├── .gitattributes
├── .gitignore
├── LICENSE
├── README.md
├── README.tr-TR.md
├── data
├── dnnmodel
│ ├── MobileNetSSD_deploy.caffemodel
│ └── MobileNetSSD_deploy.prototxt
├── haarcascade files
│ ├── haarcascade_eye.xml
│ ├── haarcascade_eye_tree_eyeglasses.xml
│ ├── haarcascade_frontalcatface.xml
│ ├── haarcascade_frontalcatface_extended.xml
│ ├── haarcascade_frontalface_alt.xml
│ ├── haarcascade_frontalface_alt2.xml
│ ├── haarcascade_frontalface_alt_tree.xml
│ ├── haarcascade_frontalface_default.xml
│ ├── haarcascade_fullbody.xml
│ ├── haarcascade_lefteye_2splits.xml
│ ├── haarcascade_licence_plate_rus_16stages.xml
│ ├── haarcascade_lowerbody.xml
│ ├── haarcascade_mcs_eyepair_big.xml
│ ├── haarcascade_mcs_eyepair_small.xml
│ ├── haarcascade_mcs_leftear.xml
│ ├── haarcascade_mcs_lefteye.xml
│ ├── haarcascade_mcs_mouth.xml
│ ├── haarcascade_mcs_nose.xml
│ ├── haarcascade_mcs_rightear.xml
│ ├── haarcascade_mcs_righteye.xml
│ ├── haarcascade_mcs_upperbody.xml
│ ├── haarcascade_profileface.xml
│ ├── haarcascade_righteye_2splits.xml
│ ├── haarcascade_russian_plate_number.xml
│ ├── haarcascade_smile.xml
│ └── haarcascade_upperbody.xml
└── sample images
│ ├── aile.jpg
│ ├── balon.jpg
│ ├── kapadokya.jpg
│ ├── muz.jpg
│ └── sonuc.jpg
├── doc
├── (Haarcascade)Rapid Object Detection using a Boosted Cascade of Simple.pdf
├── OpenCV Nesne Tespiti.pptx
└── websites.txt
├── res
├── color_based.png
├── dnn.png
├── opencv_dnn.png
├── template-matching-sonuc.jpg
└── template.png
└── src
├── ColorBasedObjectTracker
├── Detector.java
└── Panel.java
├── DeepNeuralNetwork
├── Application.java
├── DnnObject.java
└── DnnProcessor.java
├── FaceAndEyeDetection
└── DetectFace.java
└── TemplateMatchingObjectDetection
└── TemplateMatching.java
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
4 | # Custom for Visual Studio
5 | *.cs diff=csharp
6 |
7 | # Standard to msysgit
8 | *.doc diff=astextplain
9 | *.DOC diff=astextplain
10 | *.docx diff=astextplain
11 | *.DOCX diff=astextplain
12 | *.dot diff=astextplain
13 | *.DOT diff=astextplain
14 | *.pdf diff=astextplain
15 | *.PDF diff=astextplain
16 | *.rtf diff=astextplain
17 | *.RTF diff=astextplain
18 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.class
2 |
3 | # Mobile Tools for Java (J2ME)
4 | .mtj.tmp/
5 |
6 | # Package Files #
7 | *.jar
8 | *.war
9 | *.ear
10 |
11 | # virtual machine crash logs, see http://www.java.com/en/download/help/error_hotspot.xml
12 | hs_err_pid*
13 |
14 | # =========================
15 | # Operating System Files
16 | # =========================
17 |
18 | # OSX
19 | # =========================
20 |
21 | .DS_Store
22 | .AppleDouble
23 | .LSOverride
24 |
25 | # Thumbnails
26 | ._*
27 |
28 | # Files that might appear in the root of a volume
29 | .DocumentRevisions-V100
30 | .fseventsd
31 | .Spotlight-V100
32 | .TemporaryItems
33 | .Trashes
34 | .VolumeIcon.icns
35 |
36 | # Directories potentially created on remote AFP share
37 | .AppleDB
38 | .AppleDesktop
39 | Network Trash Folder
40 | Temporary Items
41 | .apdisk
42 |
43 | # Windows
44 | # =========================
45 |
46 | # Windows image file caches
47 | Thumbs.db
48 | ehthumbs.db
49 |
50 | # Folder config file
51 | Desktop.ini
52 |
53 | # Recycle Bin used on file shares
54 | $RECYCLE.BIN/
55 |
56 | # Windows Installer files
57 | *.cab
58 | *.msi
59 | *.msm
60 | *.msp
61 |
62 | # Windows shortcuts
63 | *.lnk
64 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 Mesut Pişkin
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | English | [Türkçe](./README.tr-TR.md)
2 |
3 |
4 |
13 |
14 | ***
15 |
16 | ### Examples
17 |
18 | There are three examples in the repository.
19 |
20 | 1. [Haar Cascade] - Object detection face and eye etc.
21 | 2. [Color Detection] - Object detection and tracking using object color.
22 | 3. [Template Matching] - Object detection with template matching.
23 | 4. [Deep Learning] - Object detection with deep neural network (DNN).
24 |
25 |
26 |
27 | ## Example 1: Face And Eye Detection
28 |
29 |
30 | *Source code location: src/FaceAndEyeDetection/*
31 |
32 | Object detection examples with haar cascade classifier algorithm (Face, eyes, mouth, other objects etc.). Cascade Classifier Training http://docs.opencv.org/3.1.0/dc/d88/tutorial_traincascade.html
33 |
34 | **What is Haar cascade?**
35 | Haar cascade classifier
36 | Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones in their paper, "Rapid Object Detection using a Boosted Cascade of Simple Features" in 2001. It is a machine learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images.
37 |
38 | **Requirements**
39 |
40 | - OpenCV 3.x Version
41 | - Java > 6 Version
42 |
43 | Face and eye detection by the camera using haar cascade algorithm.
44 |
45 | **Video:**
46 |
47 |
48 |
49 |
50 |
51 | ## Example 2: Object Detection and Tracking Using Color
52 |
53 | *Source code location: src/ColorBasedObjectTracker/*
54 |
55 | An example of an application where OpenCV is used to detect objects based on color differences.
56 |
57 | **Requirements**
58 |
59 | - OpenCV >2.x Version
60 | - Java >6 Version
61 |
62 |
63 |
64 | ## Example 3: Object Detection with Template Matching
65 |
66 | *Source code location: src/TemplateMatchingObjectDetection/*
67 |
68 | Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch).
69 |
70 | **Requirements**
71 |
72 | - OpenCV 3.x Version
73 | - Java >6 Version
74 |
75 | My blog post for [template matching.](http://mesutpiskin.com/blog/opencv-template-matching-ile-nesne-tespiti.html)
76 |
77 |
78 |
79 |
80 |
81 | ## Example 4: Object Detection with DNN
82 |
83 | *Source code location: src/DeepNeuralNetwork/*
84 |
85 | - OpenCV > 3.3 Version
86 |
87 | In this tutorial you will learn how to use opencv dnn module for image classification by using MobileNetSSD_deploy trained network. My blog post for [deep neural network.](http://mesutpiskin.com/blog/opencv-derin-ogrenme-nesne-tanima.html)
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 | [haar cascade]: #
100 | [color detection]: #
101 | [template matching]: #
102 | [deep learning]: #
--------------------------------------------------------------------------------
/README.tr-TR.md:
--------------------------------------------------------------------------------
1 | [English](./README.md) | Türkçe
2 |
3 |
12 |
13 | ***
14 |
15 | ### Örnekler
16 |
17 | Bu repository altında aşağıdaki yöntemlere ilişkin örnekler bulunmaktadır.
18 |
19 | 1. [Haar Cascade] - Yüz, göz, burun vb. nesne tanıma.
20 | 2. [Renk Tespiti] - Nesne rengi tespiti ve renk ile nesne takibi.
21 | 3. [Template Matching] - Template matching / Şablon eşleştirme yöntemi kullanarak nesne tespiti.
22 | 4. [Derin öğrenme] - Derin sinir ağı (DNN) ile nesne tespiti.
23 |
24 |
25 |
26 | ## Örnek 1: Yüz ve Göz Tespiti
27 |
28 |
29 | *Kaynak kod dizini: src/FaceAndEyeDetection/*
30 |
31 | Object detection Örneks with haar cascade classifier algorithm (Face, eyes, mouth, other objects etc.). Cascade Classifier Training http://docs.opencv.org/3.1.0/dc/d88/tutorial_traincascade.html
32 |
33 | **What is Haar cascade?**
34 | Haar cascade classifier
35 | Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones in their paper, "Rapid Object Detection using a Boosted Cascade of Simple Features" in 2001. It is a machine learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images.
36 |
37 | **Gereksinimler**
38 |
39 | - OpenCV 3.x Versiyon
40 | - Java > 6 Versiyon
41 |
42 | Face and eye detection by the camera using haar cascade algorithm.
43 |
44 | **Video:**
45 |
46 |
47 |
48 |
49 |
50 | ## Örnek 2: Renk Tespiti ve Nesne Takibi
51 |
52 | *Kaynak kod dizini: src/ColorBasedObjectTracker/*
53 |
54 | An Örnek of an application where OpenCV is used to detect objects based on color differences.
55 |
56 | **Gereksinimler**
57 |
58 | - OpenCV >2.x Versiyon
59 | - Java >6 Versiyon
60 |
61 |
62 |
63 | ## Örnek 3: Template Matching ile Nesne Tespiti
64 |
65 | *Kaynak kod dizini: src/TemplateMatchingObjectDetection/*
66 |
67 | Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch).
68 |
69 | **Gereksinimler**
70 |
71 | - OpenCV 3.x Versiyon
72 | - Java >6 Versiyon
73 |
74 | My blog post for [template matching.](http://mesutpiskin.com/blog/opencv-template-matching-ile-nesne-tespiti.html)
75 |
76 |
77 |
78 |
79 |
80 | ## Örnek 4: Derin Sinir Ağı DNN ile Nesne Tespiti
81 |
82 | *Kaynak kod dizini: src/DeepNeuralNetwork/*
83 |
84 | - OpenCV > 3.3 Versiyon
85 |
86 | In this tutorial you will learn how to use opencv dnn module for image classification by using MobileNetSSD_deploy trained network. My blog post for [deep neural network.](http://mesutpiskin.com/blog/opencv-derin-ogrenme-nesne-tanima.html)
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 | [haar cascade]: #
99 | [renk tespiti]: #
100 | [template matching]: #
101 | [derin öğrenme]: #
--------------------------------------------------------------------------------
/data/dnnmodel/MobileNetSSD_deploy.caffemodel:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/dnnmodel/MobileNetSSD_deploy.caffemodel
--------------------------------------------------------------------------------
/data/dnnmodel/MobileNetSSD_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "MobileNet-SSD"
2 | input: "data"
3 | input_shape {
4 | dim: 1
5 | dim: 3
6 | dim: 300
7 | dim: 300
8 | }
9 | layer {
10 | name: "conv0"
11 | type: "Convolution"
12 | bottom: "data"
13 | top: "conv0"
14 | param {
15 | lr_mult: 1.0
16 | decay_mult: 1.0
17 | }
18 | param {
19 | lr_mult: 2.0
20 | decay_mult: 0.0
21 | }
22 | convolution_param {
23 | num_output: 32
24 | pad: 1
25 | kernel_size: 3
26 | stride: 2
27 | weight_filler {
28 | type: "msra"
29 | }
30 | bias_filler {
31 | type: "constant"
32 | value: 0.0
33 | }
34 | }
35 | }
36 | layer {
37 | name: "conv0/relu"
38 | type: "ReLU"
39 | bottom: "conv0"
40 | top: "conv0"
41 | }
42 | layer {
43 | name: "conv1/dw"
44 | type: "Convolution"
45 | bottom: "conv0"
46 | top: "conv1/dw"
47 | param {
48 | lr_mult: 1.0
49 | decay_mult: 1.0
50 | }
51 | param {
52 | lr_mult: 2.0
53 | decay_mult: 0.0
54 | }
55 | convolution_param {
56 | num_output: 32
57 | pad: 1
58 | kernel_size: 3
59 | group: 32
60 | engine: CAFFE
61 | weight_filler {
62 | type: "msra"
63 | }
64 | bias_filler {
65 | type: "constant"
66 | value: 0.0
67 | }
68 | }
69 | }
70 | layer {
71 | name: "conv1/dw/relu"
72 | type: "ReLU"
73 | bottom: "conv1/dw"
74 | top: "conv1/dw"
75 | }
76 | layer {
77 | name: "conv1"
78 | type: "Convolution"
79 | bottom: "conv1/dw"
80 | top: "conv1"
81 | param {
82 | lr_mult: 1.0
83 | decay_mult: 1.0
84 | }
85 | param {
86 | lr_mult: 2.0
87 | decay_mult: 0.0
88 | }
89 | convolution_param {
90 | num_output: 64
91 | kernel_size: 1
92 | weight_filler {
93 | type: "msra"
94 | }
95 | bias_filler {
96 | type: "constant"
97 | value: 0.0
98 | }
99 | }
100 | }
101 | layer {
102 | name: "conv1/relu"
103 | type: "ReLU"
104 | bottom: "conv1"
105 | top: "conv1"
106 | }
107 | layer {
108 | name: "conv2/dw"
109 | type: "Convolution"
110 | bottom: "conv1"
111 | top: "conv2/dw"
112 | param {
113 | lr_mult: 1.0
114 | decay_mult: 1.0
115 | }
116 | param {
117 | lr_mult: 2.0
118 | decay_mult: 0.0
119 | }
120 | convolution_param {
121 | num_output: 64
122 | pad: 1
123 | kernel_size: 3
124 | stride: 2
125 | group: 64
126 | engine: CAFFE
127 | weight_filler {
128 | type: "msra"
129 | }
130 | bias_filler {
131 | type: "constant"
132 | value: 0.0
133 | }
134 | }
135 | }
136 | layer {
137 | name: "conv2/dw/relu"
138 | type: "ReLU"
139 | bottom: "conv2/dw"
140 | top: "conv2/dw"
141 | }
142 | layer {
143 | name: "conv2"
144 | type: "Convolution"
145 | bottom: "conv2/dw"
146 | top: "conv2"
147 | param {
148 | lr_mult: 1.0
149 | decay_mult: 1.0
150 | }
151 | param {
152 | lr_mult: 2.0
153 | decay_mult: 0.0
154 | }
155 | convolution_param {
156 | num_output: 128
157 | kernel_size: 1
158 | weight_filler {
159 | type: "msra"
160 | }
161 | bias_filler {
162 | type: "constant"
163 | value: 0.0
164 | }
165 | }
166 | }
167 | layer {
168 | name: "conv2/relu"
169 | type: "ReLU"
170 | bottom: "conv2"
171 | top: "conv2"
172 | }
173 | layer {
174 | name: "conv3/dw"
175 | type: "Convolution"
176 | bottom: "conv2"
177 | top: "conv3/dw"
178 | param {
179 | lr_mult: 1.0
180 | decay_mult: 1.0
181 | }
182 | param {
183 | lr_mult: 2.0
184 | decay_mult: 0.0
185 | }
186 | convolution_param {
187 | num_output: 128
188 | pad: 1
189 | kernel_size: 3
190 | group: 128
191 | engine: CAFFE
192 | weight_filler {
193 | type: "msra"
194 | }
195 | bias_filler {
196 | type: "constant"
197 | value: 0.0
198 | }
199 | }
200 | }
201 | layer {
202 | name: "conv3/dw/relu"
203 | type: "ReLU"
204 | bottom: "conv3/dw"
205 | top: "conv3/dw"
206 | }
207 | layer {
208 | name: "conv3"
209 | type: "Convolution"
210 | bottom: "conv3/dw"
211 | top: "conv3"
212 | param {
213 | lr_mult: 1.0
214 | decay_mult: 1.0
215 | }
216 | param {
217 | lr_mult: 2.0
218 | decay_mult: 0.0
219 | }
220 | convolution_param {
221 | num_output: 128
222 | kernel_size: 1
223 | weight_filler {
224 | type: "msra"
225 | }
226 | bias_filler {
227 | type: "constant"
228 | value: 0.0
229 | }
230 | }
231 | }
232 | layer {
233 | name: "conv3/relu"
234 | type: "ReLU"
235 | bottom: "conv3"
236 | top: "conv3"
237 | }
238 | layer {
239 | name: "conv4/dw"
240 | type: "Convolution"
241 | bottom: "conv3"
242 | top: "conv4/dw"
243 | param {
244 | lr_mult: 1.0
245 | decay_mult: 1.0
246 | }
247 | param {
248 | lr_mult: 2.0
249 | decay_mult: 0.0
250 | }
251 | convolution_param {
252 | num_output: 128
253 | pad: 1
254 | kernel_size: 3
255 | stride: 2
256 | group: 128
257 | engine: CAFFE
258 | weight_filler {
259 | type: "msra"
260 | }
261 | bias_filler {
262 | type: "constant"
263 | value: 0.0
264 | }
265 | }
266 | }
267 | layer {
268 | name: "conv4/dw/relu"
269 | type: "ReLU"
270 | bottom: "conv4/dw"
271 | top: "conv4/dw"
272 | }
273 | layer {
274 | name: "conv4"
275 | type: "Convolution"
276 | bottom: "conv4/dw"
277 | top: "conv4"
278 | param {
279 | lr_mult: 1.0
280 | decay_mult: 1.0
281 | }
282 | param {
283 | lr_mult: 2.0
284 | decay_mult: 0.0
285 | }
286 | convolution_param {
287 | num_output: 256
288 | kernel_size: 1
289 | weight_filler {
290 | type: "msra"
291 | }
292 | bias_filler {
293 | type: "constant"
294 | value: 0.0
295 | }
296 | }
297 | }
298 | layer {
299 | name: "conv4/relu"
300 | type: "ReLU"
301 | bottom: "conv4"
302 | top: "conv4"
303 | }
304 | layer {
305 | name: "conv5/dw"
306 | type: "Convolution"
307 | bottom: "conv4"
308 | top: "conv5/dw"
309 | param {
310 | lr_mult: 1.0
311 | decay_mult: 1.0
312 | }
313 | param {
314 | lr_mult: 2.0
315 | decay_mult: 0.0
316 | }
317 | convolution_param {
318 | num_output: 256
319 | pad: 1
320 | kernel_size: 3
321 | group: 256
322 | engine: CAFFE
323 | weight_filler {
324 | type: "msra"
325 | }
326 | bias_filler {
327 | type: "constant"
328 | value: 0.0
329 | }
330 | }
331 | }
332 | layer {
333 | name: "conv5/dw/relu"
334 | type: "ReLU"
335 | bottom: "conv5/dw"
336 | top: "conv5/dw"
337 | }
338 | layer {
339 | name: "conv5"
340 | type: "Convolution"
341 | bottom: "conv5/dw"
342 | top: "conv5"
343 | param {
344 | lr_mult: 1.0
345 | decay_mult: 1.0
346 | }
347 | param {
348 | lr_mult: 2.0
349 | decay_mult: 0.0
350 | }
351 | convolution_param {
352 | num_output: 256
353 | kernel_size: 1
354 | weight_filler {
355 | type: "msra"
356 | }
357 | bias_filler {
358 | type: "constant"
359 | value: 0.0
360 | }
361 | }
362 | }
363 | layer {
364 | name: "conv5/relu"
365 | type: "ReLU"
366 | bottom: "conv5"
367 | top: "conv5"
368 | }
369 | layer {
370 | name: "conv6/dw"
371 | type: "Convolution"
372 | bottom: "conv5"
373 | top: "conv6/dw"
374 | param {
375 | lr_mult: 1.0
376 | decay_mult: 1.0
377 | }
378 | param {
379 | lr_mult: 2.0
380 | decay_mult: 0.0
381 | }
382 | convolution_param {
383 | num_output: 256
384 | pad: 1
385 | kernel_size: 3
386 | stride: 2
387 | group: 256
388 | engine: CAFFE
389 | weight_filler {
390 | type: "msra"
391 | }
392 | bias_filler {
393 | type: "constant"
394 | value: 0.0
395 | }
396 | }
397 | }
398 | layer {
399 | name: "conv6/dw/relu"
400 | type: "ReLU"
401 | bottom: "conv6/dw"
402 | top: "conv6/dw"
403 | }
404 | layer {
405 | name: "conv6"
406 | type: "Convolution"
407 | bottom: "conv6/dw"
408 | top: "conv6"
