | 50 9 3 3 -1. 2597 | <_> 2598 | 51 10 1 1 9. 2599 | 0 2600 | <_> 2601 | 2602 | <_> 2603 | 51 8 3 3 -1. 2604 | <_> 2605 | 52 8 1 3 3. 2606 | 0 2607 | <_> 2608 | 2609 | <_> 2610 | 52 6 6 10 -1. 2611 | <_> 2612 | 54 6 2 10 3. 2613 | 0 2614 | <_> 2615 | 2616 | <_> 2617 | 52 7 8 7 -1. 2618 | <_> 2619 | 56 7 4 7 2. 2620 | 0 2621 | <_> 2622 | 2623 | <_> 2624 | 52 8 8 4 -1. 2625 | <_> 2626 | 52 8 8 2 2. 2627 | 1 2628 | <_> 2629 | 2630 | <_> 2631 | 54 3 6 15 -1. 2632 | <_> 2633 | 57 3 3 15 2. 2634 | 0 2635 | <_> 2636 | 2637 | <_> 2638 | 54 8 6 7 -1. 2639 | <_> 2640 | 57 8 3 7 2. 2641 | 0 2642 | <_> 2643 | 2644 | <_> 2645 | 57 11 3 6 -1. 2646 | <_> 2647 | 57 13 3 2 3. 2648 | 0 2649 | <_> 2650 | 2651 | <_> 2652 | 59 8 1 3 -1. 2653 | <_> 2654 | 59 9 1 1 3. 2655 | 0 2656 | 2657 | -------------------------------------------------------------------------------- /data/sample images/aile.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/aile.jpg -------------------------------------------------------------------------------- /data/sample images/balon.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/balon.jpg -------------------------------------------------------------------------------- /data/sample images/kapadokya.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/kapadokya.jpg -------------------------------------------------------------------------------- /data/sample images/muz.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/muz.jpg -------------------------------------------------------------------------------- /data/sample images/sonuc.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/sonuc.jpg -------------------------------------------------------------------------------- /doc/(Haarcascade)Rapid Object Detection using a Boosted Cascade of Simple.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/doc/(Haarcascade)Rapid Object Detection using a Boosted Cascade of Simple.pdf -------------------------------------------------------------------------------- /doc/OpenCV Nesne Tespiti.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/doc/OpenCV Nesne Tespiti.pptx -------------------------------------------------------------------------------- /doc/websites.txt: -------------------------------------------------------------------------------- 1 | http://mesutpiskin.com/blog/opencv-egitim-serisi 2 | http://mesutpiskin.com/blog/opencv-ile-goruntu-isleme-kitabi.html -------------------------------------------------------------------------------- /res/color_based.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/color_based.png -------------------------------------------------------------------------------- /res/dnn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/dnn.png -------------------------------------------------------------------------------- /res/opencv_dnn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/opencv_dnn.png -------------------------------------------------------------------------------- /res/template-matching-sonuc.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/template-matching-sonuc.jpg -------------------------------------------------------------------------------- /res/template.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/template.png -------------------------------------------------------------------------------- /src/ColorBasedObjectTracker/Detector.java: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/ColorBasedObjectTracker/Detector.java -------------------------------------------------------------------------------- /src/ColorBasedObjectTracker/Panel.java: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/ColorBasedObjectTracker/Panel.java -------------------------------------------------------------------------------- /src/DeepNeuralNetwork/Application.java: -------------------------------------------------------------------------------- 1 | 2 | import org.opencv.core.Mat; 3 | import org.opencv.core.Scalar; 4 | import org.opencv.imgcodecs.Imgcodecs; 5 | import org.opencv.imgproc.Imgproc; 6 | import org.opencv.videoio.VideoCapture; 7 | 8 | import java.util.ArrayList; 9 | import java.util.List; 10 | 11 | public class Application { 12 | 13 | public static void main(String[] args) 14 | { 15 | System.loadLibrary("opencv_java340"); 16 | DeepNeuralNetworkProcessor processor = new DeepNeuralNetworkProcessor(); 17 | List detectObject = new ArrayList<>(); 18 | VideoCapture capturre = new VideoCapture(0); 19 | while (true) 20 | { 21 | Mat frame = new Mat(); 22 | capturre.read(frame); 23 | detectObject = processor.getObjectsInFrame(frame, false); 24 | for (DnnObject obj: detectObject) 25 | { 26 | Imgproc.rectangle(frame,obj.getLeftBottom(),obj.getRightTop(),new Scalar(255,0,0),1); 27 | } 28 | Imgcodecs.imwrite("DetectedObject.jpg",frame); 29 | } 30 | 31 | } 32 | } 33 | -------------------------------------------------------------------------------- /src/DeepNeuralNetwork/DnnObject.java: -------------------------------------------------------------------------------- 1 | 2 | import org.opencv.core.Point; 3 | 4 | public class DnnObject { 5 | 6 | private int objectClassId; 7 | private String objectName; 8 | private Point leftBottom; 9 | private Point rightTop; 10 | private Point centerCoordinate; 11 | 12 | public DnnObject(int objectClassId, String objectName, Point leftBottom, Point rightTop, Point centerCoordinate) { 13 | this.objectClassId = objectClassId; 14 | this.objectName = objectName; 15 | this.leftBottom = leftBottom; 16 | this.rightTop = rightTop; 17 | this.centerCoordinate = centerCoordinate; 18 | } 19 | 20 | public int getObjectClassId() { 21 | return objectClassId; 22 | } 23 | 24 | public void setObjectClassId(int objectClassId) { 25 | this.objectClassId = objectClassId; 26 | } 27 | 28 | public String getObjectName() { 29 | return objectName; 30 | } 31 | 32 | public void setObjectName(String objectName) { 33 | this.objectName = objectName; 34 | } 35 | 36 | public Point getLeftBottom() { 37 | return leftBottom; 38 | } 39 | 40 | public void setLeftBottom(Point leftBottom) { 41 | this.leftBottom = leftBottom; 42 | } 43 | 44 | public Point getRightTop() { 45 | return rightTop; 46 | } 47 | 48 | public void setRightTop(Point rightTop) { 49 | this.rightTop = rightTop; 50 | } 51 | 52 | public Point getCenterCoordinate() { 53 | return centerCoordinate; 54 | } 55 | 56 | public void setCenterCoordinate(Point centerCoordinate) { 57 | this.centerCoordinate = centerCoordinate; 58 | } 59 | } 60 | -------------------------------------------------------------------------------- /src/DeepNeuralNetwork/DnnProcessor.java: -------------------------------------------------------------------------------- 1 | 2 | import org.opencv.core.*; 3 | import org.opencv.dnn.Dnn; 4 | import org.opencv.dnn.Net; 5 | import org.opencv.imgproc.Imgproc; 6 | import org.slf4j.Logger; 7 | import org.slf4j.LoggerFactory; 8 | import java.io.File; 9 | import java.nio.file.Path; 10 | import java.nio.file.Paths; 11 | import java.util.ArrayList; 12 | import java.util.List; 13 | 14 | /** 15 | * Mesut Piskin 16 | * 17/08/2018 11:08 17 | **/ 18 | 19 | 20 | public class DeepNeuralNetworkProcessor { 21 | private final static Logger LOGGER = LoggerFactory.getLogger(DeepNeuralNetworkProcessor.class); 22 | private Net net; 23 | private final String proto = "data/dnnmodel/MobileNetSSD_deploy.prototxt"; 24 | private final String model = "data/dnnmodel/MobileNetSSD_deploy.caffemodel"; 25 | 26 | private final String[] classNames = {"background", 27 | "aeroplane", "bicycle", "bird", "boat", 28 | "bottle", "bus", "car", "cat", "chair", 29 | "cow", "diningtable", "dog", "horse", 30 | "motorbike", "person", "pottedplant", 