├── .gitignore
├── .gitmodules
├── CODE_OF_CONDUCT.md
├── CoordCheck.ipynb
├── LICENSE
├── README.md
├── SECURITY.md
├── SUPPORT.md
├── coord_checks
├── sp_cnn_adam_lr0.001_nseeds5_bn0_coord.png
├── sp_cnn_adam_lr0.001_nseeds5_bn1_coord.png
├── sp_cnn_sgd_lr0.1_nseeds5_bn0_coord.png
├── sp_cnn_sgd_lr0.1_nseeds5_bn1_coord.png
├── sp_mlp_adam_lr0.001_nseeds5_bn0_coord.png
├── sp_mlp_adam_lr0.001_nseeds5_bn1_coord.png
├── sp_mlp_sgd_lr0.1_nseeds5_bn0_coord.png
├── sp_mlp_sgd_lr0.1_nseeds5_bn1_coord.png
├── μp_cnn_adam_lr0.001_nseeds5_bn0_coord.png
├── μp_cnn_adam_lr0.001_nseeds5_bn1_coord.png
├── μp_cnn_sgd_lr0.1_nseeds5_bn0_coord.png
├── μp_cnn_sgd_lr0.1_nseeds5_bn1_coord.png
├── μp_mlp_adam_lr0.001_nseeds5_bn0_coord.png
├── μp_mlp_adam_lr0.001_nseeds5_bn1_coord.png
├── μp_mlp_sgd_lr0.1_nseeds5_bn0_coord.png
└── μp_mlp_sgd_lr0.1_nseeds5_bn1_coord.png
├── examples
├── .gitignore
├── MLP
│ ├── README.md
│ ├── coord_checks
│ │ ├── sp_mlp_sgd_coord.png
│ │ └── μp_mlp_sgd_coord.png
│ ├── demo.ipynb
│ ├── main.py
│ └── width64.bsh
├── ResNet
│ ├── CoordCheck.ipynb
│ ├── README.md
│ ├── coord_checks
│ │ ├── sp_resnet18_adam_coord.png
│ │ ├── sp_resnet18_sgd_coord.png
│ │ ├── μp_resnet18_adam_coord.png
│ │ └── μp_resnet18_sgd_coord.png
│ ├── main.py
│ ├── resnet.py
│ ├── resnet18.bsh
│ └── utils.py
└── Transformer
│ ├── CoordCheck.ipynb
│ ├── README.md
│ ├── _overrides.py
│ ├── coord_checks
│ ├── sp_trsfmr_adam_coord.png
│ ├── sp_trsfmr_sgd_coord.png
│ ├── μp_trsfmr_adam_coord.png
│ └── μp_trsfmr_sgd_coord.png
│ ├── data.py
│ ├── data
│ └── wikitext-2
│ │ ├── README
│ │ ├── dict.pt
│ │ ├── test.pt
│ │ ├── train.pt
│ │ └── valid.pt
│ ├── generate.py
│ ├── main.py
│ ├── model.py
│ └── width256.bsh
├── figures
├── parametrizations.gif
├── sp_vs_mup_dashed.png
└── widerbetter.png
├── mup
├── __init__.py
├── coord_check.py
├── infshape.py
├── init.py
├── layer.py
├── optim.py
├── shape.py
└── test
│ ├── __main__.py
│ └── models.py
├── requirements.txt
├── setup.cfg
└── setup.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Datasets
2 | ResNet*/data/
3 | Transformer*/data/*
4 | dataset/*
5 |
6 | # jupyter checkpoints
7 | **/.ipynb_checkpoints
8 |
9 | # Compiled python modules.
10 | *.pyc
11 |
12 | # Byte-compiled
13 | _pycache__/
14 | .cache/
15 |
16 | # Python egg metadata, regenerated from source files by setuptools.
17 | *.egg-info
18 | .eggs/
19 |
20 | # PyPI distribution artifacts.
21 | build/
22 | dist/
23 |
24 | # Environments
25 | .env
26 | .venv
27 | env/
28 | venv/
29 | ENV/
30 | env.bak/
31 | venv.bak/
32 |
33 | # PyCharm/vscode
34 | .idea
35 | .vscode
36 |
37 | # Vim
38 | .*.swp
39 |
40 | # Other
41 | *.DS_Store
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "examples/mutransformers"]
2 | path = examples/mutransformers
3 | url = https://github.com/microsoft/mutransformers
4 | branch = main
5 |
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Microsoft Open Source Code of Conduct
2 |
3 | This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
4 |
5 | Resources:
6 |
7 | - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
8 | - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
9 | - Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns
10 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) Microsoft Corporation.
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer)
2 |
3 | [Paper link](https://arxiv.org/abs/2203.03466)
4 | |
5 | [Blog link](https://www.microsoft.com/en-us/research/blog/%C2%B5transfer-a-technique-for-hyperparameter-tuning-of-enormous-neural-networks/)
6 | |
7 | [YouTube link](https://www.youtube.com/watch?v=z8-C42mAwBc)
8 |
9 | In [*Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer*](https://arxiv.org/abs/2203.03466), we show that optimal hyperparameters become stable across neural network sizes when we parametrize the model in [maximal update parametrization (μP)](http://arxiv.org/abs/2011.14522).
10 | This can be used to tune extremely large neural networks such as large pretrained transformers, as we have done in our work.
11 | More generally, μP reduces the fragility and uncertainty when transitioning from exploration to scaling up, which are not often talked about explicitly in the deep learning literature.
12 |
13 | 
14 | *Figure above: Training loss against learning rate on Transformers of varying `d_model` trained with Adam.*
15 |
16 |
17 | μP turns out to be the *unique* "natural" parametrization that has this hyperparameter stability property across width, as empirically verified in the gif below on MLPs trained with SGD. Here, across time, we interpolate between PyTorch default and μP's learning rate and initialization scalings (right), and we scale up the width-256 model (log2(width)=8) to width 2^13 = 8192 using this interpolated scaling rule (left).
18 |
19 | 
20 |
21 | This repo contains the source code for the `mup` package, our tool that makes the implementation of μP in Pytorch models effortless and less error-prone.
22 |
23 | ## Table of Contents
24 |
25 |
26 | - [Installation](#installation)
27 | - [Install From Source](#install-from-source)
28 | - [Basic Usage](#basic-usage)
29 | - [How `mup` Works Under the Hood](#how-mup-works-under-the-hood)
30 | - [Current Limitations](#current-limitations)
31 | - [Checking Correctness of Parametrization](#checking-correctness-of-parametrization)
32 | - [Coord Check](#coord-check)
33 | - [Making Your Own Coord Check Plots](#making-your-own-coord-check-plots)
34 | - [Wider is Always Better](#wider-is-always-better)
35 | - [Examples](#examples)
36 | - [Running Tests](#running-tests)
37 | - [The Basic Math](#the-basic-math)
38 | - [Contributing](#contributing)
39 | - [Trademarks](#trademarks)
40 |
41 | ## Installation
42 |
43 | ```
44 | pip install mup
45 | ```
46 |
47 | ### Install From Source
48 |
49 | Clone this repo, change to its directory, and do
50 | ```
51 | pip install -r requirements.txt
52 | pip install -e .
53 | ```
54 |
55 | ## Basic Usage
56 |
57 | ```Python
58 | from mup import MuReadout, make_base_shapes, set_base_shapes, MuSGD, MuAdam
59 |
60 | class MyModel(nn.Module):
61 | def __init__(self, width, ...):
62 | ...
63 | ### In model definition, replace output layer with MuReadout
64 | # readout = nn.Linear(width, d_out)
65 | readout = MuReadout(width, d_out)
66 | ### If tying weights with an input nn.Embedding layer, do
67 | # readout = MuSharedReadout(input_layer.weight)
68 | ...
69 | def forward(self, ...):
70 | ...
71 | ### If using a transformer, make sure to use
72 | ### 1/d instead of 1/sqrt(d) attention scaling
73 | # attention_scores = query @ key.T / d**0.5
74 | attention_scores = query @ key.T * 8 / d
75 | ### We use 8/d instead of 1/d here to be backward compatible
76 | ### with 1/d**0.5 when d=64, a common head dimension.
77 | ...
78 |
79 | ### Instantiate a base model
80 | base_model = MyModel(width=1)
81 | ### Optionally, use `torchdistx.deferred_init.deferred_init` to avoid instantiating the parameters
82 | ### Simply install `torchdistx` and use
83 | # base_model = torchdistx.deferred_init.deferred_init(MyModel, width=1)
84 | ### Instantiate a "delta" model that differs from the base model
85 | ### in all dimensions ("widths") that one wishes to scale.
86 | ### Here it's simple, but e.g., in a Transformer, you may want to scale
87 | ### both nhead and dhead, so the delta model should differ in both.
88 | delta_model = MyModel(width=2) # Optionally use `torchdistx` to avoid instantiating
89 |
90 | ### Instantiate the target model (the model you actually want to train).
91 | ### This should be the same as the base model except
92 | ### the widths could be potentially different.
93 | ### In particular, base_model and model should have the same depth.
94 | model = MyModel(width=100)
95 |
96 | ### Set base shapes
97 | ### When `model` has same parameter shapes as `base_model`,
98 | ### `model` behaves exactly the same as `base_model`
99 | ### (which is in PyTorch's default parametrization).
100 | ### This provides backward compatibility at this particular model size.
101 | ### Otherwise, `model`'s init and LR are scaled by μP.
102 | ### IMPORTANT: this should be called as soon as possible,
103 | ### before re-initialization and optimizer definition.
104 | set_base_shapes(model, base_model, delta=delta_model)
105 |
106 | ### Alternatively, one can save the base model shapes in a file
107 | # make_base_shapes(base_model, delta_model, filename)
108 | ### and later set base shapes directly from the filename
109 | # set_base_shapes(model, filename)
110 | ### This is useful when one cannot fit both
111 | ### base_model and model in memory at the same time
112 |
113 | ### Replace your custom init, if any
114 | for param in model.parameters():
115 | ### If initializing manually with fixed std or bounds,
116 | ### then replace with same function from mup.init
117 | # torch.nn.init.uniform_(param, -0.1, 0.1)
118 | mup.init.uniform_(param, -0.1, 0.1)
119 | ### Likewise, if using
120 | ### `xavier_uniform_, xavier_normal_, kaiming_uniform_, kaiming_normal_`
121 | ### from `torch.nn.init`, replace with the same functions from `mup.init`
122 |
123 | ### Use the optimizers from `mup.optim` instead of `torch.optim`
124 | # optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
125 | optimizer = MuSGD(model.parameters(), lr=0.1)
126 |
127 | ### Then just train normally
128 | ```
129 |
130 | Note the base and delta models *do not need to be trained* --- we are only extracting parameter shape information from them.
131 | Therefore, optionally, we can avoid instantiating these potentially large models by using the `deferred_init` function in `torchdistx`.
132 | After installing [`torchdistx`](https://github.com/pytorch/torchdistx), use `torchdistx.deferred_init.deferred_init(MyModel, **args)` instead of `MyModel(**args)`. See [this page](https://pytorch.org/torchdistx/latest/deferred_init.html) for more detail.
133 | In the MLP and Transformer examples (not `mutransformers`) we provided, you can activate this feature by passing `--deferred_init`.
134 |
135 |
136 | ## How `mup` Works Under the Hood
137 |
138 |
139 | By invoking `set_base_shapes(model, ...)`, each parameter tensor `p` of `model` gets a `p.infshape` attribute that stores, for each of its dimensions, the corresponding base dimension and whether that dimension should be considered `infinite` (i.e. will be scaled up/down, e.g., `d_model` of a Transformer) or `finite` (i.e. will be fixed, e.g., vocabulary size).
140 | This information is used in the initializers and optimizers to automatically scale the parameters or learning rates to be compliant with μP.
141 | For example, the Adam learning rate of hidden weights `p` is calculated as `globalLR / p.infshape.width_mult()`, where `p.infshape.width_mult()` essentially calculates `fan_in / base_fan_in`.
142 |
143 |
144 | ## Current Limitations
145 |
146 | - `set_base_shapes(model, ...)` assumes that `model` has just been randomly initialized in the standard way and rescales its parameters using the base shape information so the model is in μP.
147 | - If you want data parallelism, please use `torch.nn.parallel.DistributedDataParallel` instead of `torch.nn.DataParallel`. This is because the latter removes the attributes the `mup` package adds to each parameter tensor of the model. Also, for performance, `pytorch` [recommends the former anyway](https://pytorch.org/docs/stable/notes/cuda.html#cuda-nn-ddp-instead).
148 | - We scale the learning rate according to μP explicitly by creating refined parameter groups from what is passed to the `mup` optimizer and by manipulating the `lr` attribute in those groups. This is compatible with PyTorch's learning rate schedulers. However, if you roll your own, make sure the scheduler sets the learning rate relative to what is currently in the refined parameter groups. The following is an example of what *not* to do and what is OK:
149 | ```python
150 | optimizer = mup.MuAdam(model.parameters(), lr=1e-3)
151 | for pg in optimizer.param_groups:
152 | # what NOT to do: setting learning rate absolutely
153 | # pg['lr'] = 1e-3 * 2
154 | # what is an OK alternative: setting it relatively
155 | pg['lr'] *= 2
156 | ```
157 | - By default, any parameter matrix that has 2 "infinite" dimensions (i.e. dimensions that are different from base dimensions) are considered by `mup` to have shape (fan_out, fan_in), i.e., in the forward pass, this matrix multiplies its input on the right. This is the case with all `nn.Linear` weights from pytorch. If you have a custom parameter, say `W`, that violates this convention, you can manually set `W.infshape.main_idx = 0; W.infshape.main = W.infshape[0]` to let `mup` know that its shape corresponds to (fan_in, fan_out). A similar discussion applies if you have a parameter *tensor* with many dimensions but exactly 2 "infinite" dimensions, for which the first is fan_in and the second is fan_out.
158 | - Currently, [`torch.save` does not save the `infshape` objects attached to each parameter tensor](https://github.com/pytorch/pytorch/issues/72129). Before this is fixed, you would have to set base shape manually after loading a model checkpoint like so:
159 | ```python
160 | model = torch.load('my/model/path.pt')
161 | # Important: note the flag `rescale_params=False`!
162 | set_base_shapes(model, 'my/base/shape/path.bsh', rescale_params=False)
163 | ```
164 | (`set_base_shapes` by default rescales the parameters of `model`, assuming it's freshly initialized by PyTorch, to be consistent with μP.
165 | The `rescale_params=False` flag turns off this behavior.)
166 |
167 |
168 | ## Checking Correctness of Parametrization
169 |
170 |
171 | ### Coord Check
172 |
173 | Just like gradient checking is a simple way of verifying the correctness of an autograd implementation, *coordinate checking* is a simple way to verify you have implemented μP correctly: calculate the average size (which we denote in the y-axis below by `l1`) of the coordinates of each activation vector in, and output of, the model, for a few steps of training and a few different widths.
174 | If implemented correctly, then we shall see this `l1` stable over many widths; otherwise, the `l1` can blow up or shrink to 0 with width.
175 | (We are essentially checking desideratum 1 described below.)
176 | (The `l1` calculates `x.abs().mean()` for each activation vector `x` and is just one measure of the "average size" of `x`'s entries; one can also use analogously defined `l2`, `l4`, etc, though they may exhibit greater fluctuation with random seeds.)
177 |
178 | For example, in the following, we plot `width` vs `l1` for 2 steps of training, where t=1 means at initialization, before any gradient update.
179 | Each curve corresponds to an (pre-)activation vector of a layer or the output of the network.
180 | The first set of 3 plots shows an MLP in standard parametrization (SP), trained by adam.
181 | We see after 1 step of update, activation/output `l1` are exploding with width.
182 | This means SP is "incorrect."
183 | 
184 | We now do the same for an MLP in maximal update parametrization (μP) (including using `mup.optim.MuAdam` instead of `torch.optim.Adam`).
185 | In contrast to the above, all curves stay horizontal, indicating that μP is implemented correctly.
186 | 
187 | We call this way of checking implementation correctness a *coord check*, short for "coordinate check."
188 |
189 | ### Making Your Own Coord Check Plots
190 | We provide an easy way to implement this check via functions in the `mup.coord_check` module.
191 | The workflow typically looks like the following.
192 |
193 | ```Python
194 | from mup.coord_check import get_coord_data, plot_coord_data
195 | # construct a dictionary of lazy μP models with differing widths
196 | def lazy_model(width):
197 | # `set_base_shapes` returns the model
198 | return lambda: set_base_shapes(MyMuModel(width), 'my/base/shape/path.bsh')
199 | # Note: any custom initialization with `mup.init` would need to
200 | # be done inside the lambda as well
201 | models = {64: lazy_model(64), ..., 1024: lazy_model(1024)}
202 | # make a dataloader with small batch size/seq len
203 | # just for testing
204 | dataloader = ...
205 | # record data from the model activations over a few steps of training
206 | # this returns a pandas dataframe
207 | df = get_coord_data(models, dataloader)
208 | # This saves the coord check plots to filename.
209 | plot_coord_data(df, save_to=filename)
210 | # If you are in jupyter notebook, you can also do
211 | # `plt.show()`
212 | # to show the plot
213 | ```
214 | For example, the `mup.coord_check.example_plot_coord_check` function is implemented this way for toy MLP and CNN models.
215 |
216 | If you see the curves blow up or shrink to 0 with width after a few steps of training, then there's a bug in your μP implementation (did you forget to vary some dimension, like `d_ffn`, in the delta model?).
217 | If instead you see the curves converge to the right, then most likely your implementation is correct.
218 | However, there are two typical exceptions to this;
219 | the following can shrink to 0 at initialization in μP (at a 1/sqrt(width) rate):
220 | - the network output
221 | - the attention logits in a Transformer
222 |
223 | These are transient, and after a few steps their curves should be roughly flat.