409 | param {
410 | lr_mult: 1.0
411 | decay_mult: 1.0
412 | }
413 | param {
414 | lr_mult: 2.0
415 | decay_mult: 0.0
416 | }
417 | convolution_param {
418 | num_output: 512
419 | kernel_size: 1
420 | weight_filler {
421 | type: "msra"
422 | }
423 | bias_filler {
424 | type: "constant"
425 | value: 0.0
426 | }
427 | }
428 | }
429 | layer {
430 | name: "conv6/relu"
431 | type: "ReLU"
432 | bottom: "conv6"
433 | top: "conv6"
434 | }
435 | layer {
436 | name: "conv7/dw"
437 | type: "Convolution"
438 | bottom: "conv6"
439 | top: "conv7/dw"
440 | param {
441 | lr_mult: 1.0
442 | decay_mult: 1.0
443 | }
444 | param {
445 | lr_mult: 2.0
446 | decay_mult: 0.0
447 | }
448 | convolution_param {
449 | num_output: 512
450 | pad: 1
451 | kernel_size: 3
452 | group: 512
453 | engine: CAFFE
454 | weight_filler {
455 | type: "msra"
456 | }
457 | bias_filler {
458 | type: "constant"
459 | value: 0.0
460 | }
461 | }
462 | }
463 | layer {
464 | name: "conv7/dw/relu"
465 | type: "ReLU"
466 | bottom: "conv7/dw"
467 | top: "conv7/dw"
468 | }
469 | layer {
470 | name: "conv7"
471 | type: "Convolution"
472 | bottom: "conv7/dw"
473 | top: "conv7"
474 | param {
475 | lr_mult: 1.0
476 | decay_mult: 1.0
477 | }
478 | param {
479 | lr_mult: 2.0
480 | decay_mult: 0.0
481 | }
482 | convolution_param {
483 | num_output: 512
484 | kernel_size: 1
485 | weight_filler {
486 | type: "msra"
487 | }
488 | bias_filler {
489 | type: "constant"
490 | value: 0.0
491 | }
492 | }
493 | }
494 | layer {
495 | name: "conv7/relu"
496 | type: "ReLU"
497 | bottom: "conv7"
498 | top: "conv7"
499 | }
500 | layer {
501 | name: "conv8/dw"
502 | type: "Convolution"
503 | bottom: "conv7"
504 | top: "conv8/dw"
505 | param {
506 | lr_mult: 1.0
507 | decay_mult: 1.0
508 | }
509 | param {
510 | lr_mult: 2.0
511 | decay_mult: 0.0
512 | }
513 | convolution_param {
514 | num_output: 512
515 | pad: 1
516 | kernel_size: 3
517 | group: 512
518 | engine: CAFFE
519 | weight_filler {
520 | type: "msra"
521 | }
522 | bias_filler {
523 | type: "constant"
524 | value: 0.0
525 | }
526 | }
527 | }
528 | layer {
529 | name: "conv8/dw/relu"
530 | type: "ReLU"
531 | bottom: "conv8/dw"
532 | top: "conv8/dw"
533 | }
534 | layer {
535 | name: "conv8"
536 | type: "Convolution"
537 | bottom: "conv8/dw"
538 | top: "conv8"
539 | param {
540 | lr_mult: 1.0
541 | decay_mult: 1.0
542 | }
543 | param {
544 | lr_mult: 2.0
545 | decay_mult: 0.0
546 | }
547 | convolution_param {
548 | num_output: 512
549 | kernel_size: 1
550 | weight_filler {
551 | type: "msra"
552 | }
553 | bias_filler {
554 | type: "constant"
555 | value: 0.0
556 | }
557 | }
558 | }
559 | layer {
560 | name: "conv8/relu"
561 | type: "ReLU"
562 | bottom: "conv8"
563 | top: "conv8"
564 | }
565 | layer {
566 | name: "conv9/dw"
567 | type: "Convolution"
568 | bottom: "conv8"
569 | top: "conv9/dw"
570 | param {
571 | lr_mult: 1.0
572 | decay_mult: 1.0
573 | }
574 | param {
575 | lr_mult: 2.0
576 | decay_mult: 0.0
577 | }
578 | convolution_param {
579 | num_output: 512
580 | pad: 1
581 | kernel_size: 3
582 | group: 512
583 | engine: CAFFE
584 | weight_filler {
585 | type: "msra"
586 | }
587 | bias_filler {
588 | type: "constant"
589 | value: 0.0
590 | }
591 | }
592 | }
593 | layer {
594 | name: "conv9/dw/relu"
595 | type: "ReLU"
596 | bottom: "conv9/dw"
597 | top: "conv9/dw"
598 | }
599 | layer {
600 | name: "conv9"
601 | type: "Convolution"
602 | bottom: "conv9/dw"
603 | top: "conv9"
604 | param {
605 | lr_mult: 1.0
606 | decay_mult: 1.0
607 | }
608 | param {
609 | lr_mult: 2.0
610 | decay_mult: 0.0
611 | }
612 | convolution_param {
613 | num_output: 512
614 | kernel_size: 1
615 | weight_filler {
616 | type: "msra"
617 | }
618 | bias_filler {
619 | type: "constant"
620 | value: 0.0
621 | }
622 | }
623 | }
624 | layer {
625 | name: "conv9/relu"
626 | type: "ReLU"
627 | bottom: "conv9"
628 | top: "conv9"
629 | }
630 | layer {
631 | name: "conv10/dw"
632 | type: "Convolution"
633 | bottom: "conv9"
634 | top: "conv10/dw"
635 | param {
636 | lr_mult: 1.0
637 | decay_mult: 1.0
638 | }
639 | param {
640 | lr_mult: 2.0
641 | decay_mult: 0.0
642 | }
643 | convolution_param {
644 | num_output: 512
645 | pad: 1
646 | kernel_size: 3
647 | group: 512
648 | engine: CAFFE
649 | weight_filler {
650 | type: "msra"
651 | }
652 | bias_filler {
653 | type: "constant"
654 | value: 0.0
655 | }
656 | }
657 | }
658 | layer {
659 | name: "conv10/dw/relu"
660 | type: "ReLU"
661 | bottom: "conv10/dw"
662 | top: "conv10/dw"
663 | }
664 | layer {
665 | name: "conv10"
666 | type: "Convolution"
667 | bottom: "conv10/dw"
668 | top: "conv10"
669 | param {
670 | lr_mult: 1.0
671 | decay_mult: 1.0
672 | }
673 | param {
674 | lr_mult: 2.0
675 | decay_mult: 0.0
676 | }
677 | convolution_param {
678 | num_output: 512
679 | kernel_size: 1
680 | weight_filler {
681 | type: "msra"
682 | }
683 | bias_filler {
684 | type: "constant"
685 | value: 0.0
686 | }
687 | }
688 | }
689 | layer {
690 | name: "conv10/relu"
691 | type: "ReLU"
692 | bottom: "conv10"
693 | top: "conv10"
694 | }
695 | layer {
696 | name: "conv11/dw"
697 | type: "Convolution"
698 | bottom: "conv10"
699 | top: "conv11/dw"
700 | param {
701 | lr_mult: 1.0
702 | decay_mult: 1.0
703 | }
704 | param {
705 | lr_mult: 2.0
706 | decay_mult: 0.0
707 | }
708 | convolution_param {
709 | num_output: 512
710 | pad: 1
711 | kernel_size: 3
712 | group: 512
713 | engine: CAFFE
714 | weight_filler {
715 | type: "msra"
716 | }
717 | bias_filler {
718 | type: "constant"
719 | value: 0.0
720 | }
721 | }
722 | }
723 | layer {
724 | name: "conv11/dw/relu"
725 | type: "ReLU"
726 | bottom: "conv11/dw"
727 | top: "conv11/dw"
728 | }
729 | layer {
730 | name: "conv11"
731 | type: "Convolution"
732 | bottom: "conv11/dw"
733 | top: "conv11"
734 | param {
735 | lr_mult: 1.0
736 | decay_mult: 1.0
737 | }
738 | param {
739 | lr_mult: 2.0
740 | decay_mult: 0.0
741 | }
742 | convolution_param {
743 | num_output: 512
744 | kernel_size: 1
745 | weight_filler {
746 | type: "msra"
747 | }
748 | bias_filler {
749 | type: "constant"
750 | value: 0.0
751 | }
752 | }
753 | }
754 | layer {
755 | name: "conv11/relu"
756 | type: "ReLU"
757 | bottom: "conv11"
758 | top: "conv11"
759 | }
760 | layer {
761 | name: "conv12/dw"
762 | type: "Convolution"
763 | bottom: "conv11"
764 | top: "conv12/dw"
765 | param {
766 | lr_mult: 1.0
767 | decay_mult: 1.0
768 | }
769 | param {
770 | lr_mult: 2.0
771 | decay_mult: 0.0
772 | }
773 | convolution_param {
774 | num_output: 512
775 | pad: 1
776 | kernel_size: 3
777 | stride: 2
778 | group: 512
779 | engine: CAFFE
780 | weight_filler {
781 | type: "msra"
782 | }
783 | bias_filler {
784 | type: "constant"
785 | value: 0.0
786 | }
787 | }
788 | }
789 | layer {
790 | name: "conv12/dw/relu"
791 | type: "ReLU"
792 | bottom: "conv12/dw"
793 | top: "conv12/dw"
794 | }
795 | layer {
796 | name: "conv12"
797 | type: "Convolution"
798 | bottom: "conv12/dw"
799 | top: "conv12"
800 | param {
801 | lr_mult: 1.0
802 | decay_mult: 1.0
803 | }
804 | param {
805 | lr_mult: 2.0
806 | decay_mult: 0.0
807 | }
808 | convolution_param {
809 | num_output: 1024
810 | kernel_size: 1
811 | weight_filler {
812 | type: "msra"
813 | }
814 | bias_filler {
815 | type: "constant"
816 | value: 0.0
817 | }
818 | }
819 | }
820 | layer {
821 | name: "conv12/relu"
822 | type: "ReLU"
823 | bottom: "conv12"
824 | top: "conv12"
825 | }
826 | layer {
827 | name: "conv13/dw"
828 | type: "Convolution"
829 | bottom: "conv12"
830 | top: "conv13/dw"
831 | param {
832 | lr_mult: 1.0
833 | decay_mult: 1.0
834 | }
835 | param {
836 | lr_mult: 2.0
837 | decay_mult: 0.0
838 | }
839 | convolution_param {
840 | num_output: 1024
841 | pad: 1
842 | kernel_size: 3
843 | group: 1024
844 | engine: CAFFE
845 | weight_filler {
846 | type: "msra"
847 | }
848 | bias_filler {
849 | type: "constant"
850 | value: 0.0
851 | }
852 | }
853 | }
854 | layer {
855 | name: "conv13/dw/relu"
856 | type: "ReLU"
857 | bottom: "conv13/dw"
858 | top: "conv13/dw"
859 | }
860 | layer {
861 | name: "conv13"
862 | type: "Convolution"
863 | bottom: "conv13/dw"
864 | top: "conv13"
865 | param {
866 | lr_mult: 1.0
867 | decay_mult: 1.0
868 | }
869 | param {
870 | lr_mult: 2.0
871 | decay_mult: 0.0
872 | }
873 | convolution_param {
874 | num_output: 1024
875 | kernel_size: 1
876 | weight_filler {
877 | type: "msra"
878 | }
879 | bias_filler {
880 | type: "constant"
881 | value: 0.0
882 | }
883 | }
884 | }
885 | layer {
886 | name: "conv13/relu"
887 | type: "ReLU"
888 | bottom: "conv13"
889 | top: "conv13"
890 | }
891 | layer {
892 | name: "conv14_1"
893 | type: "Convolution"
894 | bottom: "conv13"
895 | top: "conv14_1"
896 | param {
897 | lr_mult: 1.0
898 | decay_mult: 1.0
899 | }
900 | param {
901 | lr_mult: 2.0
902 | decay_mult: 0.0
903 | }
904 | convolution_param {
905 | num_output: 256
906 | kernel_size: 1
907 | weight_filler {
908 | type: "msra"
909 | }
910 | bias_filler {
911 | type: "constant"
912 | value: 0.0
913 | }
914 | }
915 | }
916 | layer {
917 | name: "conv14_1/relu"
918 | type: "ReLU"
919 | bottom: "conv14_1"
920 | top: "conv14_1"
921 | }
922 | layer {
923 | name: "conv14_2"
924 | type: "Convolution"
925 | bottom: "conv14_1"
926 | top: "conv14_2"
927 | param {
928 | lr_mult: 1.0
929 | decay_mult: 1.0
930 | }
931 | param {
932 | lr_mult: 2.0
933 | decay_mult: 0.0
934 | }
935 | convolution_param {
936 | num_output: 512
937 | pad: 1
938 | kernel_size: 3
939 | stride: 2
940 | weight_filler {
941 | type: "msra"
942 | }
943 | bias_filler {
944 | type: "constant"
945 | value: 0.0
946 | }
947 | }
948 | }
949 | layer {
950 | name: "conv14_2/relu"
951 | type: "ReLU"
952 | bottom: "conv14_2"
953 | top: "conv14_2"
954 | }
955 | layer {
956 | name: "conv15_1"
957 | type: "Convolution"
958 | bottom: "conv14_2"
959 | top: "conv15_1"
960 | param {
961 | lr_mult: 1.0
962 | decay_mult: 1.0
963 | }
964 | param {
965 | lr_mult: 2.0
966 | decay_mult: 0.0
967 | }
968 | convolution_param {
969 | num_output: 128
970 | kernel_size: 1
971 | weight_filler {
972 | type: "msra"
973 | }
974 | bias_filler {
975 | type: "constant"
976 | value: 0.0
977 | }
978 | }
979 | }
980 | layer {
981 | name: "conv15_1/relu"
982 | type: "ReLU"
983 | bottom: "conv15_1"
984 | top: "conv15_1"
985 | }
986 | layer {
987 | name: "conv15_2"
988 | type: "Convolution"
989 | bottom: "conv15_1"
990 | top: "conv15_2"
991 | param {
992 | lr_mult: 1.0
993 | decay_mult: 1.0
994 | }
995 | param {
996 | lr_mult: 2.0
997 | decay_mult: 0.0
998 | }
999 | convolution_param {
1000 | num_output: 256
1001 | pad: 1
1002 | kernel_size: 3
1003 | stride: 2
1004 | weight_filler {
1005 | type: "msra"
1006 | }
1007 | bias_filler {
1008 | type: "constant"
1009 | value: 0.0
1010 | }
1011 | }
1012 | }
1013 | layer {
1014 | name: "conv15_2/relu"
1015 | type: "ReLU"
1016 | bottom: "conv15_2"
1017 | top: "conv15_2"
1018 | }
1019 | layer {
1020 | name: "conv16_1"
1021 | type: "Convolution"
1022 | bottom: "conv15_2"
1023 | top: "conv16_1"
1024 | param {
1025 | lr_mult: 1.0
1026 | decay_mult: 1.0
1027 | }
1028 | param {
1029 | lr_mult: 2.0
1030 | decay_mult: 0.0
1031 | }
1032 | convolution_param {
1033 | num_output: 128
1034 | kernel_size: 1
1035 | weight_filler {
1036 | type: "msra"
1037 | }
1038 | bias_filler {
1039 | type: "constant"
1040 | value: 0.0
1041 | }
1042 | }
1043 | }
1044 | layer {
1045 | name: "conv16_1/relu"
1046 | type: "ReLU"
1047 | bottom: "conv16_1"
1048 | top: "conv16_1"
1049 | }
1050 | layer {
1051 | name: "conv16_2"
1052 | type: "Convolution"
1053 | bottom: "conv16_1"
1054 | top: "conv16_2"
1055 | param {
1056 | lr_mult: 1.0
1057 | decay_mult: 1.0
1058 | }
1059 | param {
1060 | lr_mult: 2.0
1061 | decay_mult: 0.0
1062 | }
1063 | convolution_param {
1064 | num_output: 256
1065 | pad: 1
1066 | kernel_size: 3
1067 | stride: 2
1068 | weight_filler {
1069 | type: "msra"
1070 | }
1071 | bias_filler {
1072 | type: "constant"
1073 | value: 0.0
1074 | }
1075 | }
1076 | }
1077 | layer {
1078 | name: "conv16_2/relu"
1079 | type: "ReLU"
1080 | bottom: "conv16_2"
1081 | top: "conv16_2"
1082 | }
1083 | layer {
1084 | name: "conv17_1"
1085 | type: "Convolution"
1086 | bottom: "conv16_2"
1087 | top: "conv17_1"
1088 | param {
1089 | lr_mult: 1.0
1090 | decay_mult: 1.0
1091 | }
1092 | param {
1093 | lr_mult: 2.0
1094 | decay_mult: 0.0
1095 | }
1096 | convolution_param {
1097 | num_output: 64
1098 | kernel_size: 1
1099 | weight_filler {
1100 | type: "msra"
1101 | }
1102 | bias_filler {
1103 | type: "constant"
1104 | value: 0.0
1105 | }
1106 | }
1107 | }
1108 | layer {
1109 | name: "conv17_1/relu"
1110 | type: "ReLU"
1111 | bottom: "conv17_1"
1112 | top: "conv17_1"
1113 | }
1114 | layer {
1115 | name: "conv17_2"
1116 | type: "Convolution"
1117 | bottom: "conv17_1"
1118 | top: "conv17_2"
1119 | param {
1120 | lr_mult: 1.0
1121 | decay_mult: 1.0
1122 | }
1123 | param {
1124 | lr_mult: 2.0
1125 | decay_mult: 0.0
1126 | }
1127 | convolution_param {
1128 | num_output: 128
1129 | pad: 1
1130 | kernel_size: 3
1131 | stride: 2
1132 | weight_filler {
1133 | type: "msra"
1134 | }
1135 | bias_filler {
1136 | type: "constant"
1137 | value: 0.0
1138 | }
1139 | }
1140 | }
1141 | layer {
1142 | name: "conv17_2/relu"
1143 | type: "ReLU"
1144 | bottom: "conv17_2"
1145 | top: "conv17_2"
1146 | }
1147 | layer {
1148 | name: "conv11_mbox_loc"
1149 | type: "Convolution"
1150 | bottom: "conv11"
1151 | top: "conv11_mbox_loc"
1152 | param {
1153 | lr_mult: 1.0
1154 | decay_mult: 1.0
1155 | }
1156 | param {
1157 | lr_mult: 2.0
1158 | decay_mult: 0.0
1159 | }
1160 | convolution_param {
1161 | num_output: 12
1162 | kernel_size: 1
1163 | weight_filler {
1164 | type: "msra"
1165 | }
1166 | bias_filler {
1167 | type: "constant"
1168 | value: 0.0
1169 | }
1170 | }
1171 | }
1172 | layer {
1173 | name: "conv11_mbox_loc_perm"
1174 | type: "Permute"
1175 | bottom: "conv11_mbox_loc"
1176 | top: "conv11_mbox_loc_perm"
1177 | permute_param {
1178 | order: 0
1179 | order: 2
1180 | order: 3
1181 | order: 1
1182 | }
1183 | }
1184 | layer {
1185 | name: "conv11_mbox_loc_flat"
1186 | type: "Flatten"
1187 | bottom: "conv11_mbox_loc_perm"
1188 | top: "conv11_mbox_loc_flat"
1189 | flatten_param {
1190 | axis: 1
1191 | }
1192 | }
1193 | layer {
1194 | name: "conv11_mbox_conf"
1195 | type: "Convolution"
1196 | bottom: "conv11"
1197 | top: "conv11_mbox_conf"
1198 | param {
1199 | lr_mult: 1.0
1200 | decay_mult: 1.0
1201 | }
1202 | param {
1203 | lr_mult: 2.0
1204 | decay_mult: 0.0
1205 | }
1206 | convolution_param {
1207 | num_output: 63
1208 | kernel_size: 1
1209 | weight_filler {
1210 | type: "msra"
1211 | }
1212 | bias_filler {
1213 | type: "constant"
1214 | value: 0.0
1215 | }
1216 | }
1217 | }
1218 | layer {
1219 | name: "conv11_mbox_conf_perm"
1220 | type: "Permute"
1221 | bottom: "conv11_mbox_conf"
1222 | top: "conv11_mbox_conf_perm"
1223 | permute_param {
1224 | order: 0
1225 | order: 2
1226 | order: 3
1227 | order: 1
1228 | }
1229 | }
1230 | layer {
1231 | name: "conv11_mbox_conf_flat"
1232 | type: "Flatten"
1233 | bottom: "conv11_mbox_conf_perm"
1234 | top: "conv11_mbox_conf_flat"
1235 | flatten_param {
1236 | axis: 1
1237 | }
1238 | }
1239 | layer {
1240 | name: "conv11_mbox_priorbox"
1241 | type: "PriorBox"
1242 | bottom: "conv11"
1243 | bottom: "data"
1244 | top: "conv11_mbox_priorbox"
1245 | prior_box_param {
1246 | min_size: 60.0
1247 | aspect_ratio: 2.0
1248 | flip: true
1249 | clip: false
1250 | variance: 0.1
1251 | variance: 0.1
1252 | variance: 0.2
1253 | variance: 0.2
1254 | offset: 0.5
1255 | }
1256 | }
1257 | layer {
1258 | name: "conv13_mbox_loc"
1259 | type: "Convolution"
1260 | bottom: "conv13"
1261 | top: "conv13_mbox_loc"
1262 | param {
1263 | lr_mult: 1.0
1264 | decay_mult: 1.0
1265 | }
1266 | param {
1267 | lr_mult: 2.0
1268 | decay_mult: 0.0
1269 | }
1270 | convolution_param {
1271 | num_output: 24
1272 | kernel_size: 1
1273 | weight_filler {
1274 | type: "msra"
1275 | }
1276 | bias_filler {
1277 | type: "constant"
1278 | value: 0.0
1279 | }
1280 | }
1281 | }
1282 | layer {
1283 | name: "conv13_mbox_loc_perm"
1284 | type: "Permute"
1285 | bottom: "conv13_mbox_loc"
1286 | top: "conv13_mbox_loc_perm"
1287 | permute_param {
1288 | order: 0
1289 | order: 2
1290 | order: 3
1291 | order: 1
1292 | }
1293 | }
1294 | layer {
1295 | name: "conv13_mbox_loc_flat"
1296 | type: "Flatten"