31 | "sheep", "sofa", "train", "tvmonitor"}; 32 | 33 | 34 | public DeepNeuralNetworkProcessor() { 35 | this.net = Dnn.readNetFromCaffe(proto, model); 36 | } 37 | 38 | 39 | public int getObjectCount(Mat frame, boolean isGrayFrame, String objectName) { 40 | 41 | int inWidth = 320; 42 | int inHeight = 240; 43 | double inScaleFactor = 0.007843; 44 | double thresholdDnn = 0.2; 45 | double meanVal = 127.5; 46 | 47 | int personObjectCount = 0; 48 | Mat blob = null; 49 | Mat detections = null; 50 | 51 | 52 | try { 53 | if (isGrayFrame) 54 | Imgproc.cvtColor(frame, frame, Imgproc.COLOR_GRAY2RGB); 55 | 56 | blob = Dnn.blobFromImage(frame, inScaleFactor, 57 | new Size(inWidth, inHeight), 58 | new Scalar(meanVal, meanVal, meanVal), 59 | false, false); 60 | net.setInput(blob); 61 | detections = net.forward(); 62 | detections = detections.reshape(1, (int) detections.total() / 7); 63 | for (int i = 0; i < detections.rows(); ++i) { 64 | double confidence = detections.get(i, 2)[0]; 65 | 66 | if (confidence < thresholdDnn) 67 | continue; 68 | 69 | int classId = (int) detections.get(i, 1)[0]; 70 | if (classNames[classId].toString() != objectName.toLowerCase()) { 71 | continue; 72 | } 73 | personObjectCount++; 74 | } 75 | } catch (Exception ex) { 76 | LOGGER.error("An error occurred DNN: ", ex); 77 | } 78 | return personObjectCount; 79 | } 80 | 81 | public List getObjectsInFrame(Mat frame, boolean isGrayFrame) { 82 | 83 | int inWidth = 320; 84 | int inHeight = 240; 85 | double inScaleFactor = 0.007843; 86 | double thresholdDnn = 0.2; 87 | double meanVal = 127.5; 88 | 89 | Mat blob = null; 90 | Mat detections = null; 91 | List objectList = new ArrayList<>(); 92 | 93 | int cols = frame.cols(); 94 | int rows = frame.rows(); 95 | 96 | try { 97 | if (isGrayFrame) 98 | Imgproc.cvtColor(frame, frame, Imgproc.COLOR_GRAY2RGB); 99 | 100 | blob = Dnn.blobFromImage(frame, inScaleFactor, 101 | new Size(inWidth, inHeight), 102 | new Scalar(meanVal, meanVal, meanVal), 103 | false, false); 104 | 105 | net.setInput(blob); 106 | detections = net.forward(); 107 | detections = detections.reshape(1, (int) detections.total() / 7); 108 | 109 | //all detected objects 110 | for (int i = 0; i < detections.rows(); ++i) { 111 | double confidence = detections.get(i, 2)[0]; 112 | 113 | if (confidence < thresholdDnn) 114 | continue; 115 | 116 | int classId = (int) detections.get(i, 1)[0]; 117 | 118 | //calculate position 119 | int xLeftBottom = (int) (detections.get(i, 3)[0] * cols); 120 | int yLeftBottom = (int) (detections.get(i, 4)[0] * rows); 121 | Point leftPosition = new Point(xLeftBottom, yLeftBottom); 122 | 123 | int xRightTop = (int) (detections.get(i, 5)[0] * cols); 124 | int yRightTop = (int) (detections.get(i, 6)[0] * rows); 125 | Point rightPosition = new Point(xRightTop, yRightTop); 126 | 127 | float centerX = (xLeftBottom + xRightTop) / 2; 128 | float centerY = (yLeftBottom - yRightTop) / 2; 129 | Point centerPoint = new Point(centerX, centerY); 130 | 131 | 132 | DnnObject dnnObject = new DnnObject(classId, classNames[classId].toString(), leftPosition, rightPosition, centerPoint); 133 | objectList.add(dnnObject); 134 | } 135 | 136 | } catch (Exception ex) { 137 | LOGGER.error("An error occurred DNN: ", ex); 138 | } 139 | return objectList; 140 | } 141 | 142 | 143 | } 144 | -------------------------------------------------------------------------------- /src/FaceAndEyeDetection/DetectFace.java: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/FaceAndEyeDetection/DetectFace.java -------------------------------------------------------------------------------- /src/TemplateMatchingObjectDetection/TemplateMatching.java: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/TemplateMatchingObjectDetection/TemplateMatching.java --------------------------------------------------------------------------------