224 | Nevertheless, to remove the discrepancy at init, we recommend
225 | - initializing the output layer
226 | (should be a `MuReadout` instance) weights to be 0 via
227 | the `readout_zero_init=True` option and
228 | - initializing the query matrix in a Transformer to 0
229 | (this has to be done manually). If symmetry-breaking is desired in the attention logits at init, initialize the (relative) position biases with nonzero variance.
230 |
231 | #### Tips for Coord Check
232 |
233 | - Use a large learning rate (larger than you'd use for actual training). This would emphasize any potential exploding coordinates issue, which could be hidden by the initialization if the learning rate is too small.
234 | - If you reuse a module multiple times in the forward pass, then `mup.get_coord_data` will only record the statistics from the last usage. In this case, for testing purposes, one can wrap different usages with `nn.Identity` modules of different names to distinguish them.
235 |
236 | ### Wider is Always Better
237 |
238 | 
239 |
240 | Another sign that μP has not been implemented correctly is if going wider does worse (on training loss) after some width, at some point during training.
241 | The figure above illustrates this in a collection of training curves: (left) the correct implementation should always see performance improve with width, at any point in training; (middle) if you used standard parametrization (SP), sometimes you may see performance improve with width up to some point and then suddenly it becomes worse with wider models; (right) or you may immediately see worsening performance even for narrow models.
242 |
243 | ## Examples
244 | See the `MLP`, `Transformer`, and `ResNet` folders inside `examples/` as well as the tests in `mup/test` for examples.
245 | People familiar with [Huggingface Transformers](https://github.com/huggingface/transformers) may also find the `examples/mutransformers` submodule instructive (obtained via `git submodule update --init`), which is also available standalone at [https://github.com/microsoft/mutransformers](https://github.com/microsoft/mutransformers).
246 |
247 | ## Native Integration With Huggingface
248 |
249 | Frustrated that your [Huggingface Transformer](https://github.com/huggingface/transformers) breaks when you scale up? Want to tune hyperparameters for your large mult-GPU [Huggingface Transformer](https://github.com/huggingface/transformers) on a single GPU, right out the box? If so, please upvote [this github issue](https://github.com/huggingface/transformers/issues/16157)!
250 |
251 |
252 | ## Running Tests
253 | To run tests, do
254 | ```bash
255 | python -m mup.test
256 | ```
257 |
258 |
259 | ## The Basic Math
260 |
261 | μP is designed so as to satisfy the following desiderata:
262 |
263 | > At any time during training
264 | > 1. Every (pre)activation vector in a network should have Θ(1)-sized coordinates
265 | > 2. Neural network output should be O(1).
266 | > 3. All parameters should be updated as much as possible (in terms of scaling in width) without leading to divergence
267 |
268 | It turns out these desiderata uniquely single out μP.
269 | To derive μP from them, one needs to carefully consider how the *coordinate size* of a vector Av, resulting from a square matrix A multiplying vector v, depends on those of A and v, when A and v are "correlated".
270 | Here you can think of A as weights and v as an activation vector.
271 | This in turn depends on what kind of matrix is A and what kind of vector is v.
272 | In the context of training a wide neural network, it turns out we only need to consider vectors that has approximately iid coordinates, and two kinds of matrices: 1) those that look like outer products of such vectors, and 2) random iid matrices.
273 | Those of type 1 cover things like weight gradients; those of type 2 cover things like weight initialization.
274 | Then, if A and v both have entry size Θ(1) and they are correlated in ways that arise naturally during training, then we have the following table.
275 |
276 | | | outer product A (type 1) | iid A (type 2) |
277 | |------------------|--------------------------|--------------------|
278 | | Entry size of Av | Θ(n) | Θ(sqrt(n)) |
279 |
280 | Given this table, one can then trace the forward and backward computation of a network to derive μP straightforwardly.
281 |
282 | See [our blog post](https://www.microsoft.com/en-us/research/blog/%C2%B5transfer-a-technique-for-hyperparameter-tuning-of-enormous-neural-networks/) for a gentle primer and [our paper](https://arxiv.org/abs/2203.03466) for details.
283 |
284 |
285 | ## Contributing
286 |
287 | This project welcomes contributions and suggestions. Most contributions require you to agree to a
288 | Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
289 | the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
290 |
291 | When you submit a pull request, a CLA bot will automatically determine whether you need to provide
292 | a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
293 | provided by the bot. You will only need to do this once across all repos using our CLA.
294 |
295 | This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
296 | For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
297 | contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
298 |
299 | ## Trademarks
300 |
301 | This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
302 | trademarks or logos is subject to and must follow
303 | [Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
304 | Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
305 | Any use of third-party trademarks or logos are subject to those third-party's policies.
306 |
--------------------------------------------------------------------------------
/SECURITY.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | ## Security
4 |
5 | Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
6 |
7 | If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc751383(v=technet.10)), please report it to us as described below.
8 |
9 | ## Reporting Security Issues
10 |
11 | **Please do not report security vulnerabilities through public GitHub issues.**
12 |
13 | Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report).
14 |
15 | If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://www.microsoft.com/en-us/msrc/pgp-key-msrc).
16 |
17 | You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18 |
19 | Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20 |
21 | * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22 | * Full paths of source file(s) related to the manifestation of the issue
23 | * The location of the affected source code (tag/branch/commit or direct URL)
24 | * Any special configuration required to reproduce the issue
25 | * Step-by-step instructions to reproduce the issue
26 | * Proof-of-concept or exploit code (if possible)
27 | * Impact of the issue, including how an attacker might exploit the issue
28 |
29 | This information will help us triage your report more quickly.
30 |
31 | If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) page for more details about our active programs.
32 |
33 | ## Preferred Languages
34 |
35 | We prefer all communications to be in English.
36 |
37 | ## Policy
38 |
39 | Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd).
40 |
41 |
--------------------------------------------------------------------------------
/SUPPORT.md:
--------------------------------------------------------------------------------
1 | # Support
2 |
3 | ## How to file issues and get help
4 |
5 | This project uses GitHub Issues to track bugs and feature requests. Please search the existing
6 | issues before filing new issues to avoid duplicates. For new issues, file your bug or
7 | feature request as a new Issue.
8 |
9 | For help and questions about using this project, please use Github Discussions in this repo.
10 |
11 | ## Microsoft Support Policy
12 |
13 | Support for this project is limited to the resources listed above.
14 |
--------------------------------------------------------------------------------
/coord_checks/sp_cnn_adam_lr0.001_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_cnn_adam_lr0.001_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_cnn_adam_lr0.001_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_cnn_adam_lr0.001_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_cnn_sgd_lr0.1_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_cnn_sgd_lr0.1_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_cnn_sgd_lr0.1_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_cnn_sgd_lr0.1_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_mlp_adam_lr0.001_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_mlp_adam_lr0.001_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_mlp_adam_lr0.001_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_mlp_adam_lr0.001_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_mlp_sgd_lr0.1_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_mlp_sgd_lr0.1_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/sp_mlp_sgd_lr0.1_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/sp_mlp_sgd_lr0.1_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_cnn_adam_lr0.001_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_cnn_adam_lr0.001_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_cnn_adam_lr0.001_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_cnn_adam_lr0.001_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_cnn_sgd_lr0.1_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_cnn_sgd_lr0.1_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_cnn_sgd_lr0.1_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_cnn_sgd_lr0.1_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_mlp_adam_lr0.001_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_mlp_adam_lr0.001_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_mlp_adam_lr0.001_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_mlp_adam_lr0.001_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_mlp_sgd_lr0.1_nseeds5_bn0_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_mlp_sgd_lr0.1_nseeds5_bn0_coord.png
--------------------------------------------------------------------------------
/coord_checks/μp_mlp_sgd_lr0.1_nseeds5_bn1_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/coord_checks/μp_mlp_sgd_lr0.1_nseeds5_bn1_coord.png
--------------------------------------------------------------------------------
/examples/.gitignore:
--------------------------------------------------------------------------------
1 | dataset/*
--------------------------------------------------------------------------------
/examples/MLP/README.md:
--------------------------------------------------------------------------------
1 | # μP MLP
2 | This folder contains the source code for our experiment on MLP, which also serves as an example usage of `mup`.
3 | The script trains a series of MLPs with increasing hidden sizes from 64 to 8192.
4 |
5 | ## Save Model Base Shapes
6 | To train a μP model, one needs to first specify the base shapes. To save base shapes info of the narrowest model, run,
7 | ```
8 | python main.py --save_base_shapes width64.bsh
9 | ```
10 |
11 | ## Verify Implementation with Coordinate Check
12 | Before we scale up and start training, it is recommended to check the size of activation coordinates as model width increases. We have integrated such a test in this example using the helper functions in `mup`; you can simply run:
13 |
14 | ```bash
15 | python main.py --load_base_shapes width64.bsh --coord_check
16 | ```
17 | You should find the generated plots under `./coord_checks`, which show stable coordinate sizes under μP, e.g.,
18 |
19 | 
20 |
21 | and growing sizes under SP, e.g.,
22 |
23 | 
24 |
25 |
26 | ## Start Training
27 | Having verified our implementation of μP, we can scale up our model and train using the same hyperparameters used for the small model and expect that the wider model performs better on the training data and that the optimal hyperparameters transfer.
28 | ```
29 | python main.py --load_base_shapes width64.bsh
30 | ```
31 |
32 | Note that if you do not specify `--load_base_shapes`, the script will default to training a SP model.
--------------------------------------------------------------------------------
/examples/MLP/coord_checks/sp_mlp_sgd_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/MLP/coord_checks/sp_mlp_sgd_coord.png
--------------------------------------------------------------------------------
/examples/MLP/coord_checks/μp_mlp_sgd_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/MLP/coord_checks/μp_mlp_sgd_coord.png
--------------------------------------------------------------------------------
/examples/MLP/main.py:
--------------------------------------------------------------------------------
1 | import time
2 | import os
3 | import pandas as pd
4 | import numpy as np
5 | import torch.nn.functional as F
6 | from torchvision import datasets, transforms
7 | import torch
8 | from torch import nn
9 | import torch.optim as optim
10 | import argparse
11 | import math
12 |
13 | from mup.coord_check import get_coord_data, plot_coord_data
14 | from mup import MuSGD, get_shapes, set_base_shapes, make_base_shapes, MuReadout
15 |
16 | def coord_check(mup, lr, train_loader, nsteps, nseeds, args, plotdir='', legend=False):
17 |
18 | def gen(w, standparam=False):
19 | def f():
20 | model = MLP(width=w, nonlin=torch.tanh, output_mult=args.output_mult, input_mult=args.input_mult).to(device)
21 | if standparam:
22 | set_base_shapes(model, None)
23 | else:
24 | assert args.load_base_shapes, 'load_base_shapes needs to be nonempty'
25 | set_base_shapes(model, args.load_base_shapes)
26 | return model
27 | return f
28 |
29 | widths = 2**np.arange(7, 14)
30 | models = {w: gen(w, standparam=not mup) for w in widths}
31 |
32 | df = get_coord_data(models, train_loader, mup=mup, lr=lr, optimizer='sgd', flatten_input=True, nseeds=nseeds, nsteps=nsteps, lossfn='nll')
33 |
34 | prm = 'μP' if mup else 'SP'
35 | return plot_coord_data(df, legend=legend,
36 | save_to=os.path.join(plotdir, f'{prm.lower()}_mlp_sgd_coord.png'),
37 | suptitle=f'{prm} MLP SGD lr={lr} nseeds={nseeds}',
38 | face_color='xkcd:light grey' if not mup else None)
39 |
40 |
41 | if __name__ == '__main__':
42 | parser = argparse.ArgumentParser(description='''
43 | PyTorch MLP on CIFAR-10, with μP.
44 |
45 | This is the script we use in the MLP experiment in our paper.
46 |
47 | To train a μP model, one needs to first specify the base shapes. To save base shapes info, run, for example,
48 |
49 | python main.py --save_base_shapes width64.bsh
50 |
51 | To train using MuSGD, run
52 |
53 | python main.py --load_base_shapes width64.bsh
54 |
55 | To perform coord check, run
56 |
57 | python main.py --load_base_shapes width64.bsh --coord_check
58 |
59 | If you don't specify a base shape file, then you are using standard parametrization
60 |
61 | python main.py
62 |
63 | We provide below some optimal hyperparameters for different activation/loss function combos:
64 | if nonlin == torch.relu and criterion == F.cross_entropy:
65 | args.input_mult = 0.00390625
66 | args.output_mult = 32
67 | elif nonlin == torch.tanh and criterion == F.cross_entropy:
68 | args.input_mult = 0.125
69 | args.output_mult = 32
70 | elif nonlin == torch.relu and criterion == MSE_label:
71 | args.input_mult = 0.03125
72 | args.output_mult = 32
73 | elif nonlin == torch.tanh and criterion == MSE_label:
74 | args.input_mult = 8
75 | args.output_mult = 0.125
76 | ''', formatter_class=argparse.RawTextHelpFormatter)
77 | parser.add_argument('--save_base_shapes', type=str, default='',
78 | help='file location to save base shapes at')
79 | parser.add_argument('--load_base_shapes', type=str, default='',
80 | help='file location to load base shapes from')
81 | parser.add_argument('--seed', type=int, default=1)
82 | parser.add_argument('--batch_size', type=int, default=64)
83 | parser.add_argument('--epochs', type=int, default=20)
84 | parser.add_argument('--momentum', type=float, default=0.9)
85 | parser.add_argument('--lr', type=float, default=0.1)
86 | parser.add_argument('--output_mult', type=float, default=1.0)
87 | parser.add_argument('--input_mult', type=float, default=1.0)
88 | parser.add_argument('--init_std', type=float, default=1.0)
89 | parser.add_argument('--no_shuffle', action='store_true')
90 | parser.add_argument('--log_interval', type=int, default=300)
91 | parser.add_argument('--log_dir', type=str, default='.')
92 | parser.add_argument('--data_dir', type=str, default='/tmp')
93 | parser.add_argument('--coord_check', action='store_true',
94 | help='test μ parametrization is correctly implemented by collecting statistics on coordinate distributions for a few steps of training.')
95 | parser.add_argument('--coord_check_nsteps', type=int, default=3,
96 | help='Do coord check with this many steps.')
97 | parser.add_argument('--coord_check_nseeds', type=int, default=5,
98 | help='number of seeds for testing correctness of μ parametrization')
99 | parser.add_argument('--deferred_init', action='store_true', help='Skip instantiating the base and delta models for mup. Requires torchdistx.')