1297 | bottom: "conv13_mbox_loc_perm"
1298 | top: "conv13_mbox_loc_flat"
1299 | flatten_param {
1300 | axis: 1
1301 | }
1302 | }
1303 | layer {
1304 | name: "conv13_mbox_conf"
1305 | type: "Convolution"
1306 | bottom: "conv13"
1307 | top: "conv13_mbox_conf"
1308 | param {
1309 | lr_mult: 1.0
1310 | decay_mult: 1.0
1311 | }
1312 | param {
1313 | lr_mult: 2.0
1314 | decay_mult: 0.0
1315 | }
1316 | convolution_param {
1317 | num_output: 126
1318 | kernel_size: 1
1319 | weight_filler {
1320 | type: "msra"
1321 | }
1322 | bias_filler {
1323 | type: "constant"
1324 | value: 0.0
1325 | }
1326 | }
1327 | }
1328 | layer {
1329 | name: "conv13_mbox_conf_perm"
1330 | type: "Permute"
1331 | bottom: "conv13_mbox_conf"
1332 | top: "conv13_mbox_conf_perm"
1333 | permute_param {
1334 | order: 0
1335 | order: 2
1336 | order: 3
1337 | order: 1
1338 | }
1339 | }
1340 | layer {
1341 | name: "conv13_mbox_conf_flat"
1342 | type: "Flatten"
1343 | bottom: "conv13_mbox_conf_perm"
1344 | top: "conv13_mbox_conf_flat"
1345 | flatten_param {
1346 | axis: 1
1347 | }
1348 | }
1349 | layer {
1350 | name: "conv13_mbox_priorbox"
1351 | type: "PriorBox"
1352 | bottom: "conv13"
1353 | bottom: "data"
1354 | top: "conv13_mbox_priorbox"
1355 | prior_box_param {
1356 | min_size: 105.0
1357 | max_size: 150.0
1358 | aspect_ratio: 2.0
1359 | aspect_ratio: 3.0
1360 | flip: true
1361 | clip: false
1362 | variance: 0.1
1363 | variance: 0.1
1364 | variance: 0.2
1365 | variance: 0.2
1366 | offset: 0.5
1367 | }
1368 | }
1369 | layer {
1370 | name: "conv14_2_mbox_loc"
1371 | type: "Convolution"
1372 | bottom: "conv14_2"
1373 | top: "conv14_2_mbox_loc"
1374 | param {
1375 | lr_mult: 1.0
1376 | decay_mult: 1.0
1377 | }
1378 | param {
1379 | lr_mult: 2.0
1380 | decay_mult: 0.0
1381 | }
1382 | convolution_param {
1383 | num_output: 24
1384 | kernel_size: 1
1385 | weight_filler {
1386 | type: "msra"
1387 | }
1388 | bias_filler {
1389 | type: "constant"
1390 | value: 0.0
1391 | }
1392 | }
1393 | }
1394 | layer {
1395 | name: "conv14_2_mbox_loc_perm"
1396 | type: "Permute"
1397 | bottom: "conv14_2_mbox_loc"
1398 | top: "conv14_2_mbox_loc_perm"
1399 | permute_param {
1400 | order: 0
1401 | order: 2
1402 | order: 3
1403 | order: 1
1404 | }
1405 | }
1406 | layer {
1407 | name: "conv14_2_mbox_loc_flat"
1408 | type: "Flatten"
1409 | bottom: "conv14_2_mbox_loc_perm"
1410 | top: "conv14_2_mbox_loc_flat"
1411 | flatten_param {
1412 | axis: 1
1413 | }
1414 | }
1415 | layer {
1416 | name: "conv14_2_mbox_conf"
1417 | type: "Convolution"
1418 | bottom: "conv14_2"
1419 | top: "conv14_2_mbox_conf"
1420 | param {
1421 | lr_mult: 1.0
1422 | decay_mult: 1.0
1423 | }
1424 | param {
1425 | lr_mult: 2.0
1426 | decay_mult: 0.0
1427 | }
1428 | convolution_param {
1429 | num_output: 126
1430 | kernel_size: 1
1431 | weight_filler {
1432 | type: "msra"
1433 | }
1434 | bias_filler {
1435 | type: "constant"
1436 | value: 0.0
1437 | }
1438 | }
1439 | }
1440 | layer {
1441 | name: "conv14_2_mbox_conf_perm"
1442 | type: "Permute"
1443 | bottom: "conv14_2_mbox_conf"
1444 | top: "conv14_2_mbox_conf_perm"
1445 | permute_param {
1446 | order: 0
1447 | order: 2
1448 | order: 3
1449 | order: 1
1450 | }
1451 | }
1452 | layer {
1453 | name: "conv14_2_mbox_conf_flat"
1454 | type: "Flatten"
1455 | bottom: "conv14_2_mbox_conf_perm"
1456 | top: "conv14_2_mbox_conf_flat"
1457 | flatten_param {
1458 | axis: 1
1459 | }
1460 | }
1461 | layer {
1462 | name: "conv14_2_mbox_priorbox"
1463 | type: "PriorBox"
1464 | bottom: "conv14_2"
1465 | bottom: "data"
1466 | top: "conv14_2_mbox_priorbox"
1467 | prior_box_param {
1468 | min_size: 150.0
1469 | max_size: 195.0
1470 | aspect_ratio: 2.0
1471 | aspect_ratio: 3.0
1472 | flip: true
1473 | clip: false
1474 | variance: 0.1
1475 | variance: 0.1
1476 | variance: 0.2
1477 | variance: 0.2
1478 | offset: 0.5
1479 | }
1480 | }
1481 | layer {
1482 | name: "conv15_2_mbox_loc"
1483 | type: "Convolution"
1484 | bottom: "conv15_2"
1485 | top: "conv15_2_mbox_loc"
1486 | param {
1487 | lr_mult: 1.0
1488 | decay_mult: 1.0
1489 | }
1490 | param {
1491 | lr_mult: 2.0
1492 | decay_mult: 0.0
1493 | }
1494 | convolution_param {
1495 | num_output: 24
1496 | kernel_size: 1
1497 | weight_filler {
1498 | type: "msra"
1499 | }
1500 | bias_filler {
1501 | type: "constant"
1502 | value: 0.0
1503 | }
1504 | }
1505 | }
1506 | layer {
1507 | name: "conv15_2_mbox_loc_perm"
1508 | type: "Permute"
1509 | bottom: "conv15_2_mbox_loc"
1510 | top: "conv15_2_mbox_loc_perm"
1511 | permute_param {
1512 | order: 0
1513 | order: 2
1514 | order: 3
1515 | order: 1
1516 | }
1517 | }
1518 | layer {
1519 | name: "conv15_2_mbox_loc_flat"
1520 | type: "Flatten"
1521 | bottom: "conv15_2_mbox_loc_perm"
1522 | top: "conv15_2_mbox_loc_flat"
1523 | flatten_param {
1524 | axis: 1
1525 | }
1526 | }
1527 | layer {
1528 | name: "conv15_2_mbox_conf"
1529 | type: "Convolution"
1530 | bottom: "conv15_2"
1531 | top: "conv15_2_mbox_conf"
1532 | param {
1533 | lr_mult: 1.0
1534 | decay_mult: 1.0
1535 | }
1536 | param {
1537 | lr_mult: 2.0
1538 | decay_mult: 0.0
1539 | }
1540 | convolution_param {
1541 | num_output: 126
1542 | kernel_size: 1
1543 | weight_filler {
1544 | type: "msra"
1545 | }
1546 | bias_filler {
1547 | type: "constant"
1548 | value: 0.0
1549 | }
1550 | }
1551 | }
1552 | layer {
1553 | name: "conv15_2_mbox_conf_perm"
1554 | type: "Permute"
1555 | bottom: "conv15_2_mbox_conf"
1556 | top: "conv15_2_mbox_conf_perm"
1557 | permute_param {
1558 | order: 0
1559 | order: 2
1560 | order: 3
1561 | order: 1
1562 | }
1563 | }
1564 | layer {
1565 | name: "conv15_2_mbox_conf_flat"
1566 | type: "Flatten"
1567 | bottom: "conv15_2_mbox_conf_perm"
1568 | top: "conv15_2_mbox_conf_flat"
1569 | flatten_param {
1570 | axis: 1
1571 | }
1572 | }
1573 | layer {
1574 | name: "conv15_2_mbox_priorbox"
1575 | type: "PriorBox"
1576 | bottom: "conv15_2"
1577 | bottom: "data"
1578 | top: "conv15_2_mbox_priorbox"
1579 | prior_box_param {
1580 | min_size: 195.0
1581 | max_size: 240.0
1582 | aspect_ratio: 2.0
1583 | aspect_ratio: 3.0
1584 | flip: true
1585 | clip: false
1586 | variance: 0.1
1587 | variance: 0.1
1588 | variance: 0.2
1589 | variance: 0.2
1590 | offset: 0.5
1591 | }
1592 | }
1593 | layer {
1594 | name: "conv16_2_mbox_loc"
1595 | type: "Convolution"
1596 | bottom: "conv16_2"
1597 | top: "conv16_2_mbox_loc"
1598 | param {
1599 | lr_mult: 1.0
1600 | decay_mult: 1.0
1601 | }
1602 | param {
1603 | lr_mult: 2.0
1604 | decay_mult: 0.0
1605 | }
1606 | convolution_param {
1607 | num_output: 24
1608 | kernel_size: 1
1609 | weight_filler {
1610 | type: "msra"
1611 | }
1612 | bias_filler {
1613 | type: "constant"
1614 | value: 0.0
1615 | }
1616 | }
1617 | }
1618 | layer {
1619 | name: "conv16_2_mbox_loc_perm"
1620 | type: "Permute"
1621 | bottom: "conv16_2_mbox_loc"
1622 | top: "conv16_2_mbox_loc_perm"
1623 | permute_param {
1624 | order: 0
1625 | order: 2
1626 | order: 3
1627 | order: 1
1628 | }
1629 | }
1630 | layer {
1631 | name: "conv16_2_mbox_loc_flat"
1632 | type: "Flatten"
1633 | bottom: "conv16_2_mbox_loc_perm"
1634 | top: "conv16_2_mbox_loc_flat"
1635 | flatten_param {
1636 | axis: 1
1637 | }
1638 | }
1639 | layer {
1640 | name: "conv16_2_mbox_conf"
1641 | type: "Convolution"
1642 | bottom: "conv16_2"
1643 | top: "conv16_2_mbox_conf"
1644 | param {
1645 | lr_mult: 1.0
1646 | decay_mult: 1.0
1647 | }
1648 | param {
1649 | lr_mult: 2.0
1650 | decay_mult: 0.0
1651 | }
1652 | convolution_param {
1653 | num_output: 126
1654 | kernel_size: 1
1655 | weight_filler {
1656 | type: "msra"
1657 | }
1658 | bias_filler {
1659 | type: "constant"
1660 | value: 0.0
1661 | }
1662 | }
1663 | }
1664 | layer {
1665 | name: "conv16_2_mbox_conf_perm"
1666 | type: "Permute"
1667 | bottom: "conv16_2_mbox_conf"
1668 | top: "conv16_2_mbox_conf_perm"
1669 | permute_param {
1670 | order: 0
1671 | order: 2
1672 | order: 3
1673 | order: 1
1674 | }
1675 | }
1676 | layer {
1677 | name: "conv16_2_mbox_conf_flat"
1678 | type: "Flatten"
1679 | bottom: "conv16_2_mbox_conf_perm"
1680 | top: "conv16_2_mbox_conf_flat"
1681 | flatten_param {
1682 | axis: 1
1683 | }
1684 | }
1685 | layer {
1686 | name: "conv16_2_mbox_priorbox"
1687 | type: "PriorBox"
1688 | bottom: "conv16_2"
1689 | bottom: "data"
1690 | top: "conv16_2_mbox_priorbox"
1691 | prior_box_param {
1692 | min_size: 240.0
1693 | max_size: 285.0
1694 | aspect_ratio: 2.0
1695 | aspect_ratio: 3.0
1696 | flip: true
1697 | clip: false
1698 | variance: 0.1
1699 | variance: 0.1
1700 | variance: 0.2
1701 | variance: 0.2
1702 | offset: 0.5
1703 | }
1704 | }
1705 | layer {
1706 | name: "conv17_2_mbox_loc"
1707 | type: "Convolution"
1708 | bottom: "conv17_2"
1709 | top: "conv17_2_mbox_loc"
1710 | param {
1711 | lr_mult: 1.0
1712 | decay_mult: 1.0
1713 | }
1714 | param {
1715 | lr_mult: 2.0
1716 | decay_mult: 0.0
1717 | }
1718 | convolution_param {
1719 | num_output: 24
1720 | kernel_size: 1
1721 | weight_filler {
1722 | type: "msra"
1723 | }
1724 | bias_filler {
1725 | type: "constant"
1726 | value: 0.0
1727 | }
1728 | }
1729 | }
1730 | layer {
1731 | name: "conv17_2_mbox_loc_perm"
1732 | type: "Permute"
1733 | bottom: "conv17_2_mbox_loc"
1734 | top: "conv17_2_mbox_loc_perm"
1735 | permute_param {
1736 | order: 0
1737 | order: 2
1738 | order: 3
1739 | order: 1
1740 | }
1741 | }
1742 | layer {
1743 | name: "conv17_2_mbox_loc_flat"
1744 | type: "Flatten"
1745 | bottom: "conv17_2_mbox_loc_perm"
1746 | top: "conv17_2_mbox_loc_flat"
1747 | flatten_param {
1748 | axis: 1
1749 | }
1750 | }
1751 | layer {
1752 | name: "conv17_2_mbox_conf"
1753 | type: "Convolution"
1754 | bottom: "conv17_2"
1755 | top: "conv17_2_mbox_conf"
1756 | param {
1757 | lr_mult: 1.0
1758 | decay_mult: 1.0
1759 | }
1760 | param {
1761 | lr_mult: 2.0
1762 | decay_mult: 0.0
1763 | }
1764 | convolution_param {
1765 | num_output: 126
1766 | kernel_size: 1
1767 | weight_filler {
1768 | type: "msra"
1769 | }
1770 | bias_filler {
1771 | type: "constant"
1772 | value: 0.0
1773 | }
1774 | }
1775 | }
1776 | layer {
1777 | name: "conv17_2_mbox_conf_perm"
1778 | type: "Permute"
1779 | bottom: "conv17_2_mbox_conf"
1780 | top: "conv17_2_mbox_conf_perm"
1781 | permute_param {
1782 | order: 0
1783 | order: 2
1784 | order: 3
1785 | order: 1
1786 | }
1787 | }
1788 | layer {
1789 | name: "conv17_2_mbox_conf_flat"
1790 | type: "Flatten"
1791 | bottom: "conv17_2_mbox_conf_perm"
1792 | top: "conv17_2_mbox_conf_flat"
1793 | flatten_param {
1794 | axis: 1
1795 | }
1796 | }
1797 | layer {
1798 | name: "conv17_2_mbox_priorbox"
1799 | type: "PriorBox"
1800 | bottom: "conv17_2"
1801 | bottom: "data"
1802 | top: "conv17_2_mbox_priorbox"
1803 | prior_box_param {
1804 | min_size: 285.0
1805 | max_size: 300.0
1806 | aspect_ratio: 2.0
1807 | aspect_ratio: 3.0
1808 | flip: true
1809 | clip: false
1810 | variance: 0.1
1811 | variance: 0.1
1812 | variance: 0.2
1813 | variance: 0.2
1814 | offset: 0.5
1815 | }
1816 | }
1817 | layer {
1818 | name: "mbox_loc"
1819 | type: "Concat"
1820 | bottom: "conv11_mbox_loc_flat"
1821 | bottom: "conv13_mbox_loc_flat"
1822 | bottom: "conv14_2_mbox_loc_flat"
1823 | bottom: "conv15_2_mbox_loc_flat"
1824 | bottom: "conv16_2_mbox_loc_flat"
1825 | bottom: "conv17_2_mbox_loc_flat"
1826 | top: "mbox_loc"
1827 | concat_param {
1828 | axis: 1
1829 | }
1830 | }
1831 | layer {
1832 | name: "mbox_conf"
1833 | type: "Concat"
1834 | bottom: "conv11_mbox_conf_flat"
1835 | bottom: "conv13_mbox_conf_flat"
1836 | bottom: "conv14_2_mbox_conf_flat"
1837 | bottom: "conv15_2_mbox_conf_flat"
1838 | bottom: "conv16_2_mbox_conf_flat"
1839 | bottom: "conv17_2_mbox_conf_flat"
1840 | top: "mbox_conf"
1841 | concat_param {
1842 | axis: 1
1843 | }
1844 | }
1845 | layer {
1846 | name: "mbox_priorbox"
1847 | type: "Concat"
1848 | bottom: "conv11_mbox_priorbox"
1849 | bottom: "conv13_mbox_priorbox"
1850 | bottom: "conv14_2_mbox_priorbox"
1851 | bottom: "conv15_2_mbox_priorbox"
1852 | bottom: "conv16_2_mbox_priorbox"
1853 | bottom: "conv17_2_mbox_priorbox"
1854 | top: "mbox_priorbox"
1855 | concat_param {
1856 | axis: 2
1857 | }
1858 | }
1859 | layer {
1860 | name: "mbox_conf_reshape"
1861 | type: "Reshape"
1862 | bottom: "mbox_conf"
1863 | top: "mbox_conf_reshape"
1864 | reshape_param {
1865 | shape {
1866 | dim: 0
1867 | dim: -1
1868 | dim: 21
1869 | }
1870 | }
1871 | }
1872 | layer {
1873 | name: "mbox_conf_softmax"
1874 | type: "Softmax"
1875 | bottom: "mbox_conf_reshape"
1876 | top: "mbox_conf_softmax"
1877 | softmax_param {
1878 | axis: 2
1879 | }
1880 | }
1881 | layer {
1882 | name: "mbox_conf_flatten"
1883 | type: "Flatten"
1884 | bottom: "mbox_conf_softmax"
1885 | top: "mbox_conf_flatten"
1886 | flatten_param {
1887 | axis: 1
1888 | }
1889 | }
1890 | layer {
1891 | name: "detection_out"
1892 | type: "DetectionOutput"
1893 | bottom: "mbox_loc"
1894 | bottom: "mbox_conf_flatten"
1895 | bottom: "mbox_priorbox"
1896 | top: "detection_out"
1897 | include {
1898 | phase: TEST
1899 | }
1900 | detection_output_param {
1901 | num_classes: 21
1902 | share_location: true
1903 | background_label_id: 0
1904 | nms_param {
1905 | nms_threshold: 0.45
1906 | top_k: 100
1907 | }
1908 | code_type: CENTER_SIZE
1909 | keep_top_k: 100
1910 | confidence_threshold: 0.25
1911 | }
1912 | }
1913 |
--------------------------------------------------------------------------------
/data/haarcascade files/haarcascade_licence_plate_rus_16stages.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | 64 16
7 |
8 | <_>
9 |
10 |
11 | <_>
12 |
13 | <_>
14 |
15 |
16 |
17 | <_>
18 | 32 2 8 6 -1.
19 | <_>
20 | 32 4 8 2 3.
21 | 0
22 | 1.6915600746870041e-002
23 | -9.5547717809677124e-001
24 | 8.9129137992858887e-001
25 | <_>
26 |
27 | <_>
28 |
29 |
30 |
31 | <_>
32 | 0 4 6 10 -1.
33 | <_>
34 | 3 4 3 10 2.
35 | 0
36 | 2.4228349328041077e-002
37 | -9.2089319229125977e-001
38 | 8.8723921775817871e-001
39 | <_>
40 |
41 | <_>
42 |
43 |
44 |
45 | <_>
46 | 55 0 8 6 -1.
47 | <_>
48 | 55 0 4 3 2.
49 | <_>
50 | 59 3 4 3 2.
51 | 0
52 | -1.0168660432100296e-002
53 | 8.8940089941024780e-001
54 | -7.7847331762313843e-001
55 | <_>
56 |
57 | <_>
58 |
59 |
60 |
61 | <_>
62 | 44 7 4 9 -1.
63 | <_>
64 | 44 10 4 3 3.
65 | 0
66 | 2.0863260142505169e-003
67 | -8.7998157739639282e-001
68 | 5.8651781082153320e-001
69 | -2.0683259963989258e+000
70 | -1
71 | -1
72 | <_>
73 |
74 |
75 | <_>
76 |
77 | <_>
78 |
79 |
80 |
81 | <_>
82 | 29 1 16 4 -1.
83 | <_>
84 | 29 3 16 2 2.
85 | 0
86 | 2.9062159359455109e-002
87 | -8.7765061855316162e-001
88 | 8.5373121500015259e-001
89 | <_>
90 |
91 | <_>
92 |
93 |
94 |
95 | <_>
96 | 0 5 9 8 -1.
97 | <_>
98 | 3 5 3 8 3.
99 | 0
100 | 2.3903399705886841e-002
101 | -9.2079448699951172e-001
102 | 7.5155001878738403e-001
103 | <_>
104 |
105 | <_>
106 |
107 |
108 |
109 | <_>
110 | 44 0 20 14 -1.
111 | <_>
112 | 44 0 10 7 2.
113 | <_>
114 | 54 7 10 7 2.
115 | 0
116 | -3.5404648631811142e-002
117 | 6.7834627628326416e-001
118 | -9.0937072038650513e-001
119 | <_>
120 |
121 | <_>
122 |
123 |
124 |
125 | <_>
126 | 41 7 6 9 -1.
127 | <_>
128 | 43 7 2 9 3.
129 | 0
130 | 6.2988721765577793e-003
131 | -8.1054258346557617e-001
132 | 5.8985030651092529e-001
133 | <_>
134 |
135 | <_>
136 |
137 |
138 |
139 | <_>
140 | 0 4 21 4 -1.
141 | <_>
142 | 7 4 7 4 3.
143 | 0
144 | 3.4959490876644850e-003
145 | -9.7632282972335815e-001
146 | 4.5473039150238037e-001
147 | -1.6632349491119385e+000
148 | 0
149 | -1
150 | <_>
151 |
152 |
153 | <_>
154 |
155 | <_>
156 |
157 |
158 |
159 | <_>
160 | 31 2 11 6 -1.
161 | <_>
162 | 31 4 11 2 3.
163 | 0
164 | 2.3864099755883217e-002
165 | -9.3137168884277344e-001
166 | 8.2478952407836914e-001
167 | <_>
168 |
169 | <_>
170 |
171 |
172 |
173 | <_>
174 | 56 3 6 11 -1.
175 | <_>
176 | 59 3 3 11 2.
177 | 0
178 | -2.5775209069252014e-002
179 | 8.5526448488235474e-001
180 | -8.7574672698974609e-001
181 | <_>
182 |
183 | <_>
184 |
185 |
186 |
187 | <_>
188 | 32 14 32 2 -1.
189 | <_>
190 | 32 15 32 1 2.
191 | 0
192 | -1.0646049864590168e-002
193 | 8.5167151689529419e-001
194 | -6.7789041996002197e-001
195 | <_>
196 |
197 | <_>
198 |
199 |
200 |
201 | <_>
202 | 0 2 8 14 -1.
203 | <_>
204 | 4 2 4 14 2.
205 | 0
206 | 2.7000989764928818e-002
207 | -8.0041092634201050e-001
208 | 6.4893317222595215e-001
209 | <_>
210 |
211 | <_>
212 |
213 |
214 |
215 | <_>
216 | 19 0 22 6 -1.
217 | <_>
218 | 19 0 11 3 2.
219 | <_>
220 | 30 3 11 3 2.
