├── .gitignore
├── LICENSE
├── README.md
├── analytical
├── main.py
└── optimizers.py
├── cifar
├── main.py
└── models
│ ├── __init__.py
│ ├── densenet.py
│ ├── dla.py
│ ├── dpn.py
│ ├── googlenet.py
│ ├── lenet.py
│ ├── mobilenet.py
│ ├── mobilenetv2.py
│ ├── pnasnet.py
│ ├── preact_resnet.py
│ ├── resnet.py
│ ├── resnext.py
│ ├── senet.py
│ ├── shufflenet.py
│ └── vgg.py
├── figs
└── Rosenbrock.png
├── fine-grained
└── main.py
├── mini-imagenet
├── main.py
└── models
│ └── resnet_ws.py
└── myoptims
├── AdaBelief.py
├── Diffgrad.py
├── cosangulargrad.py
└── tanangulargrad.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # AngularGrad Optimizer
2 |
3 | This repository contains the oficial implementation for [AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks](http://arxiv.org/abs/2105.10190) in PyTorch.
4 |
5 | AngularGrad reduces the zig-zag effect in the optimization trajectory. Fluctuations are significantly smoothed, tracing a more direct path towards the minimum of the cost function.
6 |
7 | You can import the optimizer as follows:
8 | ```python
9 | from myoptims.tanangulargrad import tanangulargrad
10 | from myoptims.cosangulargrad import cosangulargrad
11 | ...
12 | model = YourModel()
13 | optimizer = tanangulargrad(model.parameters())
14 | ...
15 | for input, output in data:
16 | optimizer.zero_grad()
17 | loss = loss_function(output, model(input))
18 | loss.backward()
19 | optimizer.step()
20 | ...
21 | ```
22 |
23 |
24 | If you have questions or suggestions, please feel free to open an issue. Please cite as:
25 | ```
26 | @article{roy2021angulargrad,
27 | title={AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks},
28 | author={S.K. Roy, M.E. Paoletti, J.M. Haut, S.R. Dubey, P. Kar, A. Plaza and B.B. Chaudhuri},
29 | journal={arXiv preprint arXiv:2105.10190},
30 | year={2021}
31 | }
32 | ```
33 |
34 |
35 |
36 |
37 |
38 |
39 | ## Experiments
40 |
41 | Experiments in the paper:
42 |
43 | Analitycal
44 | ```
45 | cd analitycal/
46 | python main.py
47 | ```
48 |
49 | CIFAR-10/100
50 | ```
51 | cd cifar/
52 | python main.py --dataset --model --alg --lr
53 | Example:
54 | python main.py --dataset cifar10 --model r50 --alg cosangulargrad --lr 1e-3
55 | ```
56 |
57 | Mini-ImageNet:
58 | ```
59 | cd mini-imagenet/
60 | wget URL dataset
61 | python main.py DATADIR --alg --lr
62 | Example:
63 | python main.py ./split_mini/ --alg cosangulargrad --model r50 --lr 1e-3
64 | ```
65 |
66 | Fine-Grained:
67 | ```
68 | cd fine-grained/
69 | wget URL datasets
70 | python main.py DATADIR --dataset --alg --lr
71 | Example:
72 | python main.py ./data/Car196/ --dataset cars --alg adam --lr 1e-3
73 | ```
74 |
75 |
--------------------------------------------------------------------------------
/analytical/main.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import math as mt
3 | import numpy as np
4 | from optimizers import *
5 | import os
6 |
7 | def calc_func1(x):
8 | if x <= 0: val = (x + 0.3) ** 2
9 | else: val = (x - 0.2) ** 2 + 0.05
10 | return val
11 |
12 |
13 | def calc_grad1(x):
14 | if x <= 0: val = 2*x + 0.6
15 | else: val = 2*x - 0.4
16 | return val
17 |
18 |
19 | def calc_func2(x):
20 | if x <= -0.9: val = -40 * x - 35.15
21 | else: val = (x * x * x) + x * mt.sin(8 * x) + 0.85
22 | return val
23 |
24 |
25 | def calc_grad2(x):
26 | if x <= -0.9:
27 | return -40
28 | else:
29 | return 3 * x * x + 8 * x * mt.cos(8 * x) + mt.sin(8 * x)
30 |
31 |
32 | def calc_func3(x):
33 | if x <= -0.5: val = x**2
34 | elif x <= -0.4: val = 0.75 + x
35 | elif x <= 0.0: val = -7 * x / 8
36 | elif x <= 0.4: val = 7 * x / 8
37 | elif x <= 0.5: val = 0.75 - x
38 | else: val = x**2
39 | return val
40 |
41 |
42 | def calc_grad3(x):
43 | if x <= -0.5: val = 2 * x
44 | elif x <= -0.4: val = 1.0
45 | elif x <= 0.0: val = -7/8
46 | elif x <= 0.4: val = 7/8
47 | elif x <= 0.5: val = -1.0
48 | else: val = 2 * x
49 | return val
50 |
51 |
52 |
53 | def solve_func(xvals):
54 | return [calc_func(xval) for xval in xvals]
55 |
56 |
57 | # optimize with the specified solver
58 | def solve(x0, solver):
59 | x = np.zeros(nb_iters)
60 | x[0] = x0
61 | for idx_iter in range(1, nb_iters):
62 | g = calc_grad(x[idx_iter - 1])
63 | x[idx_iter] = solver.update(x[idx_iter - 1], g)
64 | return x
65 |
66 | # optimize with the specified solver
67 | def solve_reg(x0, solver):
68 | x = np.zeros(nb_iters)
69 | y = np.zeros(nb_iters)
70 | x[0] = x0
71 | for idx_iter in range(1, nb_iters):
72 | g = calc_grad(x[idx_iter - 1])
73 | x[idx_iter] = solver.update(x[idx_iter - 1], g)
74 | y[idx_iter] = calc_func(x[idx_iter])
75 | return x, y
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 | nb_iters = 300
85 | lrn_rate = 0.1
86 | beta1 = 0.95
87 | beta2 = 0.999
88 | eps = 0.00000001
89 | if not os.path.isdir('figures'):
90 | os.mkdir('figures')
91 |
92 | for idfunc, calc_func in enumerate([calc_func1, calc_func2, calc_func3]):
93 | # Adam & diffGrad
94 | x = {}
95 | xvals = np.arange(-1,1,0.05)
96 | x['adam'] = solve_func(xvals)
97 |
98 | # visualization
99 | #plt.rcParams['figure.dpi']= 300
100 | plt.rcParams['figure.figsize'] = [6.0, 4.0]
101 | plt.plot(xvals, x['adam'], label='func')
102 | #plt.legend()
103 | plt.xlabel("x")
104 | plt.ylabel("F"+str(idfunc+1)+"(x)")
105 | plt.grid()
106 | #plt.show()
107 | plt.savefig('figures/function_'+str(idfunc)+'.png', dpi=600, format='png', bbox_inches='tight')
108 | plt.clf()
109 |
110 |
111 | for idfunc, calc_grad in enumerate([calc_grad1, calc_grad2, calc_grad3]):
112 | # Adam & diffGrad
113 | x = {}
114 | x0 = -1.0
115 | solver = SGDM(lrn_rate, beta1, eps)
116 | x['sgdm'] = solve(x0, solver)
117 |
118 | x0 = -1.0
119 | solver = Adam(lrn_rate, beta1, beta2, eps)
120 | x['adam'] = solve(x0, solver)
121 |
122 | x0 = -1.0
123 | solver = diffGrad(lrn_rate, beta1, beta2, eps)
124 | x['diffGrad'] = solve(x0, solver)
125 | #solver = AdaBelief(lrn_rate, beta1, beta2, eps)
126 | #x['AdaBelief'] = solve(x0, solver)
127 |
128 | x0 = -1.0
129 | solver = AdaBelief(lrn_rate, beta1, beta2, eps)
130 | x['AdaBelief'] = solve(x0, solver)
131 |
132 | x0 = -1.0
133 | solver = AngularGradCos(lrn_rate, beta1, beta2, eps)
134 | x['AngularGradCos'] = solve(x0, solver)
135 |
136 | x0 = -1.0
137 | solver = AngularGradTan(lrn_rate, beta1, beta2, eps)
138 | x['AngularGradTan'] = solve(x0, solver)
139 |
140 | # visualization
141 | #plt.rcParams['figure.dpi']= 300
142 | plt.rcParams['figure.figsize'] = [6.0, 4.0]
143 | plt.plot(np.arange(nb_iters) + 1, x['sgdm'], label='SGDM')
144 | plt.plot(np.arange(nb_iters) + 1, x['adam'], label='Adam')
145 | plt.plot(np.arange(nb_iters) + 1, x['diffGrad'], label='diffGrad')
146 | plt.plot(np.arange(nb_iters) + 1, x['AdaBelief'], label='AdaBelief')
147 | plt.plot(np.arange(nb_iters) + 1, x['AngularGradCos'], label='$AngularGrad^{Cos}$')
148 | plt.plot(np.arange(nb_iters) + 1, x['AngularGradTan'], label='$AngularGrad^{Tan}$')
149 | plt.xlabel("Iteration")
150 | plt.ylabel("Parameters Values")
151 | plt.legend(ncol=2)
152 | plt.grid()
153 | #plt.show()
154 | plt.savefig('figures/deriv_'+str(idfunc)+'.png', dpi=600, format='png', bbox_inches='tight')
155 | plt.clf()
156 |
157 |
158 | for idfunc, (calc_grad,calc_func) in enumerate(zip([calc_grad1, calc_grad2, calc_grad3], [calc_func1, calc_func2, calc_func3])):
159 | x = {}
160 | y = {}
161 |
162 | x0 = -1.0
163 | solver = SGDM(lrn_rate, beta1, eps)
164 | x['sgdm'], y['sgdm'] = solve_reg(x0, solver)
165 |
166 | x0 = -1.0
167 | solver = Adam(lrn_rate, beta1, beta2, eps)
168 | x['adam'], y['adam'] = solve_reg(x0, solver)
169 |
170 | x0 = -1.0
171 | solver = diffGrad(lrn_rate, beta1, beta2, eps)
172 | x['diffGrad'], y['diffGrad'] = solve_reg(x0, solver)
173 |
174 | x0 = -1.0
175 | solver = AdaBelief(lrn_rate, beta1, beta2, eps)
176 | x['AdaBelief'], y['AdaBelief'] = solve_reg(x0, solver)
177 |
178 | x0 = -1.0
179 | solver = AngularGradCos(lrn_rate, beta1, beta2, eps)
180 | x['AngularGradCos'], y['AngularGradCos'] = solve_reg(x0, solver)
181 |
182 | x0 = -1.0
183 | solver = AngularGradTan(lrn_rate, beta1, beta2, eps)
184 | x['AngularGradTan'], y['AngularGradTan'] = solve_reg(x0, solver)
185 | # visualization
186 | #plt.rcParams['figure.dpi']= 300
187 | plt.rcParams['figure.figsize'] = [6.0, 4.0]
188 | plt.plot(np.arange(nb_iters) + 1, y['sgdm'], label='SGDM')
189 | plt.plot(np.arange(nb_iters) + 1, y['adam'], label='Adam')
190 | plt.plot(np.arange(nb_iters) + 1, y['diffGrad'], label='diffGrad')
191 | plt.plot(np.arange(nb_iters) + 1, y['AdaBelief'], label='AdaBelief')
192 | plt.plot(np.arange(nb_iters) + 1, y['AngularGradCos'], label='$AngularGrad^{Cos}$')
193 | plt.plot(np.arange(nb_iters) + 1, y['AngularGradTan'], label='$AngularGrad^{Tan}$')
194 | plt.xlabel("Iteration")
195 | plt.ylabel("Regression Loss")
196 | #plt.legend()
197 | plt.legend(ncol=2)
198 | plt.grid()
199 | #plt.show()
200 | plt.savefig('figures/regression_'+str(idfunc)+'.png', dpi=600, format='png', bbox_inches='tight')
201 | plt.clf()
202 |
203 |
--------------------------------------------------------------------------------
/analytical/optimizers.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import math as mt
3 |
4 | class Adam(object):
5 | def __init__(self, lrn_rate, beta1, beta2, eps):
6 | self.lrn_rate = lrn_rate
7 | self.beta1 = beta1
8 | self.beta2 = beta2
9 | self.eps = eps
10 | self.idx = 0
11 | self.m = 0.0 # 1st order
12 | self.v = 0.0 # 2nd order
13 |
14 | def update(self, x, g):
15 | self.idx += 1
16 | self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
17 | self.v = self.beta2 * self.v + (1.0 - self.beta2) * g ** 2
18 | m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
19 | v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
20 | x_new = x - self.lrn_rate * m_adj / np.sqrt(v_adj + self.eps)
21 | return x_new
22 |
23 |
24 | class AdaBelief(object):
25 | def __init__(self, lrn_rate, beta1, beta2, eps):
26 | self.lrn_rate = lrn_rate
27 | self.beta1 = beta1
28 | self.beta2 = beta2
29 | self.eps = eps
30 | self.idx = 0
31 | self.m = 0.0 # 1st order
32 | self.v = 0.0 # 2nd order
33 |
34 | def update(self, x, g):
35 | self.idx += 1
36 | self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
37 | self.v = self.beta2 * self.v + (1.0 - self.beta2) * (g - self.m) ** 2 + self.eps
38 | m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
39 | v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
40 | x_new = x - self.lrn_rate * m_adj / np.sqrt(v_adj + self.eps)
41 | return x_new
42 |
43 | class diffGrad(object):
44 | def __init__(self, lrn_rate, beta1, beta2, eps):
45 | self.lrn_rate = lrn_rate
46 | self.beta1 = beta1
47 | self.beta2 = beta2
48 | self.eps = eps
49 | self.idx = 0
50 | self.m = 0.0 # 1st order
51 | self.v = 0.0 # 2nd order
52 | self.g_prev = 0.0
53 |
54 | def update(self, x, g):
55 | self.idx += 1
56 | self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
57 | self.v = self.beta2 * self.v + (1.0 - self.beta2) * g ** 2
58 | m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
59 | v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
60 | dfc = 1.0 / (1.0 + np.exp(-np.abs(self.g_prev - g)))
61 | x_new = x - self.lrn_rate * m_adj * dfc / (np.sqrt(v_adj) + self.eps)
62 | self.g_prev = g
63 | return x_new
64 |
65 |
66 |
67 |
68 | class AngularGradCos(object):
69 | def __init__(self, lrn_rate, beta1, beta2, eps):
70 | self.lrn_rate = lrn_rate
71 | self.beta1 = beta1
72 | self.beta2 = beta2
73 | self.eps = eps
74 | self.idx = 0
75 | self.m = 0.0 # 1st order
76 | self.v = 0.0 # 2nd order
77 | self.g_prev = 0.0
78 | self.min = 0.0
79 |
80 | def update(self, x, g):
81 | self.idx += 1
82 | self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
83 | self.v = self.beta2 * self.v + (1.0 - self.beta2) * g ** 2
84 | m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
85 | v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
86 |
87 | tan_theta = abs((self.g_prev - g) / (1 + self.g_prev * g))
88 | cos_theta = 1 / np.sqrt(1 + tan_theta**2)
89 | angle = np.arctan(tan_theta) * (180 / 3.141592653589793238)
90 |
91 | if angle > self.min:
92 | self.min = angle
93 | diff = abs(self.g_prev - g)
94 | final_cos_theta = cos_theta
95 | else:
96 | self.min = angle
97 | diff = abs(self.g_prev - g)
98 | final_cos_theta = cos_theta
99 |
100 | dfc = 1.0 / (1.0 + np.exp(final_cos_theta))
101 | x_new = x - self.lrn_rate * m_adj * dfc / (np.sqrt(v_adj) + self.eps)
102 | self.g_prev = g
103 | return x_new
104 |
105 |
106 |
107 |
108 | class AngularGradTan(object):
109 | def __init__(self, lrn_rate, beta1, beta2, eps):
110 | self.lrn_rate = lrn_rate
111 | self.beta1 = beta1
112 | self.beta2 = beta2
113 | self.eps = eps
114 | self.idx = 0
115 | self.m = 0.0 # 1st order
116 | self.v = 0.0 # 2nd order
117 | self.g_prev = 0.0
118 | self.min = 0.0
119 |
120 | def update(self, x, g):
121 | self.idx += 1
122 | self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