100 |
101 | args = parser.parse_args()
102 |
103 | torch.manual_seed(args.seed)
104 |
105 | device = torch.device("cuda")
106 |
107 | kwargs = {'num_workers': 1, 'pin_memory': True}
108 |
109 | transform = transforms.Compose(
110 | [transforms.ToTensor(),
111 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
112 |
113 | trainset = datasets.CIFAR10(root=args.data_dir, train=True,
114 | download=True, transform=transform)
115 | train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
116 | shuffle=not args.no_shuffle, num_workers=2)
117 |
118 | testset = datasets.CIFAR10(root=args.data_dir, train=False,
119 | download=True, transform=transform)
120 | test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size,
121 | shuffle=False, num_workers=2)
122 |
123 | classes = ('plane', 'car', 'bird', 'cat',
124 | 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
125 |
126 |
127 | class MLP(nn.Module):
128 | def __init__(self, width=128, num_classes=10, nonlin=F.relu, output_mult=1.0, input_mult=1.0):
129 | super(MLP, self).__init__()
130 | self.nonlin = nonlin
131 | self.input_mult = input_mult
132 | self.output_mult = output_mult
133 | self.fc_1 = nn.Linear(3072, width, bias=False)
134 | self.fc_2 = nn.Linear(width, width, bias=False)
135 | self.fc_3 = MuReadout(width, num_classes, bias=False, output_mult=args.output_mult)
136 | self.reset_parameters()
137 |
138 | def reset_parameters(self):
139 | nn.init.kaiming_normal_(self.fc_1.weight, a=1, mode='fan_in')
140 | self.fc_1.weight.data /= self.input_mult**0.5
141 | self.fc_1.weight.data *= args.init_std
142 | nn.init.kaiming_normal_(self.fc_2.weight, a=1, mode='fan_in')
143 | self.fc_2.weight.data *= args.init_std
144 | nn.init.zeros_(self.fc_3.weight)
145 |
146 | def forward(self, x):
147 | out = self.nonlin(self.fc_1(x) * self.input_mult**0.5)
148 | out = self.nonlin(self.fc_2(out))
149 | return self.fc_3(out)
150 |
151 |
152 | def train(args, model, device, train_loader, optimizer, epoch,
153 | scheduler=None, criterion=F.cross_entropy):
154 | model.train()
155 | train_loss = 0
156 | correct = 0
157 | start_time = time.time()
158 | for batch_idx, (data, target) in enumerate(train_loader):
159 | data, target = data.to(device), target.to(device)
160 | optimizer.zero_grad()
161 | output = model(data.view(data.size(0), -1))
162 |
163 | loss = criterion(output, target)
164 | loss.backward()
165 | train_loss += loss.item() * data.shape[0] # sum up batch loss
166 | pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
167 | correct += pred.eq(target.view_as(pred)).sum().item()
168 | optimizer.step()
169 | if batch_idx % args.log_interval == 0:
170 | elapsed = time.time() - start_time
171 | print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} | ms/batch {:5.2f}'.format(
172 | epoch, batch_idx * len(data), len(train_loader.dataset),
173 | 100. * batch_idx / len(train_loader), loss.item(),
174 | elapsed * 1000 / args.log_interval))
175 | start_time = time.time()
176 | if scheduler is not None:
177 | scheduler.step()
178 | train_loss /= len(train_loader.dataset)
179 | train_acc = correct / len(train_loader.dataset)
180 | print('\nTrain set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
181 | train_loss, correct, len(train_loader.dataset),
182 | 100. * correct / len(train_loader.dataset)))
183 | return train_loss, train_acc
184 |
185 | def test(args, model, device, test_loader,
186 | evalmode=True, criterion=F.cross_entropy):
187 | if evalmode:
188 | model.eval()
189 | test_loss = 0
190 | correct = 0
191 | with torch.no_grad():
192 | for data, target in test_loader:
193 | data, target = data.to(device), target.to(device)
194 | output = model(data.view(data.size(0), -1))
195 | test_loss += criterion(output, target, reduction='sum').item() # sum up batch loss
196 | pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
197 | correct += pred.eq(target.view_as(pred)).sum().item()
198 |
199 | test_loss /= len(test_loader.dataset)
200 |
201 | print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
202 | test_loss, correct, len(test_loader.dataset),
203 | 100. * correct / len(test_loader.dataset)))
204 | return test_loss, correct / len(test_loader.dataset)
205 |
206 |
207 | def MSE_label(output, target):
208 | y_onehot = output.new_zeros(output.size(0), 10)
209 | y_onehot.scatter_(1, target.unsqueeze(-1), 1)
210 | y_onehot -= 1/10
211 | return F.mse_loss(output, y_onehot)
212 |
213 | if args.coord_check:
214 | print('testing parametrization')
215 | import os
216 | os.makedirs('coord_checks', exist_ok=True)
217 | plotdir = 'coord_checks'
218 | coord_check(mup=True, lr=args.lr, train_loader=train_loader, nsteps=args.coord_check_nsteps, nseeds=args.coord_check_nseeds, args=args, plotdir=plotdir, legend=False)
219 | coord_check(mup=False, lr=args.lr, train_loader=train_loader, nsteps=args.coord_check_nsteps, nseeds=args.coord_check_nseeds, args=args, plotdir=plotdir, legend=False)
220 | import sys; sys.exit()
221 |
222 | logs = []
223 | for nonlin in [torch.relu, torch.tanh]:
224 | for criterion in [F.cross_entropy, MSE_label]:
225 |
226 | for width in [64, 128, 256, 512, 1024, 2048, 4096, 8192]:
227 | # print(f'{nonlin.__name__}_{criterion.__name__}_{str(width)}')
228 | if args.save_base_shapes:
229 | print(f'saving base shapes at {args.save_base_shapes}')
230 | if args.deferred_init:
231 | from torchdistx.deferred_init import deferred_init
232 | # We don't need to instantiate the base and delta models
233 | # Note: this only works with torch nightly since unsqueeze isn't supported for fake tensors in stable
234 | base_shapes = get_shapes(deferred_init(MLP, width=width, nonlin=nonlin, output_mult=args.output_mult, input_mult=args.input_mult))
235 | delta_shapes = get_shapes(
236 | # just need to change whatever dimension(s) we are scaling
237 | deferred_init(MLP, width=width+1, nonlin=nonlin, output_mult=args.output_mult, input_mult=args.input_mult)
238 | )
239 | else:
240 | base_shapes = get_shapes(MLP(width=width, nonlin=nonlin, output_mult=args.output_mult, input_mult=args.input_mult))
241 | delta_shapes = get_shapes(
242 | # just need to change whatever dimension(s) we are scaling
243 | MLP(width=width+1, nonlin=nonlin, output_mult=args.output_mult, input_mult=args.input_mult)
244 | )
245 | make_base_shapes(base_shapes, delta_shapes, savefile=args.save_base_shapes)
246 | print('done and exit')
247 | import sys; sys.exit()
248 | mynet = MLP(width=width, nonlin=nonlin, output_mult=args.output_mult, input_mult=args.input_mult).to(device)
249 | if args.load_base_shapes:
250 | print(f'loading base shapes from {args.load_base_shapes}')
251 | set_base_shapes(mynet, args.load_base_shapes)
252 | print('done')
253 | else:
254 | print(f'using own shapes')
255 | set_base_shapes(mynet, None)
256 | print('done')
257 | optimizer = MuSGD(mynet.parameters(), lr=args.lr, momentum=args.momentum)
258 | for epoch in range(1, args.epochs+1):
259 | train_loss, train_acc, = train(args, mynet, device, train_loader, optimizer, epoch, criterion=criterion)
260 | test_loss, test_acc = test(args, mynet, device, test_loader)
261 | logs.append(dict(
262 | epoch=epoch,
263 | train_loss=train_loss,
264 | train_acc=train_acc,
265 | test_loss=test_loss,
266 | test_acc=test_acc,
267 | width=width,
268 | nonlin=nonlin.__name__,
269 | criterion='xent' if criterion.__name__=='cross_entropy' else 'mse',
270 | ))
271 | if math.isnan(train_loss):
272 | break
273 |
274 | with open(os.path.join(os.path.expanduser(args.log_dir), 'logs.tsv'), 'w') as f:
275 | logdf = pd.DataFrame(logs)
276 | print(os.path.join(os.path.expanduser(args.log_dir), 'logs.tsv'))
277 | f.write(logdf.to_csv(sep='\t', float_format='%.4f'))
278 |
--------------------------------------------------------------------------------
/examples/MLP/width64.bsh:
--------------------------------------------------------------------------------
1 | # This is a base shape file encoded in yaml
2 | # - `null` indicates a dimension is "finite", i.e. a non-"width" dimension
3 | # - a number indicates the base dimension of an "infinite" dimension, i.e. some notion of "width"
4 | fc_1.weight:
5 | - 64
6 | - null
7 | fc_2.weight:
8 | - 64
9 | - 64
10 | fc_3.weight:
11 | - null
12 | - 64
13 |
--------------------------------------------------------------------------------
/examples/ResNet/README.md:
--------------------------------------------------------------------------------
1 | # μP ResNet
2 | This folder contains the source code for our experiment on ResNet on CIFAR10, which also serves as an example usage of `mup`.
3 |
4 | ## Save Model Base Shapes
5 | To train a μP model, one needs to first specify the base shapes. To save base shapes info, run, for example,
6 | ```
7 | python main.py --save_base_shapes resnet18.bsh --width_mult 1
8 | ```
9 |
10 | ## Verify Implementation with Coordinate Check
11 | Before we scale up and start training, it is recommended to check the size of activation coordinates as model width increases. We have integrated such a test in this example using the helper functions in `mup`; you can simply run:
12 |
13 | ```bash
14 | # for SGD
15 | python main.py --load_base_shapes resnet18.bsh --optimizer sgd --lr 0.1 --coord_check
16 | # for Adam
17 | python main.py --load_base_shapes resnet18.bsh --optimizer adam --lr 0.001 --coord_check
18 | ```
19 | You should find the generated plots under `./coord_checks`, which show stable coordinate sizes under μP, e.g.,
20 |
21 | 
22 |
23 | and growing sizes under SP, e.g.,
24 |
25 | 
26 |
27 |
28 | ## Start Training
29 | Having verified our implementation of μP, we can scale up our model and train using the same hyperparameters used for the small model and expect that the wider model performs better on the training data and that the optimal hyperparameters transfer.
30 | ```bash
31 | # for SGD
32 | python main.py --width_mult 2 --optimizer musgd
33 | # for Adam
34 | python main.py --width_mult 2 --optimizer muadam
35 | ```
36 |
37 | Note that if you do not specify `--load_base_shapes`, the script will default to training a SP model.
--------------------------------------------------------------------------------
/examples/ResNet/coord_checks/sp_resnet18_adam_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/ResNet/coord_checks/sp_resnet18_adam_coord.png
--------------------------------------------------------------------------------
/examples/ResNet/coord_checks/sp_resnet18_sgd_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/ResNet/coord_checks/sp_resnet18_sgd_coord.png
--------------------------------------------------------------------------------
/examples/ResNet/coord_checks/μp_resnet18_adam_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/ResNet/coord_checks/μp_resnet18_adam_coord.png
--------------------------------------------------------------------------------
/examples/ResNet/coord_checks/μp_resnet18_sgd_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/ResNet/coord_checks/μp_resnet18_sgd_coord.png
--------------------------------------------------------------------------------
/examples/ResNet/main.py:
--------------------------------------------------------------------------------
1 | '''Train CIFAR10 with PyTorch.'''
2 | import argparse
3 | import os
4 |
5 | import numpy as np
6 | import torch
7 | import torch.nn as nn
8 | import torch.optim as optim
9 | import torchvision
10 | import torchvision.transforms as transforms
11 | from mup.coord_check import get_coord_data, plot_coord_data
12 | from mup import MuAdam, MuSGD, get_shapes, make_base_shapes, set_base_shapes
13 |
14 | import resnet
15 |
16 |
17 | def coord_check(mup, lr, optimizer, nsteps, arch, base_shapes, nseeds, device='cuda', plotdir='', legend=False):
18 |
19 | optimizer = optimizer.replace('mu', '')
20 |
21 | def gen(w, standparam=False):
22 | def f():
23 | model = getattr(resnet, arch)(wm=w).to(device)
24 | if standparam:
25 | set_base_shapes(model, None)
26 | else:
27 | set_base_shapes(model, base_shapes)
28 | return model
29 | return f
30 |
31 | transform_train = transforms.Compose([
32 | transforms.RandomCrop(32, padding=4),
33 | transforms.RandomHorizontalFlip(),
34 | transforms.ToTensor(),
35 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
36 | ])
37 | trainset = torchvision.datasets.CIFAR10(
38 | root='../dataset', train=True, download=True, transform=transform_train)
39 | dataloader = torch.utils.data.DataLoader(
40 | trainset, batch_size=1, shuffle=False)
41 |
42 | widths = 2**np.arange(-2., 2)
43 | models = {w: gen(w, standparam=not mup) for w in widths}
44 | df = get_coord_data(models, dataloader, mup=mup, lr=lr, optimizer=optimizer, nseeds=nseeds, nsteps=nsteps)
45 |
46 | prm = 'μP' if mup else 'SP'
47 | plot_coord_data(df, legend=legend,
48 | save_to=os.path.join(plotdir, f'{prm.lower()}_{arch}_{optimizer}_coord.png'),
49 | suptitle=f'{prm} {arch} {optimizer} lr={lr} nseeds={nseeds}',
50 | face_color='xkcd:light grey' if not mup else None)
51 |
52 |
53 | # Training
54 | def train(epoch, net):
55 | from utils import progress_bar
56 | print('\nEpoch: %d' % epoch)
57 | net.train()
58 | train_loss = 0
59 | correct = 0
60 | total = 0
61 | for batch_idx, (inputs, targets) in enumerate(trainloader):
62 | inputs, targets = inputs.to(device), targets.to(device)
63 | optimizer.zero_grad()
64 | outputs = net(inputs)
65 | loss = criterion(outputs, targets)
66 | loss.backward()
67 | optimizer.step()
68 |
69 | train_loss += loss.item()
70 | _, predicted = outputs.max(1)
71 | total += targets.size(0)
72 | correct += predicted.eq(targets).sum().item()
73 |
74 | progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
75 | % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
76 |
77 |
78 | def test(epoch, net):
79 | from utils import progress_bar
80 | global best_acc
81 | net.eval()
82 | test_loss = 0
83 | correct = 0
84 | total = 0
85 | with torch.no_grad():
86 | for batch_idx, (inputs, targets) in enumerate(testloader):
87 | inputs, targets = inputs.to(device), targets.to(device)
88 | outputs = net(inputs)
89 | loss = criterion(outputs, targets)
90 |
91 | test_loss += loss.item()
92 | _, predicted = outputs.max(1)
93 | total += targets.size(0)
94 | correct += predicted.eq(targets).sum().item()
95 |
96 | progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
97 | % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
98 |
99 | # Save checkpoint.
100 | acc = 100.*correct/total
101 | if acc > best_acc:
102 | print('Saving..')
103 | state = {
104 | 'net': net.state_dict(),
105 | 'acc': acc,
106 | 'epoch': epoch,
107 | }
108 | if not os.path.isdir('checkpoint'):
109 | os.mkdir('checkpoint')
110 | torch.save(state, './checkpoint/ckpt.pth')
111 | best_acc = acc
112 |
113 |
114 |
115 | if __name__ == '__main__':
116 |
117 | parser = argparse.ArgumentParser(description=''
118 | '''
119 | PyTorch CIFAR10 Training, with μP.
120 |
121 | To save base shapes info, run e.g.
122 |
123 | python main.py --save_base_shapes resnet18.bsh --width_mult 1
124 |
125 | To train using MuAdam (or MuSGD), run
126 |
127 | python main.py --width_mult 2 --load_base_shapes resnet18.bsh --optimizer {muadam,musgd}
128 |
129 | To test coords, run
130 |
131 | python main.py --load_base_shapes resnet18.bsh --optimizer sgd --lr 0.1 --coord_check
132 |
133 | python main.py --load_base_shapes resnet18.bsh --optimizer adam --lr 0.001 --coord_check
134 |
135 | If you don't specify a base shape file, then you are using standard parametrization, e.g.
136 |
137 | python main.py --width_mult 2 --optimizer {muadam,musgd}
138 |
139 | Here muadam (resp. musgd) would have the same result as adam (resp. sgd).
140 |
141 | Note that models of different depths need separate `.bsh` files.
142 | ''', formatter_class=argparse.RawTextHelpFormatter)
143 | parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
144 | parser.add_argument('--resume', '-r', action='store_true',
145 | help='resume from checkpoint')
146 | parser.add_argument('--arch', type=str, default='resnet18')
147 | parser.add_argument('--optimizer', default='musgd', choices=['sgd', 'adam', 'musgd', 'muadam'])
148 | parser.add_argument('--epochs', type=int, default=150)
149 | parser.add_argument('--width_mult', type=float, default=1)
150 | parser.add_argument('--save_base_shapes', type=str, default='',
151 | help='file location to save base shapes at')
152 | parser.add_argument('--load_base_shapes', type=str, default='',
153 | help='file location to load base shapes from')
154 | parser.add_argument('--batch_size', type=int, default=128)
155 | parser.add_argument('--test_batch_size', type=int, default=128)
156 | parser.add_argument('--weight_decay', type=float, default=5e-4)
157 | parser.add_argument('--num_workers', type=int, default=2)
158 | parser.add_argument('--test_num_workers', type=int, default=2)
159 | parser.add_argument('--momentum', type=float, default=0.9)
160 | parser.add_argument('--coord_check', action='store_true',
161 | help='test μ parametrization is correctly implemented by collecting statistics on coordinate distributions for a few steps of training.')
162 | parser.add_argument('--coord_check_nsteps', type=int, default=3,
163 | help='Do coord check with this many steps.')
164 | parser.add_argument('--coord_check_nseeds', type=int, default=1,
165 | help='number of seeds for coord check')
166 | parser.add_argument('--seed', type=int, default=1111,
167 | help='random seed')
168 | args = parser.parse_args()
169 |
170 | device = 'cuda' if torch.cuda.is_available() else 'cpu'
171 | best_acc = 0 # best test accuracy
172 | start_epoch = 0 # start from epoch 0 or last checkpoint epoch
173 |
174 | # Set the random seed manually for reproducibility.
175 | torch.manual_seed(args.seed)
176 |
177 | # Data
178 | if not args.save_base_shapes:
179 | print('==> Preparing data..')
180 | transform_train = transforms.Compose([
181 | transforms.RandomCrop(32, padding=4),
182 | transforms.RandomHorizontalFlip(),
183 | transforms.ToTensor(),
184 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
185 | ])
186 |
187 | transform_test = transforms.Compose([
188 | transforms.ToTensor(),
189 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
190 | ])
191 |
192 | trainset = torchvision.datasets.CIFAR10(
193 | root='../dataset', train=True, download=True, transform=transform_train)
194 | trainloader = torch.utils.data.DataLoader(
195 | trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
196 |
197 | testset = torchvision.datasets.CIFAR10(
198 | root='../dataset', train=False, download=True, transform=transform_test)
199 | testloader = torch.utils.data.DataLoader(
200 | testset, batch_size=args.test_batch_size, shuffle=False, num_workers=args.test_num_workers)
201 |
202 | classes = ('plane', 'car', 'bird', 'cat', 'deer',
203 | 'dog', 'frog', 'horse', 'ship', 'truck')
204 |
205 | if args.coord_check:
206 | print('testing parametrization')
207 | import os
208 | os.makedirs('coord_checks', exist_ok=True)
209 | plotdir = 'coord_checks'
210 | coord_check(mup=True,
211 | lr=args.lr, optimizer=args.optimizer, nsteps=args.coord_check_nsteps, arch=args.arch, base_shapes=args.load_base_shapes, nseeds=args.coord_check_nseeds, device=device, plotdir=plotdir, legend=False)
212 | coord_check(mup=False,
213 | lr=args.lr, optimizer=args.optimizer, nsteps=args.coord_check_nsteps, arch=args.arch, base_shapes=args.load_base_shapes, nseeds=args.coord_check_nseeds, device=device,plotdir=plotdir, legend=False)
214 | import sys; sys.exit()
215 |
216 |
217 | # Model
218 | print('==> Building model..')
219 | net = getattr(resnet, args.arch)(wm=args.width_mult)
220 | if args.save_base_shapes:
221 | print(f'saving base shapes at {args.save_base_shapes}')
222 | base_shapes = get_shapes(net)
223 | delta_shapes = get_shapes(getattr(resnet, args.arch)(wm=args.width_mult/2))
224 | make_base_shapes(base_shapes, delta_shapes, savefile=args.save_base_shapes)
225 | # save_shapes(net, args.save_base_shapes)
226 | print('done and exit')
227 | import sys; sys.exit()
228 |
229 | net = net.to(device)
230 |
231 | if args.load_base_shapes:
232 | print(f'loading base shapes from {args.load_base_shapes}')
233 | set_base_shapes(net, args.load_base_shapes)
234 | print('done')
235 | else:
236 | print(f'using standard parametrization')
237 | set_base_shapes(net, None)
238 | print('done')
239 |
240 | if args.resume:
241 | # Load checkpoint.