221 | 0
222 | 5.2989721298217773e-003
223 | -9.5342522859573364e-001
224 | 5.0140267610549927e-001
225 | -1.3346730470657349e+000
226 | 1
227 | -1
228 | <_>
229 |
230 |
231 | <_>
232 |
233 | <_>
234 |
235 |
236 |
237 | <_>
238 | 56 0 6 6 -1.
239 | <_>
240 | 56 0 3 3 2.
241 | <_>
242 | 59 3 3 3 2.
243 | 0
244 | -6.9233630783855915e-003
245 | 8.2654470205307007e-001
246 | -8.5396027565002441e-001
247 | <_>
248 |
249 | <_>
250 |
251 |
252 |
253 | <_>
254 | 32 0 14 12 -1.
255 | <_>
256 | 32 0 7 6 2.
257 | <_>
258 | 39 6 7 6 2.
259 | 0
260 | 1.2539249658584595e-001
261 | -1.2996139936149120e-002
262 | -3.2377028808593750e+003
263 | <_>
264 |
265 | <_>
266 |
267 |
268 |
269 | <_>
270 | 2 1 43 4 -1.
271 | <_>
272 | 2 3 43 2 2.
273 | 0
274 | 6.3474893569946289e-002
275 | -6.4648061990737915e-001
276 | 8.2302427291870117e-001
277 | <_>
278 |
279 | <_>
280 |
281 |
282 |
283 | <_>
284 | 34 10 30 5 -1.
285 | <_>
286 | 44 10 10 5 3.
287 | 0
288 | 4.2217150330543518e-002
289 | -7.5190877914428711e-001
290 | 6.3705182075500488e-001
291 | <_>
292 |
293 | <_>
294 |
295 |
296 |
297 | <_>
298 | 0 9 9 5 -1.
299 | <_>
300 | 3 9 3 5 3.
301 | 0
302 | 2.0000640302896500e-002
303 | -6.2077498435974121e-001
304 | 6.1317932605743408e-001
305 | -1.6521669626235962e+000
306 | 2
307 | -1
308 | <_>
309 |
310 |
311 | <_>
312 |
313 | <_>
314 |
315 |
316 |
317 | <_>
318 | 2 1 43 6 -1.
319 | <_>
320 | 2 3 43 2 3.
321 | 0
322 | 9.2297486960887909e-002
323 | -7.2764229774475098e-001
324 | 8.0554759502410889e-001
325 | <_>
326 |
327 | <_>
328 |
329 |
330 |
331 | <_>
332 | 53 4 9 8 -1.
333 | <_>
334 | 56 4 3 8 3.
335 | 0
336 | 2.7613969519734383e-002
337 | -7.0769268274307251e-001
338 | 7.3315787315368652e-001
339 | <_>
340 |
341 | <_>
342 |
343 |
344 |
345 | <_>
346 | 36 4 14 8 -1.
347 | <_>
348 | 36 4 7 4 2.
349 | <_>
350 | 43 8 7 4 2.
351 | 0
352 | 1.2465449981391430e-002
353 | -8.4359270334243774e-001
354 | 5.7046437263488770e-001
355 | <_>
356 |
357 | <_>
358 |
359 |
360 |
361 | <_>
362 | 14 14 49 2 -1.
363 | <_>
364 | 14 15 49 1 2.
365 | 0
366 | -2.3886829614639282e-002
367 | 8.2656508684158325e-001
368 | -5.2783298492431641e-001
369 | -1.4523630142211914e+000
370 | 3
371 | -1
372 | <_>
373 |
374 |
375 | <_>
376 |
377 | <_>
378 |
379 |
380 |
381 | <_>
382 | 0 5 4 9 -1.
383 | <_>
384 | 2 5 2 9 2.
385 | 0
386 | 1.8821349367499352e-002
387 | -8.1122857332229614e-001
388 | 6.9127470254898071e-001
389 | <_>
390 |
391 | <_>
392 |
393 |
394 |
395 | <_>
396 | 21 1 38 4 -1.
397 | <_>
398 | 21 3 38 2 2.
399 | 0
400 | 6.1703320592641830e-002
401 | -7.6482647657394409e-001
402 | 6.4212161302566528e-001
403 | <_>
404 |
405 | <_>
406 |
407 |
408 |
409 | <_>
410 | 44 12 18 3 -1.
411 | <_>
412 | 53 12 9 3 2.
413 | 0
414 | -1.6298670321702957e-002
415 | 5.0207728147506714e-001
416 | -8.4020161628723145e-001
417 | <_>
418 |
419 | <_>
420 |
421 |
422 |
423 | <_>
424 | 10 4 9 3 -1.
425 | <_>
426 | 13 4 3 3 3.
427 | 0
428 | -4.9458951689302921e-003
429 | 6.1991941928863525e-001
430 | -6.1633539199829102e-001
431 | <_>
432 |
433 | <_>
434 |
435 |
436 |
437 | <_>
438 | 40 4 10 4 -1.
439 | <_>
440 | 45 4 5 4 2.
441 | 0
442 | -5.1894597709178925e-003
443 | 4.4975179433822632e-001
444 | -8.0651968717575073e-001
445 | <_>
446 |
447 | <_>
448 |
449 |
450 |
451 | <_>
452 | 17 14 47 2 -1.
453 | <_>
454 | 17 15 47 1 2.
455 | 0
456 | -1.8824130296707153e-002
457 | 6.1992841958999634e-001
458 | -5.5643159151077271e-001
459 | <_>
460 |
461 | <_>
462 |
463 |
464 |
465 | <_>
466 | 8 5 4 7 -1.
467 | <_>
468 | 10 5 2 7 2.
469 | 0
470 | 5.6571601890027523e-003
471 | -4.8346561193466187e-001
472 | 6.8647360801696777e-001
473 | -2.2358059883117676e+000
474 | 4
475 | -1
476 | <_>
477 |
478 |
479 | <_>
480 |
481 | <_>
482 |
483 |
484 |
485 | <_>
486 | 56 0 6 6 -1.
487 | <_>
488 | 56 0 3 3 2.
489 | <_>
490 | 59 3 3 3 2.
491 | 0
492 | -9.1503243893384933e-003
493 | 6.8174481391906738e-001
494 | -7.7866071462631226e-001
495 | <_>
496 |
497 | <_>
498 |
499 |
500 |
501 | <_>
502 | 0 0 6 6 -1.
503 | <_>
504 | 0 0 3 3 2.
505 | <_>
506 | 3 3 3 3 2.
507 | 0
508 | 7.4933180585503578e-003
509 | -6.8696027994155884e-001
510 | 6.6913938522338867e-001
511 | <_>
512 |
513 | <_>
514 |
515 |
516 |
517 | <_>
518 | 13 4 48 2 -1.
519 | <_>
520 | 29 4 16 2 3.
521 | 0
522 | 4.5296419411897659e-002
523 | -7.3576509952545166e-001
524 | 5.9453499317169189e-001
525 | <_>
526 |
527 | <_>
528 |
529 |
530 |
531 | <_>
532 | 42 1 6 15 -1.
533 | <_>
534 | 42 6 6 5 3.
535 | 0
536 | 1.1669679544866085e-002
537 | -8.4733831882476807e-001
538 | 4.5461329817771912e-001
539 | <_>
540 |
541 | <_>
542 |
543 |
544 |
545 | <_>
546 | 30 8 3 5 -1.
547 | <_>
548 | 31 8 1 5 3.
549 | 0
550 | 2.5769430212676525e-003
551 | -5.8270388841629028e-001
552 | 7.7900522947311401e-001
553 | <_>
554 |
555 | <_>
556 |
557 |
558 |
559 | <_>
560 | 55 10 8 6 -1.
561 | <_>
562 | 55 13 8 3 2.
563 | 0
564 | -1.4139170525595546e-003
565 | 4.5126929879188538e-001
566 | -9.0696328878402710e-001
567 | -1.8782069683074951e+000
568 | 5
569 | -1
570 | <_>
571 |
572 |
573 | <_>
574 |
575 | <_>
576 |
577 |
578 |
579 | <_>
580 | 4 6 4 7 -1.
581 | <_>
582 | 6 6 2 7 2.
583 | 0
584 | -5.3149578161537647e-003
585 | 6.5218788385391235e-001
586 | -7.9464268684387207e-001
587 | <_>
588 |
589 | <_>
590 |
591 |
592 |
593 | <_>
594 | 56 3 6 8 -1.
595 | <_>
596 | 59 3 3 8 2.
597 | 0
598 | -2.2906960919499397e-002
599 | 6.6433382034301758e-001
600 | -7.3633247613906860e-001
601 | <_>
602 |
603 | <_>
604 |
605 |
606 |
607 | <_>
608 | 37 2 4 6 -1.
609 | <_>
610 | 37 4 4 2 3.
611 | 0
612 | 9.4887977465987206e-003
613 | -8.2612031698226929e-001
614 | 4.9333500862121582e-001
615 | <_>
616 |
617 | <_>
618 |
619 |
620 |
621 | <_>
622 | 0 10 30 6 -1.
623 | <_>
624 | 0 12 30 2 3.
625 | 0
626 | 4.5138411223888397e-002
627 | -5.4704028367996216e-001
628 | 7.6927912235260010e-001
629 | <_>
630 |
631 | <_>
632 |
633 |
634 |
635 | <_>
636 | 0 4 21 12 -1.
637 | <_>
638 | 7 4 7 12 3.
639 | 0
640 | 2.5049019604921341e-002
641 | -8.6739641427993774e-001
642 | 5.2807968854904175e-001
643 | -1.0597369670867920e+000
644 | 6
645 | -1
646 | <_>
647 |
648 |
649 | <_>
650 |
651 | <_>
652 |
653 |
654 |
655 | <_>
656 | 44 0 1 14 -1.
657 | <_>
658 | 44 7 1 7 2.
659 | 0
660 | 6.6414438188076019e-003
661 | -7.7290147542953491e-001
662 | 6.9723731279373169e-001
663 | <_>
664 |
665 | <_>
666 |
667 |
668 |
669 | <_>
670 | 54 3 4 3 -1.
671 | <_>
672 | 56 3 2 3 2.
673 | 0
674 | 2.4703629314899445e-003
675 | -7.4289917945861816e-001
676 | 6.6825848817825317e-001
677 | <_>
678 |
679 | <_>
680 |
681 |
682 |
683 | <_>
684 | 32 0 30 6 -1.
685 | <_>
686 | 32 0 15 3 2.
687 | <_>
688 | 47 3 15 3 2.
689 | 0
690 | -2.2910499945282936e-002
691 | 4.3986389040946960e-001
692 | -9.0588808059692383e-001
693 | <_>
694 |
695 | <_>
696 |
697 |
698 |
699 | <_>
700 | 0 8 9 7 -1.
701 | <_>
702 | 3 8 3 7 3.
703 | 0
704 | 3.4193221479654312e-002
705 | -6.9507479667663574e-001
706 | 6.2501090764999390e-001
707 | <_>
708 |
709 | <_>
710 |
711 |
712 |
713 | <_>
714 | 30 10 3 3 -1.
715 | <_>
716 | 31 10 1 3 3.
717 | 0
718 | 1.5060020377859473e-003
719 | -6.8670761585235596e-001
720 | 8.2241541147232056e-001
721 | <_>
722 |
723 | <_>
724 |
725 |
726 |
727 | <_>
728 | 21 3 24 4 -1.
729 | <_>
730 | 29 3 8 4 3.
731 | 0
732 | 1.9838380467263050e-005
733 | -9.2727631330490112e-001
734 | 6.4723730087280273e-001
735 | <_>
736 |
737 | <_>
738 |
739 |
740 |
741 | <_>
742 | 42 3 12 6 -1.
743 | <_>
744 | 46 3 4 6 3.
745 | 0
746 | -2.2170299416757189e-005
747 | 5.6555831432342529e-001
748 | -9.6788132190704346e-001
749 | -1.4993519783020020e+000
750 | 7
751 | -1
752 | <_>
753 |
754 |
755 | <_>
756 |
757 | <_>
758 |
759 |
760 |
761 | <_>
762 | 56 9 6 6 -1.
763 | <_>
764 | 59 9 3 6 2.
765 | 0
766 | -1.1395259760320187e-002
767 | 7.1383631229400635e-001
768 | -8.7429678440093994e-001
769 | <_>
770 |
771 | <_>
772 |
773 |
774 |
775 | <_>
776 | 6 4 1 6 -1.
777 | <_>
778 | 6 7 1 3 2.
779 | 0
780 | -2.1864590235054493e-003
781 | 8.5311782360076904e-001
782 | -6.4777731895446777e-001
783 | <_>
784 |
785 | <_>
786 |
787 |
788 |
789 | <_>
790 | 0 0 12 4 -1.
791 | <_>
792 | 0 0 6 2 2.
793 | <_>
794 | 6 2 6 2 2.
795 | 0
796 | 2.3193720262497663e-003
797 | -7.6411879062652588e-001
798 | 7.1867972612380981e-001
799 | <_>
800 |
801 | <_>
802 |
803 |
804 |
805 | <_>
806 | 43 12 18 2 -1.
807 | <_>
808 | 52 12 9 2 2.
809 | 0
810 | -7.9916073009371758e-003
811 | 6.6442942619323730e-001
812 | -7.9540950059890747e-001
813 | <_>
814 |
815 | <_>
816 |
817 |
818 |
819 | <_>
820 | 9 5 2 8 -1.
821 | <_>
822 | 10 5 1 8 2.
823 | 0
824 | 1.4212740352377295e-003
825 | -6.3904231786727905e-001
826 | 7.5050598382949829e-001
827 | -8.4829801321029663e-001
828 | 8
829 | -1
830 | <_>
831 |
832 |
833 | <_>
834 |
835 | <_>
836 |
837 |
838 |
839 | <_>
840 | 1 9 6 3 -1.
841 | <_>
842 | 3 9 2 3 3.
843 | 0
844 | 6.4091659151017666e-003
845 | -8.8425230979919434e-001
846 | 9.9953681230545044e-001
847 | <_>
848 |
849 | <_>
850 |
851 |
852 |
853 | <_>
854 | 56 8 2 8 -1.
855 | <_>
856 | 56 12 2 4 2.
857 | 0
858 | -6.3316390151157975e-004
859 | 8.3822172880172729e-001
860 | -9.8322170972824097e-001
861 | <_>
862 |
863 | <_>
864 |
865 |
866 |
867 | <_>
868 | 24 2 6 13 -1.
869 | <_>
870 | 26 2 2 13 3.
871 | 0
872 | -6.4947169448714703e-005
873 | 1.
874 | -9.1822808980941772e-001
875 | <_>
876 |
877 | <_>
878 |
879 |
880 |
881 | <_>
882 | 33 7 24 4 -1.
883 | <_>
884 | 41 7 8 4 3.
885 | 0
886 | 5.3404141217470169e-003
887 | -9.4317251443862915e-001
888 | 9.0425151586532593e-001
889 | -6.0007210820913315e-002
890 | 9
891 | -1
892 | <_>
893 |
894 |
895 | <_>
896 |
897 | <_>
898 |
899 |
900 |
901 | <_>
902 | 1 1 57 4 -1.
903 | <_>
904 | 1 3 57 2 2.
905 | 0
906 | 1.0755469650030136e-001
907 | -7.1647202968597412e-001
908 | 8.7827038764953613e-001
909 | <_>
910 |
911 | <_>
912 |
913 |
914 |
915 | <_>
916 | 0 2 6 14 -1.
917 | <_>
918 | 3 2 3 14 2.
919 | 0
920 | 3.1668949872255325e-002
921 | -8.7051069736480713e-001
922 | 5.8807212114334106e-001
923 | <_>
924 |
925 | <_>
926 |
927 |
928 |
929 | <_>
930 | 52 3 6 10 -1.
931 | <_>
932 | 54 3 2 10 3.
933 | 0
934 | -1.0572380386292934e-002
935 | 6.2438100576400757e-001
936 | -7.4027371406555176e-001
937 | <_>
938 |
939 | <_>
940 |
941 |
942 |
943 | <_>
944 | 1 14 61 2 -1.
945 | <_>
946 | 1 15 61 1 2.
947 | 0
948 | -2.7396259829401970e-002
949 | 8.9776748418807983e-001
950 | -5.2986758947372437e-001
951 | <_>
952 |
953 | <_>
954 |
955 |
956 |
957 | <_>
958 | 28 0 11 12 -1.
959 | <_>
960 | 28 4 11 4 3.
961 | 0
962 | 2.5918649509549141e-002
963 | -8.6482518911361694e-001
964 | 5.3121817111968994e-001
965 | -9.6125108003616333e-001
966 | 10
967 | -1
968 | <_>
969 |
970 |
971 | <_>
972 |
973 | <_>
974 |
975 |
976 |
977 | <_>
978 | 22 1 41 4 -1.
979 | <_>
980 | 22 3 41 2 2.
981 | 0
982 | 7.1039132773876190e-002
983 | -7.5719678401947021e-001
984 | 7.5645631551742554e-001
985 | <_>
986 |
987 | <_>
988 |
989 |
990 |
991 | <_>
992 | 41 6 6 8 -1.
993 | <_>
994 | 43 6 2 8 3.
995 | 0
996 | 7.6241148635745049e-003
997 | -7.9783838987350464e-001
998 | 7.1733069419860840e-001
999 | <_>
1000 |
1001 | <_>
1002 |
1003 |
1004 |
1005 | <_>
1006 | 50 9 14 5 -1.
1007 | <_>
1008 | 57 9 7 5 2.
1009 | 0
1010 | -2.7092639356851578e-002
1011 | 6.0071170330047607e-001
1012 | -8.4794402122497559e-001
1013 | <_>
1014 |
1015 | <_>
1016 |
1017 |
1018 |
1019 | <_>
1020 | 4 1 12 5 -1.
1021 | <_>
1022 | 10 1 6 5 2.
1023 | 0
1024 | -8.1267888890579343e-004
1025 | 5.9364068508148193e-001
1026 | -8.9295238256454468e-001
1027 | <_>
1028 |
1029 | <_>
1030 |
1031 |
1032 |
1033 | <_>
1034 | 37 9 3 3 -1.
1035 | <_>
1036 | 38 9 1 3 3.
1037 | 0
1038 | 8.3705072756856680e-004
1039 | -6.4887362718582153e-001
1040 | 7.8537952899932861e-001
1041 | -1.0618970394134521e+000
1042 | 11
1043 | -1
1044 | <_>
1045 |
1046 |
1047 | <_>
1048 |
1049 | <_>
1050 |
1051 |
1052 |
1053 | <_>
1054 | 54 0 10 6 -1.
1055 | <_>
1056 | 54 0 5 3 2.
1057 | <_>
1058 | 59 3 5 3 2.
1059 | 0
1060 | -9.7556859254837036e-003
1061 | 7.6982218027114868e-001
1062 | -8.5293501615524292e-001
1063 | <_>
1064 |
1065 | <_>
1066 |
1067 |
1068 |
1069 | <_>
1070 | 47 0 6 11 -1.
1071 | <_>
1072 | 49 0 2 11 3.
1073 | 0
1074 | -8.6617246270179749e-003
1075 | 8.4029090404510498e-001
1076 | -7.1949690580368042e-001
1077 | <_>
1078 |
1079 | <_>
1080 |
1081 |
1082 |
1083 | <_>
1084 | 19 2 20 2 -1.
1085 | <_>
1086 | 19 3 20 1 2.
1087 | 0
1088 | 1.6897840425372124e-002
1089 | -5.3601992130279541e-001
1090 | 9.5484441518783569e-001
1091 | <_>
1092 |
1093 | <_>
1094 |
1095 |
1096 |
1097 | <_>
1098 | 14 4 6 11 -1.
1099 | <_>
1100 | 17 4 3 11 2.
1101 | 0
1102 | 4.7526158596156165e-005
1103 | -7.6412862539291382e-001
1104 | 7.5398761034011841e-001
1105 | <_>
1106 |
1107 | <_>
1108 |
1109 |
1110 |
1111 | <_>
1112 | 31 9 33 2 -1.
1113 | <_>
1114 | 42 9 11 2 3.
1115 | 0
1116 | 6.5607670694589615e-003
1117 | -9.9346441030502319e-001
1118 | 6.4864277839660645e-001
1119 | -7.3307347297668457e-001
1120 | 12
1121 | -1
1122 | <_>
1123 |
1124 |
1125 | <_>
1126 |
1127 | <_>
1128 |
1129 |
1130 |
1131 | <_>
1132 | 6 1 53 6 -1.
1133 | <_>
1134 | 6 3 53 2 3.
1135 | 0
1136 | 1.0103269666433334e-001
1137 | -7.3275578022003174e-001
1138 | 8.4619927406311035e-001
1139 | <_>
1140 |
1141 | <_>
1142 |
1143 |
1144 |
1145 | <_>
1146 | 49 9 4 6 -1.
1147 | <_>
1148 | 49 9 2 3 2.
1149 | <_>
1150 | 51 12 2 3 2.
1151 | 0
1152 | -2.8920811018906534e-004
1153 | 7.1564781665802002e-001
1154 | -8.8221758604049683e-001
1155 | <_>
1156 |
1157 | <_>
1158 |
1159 |
1160 |
1161 | <_>
1162 | 0 9 30 7 -1.
1163 | <_>
1164 | 10 9 10 7 3.
1165 | 0
1166 | 1.0838840156793594e-002
1167 | -8.7420248985290527e-001
1168 | 6.0648679733276367e-001
1169 | <_>
1170 |
1171 | <_>
1172 |
1173 |
1174 |
1175 | <_>
1176 | 40 4 6 2 -1.
1177 | <_>
1178 | 42 4 2 2 3.
1179 | 0
1180 | 5.0803890917450190e-004
1181 | -9.0554022789001465e-001
1182 | 6.4213967323303223e-001
1183 | <_>
1184 |
1185 | <_>
1186 |
1187 |
1188 |
1189 | <_>
1190 | 1 9 6 1 -1.
1191 | <_>
1192 | 3 9 2 1 3.
1193 | 0
1194 | 2.3357039317488670e-003
1195 | -9.2574918270111084e-001
1196 | 8.6384928226470947e-001
1197 | <_>
1198 |
1199 | <_>
1200 |
1201 |
1202 |
1203 | <_>
1204 | 47 3 4 10 -1.