123 | self.v = self.beta2 * self.v + (1.0 - self.beta2) * g ** 2
124 | m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
125 | v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
126 |
127 | tan_theta = abs((self.g_prev - g) / (1 + self.g_prev * g))
128 | cos_theta = 1 / np.sqrt(1 + tan_theta**2)
129 | angle = np.arctan(tan_theta) * (180 / 3.141592653589793238)
130 |
131 | if angle > self.min:
132 | self.min = angle
133 | diff = abs(self.g_prev - g)
134 | final_tan_theta = tan_theta
135 | else:
136 | self.min = angle
137 | diff = abs(self.g_prev - g)
138 | final_tan_theta = tan_theta
139 |
140 | dfc = 1.0 / (1.0 + np.exp(final_tan_theta))
141 | x_new = x - self.lrn_rate * m_adj * dfc / (np.sqrt(v_adj) + self.eps)
142 | self.g_prev = g
143 | return x_new
144 |
145 |
146 | class SGDM(object):
147 | def __init__(self, lrn_rate, beta1, eps):
148 | self.lrn_rate = lrn_rate
149 | self.beta1 = beta1
150 | self.eps = eps
151 | self.idx = 0
152 | self.m = 0.0 # 1st order
153 |
154 | def update(self, x, g):
155 | self.idx += 1
156 | self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
157 | m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
158 | x_new = x - self.lrn_rate * m_adj
159 | return x_new
160 |
161 |
162 |
163 |
164 | #class AngularGradCos(object):
165 | #def __init__(self, lrn_rate, beta1, beta2, eps):
166 | #self.lrn_rate = lrn_rate
167 | #self.beta1 = beta1
168 | #self.beta2 = beta2
169 | #self.eps = eps
170 | #self.idx = 0
171 | #self.m = 0.0 # 1st order
172 | #self.v = 0.0 # 2nd order
173 | #self.g_prev = 0.0
174 | #self.min = 360.0
175 |
176 | #def update(self, x, g):
177 | #self.idx += 1
178 | #self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
179 | #self.v = self.beta2 * self.v + (1.0 - self.beta2) * g ** 2
180 | #m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
181 | #v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
182 |
183 | #tan_theta = abs((self.g_prev - g) / (1 + self.g_prev * g))
184 | #cos_theta = 1 / np.sqrt(1 + tan_theta ** 2)
185 |
186 | #angle = np.arctan(tan_theta) * (180 / 3.141592653589793238)
187 |
188 | #if angle < self.min:
189 | #self.min = angle
190 | #final_cos_theta = cos_theta
191 | #else:
192 | #final_cos_theta = mt.cos(self.min)
193 |
194 | #dfc = np.tanh(abs(final_cos_theta)) * 0.5 +0.5
195 | #x_new = x - self.lrn_rate * m_adj * dfc / (np.sqrt(v_adj) + self.eps)
196 | #self.g_prev = g
197 | #return x_new
198 |
199 |
200 |
201 |
202 | #class AngularGradTan(object):
203 | #def __init__(self, lrn_rate, beta1, beta2, eps):
204 | #self.lrn_rate = lrn_rate
205 | #self.beta1 = beta1
206 | #self.beta2 = beta2
207 | #self.eps = eps
208 | #self.idx = 0
209 | #self.m = 0.0 # 1st order
210 | #self.v = 0.0 # 2nd order
211 | #self.g_prev = 0.0
212 | #self.min = 361.0
213 |
214 | #def update(self, x, g):
215 | #self.idx += 1
216 | #self.m = self.beta1 * self.m + (1.0 - self.beta1) * g
217 | #self.v = self.beta2 * self.v + (1.0 - self.beta2) * g ** 2
218 | #m_adj = self.m / (1.0 - np.power(self.beta1, self.idx))
219 | #v_adj = self.v / (1.0 - np.power(self.beta2, self.idx))
220 |
221 | #tan_theta = abs((self.g_prev - g) / (1 + self.g_prev * g))
222 | #angle = np.arctan(tan_theta) * (180 / 3.141592653589793238)
223 |
224 | #if angle > self.min:
225 | #self.min = angle
226 | #final_tan_theta = tan_theta
227 | #else:
228 | #final_tan_theta = mt.tan(self.min)
229 |
230 | #dfc = np.tanh(abs(final_tan_theta)) * 0.5 + 0.5
231 | #x_new = x - self.lrn_rate * m_adj * dfc / (np.sqrt(v_adj) + self.eps)
232 | #self.g_prev = g
233 | #return x_new
234 |
--------------------------------------------------------------------------------
/cifar/main.py:
--------------------------------------------------------------------------------
1 | '''Train CIFAR with PyTorch.'''
2 | from __future__ import print_function
3 |
4 | import torch
5 | import torch.nn as nn
6 | import torch.backends.cudnn as cudnn
7 |
8 |
9 | import torch.optim as optim
10 | import torch.nn.functional as F
11 |
12 | import torchvision
13 | import torchvision.transforms as transforms
14 |
15 |
16 | from torch.optim import lr_scheduler
17 | import os
18 | import argparse
19 | from torchvision import datasets, models
20 | from models import *
21 |
22 |
23 | import sys
24 | sys.path.append('../')
25 |
26 | from myoptims.Diffgrad import diffgrad
27 | from myoptims.tanangulargrad import tanangulargrad
28 | from myoptims.cosangulargrad import cosangulargrad
29 | from myoptims.AdaBelief import AdaBelief
30 |
31 | import random
32 |
33 |
34 |
35 | def get_loaders(dsetname, bsize):
36 | print('==> Preparing ' + dsetname + ' data...')
37 | if dsetname == 'cifar10':
38 | mean, std = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
39 | torchdset = torchvision.datasets.CIFAR10
40 | elif dsetname == 'cifar100':
41 | mean, std = (0.507, 0.487, 0.441), (0.267, 0.256, 0.276)
42 | torchdset = torchvision.datasets.CIFAR100
43 | else:
44 | print('==> Dataset not avaiable...')
45 | exit()
46 |
47 | transform_train = transforms.Compose([
48 | transforms.RandomCrop(32, padding=4),
49 | transforms.RandomHorizontalFlip(),
50 | transforms.ToTensor(),
51 | transforms.Normalize(mean, std),
52 | ])
53 | transform_test = transforms.Compose([
54 | transforms.ToTensor(),
55 | transforms.Normalize(mean, std),
56 | ])
57 |
58 | trainset = torchdset(root='./data/'+dsetname+'/', train=True, download=True, transform=transform_train)
59 | trainloader = torch.utils.data.DataLoader(trainset, batch_size=bsize, shuffle=True, num_workers=4,drop_last=True)
60 | testset = torchdset(root='./data/'+dsetname+'/', train=False, download=True, transform=transform_test)
61 | testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=4)
62 |
63 | return trainloader, testloader
64 |
65 |
66 | def get_model(modelname, Num_classes):
67 | if modelname == 'v16': net = VGG('VGG16', Num_classes=Num_classes)
68 | elif modelname == 'r18': net = ResNet18( Num_classes=Num_classes)
69 | elif modelname == 'r34': net = ResNet34( Num_classes=Num_classes)
70 | elif modelname == 'r50': net = ResNet50( Num_classes=Num_classes)
71 | elif modelname == 'r101': net = ResNet101( Num_classes=Num_classes)
72 | elif modelname == 'rx29': net = ResNeXt29_4x64d(Num_classes=Num_classes)
73 | elif modelname == 'dla': net = DLA( Num_classes=Num_classes)
74 | elif modelname == 'd121': net = DenseNet121( Num_classes=Num_classes)
75 | else:
76 | print('==> Network not found...')
77 | exit()
78 | return net
79 |
80 |
81 | def get_optim(optim_name, learning_rate, net):
82 | if optim_name == 'sgd': optimizer = optim.SGD( net.parameters(), lr=learning_rate, momentum=0.9)
83 | elif optim_name == 'rmsprop': optimizer = optim.RMSprop( net.parameters(), lr=learning_rate)
84 | elif optim_name == 'adam': optimizer = optim.Adam( net.parameters(), lr=learning_rate)
85 | elif optim_name == 'adamw': optimizer = optim.AdamW( net.parameters(), lr=learning_rate)
86 | elif optim_name == 'diffgrad': optimizer = diffgrad( net.parameters(), lr=learning_rate)
87 | elif optim_name == 'adabelief': optimizer = AdaBelief( net.parameters(), lr=learning_rate)
88 | elif optim_name == 'cosangulargrad': optimizer = cosangulargrad(net.parameters(), lr=learning_rate)
89 | elif optim_name == 'tanangulargrad': optimizer = tanangulargrad(net.parameters(), lr=learning_rate)
90 | else:
91 | print('==> Optimizer not found...')
92 | exit()
93 | return optimizer
94 |
95 |
96 | def train(trainloader, epoch, net, optimizer, criterion, device='cuda'):
97 | print('\nEpoch: %d' % epoch)
98 | net.train()
99 | train_loss = 0
100 | correct = 0
101 | total = 0
102 | for batch_idx, (inputs, targets) in enumerate(trainloader):
103 | inputs, targets = inputs.to(device), targets.to(device)
104 | optimizer.zero_grad()
105 | outputs = net(inputs)
106 | loss = criterion(outputs, targets)
107 | loss.backward()
108 | optimizer.step()
109 |
110 | train_loss += loss.item()
111 | _, predicted = outputs.max(1)
112 | total += targets.size(0)
113 | correct += predicted.eq(targets).sum().item()
114 | print('Training: Loss: {:.4f} | Acc: {:.4f}'.format(train_loss/(batch_idx+1),correct/total))
115 | acc=100.*correct/total
116 | return acc, train_loss/(batch_idx+1)
117 |
118 |
119 | def test(testloader, epoch, net, criterion, device='cuda'):
120 | net.eval()
121 | test_loss = 0
122 | correct = 0
123 | total = 0
124 | with torch.no_grad():
125 | for batch_idx, (inputs, targets) in enumerate(testloader):
126 | inputs, targets = inputs.to(device), targets.to(device)
127 | outputs = net(inputs)
128 | loss = criterion(outputs, targets)
129 |
130 | test_loss += loss.item()
131 | _, predicted = outputs.max(1)
132 | total += targets.size(0)
133 | correct += predicted.eq(targets).sum().item()
134 | print('Testing: Loss: {:.4f} | Acc: {:.4f}'.format(test_loss/(batch_idx+1),correct/total) )
135 | acc=100.*correct/total
136 | return acc, test_loss/(batch_idx+1)
137 |
138 |
139 |
140 |
141 |
142 |
143 | def main(args):
144 | device = 'cuda' if torch.cuda.is_available() else 'cpu'
145 |
146 | # Random seed
147 | if args.manualSeed is None:
148 | args.manualSeed = random.randint(1, 10000)
149 | random.seed(args.manualSeed)
150 | torch.manual_seed(args.manualSeed)
151 | if device == 'cuda':
152 | torch.cuda.manual_seed_all(args.manualSeed)
153 |
154 | trainloader, testloader = get_loaders(args.dataset, args.bs)
155 | net = get_model(args.model, 10 if args.dataset == 'cifar10' else 100)
156 |
157 | if device == 'cuda':
158 | net = net.cuda()
159 | net = torch.nn.DataParallel(net)
160 | cudnn.benchmark = True
161 |
162 |
163 | if args.resume:
164 | print('==> Resuming from checkpoint..')
165 | assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
166 | checkpoint = torch.load('./checkpoint/ckpt' + '_' + args.dataset + '_' + args.model + '.t7')
167 | net.load_state_dict(checkpoint['net'])
168 | best_acc = checkpoint['acc']
169 | start_epoch = checkpoint['epoch']
170 | else:
171 | best_acc = -1
172 | start_epoch = 0
173 |
174 |
175 | optimizer = get_optim(args.alg, args.lr, net)
176 | criterion = nn.CrossEntropyLoss()
177 | scheduler_lr = lr_scheduler.StepLR(optimizer, step_size=80, gamma=0.1)
178 |
179 |
180 | for epoch in range(start_epoch, start_epoch+args.epochs):
181 | train_acc, train_loss = train(trainloader, epoch, net, optimizer, criterion, device=device)
182 | scheduler_lr.step()
183 | val_acc, val_loss = test(testloader, epoch, net, criterion, device=device)
184 |
185 | # Save checkpoint.
186 | if val_acc > best_acc:
187 | print('Saving..')
188 | state = {
189 | 'net': net.state_dict(),
190 | 'acc': val_acc,
191 | 'epoch': epoch,
192 | }
193 | if not os.path.isdir('checkpoint'):
194 | os.mkdir('checkpoint')
195 | torch.save(state, './checkpoint/ckpt' + '_' + args.dataset + '_' + args.model + '.t7')
196 | best_acc = val_acc
197 |
198 | print('Best Acc: {:.2f}'.format(best_acc))
199 |
200 |
201 |
202 |
203 | if __name__ == '__main__':
204 | parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
205 | parser.add_argument('--dataset', type=str, default='cifar10', \
206 | choices=['cifar10', 'cifar100'], \
207 | help='dataset (options: cifar10, cifar100)')
208 | parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
209 | parser.add_argument('--epochs', default=100, type=int, help='epochs')
210 | parser.add_argument('--model', type=str, default='r50', \
211 | choices=['v16', 'r18', 'r34', 'r50', 'r101', 'rx29', 'dla', 'd121'], \
212 | help='dataset (options: v16, r18, r34, r50, r101, rx29, dla, d121)')
213 | parser.add_argument('--bs', default=128, type=int, help='batchsize')
214 | parser.add_argument('--alg', type=str, default='adam', \
215 | choices=['sgd', 'rmsprop', 'adam', 'adamw', 'diffgrad', 'adabelief', 'cosangulargrad', 'tanangulargrad'], \
216 | help='dataset (options: sgd, rmsprop, adam, adamw, diffgrad, adabelief, cosangulargrad, tanangulargrad)')
217 | parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
218 | parser.add_argument('--manualSeed', default=1111, type=int, help='random seed')
219 |
220 | args = parser.parse_args()
221 |
222 | main(args)
223 |
224 |
--------------------------------------------------------------------------------
/cifar/models/__init__.py:
--------------------------------------------------------------------------------
1 | from .vgg import *
2 | from .dpn import *
3 | from .lenet import *
4 | from .senet import *
5 | from .pnasnet import *
6 | from .densenet import *
7 | from .googlenet import *
8 | from .shufflenet import *
9 | from .resnet import *
10 | from .resnext import *
11 | from .preact_resnet import *
12 | from .mobilenet import *
13 | from .mobilenetv2 import *
14 | from .dla import *
15 |
--------------------------------------------------------------------------------
/cifar/models/densenet.py:
--------------------------------------------------------------------------------
1 | '''DenseNet in PyTorch.'''