242 | print('==> Resuming from checkpoint..')
243 | assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
244 | checkpoint = torch.load('./checkpoint/ckpt.pth')
245 | net.load_state_dict(checkpoint['net'])
246 | best_acc = checkpoint['acc']
247 | start_epoch = checkpoint['epoch']
248 |
249 | criterion = nn.CrossEntropyLoss()
250 | if args.optimizer == 'musgd':
251 | optimizer = MuSGD(net.parameters(), lr=args.lr,
252 | momentum=args.momentum,
253 | weight_decay=args.weight_decay)
254 | elif args.optimizer == 'muadam':
255 | optimizer = MuAdam(net.parameters(), lr=args.lr)
256 | elif args.optimizer == 'sgd':
257 | optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
258 | elif args.optimizer == 'adam':
259 | optimizer = optim.Adam(net.parameters(), lr=args.lr)
260 | else:
261 | raise ValueError()
262 | scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
263 |
264 |
265 | for epoch in range(start_epoch, start_epoch+args.epochs):
266 | train(epoch, net)
267 | test(epoch, net)
268 | scheduler.step()
--------------------------------------------------------------------------------
/examples/ResNet/resnet.py:
--------------------------------------------------------------------------------
1 | '''ResNet in PyTorch.
2 | Reference:
3 | [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
4 | Deep Residual Learning for Image Recognition. arXiv:1512.03385
5 | '''
6 | import torch.nn as nn
7 | import torch.nn.functional as F
8 | from torch.nn import init
9 |
10 | from mup import MuReadout
11 |
12 | class BasicBlock(nn.Module):
13 | expansion = 1
14 |
15 | def __init__(self, in_planes, planes, stride=1):
16 | super(BasicBlock, self).__init__()
17 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride,
18 | padding=1, bias=False)
19 | self.bn1 = nn.BatchNorm2d(planes)
20 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
21 | padding=1, bias=False)
22 | self.bn2 = nn.BatchNorm2d(planes)
23 |
24 | self.shortcut = nn.Sequential()
25 | if stride != 1 or in_planes != self.expansion*planes:
26 | self.shortcut = nn.Sequential(
27 | nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1,
28 | stride=stride, bias=False),
29 | nn.BatchNorm2d(self.expansion*planes))
30 |
31 | self.reset_parameters()
32 |
33 | def reset_parameters(self) -> None:
34 | layers = [self.conv1, self.conv2]
35 | if len(self.shortcut) > 1:
36 | layers.append(self.shortcut[0])
37 | for layer in layers:
38 | init.kaiming_normal_(layer.weight, a=1)
39 | if layer.bias is not None:
40 | init.zeros_(layer.bias)
41 |
42 | def forward(self, x):
43 | out = F.relu(self.bn1(self.conv1(x)))
44 | out = self.bn2(self.conv2(out))
45 | out += self.shortcut(x)
46 | return F.relu(out)
47 |
48 |
49 | class Bottleneck(nn.Module):
50 | expansion = 4
51 |
52 | def __init__(self, in_planes, planes, stride=1):
53 | super(Bottleneck, self).__init__()
54 | self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
55 | self.bn1 = nn.BatchNorm2d(planes)
56 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
57 | padding=1, bias=False)
58 | self.bn2 = nn.BatchNorm2d(planes)
59 | self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
60 | self.bn3 = nn.BatchNorm2d(self.expansion*planes)
61 |
62 | self.shortcut = nn.Sequential()
63 | if stride != 1 or in_planes != self.expansion*planes:
64 | self.shortcut = nn.Sequential(
65 | nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
66 | nn.BatchNorm2d(self.expansion*planes)
67 | )
68 |
69 | self.reset_parameters()
70 |
71 | def reset_parameters(self) -> None:
72 | layers = [self.conv1, self.conv2, self.conv3]
73 | if len(self.shortcut) > 1:
74 | layers.append(self.shortcut[0])
75 | for layer in layers:
76 | init.kaiming_normal_(layer.weight, a=1)
77 | if layer.bias is not None:
78 | init.zeros_(layer.bias)
79 |
80 | def forward(self, x):
81 | out = F.relu(self.bn1(self.conv1(x)))
82 | out = F.relu(self.bn2(self.conv2(out)))
83 | out = self.bn3(self.conv3(out))
84 | out += self.shortcut(x)
85 | return F.relu(out)
86 |
87 |
88 | class ResNet(nn.Module):
89 | # feat_scale lets us deal with CelebA, other non-32x32 datasets
90 | def __init__(self, block, num_blocks, num_classes=10, feat_scale=1, wm=1):
91 | super(ResNet, self).__init__()
92 |
93 | base_widths = [64, 128, 256, 512]
94 | widths = [int(w * wm) for w in base_widths]
95 |
96 | self.in_planes = widths[0]
97 | self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=3, stride=1,
98 | padding=1, bias=False)
99 | self.bn1 = nn.BatchNorm2d(self.in_planes)
100 | self.layer1 = self._make_layer(block, widths[0], num_blocks[0], stride=1)
101 | self.layer2 = self._make_layer(block, widths[1], num_blocks[1], stride=2)
102 | self.layer3 = self._make_layer(block, widths[2], num_blocks[2], stride=2)
103 | self.layer4 = self._make_layer(block, widths[3], num_blocks[3], stride=2)
104 | ### This is the only μP related change ###
105 | self.linear = MuReadout(feat_scale*widths[3]*block.expansion, num_classes, readout_zero_init=True)
106 | ###########################################
107 |
108 | def _make_layer(self, block, planes, num_blocks, stride):
109 | strides = [stride] + [1]*(num_blocks-1)
110 | layers = []
111 | for stride in strides:
112 | layers.append(block(self.in_planes, planes, stride=stride))
113 | self.in_planes = planes * block.expansion
114 | return nn.Sequential(*layers)
115 |
116 | def forward(self, x):
117 | out = F.relu(self.bn1(self.conv1(x)))
118 | out = self.layer1(out)
119 | out = self.layer2(out)
120 | out = self.layer3(out)
121 | out = self.layer4(out)
122 | out = F.avg_pool2d(out, 4)
123 |
124 | pre_out = out.view(out.size(0), -1)
125 | final = self.linear(pre_out)
126 | return final
127 |
128 | def ResNet18(**kwargs):
129 | return ResNet(BasicBlock, [2,2,2,2], **kwargs)
130 |
131 | def ResNet18Wide(**kwargs):
132 | return ResNet(BasicBlock, [2,2,2,2], wm=5, **kwargs)
133 |
134 | def ResNet18Thin(**kwargs):
135 | return ResNet(BasicBlock, [2,2,2,2], wm=.75, **kwargs)
136 |
137 | def ResNet34(**kwargs):
138 | return ResNet(BasicBlock, [3,4,6,3], **kwargs)
139 |
140 | def ResNet50(**kwargs):
141 | return ResNet(Bottleneck, [3,4,6,3], **kwargs)
142 |
143 | def ResNet101(**kwargs):
144 | return ResNet(Bottleneck, [3,4,23,3], **kwargs)
145 |
146 | def ResNet152(**kwargs):
147 | return ResNet(Bottleneck, [3,8,36,3], **kwargs)
148 |
149 | resnet50 = ResNet50
150 | resnet18 = ResNet18
151 | resnet101 = ResNet101
152 | resnet152 = ResNet152
153 | resnet18wide = ResNet18Wide
--------------------------------------------------------------------------------
/examples/ResNet/resnet18.bsh:
--------------------------------------------------------------------------------
1 | # This is a base shape file encoded in yaml
2 | # - `null` indicates a dimension is "finite", i.e. a non-"width" dimension
3 | # - a number indicates the base dimension of an "infinite" dimension, i.e. some notion of "width"
4 | bn1.bias:
5 | - 64
6 | bn1.weight:
7 | - 64
8 | conv1.weight:
9 | - 64
10 | - null
11 | - null
12 | - null
13 | layer1.0.bn1.bias:
14 | - 64
15 | layer1.0.bn1.weight:
16 | - 64
17 | layer1.0.bn2.bias:
18 | - 64
19 | layer1.0.bn2.weight:
20 | - 64
21 | layer1.0.conv1.weight:
22 | - 64
23 | - 64
24 | - null
25 | - null
26 | layer1.0.conv2.weight:
27 | - 64
28 | - 64
29 | - null
30 | - null
31 | layer1.1.bn1.bias:
32 | - 64
33 | layer1.1.bn1.weight:
34 | - 64
35 | layer1.1.bn2.bias:
36 | - 64
37 | layer1.1.bn2.weight:
38 | - 64
39 | layer1.1.conv1.weight:
40 | - 64
41 | - 64
42 | - null
43 | - null
44 | layer1.1.conv2.weight:
45 | - 64
46 | - 64
47 | - null
48 | - null
49 | layer2.0.bn1.bias:
50 | - 128
51 | layer2.0.bn1.weight:
52 | - 128
53 | layer2.0.bn2.bias:
54 | - 128
55 | layer2.0.bn2.weight:
56 | - 128
57 | layer2.0.conv1.weight:
58 | - 128
59 | - 64
60 | - null
61 | - null
62 | layer2.0.conv2.weight:
63 | - 128
64 | - 128
65 | - null
66 | - null
67 | layer2.0.shortcut.0.weight:
68 | - 128
69 | - 64
70 | - null
71 | - null
72 | layer2.0.shortcut.1.bias:
73 | - 128
74 | layer2.0.shortcut.1.weight:
75 | - 128
76 | layer2.1.bn1.bias:
77 | - 128
78 | layer2.1.bn1.weight:
79 | - 128
80 | layer2.1.bn2.bias:
81 | - 128
82 | layer2.1.bn2.weight:
83 | - 128
84 | layer2.1.conv1.weight:
85 | - 128
86 | - 128
87 | - null
88 | - null
89 | layer2.1.conv2.weight:
90 | - 128
91 | - 128
92 | - null
93 | - null
94 | layer3.0.bn1.bias:
95 | - 256
96 | layer3.0.bn1.weight:
97 | - 256
98 | layer3.0.bn2.bias:
99 | - 256
100 | layer3.0.bn2.weight:
101 | - 256
102 | layer3.0.conv1.weight:
103 | - 256
104 | - 128
105 | - null
106 | - null
107 | layer3.0.conv2.weight:
108 | - 256
109 | - 256
110 | - null
111 | - null
112 | layer3.0.shortcut.0.weight:
113 | - 256
114 | - 128
115 | - null
116 | - null
117 | layer3.0.shortcut.1.bias:
118 | - 256
119 | layer3.0.shortcut.1.weight:
120 | - 256
121 | layer3.1.bn1.bias:
122 | - 256
123 | layer3.1.bn1.weight:
124 | - 256
125 | layer3.1.bn2.bias:
126 | - 256
127 | layer3.1.bn2.weight:
128 | - 256
129 | layer3.1.conv1.weight:
130 | - 256
131 | - 256
132 | - null
133 | - null
134 | layer3.1.conv2.weight:
135 | - 256
136 | - 256
137 | - null
138 | - null
139 | layer4.0.bn1.bias:
140 | - 512
141 | layer4.0.bn1.weight:
142 | - 512
143 | layer4.0.bn2.bias:
144 | - 512
145 | layer4.0.bn2.weight:
146 | - 512
147 | layer4.0.conv1.weight:
148 | - 512
149 | - 256
150 | - null
151 | - null
152 | layer4.0.conv2.weight:
153 | - 512
154 | - 512
155 | - null
156 | - null
157 | layer4.0.shortcut.0.weight:
158 | - 512
159 | - 256
160 | - null
161 | - null
162 | layer4.0.shortcut.1.bias:
163 | - 512
164 | layer4.0.shortcut.1.weight:
165 | - 512
166 | layer4.1.bn1.bias:
167 | - 512
168 | layer4.1.bn1.weight:
169 | - 512
170 | layer4.1.bn2.bias:
171 | - 512
172 | layer4.1.bn2.weight:
173 | - 512
174 | layer4.1.conv1.weight:
175 | - 512
176 | - 512
177 | - null
178 | - null
179 | layer4.1.conv2.weight:
180 | - 512
181 | - 512
182 | - null
183 | - null
184 | linear.bias:
185 | - null
186 | linear.weight:
187 | - null
188 | - 512
189 |
--------------------------------------------------------------------------------
/examples/ResNet/utils.py:
--------------------------------------------------------------------------------
1 | '''Some helper functions for PyTorch, including:
2 | - get_mean_and_std: calculate the mean and std value of dataset.
3 | - msr_init: net parameter initialization.
4 | - progress_bar: progress bar mimic xlua.progress.
5 | '''
6 | import os
7 | import sys
8 | import time
9 | import math
10 |
11 | import torch.nn as nn
12 | import torch.nn.init as init
13 |
14 |
15 | def get_mean_and_std(dataset):
16 | '''Compute the mean and std value of dataset.'''
17 | dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
18 | mean = torch.zeros(3)
19 | std = torch.zeros(3)
20 | print('==> Computing mean and std..')
21 | for inputs, targets in dataloader:
22 | for i in range(3):
23 | mean[i] += inputs[:,i,:,:].mean()
24 | std[i] += inputs[:,i,:,:].std()
25 | mean.div_(len(dataset))
26 | std.div_(len(dataset))
27 | return mean, std
28 |
29 | def init_params(net):
30 | '''Init layer parameters.'''
31 | for m in net.modules():
32 | if isinstance(m, nn.Conv2d):
33 | init.kaiming_normal(m.weight, mode='fan_out')
34 | if m.bias:
35 | init.constant(m.bias, 0)
36 | elif isinstance(m, nn.BatchNorm2d):
37 | init.constant(m.weight, 1)
38 | init.constant(m.bias, 0)
39 | elif isinstance(m, nn.Linear):
40 | init.normal(m.weight, std=1e-3)
41 | if m.bias:
42 | init.constant(m.bias, 0)
43 |
44 |
45 | _, term_width = os.popen('stty size', 'r').read().split()
46 | term_width = int(term_width)
47 |
48 | TOTAL_BAR_LENGTH = 65.
49 | last_time = time.time()
50 | begin_time = last_time
51 | def progress_bar(current, total, msg=None):
52 | global last_time, begin_time
53 | if current == 0:
54 | begin_time = time.time() # Reset for new bar.
55 |
56 | cur_len = int(TOTAL_BAR_LENGTH*current/total)
57 | rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
58 |
59 | sys.stdout.write(' [')
60 | for i in range(cur_len):
61 | sys.stdout.write('=')
62 | sys.stdout.write('>')
63 | for i in range(rest_len):
64 | sys.stdout.write('.')
65 | sys.stdout.write(']')
66 |
67 | cur_time = time.time()
68 | step_time = cur_time - last_time
69 | last_time = cur_time
70 | tot_time = cur_time - begin_time
71 |
72 | L = []
73 | L.append(' Step: %s' % format_time(step_time))
74 | L.append(' | Tot: %s' % format_time(tot_time))
75 | if msg:
76 | L.append(' | ' + msg)
77 |
78 | msg = ''.join(L)
79 | sys.stdout.write(msg)
80 | for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
81 | sys.stdout.write(' ')
82 |
83 | # Go back to the center of the bar.
84 | for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
85 | sys.stdout.write('\b')
86 | sys.stdout.write(' %d/%d ' % (current+1, total))
87 |
88 | if current < total-1:
89 | sys.stdout.write('\r')
90 | else:
91 | sys.stdout.write('\n')
92 | sys.stdout.flush()
93 |
94 | def format_time(seconds):
95 | days = int(seconds / 3600/24)
96 | seconds = seconds - days*3600*24
97 | hours = int(seconds / 3600)
98 | seconds = seconds - hours*3600
99 | minutes = int(seconds / 60)
100 | seconds = seconds - minutes*60
101 | secondsf = int(seconds)
102 | seconds = seconds - secondsf
103 | millis = int(seconds*1000)
104 |
105 | f = ''
106 | i = 1
107 | if days > 0:
108 | f += str(days) + 'D'
109 | i += 1
110 | if hours > 0 and i <= 2:
111 | f += str(hours) + 'h'
112 | i += 1
113 | if minutes > 0 and i <= 2:
114 | f += str(minutes) + 'm'
115 | i += 1
116 | if secondsf > 0 and i <= 2:
117 | f += str(secondsf) + 's'
118 | i += 1
119 | if millis > 0 and i <= 2:
120 | f += str(millis) + 'ms'
121 | i += 1
122 | if f == '':
123 | f = '0ms'
124 | return f
--------------------------------------------------------------------------------
/examples/Transformer/README.md:
--------------------------------------------------------------------------------
1 | # μP Transformer
2 | This folder contains the source code for our experiment on small Transformers, which also serves as an example usage of `mup`.
3 |
4 | ## Save Model Base Shapes
5 | To train a μP model, one needs to first specify the base shapes. To save base shapes info, run, for example,
6 | ```
7 | python main.py --d_model 256 --save_base_shapes width256.bsh
8 | ```
9 |
10 | ## Verify Implementation with Coordinate Check
11 | Before we scale up and start training, it is recommended to check the size of activation coordinates as model width increases. We have integrated such a test in this example using the helper functions in `mup`; you can simply run:
12 |
13 | ```bash
14 | # for SGD
15 | python main.py --load_base_shapes width256.bsh --optimizer sgd --lr 0.5 --cuda --coord_check
16 | # for Adam
17 | python main.py --load_base_shapes width256.bsh --optimizer adam --lr 0.01 --cuda --coord_check
18 | ```
19 | You should find the generated plots under `./coord_checks`, which show stable coordinate sizes under μP, e.g.,
20 |
21 | 
22 |
23 | and growing sizes under SP, e.g.,
24 |
25 | 
26 |
27 |
28 | ## Start Training
29 | Having verified our implementation of μP, we can scale up our model and train using the same hyperparameters used for the small model and expect that the wider model performs better on the training data and that the optimal hyperparameters transfer.