1205 | <_>
1206 | 47 8 4 5 2.
1207 | 0
1208 | 8.0239427916239947e-005
1209 | -9.9618428945541382e-001
1210 | 9.5355111360549927e-001
1211 | <_>
1212 |
1213 | <_>
1214 |
1215 |
1216 |
1217 | <_>
1218 | 31 5 30 11 -1.
1219 | <_>
1220 | 41 5 10 11 3.
1221 | 0
1222 | 3.2030208967626095e-003
1223 | -1.
1224 | 1.0001050233840942e+000
1225 | <_>
1226 |
1227 | <_>
1228 |
1229 |
1230 |
1231 | <_>
1232 | 0 0 2 1 -1.
1233 | <_>
1234 | 1 0 1 1 2.
1235 | 0
1236 | 0.
1237 | 0.
1238 | -1.
1239 | <_>
1240 |
1241 | <_>
1242 |
1243 |
1244 |
1245 | <_>
1246 | 21 3 42 5 -1.
1247 | <_>
1248 | 35 3 14 5 3.
1249 | 0
1250 | 2.6143440045416355e-003
1251 | -1.
1252 | 1.0002139806747437e+000
1253 | <_>
1254 |
1255 | <_>
1256 |
1257 |
1258 |
1259 | <_>
1260 | 0 0 2 1 -1.
1261 | <_>
1262 | 1 0 1 1 2.
1263 | 0
1264 | 0.
1265 | 0.
1266 | -1.
1267 | <_>
1268 |
1269 | <_>
1270 |
1271 |
1272 |
1273 | <_>
1274 | 8 5 30 9 -1.
1275 | <_>
1276 | 8 8 30 3 3.
1277 | 0
1278 | -7.0475979009643197e-004
1279 | 1.
1280 | -9.9976968765258789e-001
1281 | <_>
1282 |
1283 | <_>
1284 |
1285 |
1286 |
1287 | <_>
1288 | 3 12 33 3 -1.
1289 | <_>
1290 | 14 12 11 3 3.
1291 | 0
1292 | 2.1271279547363520e-003
1293 | -9.9694627523422241e-001
1294 | 1.0002720355987549e+000
1295 | <_>
1296 |
1297 | <_>
1298 |
1299 |
1300 |
1301 | <_>
1302 | 0 0 3 2 -1.
1303 | <_>
1304 | 1 0 1 2 3.
1305 | 0
1306 | -2.4224430671893060e-004
1307 | 1.
1308 | -1.
1309 | <_>
1310 |
1311 | <_>
1312 |
1313 |
1314 |
1315 | <_>
1316 | 46 4 3 8 -1.
1317 | <_>
1318 | 47 4 1 8 3.
1319 | 0
1320 | 7.4700301047414541e-004
1321 | -9.9108231067657471e-001
1322 | 9.9941182136535645e-001
1323 | -1.0991690158843994e+000
1324 | 13
1325 | -1
1326 | <_>
1327 |
1328 |
1329 | <_>
1330 |
1331 | <_>
1332 |
1333 |
1334 |
1335 | <_>
1336 | 1 2 6 5 -1.
1337 | <_>
1338 | 3 2 2 5 3.
1339 | 0
1340 | 1.7227890202775598e-003
1341 | -9.3608891963958740e-001
1342 | 8.7251222133636475e-001
1343 | <_>
1344 |
1345 | <_>
1346 |
1347 |
1348 |
1349 | <_>
1350 | 0 3 18 5 -1.
1351 | <_>
1352 | 6 3 6 5 3.
1353 | 0
1354 | 2.7599320746958256e-003
1355 | -9.9757021665573120e-001
1356 | 1.0000289678573608e+000
1357 | <_>
1358 |
1359 | <_>
1360 |
1361 |
1362 |
1363 | <_>
1364 | 3 1 6 14 -1.
1365 | <_>
1366 | 6 1 3 14 2.
1367 | 0
1368 | -8.9444358309265226e-005
1369 | 1.
1370 | -9.9264812469482422e-001
1371 | <_>
1372 |
1373 | <_>
1374 |
1375 |
1376 |
1377 | <_>
1378 | 3 6 2 10 -1.
1379 | <_>
1380 | 3 11 2 5 2.
1381 | 0
1382 | -2.7962020249105990e-004
1383 | 8.2833290100097656e-001
1384 | -9.8444151878356934e-001
1385 | <_>
1386 |
1387 | <_>
1388 |
1389 |
1390 |
1391 | <_>
1392 | 42 0 4 6 -1.
1393 | <_>
1394 | 42 0 2 3 2.
1395 | <_>
1396 | 44 3 2 3 2.
1397 | 0
1398 | -2.7560539820115082e-005
1399 | 1.
1400 | -9.9543339014053345e-001
1401 | -9.1314977407455444e-001
1402 | 14
1403 | -1
1404 |
1405 |
--------------------------------------------------------------------------------
/data/haarcascade files/haarcascade_mcs_leftear.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/haarcascade files/haarcascade_mcs_leftear.xml
--------------------------------------------------------------------------------
/data/haarcascade files/haarcascade_mcs_rightear.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/haarcascade files/haarcascade_mcs_rightear.xml
--------------------------------------------------------------------------------
/data/haarcascade files/haarcascade_russian_plate_number.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | BOOST
5 | HAAR
6 | 20
7 | 60
8 |
9 | GAB
10 | 9.9500000476837158e-001
11 | 5.0000000000000000e-001
12 | 9.4999999999999996e-001
13 | 1
14 | 100
15 |
16 | 0
17 | 1
18 | ALL
19 | 20
20 |
21 |
22 | <_>
23 | 6
24 | -1.3110191822052002e+000
25 |
26 | <_>
27 |
28 | 0 -1 193 1.0079263709485531e-002
29 |
30 | -8.1339186429977417e-001 5.0277775526046753e-001
31 | <_>
32 |
33 | 0 -1 94 -2.2060684859752655e-002
34 |
35 | 7.9418992996215820e-001 -5.0896102190017700e-001
36 | <_>
37 |
38 | 0 -1 18 -4.8777908086776733e-002
39 |
40 | 7.1656656265258789e-001 -4.1640335321426392e-001
41 | <_>
42 |
43 | 0 -1 35 1.0387318208813667e-002
44 |
45 | 3.7618312239646912e-001 -8.5504144430160522e-001
46 | <_>
47 |
48 | 0 -1 191 -9.4083719886839390e-004
49 |
50 | 4.2658549547195435e-001 -5.7729166746139526e-001
51 | <_>
52 |
53 | 0 -1 48 -8.2391249015927315e-003
54 |
55 | 8.2346975803375244e-001 -3.7503159046173096e-001
56 |
57 | <_>
58 | 6
59 | -1.1759783029556274e+000
60 |
61 | <_>
62 |
63 | 0 -1 21 1.7386786639690399e-001
64 |
65 | -6.8139964342117310e-001 6.0767590999603271e-001
66 | <_>
67 |
68 | 0 -1 28 -1.9797295331954956e-002
69 |
70 | 7.8072130680084229e-001 -4.4399836659431458e-001
71 | <_>
72 |
73 | 0 -1 46 -1.0154811898246408e-003
74 |
75 | 3.3383268117904663e-001 -7.6357340812683105e-001
76 | <_>
77 |
78 | 0 -1 138 2.4954911321401596e-002
79 |
80 | -3.9979115128517151e-001 6.8620890378952026e-001
81 | <_>
82 |
83 | 0 -1 25 2.8837744612246752e-003
84 |
85 | -2.7928480505943298e-001 7.9980146884918213e-001
86 | <_>
87 |
88 | 0 -1 26 -3.8839362561702728e-002
89 |
90 | -7.8442335128784180e-001 3.4929576516151428e-001
91 |
92 | <_>
93 | 6
94 | -1.7856997251510620e+000
95 |
96 | <_>
97 |
98 | 0 -1 34 2.7977079153060913e-002
99 |
100 | -5.8424139022827148e-001 6.6850829124450684e-001
101 | <_>
102 |
103 | 0 -1 171 1.9148588180541992e-002
104 |
105 | -6.5457659959793091e-001 4.0804430842399597e-001
106 | <_>
107 |
108 | 0 -1 7 1.1955041438341141e-002
109 |
110 | -4.2002618312835693e-001 5.6217432022094727e-001
111 | <_>
112 |
113 | 0 -1 45 -2.1218564361333847e-002
114 |
115 | 7.1812576055526733e-001 -3.0354043841362000e-001
116 | <_>
117 |
118 | 0 -1 108 2.0117280655540526e-004
119 |
120 | -6.1749500036239624e-001 3.5549193620681763e-001
121 | <_>
122 |
123 | 0 -1 122 3.9725980604998767e-004
124 |
125 | -2.6844096183776855e-001 7.6771658658981323e-001
126 |
127 | <_>
128 | 9
129 | -1.1837021112442017e+000
130 |
131 | <_>
132 |
133 | 0 -1 202 -1.3291766867041588e-002
134 |
135 | 4.5248869061470032e-001 -5.8849954605102539e-001
136 | <_>
137 |
138 | 0 -1 79 -4.8353265970945358e-002
139 |
140 | 7.0951640605926514e-001 -3.2546108961105347e-001
141 | <_>
142 |
143 | 0 -1 22 2.6532993651926517e-003
144 |
145 | -2.5343564152717590e-001 7.6588714122772217e-001
146 | <_>
147 |
148 | 0 -1 66 -3.8548894226551056e-002
149 |
150 | 5.8126109838485718e-001 -3.0813106894493103e-001
151 | <_>
152 |
153 | 0 -1 41 -6.8602780811488628e-004
154 |
155 | 2.6361095905303955e-001 -7.2226840257644653e-001
156 | <_>
157 |
158 | 0 -1 69 -2.5726919993758202e-002
159 |
160 | -8.7153857946395874e-001 1.9438524544239044e-001
161 | <_>
162 |
163 | 0 -1 24 8.4192806389182806e-004
164 |
165 | -3.6150649189949036e-001 5.2065432071685791e-001
166 | <_>
167 |
168 | 0 -1 62 -2.6956878136843443e-003
169 |
170 | 5.9945529699325562e-001 -2.8344830870628357e-001
171 | <_>
172 |
173 | 0 -1 112 3.0572075396776199e-002
174 |
175 | -3.0688971281051636e-001 5.7261526584625244e-001
176 |
177 | <_>
178 | 8
179 | -1.4687808752059937e+000
180 |
181 | <_>
182 |
183 | 0 -1 5 3.1486168503761292e-002
184 |
185 | -5.7836848497390747e-001 3.7931033968925476e-001
186 | <_>
187 |
188 | 0 -1 150 2.8311354108154774e-003
189 |
190 | -5.7888329029083252e-001 3.2841828465461731e-001
191 | <_>
192 |
193 | 0 -1 76 -4.2060948908329010e-002
194 |
195 | 5.5578106641769409e-001 -3.2662427425384521e-001
196 | <_>
197 |
198 | 0 -1 115 6.2936875037848949e-003
199 |
200 | -2.1032968163490295e-001 7.8646916151046753e-001
201 | <_>
202 |
203 | 0 -1 51 7.0570126175880432e-002
204 |
205 | -4.3683132529258728e-001 4.0298295021057129e-001
206 | <_>
207 |
208 | 0 -1 135 2.5173835456371307e-003
209 |
210 | -2.0461565256118774e-001 8.2858163118362427e-001
211 | <_>
212 |
213 | 0 -1 102 1.5648975968360901e-003
214 |
215 | -2.4848082661628723e-001 6.0209411382675171e-001
216 | <_>
217 |
218 | 0 -1 177 -3.5970686003565788e-003
219 |
220 | 2.3294737935066223e-001 -6.5612471103668213e-001
221 |
222 | <_>
223 | 9
224 | -1.1029583215713501e+000
225 |
226 | <_>
227 |
228 | 0 -1 27 -1.1257569491863251e-001
229 |
230 | 3.3181819319725037e-001 -5.3901344537734985e-001
231 | <_>
232 |
233 | 0 -1 142 3.8014666642993689e-003
234 |
235 | -3.6430206894874573e-001 4.5984184741973877e-001
236 | <_>
237 |
238 | 0 -1 57 9.8789634648710489e-004
239 |
240 | -2.6661416888237000e-001 5.6971323490142822e-001
241 | <_>
242 |
243 | 0 -1 55 2.1719809621572495e-002
244 |
245 | 1.8432702124118805e-001 -8.2999354600906372e-001
246 | <_>
247 |
248 | 0 -1 111 5.1051773130893707e-002
249 |
250 | 1.4391148090362549e-001 -9.4541704654693604e-001
251 | <_>
252 |
253 | 0 -1 164 1.8956036074087024e-003
254 |
255 | -6.0830104351043701e-001 2.6091885566711426e-001
256 | <_>
257 |
258 | 0 -1 81 -5.8700828813016415e-003
259 |
260 | 6.9104760885238647e-001 -2.6916843652725220e-001
261 | <_>
262 |
263 | 0 -1 116 -1.1522199492901564e-003
264 |
265 | -6.9503885507583618e-001 2.4749211966991425e-001
266 | <_>
267 |
268 | 0 -1 90 -5.1933946087956429e-003
269 |
270 | 5.8551025390625000e-001 -3.0389472842216492e-001
271 |
272 | <_>
273 | 9
274 | -9.0274518728256226e-001
275 |
276 | <_>
277 |
278 | 0 -1 205 -1.4383997768163681e-002
279 |
280 | 4.5400592684745789e-001 -4.9917897582054138e-001
281 | <_>
282 |
283 | 0 -1 114 -3.3369414508342743e-002
284 |
285 | -9.3247985839843750e-001 1.4586758613586426e-001
286 | <_>
287 |
288 | 0 -1 128 5.2380945999175310e-004
289 |
290 | -2.8349643945693970e-001 6.4983856678009033e-001
291 | <_>
292 |
293 | 0 -1 143 6.1231426661834121e-004
294 |
295 | -1.8502233922481537e-001 6.5052211284637451e-001
296 | <_>
297 |
298 | 0 -1 49 1.7017847858369350e-003
299 |
300 | 2.2008989751338959e-001 -7.2277534008026123e-001
301 | <_>
302 |
303 | 0 -1 133 2.6139442343264818e-003
304 |
305 | 1.8238025903701782e-001 -7.6262325048446655e-001
306 | <_>
307 |
308 | 0 -1 43 -2.0020073279738426e-003
309 |
310 | 5.6799399852752686e-001 -2.8219676017761230e-001
311 | <_>
312 |
313 | 0 -1 119 1.9273828947916627e-003
314 |
315 | -2.0913636684417725e-001 7.9203850030899048e-001
316 | <_>
317 |
318 | 0 -1 134 -9.4476283993571997e-004
319 |
320 | -8.2361942529678345e-001 2.4256958067417145e-001
321 |
322 | <_>
323 | 10
324 | -1.4518526792526245e+000
325 |
326 | <_>
327 |
328 | 0 -1 162 1.6756314784288406e-002
329 |
330 | -6.9359332323074341e-001 5.1373954862356186e-002
331 | <_>
332 |
333 | 0 -1 16 2.4082964286208153e-002
334 |
335 | -3.3989402651786804e-001 4.5332714915275574e-001
336 | <_>
337 |
338 | 0 -1 186 1.2284796684980392e-003
339 |
340 | -2.2297365963459015e-001 6.1439812183380127e-001
341 | <_>
342 |
343 | 0 -1 59 -1.4379122294485569e-003
344 |
345 | -6.9444245100021362e-001 2.0446482300758362e-001
346 | <_>
347 |
348 | 0 -1 185 -1.8713285680860281e-003
349 |
350 | 6.7942184209823608e-001 -2.7580419182777405e-001
351 | <_>
352 |
353 | 0 -1 190 -4.7389674000442028e-003
354 |
355 | -7.0437240600585938e-001 2.6915156841278076e-001
356 | <_>
357 |
358 | 0 -1 156 7.4071279959753156e-004
359 |
360 | -2.9220902919769287e-001 5.3538239002227783e-001
361 | <_>
362 |
363 | 0 -1 11 -2.2739455103874207e-001
364 |
365 | 6.6916191577911377e-001 -2.1987228095531464e-001
366 | <_>
367 |
368 | 0 -1 155 -1.0255509987473488e-003
369 |
370 | 6.3346290588378906e-001 -2.2717863321304321e-001
371 | <_>
372 |
373 | 0 -1 167 2.4775355122983456e-003
374 |
375 | -5.4297816753387451e-001 3.1877547502517700e-001
376 |
377 | <_>
378 | 11
379 | -1.3153649568557739e+000
380 |
381 | <_>
382 |
383 | 0 -1 6 1.9131936132907867e-002
384 |
385 | -6.0168600082397461e-001 1.9141913950443268e-001
386 | <_>
387 |
388 | 0 -1 42 -4.5855185016989708e-003
389 |
390 | 2.1901632845401764e-001 -5.7136750221252441e-001
391 | <_>
392 |
393 | 0 -1 53 -1.9026801455765963e-003
394 |
395 | -8.0075079202651978e-001 1.6502076387405396e-001
396 | <_>
397 |
398 | 0 -1 19 -3.2767035067081451e-002
399 |
400 | 5.1496404409408569e-001 -2.5474679470062256e-001
401 | <_>
402 |
403 | 0 -1 129 6.3941581174731255e-004
404 |
405 | -1.9851709902286530e-001 6.7218667268753052e-001
406 | <_>
407 |
408 | 0 -1 201 1.5573646873235703e-002
409 |
410 | -1.7564551532268524e-001 7.0536541938781738e-001
411 | <_>
412 |
413 | 0 -1 200 9.5508026424795389e-004
414 |
415 | -1.9691802561283112e-001 6.1125624179840088e-001
416 | <_>
417 |
418 | 0 -1 67 9.0427603572607040e-003
419 |
420 | 1.6518253087997437e-001 -8.7012130022048950e-001
421 | <_>
422 |
423 | 0 -1 77 8.1576988101005554e-002
424 |
425 | 1.4075902104377747e-001 -8.4871828556060791e-001
426 | <_>
427 |
428 | 0 -1 166 -5.1994959358125925e-004
429 |
430 | 2.1803210675716400e-001 -5.4628211259841919e-001
431 | <_>
432 |
433 | 0 -1 70 -2.3009868338704109e-002
434 |
435 | -7.9586231708526611e-001 1.5989699959754944e-001
436 |
437 | <_>
438 | 13
439 | -1.4625015258789063e+000
440 |
441 | <_>
442 |
443 | 0 -1 1 2.6759501546621323e-002
444 |
445 | -6.0482984781265259e-001 1.4906832575798035e-001
446 | <_>
447 |
448 | 0 -1 165 3.0343931168317795e-002
449 |
450 | -4.7357541322708130e-001 2.6279065012931824e-001
451 | <_>
452 |
453 | 0 -1 161 1.2678599450737238e-003
454 |
455 | -1.9493983685970306e-001 6.9734728336334229e-001
456 | <_>
457 |
458 | 0 -1 30 1.8607920501381159e-003
459 |
460 | 1.5611934661865234e-001 -9.0542370080947876e-001
461 | <_>
462 |
463 | 0 -1 157 -1.3872641138732433e-003
464 |
465 | 5.3263407945632935e-001 -3.0192303657531738e-001
466 | <_>
467 |
468 | 0 -1 180 -6.9969398900866508e-003
469 |
470 | -9.4549953937530518e-001 1.5575224161148071e-001
471 | <_>
472 |
473 | 0 -1 158 1.1245720088481903e-003
474 |
475 | -2.6688691973686218e-001 5.5608308315277100e-001
476 | <_>
477 |
478 | 0 -1 160 -2.8279949910938740e-003
479 |
480 | -9.1861122846603394e-001 1.3309663534164429e-001
481 | <_>
482 |
483 | 0 -1 58 7.1019242750480771e-004
484 |
485 | -3.0977895855903625e-001 4.3846300244331360e-001
486 | <_>
487 |
488 | 0 -1 8 -4.1933014988899231e-002
489 |
490 | -8.9102542400360107e-001 1.5866196155548096e-001
491 | <_>
492 |
493 | 0 -1 87 1.6568358987569809e-002
494 |
495 | 1.2731756269931793e-001 -8.5553413629531860e-001
496 | <_>
497 |
498 | 0 -1 64 2.0309074316173792e-003
499 |
500 | -2.3260365426540375e-001 6.7330485582351685e-001
501 | <_>
502 |
503 | 0 -1 159 -1.7069760942831635e-003
504 |
505 | -7.1925789117813110e-001 1.9108834862709045e-001
506 |
507 | <_>
508 | 14
509 | -1.4959813356399536e+000
510 |
511 | <_>
512 |
513 | 0 -1 4 1.4695923775434494e-002
514 |
515 | -6.2167906761169434e-001 2.1172638237476349e-001
516 | <_>
517 |
518 | 0 -1 50 -1.6501215286552906e-003
519 |
520 | 1.9353884458541870e-001 -5.7780367136001587e-001
521 | <_>
522 |
523 | 0 -1 123 7.0121872704476118e-004
524 |
525 | -2.2979106009006500e-001 5.3033334016799927e-001
526 | <_>
527 |
528 | 0 -1 52 9.4158272258937359e-004
529 |
530 | 1.6849038004875183e-001 -7.4897718429565430e-001
531 | <_>
532 |
533 | 0 -1 124 -2.0684124901890755e-003
534 |
535 | 6.7936712503433228e-001 -1.9317412376403809e-001
536 | <_>
537 |
538 | 0 -1 23 -1.8305826233699918e-004
539 |
540 | -7.0275229215621948e-001 1.7971208691596985e-001
541 | <_>
542 |
543 | 0 -1 198 5.5587477982044220e-004
544 |
545 | -2.4448128044605255e-001 5.0703984498977661e-001
546 | <_>
547 |
548 | 0 -1 152 4.3448276119306684e-004
549 |
550 | 1.3497908413410187e-001 -8.5621362924575806e-001
551 | <_>
552 |
553 | 0 -1 197 -1.2359691318124533e-003