2 | import math
3 |
4 | import torch
5 | import torch.nn as nn
6 | import torch.nn.functional as F
7 |
8 |
9 | class Bottleneck(nn.Module):
10 | def __init__(self, in_planes, growth_rate):
11 | super(Bottleneck, self).__init__()
12 | self.bn1 = nn.BatchNorm2d(in_planes)
13 | self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False)
14 | self.bn2 = nn.BatchNorm2d(4*growth_rate)
15 | self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
16 |
17 | def forward(self, x):
18 | out = self.conv1(F.relu(self.bn1(x)))
19 | out = self.conv2(F.relu(self.bn2(out)))
20 | out = torch.cat([out,x], 1)
21 | return out
22 |
23 |
24 | class Transition(nn.Module):
25 | def __init__(self, in_planes, out_planes):
26 | super(Transition, self).__init__()
27 | self.bn = nn.BatchNorm2d(in_planes)
28 | self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
29 |
30 | def forward(self, x):
31 | out = self.conv(F.relu(self.bn(x)))
32 | out = F.avg_pool2d(out, 2)
33 | return out
34 |
35 |
36 | class DenseNet(nn.Module):
37 | def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10):
38 | super(DenseNet, self).__init__()
39 | self.growth_rate = growth_rate
40 |
41 | num_planes = 2*growth_rate
42 | self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False)
43 |
44 | self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0])
45 | num_planes += nblocks[0]*growth_rate
46 | out_planes = int(math.floor(num_planes*reduction))
47 | self.trans1 = Transition(num_planes, out_planes)
48 | num_planes = out_planes
49 |
50 | self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1])
51 | num_planes += nblocks[1]*growth_rate
52 | out_planes = int(math.floor(num_planes*reduction))
53 | self.trans2 = Transition(num_planes, out_planes)
54 | num_planes = out_planes
55 |
56 | self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2])
57 | num_planes += nblocks[2]*growth_rate
58 | out_planes = int(math.floor(num_planes*reduction))
59 | self.trans3 = Transition(num_planes, out_planes)
60 | num_planes = out_planes
61 |
62 | self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3])
63 | num_planes += nblocks[3]*growth_rate
64 |
65 | self.bn = nn.BatchNorm2d(num_planes)
66 | self.linear = nn.Linear(num_planes, num_classes)
67 |
68 | def _make_dense_layers(self, block, in_planes, nblock):
69 | layers = []
70 | for i in range(nblock):
71 | layers.append(block(in_planes, self.growth_rate))
72 | in_planes += self.growth_rate
73 | return nn.Sequential(*layers)
74 |
75 | def forward(self, x):
76 | out = self.conv1(x)
77 | out = self.trans1(self.dense1(out))
78 | out = self.trans2(self.dense2(out))
79 | out = self.trans3(self.dense3(out))
80 | out = self.dense4(out)
81 | out = F.avg_pool2d(F.relu(self.bn(out)), 4)
82 | out = out.view(out.size(0), -1)
83 | out = self.linear(out)
84 | return out
85 |
86 | def DenseNet121(Num_classes=10):
87 | return DenseNet(Bottleneck, [6,12,24,16], growth_rate=32, num_classes=Num_classes)
88 |
89 | def DenseNet169():
90 | return DenseNet(Bottleneck, [6,12,32,32], growth_rate=32)
91 |
92 | def DenseNet201():
93 | return DenseNet(Bottleneck, [6,12,48,32], growth_rate=32)
94 |
95 | def DenseNet161():
96 | return DenseNet(Bottleneck, [6,12,36,24], growth_rate=48)
97 |
98 | def densenet_cifar():
99 | return DenseNet(Bottleneck, [6,12,24,16], growth_rate=12)
100 |
101 | def test():
102 | net = densenet_cifar()
103 | x = torch.randn(1,3,32,32)
104 | y = net(x)
105 | print(y)
106 |
107 | # test()
108 |
--------------------------------------------------------------------------------
/cifar/models/dla.py:
--------------------------------------------------------------------------------
1 | '''DLA in PyTorch.
2 |
3 | Reference:
4 | Deep Layer Aggregation. https://arxiv.org/abs/1707.06484
5 | '''
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.functional as F
9 |
10 |
11 | class BasicBlock(nn.Module):
12 | expansion = 1
13 |
14 | def __init__(self, in_planes, planes, stride=1):
15 | super(BasicBlock, self).__init__()
16 | self.conv1 = nn.Conv2d(
17 | in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
18 | self.bn1 = nn.BatchNorm2d(planes)
19 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
20 | stride=1, padding=1, bias=False)
21 | self.bn2 = nn.BatchNorm2d(planes)
22 |
23 | self.shortcut = nn.Sequential()
24 | if stride != 1 or in_planes != self.expansion*planes:
25 | self.shortcut = nn.Sequential(
26 | nn.Conv2d(in_planes, self.expansion*planes,
27 | kernel_size=1, stride=stride, bias=False),
28 | nn.BatchNorm2d(self.expansion*planes)
29 | )
30 |
31 | def forward(self, x):
32 | out = F.relu(self.bn1(self.conv1(x)))
33 | out = self.bn2(self.conv2(out))
34 | out += self.shortcut(x)
35 | out = F.relu(out)
36 | return out
37 |
38 |
39 | class Root(nn.Module):
40 | def __init__(self, in_channels, out_channels, kernel_size=1):
41 | super(Root, self).__init__()
42 | self.conv = nn.Conv2d(
43 | in_channels, out_channels, kernel_size,
44 | stride=1, padding=(kernel_size - 1) // 2, bias=False)
45 | self.bn = nn.BatchNorm2d(out_channels)
46 |
47 | def forward(self, xs):
48 | x = torch.cat(xs, 1)
49 | out = F.relu(self.bn(self.conv(x)))
50 | return out
51 |
52 |
53 | class Tree(nn.Module):
54 | def __init__(self, block, in_channels, out_channels, level=1, stride=1):
55 | super(Tree, self).__init__()
56 | self.level = level
57 | if level == 1:
58 | self.root = Root(2*out_channels, out_channels)
59 | self.left_node = block(in_channels, out_channels, stride=stride)
60 | self.right_node = block(out_channels, out_channels, stride=1)
61 | else:
62 | self.root = Root((level+2)*out_channels, out_channels)
63 | for i in reversed(range(1, level)):
64 | subtree = Tree(block, in_channels, out_channels,
65 | level=i, stride=stride)
66 | self.__setattr__('level_%d' % i, subtree)
67 | self.prev_root = block(in_channels, out_channels, stride=stride)
68 | self.left_node = block(out_channels, out_channels, stride=1)
69 | self.right_node = block(out_channels, out_channels, stride=1)
70 |
71 | def forward(self, x):
72 | xs = [self.prev_root(x)] if self.level > 1 else []
73 | for i in reversed(range(1, self.level)):
74 | level_i = self.__getattr__('level_%d' % i)
75 | x = level_i(x)
76 | xs.append(x)
77 | x = self.left_node(x)
78 | xs.append(x)
79 | x = self.right_node(x)
80 | xs.append(x)
81 | out = self.root(xs)
82 | return out
83 |
84 |
85 | class DLA(nn.Module):
86 | def __init__(self, block=BasicBlock, Num_classes=10):
87 | super(DLA, self).__init__()
88 | self.base = nn.Sequential(
89 | nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False),
90 | nn.BatchNorm2d(16),
91 | nn.ReLU(True)
92 | )
93 |
94 | self.layer1 = nn.Sequential(
95 | nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=False),
96 | nn.BatchNorm2d(16),
97 | nn.ReLU(True)
98 | )
99 |
100 | self.layer2 = nn.Sequential(
101 | nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1, bias=False),
102 | nn.BatchNorm2d(32),
103 | nn.ReLU(True)
104 | )
105 |
106 | self.layer3 = Tree(block, 32, 64, level=1, stride=1)
107 | self.layer4 = Tree(block, 64, 128, level=2, stride=2)
108 | self.layer5 = Tree(block, 128, 256, level=2, stride=2)
109 | self.layer6 = Tree(block, 256, 512, level=1, stride=2)
110 | self.linear = nn.Linear(512, Num_classes)
111 |
112 | def forward(self, x):
113 | out = self.base(x)
114 | out = self.layer1(out)
115 | out = self.layer2(out)
116 | out = self.layer3(out)
117 | out = self.layer4(out)
118 | out = self.layer5(out)
119 | out = self.layer6(out)
120 | out = F.avg_pool2d(out, 4)
121 | out = out.view(out.size(0), -1)
122 | out = self.linear(out)
123 | return out
124 |
125 |
126 | def test():
127 | net = DLA()
128 | print(net)
129 | x = torch.randn(1, 3, 32, 32)
130 | y = net(x)
131 | print(y.size())
132 |
133 |
134 | if __name__ == '__main__':
135 | test()
136 |
--------------------------------------------------------------------------------
/cifar/models/dpn.py:
--------------------------------------------------------------------------------
1 | '''Dual Path Networks in PyTorch.'''
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 |
6 |
7 | class Bottleneck(nn.Module):
8 | def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
9 | super(Bottleneck, self).__init__()
10 | self.out_planes = out_planes
11 | self.dense_depth = dense_depth
12 |
13 | self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
14 | self.bn1 = nn.BatchNorm2d(in_planes)
15 | self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
16 | self.bn2 = nn.BatchNorm2d(in_planes)
17 | self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
18 | self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)
19 |
20 | self.shortcut = nn.Sequential()
21 | if first_layer:
22 | self.shortcut = nn.Sequential(
23 | nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
24 | nn.BatchNorm2d(out_planes+dense_depth)
25 | )
26 |
27 | def forward(self, x):
28 | out = F.relu(self.bn1(self.conv1(x)))
29 | out = F.relu(self.bn2(self.conv2(out)))
30 | out = self.bn3(self.conv3(out))
31 | x = self.shortcut(x)
32 | d = self.out_planes
33 | out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1)
34 | out = F.relu(out)
35 | return out
36 |
37 |
38 | class DPN(nn.Module):
39 | def __init__(self, cfg):
40 | super(DPN, self).__init__()
41 | in_planes, out_planes = cfg['in_planes'], cfg['out_planes']
42 | num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth']
43 |
44 | self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
45 | self.bn1 = nn.BatchNorm2d(64)
46 | self.last_planes = 64
47 | self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1)
48 | self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2)
49 | self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2)
50 | self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2)
51 | self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)*dense_depth[3], 10)
52 |
53 | def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride):
54 | strides = [stride] + [1]*(num_blocks-1)
55 | layers = []
56 | for i,stride in enumerate(strides):
57 | layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0))
58 | self.last_planes = out_planes + (i+2) * dense_depth
59 | return nn.Sequential(*layers)
60 |
61 | def forward(self, x):
62 | out = F.relu(self.bn1(self.conv1(x)))
63 | out = self.layer1(out)
64 | out = self.layer2(out)
65 | out = self.layer3(out)
66 | out = self.layer4(out)
67 | out = F.avg_pool2d(out, 4)
68 | out = out.view(out.size(0), -1)
69 | out = self.linear(out)
70 | return out
71 |
72 |
73 | def DPN26():
74 | cfg = {
75 | 'in_planes': (96,192,384,768),
76 | 'out_planes': (256,512,1024,2048),
77 | 'num_blocks': (2,2,2,2),
78 | 'dense_depth': (16,32,24,128)
79 | }
80 | return DPN(cfg)
81 |
82 | def DPN92():
83 | cfg = {
84 | 'in_planes': (96,192,384,768),
85 | 'out_planes': (256,512,1024,2048),
86 | 'num_blocks': (3,4,20,3),
87 | 'dense_depth': (16,32,24,128)
88 | }
89 | return DPN(cfg)
90 |
91 |
92 | def test():
93 | net = DPN92()
94 | x = torch.randn(1,3,32,32)
95 | y = net(x)
96 | print(y)
97 |
98 | # test()
99 |
--------------------------------------------------------------------------------
/cifar/models/googlenet.py:
--------------------------------------------------------------------------------
1 | '''GoogLeNet with PyTorch.'''
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 |
6 |
7 | class Inception(nn.Module):
8 | def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
9 | super(Inception, self).__init__()
10 | # 1x1 conv branch
11 | self.b1 = nn.Sequential(
12 | nn.Conv2d(in_planes, n1x1, kernel_size=1),
13 | nn.BatchNorm2d(n1x1),
14 | nn.ReLU(True),
15 | )
16 |
17 | # 1x1 conv -> 3x3 conv branch
18 | self.b2 = nn.Sequential(
19 | nn.Conv2d(in_planes, n3x3red, kernel_size=1),
20 | nn.BatchNorm2d(n3x3red),
21 | nn.ReLU(True),
22 | nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
23 | nn.BatchNorm2d(n3x3),
24 | nn.ReLU(True),
25 | )
26 |
27 | # 1x1 conv -> 5x5 conv branch
28 | self.b3 = nn.Sequential(
29 | nn.Conv2d(in_planes, n5x5red, kernel_size=1),
30 | nn.BatchNorm2d(n5x5red),
31 | nn.ReLU(True),
32 | nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1),
33 | nn.BatchNorm2d(n5x5),
34 | nn.ReLU(True),
35 | nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
36 | nn.BatchNorm2d(n5x5),
37 | nn.ReLU(True),
38 | )
39 |
40 | # 3x3 pool -> 1x1 conv branch
41 | self.b4 = nn.Sequential(
42 | nn.MaxPool2d(3, stride=1, padding=1),
43 | nn.Conv2d(in_planes, pool_planes, kernel_size=1),
44 | nn.BatchNorm2d(pool_planes),
45 | nn.ReLU(True),
46 | )
47 |
48 | def forward(self, x):
49 | y1 = self.b1(x)
50 | y2 = self.b2(x)
51 | y3 = self.b3(x)
52 | y4 = self.b4(x)
53 | return torch.cat([y1,y2,y3,y4], 1)
54 |
55 |
56 | class GoogLeNet(nn.Module):
57 | def __init__(self):
58 | super(GoogLeNet, self).__init__()
59 | self.pre_layers = nn.Sequential(
60 | nn.Conv2d(3, 192, kernel_size=3, padding=1),
61 | nn.BatchNorm2d(192),
62 | nn.ReLU(True),
63 | )
64 |
65 | self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
66 | self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
67 |
68 | self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
69 |
70 | self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
71 | self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
72 | self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
73 | self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
74 | self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
75 |
76 | self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
77 | self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)
78 |
79 | self.avgpool = nn.AvgPool2d(8, stride=1)
80 | self.linear = nn.Linear(1024, 10)
81 |
82 | def forward(self, x):
83 | out = self.pre_layers(x)
84 | out = self.a3(out)
85 | out = self.b3(out)
86 | out = self.maxpool(out)
87 | out = self.a4(out)
88 | out = self.b4(out)
89 | out = self.c4(out)
90 | out = self.d4(out)
91 | out = self.e4(out)
92 | out = self.maxpool(out)
93 | out = self.a5(out)
94 | out = self.b5(out)
95 | out = self.avgpool(out)
96 | out = out.view(out.size(0), -1)
97 | out = self.linear(out)
98 | return out
99 |
100 |
101 | def test():
102 | net = GoogLeNet()
103 | x = torch.randn(1,3,32,32)
104 | y = net(x)
105 | print(y.size())
106 |
107 | # test()
108 |
--------------------------------------------------------------------------------
/cifar/models/lenet.py:
--------------------------------------------------------------------------------
1 | '''LeNet in PyTorch.'''
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | class LeNet(nn.Module):
6 | def __init__(self):
7 | super(LeNet, self).__init__()
8 | self.conv1 = nn.Conv2d(3, 6, 5)
9 | self.conv2 = nn.Conv2d(6, 16, 5)
10 | self.fc1 = nn.Linear(16*5*5, 120)
11 | self.fc2 = nn.Linear(120, 84)
12 | self.fc3 = nn.Linear(84, 10)
13 |
14 | def forward(self, x):
15 | out = F.relu(self.conv1(x))
16 | out = F.max_pool2d(out, 2)
17 | out = F.relu(self.conv2(out))
18 | out = F.max_pool2d(out, 2)
19 | out = out.view(out.size(0), -1)
20 | out = F.relu(self.fc1(out))
21 | out = F.relu(self.fc2(out))
22 | out = self.fc3(out)
23 | return out
24 |
--------------------------------------------------------------------------------
/cifar/models/mobilenet.py:
--------------------------------------------------------------------------------
1 | '''MobileNet in PyTorch.