30 | ```bash
31 | # for SGD
32 | python main.py --d_model 4096 --load_base_shapes width256.bsh --optimizer musgd --lr 0.5 --cuda
33 | # for Adam
34 | python main.py --d_model 4096 --load_base_shapes width256.bsh --optimizer muadam --lr 0.01 --cuda
35 | ```
36 |
37 | Note that if you do not specify `--load_base_shapes`, the script will default to training a SP model.
38 |
--------------------------------------------------------------------------------
/examples/Transformer/coord_checks/sp_trsfmr_adam_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/coord_checks/sp_trsfmr_adam_coord.png
--------------------------------------------------------------------------------
/examples/Transformer/coord_checks/sp_trsfmr_sgd_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/coord_checks/sp_trsfmr_sgd_coord.png
--------------------------------------------------------------------------------
/examples/Transformer/coord_checks/μp_trsfmr_adam_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/coord_checks/μp_trsfmr_adam_coord.png
--------------------------------------------------------------------------------
/examples/Transformer/coord_checks/μp_trsfmr_sgd_coord.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/coord_checks/μp_trsfmr_sgd_coord.png
--------------------------------------------------------------------------------
/examples/Transformer/data.py:
--------------------------------------------------------------------------------
1 | import os
2 | from io import open
3 | import torch
4 |
5 | class Dictionary(object):
6 | def __init__(self):
7 | self.word2idx = {}
8 | self.idx2word = []
9 |
10 | def add_word(self, word):
11 | if word not in self.word2idx:
12 | self.idx2word.append(word)
13 | self.word2idx[word] = len(self.idx2word) - 1
14 | return self.word2idx[word]
15 |
16 | def __len__(self):
17 | return len(self.idx2word)
18 |
19 |
20 | class Corpus(object):
21 | def __init__(self, path):
22 | self.dictionary = Dictionary()
23 | self.train = None
24 | self.valid = None
25 | self.test = None
26 | if not self.load_cache(path):
27 | self.train = self.tokenize(os.path.join(path, 'train.txt'))
28 | self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
29 | self.test = self.tokenize(os.path.join(path, 'test.txt'))
30 | self.save_cache(path)
31 |
32 | def load_cache(self, path):
33 | for cache in ['dict.pt', 'train.pt', 'valid.pt', 'test.pt']:
34 | cache_path = os.path.join(path, cache)
35 | if not os.path.exists(cache_path):
36 | return False
37 | self.dictionary = torch.load(os.path.join(path, 'dict.pt'))
38 | self.train = torch.load(os.path.join(path, 'train.pt'))
39 | self.valid = torch.load(os.path.join(path, 'valid.pt'))
40 | self.test = torch.load(os.path.join(path, 'test.pt'))
41 | return True
42 |
43 | def save_cache(self, path):
44 | torch.save(self.dictionary, os.path.join(path, 'dict.pt'))
45 | torch.save(self.train, os.path.join(path, 'train.pt'))
46 | torch.save(self.valid, os.path.join(path, 'valid.pt'))
47 | torch.save(self.test, os.path.join(path, 'test.pt'))
48 |
49 | def tokenize(self, path):
50 | """Tokenizes a text file."""
51 | assert os.path.exists(path)
52 | # Add words to the dictionary
53 | with open(path, 'r', encoding="utf8") as f:
54 | for line in f:
55 | words = line.split() + ['']
56 | for word in words:
57 | self.dictionary.add_word(word)
58 |
59 | # Tokenize file content
60 | with open(path, 'r', encoding="utf8") as f:
61 | idss = []
62 | for line in f:
63 | words = line.split() + ['']
64 | ids = []
65 | for word in words:
66 | ids.append(self.dictionary.word2idx[word])
67 | idss.append(torch.tensor(ids).type(torch.int64))
68 | ids = torch.cat(idss)
69 |
70 | return ids
71 |
--------------------------------------------------------------------------------
/examples/Transformer/data/wikitext-2/README:
--------------------------------------------------------------------------------
1 | This is raw data from the wikitext-2 dataset.
2 |
3 | See https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
4 |
--------------------------------------------------------------------------------
/examples/Transformer/data/wikitext-2/dict.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/data/wikitext-2/dict.pt
--------------------------------------------------------------------------------
/examples/Transformer/data/wikitext-2/test.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/data/wikitext-2/test.pt
--------------------------------------------------------------------------------
/examples/Transformer/data/wikitext-2/train.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/data/wikitext-2/train.pt
--------------------------------------------------------------------------------
/examples/Transformer/data/wikitext-2/valid.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/examples/Transformer/data/wikitext-2/valid.pt
--------------------------------------------------------------------------------
/examples/Transformer/generate.py:
--------------------------------------------------------------------------------
1 | ###############################################################################
2 | # Language Modeling on Wikitext-2
3 | #
4 | # This file generates new sentences sampled from the language model
5 | #
6 | ###############################################################################
7 |
8 | import argparse
9 |
10 | import torch
11 |
12 | import data
13 |
14 | parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 Language Model')
15 |
16 | # Model parameters.
17 | parser.add_argument('--data', type=str, default='./data/wikitext-2',
18 | help='location of the data corpus')
19 | parser.add_argument('--checkpoint', type=str, default='./model.pt',
20 | help='model checkpoint to use')
21 | parser.add_argument('--outf', type=str, default='generated.txt',
22 | help='output file for generated text')
23 | parser.add_argument('--words', type=int, default='1000',
24 | help='number of words to generate')
25 | parser.add_argument('--seed', type=int, default=1111,
26 | help='random seed')
27 | parser.add_argument('--cuda', action='store_true',
28 | help='use CUDA')
29 | parser.add_argument('--temperature', type=float, default=1.0,
30 | help='temperature - higher will increase diversity')
31 | parser.add_argument('--log-interval', type=int, default=100,
32 | help='reporting interval')
33 | args = parser.parse_args()
34 |
35 | # Set the random seed manually for reproducibility.
36 | torch.manual_seed(args.seed)
37 | if torch.cuda.is_available():
38 | if not args.cuda:
39 | print("WARNING: You have a CUDA device, so you should probably run with --cuda")
40 |
41 | device = torch.device("cuda" if args.cuda else "cpu")
42 |
43 | if args.temperature < 1e-3:
44 | parser.error("--temperature has to be greater or equal 1e-3")
45 |
46 | with open(args.checkpoint, 'rb') as f:
47 | model = torch.load(f).to(device)
48 | model.eval()
49 |
50 | corpus = data.Corpus(args.data)
51 | ntokens = len(corpus.dictionary)
52 |
53 | is_transformer_model = hasattr(model, 'model_type') and model.model_type == 'Transformer'
54 | if not is_transformer_model:
55 | hidden = model.init_hidden(1)
56 | input = torch.randint(ntokens, (1, 1), dtype=torch.long).to(device)
57 |
58 | with open(args.outf, 'w') as outf:
59 | with torch.no_grad(): # no tracking history
60 | for i in range(args.words):
61 | if is_transformer_model:
62 | output = model(input, False)
63 | word_weights = output[-1].squeeze().div(args.temperature).exp().cpu()
64 | word_idx = torch.multinomial(word_weights, 1)[0]
65 | word_tensor = torch.Tensor([[word_idx]]).long().to(device)
66 | input = torch.cat([input, word_tensor], 0)
67 | else:
68 | output, hidden = model(input, hidden)
69 | word_weights = output.squeeze().div(args.temperature).exp().cpu()
70 | word_idx = torch.multinomial(word_weights, 1)[0]
71 | input.fill_(word_idx)
72 |
73 | word = corpus.dictionary.idx2word[word_idx]
74 |
75 | outf.write(word + ('\n' if i % 20 == 19 else ' '))
76 |
77 | if i % args.log_interval == 0:
78 | print('| Generated {}/{} words'.format(i, args.words))
79 |
--------------------------------------------------------------------------------
/examples/Transformer/main.py:
--------------------------------------------------------------------------------
1 | # coding: utf-8
2 | import argparse
3 | import os
4 | import time
5 |
6 | import numpy as np
7 | import pandas as pd
8 | import torch
9 | import torch.nn as nn
10 | import torch.optim as optim
11 | try:
12 | from apex import amp
13 | except:
14 | print('Failed to import apex. You can still train with --precision {float|double}.')
15 |
16 | from mup.coord_check import get_coord_data, plot_coord_data
17 | from mup import MuAdam, MuSGD, get_shapes, make_base_shapes, set_base_shapes
18 |
19 | import data
20 | import model as mdl
21 |
22 |
23 | ###############################################################################
24 | # Training code
25 | ###############################################################################
26 |
27 | # get_batch subdivides the source data into chunks of length args.bptt.
28 | # If source is equal to the example output of the batchify function, with
29 | # a bptt-limit of 2, we'd get the following two Variables for i = 0:
30 | # ┌ a g m s ┐ ┌ b h n t ┐
31 | # └ b h n t ┘ └ c i o u ┘
32 | # Note that despite the name of the function, the subdivison of data is not
33 | # done along the batch dimension (i.e. dimension 1), since that was handled
34 | # by the batchify function. The chunks are along dimension 0, corresponding
35 | # to the seq_len dimension in the LSTM.
36 |
37 | def get_batch(source, i, bptt):
38 | seq_len = min(bptt, len(source) - 1 - i)
39 | data = source[i:i+seq_len]
40 | target = source[i+1:i+1+seq_len].view(-1)
41 | return data, target
42 |
43 | def batchloader(train_data, bptt):
44 | for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
45 | yield get_batch(train_data, i, bptt)
46 |
47 | def batchify(data, bsz, device):
48 | # Work out how cleanly we can divide the dataset into bsz parts.
49 | nbatch = data.size(0) // bsz
50 | # Trim off any extra elements that wouldn't cleanly fit (remainders).
51 | data = data.narrow(0, 0, nbatch * bsz)
52 | # Evenly divide the data across the bsz batches.
53 | data = data.view(bsz, -1).t().contiguous()
54 | return data.to(device)
55 |
56 | def setprec(t, precision):
57 | if precision == 'half':
58 | # do nothing since this is handled by AMP
59 | return t
60 | elif precision == 'float':
61 | return t.float()
62 | elif precision == 'double':
63 | return t.double()
64 | else:
65 | raise ValueError(f'invalid precision string {args.precision}')
66 |
67 | def coord_check(mup, lr, optimizer, batch_size, nsteps, nseeds, data_dir, args, plotdir='', legend=False):
68 |
69 | corpus = data.Corpus(data_dir)
70 | ntokens = len(corpus.dictionary)
71 |
72 | def gen(w, standparam=False):
73 | import model as _model
74 | def f():
75 | model = _model.TransformerModel(args, ntokens, ninp=w, nhead=args.nhead, nhid=w*args.ffn_ratio, nlayers=args.nlayers, dropout=args.dropout,
76 | tied=args.tied, bias=args.bias, encoder_var=args.init_var,
77 | decoder_var=args.init_var, standparam=standparam).to(args.device)
78 | model = setprec(model, args.precision)
79 | if standparam:
80 | set_base_shapes(model, None)
81 | else:
82 | assert args.load_base_shapes, 'load_base_shapes needs to be nonempty'
83 | set_base_shapes(model, args.load_base_shapes)
84 | return model
85 | return f
86 |
87 | optimizer = optimizer.replace('mu', '')
88 | widths = 2**np.arange(7, 14 if optimizer=='sgd' else 12)
89 | models = {w: gen(w, standparam=not mup) for w in widths}
90 |
91 |
92 | train_data = batchify(corpus.train, batch_size, device=args.device)
93 | df = get_coord_data(models, batchloader(train_data, args.bptt), mup=mup, lr=lr, optimizer=optimizer, flatten_output=True, nseeds=nseeds, nsteps=nsteps, lossfn='nll')
94 |
95 | prm = 'μP' if mup else 'SP'
96 | return plot_coord_data(df, legend=legend,
97 | save_to=os.path.join(plotdir, f'{prm.lower()}_trsfmr_{optimizer}_coord.png'),
98 | suptitle=f'{prm} Transformer {optimizer} lr={lr} nseeds={nseeds}',
99 | face_color='xkcd:light grey' if not mup else None)
100 |
101 |
102 | if __name__ == '__main__':
103 |
104 | parser = argparse.ArgumentParser(description=
105 | '''
106 | PyTorch Wikitext-2 Transformer Language Model, with μP.
107 |
108 | To train a μP model, one needs to first specify the base shapes. To save base shapes info, run, for example,
109 |
110 | python main.py --d_model 256 --save_base_shapes width256.bsh
111 |
112 | To train using MuAdam, run
113 |
114 | python main.py --d_model 256 --load_base_shapes width256.bsh --cuda --optimizer muadam
115 |
116 | To perform coord check, run
117 |
118 | python main.py --load_base_shapes width256.bsh --optimizer sgd --lr 0.5 --cuda --coord_check
119 |
120 | python main.py --load_base_shapes width256.bsh --optimizer adam --lr 0.01 --cuda --coord_check
121 |
122 | If you don't specify a base shape file, then you are using standard parametrization
123 |
124 | python main.py --d_model 256 --cuda --optimizer muadam
125 |
126 | Note that models of different depths need separate `.bsh` files.
127 | ''', formatter_class=argparse.RawTextHelpFormatter)
128 | parser.add_argument('--data', type=str, default='./data/wikitext-2',
129 | help='location of the data corpus')
130 | parser.add_argument('--bias', action='store_true',
131 | help='use bias')
132 | parser.add_argument('--save_base_shapes', type=str, default='',
133 | help='file location to save base shapes at')
134 | parser.add_argument('--load_base_shapes', type=str, default='',
135 | help='file location to load base shapes from')
136 | parser.add_argument('--d_model', type=int, default=256,
137 | help='width of the model')
138 | parser.add_argument('--ffn_ratio', type=int, default=1,
139 | help='the ratio of d_ffn to d_model')
140 | parser.add_argument('--nlayers', type=int, default=2,
141 | help='number of layers')
142 | parser.add_argument('--nhead', type=int, default=2,
143 | help='the number of heads in the encoder/decoder of the transformer model')
144 | parser.add_argument('--lr', type=float, default=0.001,
145 | help='initial learning rate')
146 | parser.add_argument('--momentum', type=float, default=0,
147 | help='momentum')
148 | parser.add_argument('--output_mult', type=float, default=1,
149 | help='output is multiplied by sqrt(output_mult/d_model)')
150 | parser.add_argument('--input_mult', type=float, default=1,
151 | help='input is multiplied by sqrt(input_mult*d_model)')
152 | parser.add_argument('--attn_mult', type=float, default=1,
153 | help='attn is multiplied by sqrt(attn_mult)/head_dim')
154 | parser.add_argument('--optimizer', default='musgd', choices=['sgd', 'musgd', 'adam', 'muadam'])
155 | parser.add_argument('--init_var', type=float, default=1,
156 | help='weights are initialized with variance init_var/ninp')
157 | parser.add_argument('--clip', type=float, default=0.25,
158 | help='gradient clipping')
159 | parser.add_argument('--epochs', type=int, default=40,
160 | help='upper epoch limit')
161 | parser.add_argument('--batch_size', type=int, default=20, metavar='N',
162 | help='batch size')
163 | parser.add_argument('--bptt', type=int, default=35,
164 | help='sequence length')
165 | parser.add_argument('--dropout', type=float, default=0.2,
166 | help='dropout applied to layers (0 = no dropout)')
167 | parser.add_argument('--tied', action='store_true',
168 | help='tie the word embedding and softmax weights')
169 | parser.add_argument('--seed', type=int, default=1111,
170 | help='random seed')
171 | parser.add_argument('--cuda', action='store_true',
172 | help='use CUDA')
173 | parser.add_argument('--precision', type=str, default='float',
174 | help='float | double | half')
175 | parser.add_argument('--log_interval', type=int, default=200, metavar='N',
176 | help='report interval')
177 | parser.add_argument('--save_dir', type=str, default=None,
178 | help='path to save the final model')
179 | parser.add_argument('--resume_dir', type=str, default=None,
180 | help='path to resume training')
181 | parser.add_argument('--log_dir', type=str, default='.',
182 | help='path to save logs')
183 | parser.add_argument('--coord_check', action='store_true',
184 | help='test μ parametrization is correctly implemented by collecting statistics on coordinate distributions for a few steps of training.')
185 | parser.add_argument('--coord_check_nsteps', type=int, default=3,
186 | help='Do coord check with this many steps.')
187 | parser.add_argument('--coord_check_nseeds', type=int, default=3,
188 | help='number of seeds for testing correctness of μ parametrization')
189 | parser.add_argument('--deferred_init', action='store_true', help='Skip instantiating the base and delta models for mup. Requires torchdistx.')
190 |
191 | args = parser.parse_args()
192 |
193 | print(args)
194 |
195 | # Set the random seed manually for reproducibility.
196 | torch.manual_seed(args.seed)
197 | if torch.cuda.is_available():
198 | if not args.cuda:
199 | print("WARNING: You have a CUDA device, so you should probably run with --cuda")
200 |
201 | device = args.device = torch.device("cuda" if args.cuda else "cpu")
202 |
203 | ###############################################################################
204 | # Load data
205 | ###############################################################################
206 |
207 | corpus = data.Corpus(args.data)
208 |
209 | # Starting from sequential data, batchify arranges the dataset into columns.
210 | # For instance, with the alphabet as the sequence and batch size 4, we'd get
211 | # ┌ a g m s ┐
212 | # │ b h n t │
213 | # │ c i o u │
214 | # │ d j p v │
215 | # │ e k q w │
216 | # └ f l r x ┘.
217 | # These columns are treated as independent by the model, which means that the
218 | # dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
219 | # batch processing.