554 |
555 | 6.1710417270660400e-001 -2.2301279008388519e-001
556 | <_>
557 |
558 | 0 -1 153 -6.9627340417355299e-004
559 |
560 | -6.4706987142562866e-001 2.3951497673988342e-001
561 | <_>
562 |
563 | 0 -1 175 1.0683680884540081e-003
564 |
565 | -2.8343605995178223e-001 4.9318629503250122e-001
566 | <_>
567 |
568 | 0 -1 168 1.7104238213505596e-004
569 |
570 | -2.7171039581298828e-001 4.2520308494567871e-001
571 | <_>
572 |
573 | 0 -1 144 8.2368971779942513e-003
574 |
575 | 1.6359315812587738e-001 -7.3864609003067017e-001
576 | <_>
577 |
578 | 0 -1 131 -5.9884190559387207e-003
579 |
580 | 3.8030940294265747e-001 -3.0763563513755798e-001
581 |
582 | <_>
583 | 9
584 | -1.1183819770812988e+000
585 |
586 | <_>
587 |
588 | 0 -1 187 -1.4863962307572365e-002
589 |
590 | 1.1989101022481918e-001 -6.6138857603073120e-001
591 | <_>
592 |
593 | 0 -1 117 2.4736612103879452e-003
594 |
595 | -5.2778661251068115e-001 2.3012125492095947e-001
596 | <_>
597 |
598 | 0 -1 71 -4.8899287357926369e-003
599 |
600 | 6.0186779499053955e-001 -2.0681641995906830e-001
601 | <_>
602 |
603 | 0 -1 174 1.5796069055795670e-002
604 |
605 | 1.4610521495342255e-001 -8.2099527120590210e-001
606 | <_>
607 |
608 | 0 -1 104 5.9720675926655531e-004
609 |
610 | -2.3587301373481750e-001 4.8323699831962585e-001
611 | <_>
612 |
613 | 0 -1 103 -1.9448818638920784e-003
614 |
615 | 6.4417767524719238e-001 -2.0953170955181122e-001
616 | <_>
617 |
618 | 0 -1 154 1.9433414854574949e-004
619 |
620 | 2.0600238442420959e-001 -7.2418999671936035e-001
621 | <_>
622 |
623 | 0 -1 163 -1.5097535215318203e-002
624 |
625 | -8.7151485681533813e-001 1.2594890594482422e-001
626 | <_>
627 |
628 | 0 -1 82 -3.9843879640102386e-003
629 |
630 | 4.3801131844520569e-001 -2.9676589369773865e-001
631 |
632 | <_>
633 | 12
634 | -1.5434337854385376e+000
635 |
636 | <_>
637 |
638 | 0 -1 105 1.1273270938545465e-003
639 |
640 | -4.7976878285408020e-001 3.6627906560897827e-001
641 | <_>
642 |
643 | 0 -1 95 9.7806821577250957e-004
644 |
645 | -2.7689707279205322e-001 5.1295894384384155e-001
646 | <_>
647 |
648 | 0 -1 15 1.6528377309441566e-002
649 |
650 | -4.5259797573089600e-001 2.4290211498737335e-001
651 | <_>
652 |
653 | 0 -1 137 1.1040373938158154e-003
654 |
655 | -3.2714816927909851e-001 3.4566244482994080e-001
656 | <_>
657 |
658 | 0 -1 109 -1.7780361231416464e-003
659 |
660 | -6.9511681795120239e-001 1.8829824030399323e-001
661 | <_>
662 |
663 | 0 -1 92 4.6280334936454892e-004
664 |
665 | -2.3864887654781342e-001 5.3136289119720459e-001
666 | <_>
667 |
668 | 0 -1 100 -1.4975425438024104e-004
669 |
670 | -6.6509884595870972e-001 2.1483559906482697e-001
671 | <_>
672 |
673 | 0 -1 83 -1.4625370968133211e-003
674 |
675 | 2.6556470990180969e-001 -4.9002227187156677e-001
676 | <_>
677 |
678 | 0 -1 14 -2.6019819779321551e-004
679 |
680 | -7.0160359144210815e-001 1.6359129548072815e-001
681 | <_>
682 |
683 | 0 -1 14 2.2371641534846276e-004
684 |
685 | 1.2919521331787109e-001 -6.9767206907272339e-001
686 | <_>
687 |
688 | 0 -1 194 -1.0447315871715546e-002
689 |
690 | 2.1837629377841949e-001 -4.6482038497924805e-001
691 | <_>
692 |
693 | 0 -1 20 -9.2897024005651474e-003
694 |
695 | 6.4918082952499390e-001 -2.0495061576366425e-001
696 |
697 | <_>
698 | 12
699 | -1.4440233707427979e+000
700 |
701 | <_>
702 |
703 | 0 -1 9 8.5356216877698898e-003
704 |
705 | -5.3151458501815796e-001 2.2357723116874695e-001
706 | <_>
707 |
708 | 0 -1 182 1.5294685726985335e-003
709 |
710 | -6.0895460844039917e-001 1.7429886758327484e-001
711 | <_>
712 |
713 | 0 -1 40 1.8610086990520358e-003
714 |
715 | -2.5480428338050842e-001 4.2150071263313293e-001
716 | <_>
717 |
718 | 0 -1 176 1.5735558699816465e-003
719 |
720 | -1.6832062602043152e-001 4.8567819595336914e-001
721 | <_>
722 |
723 | 0 -1 179 -6.7992787808179855e-004
724 |
725 | 3.9894598722457886e-001 -3.0744269490242004e-001
726 | <_>
727 |
728 | 0 -1 151 4.9857296049594879e-002
729 |
730 | -1.5370152890682220e-001 6.7523348331451416e-001
731 | <_>
732 |
733 | 0 -1 139 -2.8339058160781860e-002
734 |
735 | 5.0540882349014282e-001 -2.9473617672920227e-001
736 | <_>
737 |
738 | 0 -1 72 -7.7956825494766235e-002
739 |
740 | 4.0387043356895447e-001 -3.0287107825279236e-001
741 | <_>
742 |
743 | 0 -1 89 -3.6115488037467003e-003
744 |
745 | 6.3856112957000732e-001 -1.6917882859706879e-001
746 | <_>
747 |
748 | 0 -1 207 3.3940275898203254e-004
749 |
750 | 1.3713537156581879e-001 -7.8120291233062744e-001
751 | <_>
752 |
753 | 0 -1 39 4.0043061599135399e-003
754 |
755 | 1.5233094990253448e-001 -6.3939732313156128e-001
756 | <_>
757 |
758 | 0 -1 65 -4.4601649278774858e-004
759 |
760 | 2.1333815157413483e-001 -4.7728902101516724e-001
761 |
762 | <_>
763 | 13
764 | -1.2532578706741333e+000
765 |
766 | <_>
767 |
768 | 0 -1 204 -2.0341124385595322e-002
769 |
770 | 2.4170616269111633e-001 -4.9161517620086670e-001
771 | <_>
772 |
773 | 0 -1 169 8.9040049351751804e-004
774 |
775 | -2.8570893406867981e-001 4.2666998505592346e-001
776 | <_>
777 |
778 | 0 -1 60 -3.3259526826441288e-003
779 |
780 | 4.2626520991325378e-001 -2.3811897635459900e-001
781 | <_>
782 |
783 | 0 -1 38 -3.1714607030153275e-002
784 |
785 | -8.5494768619537354e-001 1.1712870001792908e-001
786 | <_>
787 |
788 | 0 -1 31 -1.1553820222616196e-002
789 |
790 | 2.2675493359565735e-001 -4.9640509486198425e-001
791 | <_>
792 |
793 | 0 -1 80 -6.7727260291576385e-002
794 |
795 | -8.6705064773559570e-001 9.8765812814235687e-002
796 | <_>
797 |
798 | 0 -1 63 -3.1611192971467972e-003
799 |
800 | 3.9449846744537354e-001 -2.8210711479187012e-001
801 | <_>
802 |
803 | 0 -1 149 4.3221906526014209e-004
804 |
805 | 1.1805476248264313e-001 -9.0178310871124268e-001
806 | <_>
807 |
808 | 0 -1 188 -2.2296360111795366e-004
809 |
810 | 1.7324598133563995e-001 -5.2877873182296753e-001
811 | <_>
812 |
813 | 0 -1 120 -2.1440195851027966e-003
814 |
815 | 5.5513423681259155e-001 -1.9791823625564575e-001
816 | <_>
817 |
818 | 0 -1 113 -4.5122690498828888e-003
819 |
820 | 5.5083745718002319e-001 -1.8810540437698364e-001
821 | <_>
822 |
823 | 0 -1 130 -3.5149464383721352e-003
824 |
825 | 5.5467557907104492e-001 -2.2856147587299347e-001
826 | <_>
827 |
828 | 0 -1 121 -4.4786706566810608e-003
829 |
830 | -7.9106998443603516e-001 1.7836479842662811e-001
831 |
832 | <_>
833 | 15
834 | -1.1898330450057983e+000
835 |
836 | <_>
837 |
838 | 0 -1 0 1.5206767246127129e-002
839 |
840 | -4.9173194169998169e-001 2.7093595266342163e-001
841 | <_>
842 |
843 | 0 -1 125 6.9564773002639413e-004
844 |
845 | -2.3066598176956177e-001 5.4028344154357910e-001
846 | <_>
847 |
848 | 0 -1 125 -8.3668017759919167e-004
849 |
850 | 4.4658055901527405e-001 -2.7778497338294983e-001
851 | <_>
852 |
853 | 0 -1 91 -3.8321319967508316e-002
854 |
855 | -7.9069298505783081e-001 1.8700349330902100e-001
856 | <_>
857 |
858 | 0 -1 207 -2.1063965687062591e-004
859 |
860 | -6.3163763284683228e-001 1.8656146526336670e-001
861 | <_>
862 |
863 | 0 -1 61 3.6907330155372620e-002
864 |
865 | 9.9319733679294586e-002 -7.6762360334396362e-001
866 | <_>
867 |
868 | 0 -1 85 8.1071127206087112e-003
869 |
870 | -2.8561261296272278e-001 3.4748569130897522e-001
871 | <_>
872 |
873 | 0 -1 189 6.2815943965688348e-004
874 |
875 | 1.6656193137168884e-001 -5.4635977745056152e-001
876 | <_>
877 |
878 | 0 -1 86 2.8582263621501625e-004
879 |
880 | -2.4100163578987122e-001 4.5410770177841187e-001
881 | <_>
882 |
883 | 0 -1 173 -1.9862279295921326e-002
884 |
885 | -9.4317340850830078e-001 1.2513674795627594e-001
886 | <_>
887 |
888 | 0 -1 96 1.1506280861794949e-003
889 |
890 | -2.4514634907245636e-001 4.6452957391738892e-001
891 | <_>
892 |
893 | 0 -1 29 2.3451185552403331e-004
894 |
895 | 1.2489952147006989e-001 -8.0278074741363525e-001
896 | <_>
897 |
898 | 0 -1 101 6.7837134702131152e-004
899 |
900 | -2.5017899274826050e-001 4.3841627240180969e-001
901 | <_>
902 |
903 | 0 -1 17 3.1583159579895437e-004
904 |
905 | 1.5951988101005554e-001 -7.4524724483489990e-001
906 | <_>
907 |
908 | 0 -1 110 7.2623658925294876e-003
909 |
910 | 1.2511830031871796e-001 -6.5659755468368530e-001
911 |
912 | <_>
913 | 15
914 | -1.2416906356811523e+000
915 |
916 | <_>
917 |
918 | 0 -1 2 7.5144092552363873e-003
919 |
920 | -5.9518074989318848e-001 5.3793102502822876e-002
921 | <_>
922 |
923 | 0 -1 98 -6.4494344405829906e-004
924 |
925 | 2.0429474115371704e-001 -4.3661779165267944e-001
926 | <_>
927 |
928 | 0 -1 196 3.3831471228040755e-004
929 |
930 | -2.1566553413867950e-001 4.7118204832077026e-001
931 | <_>
932 |
933 | 0 -1 73 2.8320802375674248e-003
934 |
935 | 1.3322307169437408e-001 -8.3729231357574463e-001
936 | <_>
937 |
938 | 0 -1 199 1.6218879027292132e-003
939 |
940 | -2.0889574289321899e-001 4.7114694118499756e-001
941 | <_>
942 |
943 | 0 -1 10 2.7122153551317751e-004
944 |
945 | 1.1475630849599838e-001 -7.8029519319534302e-001
946 | <_>
947 |
948 | 0 -1 170 8.8358242064714432e-003
949 |
950 | 1.2460929155349731e-001 -7.6791721582412720e-001
951 | <_>
952 |
953 | 0 -1 106 9.7634072881191969e-004
954 |
955 | -2.0806105434894562e-001 5.1318311691284180e-001
956 | <_>
957 |
958 | 0 -1 107 -2.1239042282104492e-002
959 |
960 | -8.7171542644500732e-001 1.2721680104732513e-001
961 | <_>
962 |
963 | 0 -1 97 7.1797124110162258e-004
964 |
965 | -3.0763280391693115e-001 3.7504923343658447e-001
966 | <_>
967 |
968 | 0 -1 32 2.7504155412316322e-002
969 |
970 | 1.5651945769786835e-001 -7.9516488313674927e-001
971 | <_>
972 |
973 | 0 -1 178 1.0624636197462678e-003
974 |
975 | 1.3473348319530487e-001 -6.9174814224243164e-001
976 | <_>
977 |
978 | 0 -1 33 -8.1248432397842407e-002
979 |
980 | -8.5117286443710327e-001 1.0601779073476791e-001
981 | <_>
982 |
983 | 0 -1 140 -2.2936165332794189e-002
984 |
985 | 3.9202499389648438e-001 -2.9867398738861084e-001
986 | <_>
987 |
988 | 0 -1 146 -1.3326616026461124e-003
989 |
990 | 4.7240665555000305e-001 -2.6287403702735901e-001
991 |
992 | <_>
993 | 13
994 | -1.3383979797363281e+000
995 |
996 | <_>
997 |
998 | 0 -1 3 3.2254494726657867e-002
999 |
1000 | -6.5151512622833252e-001 7.9947575926780701e-002
1001 | <_>
1002 |
1003 | 0 -1 172 -1.1810796568170190e-003
1004 |
1005 | 2.5173431634902954e-001 -4.5536977052688599e-001
1006 | <_>
1007 |
1008 | 0 -1 88 8.0361258005723357e-004
1009 |
1010 | -2.1178695559501648e-001 4.9318632483482361e-001
1011 | <_>
1012 |
1013 | 0 -1 93 6.6201295703649521e-004
1014 |
1015 | -1.9441033899784088e-001 4.6225026249885559e-001
1016 | <_>
1017 |
1018 | 0 -1 84 3.4565184614621103e-004
1019 |
1020 | -2.1175089478492737e-001 4.6985754370689392e-001
1021 | <_>
1022 |
1023 | 0 -1 132 -5.6433549616485834e-004
1024 |
1025 | -7.9713624715805054e-001 1.8714086711406708e-001
1026 | <_>
1027 |
1028 | 0 -1 56 5.8492692187428474e-004
1029 |
1030 | -3.9330720901489258e-001 2.4242231249809265e-001
1031 | <_>
1032 |
1033 | 0 -1 13 2.5043603032827377e-002
1034 |
1035 | 1.3490234315395355e-001 -7.5923883914947510e-001
1036 | <_>
1037 |
1038 | 0 -1 37 -1.8510785885155201e-003
1039 |
1040 | 4.1279399394989014e-001 -2.7271771430969238e-001
1041 | <_>
1042 |
1043 | 0 -1 68 -2.5741360150277615e-004
1044 |
1045 | -6.3662034273147583e-001 1.8135882914066315e-001
1046 | <_>
1047 |
1048 | 0 -1 184 -1.5121832489967346e-002
1049 |
1050 | 2.5249326229095459e-001 -3.8438034057617188e-001
1051 | <_>
1052 |
1053 | 0 -1 203 -1.5006031841039658e-002
1054 |
1055 | -8.4878319501876831e-001 1.1718367785215378e-001
1056 | <_>
1057 |
1058 | 0 -1 74 4.9880752339959145e-004
1059 |
1060 | -2.6755046844482422e-001 4.5769825577735901e-001
1061 |
1062 | <_>
1063 | 12
1064 | -1.2097512483596802e+000
1065 |
1066 | <_>
1067 |
1068 | 0 -1 195 -1.1614991351962090e-002
1069 |
1070 | 1.4465409517288208e-001 -5.9521216154098511e-001
1071 | <_>
1072 |
1073 | 0 -1 75 3.9767110138200223e-004
1074 |
1075 | -4.2697989940643311e-001 2.4382311105728149e-001
1076 | <_>
1077 |
1078 | 0 -1 47 -4.6969857066869736e-002
1079 |
1080 | -9.3969690799713135e-001 1.2196484953165054e-001
1081 | <_>
1082 |
1083 | 0 -1 136 5.5550434626638889e-004
1084 |
1085 | -1.8246935307979584e-001 6.5156191587448120e-001
1086 | <_>
1087 |
1088 | 0 -1 99 2.9468833236023784e-004
1089 |
1090 | 1.5099152922630310e-001 -7.8840750455856323e-001
1091 | <_>
1092 |
1093 | 0 -1 44 1.2439775280654430e-002
1094 |
1095 | 1.4981375634670258e-001 -7.5917595624923706e-001
1096 | <_>
1097 |
1098 | 0 -1 147 6.6337559837847948e-004
1099 |
1100 | -2.5185841321945190e-001 5.9387433528900146e-001
1101 | <_>
1102 |
1103 | 0 -1 148 -6.8454549182206392e-004
1104 |
1105 | 5.1199448108673096e-001 -2.5247576832771301e-001
1106 | <_>
1107 |
1108 | 0 -1 141 1.4808592386543751e-003
1109 |
1110 | 2.2439701855182648e-001 -5.8184891939163208e-001
1111 | <_>
1112 |
1113 | 0 -1 12 6.0307271778583527e-003
1114 |
1115 | -4.3553912639617920e-001 2.8183382749557495e-001
1116 | <_>
1117 |
1118 | 0 -1 78 -1.9170897081494331e-002
1119 |
1120 | -8.5707378387451172e-001 1.4850790798664093e-001
1121 | <_>
1122 |
1123 | 0 -1 122 3.0278289341367781e-004
1124 |
1125 | -3.1547480821609497e-001 4.1798374056816101e-001
1126 |
1127 | <_>
1128 | 10
1129 | -1.2253109216690063e+000
1130 |
1131 | <_>
1132 |
1133 | 0 -1 181 4.6847470104694366e-002
1134 |
1135 | -4.9239391088485718e-001 5.2287584543228149e-001
1136 | <_>
1137 |
1138 | 0 -1 118 2.2181579843163490e-003
1139 |
1140 | -4.2569425702095032e-001 3.6892616748809814e-001
1141 | <_>
1142 |
1143 | 0 -1 145 6.1082182219251990e-004
1144 |
1145 | 1.7654621601104736e-001 -8.2656937837600708e-001
1146 | <_>
1147 |
1148 | 0 -1 127 1.7401995137333870e-002
1149 |
1150 | 2.7770876884460449e-001 -5.6393522024154663e-001
1151 | <_>
1152 |
1153 | 0 -1 54 5.2314018830657005e-004
1154 |
1155 | -3.6257097125053406e-001 4.6126455068588257e-001
1156 | <_>
1157 |
1158 | 0 -1 206 2.1581796463578939e-003
1159 |
1160 | 1.9110183417797089e-001 -6.8012320995330811e-001
1161 | <_>
1162 |
1163 | 0 -1 192 -1.3209994649514556e-003
1164 |
1165 | 6.7618584632873535e-001 -2.6087108254432678e-001
1166 | <_>
1167 |
1168 | 0 -1 126 -1.2237254530191422e-002
1169 |
1170 | -5.7184767723083496e-001 3.0778104066848755e-001
1171 | <_>
1172 |
1173 | 0 -1 36 8.7829465046525002e-003
1174 |
1175 | 1.6890920698642731e-001 -7.8835797309875488e-001
1176 | <_>
1177 |
1178 | 0 -1 183 7.5588272884488106e-003
1179 |
1180 | 1.5143942832946777e-001 -8.2572847604751587e-001
1181 |
1182 | <_>
1183 |
1184 | <_>
1185 | 0 0 10 10 -1.
1186 | <_>
1187 | 0 0 5 5 2.
1188 | <_>
1189 | 5 5 5 5 2.
1190 | 0
1191 | <_>
1192 |
1193 | <_>
1194 | 0 0 12 16 -1.
1195 | <_>
1196 | 6 0 6 16 2.
1197 | 0
1198 | <_>
1199 |
1200 | <_>
1201 | 0 3 10 6 -1.
1202 | <_>
1203 | 5 3 5 6 2.
1204 | 0
1205 | <_>
1206 |
1207 | <_>
1208 | 0 3 21 16 -1.
1209 | <_>
1210 | 7 3 7 16 3.
1211 | 0
1212 | <_>
1213 |
1214 | <_>
1215 | 0 4 16 9 -1.
1216 | <_>
1217 | 4 4 8 9 2.
1218 | 0
1219 | <_>
1220 |
1221 | <_>
1222 | 0 4 10 12 -1.
1223 | <_>
1224 | 5 4 5 12 2.
1225 | 0
1226 | <_>
1227 |
1228 | <_>
1229 | 0 7 14 7 -1.
1230 | <_>
1231 | 7 7 7 7 2.
1232 | 0
1233 | <_>
1234 |
1235 | <_>
1236 | 0 9 12 7 -1.
1237 | <_>
1238 | 6 9 6 7 2.
1239 | 0
1240 | <_>
1241 |
1242 | <_>
1243 | 0 9 60 3 -1.
1244 | <_>
1245 | 30 9 30 3 2.
1246 | 0
1247 | <_>
1248 |
1249 | <_>
1250 | 0 10 8 3 -1.
1251 | <_>
1252 | 4 10 4 3 2.
1253 | 0
1254 | <_>
1255 |
1256 | <_>
1257 | 0 11 1 2 -1.
1258 | <_>
1259 | 0 12 1 1 2.
1260 | 0
1261 | <_>
1262 |
1263 | <_>
1264 | 1 0 51 12 -1.