2 |
3 | See the paper "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"
4 | for more details.
5 | '''
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.functional as F
9 |
10 |
11 | class Block(nn.Module):
12 | '''Depthwise conv + Pointwise conv'''
13 | def __init__(self, in_planes, out_planes, stride=1):
14 | super(Block, self).__init__()
15 | self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False)
16 | self.bn1 = nn.BatchNorm2d(in_planes)
17 | self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
18 | self.bn2 = nn.BatchNorm2d(out_planes)
19 |
20 | def forward(self, x):
21 | out = F.relu(self.bn1(self.conv1(x)))
22 | out = F.relu(self.bn2(self.conv2(out)))
23 | return out
24 |
25 |
26 | class MobileNet(nn.Module):
27 | # (128,2) means conv planes=128, conv stride=2, by default conv stride=1
28 | cfg = [64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), 1024]
29 |
30 | def __init__(self, num_classes=10):
31 | super(MobileNet, self).__init__()
32 | self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
33 | self.bn1 = nn.BatchNorm2d(32)
34 | self.layers = self._make_layers(in_planes=32)
35 | self.linear = nn.Linear(1024, num_classes)
36 |
37 | def _make_layers(self, in_planes):
38 | layers = []
39 | for x in self.cfg:
40 | out_planes = x if isinstance(x, int) else x[0]
41 | stride = 1 if isinstance(x, int) else x[1]
42 | layers.append(Block(in_planes, out_planes, stride))
43 | in_planes = out_planes
44 | return nn.Sequential(*layers)
45 |
46 | def forward(self, x):
47 | out = F.relu(self.bn1(self.conv1(x)))
48 | out = self.layers(out)
49 | out = F.avg_pool2d(out, 2)
50 | out = out.view(out.size(0), -1)
51 | out = self.linear(out)
52 | return out
53 |
54 |
55 | def test():
56 | net = MobileNet()
57 | x = torch.randn(1,3,32,32)
58 | y = net(x)
59 | print(y.size())
60 |
61 | # test()
62 |
--------------------------------------------------------------------------------
/cifar/models/mobilenetv2.py:
--------------------------------------------------------------------------------
1 | '''MobileNetV2 in PyTorch.
2 |
3 | See the paper "Inverted Residuals and Linear Bottlenecks:
4 | Mobile Networks for Classification, Detection and Segmentation" for more details.
5 | '''
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.functional as F
9 |
10 |
11 | class Block(nn.Module):
12 | '''expand + depthwise + pointwise'''
13 | def __init__(self, in_planes, out_planes, expansion, stride):
14 | super(Block, self).__init__()
15 | self.stride = stride
16 |
17 | planes = expansion * in_planes
18 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False)
19 | self.bn1 = nn.BatchNorm2d(planes)
20 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False)
21 | self.bn2 = nn.BatchNorm2d(planes)
22 | self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
23 | self.bn3 = nn.BatchNorm2d(out_planes)
24 |
25 | self.shortcut = nn.Sequential()
26 | if stride == 1 and in_planes != out_planes:
27 | self.shortcut = nn.Sequential(
28 | nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False),
29 | nn.BatchNorm2d(out_planes),
30 | )
31 |
32 | def forward(self, x):
33 | out = F.relu(self.bn1(self.conv1(x)))
34 | out = F.relu(self.bn2(self.conv2(out)))
35 | out = self.bn3(self.conv3(out))
36 | out = out + self.shortcut(x) if self.stride==1 else out
37 | return out
38 |
39 |
40 | class MobileNetV2(nn.Module):
41 | # (expansion, out_planes, num_blocks, stride)
42 | cfg = [(1, 16, 1, 1),
43 | (6, 24, 2, 1), # NOTE: change stride 2 -> 1 for CIFAR10
44 | (6, 32, 3, 2),
45 | (6, 64, 4, 2),
46 | (6, 96, 3, 1),
47 | (6, 160, 3, 2),
48 | (6, 320, 1, 1)]
49 |
50 | def __init__(self, num_classes=10):
51 | super(MobileNetV2, self).__init__()
52 | # NOTE: change conv1 stride 2 -> 1 for CIFAR10
53 | self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
54 | self.bn1 = nn.BatchNorm2d(32)
55 | self.layers = self._make_layers(in_planes=32)
56 | self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False)
57 | self.bn2 = nn.BatchNorm2d(1280)
58 | self.linear = nn.Linear(1280, num_classes)
59 |
60 | def _make_layers(self, in_planes):
61 | layers = []
62 | for expansion, out_planes, num_blocks, stride in self.cfg:
63 | strides = [stride] + [1]*(num_blocks-1)
64 | for stride in strides:
65 | layers.append(Block(in_planes, out_planes, expansion, stride))
66 | in_planes = out_planes
67 | return nn.Sequential(*layers)
68 |
69 | def forward(self, x):
70 | out = F.relu(self.bn1(self.conv1(x)))
71 | out = self.layers(out)
72 | out = F.relu(self.bn2(self.conv2(out)))
73 | # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10
74 | out = F.avg_pool2d(out, 4)
75 | out = out.view(out.size(0), -1)
76 | out = self.linear(out)
77 | return out
78 |
79 |
80 | def test():
81 | net = MobileNetV2()
82 | x = torch.randn(2,3,32,32)
83 | y = net(x)
84 | print(y.size())
85 |
86 | # test()
87 |
--------------------------------------------------------------------------------
/cifar/models/pnasnet.py:
--------------------------------------------------------------------------------
1 | '''PNASNet in PyTorch.
2 |
3 | Paper: Progressive Neural Architecture Search
4 | '''
5 | import torch
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 |
9 |
10 | class SepConv(nn.Module):
11 | '''Separable Convolution.'''
12 | def __init__(self, in_planes, out_planes, kernel_size, stride):
13 | super(SepConv, self).__init__()
14 | self.conv1 = nn.Conv2d(in_planes, out_planes,
15 | kernel_size, stride,
16 | padding=(kernel_size-1)//2,
17 | bias=False, groups=in_planes)
18 | self.bn1 = nn.BatchNorm2d(out_planes)
19 |
20 | def forward(self, x):
21 | return self.bn1(self.conv1(x))
22 |
23 |
24 | class CellA(nn.Module):
25 | def __init__(self, in_planes, out_planes, stride=1):
26 | super(CellA, self).__init__()
27 | self.stride = stride
28 | self.sep_conv1 = SepConv(in_planes, out_planes, kernel_size=7, stride=stride)
29 | if stride==2:
30 | self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
31 | self.bn1 = nn.BatchNorm2d(out_planes)
32 |
33 | def forward(self, x):
34 | y1 = self.sep_conv1(x)
35 | y2 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1)
36 | if self.stride==2:
37 | y2 = self.bn1(self.conv1(y2))
38 | return F.relu(y1+y2)
39 |
40 | class CellB(nn.Module):
41 | def __init__(self, in_planes, out_planes, stride=1):
42 | super(CellB, self).__init__()
43 | self.stride = stride
44 | # Left branch
45 | self.sep_conv1 = SepConv(in_planes, out_planes, kernel_size=7, stride=stride)
46 | self.sep_conv2 = SepConv(in_planes, out_planes, kernel_size=3, stride=stride)
47 | # Right branch
48 | self.sep_conv3 = SepConv(in_planes, out_planes, kernel_size=5, stride=stride)
49 | if stride==2:
50 | self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
51 | self.bn1 = nn.BatchNorm2d(out_planes)
52 | # Reduce channels
53 | self.conv2 = nn.Conv2d(2*out_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
54 | self.bn2 = nn.BatchNorm2d(out_planes)
55 |
56 | def forward(self, x):
57 | # Left branch
58 | y1 = self.sep_conv1(x)
59 | y2 = self.sep_conv2(x)
60 | # Right branch
61 | y3 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1)
62 | if self.stride==2:
63 | y3 = self.bn1(self.conv1(y3))
64 | y4 = self.sep_conv3(x)
65 | # Concat & reduce channels
66 | b1 = F.relu(y1+y2)
67 | b2 = F.relu(y3+y4)
68 | y = torch.cat([b1,b2], 1)
69 | return F.relu(self.bn2(self.conv2(y)))
70 |
71 | class PNASNet(nn.Module):
72 | def __init__(self, cell_type, num_cells, num_planes):
73 | super(PNASNet, self).__init__()
74 | self.in_planes = num_planes
75 | self.cell_type = cell_type
76 |
77 | self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, stride=1, padding=1, bias=False)
78 | self.bn1 = nn.BatchNorm2d(num_planes)
79 |
80 | self.layer1 = self._make_layer(num_planes, num_cells=6)
81 | self.layer2 = self._downsample(num_planes*2)
82 | self.layer3 = self._make_layer(num_planes*2, num_cells=6)
83 | self.layer4 = self._downsample(num_planes*4)
84 | self.layer5 = self._make_layer(num_planes*4, num_cells=6)
85 |
86 | self.linear = nn.Linear(num_planes*4, 10)
87 |
88 | def _make_layer(self, planes, num_cells):
89 | layers = []
90 | for _ in range(num_cells):
91 | layers.append(self.cell_type(self.in_planes, planes, stride=1))
92 | self.in_planes = planes
93 | return nn.Sequential(*layers)
94 |
95 | def _downsample(self, planes):
96 | layer = self.cell_type(self.in_planes, planes, stride=2)
97 | self.in_planes = planes
98 | return layer
99 |
100 | def forward(self, x):
101 | out = F.relu(self.bn1(self.conv1(x)))
102 | out = self.layer1(out)
103 | out = self.layer2(out)
104 | out = self.layer3(out)
105 | out = self.layer4(out)
106 | out = self.layer5(out)
107 | out = F.avg_pool2d(out, 8)
108 | out = self.linear(out.view(out.size(0), -1))
109 | return out
110 |
111 |
112 | def PNASNetA():
113 | return PNASNet(CellA, num_cells=6, num_planes=44)
114 |
115 | def PNASNetB():
116 | return PNASNet(CellB, num_cells=6, num_planes=32)
117 |
118 |
119 | def test():
120 | net = PNASNetB()
121 | x = torch.randn(1,3,32,32)
122 | y = net(x)
123 | print(y)
124 |
125 | # test()
126 |
--------------------------------------------------------------------------------
/cifar/models/preact_resnet.py:
--------------------------------------------------------------------------------
1 | '''Pre-activation ResNet in PyTorch.
2 |
3 | Reference:
4 | [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
5 | Identity Mappings in Deep Residual Networks. arXiv:1603.05027
6 | '''
7 | import torch
8 | import torch.nn as nn
9 | import torch.nn.functional as F
10 |
11 |
12 | class PreActBlock(nn.Module):
13 | '''Pre-activation version of the BasicBlock.'''
14 | expansion = 1
15 |
16 | def __init__(self, in_planes, planes, stride=1):
17 | super(PreActBlock, self).__init__()
18 | self.bn1 = nn.BatchNorm2d(in_planes)
19 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
20 | self.bn2 = nn.BatchNorm2d(planes)
21 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
22 |
23 | if stride != 1 or in_planes != self.expansion*planes:
24 | self.shortcut = nn.Sequential(
25 | nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
26 | )
27 |
28 | def forward(self, x):
29 | out = F.relu(self.bn1(x))
30 | shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
31 | out = self.conv1(out)
32 | out = self.conv2(F.relu(self.bn2(out)))
33 | out += shortcut
34 | return out
35 |
36 |
37 | class PreActBottleneck(nn.Module):
38 | '''Pre-activation version of the original Bottleneck module.'''
39 | expansion = 4
40 |
41 | def __init__(self, in_planes, planes, stride=1):
42 | super(PreActBottleneck, self).__init__()
43 | self.bn1 = nn.BatchNorm2d(in_planes)
44 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
45 | self.bn2 = nn.BatchNorm2d(planes)
46 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
47 | self.bn3 = nn.BatchNorm2d(planes)
48 | self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
49 |
50 | if stride != 1 or in_planes != self.expansion*planes:
51 | self.shortcut = nn.Sequential(
52 | nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
53 | )
54 |
55 | def forward(self, x):
56 | out = F.relu(self.bn1(x))
57 | shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
58 | out = self.conv1(out)
59 | out = self.conv2(F.relu(self.bn2(out)))
60 | out = self.conv3(F.relu(self.bn3(out)))
61 | out += shortcut
62 | return out
63 |
64 |
65 | class PreActResNet(nn.Module):
66 | def __init__(self, block, num_blocks, num_classes=10):
67 | super(PreActResNet, self).__init__()
68 | self.in_planes = 64
69 |
70 | self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
71 | self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
72 | self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
73 | self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
74 | self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
75 | self.linear = nn.Linear(512*block.expansion, num_classes)
76 |
77 | def _make_layer(self, block, planes, num_blocks, stride):
78 | strides = [stride] + [1]*(num_blocks-1)
79 | layers = []
80 | for stride in strides:
81 | layers.append(block(self.in_planes, planes, stride))
82 | self.in_planes = planes * block.expansion
83 | return nn.Sequential(*layers)
84 |
85 | def forward(self, x):
86 | out = self.conv1(x)
87 | out = self.layer1(out)
88 | out = self.layer2(out)
89 | out = self.layer3(out)
90 | out = self.layer4(out)
91 | out = F.avg_pool2d(out, 4)
92 | out = out.view(out.size(0), -1)
93 | out = self.linear(out)
94 | return out
95 |
96 |
97 | def PreActResNet18():
98 | return PreActResNet(PreActBlock, [2,2,2,2])
99 |
100 | def PreActResNet34():
101 | return PreActResNet(PreActBlock, [3,4,6,3])
102 |
103 | def PreActResNet50():
104 | return PreActResNet(PreActBottleneck, [3,4,6,3])
105 |
106 | def PreActResNet101():
107 | return PreActResNet(PreActBottleneck, [3,4,23,3])
108 |
109 | def PreActResNet152():
110 | return PreActResNet(PreActBottleneck, [3,8,36,3])
111 |
112 |
113 | def test():
114 | net = PreActResNet18()
115 | y = net((torch.randn(1,3,32,32)))
116 | print(y.size())
117 |
118 | # test()
119 |
--------------------------------------------------------------------------------
/cifar/models/resnet.py:
--------------------------------------------------------------------------------
1 | '''ResNet in PyTorch.
2 |
3 | For Pre-activation ResNet, see 'preact_resnet.py'.