220 |
221 | eval_batch_size = 10
222 | train_data = batchify(corpus.train, args.batch_size, device)
223 | val_data = batchify(corpus.valid, eval_batch_size, device)
224 | test_data = batchify(corpus.test, eval_batch_size, device)
225 |
226 | ###############################################################################
227 | # Build the model
228 | ###############################################################################
229 |
230 |
231 | ntokens = len(corpus.dictionary)
232 |
233 |
234 |
235 | def evaluate(data_source):
236 | # Turn on evaluation mode which disables dropout.
237 | model.eval()
238 | total_loss = 0.
239 | ntokens = len(corpus.dictionary)
240 | with torch.no_grad():
241 | for i in range(0, data_source.size(0) - 1, args.bptt):
242 | data, targets = get_batch(data_source, i, args.bptt)
243 | output = model(data)
244 | output = output.view(-1, ntokens)
245 | total_loss += len(data) * criterion(output, targets).item()
246 | return total_loss / (len(data_source) - 1)
247 |
248 |
249 | def train(optimizer, epoch):
250 | # Turn on training mode which enables dropout.
251 | model.train()
252 | total_loss = 0.
253 | epoch_loss = 0.
254 | start_time = time.time()
255 | ntokens = len(corpus.dictionary)
256 | first_loss = None
257 | for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
258 | data, targets = get_batch(train_data, i, args.bptt)
259 | # Starting each batch, we detach the hidden state from how it was previously produced.
260 | # If we didn't, the model would try backpropagating all the way to start of the dataset.
261 |
262 | optimizer.zero_grad()
263 | output = model(data)
264 | output = output.view(-1, ntokens)
265 | loss = criterion(output, targets)
266 | if torch.isnan(loss):
267 | exit(0)
268 | if args.precision == 'half':
269 | with amp.scale_loss(loss, optimizer) as scaled_loss:
270 | scaled_loss.backward()
271 | else:
272 | loss.backward()
273 |
274 | if args.clip > 0:
275 | # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
276 | if args.precision == 'half':
277 | torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.clip)
278 | else:
279 | torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
280 |
281 | optimizer.step()
282 |
283 | total_loss += loss.item()
284 | epoch_loss += len(data) * loss.item()
285 |
286 | if batch % args.log_interval == 0 and batch > 0:
287 | cur_loss = total_loss / args.log_interval
288 | elapsed = time.time() - start_time
289 | print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | '
290 | 'loss {:5.2f} | ppl {:8.2f}'.format(
291 | epoch, batch, len(train_data) // args.bptt, lr,
292 | elapsed * 1000 / args.log_interval, cur_loss, np.exp(cur_loss)))
293 | total_loss = 0
294 | start_time = time.time()
295 | if first_loss is None:
296 | first_loss = cur_loss
297 |
298 | return epoch_loss / (len(train_data) - 1), first_loss
299 |
300 | if args.coord_check:
301 | print('testing parametrization')
302 | import os
303 | os.makedirs('coord_checks', exist_ok=True)
304 | plotdir = 'coord_checks'
305 | coord_check(mup=True, lr=args.lr, optimizer=args.optimizer, batch_size=args.batch_size, nsteps=args.coord_check_nsteps, nseeds=args.coord_check_nseeds, data_dir=args.data, args=args, plotdir=plotdir, legend=False)
306 | coord_check(mup=False, lr=args.lr, optimizer=args.optimizer, batch_size=args.batch_size, nsteps=args.coord_check_nsteps, nseeds=args.coord_check_nseeds, data_dir=args.data, args=args, plotdir=plotdir, legend=False)
307 | import sys; sys.exit()
308 |
309 |
310 | if args.save_base_shapes:
311 | print(f'saving base shapes at {args.save_base_shapes}')
312 | if args.deferred_init:
313 | from torchdistx.deferred_init import deferred_init
314 | # We don't need to instantiate the base and delta models
315 | base_shapes = get_shapes(
316 | deferred_init(mdl.TransformerModel, args, ntokens, ninp=args.d_model, nhead=args.nhead, nhid=args.d_model*args.ffn_ratio, nlayers=args.nlayers, dropout=args.dropout,
317 | tied=args.tied, bias=args.bias, encoder_var=args.init_var,
318 | decoder_var=args.init_var, standparam=args.load_base_shapes=='')
319 | )
320 | delta_shapes = get_shapes(
321 | # just need to change whatever dimension(s) we are scaling
322 | deferred_init(mdl.TransformerModel, args, ntokens, ninp=args.d_model*2, nhead=args.nhead, nhid=args.d_model*args.ffn_ratio*2,
323 | nlayers=args.nlayers, dropout=args.dropout,
324 | tied=args.tied, bias=args.bias, encoder_var=args.init_var,
325 | decoder_var=args.init_var, standparam=args.load_base_shapes=='')
326 | )
327 | else:
328 | base_shapes = get_shapes(
329 | mdl.TransformerModel(args, ntokens, ninp=args.d_model, nhead=args.nhead, nhid=args.d_model*args.ffn_ratio, nlayers=args.nlayers, dropout=args.dropout,
330 | tied=args.tied, bias=args.bias, encoder_var=args.init_var,
331 | decoder_var=args.init_var, standparam=args.load_base_shapes=='')
332 | )
333 | delta_shapes = get_shapes(
334 | # just need to change whatever dimension(s) we are scaling
335 | mdl.TransformerModel(args, ntokens, ninp=args.d_model*2, nhead=args.nhead, nhid=args.d_model*args.ffn_ratio*2,
336 | nlayers=args.nlayers, dropout=args.dropout,
337 | tied=args.tied, bias=args.bias, encoder_var=args.init_var,
338 | decoder_var=args.init_var, standparam=args.load_base_shapes=='')
339 | )
340 | make_base_shapes(base_shapes, delta_shapes, savefile=args.save_base_shapes)
341 | print('done and exit')
342 | import sys; sys.exit()
343 | model = mdl.TransformerModel(args, ntokens, ninp=args.d_model, nhead=args.nhead, nhid=args.d_model*args.ffn_ratio, nlayers=args.nlayers, dropout=args.dropout,
344 | tied=args.tied, bias=args.bias, encoder_var=args.init_var,
345 | decoder_var=args.init_var, standparam=args.load_base_shapes=='')
346 | if args.load_base_shapes:
347 | print(f'loading base shapes from {args.load_base_shapes}')
348 | set_base_shapes(model, args.load_base_shapes)
349 | print('done')
350 | else:
351 | print(f'using own shapes')
352 | set_base_shapes(model, None)
353 | print('done')
354 |
355 | model = model.to(device)
356 | model = setprec(model, args.precision)
357 |
358 | criterion = nn.NLLLoss()
359 |
360 | if args.save_dir is not None:
361 | os.makedirs(args.save_dir, exist_ok=True)
362 |
363 | # Loop over epochs.
364 | lr = args.lr
365 | best_val_loss = float('inf')
366 |
367 | if args.optimizer == 'sgd':
368 | optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
369 | elif args.optimizer == 'musgd':
370 | optimizer = MuSGD(model.parameters(), lr=args.lr, momentum=args.momentum)
371 | elif args.optimizer == 'adam':
372 | optimizer = optim.Adam(model.parameters(), lr=args.lr)
373 | elif args.optimizer == 'muadam':
374 | optimizer = MuAdam(model.parameters(), lr=args.lr)
375 | else:
376 | raise ValueError()
377 |
378 | # half-precision black magic
379 | if args.precision == 'half':
380 | model, optimizer = amp.initialize(
381 | model,
382 | optimizer,
383 | opt_level='O1',
384 | min_loss_scale=0.0001,
385 | verbosity=0
386 | )
387 |
388 | logs = []
389 | start_epoch = 0
390 | if args.resume_dir and os.path.exists(os.path.join(args.resume_dir, 'checkpoint_last.pt')):
391 | checkpoint = torch.load(os.path.join(args.resume_dir, 'checkpoint_last.pt'))
392 | model.load_state_dict(checkpoint['model'])
393 | optimizer.load_state_dict(checkpoint['optimizer'])
394 | if args.precision == 'half':
395 | amp.load_state_dict(checkpoint['amp'])
396 | start_epoch = checkpoint['epoch']
397 | best_val_loss = checkpoint['best_val_loss']
398 | logs = checkpoint['logs']
399 |
400 | # At any point you can hit Ctrl + C to break out of training early.
401 | try:
402 | for epoch in range(start_epoch+1, args.epochs+1):
403 | epoch_start_time = time.time()
404 | train_loss, first_loss = train(optimizer, epoch)
405 | # print(first_loss)
406 | val_loss = evaluate(val_data)
407 | print('-' * 89)
408 | print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
409 | 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
410 | val_loss, np.exp(val_loss)))
411 | print('-' * 89)
412 | logs.append(dict(
413 | epoch=epoch,
414 | train_loss=train_loss,
415 | val_loss=val_loss,
416 | first_loss=first_loss
417 | ))
418 | # Save the model if the validation loss is the best we've seen so far.
419 | if args.save_dir is not None:
420 | if val_loss < best_val_loss:
421 | checkpoint = {
422 | 'model': model.state_dict(),
423 | 'optimizer': optimizer.state_dict(),
424 | 'epoch': epoch,
425 | 'best_val_loss': best_val_loss,
426 | 'logs': logs
427 | }
428 | if args.precision == 'half':
429 | checkpoint['amp'] = amp.state_dict(),
430 | with open(os.path.join(args.save_dir, 'checkpoint_best.pt'), 'wb') as f:
431 | torch.save(checkpoint, f)
432 | best_val_loss = val_loss
433 | else:
434 | checkpoint = {
435 | 'model': model.state_dict(),
436 | 'optimizer': optimizer.state_dict(),
437 | 'epoch': epoch,
438 | 'best_val_loss': best_val_loss,
439 | 'logs': logs
440 | }
441 | if args.precision == 'half':
442 | checkpoint['amp'] = amp.state_dict()
443 | with open(os.path.join(args.save_dir, 'checkpoint_last.pt'), 'wb') as f:
444 | torch.save(checkpoint, f)
445 |
446 | except KeyboardInterrupt:
447 | print('-' * 89)
448 | print('Exiting from training early')
449 |
450 | # Load the best saved model.
451 | if args.save_dir is not None:
452 | with open(os.path.join(args.save_dir, 'checkpoint_best.pt'), 'rb') as f:
453 | checkpoint = torch.load(f)
454 | model.load_state_dict(checkpoint['model'])
455 | optimizer.load_state_dict(checkpoint['optimizer'])
456 | if args.precision == 'half':
457 | amp.load_state_dict(checkpoint['amp'][0])
458 | # Run on test data.
459 | test_loss = evaluate(test_data)
460 | print('=' * 89)
461 | print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
462 | test_loss, np.exp(test_loss)))
463 | print('=' * 89)
464 | logs.append(dict(
465 | epoch='-1',
466 | test_loss=test_loss
467 | ))
468 |
469 |
470 | with open(os.path.join(os.path.expanduser(args.log_dir), 'logs.tsv'), 'w') as f:
471 | logdf = pd.DataFrame(logs)
472 | print(os.path.join(os.path.expanduser(args.log_dir), 'logs.tsv'))
473 | f.write(logdf.to_csv(sep='\t', float_format='%.4f'))
474 |
--------------------------------------------------------------------------------
/examples/Transformer/width256.bsh:
--------------------------------------------------------------------------------
1 | # This is a base shape file encoded in yaml
2 | # - `null` indicates a dimension is "finite", i.e. a non-"width" dimension
3 | # - a number indicates the base dimension of an "infinite" dimension, i.e. some notion of "width"
4 | decoder.weight:
5 | - null
6 | - 256
7 | encoder.weight:
8 | - null
9 | - 256
10 | transformer_encoder.layers.0.linear1.weight:
11 | - 256
12 | - 256
13 | transformer_encoder.layers.0.linear2.weight:
14 | - 256
15 | - 256
16 | transformer_encoder.layers.0.norm1.bias:
17 | - 256
18 | transformer_encoder.layers.0.norm1.weight:
19 | - 256
20 | transformer_encoder.layers.0.norm2.bias:
21 | - 256
22 | transformer_encoder.layers.0.norm2.weight:
23 | - 256
24 | transformer_encoder.layers.0.self_attn.in_proj_weight:
25 | - 768
26 | - 256
27 | transformer_encoder.layers.0.self_attn.out_proj.weight:
28 | - 256
29 | - 256
30 | transformer_encoder.layers.1.linear1.weight:
31 | - 256
32 | - 256
33 | transformer_encoder.layers.1.linear2.weight:
34 | - 256
35 | - 256
36 | transformer_encoder.layers.1.norm1.bias:
37 | - 256
38 | transformer_encoder.layers.1.norm1.weight:
39 | - 256
40 | transformer_encoder.layers.1.norm2.bias:
41 | - 256
42 | transformer_encoder.layers.1.norm2.weight:
43 | - 256
44 | transformer_encoder.layers.1.self_attn.in_proj_weight:
45 | - 768
46 | - 256
47 | transformer_encoder.layers.1.self_attn.out_proj.weight:
48 | - 256
49 | - 256
50 |
--------------------------------------------------------------------------------
/figures/parametrizations.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/figures/parametrizations.gif
--------------------------------------------------------------------------------
/figures/sp_vs_mup_dashed.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/figures/sp_vs_mup_dashed.png
--------------------------------------------------------------------------------
/figures/widerbetter.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/microsoft/mup/19814971934ef91dd546f88e913fc963e096d11c/figures/widerbetter.png
--------------------------------------------------------------------------------
/mup/__init__.py:
--------------------------------------------------------------------------------
1 | name = "mup"
2 |
3 | from mup.shape import *
4 | from mup.infshape import *
5 | from mup.init import *
6 | from mup.layer import *
7 | from mup.optim import *
--------------------------------------------------------------------------------
/mup/coord_check.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Microsoft Corporation.
2 | '''
3 | Helper functions for performing coord check.
4 | '''
5 | import os
6 | from copy import copy
7 | from itertools import product
8 |
9 | import numpy as np
10 | import pandas as pd
11 | import torch
12 | import torch.nn.functional as F
13 |
14 |
15 | def cov(x):
16 | '''Treat `x` as a collection of vectors and its Gram matrix.
17 | Input:
18 | x: If it has shape [..., d], then it's treated as
19 | a collection of d-dimensional vectors
20 | Output:
21 | cov: a matrix of size N x N where N is the product of
22 | the non-last dimensions of `x`.
23 | '''
24 | if x.nelement() == 1:
25 | width = 1
26 | xx = x.reshape(1, 1)
27 | else:
28 | width = x.shape[-1]
29 | xx = x.reshape(-1, x.shape[-1])
30 | return xx @ xx.T / width
31 |
32 | def covoffdiag(x):
33 | '''Get off-diagonal entries of `cov(x)` in a vector.
34 | Input:
35 | x: If it has shape [..., d], then it's treated as
36 | a collection of d-dimensional vectors
37 | Output:
38 | Off-diagonal entries of `cov(x)` in a vector.'''
39 | c = cov(x)
40 | return c[~torch.eye(c.shape[0], dtype=bool)]
41 |
42 | #: dict of provided functions for use in coord check
43 | FDICT = {
44 | 'l1': lambda x: torch.abs(x).mean(dtype=torch.float32),
45 | 'l2': lambda x: (x**2).mean(dtype=torch.float32)**0.5,
46 | 'mean': lambda x: x.mean(dtype=torch.float32),
47 | 'std': lambda x: x.std(dtype=torch.float32),
48 | 'covl1': lambda x: torch.abs(cov(x)).mean(dtype=torch.float32),
49 | 'covl2': lambda x: (cov(x)**2).mean(dtype=torch.float32)**0.5,
50 | 'covoffdiagl1': lambda x: torch.abs(covoffdiag(x)).mean(dtype=torch.float32),
51 | 'covoffdiagl2': lambda x: (covoffdiag(x)**2).mean(dtype=torch.float32)**0.5
52 | }
53 |
54 | def convert_fdict(d):
55 | '''convert a dict `d` with string values to function values.
56 | Input:
57 | d: a dict whose values are either strings or functions
58 | Output:
59 | a new dict, with the same keys as `d`, but the string values are
60 | converted to functions using `FDICT`.
61 | '''
62 | return dict([
63 | ((k, FDICT[v]) if isinstance(v, str) else (k, v))
64 | for k, v in d.items()])
65 |
66 | def _record_coords(records, width, modulename, t,
67 | output_fdict=None, input_fdict=None, param_fdict=None):
68 | '''Returns a forward hook that records coordinate statistics.
69 |
70 | Returns a forward hook that records statistics regarding the output, input,
71 | and/or parameters of a `nn.Module`. This hook is intended to run only once,
72 | on the timestep specified by `t`.
73 |
74 | On forward pass, the returned hook calculates statistics specified in
75 | `output_fdict`, `input_fdict`, and `param_fdict`, such as the normalized l1
76 | norm, of output, input, and/or parameters of the module. The statistics are
77 | recorded along with the `width`, `modulename`, and `t` (the time step) as a
78 | dict and inserted into `records` (which should be a list). More precisely,
79 | for each output, input, and/or parameter, the inserted dict is of the form
80 |
81 | {
82 | 'width': width, 'module': modified_modulename, 't': t,
83 | # keys are keys in fdict
84 | 'l1': 0.241, 'l2': 0.420, 'mean': 0.0, ...
85 | }
86 |
87 | where `modified_modulename` is a string that combines the `modulename` with
88 | an indicator of which output, input, or parameter tensor is the statistics
89 | computed over.
90 |
91 | The `*_fdict` inputs should be dictionaries with string keys and whose
92 | values can either be functions or strings. The string values are converted
93 | to functions via `convert_fdict`. The default values of `*_dict` inputs are
94 | converted to `output_fdict = dict(l1=FDICT['l1'])`, `input_fdict = {}`,
95 | `param_fdict = {}`, i.e., only the average coordinate size (`l1`) of the
96 | output activations are recorded.