1265 | <_>
1266 | 1 4 51 4 3.
1267 | 0
1268 | <_>
1269 |
1270 | <_>
1271 | 1 3 15 7 -1.
1272 | <_>
1273 | 6 3 5 7 3.
1274 | 0
1275 | <_>
1276 |
1277 | <_>
1278 | 1 7 30 6 -1.
1279 | <_>
1280 | 1 7 15 3 2.
1281 | <_>
1282 | 16 10 15 3 2.
1283 | 0
1284 | <_>
1285 |
1286 | <_>
1287 | 1 12 1 2 -1.
1288 | <_>
1289 | 1 13 1 1 2.
1290 | 0
1291 | <_>
1292 |
1293 | <_>
1294 | 2 2 18 16 -1.
1295 | <_>
1296 | 2 6 18 8 2.
1297 | 0
1298 | <_>
1299 |
1300 | <_>
1301 | 2 3 29 4 -1.
1302 | <_>
1303 | 2 5 29 2 2.
1304 | 0
1305 | <_>
1306 |
1307 | <_>
1308 | 2 9 1 2 -1.
1309 | <_>
1310 | 2 10 1 1 2.
1311 | 0
1312 | <_>
1313 |
1314 | <_>
1315 | 2 14 40 6 -1.
1316 | <_>
1317 | 2 17 40 3 2.
1318 | 0
1319 | <_>
1320 |
1321 | <_>
1322 | 3 0 22 6 -1.
1323 | <_>
1324 | 3 2 22 2 3.
1325 | 0
1326 | <_>
1327 |
1328 | <_>
1329 | 3 2 38 2 -1.
1330 | <_>
1331 | 3 2 19 1 2.
1332 | <_>
1333 | 22 3 19 1 2.
1334 | 0
1335 | <_>
1336 |
1337 | <_>
1338 | 3 4 51 16 -1.
1339 | <_>
1340 | 3 8 51 8 2.
1341 | 0
1342 | <_>
1343 |
1344 | <_>
1345 | 3 7 3 8 -1.
1346 | <_>
1347 | 4 7 1 8 3.
1348 | 0
1349 | <_>
1350 |
1351 | <_>
1352 | 3 9 1 3 -1.
1353 | <_>
1354 | 3 10 1 1 3.
1355 | 0
1356 | <_>
1357 |
1358 | <_>
1359 | 4 8 3 5 -1.
1360 | <_>
1361 | 5 8 1 5 3.
1362 | 0
1363 | <_>
1364 |
1365 | <_>
1366 | 4 8 4 9 -1.
1367 | <_>
1368 | 5 8 2 9 2.
1369 | 0
1370 | <_>
1371 |
1372 | <_>
1373 | 4 11 36 9 -1.
1374 | <_>
1375 | 16 11 12 9 3.
1376 | 0
1377 | <_>
1378 |
1379 | <_>
1380 | 4 14 49 6 -1.
1381 | <_>
1382 | 4 17 49 3 2.
1383 | 0
1384 | <_>
1385 |
1386 | <_>
1387 | 5 0 17 6 -1.
1388 | <_>
1389 | 5 2 17 2 3.
1390 | 0
1391 | <_>
1392 |
1393 | <_>
1394 | 5 1 3 1 -1.
1395 | <_>
1396 | 6 1 1 1 3.
1397 | 0
1398 | <_>
1399 |
1400 | <_>
1401 | 5 1 8 2 -1.
1402 | <_>
1403 | 7 1 4 2 2.
1404 | 0
1405 | <_>
1406 |
1407 | <_>
1408 | 5 2 36 9 -1.
1409 | <_>
1410 | 17 2 12 9 3.
1411 | 0
1412 | <_>
1413 |
1414 | <_>
1415 | 5 3 33 17 -1.
1416 | <_>
1417 | 16 3 11 17 3.
1418 | 0
1419 | <_>
1420 |
1421 | <_>
1422 | 6 0 30 19 -1.
1423 | <_>
1424 | 16 0 10 19 3.
1425 | 0
1426 | <_>
1427 |
1428 | <_>
1429 | 6 3 29 4 -1.
1430 | <_>
1431 | 6 5 29 2 2.
1432 | 0
1433 | <_>
1434 |
1435 | <_>
1436 | 6 4 16 16 -1.
1437 | <_>
1438 | 14 4 8 16 2.
1439 | 0
1440 | <_>
1441 |
1442 | <_>
1443 | 6 9 54 1 -1.
1444 | <_>
1445 | 33 9 27 1 2.
1446 | 0
1447 | <_>
1448 |
1449 | <_>
1450 | 7 0 4 18 -1.
1451 | <_>
1452 | 8 0 2 18 2.
1453 | 0
1454 | <_>
1455 |
1456 | <_>
1457 | 7 3 12 15 -1.
1458 | <_>
1459 | 13 3 6 15 2.
1460 | 0
1461 | <_>
1462 |
1463 | <_>
1464 | 7 4 20 5 -1.
1465 | <_>
1466 | 12 4 10 5 2.
1467 | 0
1468 | <_>
1469 |
1470 | <_>
1471 | 7 4 6 3 -1.
1472 | <_>
1473 | 7 5 6 1 3.
1474 | 0
1475 | <_>
1476 |
1477 | <_>
1478 | 7 4 36 6 -1.
1479 | <_>
1480 | 19 4 12 6 3.
1481 | 0
1482 | <_>
1483 |
1484 | <_>
1485 | 7 5 28 4 -1.
1486 | <_>
1487 | 14 5 14 4 2.
1488 | 0
1489 | <_>
1490 |
1491 | <_>
1492 | 7 7 4 11 -1.
1493 | <_>
1494 | 8 7 2 11 2.
1495 | 0
1496 | <_>
1497 |
1498 | <_>
1499 | 7 9 12 7 -1.
1500 | <_>
1501 | 13 9 6 7 2.
1502 | 0
1503 | <_>
1504 |
1505 | <_>
1506 | 8 1 21 4 -1.
1507 | <_>
1508 | 8 3 21 2 2.
1509 | 0
1510 | <_>
1511 |
1512 | <_>
1513 | 8 4 28 6 -1.
1514 | <_>
1515 | 15 4 14 6 2.
1516 | 0
1517 | <_>
1518 |
1519 | <_>
1520 | 8 8 38 6 -1.
1521 | <_>
1522 | 8 10 38 2 3.
1523 | 0
1524 | <_>
1525 |
1526 | <_>
1527 | 8 14 25 4 -1.
1528 | <_>
1529 | 8 15 25 2 2.
1530 | 0
1531 | <_>
1532 |
1533 | <_>
1534 | 9 2 12 4 -1.
1535 | <_>
1536 | 12 2 6 4 2.
1537 | 0
1538 | <_>
1539 |
1540 | <_>
1541 | 9 5 24 3 -1.
1542 | <_>
1543 | 15 5 12 3 2.
1544 | 0
1545 | <_>
1546 |
1547 | <_>
1548 | 9 8 40 12 -1.
1549 | <_>
1550 | 9 12 40 4 3.
1551 | 0
1552 | <_>
1553 |
1554 | <_>
1555 | 10 2 8 2 -1.
1556 | <_>
1557 | 12 2 4 2 2.
1558 | 0
1559 | <_>
1560 |
1561 | <_>
1562 | 10 2 9 2 -1.
1563 | <_>
1564 | 13 2 3 2 3.
1565 | 0
1566 | <_>
1567 |
1568 | <_>
1569 | 10 5 3 3 -1.
1570 | <_>
1571 | 11 6 1 1 9.
1572 | 0
1573 | <_>
1574 |
1575 | <_>
1576 | 11 0 32 20 -1.
1577 | <_>
1578 | 19 0 16 20 2.
1579 | 0
1580 | <_>
1581 |
1582 | <_>
1583 | 11 3 1 4 -1.
1584 | <_>
1585 | 11 5 1 2 2.
1586 | 0
1587 | <_>
1588 |
1589 | <_>
1590 | 11 9 4 3 -1.
1591 | <_>
1592 | 12 9 2 3 2.
1593 | 0
1594 | <_>
1595 |
1596 | <_>
1597 | 11 9 3 7 -1.
1598 | <_>
1599 | 12 9 1 7 3.
1600 | 0
1601 | <_>
1602 |
1603 | <_>
1604 | 12 3 9 2 -1.
1605 | <_>
1606 | 15 3 3 2 3.
1607 | 0
1608 | <_>
1609 |
1610 | <_>
1611 | 12 6 6 6 -1.
1612 | <_>
1613 | 14 6 2 6 3.
1614 | 0
1615 | <_>
1616 |
1617 | <_>
1618 | 12 10 42 10 -1.
1619 | <_>
1620 | 26 10 14 10 3.
1621 | 0
1622 | <_>
1623 |
1624 | <_>
1625 | 12 14 11 3 -1.
1626 | <_>
1627 | 12 15 11 1 3.
1628 | 0
1629 | <_>
1630 |
1631 | <_>
1632 | 13 4 6 14 -1.
1633 | <_>
1634 | 15 4 2 14 3.
1635 | 0
1636 | <_>
1637 |
1638 | <_>
1639 | 13 8 3 6 -1.
1640 | <_>
1641 | 14 8 1 6 3.
1642 | 0
1643 | <_>
1644 |
1645 | <_>
1646 | 13 11 32 2 -1.
1647 | <_>
1648 | 21 11 16 2 2.
1649 | 0
1650 | <_>
1651 |
1652 | <_>
1653 | 13 13 25 6 -1.
1654 | <_>
1655 | 13 16 25 3 2.
1656 | 0
1657 | <_>
1658 |
1659 | <_>
1660 | 13 16 21 3 -1.
1661 | <_>
1662 | 20 16 7 3 3.
1663 | 0
1664 | <_>
1665 |
1666 | <_>
1667 | 14 2 3 2 -1.
1668 | <_>
1669 | 15 2 1 2 3.
1670 | 0
1671 | <_>
1672 |
1673 | <_>
1674 | 14 2 24 8 -1.
1675 | <_>
1676 | 20 2 12 8 2.
1677 | 0
1678 | <_>
1679 |
1680 | <_>
1681 | 14 13 36 6 -1.
1682 | <_>
1683 | 23 13 18 6 2.
1684 | 0
1685 | <_>
1686 |
1687 | <_>
1688 | 14 14 8 3 -1.
1689 | <_>
1690 | 14 15 8 1 3.
1691 | 0
1692 | <_>
1693 |
1694 | <_>
1695 | 14 14 45 6 -1.
1696 | <_>
1697 | 14 17 45 3 2.
1698 | 0
1699 | <_>
1700 |
1701 | <_>
1702 | 14 18 9 2 -1.
1703 | <_>
1704 | 17 18 3 2 3.
1705 | 0
1706 | <_>
1707 |
1708 | <_>
1709 | 15 9 4 1 -1.
1710 | <_>
1711 | 16 9 2 1 2.
1712 | 0
1713 | <_>
1714 |
1715 | <_>
1716 | 15 10 19 4 -1.
1717 | <_>
1718 | 15 12 19 2 2.
1719 | 0
1720 | <_>
1721 |
1722 | <_>
1723 | 16 0 28 8 -1.
1724 | <_>
1725 | 16 2 28 4 2.
1726 | 0
1727 | <_>
1728 |
1729 | <_>
1730 | 16 2 36 18 -1.
1731 | <_>
1732 | 28 2 12 18 3.
1733 | 0
1734 | <_>
1735 |
1736 | <_>
1737 | 16 6 24 6 -1.
1738 | <_>
1739 | 22 6 12 6 2.
1740 | 0
1741 | <_>
1742 |
1743 | <_>
1744 | 17 1 24 6 -1.
1745 | <_>
1746 | 17 3 24 2 3.
1747 | 0
1748 | <_>
1749 |
1750 | <_>
1751 | 17 3 15 12 -1.
1752 | <_>
1753 | 22 7 5 4 9.
1754 | 0
1755 | <_>
1756 |
1757 | <_>
1758 | 17 15 11 3 -1.
1759 | <_>
1760 | 17 16 11 1 3.
1761 | 0
1762 | <_>
1763 |
1764 | <_>
1765 | 18 5 6 10 -1.
1766 | <_>
1767 | 20 5 2 10 3.
1768 | 0
1769 | <_>
1770 |
1771 | <_>
1772 | 18 6 18 3 -1.
1773 | <_>
1774 | 24 6 6 3 3.
1775 | 0
1776 | <_>
1777 |
1778 | <_>
1779 | 18 11 3 1 -1.
1780 | <_>
1781 | 19 11 1 1 3.
1782 | 0
1783 | <_>
1784 |
1785 | <_>
1786 | 19 6 32 2 -1.
1787 | <_>
1788 | 27 6 16 2 2.
1789 | 0
1790 | <_>
1791 |
1792 | <_>
1793 | 19 8 3 1 -1.
1794 | <_>
1795 | 20 8 1 1 3.
1796 | 0
1797 | <_>
1798 |
1799 | <_>
1800 | 19 9 14 11 -1.
1801 | <_>
1802 | 26 9 7 11 2.
1803 | 0
1804 | <_>
1805 |
1806 | <_>
1807 | 19 10 3 3 -1.
1808 | <_>
1809 | 20 10 1 3 3.
1810 | 0
1811 | <_>
1812 |
1813 | <_>
1814 | 19 13 7 3 -1.
1815 | <_>
1816 | 19 14 7 1 3.
1817 | 0
1818 | <_>
1819 |
1820 | <_>
1821 | 19 14 13 3 -1.
1822 | <_>
1823 | 19 15 13 1 3.
1824 | 0
1825 | <_>
1826 |
1827 | <_>
1828 | 20 0 15 20 -1.
1829 | <_>
1830 | 25 0 5 20 3.
1831 | 0
1832 | <_>
1833 |
1834 | <_>
1835 | 20 9 3 1 -1.
1836 | <_>
1837 | 21 9 1 1 3.
1838 | 0
1839 | <_>
1840 |
1841 | <_>
1842 | 20 10 3 2 -1.
1843 | <_>
1844 | 21 10 1 2 3.
1845 | 0
1846 | <_>
1847 |
1848 | <_>
1849 | 21 1 21 6 -1.
1850 | <_>
1851 | 21 3 21 2 3.
1852 | 0
1853 | <_>
1854 |
1855 | <_>
1856 | 21 8 4 3 -1.
1857 | <_>
1858 | 22 8 2 3 2.
1859 | 0
1860 | <_>
1861 |
1862 | <_>
1863 | 21 9 3 4 -1.
1864 | <_>
1865 | 22 9 1 4 3.
1866 | 0
1867 | <_>
1868 |
1869 | <_>
1870 | 21 10 4 2 -1.
1871 | <_>
1872 | 22 10 2 2 2.
1873 | 0
1874 | <_>
1875 |
1876 | <_>
1877 | 21 11 24 2 -1.
1878 | <_>
1879 | 27 11 12 2 2.
1880 | 0
1881 | <_>
1882 |
1883 | <_>
1884 | 21 18 4 1 -1.
1885 | <_>
1886 | 22 18 2 1 2.
1887 | 0
1888 | <_>
1889 |
1890 | <_>
1891 | 22 3 4 1 -1.
1892 | <_>
1893 | 23 3 2 1 2.
1894 | 0
1895 | <_>
1896 |
1897 | <_>
1898 | 22 6 2 6 -1.
1899 | <_>
1900 | 22 6 1 3 2.
1901 | <_>
1902 | 23 9 1 3 2.
1903 | 0
1904 | <_>
1905 |
1906 | <_>
1907 | 22 7 3 3 -1.
1908 | <_>
1909 | 23 8 1 1 9.
1910 | 0
1911 | <_>
1912 |
1913 | <_>
1914 | 22 8 3 5 -1.
1915 | <_>
1916 | 23 8 1 5 3.
1917 | 0
1918 | <_>
1919 |
1920 | <_>
1921 | 22 9 3 2 -1.
1922 | <_>
1923 | 23 9 1 2 3.
1924 | 0
1925 | <_>
1926 |
1927 | <_>
1928 | 23 8 3 3 -1.
1929 | <_>
1930 | 24 8 1 3 3.
1931 | 0
1932 | <_>
1933 |
1934 | <_>
1935 | 23 10 3 2 -1.
1936 | <_>
1937 | 24 10 1 2 3.
1938 | 0
1939 | <_>
1940 |
1941 | <_>
1942 | 24 3 20 17 -1.
1943 | <_>
1944 | 29 3 10 17 2.
1945 | 0
1946 | <_>
1947 |
1948 | <_>
1949 | 24 4 14 6 -1.
1950 | <_>
1951 | 31 4 7 6 2.
1952 | 0
1953 | <_>
1954 |
1955 | <_>
1956 | 24 18 9 2 -1.
1957 | <_>
1958 | 27 18 3 2 3.
1959 | 0
1960 | <_>
1961 |
1962 | <_>
1963 | 25 5 8 4 -1.
1964 | <_>
1965 | 25 5 4 4 2.
1966 | 1
1967 | <_>
1968 |
1969 | <_>
1970 | 25 6 22 14 -1.
1971 | <_>
1972 | 36 6 11 14 2.
1973 | 0
1974 | <_>
1975 |
1976 | <_>
1977 | 25 12 28 8 -1.
1978 | <_>
1979 | 25 14 28 4 2.
1980 | 0
1981 | <_>
1982 |
1983 | <_>
1984 | 25 14 9 3 -1.
1985 | <_>
1986 | 25 15 9 1 3.
1987 | 0
1988 | <_>
1989 |
1990 | <_>
1991 | 26 2 27 18 -1.
1992 | <_>
1993 | 35 2 9 18 3.
1994 | 0
1995 | <_>
1996 |
1997 | <_>
1998 | 26 3 22 3 -1.
1999 | <_>
2000 | 26 4 22 1 3.
2001 | 0
2002 | <_>
2003 |
2004 | <_>
2005 | 26 4 8 4 -1.
2006 | <_>
2007 | 30 4 4 4 2.
2008 | 0
2009 | <_>
2010 |
2011 | <_>
2012 | 26 4 20 6 -1.
2013 | <_>
2014 | 31 4 10 6 2.
2015 | 0
2016 | <_>
2017 |
2018 | <_>
2019 | 26 7 1 12 -1.
2020 | <_>
2021 | 22 11 1 4 3.
2022 | 1
2023 | <_>
2024 |
2025 | <_>
2026 | 26 9 3 3 -1.
2027 | <_>
2028 | 27 9 1 3 3.
2029 | 0
2030 | <_>
2031 |
2032 | <_>
2033 | 26 13 9 3 -1.
2034 | <_>
2035 | 26 14 9 1 3.
2036 | 0
2037 | <_>
2038 |
2039 | <_>
2040 | 27 3 15 6 -1.
2041 | <_>
2042 | 32 3 5 6 3.
2043 | 0
2044 | <_>
2045 |
2046 | <_>
2047 | 27 9 3 1 -1.
2048 | <_>
2049 | 28 9 1 1 3.
2050 | 0
2051 | <_>
2052 |
2053 | <_>
2054 | 27 9 3 2 -1.
2055 | <_>
2056 | 28 9 1 2 3.
2057 | 0
2058 | <_>
2059 |
2060 | <_>
2061 | 27 10 3 3 -1.
2062 | <_>
2063 | 28 10 1 3 3.
2064 | 0
2065 | <_>
2066 |
2067 | <_>
2068 | 27 11 3 2 -1.
2069 | <_>
2070 | 28 11 1 2 3.
2071 | 0
2072 | <_>
2073 |
2074 | <_>
2075 | 28 2 10 4 -1.
2076 | <_>
2077 | 28 2 10 2 2.
2078 | 1
2079 | <_>
2080 |
2081 | <_>
2082 | 28 8 32 6 -1.
2083 | <_>
2084 | 28 10 32 2 3.
2085 | 0
2086 | <_>
2087 |
2088 | <_>
2089 | 28 10 3 1 -1.
2090 | <_>
2091 | 29 10 1 1 3.
2092 | 0
2093 | <_>
2094 |
2095 | <_>
2096 | 28 11 3 1 -1.
2097 | <_>
2098 | 29 11 1 1 3.
2099 | 0
2100 | <_>
2101 |
2102 | <_>
2103 | 28 15 5 4 -1.
2104 | <_>
2105 | 28 16 5 2 2.
2106 | 0
2107 | <_>
2108 |
2109 | <_>
2110 | 28 16 23 4 -1.
2111 | <_>
2112 | 28 17 23 2 2.
2113 | 0
2114 | <_>
2115 |
2116 | <_>
2117 | 28 19 6 1 -1.
2118 | <_>
2119 | 30 19 2 1 3.
2120 | 0
2121 | <_>
2122 |
2123 | <_>
2124 | 29 3 9 4 -1.
2125 | <_>
2126 | 32 3 3 4 3.
2127 | 0
2128 | <_>
2129 |
2130 | <_>
2131 | 29 5 9 1 -1.
2132 | <_>
2133 | 32 5 3 1 3.
2134 | 0
2135 | <_>
2136 |
2137 | <_>
2138 | 29 8 3 6 -1.
2139 | <_>
2140 | 30 8 1 6 3.
2141 | 0
2142 | <_>
2143 |
2144 | <_>
2145 | 29 9 3 1 -1.
2146 | <_>
2147 | 30 9 1 1 3.
2148 | 0
2149 | <_>
2150 |
2151 | <_>
2152 | 29 11 10 4 -1.
2153 | <_>
2154 | 29 13 10 2 2.
2155 | 0
2156 | <_>
2157 |
2158 | <_>
2159 | 29 11 26 8 -1.
2160 | <_>
2161 | 29 13 26 4 2.
2162 | 0
2163 | <_>
2164 |
2165 | <_>
2166 | 30 0 16 6 -1.
2167 | <_>
2168 | 30 3 16 3 2.
2169 | 0
2170 | <_>
2171 |
2172 | <_>
2173 | 30 2 30 6 -1.
2174 | <_>
2175 | 30 2 15 3 2.
2176 | <_>
2177 | 45 5 15 3 2.
2178 | 0
2179 | <_>
2180 |
2181 | <_>
2182 | 30 3 9 4 -1.
2183 | <_>
2184 | 33 3 3 4 3.