4 |
5 | Reference:
6 | [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
7 | Deep Residual Learning for Image Recognition. arXiv:1512.03385
8 | '''
9 | import torch
10 | import torch.nn as nn
11 | import torch.nn.functional as F
12 |
13 |
14 | class BasicBlock(nn.Module):
15 | expansion = 1
16 |
17 | def __init__(self, in_planes, planes, stride=1):
18 | super(BasicBlock, self).__init__()
19 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
20 | self.bn1 = nn.BatchNorm2d(planes)
21 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
22 | self.bn2 = nn.BatchNorm2d(planes)
23 |
24 | self.shortcut = nn.Sequential()
25 | if stride != 1 or in_planes != self.expansion*planes:
26 | self.shortcut = nn.Sequential(
27 | nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
28 | nn.BatchNorm2d(self.expansion*planes)
29 | )
30 |
31 | def forward(self, x):
32 | out = F.relu(self.bn1(self.conv1(x)))
33 | out = self.bn2(self.conv2(out))
34 | out += self.shortcut(x)
35 | out = F.relu(out)
36 | return out
37 |
38 |
39 | class Bottleneck(nn.Module):
40 | expansion = 4
41 |
42 | def __init__(self, in_planes, planes, stride=1):
43 | super(Bottleneck, self).__init__()
44 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
45 | self.bn1 = nn.BatchNorm2d(planes)
46 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
47 | self.bn2 = nn.BatchNorm2d(planes)
48 | self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
49 | self.bn3 = nn.BatchNorm2d(self.expansion*planes)
50 |
51 | self.shortcut = nn.Sequential()
52 | if stride != 1 or in_planes != self.expansion*planes:
53 | self.shortcut = nn.Sequential(
54 | nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
55 | nn.BatchNorm2d(self.expansion*planes)
56 | )
57 |
58 | def forward(self, x):
59 | out = F.relu(self.bn1(self.conv1(x)))
60 | out = F.relu(self.bn2(self.conv2(out)))
61 | out = self.bn3(self.conv3(out))
62 | out += self.shortcut(x)
63 | out = F.relu(out)
64 | return out
65 |
66 |
67 | class ResNet(nn.Module):
68 | def __init__(self, block, num_blocks, num_classes=10):
69 | super(ResNet, self).__init__()
70 | self.in_planes = 64
71 |
72 | self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
73 | self.bn1 = nn.BatchNorm2d(64)
74 | self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
75 | self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
76 | self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
77 | self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
78 | self.linear = nn.Linear(512*block.expansion, num_classes)
79 |
80 | def _make_layer(self, block, planes, num_blocks, stride):
81 | strides = [stride] + [1]*(num_blocks-1)
82 | layers = []
83 | for stride in strides:
84 | layers.append(block(self.in_planes, planes, stride))
85 | self.in_planes = planes * block.expansion
86 | return nn.Sequential(*layers)
87 |
88 | def forward(self, x):
89 | out = F.relu(self.bn1(self.conv1(x)))
90 | out = self.layer1(out)
91 | out = self.layer2(out)
92 | out = self.layer3(out)
93 | out = self.layer4(out)
94 | out = F.avg_pool2d(out, 4)
95 | out = out.view(out.size(0), -1)
96 | out = self.linear(out)
97 | return out
98 |
99 |
100 | def ResNet18(Num_classes=10):
101 | return ResNet(BasicBlock, [2,2,2,2],num_classes=Num_classes)
102 |
103 | def ResNet34(Num_classes=10):
104 | return ResNet(BasicBlock, [3,4,6,3],num_classes=Num_classes)
105 |
106 | def ResNet50(Num_classes=10):
107 | return ResNet(Bottleneck, [3,4,6,3],num_classes=Num_classes)
108 |
109 | def ResNet101(Num_classes=10):
110 | return ResNet(Bottleneck, [3,4,23,3],num_classes=Num_classes)
111 |
112 | def ResNet152(Num_classes=10):
113 | return ResNet(Bottleneck, [3,8,36,3],num_classes=Num_classes)
114 |
115 |
116 | def test():
117 | net = ResNet18()
118 | y = net(torch.randn(1,3,32,32))
119 | print(y.size())
120 |
121 | # test()
122 |
--------------------------------------------------------------------------------
/cifar/models/resnext.py:
--------------------------------------------------------------------------------
1 | '''ResNeXt in PyTorch.
2 |
3 | See the paper "Aggregated Residual Transformations for Deep Neural Networks" for more details.
4 | '''
5 | import torch
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 |
9 |
10 | class Block(nn.Module):
11 | '''Grouped convolution block.'''
12 | expansion = 2
13 |
14 | def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
15 | super(Block, self).__init__()
16 | group_width = cardinality * bottleneck_width
17 | self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
18 | self.bn1 = nn.BatchNorm2d(group_width)
19 | self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
20 | self.bn2 = nn.BatchNorm2d(group_width)
21 | self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
22 | self.bn3 = nn.BatchNorm2d(self.expansion*group_width)
23 |
24 | self.shortcut = nn.Sequential()
25 | if stride != 1 or in_planes != self.expansion*group_width:
26 | self.shortcut = nn.Sequential(
27 | nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
28 | nn.BatchNorm2d(self.expansion*group_width)
29 | )
30 |
31 | def forward(self, x):
32 | out = F.relu(self.bn1(self.conv1(x)))
33 | out = F.relu(self.bn2(self.conv2(out)))
34 | out = self.bn3(self.conv3(out))
35 | out += self.shortcut(x)
36 | out = F.relu(out)
37 | return out
38 |
39 |
40 | class ResNeXt(nn.Module):
41 | def __init__(self, num_blocks, cardinality, bottleneck_width, num_classes=10):
42 | super(ResNeXt, self).__init__()
43 | self.cardinality = cardinality
44 | self.bottleneck_width = bottleneck_width
45 | self.in_planes = 64
46 |
47 | self.conv1 = nn.Conv2d(3, 64, kernel_size=1, bias=False)
48 | self.bn1 = nn.BatchNorm2d(64)
49 | self.layer1 = self._make_layer(num_blocks[0], 1)
50 | self.layer2 = self._make_layer(num_blocks[1], 2)
51 | self.layer3 = self._make_layer(num_blocks[2], 2)
52 | # self.layer4 = self._make_layer(num_blocks[3], 2)
53 | self.linear = nn.Linear(cardinality*bottleneck_width*8, num_classes)
54 |
55 | def _make_layer(self, num_blocks, stride):
56 | strides = [stride] + [1]*(num_blocks-1)
57 | layers = []
58 | for stride in strides:
59 | layers.append(Block(self.in_planes, self.cardinality, self.bottleneck_width, stride))
60 | self.in_planes = Block.expansion * self.cardinality * self.bottleneck_width
61 | # Increase bottleneck_width by 2 after each stage.
62 | self.bottleneck_width *= 2
63 | return nn.Sequential(*layers)
64 |
65 | def forward(self, x):
66 | out = F.relu(self.bn1(self.conv1(x)))
67 | out = self.layer1(out)
68 | out = self.layer2(out)
69 | out = self.layer3(out)
70 | # out = self.layer4(out)
71 | out = F.avg_pool2d(out, 8)
72 | out = out.view(out.size(0), -1)
73 | out = self.linear(out)
74 | return out
75 |
76 |
77 | def ResNeXt29_2x64d(Num_classes=10):
78 | return ResNeXt(num_blocks=[3,3,3], cardinality=2, bottleneck_width=64, num_classes=Num_classes)
79 |
80 | def ResNeXt29_4x64d(Num_classes=10):
81 | return ResNeXt(num_blocks=[3,3,3], cardinality=4, bottleneck_width=64, num_classes=Num_classes)
82 |
83 | def ResNeXt29_8x64d(Num_classes=10):
84 | return ResNeXt(num_blocks=[3,3,3], cardinality=8, bottleneck_width=64, num_classes=Num_classes)
85 |
86 | def ResNeXt29_32x4d(Num_classes=10):
87 | return ResNeXt(num_blocks=[3,3,3], cardinality=32, bottleneck_width=4, num_classes=Num_classes)
88 |
89 | def test_resnext():
90 | net = ResNeXt29_2x64d()
91 | x = torch.randn(1,3,32,32)
92 | y = net(x)
93 | print(y.size())
94 |
95 | # test_resnext()
96 |
--------------------------------------------------------------------------------
/cifar/models/senet.py:
--------------------------------------------------------------------------------
1 | '''SENet in PyTorch.
2 |
3 | SENet is the winner of ImageNet-2017. The paper is not released yet.
4 | '''
5 | import torch
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 |
9 |
10 | class BasicBlock(nn.Module):
11 | def __init__(self, in_planes, planes, stride=1):
12 | super(BasicBlock, self).__init__()
13 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
14 | self.bn1 = nn.BatchNorm2d(planes)
15 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
16 | self.bn2 = nn.BatchNorm2d(planes)
17 |
18 | self.shortcut = nn.Sequential()
19 | if stride != 1 or in_planes != planes:
20 | self.shortcut = nn.Sequential(
21 | nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
22 | nn.BatchNorm2d(planes)
23 | )
24 |
25 | # SE layers
26 | self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear
27 | self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)
28 |
29 | def forward(self, x):
30 | out = F.relu(self.bn1(self.conv1(x)))
31 | out = self.bn2(self.conv2(out))
32 |
33 | # Squeeze
34 | w = F.avg_pool2d(out, out.size(2))
35 | w = F.relu(self.fc1(w))
36 | w = F.sigmoid(self.fc2(w))
37 | # Excitation
38 | out = out * w # New broadcasting feature from v0.2!
39 |
40 | out += self.shortcut(x)
41 | out = F.relu(out)
42 | return out
43 |
44 |
45 | class PreActBlock(nn.Module):
46 | def __init__(self, in_planes, planes, stride=1):
47 | super(PreActBlock, self).__init__()
48 | self.bn1 = nn.BatchNorm2d(in_planes)
49 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
50 | self.bn2 = nn.BatchNorm2d(planes)
51 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
52 |
53 | if stride != 1 or in_planes != planes:
54 | self.shortcut = nn.Sequential(
55 | nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
56 | )
57 |
58 | # SE layers
59 | self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)
60 | self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)
61 |
62 | def forward(self, x):
63 | out = F.relu(self.bn1(x))
64 | shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
65 | out = self.conv1(out)
66 | out = self.conv2(F.relu(self.bn2(out)))
67 |
68 | # Squeeze
69 | w = F.avg_pool2d(out, out.size(2))
70 | w = F.relu(self.fc1(w))
71 | w = F.sigmoid(self.fc2(w))
72 | # Excitation
73 | out = out * w
74 |
75 | out += shortcut
76 | return out
77 |
78 |
79 | class SENet(nn.Module):
80 | def __init__(self, block, num_blocks, num_classes=10):
81 | super(SENet, self).__init__()
82 | self.in_planes = 64
83 |
84 | self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
85 | self.bn1 = nn.BatchNorm2d(64)
86 | self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
87 | self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
88 | self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
89 | self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
90 | self.linear = nn.Linear(512, num_classes)
91 |
92 | def _make_layer(self, block, planes, num_blocks, stride):
93 | strides = [stride] + [1]*(num_blocks-1)
94 | layers = []
95 | for stride in strides:
96 | layers.append(block(self.in_planes, planes, stride))
97 | self.in_planes = planes
98 | return nn.Sequential(*layers)
99 |
100 | def forward(self, x):
101 | out = F.relu(self.bn1(self.conv1(x)))
102 | out = self.layer1(out)
103 | out = self.layer2(out)
104 | out = self.layer3(out)
105 | out = self.layer4(out)
106 | out = F.avg_pool2d(out, 4)
107 | out = out.view(out.size(0), -1)
108 | out = self.linear(out)
109 | return out
110 |
111 |
112 | def SENet18():
113 | return SENet(PreActBlock, [2,2,2,2])
114 |
115 |
116 | def test():
117 | net = SENet18()
118 | y = net(torch.randn(1,3,32,32))
119 | print(y.size())
120 |
121 | # test()
122 |
--------------------------------------------------------------------------------
/cifar/models/shufflenet.py:
--------------------------------------------------------------------------------
1 | '''ShuffleNet in PyTorch.
2 |
3 | See the paper "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" for more details.
4 | '''
5 | import torch
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 |
9 |
10 | class ShuffleBlock(nn.Module):
11 | def __init__(self, groups):
12 | super(ShuffleBlock, self).__init__()
13 | self.groups = groups
14 |
15 | def forward(self, x):
16 | '''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]'''
17 | N,C,H,W = x.size()
18 | g = self.groups
19 | return x.view(N,g,C/g,H,W).permute(0,2,1,3,4).contiguous().view(N,C,H,W)
20 |
21 |
22 | class Bottleneck(nn.Module):
23 | def __init__(self, in_planes, out_planes, stride, groups):
24 | super(Bottleneck, self).__init__()
25 | self.stride = stride
26 |
27 | mid_planes = out_planes/4
28 | g = 1 if in_planes==24 else groups
29 | self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
30 | self.bn1 = nn.BatchNorm2d(mid_planes)
31 | self.shuffle1 = ShuffleBlock(groups=g)
32 | self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
33 | self.bn2 = nn.BatchNorm2d(mid_planes)
34 | self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
35 | self.bn3 = nn.BatchNorm2d(out_planes)
36 |
37 | self.shortcut = nn.Sequential()
38 | if stride == 2:
39 | self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))
40 |
41 | def forward(self, x):
42 | out = F.relu(self.bn1(self.conv1(x)))
43 | out = self.shuffle1(out)
44 | out = F.relu(self.bn2(self.conv2(out)))
45 | out = self.bn3(self.conv3(out))
46 | res = self.shortcut(x)
47 | out = F.relu(torch.cat([out,res], 1)) if self.stride==2 else F.relu(out+res)
48 | return out
49 |
50 |
51 | class ShuffleNet(nn.Module):
52 | def __init__(self, cfg):
53 | super(ShuffleNet, self).__init__()
54 | out_planes = cfg['out_planes']
55 | num_blocks = cfg['num_blocks']
56 | groups = cfg['groups']
57 |
58 | self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False)
59 | self.bn1 = nn.BatchNorm2d(24)
60 | self.in_planes = 24
61 | self.layer1 = self._make_layer(out_planes[0], num_blocks[0], groups)
62 | self.layer2 = self._make_layer(out_planes[1], num_blocks[1], groups)
63 | self.layer3 = self._make_layer(out_planes[2], num_blocks[2], groups)
64 | self.linear = nn.Linear(out_planes[2], 10)
65 |
66 | def _make_layer(self, out_planes, num_blocks, groups):
67 | layers = []
68 | for i in range(num_blocks):
69 | stride = 2 if i == 0 else 1
70 | cat_planes = self.in_planes if i == 0 else 0
71 | layers.append(Bottleneck(self.in_planes, out_planes-cat_planes, stride=stride, groups=groups))
72 | self.in_planes = out_planes
73 | return nn.Sequential(*layers)
74 |
75 | def forward(self, x):
76 | out = F.relu(self.bn1(self.conv1(x)))
77 | out = self.layer1(out)
78 | out = self.layer2(out)
79 | out = self.layer3(out)
80 | out = F.avg_pool2d(out, 4)
81 | out = out.view(out.size(0), -1)
82 | out = self.linear(out)
83 | return out
84 |
85 |
86 | def ShuffleNetG2():
87 | cfg = {
88 | 'out_planes': [200,400,800],
89 | 'num_blocks': [4,8,4],
90 | 'groups': 2
91 | }
92 | return ShuffleNet(cfg)
93 |
94 | def ShuffleNetG3():
95 | cfg = {
96 | 'out_planes': [240,480,960],
97 | 'num_blocks': [4,8,4],
98 | 'groups': 3
99 | }
100 | return ShuffleNet(cfg)
101 |
102 |
103 | def test():
104 | net = ShuffleNetG2()
105 | x = torch.randn(1,3,32,32)
106 | y = net(x)
107 | print(y)
108 |
109 | # test()
110 |
--------------------------------------------------------------------------------
/cifar/models/vgg.py:
--------------------------------------------------------------------------------
1 | '''VGG11/13/16/19 in Pytorch.'''