97 |
98 | Inputs:
99 | records:
100 | list to append coordinate data to
101 | width:
102 | width of the model. This is used only for plotting coord check later
103 | on, so it can be any notion of width.
104 | modulename:
105 | string name of the module. This is used only for plotting coord check.
106 | t:
107 | timestep of training. This is used only for plotting coord check.
108 | output_fdict, input_fdict, param_fdict:
109 | dicts with string keys and whose values can either be functions or
110 | strings. The string values are converted to functions via
111 | `convert_fdict`
112 | Output:
113 | a forward hook that records statistics regarding the output, input,
114 | and/or parameters of a `nn.Module`, as discussed above.
115 | '''
116 | if output_fdict is None:
117 | output_fdict = dict(l1=FDICT['l1'])
118 | else:
119 | output_fdict = convert_fdict(output_fdict)
120 | if input_fdict is None:
121 | input_fdict = {}
122 | else:
123 | input_fdict = convert_fdict(input_fdict)
124 | if param_fdict is None:
125 | param_fdict = {}
126 | else:
127 | param_fdict = convert_fdict(param_fdict)
128 | def f(module, input, output):
129 | def get_stat(d, x, fdict):
130 | if isinstance(x, (tuple, list)):
131 | for i, _x in enumerate(x):
132 | _d = copy(d)
133 | _d['module'] += f'[{i}]'
134 | get_stat(_d, _x, fdict)
135 | elif isinstance(x, dict):
136 | for name, _x in x.items():
137 | _d = copy(d)
138 | _d['module'] += f'[{name}]'
139 | get_stat(_d, _x, fdict)
140 | elif isinstance(x, torch.Tensor):
141 | _d = copy(d)
142 | for fname, f in fdict.items():
143 | _d[fname] = f(x).item()
144 | records.append(_d)
145 | elif x is None:
146 | pass
147 | else:
148 | raise NotImplementedError(f'Unexpected output type: {type(x)}')
149 | with torch.no_grad():
150 | ret = {
151 | 'width': width,
152 | 'module': modulename,
153 | 't': t
154 | }
155 |
156 | # output stats
157 | if isinstance(output, (tuple, list)):
158 | for i, out in enumerate(output):
159 | _ret = copy(ret)
160 | _ret['module'] += f':out[{i}]'
161 | get_stat(_ret, out, output_fdict)
162 | elif isinstance(output, dict):
163 | for name, out in output.items():
164 | _ret = copy(ret)
165 | _ret['module'] += f':out[{name}]'
166 | get_stat(_ret, out, output_fdict)
167 | elif isinstance(output, torch.Tensor):
168 | _ret = copy(ret)
169 | for fname, f in output_fdict.items():
170 | _ret[fname] = f(output).item()
171 | records.append(_ret)
172 | else:
173 | raise NotImplementedError(f'Unexpected output type: {type(output)}')
174 |
175 | # input stats
176 | if input_fdict:
177 | if isinstance(input, (tuple, list)):
178 | for i, out in enumerate(input):
179 | _ret = copy(ret)
180 | _ret['module'] += f':in[{i}]'
181 | get_stat(_ret, out, input_fdict)
182 | elif isinstance(input, dict):
183 | for name, out in input.items():
184 | _ret = copy(ret)
185 | _ret['module'] += f':in[{name}]'
186 | get_stat(_ret, out, input_fdict)
187 | elif isinstance(input, torch.Tensor):
188 | _ret = copy(ret)
189 | for fname, f in input_fdict.items():
190 | _ret[fname] = f(input).item()
191 | records.append(_ret)
192 | else:
193 | raise NotImplementedError(f'Unexpected output type: {type(input)}')
194 |
195 | # param stats
196 | if param_fdict:
197 | for name, p in module.named_parameters():
198 | _ret = copy(ret)
199 | _ret['module'] += f':param[{name}]'
200 | for fname, f in param_fdict.items():
201 | _ret[fname] = f(p).item()
202 | records.append(_ret)
203 |
204 | return f
205 |
206 | def _get_coord_data(models, dataloader, optcls, nsteps=3,
207 | dict_in_out=False, flatten_input=False, flatten_output=False,
208 | output_name='loss', lossfn='xent', filter_module_by_name=None,
209 | fix_data=True, cuda=True, nseeds=1,
210 | output_fdict=None, input_fdict=None, param_fdict=None,
211 | show_progress=True, one_hot_target=False):
212 | '''Inner method for `get_coord_data`.
213 |
214 | Train the models in `models` with optimizer given by `optcls` and data from
215 | `dataloader` for `nsteps` steps, and record coordinate statistics specified
216 | by `output_fdict`, `input_fdict`, `param_fdict`. By default, only `l1` is
217 | computed for output activations of each module.
218 |
219 | Inputs:
220 | models:
221 | a dict of lazy models, where the keys are numbers indicating width.
222 | Each entry of `models` is a function that instantiates a model given
223 | nothing.
224 | dataloader:
225 | an iterator whose elements are either Huggingface style dicts, if
226 | `dict_in_out` is True, or (input, label). If `fix_data` is True
227 | (which is the default), then only the first element of `dataloader`
228 | is used in a loop and the rest of `dataloder` is ignored.
229 | optcls:
230 | a function so that `optcls(model)` gives an optimizer used to train
231 | the model.
232 | nsteps:
233 | number of steps to train the model
234 | dict_in_out:
235 | whether the data loader contains Huggingface-style dict input and
236 | output. Default: False
237 | flatten_input:
238 | if not `dict_in_out`, reshape the input to be
239 | `input.view(input.shape[0], -1)`. Typically used for testing MLPs.
240 | flatten_output:
241 | if not `dict_in_out`, reshape the label to be `label.view(-1,
242 | input.shape[-1])`.
243 | output_name:
244 | if `dict_in_out`, this is the key for the loss value if the output
245 | is a dict. If the output is not a dict, then we assume the first
246 | element of the output is the loss.
247 | lossfn:
248 | loss function to use if not `dict_in_out`. Can be either a string from
249 | [`xent`, 'mse', 'nll', 'l1'] or a python `callable` such that
250 | `lossfn(output, target)` returns the loss value. Examples of valid
251 | `callable`s are `F.cross_entropy`, `F.mse_loss`, etc, where `F` is
252 | `torch.nn.functional`. Default: 'xent'
253 | filter_module_by_name:
254 | a function that returns a bool given module names (from
255 | `model.named_modules()`), or None. If not None, then only modules
256 | whose name yields True will be recorded.
257 | cuda:
258 | whether to use cuda or not. Default: True
259 | nseeds:
260 | number of times to repeat the training, each with different seeds.
261 | output_fdict, input_fdict, param_fdict:
262 | function dicts to be used in `_record_coords`. By default, only `l1`
263 | is computed for output activations of each module.
264 | show_progress:
265 | show progress using tqdm. Default: True
266 | one_hot_target:
267 | convert target label into a one-hot vector. This typically is only
268 | used for `'mse'` or `'l1'` losses in classification tasks.
269 | Default: False
270 | Output:
271 | a pandas DataFrame containing recorded results. The column names are
272 | `'width', 'module', 't'` as well as names of statistics recorded, such
273 | as `'l1'` (see `FDICT` for other premade statistics that can be
274 | collected).
275 |
276 | Breaking Changes:
277 | In v1.0.0, when `lossfn=='mse'`, the target is automatically converted
278 | to a one hot vector before loss computation. Starting in v1.1.0, this
279 | behavior is turned off, and the user needs to explicitly turn on this
280 | behavior by setting `one_hot_target=True`.
281 |
282 | '''
283 | df = []
284 | if fix_data:
285 | batch = next(iter(dataloader))
286 | dataloader = [batch] * nsteps
287 | if show_progress:
288 | from tqdm import tqdm
289 | pbar = tqdm(total=nseeds * len(models))
290 |
291 | for i in range(nseeds):
292 | torch.manual_seed(i)
293 | for width, model in models.items():
294 | model = model()
295 | model = model.train()
296 | if cuda:
297 | model = model.cuda()
298 | optimizer = optcls(model)
299 | for batch_idx, batch in enumerate(dataloader, 1):
300 | remove_hooks = []
301 | # add hooks
302 | for name, module in model.named_modules():
303 | if filter_module_by_name and not filter_module_by_name(name):
304 | continue
305 | remove_hooks.append(module.register_forward_hook(
306 | _record_coords(df, width, name, batch_idx,
307 | output_fdict=output_fdict,
308 | input_fdict=input_fdict,
309 | param_fdict=param_fdict)))
310 | if dict_in_out:
311 | if cuda:
312 | for k, v in batch.items():
313 | if isinstance(v, torch.Tensor):
314 | batch[k] = v.cuda()
315 | outputs = model(**batch)
316 | loss = outputs[output_name] if isinstance(outputs, dict) else outputs[0]
317 | else:
318 | (data, target) = batch
319 | if cuda:
320 | data, target = data.cuda(), target.cuda()
321 | if flatten_input:
322 | data = data.view(data.size(0), -1)
323 | output = model(data)
324 | if flatten_output:
325 | output = output.view(-1, output.shape[-1])
326 | if one_hot_target:
327 | target = F.one_hot(target,
328 | num_classes=output.size(-1)).float()
329 | if lossfn == 'xent':
330 | loss = F.cross_entropy(output, target)
331 | elif lossfn == 'mse':
332 | loss = F.mse_loss(output, target)
333 | elif lossfn == 'nll':
334 | loss = F.nll_loss(output, target)
335 | elif lossfn == 'l1':
336 | loss = F.l1_loss(output, target)
337 | elif callable(lossfn):
338 | loss = lossfn(output, target)
339 | else:
340 | raise NotImplementedError(f'unknown `lossfn`: {lossfn}')
341 | optimizer.zero_grad()
342 | loss.backward()
343 | optimizer.step()
344 |
345 | # remove hooks
346 | for handle in remove_hooks:
347 | handle.remove()
348 |
349 | if batch_idx == nsteps: break
350 | if show_progress:
351 | pbar.update(1)
352 | if show_progress:
353 | pbar.close()
354 | return pd.DataFrame(df)
355 |
356 |
357 | def get_coord_data(models, dataloader, optimizer='sgd', lr=None, mup=True,
358 | filter_trainable_by_name=None,
359 | **kwargs):
360 | '''Get coord data for coord check.
361 |
362 | Train the models in `models` with data from `dataloader` and optimizer
363 | specified by `optimizer` and `lr` for `nsteps` steps, and record coordinate
364 | statistics specified by `output_fdict`, `input_fdict`, `param_fdict`. By
365 | default, only `l1` is computed for output activations of each module.
366 |
367 | This function wraps around `_get_coord_data`, with the main difference being
368 | user can specify common optimizers via a more convenient interface.
369 |
370 | Inputs:
371 | models:
372 | a dict of lazy models, where the keys are numbers indicating width.
373 | Each entry of `models` is a function that instantiates a model given
374 | nothing.
375 | dataloader:
376 | an iterator whose elements are either Huggingface style dicts, if
377 | `dict_in_out` is True, or (input, label). If `fix_data` is True
378 | (which is the default), then only the first element of `dataloader`
379 | is used in a loop and the rest of `dataloder` is ignored.
380 | optimizer:
381 | a string in `['sgd', 'adam', 'adamw']`, with default being `'sgd'`.
382 | lr:
383 | learning rate. By default is 0.1 for `'sgd'` and 1e-3 for others.
384 | mup:
385 | If True, then use the optimizer from `mup.optim`; otherwise, use the
386 | one from `torch.optim`.
387 | filter_trainable_by_name:
388 | a function that returns a bool given module names (from
389 | `model.named_modules()`), or None. If not None, then only modules
390 | whose name yields True will be trained.
391 | nsteps:
392 | number of steps to train the model
393 | dict_in_out:
394 | whether the data loader contains Huggingface-style dict input and
395 | output. Default: False
396 | flatten_input:
397 | if not `dict_in_out`, reshape the input to be
398 | `input.view(input.shape[0], -1)`. Typically used for testing MLPs.
399 | flatten_output:
400 | if not `dict_in_out`, reshape the label to be `label.view(-1,
401 | input.shape[-1])`.
402 | output_name:
403 | if `dict_in_out`, this is the key for the loss value if the output
404 | is a dict. If the output is not a dict, then we assume the first
405 | element of the output is the loss.
406 | lossfn:
407 | loss function to use if not `dict_in_out`. Can be either a string from
408 | [`xent`, 'mse', 'nll', 'l1'] or a python `callable` such that
409 | `lossfn(output, target)` returns the loss value. Examples of valid
410 | `callable`s are `F.cross_entropy`, `F.mse_loss`, etc, where `F` is
411 | `torch.nn.functional`. Default: 'xent'
412 | filter_module_by_name:
413 | a function that returns a bool given module names (from
414 | `model.named_modules()`), or None. If not None, then only modules
415 | whose name yields True will be recorded.
416 | cuda:
417 | whether to use cuda or not. Default: True
418 | nseeds:
419 | number of times to repeat the training, each with different seeds.
420 | output_fdict, input_fdict, param_fdict:
421 | function dicts to be used in `_record_coords`. By default, only `l1`
422 | is computed for output activations of each module.
423 | show_progress:
424 | show progress using tqdm. Default: True
425 | one_hot_target:
426 | convert target label into a one-hot vector. This typically is only
427 | used for `'mse'` or `'l1'` losses in classification tasks.
428 | Default: False
429 | Output:
430 | a pandas DataFrame containing recorded results. The column names are
431 | `'width', 'module', 't'` as well as names of statistics recorded, such
432 | as `'l1'` (see `FDICT` for other premade statistics that can be
433 | collected).
434 |
435 | Breaking Changes:
436 | In v1.0.0, when `lossfn=='mse'`, the target is automatically converted
437 | to a one hot vector before loss computation. Starting in v1.1.0, this
438 | behavior is turned off, and the user needs to explicitly turn on this
439 | behavior by setting `one_hot_target=True`.
440 | '''
441 | if lr is None:
442 | lr = 0.1 if optimizer == 'sgd' else 1e-3
443 | if mup:
444 | from mup.optim import MuAdam as Adam
445 | from mup.optim import MuAdamW as AdamW
446 | from mup.optim import MuSGD as SGD
447 | else:
448 | from torch.optim import SGD, Adam, AdamW
449 | def get_trainable(model):
450 | params = model.parameters()
451 | if filter_trainable_by_name is not None:
452 | params = []
453 | for name, p in model.named_parameters():
454 | if filter_trainable_by_name(name):
455 | params.append(p)
456 | return params
457 | if optimizer == 'sgd':
458 | optcls = lambda model: SGD(get_trainable(model), lr=lr)
459 | elif optimizer == 'adam':
460 | optcls = lambda model: Adam(get_trainable(model), lr=lr)
461 | elif optimizer == 'adamw':
462 | optcls = lambda model: AdamW(get_trainable(model), lr=lr)
463 | elif optimizer is None:
464 | raise ValueError('optimizer should be sgd|adam|adamw or a custom function')
465 |
466 | data = _get_coord_data(models, dataloader, optcls, **kwargs)
467 | data['optimizer'] = optimizer
468 | data['lr'] = lr
469 | return data
470 |
471 |
472 | def plot_coord_data(df, y='l1', save_to=None, suptitle=None, x='width', hue='module',
473 | legend='full', name_contains=None, name_not_contains=None, module_list=None,
474 | loglog=True, logbase=2, face_color=None, subplot_width=5,
475 | subplot_height=4):
476 | '''Plot coord check data `df` obtained from `get_coord_data`.
477 |
478 | Input:
479 | df:
480 | a pandas DataFrame obtained from `get_coord_data`
481 | y:
482 | the column of `df` to plot on the y-axis. Default: `'l1'`
483 | save_to:
484 | path to save the resulting figure, or None. Default: None.
485 | suptitle:
486 | The title of the entire figure.
487 | x:
488 | the column of `df` to plot on the x-axis. Default: `'width'`
489 | hue:
490 | the column of `df` to represent as color. Default: `'module'`
491 | legend:
492 | 'auto', 'brief', 'full', or False. This is passed to `seaborn.lineplot`.
493 | name_contains, name_not_contains:
494 | only plot modules whose name contains `name_contains` and does not contain `name_not_contains`
495 | module_list:
496 | only plot modules that are given in the list, overrides `name_contains` and `name_not_contains`
497 | loglog:
498 | whether to use loglog scale. Default: True
499 | logbase:
500 | the log base, if using loglog scale. Default: 2
501 | face_color:
502 | background color of the plot. Default: None (which means white)
503 | subplot_width, subplot_height:
504 | The width and height for each timestep's subplot. More precisely,
505 | the figure size will be
506 | `(subplot_width*number_of_time_steps, subplot_height)`.