2185 | 0
2186 | <_>
2187 |
2188 | <_>
2189 | 30 5 9 4 -1.
2190 | <_>
2191 | 30 6 9 2 2.
2192 | 0
2193 | <_>
2194 |
2195 | <_>
2196 | 30 10 3 2 -1.
2197 | <_>
2198 | 31 10 1 2 3.
2199 | 0
2200 | <_>
2201 |
2202 | <_>
2203 | 30 14 18 6 -1.
2204 | <_>
2205 | 36 14 6 6 3.
2206 | 0
2207 | <_>
2208 |
2209 | <_>
2210 | 31 3 4 3 -1.
2211 | <_>
2212 | 32 3 2 3 2.
2213 | 0
2214 | <_>
2215 |
2216 | <_>
2217 | 31 7 4 9 -1.
2218 | <_>
2219 | 32 7 2 9 2.
2220 | 0
2221 | <_>
2222 |
2223 | <_>
2224 | 31 11 3 2 -1.
2225 | <_>
2226 | 32 11 1 2 3.
2227 | 0
2228 | <_>
2229 |
2230 | <_>
2231 | 31 11 3 3 -1.
2232 | <_>
2233 | 32 11 1 3 3.
2234 | 0
2235 | <_>
2236 |
2237 | <_>
2238 | 32 4 3 2 -1.
2239 | <_>
2240 | 33 4 1 2 3.
2241 | 0
2242 | <_>
2243 |
2244 | <_>
2245 | 32 6 18 6 -1.
2246 | <_>
2247 | 32 6 9 3 2.
2248 | <_>
2249 | 41 9 9 3 2.
2250 | 0
2251 | <_>
2252 |
2253 | <_>
2254 | 33 1 22 6 -1.
2255 | <_>
2256 | 33 4 22 3 2.
2257 | 0
2258 | <_>
2259 |
2260 | <_>
2261 | 33 3 4 2 -1.
2262 | <_>
2263 | 34 3 2 2 2.
2264 | 0
2265 | <_>
2266 |
2267 | <_>
2268 | 33 3 4 4 -1.
2269 | <_>
2270 | 34 3 2 4 2.
2271 | 0
2272 | <_>
2273 |
2274 | <_>
2275 | 33 5 4 1 -1.
2276 | <_>
2277 | 34 5 2 1 2.
2278 | 0
2279 | <_>
2280 |
2281 | <_>
2282 | 33 9 3 6 -1.
2283 | <_>
2284 | 34 9 1 6 3.
2285 | 0
2286 | <_>
2287 |
2288 | <_>
2289 | 33 10 3 3 -1.
2290 | <_>
2291 | 34 10 1 3 3.
2292 | 0
2293 | <_>
2294 |
2295 | <_>
2296 | 34 8 4 7 -1.
2297 | <_>
2298 | 35 8 2 7 2.
2299 | 0
2300 | <_>
2301 |
2302 | <_>
2303 | 34 9 3 5 -1.
2304 | <_>
2305 | 35 9 1 5 3.
2306 | 0
2307 | <_>
2308 |
2309 | <_>
2310 | 34 18 9 2 -1.
2311 | <_>
2312 | 37 18 3 2 3.
2313 | 0
2314 | <_>
2315 |
2316 | <_>
2317 | 35 0 8 6 -1.
2318 | <_>
2319 | 37 0 4 6 2.
2320 | 0
2321 | <_>
2322 |
2323 | <_>
2324 | 35 9 3 2 -1.
2325 | <_>
2326 | 36 9 1 2 3.
2327 | 0
2328 | <_>
2329 |
2330 | <_>
2331 | 36 9 24 9 -1.
2332 | <_>
2333 | 42 9 12 9 2.
2334 | 0
2335 | <_>
2336 |
2337 | <_>
2338 | 37 1 16 18 -1.
2339 | <_>
2340 | 41 1 8 18 2.
2341 | 0
2342 | <_>
2343 |
2344 | <_>
2345 | 37 11 20 8 -1.
2346 | <_>
2347 | 42 11 10 8 2.
2348 | 0
2349 | <_>
2350 |
2351 | <_>
2352 | 38 8 15 12 -1.
2353 | <_>
2354 | 38 12 15 4 3.
2355 | 0
2356 | <_>
2357 |
2358 | <_>
2359 | 39 6 12 8 -1.
2360 | <_>
2361 | 45 6 6 8 2.
2362 | 0
2363 | <_>
2364 |
2365 | <_>
2366 | 40 8 8 4 -1.
2367 | <_>
2368 | 40 8 8 2 2.
2369 | 1
2370 | <_>
2371 |
2372 | <_>
2373 | 40 10 3 1 -1.
2374 | <_>
2375 | 41 10 1 1 3.
2376 | 0
2377 | <_>
2378 |
2379 | <_>
2380 | 40 10 3 5 -1.
2381 | <_>
2382 | 41 10 1 5 3.
2383 | 0
2384 | <_>
2385 |
2386 | <_>
2387 | 40 13 12 6 -1.
2388 | <_>
2389 | 43 13 6 6 2.
2390 | 0
2391 | <_>
2392 |
2393 | <_>
2394 | 41 5 7 15 -1.
2395 | <_>
2396 | 41 10 7 5 3.
2397 | 0
2398 | <_>
2399 |
2400 | <_>
2401 | 41 6 12 6 -1.
2402 | <_>
2403 | 45 6 4 6 3.
2404 | 0
2405 | <_>
2406 |
2407 | <_>
2408 | 41 7 12 7 -1.
2409 | <_>
2410 | 45 7 4 7 3.
2411 | 0
2412 | <_>
2413 |
2414 | <_>
2415 | 41 8 12 12 -1.
2416 | <_>
2417 | 45 8 4 12 3.
2418 | 0
2419 | <_>
2420 |
2421 | <_>
2422 | 41 9 3 6 -1.
2423 | <_>
2424 | 42 9 1 6 3.
2425 | 0
2426 | <_>
2427 |
2428 | <_>
2429 | 42 2 3 13 -1.
2430 | <_>
2431 | 43 2 1 13 3.
2432 | 0
2433 | <_>
2434 |
2435 | <_>
2436 | 42 4 18 10 -1.
2437 | <_>
2438 | 42 4 9 5 2.
2439 | <_>
2440 | 51 9 9 5 2.
2441 | 0
2442 | <_>
2443 |
2444 | <_>
2445 | 42 5 18 8 -1.
2446 | <_>
2447 | 42 5 9 4 2.
2448 | <_>
2449 | 51 9 9 4 2.
2450 | 0
2451 | <_>
2452 |
2453 | <_>
2454 | 42 7 2 7 -1.
2455 | <_>
2456 | 43 7 1 7 2.
2457 | 0
2458 | <_>
2459 |
2460 | <_>
2461 | 42 14 12 5 -1.
2462 | <_>
2463 | 46 14 4 5 3.
2464 | 0
2465 | <_>
2466 |
2467 | <_>
2468 | 43 1 10 9 -1.
2469 | <_>
2470 | 40 4 10 3 3.
2471 | 1
2472 | <_>
2473 |
2474 | <_>
2475 | 43 6 6 6 -1.
2476 | <_>
2477 | 43 9 6 3 2.
2478 | 0
2479 | <_>
2480 |
2481 | <_>
2482 | 44 0 8 20 -1.
2483 | <_>
2484 | 46 0 4 20 2.
2485 | 0
2486 | <_>
2487 |
2488 | <_>
2489 | 44 2 16 12 -1.
2490 | <_>
2491 | 44 2 8 6 2.
2492 | <_>
2493 | 52 8 8 6 2.
2494 | 0
2495 | <_>
2496 |
2497 | <_>
2498 | 44 5 3 8 -1.
2499 | <_>
2500 | 45 5 1 8 3.
2501 | 0
2502 | <_>
2503 |
2504 | <_>
2505 | 44 8 3 4 -1.
2506 | <_>
2507 | 45 8 1 4 3.
2508 | 0
2509 | <_>
2510 |
2511 | <_>
2512 | 44 12 16 4 -1.
2513 | <_>
2514 | 52 12 8 4 2.
2515 | 0
2516 | <_>
2517 |
2518 | <_>
2519 | 44 13 10 3 -1.
2520 | <_>
2521 | 49 13 5 3 2.
2522 | 0
2523 | <_>
2524 |
2525 | <_>
2526 | 45 19 9 1 -1.
2527 | <_>
2528 | 48 19 3 1 3.
2529 | 0
2530 | <_>
2531 |
2532 | <_>
2533 | 46 3 8 8 -1.
2534 | <_>
2535 | 50 3 4 8 2.
2536 | 0
2537 | <_>
2538 |
2539 | <_>
2540 | 47 12 10 6 -1.
2541 | <_>
2542 | 52 12 5 6 2.
2543 | 0
2544 | <_>
2545 |
2546 | <_>
2547 | 48 0 4 13 -1.
2548 | <_>
2549 | 49 0 2 13 2.
2550 | 0
2551 | <_>
2552 |
2553 | <_>
2554 | 48 5 3 12 -1.
2555 | <_>
2556 | 45 8 3 6 2.
2557 | 1
2558 | <_>
2559 |
2560 | <_>
2561 | 48 9 12 8 -1.
2562 | <_>
2563 | 54 9 6 8 2.
2564 | 0
2565 | <_>
2566 |
2567 | <_>
2568 | 48 13 12 4 -1.
2569 | <_>
2570 | 54 13 6 4 2.
2571 | 0
2572 | <_>
2573 |
2574 | <_>
2575 | 49 8 3 1 -1.
2576 | <_>
2577 | 50 8 1 1 3.
2578 | 0
2579 | <_>
2580 |
2581 | <_>
2582 | 49 8 3 2 -1.
2583 | <_>
2584 | 50 8 1 2 3.
2585 | 0
2586 | <_>
2587 |
2588 | <_>
2589 | 49 8 3 3 -1.
2590 | <_>
2591 | 50 8 1 3 3.
2592 | 0
2593 | <_>
2594 |
2595 | <_>
2596 | 50 9 3 3 -1.
2597 | <_>
2598 | 51 10 1 1 9.
2599 | 0
2600 | <_>
2601 |
2602 | <_>
2603 | 51 8 3 3 -1.
2604 | <_>
2605 | 52 8 1 3 3.
2606 | 0
2607 | <_>
2608 |
2609 | <_>
2610 | 52 6 6 10 -1.
2611 | <_>
2612 | 54 6 2 10 3.
2613 | 0
2614 | <_>
2615 |
2616 | <_>
2617 | 52 7 8 7 -1.
2618 | <_>
2619 | 56 7 4 7 2.
2620 | 0
2621 | <_>
2622 |
2623 | <_>
2624 | 52 8 8 4 -1.
2625 | <_>
2626 | 52 8 8 2 2.
2627 | 1
2628 | <_>
2629 |
2630 | <_>
2631 | 54 3 6 15 -1.
2632 | <_>
2633 | 57 3 3 15 2.
2634 | 0
2635 | <_>
2636 |
2637 | <_>
2638 | 54 8 6 7 -1.
2639 | <_>
2640 | 57 8 3 7 2.
2641 | 0
2642 | <_>
2643 |
2644 | <_>
2645 | 57 11 3 6 -1.
2646 | <_>
2647 | 57 13 3 2 3.
2648 | 0
2649 | <_>
2650 |
2651 | <_>
2652 | 59 8 1 3 -1.
2653 | <_>
2654 | 59 9 1 1 3.
2655 | 0
2656 |
2657 |
--------------------------------------------------------------------------------
/data/sample images/aile.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/aile.jpg
--------------------------------------------------------------------------------
/data/sample images/balon.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/balon.jpg
--------------------------------------------------------------------------------
/data/sample images/kapadokya.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/kapadokya.jpg
--------------------------------------------------------------------------------
/data/sample images/muz.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/muz.jpg
--------------------------------------------------------------------------------
/data/sample images/sonuc.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/data/sample images/sonuc.jpg
--------------------------------------------------------------------------------
/doc/(Haarcascade)Rapid Object Detection using a Boosted Cascade of Simple.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/doc/(Haarcascade)Rapid Object Detection using a Boosted Cascade of Simple.pdf
--------------------------------------------------------------------------------
/doc/OpenCV Nesne Tespiti.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/doc/OpenCV Nesne Tespiti.pptx
--------------------------------------------------------------------------------
/doc/websites.txt:
--------------------------------------------------------------------------------
1 | http://mesutpiskin.com/blog/opencv-egitim-serisi
2 | http://mesutpiskin.com/blog/opencv-ile-goruntu-isleme-kitabi.html
--------------------------------------------------------------------------------
/res/color_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/color_based.png
--------------------------------------------------------------------------------
/res/dnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/dnn.png
--------------------------------------------------------------------------------
/res/opencv_dnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/opencv_dnn.png
--------------------------------------------------------------------------------
/res/template-matching-sonuc.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/template-matching-sonuc.jpg
--------------------------------------------------------------------------------
/res/template.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/res/template.png
--------------------------------------------------------------------------------
/src/ColorBasedObjectTracker/Detector.java:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/ColorBasedObjectTracker/Detector.java
--------------------------------------------------------------------------------
/src/ColorBasedObjectTracker/Panel.java:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/ColorBasedObjectTracker/Panel.java
--------------------------------------------------------------------------------
/src/DeepNeuralNetwork/Application.java:
--------------------------------------------------------------------------------
1 |
2 | import org.opencv.core.Mat;
3 | import org.opencv.core.Scalar;
4 | import org.opencv.imgcodecs.Imgcodecs;
5 | import org.opencv.imgproc.Imgproc;
6 | import org.opencv.videoio.VideoCapture;
7 |
8 | import java.util.ArrayList;
9 | import java.util.List;
10 |
11 | public class Application {
12 |
13 | public static void main(String[] args)
14 | {
15 | System.loadLibrary("opencv_java340");
16 | DeepNeuralNetworkProcessor processor = new DeepNeuralNetworkProcessor();
17 | List detectObject = new ArrayList<>();
18 | VideoCapture capturre = new VideoCapture(0);
19 | while (true)
20 | {
21 | Mat frame = new Mat();
22 | capturre.read(frame);
23 | detectObject = processor.getObjectsInFrame(frame, false);
24 | for (DnnObject obj: detectObject)
25 | {
26 | Imgproc.rectangle(frame,obj.getLeftBottom(),obj.getRightTop(),new Scalar(255,0,0),1);
27 | }
28 | Imgcodecs.imwrite("DetectedObject.jpg",frame);
29 | }
30 |
31 | }
32 | }
33 |
--------------------------------------------------------------------------------
/src/DeepNeuralNetwork/DnnObject.java:
--------------------------------------------------------------------------------
1 |
2 | import org.opencv.core.Point;
3 |
4 | public class DnnObject {
5 |
6 | private int objectClassId;
7 | private String objectName;
8 | private Point leftBottom;
9 | private Point rightTop;
10 | private Point centerCoordinate;
11 |
12 | public DnnObject(int objectClassId, String objectName, Point leftBottom, Point rightTop, Point centerCoordinate) {
13 | this.objectClassId = objectClassId;
14 | this.objectName = objectName;
15 | this.leftBottom = leftBottom;
16 | this.rightTop = rightTop;
17 | this.centerCoordinate = centerCoordinate;
18 | }
19 |
20 | public int getObjectClassId() {
21 | return objectClassId;
22 | }
23 |
24 | public void setObjectClassId(int objectClassId) {
25 | this.objectClassId = objectClassId;
26 | }
27 |
28 | public String getObjectName() {
29 | return objectName;
30 | }
31 |
32 | public void setObjectName(String objectName) {
33 | this.objectName = objectName;
34 | }
35 |
36 | public Point getLeftBottom() {
37 | return leftBottom;
38 | }
39 |
40 | public void setLeftBottom(Point leftBottom) {
41 | this.leftBottom = leftBottom;
42 | }
43 |
44 | public Point getRightTop() {
45 | return rightTop;
46 | }
47 |
48 | public void setRightTop(Point rightTop) {
49 | this.rightTop = rightTop;
50 | }
51 |
52 | public Point getCenterCoordinate() {
53 | return centerCoordinate;
54 | }
55 |
56 | public void setCenterCoordinate(Point centerCoordinate) {
57 | this.centerCoordinate = centerCoordinate;
58 | }
59 | }
60 |
--------------------------------------------------------------------------------
/src/DeepNeuralNetwork/DnnProcessor.java:
--------------------------------------------------------------------------------
1 |
2 | import org.opencv.core.*;
3 | import org.opencv.dnn.Dnn;
4 | import org.opencv.dnn.Net;
5 | import org.opencv.imgproc.Imgproc;
6 | import org.slf4j.Logger;
7 | import org.slf4j.LoggerFactory;
8 | import java.io.File;
9 | import java.nio.file.Path;
10 | import java.nio.file.Paths;
11 | import java.util.ArrayList;
12 | import java.util.List;
13 |
14 | /**
15 | * Mesut Piskin
16 | * 17/08/2018 11:08
17 | **/
18 |
19 |
20 | public class DeepNeuralNetworkProcessor {
21 | private final static Logger LOGGER = LoggerFactory.getLogger(DeepNeuralNetworkProcessor.class);
22 | private Net net;
23 | private final String proto = "data/dnnmodel/MobileNetSSD_deploy.prototxt";
24 | private final String model = "data/dnnmodel/MobileNetSSD_deploy.caffemodel";
25 |
26 | private final String[] classNames = {"background",
27 | "aeroplane", "bicycle", "bird", "boat",
28 | "bottle", "bus", "car", "cat", "chair",
29 | "cow", "diningtable", "dog", "horse",
30 | "motorbike", "person", "pottedplant",
31 | "sheep", "sofa", "train", "tvmonitor"};
32 |
33 |
34 | public DeepNeuralNetworkProcessor() {
35 | this.net = Dnn.readNetFromCaffe(proto, model);
36 | }
37 |
38 |
39 | public int getObjectCount(Mat frame, boolean isGrayFrame, String objectName) {
40 |
41 | int inWidth = 320;
42 | int inHeight = 240;
43 | double inScaleFactor = 0.007843;
44 | double thresholdDnn = 0.2;
45 | double meanVal = 127.5;
46 |
47 | int personObjectCount = 0;
48 | Mat blob = null;
49 | Mat detections = null;
50 |
51 |
52 | try {
53 | if (isGrayFrame)
54 | Imgproc.cvtColor(frame, frame, Imgproc.COLOR_GRAY2RGB);
55 |
56 | blob = Dnn.blobFromImage(frame, inScaleFactor,
57 | new Size(inWidth, inHeight),
58 | new Scalar(meanVal, meanVal, meanVal),
59 | false, false);
60 | net.setInput(blob);
61 | detections = net.forward();
62 | detections = detections.reshape(1, (int) detections.total() / 7);
63 | for (int i = 0; i < detections.rows(); ++i) {
64 | double confidence = detections.get(i, 2)[0];
65 |
66 | if (confidence < thresholdDnn)
67 | continue;
68 |
69 | int classId = (int) detections.get(i, 1)[0];
70 | if (classNames[classId].toString() != objectName.toLowerCase()) {
71 | continue;
72 | }
73 | personObjectCount++;
74 | }
75 | } catch (Exception ex) {
76 | LOGGER.error("An error occurred DNN: ", ex);
77 | }
78 | return personObjectCount;
79 | }
80 |
81 | public List getObjectsInFrame(Mat frame, boolean isGrayFrame) {
82 |
83 | int inWidth = 320;
84 | int inHeight = 240;
85 | double inScaleFactor = 0.007843;
86 | double thresholdDnn = 0.2;
87 | double meanVal = 127.5;
88 |
89 | Mat blob = null;
90 | Mat detections = null;
91 | List objectList = new ArrayList<>();
92 |
93 | int cols = frame.cols();
94 | int rows = frame.rows();
95 |
96 | try {
97 | if (isGrayFrame)
98 | Imgproc.cvtColor(frame, frame, Imgproc.COLOR_GRAY2RGB);
99 |
100 | blob = Dnn.blobFromImage(frame, inScaleFactor,
101 | new Size(inWidth, inHeight),
102 | new Scalar(meanVal, meanVal, meanVal),
103 | false, false);
104 |
105 | net.setInput(blob);
106 | detections = net.forward();
107 | detections = detections.reshape(1, (int) detections.total() / 7);
108 |
109 | //all detected objects
110 | for (int i = 0; i < detections.rows(); ++i) {
111 | double confidence = detections.get(i, 2)[0];
112 |
113 | if (confidence < thresholdDnn)
114 | continue;
115 |
116 | int classId = (int) detections.get(i, 1)[0];
117 |
118 | //calculate position
119 | int xLeftBottom = (int) (detections.get(i, 3)[0] * cols);
120 | int yLeftBottom = (int) (detections.get(i, 4)[0] * rows);
121 | Point leftPosition = new Point(xLeftBottom, yLeftBottom);
122 |
123 | int xRightTop = (int) (detections.get(i, 5)[0] * cols);
124 | int yRightTop = (int) (detections.get(i, 6)[0] * rows);
125 | Point rightPosition = new Point(xRightTop, yRightTop);
126 |
127 | float centerX = (xLeftBottom + xRightTop) / 2;
128 | float centerY = (yLeftBottom - yRightTop) / 2;
129 | Point centerPoint = new Point(centerX, centerY);
130 |
131 |
132 | DnnObject dnnObject = new DnnObject(classId, classNames[classId].toString(), leftPosition, rightPosition, centerPoint);
133 | objectList.add(dnnObject);
134 | }
135 |
136 | } catch (Exception ex) {
137 | LOGGER.error("An error occurred DNN: ", ex);
138 | }
139 | return objectList;
140 | }
141 |
142 |
143 | }
144 |
--------------------------------------------------------------------------------
/src/FaceAndEyeDetection/DetectFace.java:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/FaceAndEyeDetection/DetectFace.java
--------------------------------------------------------------------------------
/src/TemplateMatchingObjectDetection/TemplateMatching.java:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mesutpiskin/opencv-object-detection/bfc6d6e582f0319f12a8e9645cc45220886a4a70/src/TemplateMatchingObjectDetection/TemplateMatching.java
--------------------------------------------------------------------------------