2 | import torch
3 | import torch.nn as nn
4 |
5 |
6 | cfg = {
7 | 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
8 | 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
9 | 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
10 | 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
11 | }
12 |
13 |
14 | class VGG(nn.Module):
15 | def __init__(self, vgg_name,Num_classes=100):
16 | super(VGG, self).__init__()
17 | self.features = self._make_layers(cfg[vgg_name])
18 | self.classifier = nn.Linear(512, Num_classes)
19 |
20 | def forward(self, x):
21 | out = self.features(x)
22 | out = out.view(out.size(0), -1)
23 | out = self.classifier(out)
24 | return out
25 |
26 | def _make_layers(self, cfg):
27 | layers = []
28 | in_channels = 3
29 | for x in cfg:
30 | if x == 'M':
31 | layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
32 | else:
33 | layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
34 | nn.BatchNorm2d(x),
35 | nn.ReLU(inplace=True)]
36 | in_channels = x
37 | layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
38 | return nn.Sequential(*layers)
39 |
40 |
41 | def test():
42 | net = VGG('VGG11')
43 | x = torch.randn(2,3,32,32)
44 | y = net(x)
45 | print(y.size())
46 |
47 | # test()
48 |
--------------------------------------------------------------------------------
/figs/Rosenbrock.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mhaut/AngularGrad/cd8cbeceb8ba729f120c9a0e5cf521c3a8a23bcf/figs/Rosenbrock.png
--------------------------------------------------------------------------------
/fine-grained/main.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import random
4 | import shutil
5 | import time
6 | import warnings
7 | import sys
8 |
9 | import torch
10 | import torch.nn as nn
11 | import torch.nn.parallel
12 | import torch.backends.cudnn as cudnn
13 | import torch.distributed as dist
14 | import torch.optim
15 | import torch.optim as optim
16 | import torch.multiprocessing as mp
17 | import torch.utils.data
18 | import torch.utils.data.distributed
19 | import torchvision.transforms as transforms
20 | import torchvision.datasets as datasets
21 | import torchvision.models as models
22 |
23 | from torch.optim import lr_scheduler
24 |
25 | import numpy as np
26 |
27 | import sys
28 | sys.path.append('../')
29 |
30 | from myoptims.Diffgrad import diffgrad
31 | from myoptims.tanangulargrad import tanangulargrad
32 | from myoptims.cosangulargrad import cosangulargrad
33 |
34 |
35 |
36 | def get_model(modelname, out_size):
37 | if modelname == 'r50p':
38 | model = models.resnet50(pretrained=True)
39 | model.fc = nn.Linear(in_features=2048, out_features=out_size, bias=True)
40 | elif modelname == 'r50':
41 | model = models.resnet50()
42 | model.fc = nn.Linear(in_features=2048, out_features=out_size, bias=True)
43 | else:
44 | print('==> Network not found...')
45 | exit()
46 | return model
47 |
48 |
49 | def get_loaders(args):
50 | traindir = os.path.join(args.data, 'train')
51 | valdir = os.path.join(args.data, 'val')
52 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
53 | std=[0.229, 0.224, 0.225])
54 |
55 | train_dataset = datasets.ImageFolder(
56 | traindir,
57 | transforms.Compose([
58 | transforms.Resize(512),
59 | transforms.RandomHorizontalFlip(),
60 | transforms.ColorJitter(brightness=0.2, contrast=0.2),
61 | transforms.RandomCrop(448),
62 | transforms.ToTensor(),
63 | normalize,
64 | ]))
65 |
66 | train_loader = torch.utils.data.DataLoader(
67 | train_dataset, batch_size=args.batch_size, shuffle=True,
68 | num_workers=args.workers, pin_memory=True, drop_last=True)
69 |
70 | val_loader = torch.utils.data.DataLoader(
71 | datasets.ImageFolder(valdir, transforms.Compose([
72 | transforms.Resize(512),
73 | transforms.CenterCrop(448),
74 | transforms.ToTensor(),
75 | normalize,
76 | ])),
77 | batch_size=args.batch_size, shuffle=False,
78 | num_workers=args.workers, pin_memory=True,drop_last=True)
79 |
80 | return train_loader, val_loader
81 |
82 |
83 |
84 | def train(train_loader, model, criterion, optimizer_base, optimizer_new, epoch, args):
85 | print('\nEpoch: %d' % epoch)
86 | model.train()
87 | total = 0
88 | train_loss = 0
89 | correct = 0
90 | for batch_idx, (input, target) in enumerate(train_loader):
91 | input, target = input.to('cuda'), target.to('cuda')
92 |
93 | output = model(input)
94 | loss = criterion(output, target)
95 |
96 | _, predicted = output.max(1)
97 | correct += predicted.eq(target).sum().item()
98 |
99 | train_loss += loss.item()
100 | total += target.size(0)
101 | optimizer_new.zero_grad()
102 | optimizer_base.zero_grad()
103 | loss.backward()
104 | optimizer_new.step()
105 | optimizer_base.step()
106 |
107 | print('Training: Loss: {:.4f} | Acc: {:.4f}'.format(train_loss/(batch_idx+1),100.*correct/total))
108 | acc=100.*correct/total
109 | return acc, train_loss/(batch_idx+1)
110 |
111 |
112 | def validate(val_loader, model, criterion, args):
113 | model.eval()
114 |
115 | val_loss = 0
116 | total = 0
117 | correct = 0
118 | with torch.no_grad():
119 | end = time.time()
120 | for batch_idx, (input, target) in enumerate(val_loader):
121 | input = input.cuda(non_blocking=True)
122 | target = target.cuda(non_blocking=True)
123 |
124 | output = model(input)
125 | loss = criterion(output, target)
126 |
127 | _, predicted = output.max(1)
128 | total += target.size(0)
129 | correct += predicted.eq(target).sum().item()
130 | val_loss +=loss.item()
131 | acc = 100.*correct/total
132 | print('Testing: Loss: {:.4f} | Acc: {:.4f}'.format(val_loss/(batch_idx+1), acc))
133 |
134 | return acc, val_loss/(batch_idx+1)
135 |
136 | def main(args):
137 | args = parser.parse_args()
138 | os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2,3"
139 | class_num={'cub':200,'cars':196,'fgvc':100}
140 |
141 | if args.seed is None:
142 | args.seed = random.randint(1, 10000)
143 | random.seed(args.seed)
144 | torch.manual_seed(args.seed)
145 | device = 'cuda' if torch.cuda.is_available() else 'cpu'
146 | if device == 'cuda':
147 | torch.cuda.manual_seed_all(args.seed)
148 |
149 | model = get_model(args.model, class_num[args.dataset])
150 |
151 | model = torch.nn.DataParallel(model).cuda()
152 | if device == 'cuda':
153 | model = model.cuda()
154 | #model = torch.nn.DataParallel(model)
155 | cudnn.benchmark = True
156 |
157 | criterion = nn.CrossEntropyLoss()
158 |
159 |
160 | new_param_ids = set(map(id, model.module.fc.parameters()))
161 | base_params = [p for p in model.parameters() if id(p) not in new_param_ids]
162 | param_groups_base =[{'params': base_params, 'lr_mult': 0.1}]
163 | param_groups_new=[{'params': model.module.fc.parameters(), 'lr_mult': 1.0}]
164 |
165 |
166 | if args.alg=='sgd':
167 | optimizer_base = optim.SGD(param_groups_base, args.lr, momentum=0.9)
168 | optimizer_new = optim.SGD(param_groups_new, args.lr, momentum=0.9)
169 | elif args.alg=='rmsprop':
170 | optimizer_base = optim.RMSprop(param_groups_base, args.lr)
171 | optimizer_new = optim.RMSprop(param_groups_new, args.lr)
172 | elif args.alg=='adam':
173 | optimizer_base = optim.Adam(param_groups_base, args.lr)
174 | optimizer_new = optim.Adam(param_groups_new, args.lr)
175 | elif args.alg=='adamw':
176 | optimizer_base = optim.AdamW(param_groups_base, args.lr)
177 | optimizer_new = optim.AdamW(param_groups_new, args.lr)
178 | elif args.alg=='diffgrad':
179 | optimizer_base = diffgrad(param_groups_base, args.lr)
180 | optimizer_new = diffgrad(param_groups_new, args.lr)
181 | elif args.alg=='cosangulargrad':
182 | optimizer_base = cosangulargrad(param_groups_base, args.lr)
183 | optimizer_new = cosangulargrad(param_groups_new, args.lr)
184 | elif args.alg=='tanangulargrad':
185 | optimizer_base = tanangulargrad(param_groups_base, args.lr)
186 | optimizer_new = tanangulargrad(param_groups_new, args.lr)
187 | else:
188 | print('==> Optimizer not found...')
189 | exit()
190 | exp_lr_scheduler_new = lr_scheduler.MultiStepLR(optimizer_new, milestones=[30,50], gamma=0.1)
191 | exp_lr_scheduler_base = lr_scheduler.MultiStepLR(optimizer_base, milestones=[30,50], gamma=0.1)
192 |
193 |
194 | train_loader, val_loader = get_loaders(args)
195 |
196 | best_acc = -1
197 | datass = np.ones((4,args.epochs)) * -1000.0
198 | for epoch in range(args.start_epoch, args.epochs):
199 | train_acc, train_loss=train(train_loader, model, criterion, optimizer_base, optimizer_new, epoch, args)
200 | exp_lr_scheduler_new.step()
201 | exp_lr_scheduler_base.step()
202 | val_acc, val_loss = validate(val_loader, model, criterion, args)
203 |
204 | if val_acc > best_acc:
205 | print('Saving..')
206 | state = {
207 | 'model': model.state_dict(),
208 | 'acc': val_acc,
209 | 'epoch': epoch,
210 | 'best_acc': best_acc,
211 | }
212 | if not os.path.isdir('checkpoint'):
213 | os.mkdir('checkpoint')
214 | torch.save(state, './checkpoint/ckpt.t7')
215 | best_acc = val_acc
216 |
217 |
218 | if __name__ == '__main__':
219 | parser = argparse.ArgumentParser(description='PyTorch Fine-Grained Training')
220 | parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size')
221 | parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
222 | metavar='LR', help='initial learning rate', dest='lr')
223 | parser.add_argument('data', metavar='DIR',
224 | help='path to dataset')
225 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
226 | help='number of data loading workers (default: 4)')
227 | parser.add_argument('--epochs', default=60, type=int, metavar='N',
228 | help='number of total epochs to run')
229 | parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
230 | help='manual epoch number (useful on restarts)')
231 | parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
232 | help='momentum')
233 | parser.add_argument('--seed', default=None, type=int,
234 | help='seed for initializing training. ')
235 | parser.add_argument('--model', default='r50p', type=str, help='model')
236 | parser.add_argument('--path', default='test', type=str, help='model')
237 | parser.add_argument('--alg', default='adam', type=str, help='algorithm')
238 | parser.add_argument('--dataset', default='cub', type=str, help='model')
239 | args = parser.parse_args()
240 | main(args)
241 |
--------------------------------------------------------------------------------
/mini-imagenet/main.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import random
4 | import shutil
5 | import time
6 | import warnings
7 | import sys
8 | import torch
9 | import torch.nn as nn
10 | import torch.nn.parallel
11 | import torch.backends.cudnn as cudnn
12 | import torch.distributed as dist
13 | #import torch.optim
14 | import torch.optim as optim
15 | import torch.multiprocessing as mp
16 | import torch.utils.data
17 | import torch.utils.data.distributed
18 | import torchvision.transforms as transforms
19 | import torchvision.datasets as datasets
20 | import torchvision.models as models
21 | from models.resnet_ws import l_resnet50, l_resnet18, l_resnet101
22 |
23 | import torchvision.models as models
24 | import math
25 | import numpy as np
26 | from torch.optim import lr_scheduler
27 |
28 |
29 | import sys
30 | sys.path.append('../')
31 |
32 | from myoptims.Diffgrad import diffgrad
33 | from myoptims.tanangulargrad import tanangulargrad
34 | from myoptims.cosangulargrad import cosangulargrad
35 | from myoptims.AdaBelief import AdaBelief
36 |
37 |
38 |
39 |
40 | def get_optim(optim_name, learning_rate, net):
41 | if optim_name == 'sgd': optimizer = optim.SGD( net.parameters(), lr=learning_rate, momentum=0.9)
42 | elif optim_name == 'rmsprop': optimizer = optim.RMSprop( net.parameters(), lr=learning_rate)
43 | elif optim_name == 'adam': optimizer = optim.Adam( net.parameters(), lr=learning_rate)
44 | elif optim_name == 'adamw': optimizer = optim.AdamW( net.parameters(), lr=learning_rate)
45 | elif optim_name == 'diffgrad': optimizer = diffgrad( net.parameters(), lr=learning_rate)
46 | elif optim_name == 'adabelief': optimizer = AdaBelief( net.parameters(), lr=learning_rate)
47 | elif optim_name == 'cosangulargrad': optimizer = cosangulargrad(net.parameters(), lr=learning_rate)
48 | elif optim_name == 'tanangulargrad': optimizer = tanangulargrad(net.parameters(), lr=learning_rate)
49 | else:
50 | print('==> Optimizer not found...')
51 | exit()
52 | return optimizer
53 |
54 |
55 | def get_model(modelname):
56 | # create model
57 | num_classes=100
58 | if modelname=='r18':
59 | model = models.resnet18()
60 | model.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True)
61 | elif modelname=='r50':
62 | model = models.resnet50()
63 | model.fc = nn.Linear(in_features=2048, out_features=num_classes, bias=True)
64 | elif modelname=='r101':
65 | model = models.resnet101()
66 | model.fc = nn.Linear(in_features=2048, out_features=num_classes, bias=True)
67 | elif modelname=='r18ws':
68 | model = l_resnet18(num_classes=num_classes)
69 | elif modelname=='r50ws':
70 | model = l_resnet50(num_classes=num_classes)
71 | elif modelname=='r101ws':
72 | model = l_resnet101(num_classes=num_classes)
73 | else:
74 | print('==> Network not found...')
75 | exit()
76 | for m in model.modules():
77 | if isinstance(m, nn.Conv2d):
78 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
79 | m.weight.data.normal_(0, math.sqrt(2. / n))
80 | elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
81 | m.weight.data.uniform_()
82 | m.bias.data.zero_()
83 | return model
84 |
85 |
86 | def get_loaders(args):
87 | print('==> Preparing MINI-Imagenet data...')
88 | traindir = os.path.join(args.data, 'train')
89 | valdir = os.path.join(args.data, 'val')
90 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
91 | std=[0.229, 0.224, 0.225])
92 | train_dataset = datasets.ImageFolder(
93 | traindir,
94 | transforms.Compose([
95 | transforms.RandomResizedCrop(224),
96 | transforms.RandomHorizontalFlip(),
97 | transforms.ToTensor(),
98 | normalize,
99 | ]))
100 |
101 | train_loader = torch.utils.data.DataLoader(
102 | train_dataset, batch_size=args.batch_size, shuffle=True,
103 | num_workers=args.workers, pin_memory=True,drop_last=True)
104 |
105 |
106 | val_loader = torch.utils.data.DataLoader(
107 | datasets.ImageFolder(valdir, transforms.Compose([
108 | transforms.Resize(256),
109 | transforms.CenterCrop(224),
110 | transforms.ToTensor(),
111 | normalize,
112 | ])),
113 | batch_size=args.batch_size, shuffle=False,
114 | num_workers=args.workers, pin_memory=True)
115 |
116 | return train_loader, val_loader
117 |
118 |
119 |
120 | def train(train_loader, model, criterion, optimizer, epoch, args):
121 | print('\nEpoch: %d' % epoch)
122 | model.train()
123 | total = 0
124 | train_loss = 0
125 | correct = 0
126 | for batch_idx, (input, target) in enumerate(train_loader):
127 | input, target = input.to('cuda'), target.to('cuda')
128 |
129 | output = model(input)
130 | loss = criterion(output, target)
131 |
132 | _, predicted = output.max(1)
133 | correct += predicted.eq(target).sum().item()
134 |
135 | train_loss += loss.item()
136 | total += target.size(0)
137 | optimizer.zero_grad()
138 | loss.backward()
139 | optimizer.step()
140 |
141 | print('Training: Loss: {:.4f} | Acc: {:.4f}'.format(train_loss/(batch_idx+1),100.*correct/total))
142 | acc=100.*correct/total
143 | return acc, train_loss/(batch_idx+1)
144 |
145 |
146 | def validate(val_loader, model, criterion, args):
147 | model.eval()
148 |
149 | val_loss = 0
150 | total = 0
151 | correct = 0
152 | with torch.no_grad():
153 | end = time.time()
154 | for batch_idx, (input, target) in enumerate(val_loader):
155 | input = input.cuda(non_blocking=True)
156 | target = target.cuda(non_blocking=True)
157 |
158 | output = model(input)
159 | loss = criterion(output, target)
160 |
161 | _, predicted = output.max(1)
162 | total += target.size(0)
163 | correct += predicted.eq(target).sum().item()
164 | val_loss +=loss.item()
165 | acc = 100.*correct/total
166 | print('Testing: Loss: {:.4f} | Acc: {:.4f}'.format(val_loss/(batch_idx+1), acc))
167 |
168 | return acc, val_loss/(batch_idx+1)
169 |
170 |
171 | def main(args):
172 | args.arch = args.model
173 | os.environ["CUDA_VISIBLE_DEVICES"]="0,1"
174 |
175 | # Random seed
176 | if args.seed is None:
177 | args.seed = random.randint(1, 10000)
178 | random.seed(args.seed)
179 | torch.manual_seed(args.seed)
180 | device = 'cuda' if torch.cuda.is_available() else 'cpu'
181 | if device == 'cuda':
182 | torch.cuda.manual_seed_all(args.seed)
183 |
184 | model = get_model(args.model)
185 | if device == 'cuda':
186 | model = model.cuda()
187 | model = torch.nn.DataParallel(model)
188 | cudnn.benchmark = True
189 |
190 | criterion = nn.CrossEntropyLoss()
191 | optimizer = get_optim(args.alg, args.lr, model)
192 | exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=80, gamma=0.1)
193 |
194 | train_loader, val_loader = get_loaders(args)
195 |
196 |
197 | best_acc = -1
198 | for epoch in range(args.start_epoch, args.epochs):
199 | train_acc, train_loss = train(train_loader, model, criterion, optimizer, epoch, args)
200 | exp_lr_scheduler.step()
201 | val_acc, val_loss = validate(val_loader, model, criterion, args)
202 |
203 | if val_acc > best_acc:
204 | print('Saving..')
205 | state = {
206 | 'model': model.state_dict(),
207 | 'acc': val_acc,
208 | 'epoch': epoch,
209 | }
210 | if not os.path.isdir('checkpoint'):
211 | os.mkdir('checkpoint')
212 | torch.save(state, './checkpoint/ckpt' + '_' + args.model + '.t7')
213 | best_acc = val_acc
214 | print('Best Acc: {:.2f}'.format(best_acc))
215 |
216 |
217 |
218 |
219 |
220 | if __name__ == '__main__':
221 | model_names = sorted(name for name in models.__dict__
222 | if name.islower() and not name.startswith("__")
223 | and callable(models.__dict__[name]))
224 |
225 | parser = argparse.ArgumentParser(description='PyTorch Mini-ImageNet Training')
226 |
227 | parser.add_argument('-b', '--batch_size', default=128, type=int,
228 | metavar='N', help='mini-batch size')
229 |
230 | parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
231 | metavar='LR', help='initial learning rate', dest='lr')
232 |
233 | parser.add_argument('data', metavar='DIR', help='path to dataset')
234 |
235 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
236 | help='number of data loading workers (default: 4)')
237 | parser.add_argument('--epochs', default=100, type=int, metavar='N',
238 | help='number of total epochs to run')
239 | parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
240 | help='manual epoch number (useful on restarts)')
241 |
242 | parser.add_argument('--resume', default='', type=str, metavar='PATH',
243 | help='path to latest checkpoint (default: none)')
244 | parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
245 | help='evaluate model on validation set')
246 | parser.add_argument('--seed', default=None, type=int,
247 | help='seed for initializing training. ')
248 |
249 | parser.add_argument('--model', default='r50', type=str, help='model')
250 | parser.add_argument('--alg', default='adam', type=str, help='optimizer')
251 | args = parser.parse_args()
252 | main(args)
253 |
--------------------------------------------------------------------------------
/mini-imagenet/models/resnet_ws.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | import torch.utils.model_zoo as model_zoo
3 |
4 | import torch
5 | import torch.nn as nn
6 | from torch.nn.parameter import Parameter
7 | from torch.nn import functional as F
8 |
9 | #from .. import layers as L
10 | import math
11 |
12 | __all__ = ['ResNet', 'l_resnet18', 'l_resnet34', 'l_resnet50', 'l_resnet101',
13 | 'l_resnet152']
14 |
15 |
16 | class Conv2d(nn.Conv2d):
17 |
18 | def __init__(self, in_channels, out_channels, kernel_size, stride=1,
19 | padding=0, dilation=1, groups=1, bias=True):
20 | super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
21 | padding, dilation, groups, bias)
22 |
23 | def forward(self, x):
24 | # return super(Conv2d, self).forward(x)
25 | weight = self.weight
26 | weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
27 | keepdim=True).mean(dim=3, keepdim=True)
28 | weight = weight - weight_mean
29 | std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
30 | weight = weight / std.expand_as(weight)
31 | return F.conv2d(x, weight, self.bias, self.stride,
32 | self.padding, self.dilation, self.groups)
33 |
34 |
35 | def BatchNorm2d(num_features):
36 |
37 | #return nn.GroupNorm(num_channels=num_features, num_groups=32)
38 | return nn.BatchNorm2d(num_features=num_features)
39 |
40 |
41 | def conv3x3(in_planes, out_planes, stride=1):
42 | """3x3 convolution with padding"""
43 | return Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
44 | padding=1, bias=False)
45 |
46 |
47 | def conv1x1(in_planes, out_planes, stride=1):
48 | """1x1 convolution"""
49 | return Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
50 |
51 |
52 | class BasicBlock(nn.Module):
53 | expansion = 1
54 |
55 | def __init__(self, inplanes, planes, stride=1, downsample=None):
56 | super(BasicBlock, self).__init__()
57 | self.conv1 = conv3x3(inplanes, planes, stride)
58 | self.bn1 = BatchNorm2d(planes)
59 | self.relu = nn.ReLU(inplace=True)
60 | self.conv2 = conv3x3(planes, planes)
61 | self.bn2 = BatchNorm2d(planes)
62 | self.downsample = downsample
63 | self.stride = stride
64 |
65 | def forward(self, x):
66 | identity = x
67 |
68 | out = self.conv1(x)
69 | out = self.bn1(out)
70 | out = self.relu(out)
71 |
72 | out = self.conv2(out)
73 | out = self.bn2(out)
74 |
75 | if self.downsample is not None:
76 | identity = self.downsample(x)
77 |
78 | out += identity
79 | out = self.relu(out)
80 |
81 | return out
82 |
83 |
84 | class Bottleneck(nn.Module):
85 | expansion = 4
86 |
87 | def __init__(self, inplanes, planes, stride=1, downsample=None):
88 | super(Bottleneck, self).__init__()
89 | self.conv1 = conv1x1(inplanes, planes)
90 | self.bn1 = BatchNorm2d(planes)
91 | self.conv2 = conv3x3(planes, planes, stride)
92 | self.bn2 = BatchNorm2d(planes)
93 | self.conv3 = conv1x1(planes, planes * self.expansion)
94 | self.bn3 = BatchNorm2d(planes * self.expansion)
95 | self.relu = nn.ReLU(inplace=True)
96 | self.downsample = downsample
97 | self.stride = stride
98 |
99 | def forward(self, x):
100 | identity = x
101 |
102 | out = self.conv1(x)
103 | out = self.bn1(out)
104 | out = self.relu(out)
105 |
106 | out = self.conv2(out)
107 | out = self.bn2(out)
108 | out = self.relu(out)
109 |
110 | out = self.conv3(out)
111 | out = self.bn3(out)
112 |
113 | if self.downsample is not None:
114 | identity = self.downsample(x)
115 |
116 | out += identity
117 | out = self.relu(out)
118 |
119 | return out
120 |
121 |
122 | class ResNet(nn.Module):
123 |
124 | def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
125 | super(ResNet, self).__init__()
126 | self.inplanes = 64
127 | self.conv1 = Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
128 | bias=False)
129 | self.bn1 = BatchNorm2d(64)
130 | self.relu = nn.ReLU(inplace=True)
131 | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
132 | self.layer1 = self._make_layer(block, 64, layers[0])
133 | self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
134 | self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
135 | self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
136 | self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
137 | self.fc = nn.Linear(512 * block.expansion, num_classes)
138 |
139 | for m in self.modules():
140 | if isinstance(m, Conv2d):
141 | #nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
142 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
143 | m.weight.data.normal_(0, math.sqrt(2. / n))
144 | elif isinstance(m,nn.BatchNorm2d):
145 | #nn.init.constant_(m.weight, 1)
146 | #nn.init.constant_(m.bias, 0)
147 | m.weight.data.uniform_()
148 | m.bias.data.zero_()
149 |
150 |
151 | # Zero-initialize the last BN in each residual branch,
152 | # so that the residual branch starts with zeros, and each residual block behaves like an identity.
153 | # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
154 | if zero_init_residual:
155 | for m in self.modules():
156 | if isinstance(m, Bottleneck):
157 | nn.init.constant_(m.bn3.weight, 0)
158 | elif isinstance(m, BasicBlock):
159 | nn.init.constant_(m.bn2.weight, 0)
160 |
161 | def _make_layer(self, block, planes, blocks, stride=1):
162 | downsample = None
163 | if stride != 1 or self.inplanes != planes * block.expansion:
164 | downsample = nn.Sequential(
165 | conv1x1(self.inplanes, planes * block.expansion, stride),
166 | BatchNorm2d(planes * block.expansion),
167 | )
168 |
169 | layers = []
170 | layers.append(block(self.inplanes, planes, stride, downsample))
171 | self.inplanes = planes * block.expansion
172 | for _ in range(1, blocks):
173 | layers.append(block(self.inplanes, planes))
174 |
175 | return nn.Sequential(*layers)
176 |
177 | def forward(self, x):
178 | x = self.conv1(x)
179 | x = self.bn1(x)
180 | x = self.relu(x)
181 | x = self.maxpool(x)
182 |
183 | x = self.layer1(x)
184 | x = self.layer2(x)
185 | x = self.layer3(x)
186 | x = self.layer4(x)
187 |
188 | x = self.avgpool(x)
189 | x = x.view(x.size(0), -1)
190 | x = self.fc(x)
191 |
192 | return x
193 |
194 |
195 | def l_resnet18(pretrained=False, **kwargs):
196 | """Constructs a ResNet-18 model.
197 | Args:
198 | pretrained (bool): If True, returns a model pre-trained on ImageNet
199 | """
200 | model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
201 | return model
202 |
203 |
204 | def l_resnet34(pretrained=False, **kwargs):
205 | """Constructs a ResNet-34 model.
206 | Args:
207 | pretrained (bool): If True, returns a model pre-trained on ImageNet
208 | """
209 | model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
210 | return model
211 |
212 |
213 | def l_resnet50(pretrained=False, **kwargs):
214 | """Constructs a ResNet-50 model.
215 | Args:
216 | pretrained (bool): If True, returns a model pre-trained on ImageNet
217 | """
218 | model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
219 | return model
220 |
221 |
222 | def l_resnet101(pretrained=False, **kwargs):
223 | """Constructs a ResNet-101 model.
224 | Args:
225 | pretrained (bool): If True, returns a model pre-trained on ImageNet
226 | """
227 | model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
228 | return model
229 |
230 |
231 | def l_resnet152(pretrained=False, **kwargs):
232 | """Constructs a ResNet-152 model.
233 | Args:
234 | pretrained (bool): If True, returns a model pre-trained on ImageNet
235 | """
236 | model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
237 | return model
238 |
--------------------------------------------------------------------------------
/myoptims/AdaBelief.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | from torch.optim.optimizer import Optimizer
4 |
5 | version_higher = ( torch.__version__ >= "1.5.0" )
6 |
7 | class AdaBelief(Optimizer):
8 | r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch
9 |
10 | Arguments:
11 | params (iterable): iterable of parameters to optimize or dicts defining
12 | parameter groups
13 | lr (float, optional): learning rate (default: 1e-3)
14 | betas (Tuple[float, float], optional): coefficients used for computing
15 | running averages of gradient and its square (default: (0.9, 0.999))
16 | eps (float, optional): term added to the denominator to improve
17 | numerical stability (default: 1e-8)
18 | weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
19 | amsgrad (boolean, optional): whether to use the AMSGrad variant of this
20 | algorithm from the paper `On the Convergence of Adam and Beyond`_
21 | (default: False)
22 | weight_decouple (boolean, optional): ( default: False) If set as True, then
23 | the optimizer uses decoupled weight decay as in AdamW
24 | fixed_decay (boolean, optional): (default: False) This is used when weight_decouple
25 | is set as True.
26 | When fixed_decay == True, the weight decay is performed as
27 | $W_{new} = W_{old} - W_{old} \times decay$.
28 | When fixed_decay == False, the weight decay is performed as
29 | $W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the
30 | weight decay ratio decreases with learning rate (lr).
31 | rectify (boolean, optional): (default: False) If set as True, then perform the rectified
32 | update similar to RAdam
33 |
34 | reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients
35 | NeurIPS 2020 Spotlight
36 | """
37 |
38 | def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
39 | weight_decay=0, amsgrad=False, weight_decouple = False, fixed_decay=False, rectify = False ):
40 | if not 0.0 <= lr:
41 | raise ValueError("Invalid learning rate: {}".format(lr))
42 | if not 0.0 <= eps:
43 | raise ValueError("Invalid epsilon value: {}".format(eps))
44 | if not 0.0 <= betas[0] < 1.0:
45 | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
46 | if not 0.0 <= betas[1] < 1.0:
47 | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
48 | defaults = dict(lr=lr, betas=betas, eps=eps,
49 | weight_decay=weight_decay, amsgrad=amsgrad)
50 | super(AdaBelief, self).__init__(params, defaults)
51 |
52 | self.weight_decouple = weight_decouple
53 | self.rectify = rectify
54 | self.fixed_decay = fixed_decay
55 | if self.weight_decouple:
56 | print('Weight decoupling enabled in AdaBelief')
57 | if self.fixed_decay:
58 | print('Weight decay fixed')
59 | if self.rectify:
60 | print('Rectification enabled in AdaBelief')
61 | if amsgrad:
62 | print('AMS enabled in AdaBelief')
63 | def __setstate__(self, state):
64 | super(AdaBelief, self).__setstate__(state)
65 | for group in self.param_groups:
66 | group.setdefault('amsgrad', False)
67 |
68 | def reset(self):
69 | for group in self.param_groups:
70 | for p in group['params']:
71 | state = self.state[p]
72 | amsgrad = group['amsgrad']
73 |
74 | # State initialization
75 | state['step'] = 0
76 | # Exponential moving average of gradient values
77 | state['exp_avg'] = torch.zeros_like(p.data,
78 | memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
79 |
80 | # Exponential moving average of squared gradient values
81 | state['exp_avg_var'] = torch.zeros_like(p.data,
82 | memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
83 | if amsgrad:
84 | # Maintains max of all exp. moving avg. of sq. grad. values
85 | state['max_exp_avg_var'] = torch.zeros_like(p.data,
86 | memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
87 |
88 | def step(self, closure=None):
89 | """Performs a single optimization step.
90 |
91 | Arguments:
92 | closure (callable, optional): A closure that reevaluates the model
93 | and returns the loss.
94 | """
95 | loss = None
96 | if closure is not None:
97 | loss = closure()
98 |
99 | for group in self.param_groups:
100 | for p in group['params']:
101 | if p.grad is None:
102 | continue
103 | grad = p.grad.data
104 | if grad.is_sparse:
105 | raise RuntimeError('AdaBelief does not support sparse gradients, please consider SparseAdam instead')
106 | amsgrad = group['amsgrad']
107 |
108 | state = self.state[p]
109 |
110 | beta1, beta2 = group['betas']
111 |
112 | # State initialization
113 | if len(state) == 0:
114 | state['rho_inf'] = 2.0 / (1.0 - beta2) - 1.0
115 | state['step'] = 0
116 | # Exponential moving average of gradient values
117 | state['exp_avg'] = torch.zeros_like(p.data,
118 | memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
119 | # Exponential moving average of squared gradient values
120 | state['exp_avg_var'] = torch.zeros_like(p.data,
121 | memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
122 | if amsgrad:
123 | # Maintains max of all exp. moving avg. of sq. grad. values
124 | state['max_exp_avg_var'] = torch.zeros_like(p.data,
125 | memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
126 |
127 | # get current state variable
128 | exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var']
129 |
130 | state['step'] += 1
131 | bias_correction1 = 1 - beta1 ** state['step']
132 | bias_correction2 = 1 - beta2 ** state['step']
133 |
134 | # perform weight decay, check if decoupled weight decay
135 | if self.weight_decouple:
136 | if not self.fixed_decay:
137 | p.data.mul_(1.0 - group['lr'] * group['weight_decay'])
138 | else:
139 | p.data.mul_(1.0 - group['weight_decay'])
140 | else:
141 | if group['weight_decay'] != 0:
142 | grad.add_(group['weight_decay'], p.data)
143 |
144 | # Update first and second moment running average
145 | exp_avg.mul_(beta1).add_(1 - beta1, grad)
146 | grad_residual = grad - exp_avg
147 | exp_avg_var.mul_(beta2).addcmul_(1 - beta2, grad_residual, grad_residual)
148 |
149 | if amsgrad:
150 | max_exp_avg_var = state['max_exp_avg_var']
151 | # Maintains the maximum of all 2nd moment running avg. till now
152 | torch.max(max_exp_avg_var, exp_avg_var, out=max_exp_avg_var)
153 |
154 | # Use the max. for normalizing running avg. of gradient
155 | denom = (max_exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
156 | else:
157 | denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
158 |
159 | if not self.rectify:
160 | # Default update
161 | step_size = group['lr'] / bias_correction1
162 | p.data.addcdiv_(-step_size, exp_avg, denom)
163 |
164 | else:# Rectified update
165 | # calculate rho_t
166 | state['rho_t'] = state['rho_inf'] - 2 * state['step'] * beta2 ** state['step'] / (
167 | 1.0 - beta2 ** state['step'])
168 |
169 | if state['rho_t'] > 4: # perform Adam style update if variance is small
170 | rho_inf, rho_t = state['rho_inf'], state['rho_t']
171 | rt = (rho_t - 4.0) * (rho_t - 2.0) * rho_inf / (rho_inf - 4.0) / (rho_inf - 2.0) / rho_t
172 | rt = math.sqrt(rt)
173 |
174 | step_size = rt * group['lr'] / bias_correction1
175 |
176 | p.data.addcdiv_(-step_size, exp_avg, denom)
177 |
178 | else: # perform SGD style update
179 | p.data.add_( -group['lr'], exp_avg)
180 |
181 | return loss
182 |
183 |
184 |
--------------------------------------------------------------------------------
/myoptims/Diffgrad.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | from torch.optim.optimizer import Optimizer
4 | import numpy as np
5 | import torch.nn as nn
6 |
7 |
8 | class diffgrad(Optimizer):
9 | r"""Implements diffGrad algorithm. It is modified from the pytorch implementation of Adam.
10 | It has been proposed in `diffGrad: An Optimization Method for Convolutional Neural Networks`_.
11 | Arguments:
12 | params (iterable): iterable of parameters to optimize or dicts defining
13 | parameter groups
14 | lr (float, optional): learning rate (default: 1e-3)
15 | betas (Tuple[float, float], optional): coefficients used for computing
16 | running averages of gradient and its square (default: (0.9, 0.999))
17 | eps (float, optional): term added to the denominator to improve
18 | numerical stability (default: 1e-8)
19 | weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
20 | amsgrad (boolean, optional): whether to use the AMSGrad variant of this
21 | algorithm from the paper `On the Convergence of Adam and Beyond`_
22 | (default: False)
23 | .. _diffGrad: An Optimization Method for Convolutional Neural Networks:
24 | https://arxiv.org/abs/1909.11015
25 | .. _Adam\: A Method for Stochastic Optimization:
26 | https://arxiv.org/abs/1412.6980
27 | .. _On the Convergence of Adam and Beyond:
28 | https://openreview.net/forum?id=ryQu7f-RZ
29 | """
30 |
31 | def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0
32 | ,use_gc=False, gc_conv_only=False,gc_loc=False):
33 | if not 0.0 <= lr:
34 | raise ValueError("Invalid learning rate: {}".format(lr))
35 | if not 0.0 <= eps:
36 | raise ValueError("Invalid epsilon value: {}".format(eps))
37 | if not 0.0 <= betas[0] < 1.0:
38 | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
39 | if not 0.0 <= betas[1] < 1.0:
40 | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
41 | defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
42 | super(diffgrad, self).__init__(params, defaults)
43 | self.gc_loc=gc_loc
44 | self.use_gc=use_gc
45 | self.gc_conv_only=gc_conv_only
46 |
47 | def __setstate__(self, state):
48 | super(diffgrad, self).__setstate__(state)
49 |
50 | def step(self, closure=None):
51 | """Performs a single optimization step.
52 | Arguments:
53 | closure (callable, optional): A closure that reevaluates the model
54 | and returns the loss.
55 | """
56 | loss = None
57 | if closure is not None:
58 | loss = closure()
59 |
60 | for group in self.param_groups:
61 | for p in group['params']:
62 | if p.grad is None:
63 | continue
64 | grad = p.grad.data
65 | if grad.is_sparse:
66 | raise RuntimeError('diffGrad does not support sparse gradients, please consider SparseAdam instead')
67 |
68 | state = self.state[p]
69 |
70 | # State initialization
71 | if len(state) == 0:
72 | state['step'] = 0
73 | # Exponential moving average of gradient values
74 | state['exp_avg'] = torch.zeros_like(p.data)
75 | # Exponential moving average of squared gradient values
76 | state['exp_avg_sq'] = torch.zeros_like(p.data)
77 | # Previous gradient
78 | state['previous_grad'] = torch.zeros_like(p.data)
79 |
80 | exp_avg, exp_avg_sq, previous_grad = state['exp_avg'], state['exp_avg_sq'], state['previous_grad']
81 | beta1, beta2 = group['betas']
82 |
83 | state['step'] += 1
84 |
85 | if group['weight_decay'] != 0:
86 | grad.add_(group['weight_decay'], p.data)
87 |
88 | # Decay the first and second moment running average coefficient
89 | exp_avg.mul_(beta1).add_(1 - beta1, grad)
90 | exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
91 | denom = exp_avg_sq.sqrt().add_(group['eps'])
92 |
93 | bias_correction1 = 1 - beta1 ** state['step']
94 | bias_correction2 = 1 - beta2 ** state['step']
95 |
96 | # compute diffgrad coefficient (dfc)
97 | diff = abs(previous_grad - grad)
98 | dfc = 1. / (1. + torch.exp(-diff))
99 | #state['previous_grad'] = grad %used in paper but has the bug that previous grad is overwritten with grad and diff becomes always zero. Fixed in the next line.
100 | state['previous_grad'] = grad.clone()
101 |
102 | # update momentum with dfc
103 | exp_avg1 = exp_avg * dfc
104 |
105 | step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
106 |
107 | #GC operation
108 | G_grad=exp_avg/denom
109 |
110 | p.data.add_( G_grad, alpha=-step_size)
111 |
112 |
113 | return loss
114 |
--------------------------------------------------------------------------------
/myoptims/cosangulargrad.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | from torch.optim.optimizer import Optimizer
4 | import numpy as np
5 | import torch.nn as nn
6 |
7 |
8 | class cosangulargrad(Optimizer):
9 |
10 | def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
11 | if not 0.0 <= lr:
12 | raise ValueError("Invalid learning rate: {}".format(lr))
13 | if not 0.0 <= eps:
14 | raise ValueError("Invalid epsilon value: {}".format(eps))
15 | if not 0.0 <= betas[0] < 1.0:
16 | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
17 | if not 0.0 <= betas[1] < 1.0:
18 | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
19 | defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
20 | super(cosangulargrad, self).__init__(params, defaults)
21 |
22 | def __setstate__(self, state):
23 | super(cosangulargrad, self).__setstate__(state)
24 |
25 | def step(self, closure=None):
26 | """Performs a single optimization step.
27 | Arguments:
28 | closure (callable, optional): A closure that reevaluates the model
29 | and returns the loss.
30 | """
31 | loss = None
32 | if closure is not None:
33 | loss = closure()
34 |
35 | for group in self.param_groups:
36 | for p in group['params']:
37 | if p.grad is None:
38 | continue
39 | grad = p.grad.data
40 | if grad.is_sparse:
41 | raise RuntimeError(
42 | 'cosangulargrad does not support sparse gradients, please consider SparseAdam instead')
43 |
44 | state = self.state[p]
45 |
46 | # State initialization
47 | if len(state) == 0:
48 | state['step'] = 0
49 | # Exponential moving average of gradient values
50 | state['exp_avg'] = torch.zeros_like(p.data)
51 | # Exponential moving average of squared gradient values
52 | state['exp_avg_sq'] = torch.zeros_like(p.data)
53 | # Previous gradient
54 | state['previous_grad'] = torch.zeros_like(p.data)
55 | # temporary minimum value for comparison
56 | state['min'] = torch.zeros_like(p.data)
57 | # temporary difference between gradients for comparison
58 | state['diff'] = torch.zeros_like(p.data)
59 | # final cos value to be used
60 | state['final_cos_theta'] = torch.zeros_like(p.data)
61 |
62 | exp_avg, exp_avg_sq, previous_grad, min, diff, final_cos_theta = state['exp_avg'], state['exp_avg_sq'], \
63 | state['previous_grad'], state['min'], \
64 | state['diff'], state['final_cos_theta']
65 | beta1, beta2 = group['betas']
66 |
67 | state['step'] += 1
68 |
69 | if group['weight_decay'] != 0:
70 | grad.add_(group['weight_decay'], p.data)
71 |
72 | # Decay the first and second moment running average coefficient
73 | exp_avg.mul_(beta1).add_(1 - beta1, grad)
74 | exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
75 | denom = exp_avg_sq.sqrt().add_(group['eps'])
76 |
77 | bias_correction1 = 1 - beta1 ** state['step']
78 | bias_correction2 = 1 - beta2 ** state['step']
79 |
80 | tan_theta = abs((previous_grad - grad) / (1 + previous_grad * grad))
81 | cos_theta = 1 / torch.sqrt(1 + torch.square(tan_theta))
82 |
83 | angle = torch.atan(tan_theta) * (180 / 3.141592653589793238)
84 | ans = torch.gt(angle, min)
85 | ans1, count = torch.unique(ans, return_counts=True)
86 |
87 | try:
88 | if (count[1] < count[0]):
89 | min = angle
90 | diff = abs(previous_grad - grad)
91 | final_cos_theta = cos_theta.clone()
92 | except:
93 | if (ans1[0].item() == False):
94 | min = angle
95 | diff = abs(previous_grad - grad)
96 | final_cos_theta = cos_theta.clone()
97 |
98 | angular_coeff = torch.tanh(abs(final_cos_theta)) * 0.5 +0.5 # Calculating Angular coefficient
99 |
100 | state['previous_grad'] = grad.clone()
101 | state['min'] = min.clone()
102 | state['diff'] = diff.clone()
103 | state['final_cos_theta'] = final_cos_theta.clone()
104 |
105 | # update momentum with angular_coeff
106 | exp_avg1 = exp_avg * angular_coeff
107 |
108 | step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
109 |
110 | p.data.addcdiv_(-step_size, exp_avg1, denom)
111 |
112 | return loss
113 |
--------------------------------------------------------------------------------
/myoptims/tanangulargrad.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | from torch.optim.optimizer import Optimizer
4 | import numpy as np
5 | import torch.nn as nn
6 |
7 |
8 | class tanangulargrad(Optimizer):
9 |
10 | def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
11 | if not 0.0 <= lr:
12 | raise ValueError("Invalid learning rate: {}".format(lr))
13 | if not 0.0 <= eps:
14 | raise ValueError("Invalid epsilon value: {}".format(eps))
15 | if not 0.0 <= betas[0] < 1.0:
16 | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
17 | if not 0.0 <= betas[1] < 1.0:
18 | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
19 | defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
20 | super(tanangulargrad, self).__init__(params, defaults)
21 |
22 | def __setstate__(self, state):
23 | super(tanangulargrad, self).__setstate__(state)
24 |
25 | def step(self, closure=None):
26 | """Performs a single optimization step.
27 | Arguments:
28 | closure (callable, optional): A closure that reevaluates the model
29 | and returns the loss.
30 | """
31 | loss = None
32 | if closure is not None:
33 | loss = closure()
34 |
35 | for group in self.param_groups:
36 | for p in group['params']:
37 | if p.grad is None:
38 | continue
39 | grad = p.grad.data
40 | if grad.is_sparse:
41 | raise RuntimeError(
42 | 'tanangulargrad does not support sparse gradients, please consider SparseAdam instead')
43 |
44 | state = self.state[p]
45 |
46 | # State initialization
47 | if len(state) == 0:
48 | state['step'] = 0
49 | # Exponential moving average of gradient values
50 | state['exp_avg'] = torch.zeros_like(p.data)
51 | # Exponential moving average of squared gradient values
52 | state['exp_avg_sq'] = torch.zeros_like(p.data)
53 | # Previous gradient
54 | state['previous_grad'] = torch.zeros_like(p.data)
55 | # temporary minimum value for comparison
56 | state['min'] = torch.zeros_like(p.data)
57 | # temporary difference between gradients for comparison
58 | state['diff'] = torch.zeros_like(p.data)
59 | # final tan value to be used
60 | state['final_tan_theta'] = torch.zeros_like(p.data)
61 |
62 | exp_avg, exp_avg_sq, previous_grad, min, diff, final_tan_theta = state['exp_avg'], state['exp_avg_sq'], \
63 | state['previous_grad'], state['min'], \
64 | state['diff'], state['final_tan_theta']
65 | beta1, beta2 = group['betas']
66 |
67 | state['step'] += 1
68 |
69 | if group['weight_decay'] != 0:
70 | grad.add_(group['weight_decay'], p.data)
71 |
72 | # Decay the first and second moment running average coefficient
73 | exp_avg.mul_(beta1).add_(1 - beta1, grad)
74 | exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
75 | denom = exp_avg_sq.sqrt().add_(group['eps'])
76 |
77 | bias_correction1 = 1 - beta1 ** state['step']
78 | bias_correction2 = 1 - beta2 ** state['step']
79 |
80 | tan_theta = abs((previous_grad - grad) / (1 + previous_grad * grad))
81 |
82 | angle = torch.atan(tan_theta) * (180 / 3.141592653589793238)
83 | ans = torch.gt(angle, min)
84 | ans1, count = torch.unique(ans, return_counts=True)
85 |
86 | try:
87 | if (count[1] < count[0]):
88 | min = angle
89 | diff = abs(previous_grad - grad)
90 | final_tan_theta = tan_theta.clone()
91 | except:
92 | if (ans1[0].item() == False):
93 | min = angle
94 | diff = abs(previous_grad - grad)
95 | final_tan_theta = tan_theta.clone()
96 |
97 | angular_coeff = torch.tanh(abs(final_tan_theta)) * 0.5 +0.5 # Calculating Angular coefficient
98 |
99 | state['previous_grad'] = grad.clone()
100 | state['min'] = min.clone()
101 | state['diff'] = diff.clone()
102 | state['final_tan_theta'] = final_tan_theta.clone()
103 |
104 | # update momentum with angular_coeff
105 | exp_avg1 = exp_avg * angular_coeff
106 |
107 | step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
108 |
109 | p.data.addcdiv_(-step_size, exp_avg1, denom)
110 |
111 | return loss
112 |
--------------------------------------------------------------------------------