507 | Default: 5, 4
508 |
509 | Output:
510 | the `matplotlib` figure object
511 | '''
512 | ### preprocessing
513 | df = copy(df)
514 | # nn.Sequential has name '', which duplicates the output layer
515 | df = df[df.module != '']
516 | if module_list is not None:
517 | df = df[df['module'].isin(module_list)]
518 | else:
519 | if name_contains is not None:
520 | df = df[df['module'].str.contains(name_contains)]
521 | if name_not_contains is not None:
522 | df = df[~(df['module'].str.contains(name_not_contains))]
523 | # for nn.Sequential, module names are numerical
524 | try:
525 | df['module'] = pd.to_numeric(df['module'])
526 | except ValueError:
527 | pass
528 |
529 | ts = df.t.unique()
530 |
531 | import matplotlib.pyplot as plt
532 | import seaborn as sns
533 | sns.set()
534 |
535 | def tight_layout(plt):
536 | plt.tight_layout(rect=[0, 0.03, 1, 0.95])
537 |
538 | ### plot
539 | fig = plt.figure(figsize=(subplot_width * len(ts), subplot_height))
540 | hue_order = sorted(set(df['module']))
541 | if face_color is not None:
542 | fig.patch.set_facecolor(face_color)
543 | ymin, ymax = min(df[y]), max(df[y])
544 | for t in ts:
545 | t = int(t)
546 | plt.subplot(1, len(ts), t)
547 | sns.lineplot(x=x, y=y, data=df[df.t == t], hue=hue, hue_order=hue_order, legend=legend if t == 1 else None)
548 | plt.title(f't={t}')
549 | if t != 1:
550 | plt.ylabel('')
551 | if loglog:
552 | plt.loglog(base=logbase)
553 | ax = plt.gca()
554 | ax.set_ylim([ymin, ymax])
555 | if suptitle:
556 | plt.suptitle(suptitle)
557 | tight_layout(plt)
558 | if save_to is not None:
559 | plt.savefig(save_to)
560 | print(f'coord check plot saved to {save_to}')
561 |
562 | return fig
563 |
564 | # example of how to plot coord check results
565 | # for the CNN and MLP models in mup.test
566 | def example_plot_coord_check(
567 | arch='mlp', optimizer='sgd', lr=None, widths=None, mup=True,
568 | nsteps=3, nseeds=10, plotdir='', batchnorm=False, batch_size=1,
569 | init='kaiming_fan_in_normal', download_cifar=True, legend='full',
570 | dict_in_out=False, name_contains=None, name_not_contains=None):
571 |
572 | from mup.test.models import get_lazy_models, get_train_loader
573 | if batchnorm:
574 | batch_size = 5
575 | train_loader = get_train_loader(batch_size=batch_size, download=download_cifar)
576 |
577 | if widths is None:
578 | widths = 2**np.arange(7, 14) if arch == 'mlp' else 2**np.arange(3, 10)
579 | models = get_lazy_models(arch, widths, mup=mup, batchnorm=batchnorm, init=init, readout_zero_init=True)
580 | df = get_coord_data(models, train_loader, mup=mup, lr=lr, optimizer=optimizer, flatten_input=arch == 'mlp', nseeds=nseeds, nsteps=nsteps, dict_in_out=dict_in_out)
581 |
582 | prm = 'μP' if mup else 'SP'
583 | bn = 'on' if batchnorm else 'off'
584 | if lr is None:
585 | lr = 0.1 if optimizer == 'sgd' else 1e-3
586 | return plot_coord_data(df, legend=legend,
587 | name_contains=name_contains, name_not_contains=name_not_contains,
588 | save_to=os.path.join(plotdir, f'{prm.lower()}_{arch}_{optimizer}_lr{lr}_nseeds{nseeds}_bn{int(batchnorm)}_coord.png'),
589 | suptitle=f'{prm} {arch.upper()} {optimizer} lr={lr} bn={bn} nseeds={nseeds}',
590 | face_color='xkcd:light grey' if not mup else None)
591 |
592 |
593 | if __name__ == '__main__':
594 | import os
595 | os.makedirs('coord_checks', exist_ok=True)
596 | plotdir = 'coord_checks'
597 |
598 | nseeds = 5
599 |
600 | for arch, opt, bn, mup in product(['mlp', 'cnn'], ['sgd', 'adam'], [False, True], [False, True]):
601 | example_plot_coord_check(arch, opt, batchnorm=bn, mup=mup, nseeds=nseeds, download_cifar=True, legend=None, plotdir=plotdir)
602 |
603 |
604 |
--------------------------------------------------------------------------------
/mup/infshape.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Microsoft Corporation.
2 |
3 | from copy import copy
4 |
5 |
6 | class InfDim:
7 | '''A dimension with a base dimension, used for calculating μP scaling.
8 |
9 | An `InfDim` object is made up of 2 numbers: a dimension and a base
10 | dimension. If the base dimension is None, then this object represents a
11 | "finite", or "non-width" dimension. Otherwise, it represents an "infinite",
12 | or "width" dimension.
13 | '''
14 |
15 | def __init__(self, base_dim, dim):
16 | self.base_dim = base_dim
17 | self.dim = dim
18 |
19 | def isinf(self):
20 | return self.base_dim is not None
21 |
22 | def width_mult(self):
23 | '''Width multiplier used for calculating μP scaling.
24 |
25 | If finite, return 1.
26 | If infinite, return dim / base_dim.
27 | '''
28 | if self.isinf():
29 | return self.dim / self.base_dim
30 | return 1
31 |
32 | def __repr__(self):
33 | return f'InfDim({self.base_dim}, {self.dim})'
34 |
35 | def __str__(self):
36 | if self.isinf():
37 | return repr(self)
38 | return f'FinDim({self.dim})'
39 |
40 | def __eq__(self, other: object) -> bool:
41 | if not isinstance(other, InfDim):
42 | return False
43 | return self.base_dim == other.base_dim and \
44 | self.dim == other.dim
45 |
46 |
47 | class InfShape(tuple):
48 | '''A tuple of `InfDim`s.
49 |
50 | This is intended to be attached to each parameter tensor `p` as `p.infshape`.
51 | '''
52 |
53 | def __init__(self, *args, **kwargs):
54 | tuple.__init__(*args, **kwargs)
55 | for dim in self:
56 | if not isinstance(dim, InfDim):
57 | raise ValueError('Elements of InfShape needs to be of class InfDim')
58 | # set main to be the last dimension that is infinite
59 | # for inf x inf this is fanin
60 | # for inf x fin or fin x inf it's the unique inf dim
61 | # user can set this manually if necessary
62 | self.main_idx = self.main = None
63 | for i, dim in list(enumerate(self))[::-1]:
64 | if dim.isinf():
65 | self.main_idx = i
66 | self.main = dim
67 | break
68 |
69 | def fanin_fanout(self):
70 | assert len(self) >= 2, 'fanin, fanout undefined for 1-dimensional weights'
71 | return self[1], self[0]
72 |
73 | def fanin_fanout_mult_ratio(self):
74 | fanin, fanout = self.fanin_fanout()
75 | return fanin.width_mult() / fanout.width_mult()
76 |
77 | def ninf(self):
78 | return sum(1 for dim in self if dim.isinf())
79 |
80 | def width_mult(self):
81 | if self.main is not None:
82 | return self.main.width_mult()
83 | return 1
84 |
85 | def base_shape(self):
86 | return [d.base_dim for d in self]
87 |
88 | def shape(self):
89 | return [d.dim for d in self]
90 |
91 | def __repr__(self):
92 | r = tuple.__repr__(self)[1:-1]
93 | return f'InfShape([{r}])'
94 |
95 | def serialize(self):
96 | d = {'base_shape': [], 'shape': []}
97 | for infdim in self:
98 | d['shape'].append(infdim.dim)
99 | d['base_shape'].append(infdim.base_dim)
100 | return d
101 |
102 | def __eq__(self, other: object) -> bool:
103 | if not isinstance(other, InfShape):
104 | return False
105 | return all(d == dd for d, dd in zip(self, other))
106 |
107 | @classmethod
108 | def deserialize(cls, d):
109 | infshape = []
110 | for base_dim, dim in zip(d['base_shape'], d['shape']):
111 | infshape.append(InfDim(base_dim, dim))
112 | return InfShape(infshape)
113 |
114 | @classmethod
115 | def from_base_shape(cls, bsh):
116 | return InfShape([InfDim(bd, None) for bd in bsh])
117 |
118 | def zip_infshape(base_dims, dims, fin_if_same=True):
119 | infshape = []
120 | for bd, d in zip(base_dims, dims):
121 | if isinstance(bd, InfDim):
122 | # retain bd's base_dim but overwrite dim
123 | infdim = copy(bd)
124 | infdim.dim = d
125 | infshape.append(infdim)
126 | elif isinstance(bd, int):
127 | if bd == d and fin_if_same:
128 | infshape.append(InfDim(None, d))
129 | else:
130 | infshape.append(InfDim(bd, d))
131 | else:
132 | raise ValueError(f'unhandled base_dim type: {type(bd)}')
133 | return InfShape(infshape)
134 |
135 | if __name__ == '__main__':
136 | infshape = InfShape([InfDim(None, 100), InfDim(128, 1024), InfDim(128, 128)])
137 | print(infshape)
138 | print(f'{infshape.ninf()} dims are inf')
139 | print(f'width_mult {infshape.width_mult()}')
140 |
141 | print(zip_infshape([64, 128, 1024], [32, 128, 2048]))
--------------------------------------------------------------------------------
/mup/init.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Microsoft Corporation.
2 | '''
3 | Initializer functions mirroring those of `torch.nn.init`. They serve as
4 | drop-in replacements after the user has called `set_base_shapes` on their
5 | model.
6 |
7 | All of the initializers here are designed to 1) behave exactly the same
8 | as the torch versions when the model shapes are equal to their base shapes,
9 | and 2) to scale with width correctly (according to μP), when the model shapes
10 | differ from the base shapes. In general, this means deviating from the
11 | torch version behaviors.
12 | '''
13 | import math
14 | import warnings
15 |
16 | import torch
17 | from torch.nn.init import (_calculate_correct_fan,
18 | _calculate_fan_in_and_fan_out, _no_grad_fill_,
19 | _no_grad_normal_, _no_grad_uniform_, calculate_gain)
20 |
21 |
22 | def constant_std_init_(tensor, sampler_):
23 | assert hasattr(tensor, 'infshape'), 'Please call set_base_shapes(...)'
24 | if tensor.infshape.ninf() <= 1:
25 | sampler_(tensor)
26 | elif tensor.infshape.ninf() == 2:
27 | sampler_(tensor, scale=tensor.infshape.width_mult()**-0.5)
28 | else:
29 | raise NotImplementedError()
30 | return tensor
31 |
32 | def uniform_(tensor, a=0, b=1):
33 | '''Drop-in replacement of `torch.nn.init.uniform_`.
34 | Note:
35 | - if using this function, ensure `a` and `b` do not depend on fan-in,
36 | fan-out, or other notions of width, e.g. if a = 0, b = 1.
37 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
38 | '''
39 | assert hasattr(tensor, 'infshape'), 'Please call set_base_shapes(...)'
40 | if a != -b:
41 | assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0'
42 | def sampler_(tensor, scale=1):
43 | _no_grad_uniform_(tensor, a * scale, b * scale)
44 | return constant_std_init_(tensor, sampler_)
45 |
46 | def normal_(tensor, mean=0, std=1):
47 | '''Drop-in replacement of `torch.nn.init.normal_`.
48 | Note:
49 | - if using this function, ensure `mean` and `std` do not depend on
50 | fan-in, fan-out, or other notions of width, e.g. if mean = 0, std =
51 | 1.
52 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
53 | '''
54 | if mean != 0:
55 | assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0'
56 | def sampler_(tensor, scale=1):
57 | _no_grad_normal_(tensor, mean=mean*scale, std=std*scale)
58 | return constant_std_init_(tensor, sampler_)
59 |
60 | def ones_(tensor):
61 | '''Same as `torch.nn.init.ones_`.
62 | Note:
63 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
64 | '''
65 | assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0'
66 | def sampler_(tensor, scale=1):
67 | _no_grad_fill_(tensor, scale)
68 | return constant_std_init_(tensor, sampler_)
69 |
70 | def eye_(tensor):
71 | '''Same as `torch.nn.init.eye_`.
72 | Note:
73 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
74 | '''
75 | assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0'
76 | return torch.nn.init.eye_(tensor)
77 |
78 |
79 | def _inf_fan_adjust_xavier(scale, tensor):
80 | fan_out, fan_in = tensor.infshape[:2]
81 | # following are needed to accomodate SP models where all infshapes are finite so base_dims are Nones
82 | fan_out_base_dim = fan_out.base_dim or fan_out.dim
83 | fan_in_base_dim = fan_in.base_dim or fan_in.dim
84 | scale *= math.sqrt(
85 | (fan_out.dim + fan_in.dim)
86 | / (fan_out_base_dim + fan_in_base_dim))
87 | if tensor.infshape.ninf() <= 1:
88 | # should have fixed scale
89 | pass
90 | elif tensor.infshape.ninf() == 2:
91 | # should scale like fanin
92 | assert fan_out.isinf() and fan_in.isinf()
93 | scale /= math.sqrt(fan_in.width_mult())
94 | else:
95 | raise NotImplementedError('can only handle 2 inf dimensions currently')
96 | return scale
97 |
98 |
99 | def xavier_uniform_(tensor, gain=1.):
100 | '''Drop-in replacement of `torch.nn.init.xavier_uniform_`.
101 | Note:
102 | - if using this function, ensure `gain` does not depend on fan-in,
103 | fan-out, or other notions of width, e.g. if gain = 1.
104 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
105 | '''
106 | fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
107 | std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
108 | std = _inf_fan_adjust_xavier(std, tensor)
109 | a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
110 | return _no_grad_uniform_(tensor, -a, a)
111 |
112 |
113 | def xavier_normal_(tensor, gain=1.):
114 | '''Drop-in replacement of `torch.nn.init.xavier_normal_`.
115 | Note:
116 | - if using this function, ensure `gain` does not depend on fan-in,
117 | fan-out, or other notions of width, e.g. if gain = 1.
118 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
119 | '''
120 | fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
121 | std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
122 | std = _inf_fan_adjust_xavier(std, tensor)
123 | return _no_grad_normal_(tensor, 0., std)
124 |
125 |
126 | def _inf_fan_adjust_kaiming(scale, tensor, mode):
127 | fan_out, fan_in = tensor.infshape[:2]
128 | if tensor.infshape.ninf() == 0:
129 | return scale
130 | elif tensor.infshape.ninf() == 1:
131 | # should have fixed scale
132 | if mode == 'fan_in' and fan_in.isinf():
133 | scale *= fan_in.width_mult()**0.5
134 | elif mode == 'fan_out' and fan_out.isinf():
135 | scale *= fan_out.width_mult()**0.5
136 | elif tensor.infshape.ninf() == 2:
137 | # should scale like fanin
138 | assert fan_out.isinf() and fan_in.isinf()
139 | if mode == 'fan_out':
140 | scale *= math.sqrt(fan_out.width_mult() / fan_in.width_mult())
141 | else:
142 | raise NotImplementedError('can only handle <=2 inf dimensions currently')
143 | return scale
144 |
145 | def kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'):
146 | '''Drop-in replacement of `torch.nn.init.kaiming_normal_`.
147 | Note:
148 | - if using this function, ensure `a` does not depend on fan-in,
149 | fan-out, or other notions of width, e.g. if a = 0.
150 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
151 | '''
152 | if 0 in tensor.shape:
153 | warnings.warn("Initializing zero-element tensors is a no-op")
154 | return tensor
155 | fan = _calculate_correct_fan(tensor, mode)
156 | gain = calculate_gain(nonlinearity, a)
157 | std = _inf_fan_adjust_kaiming(gain / math.sqrt(fan), tensor, mode)
158 | with torch.no_grad():
159 | return tensor.normal_(0, std)
160 |
161 |
162 | def kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'):
163 | '''Drop-in replacement of `torch.nn.init.kaiming_uniform_`.
164 | Note:
165 | - if using this function, ensure `a` does not depend on fan-in,
166 | fan-out, or other notions of width, e.g. if a = 0.
167 | - `tensor` should have `infshape` attribute set by `set_base_shapes`.
168 | '''
169 | if 0 in tensor.shape:
170 | warnings.warn("Initializing zero-element tensors is a no-op")
171 | return tensor
172 | fan = _calculate_correct_fan(tensor, mode)
173 | gain = calculate_gain(nonlinearity, a)
174 | std = _inf_fan_adjust_kaiming(gain / math.sqrt(fan), tensor, mode)
175 | bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
176 | with torch.no_grad():
177 | return tensor.uniform_(-bound, bound)
178 |
179 |
180 | try:
181 | from torch.nn.init import _no_grad_trunc_normal_
182 | def trunc_normal_(tensor, mean=0, std=1, a=-2, b=2):
183 | '''Drop-in replacement of `torch.nn.init.trunc_normal_`.
184 | Note:
185 | - if using this function, ensure `mean`, `std`, `a`, `b` do not
186 | depend on fan-in, fan-out, or other notions of width, e.g. if
187 | mean = 0, std = 1, a = -2, b = 2.
188 | - `tensor` should have `infshape` attribute set by
189 | `set_base_shapes`.
190 | '''
191 | if mean != 0 or a != -b:
192 | assert tensor.infshape.ninf() == 1, 'Sampler for (inf, inf) tensors should have mean 0'
193 | def sampler_(tensor, scale=1):
194 | _no_grad_trunc_normal_(tensor, mean=mean*scale, std=std*scale, a=a*scale, b=b*scale)
195 | return constant_std_init_(tensor, sampler_)
196 | except:
197 | warnings.warn(
198 | 'Failed to import _no_grad_trunc_normal_ from torch.nn.init; '
199 | 'you might be running an older version of torch. trunc_normal_ will not work.')
200 | def trunc_normal_(tensor, mean=0, std=1, a=-2, b=2):
201 | warnings.warn('Please upgrade your Pytorch version before using truncated normal.')
202 | pass
203 |
--------------------------------------------------------------------------------
/mup/layer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Microsoft Corporation.
2 | from torch.nn import Linear
3 |
4 |
5 | class MuReadout(Linear):
6 | '''Drop-in replacement for all output linear layers.
7 |
8 | An "output" linear layer is one that maps from a width dimension (e.g.,
9 | `d_model` in a Transformer) to a non-width dimension (e.g., vocab size).
10 |
11 | This layer implements the version of μP with a 1/width multiplier and a
12 | constant variance initialization for both weights and biases.
13 | '''
14 | def __init__(self, *args, readout_zero_init=False, output_mult=1.0, **kwargs):
15 | self.output_mult = output_mult
16 | self.readout_zero_init = readout_zero_init
17 | super().__init__(*args, **kwargs)
18 |
19 | def reset_parameters(self) -> None:
20 | if self.readout_zero_init:
21 | self.weight.data[:] = 0
22 | if self.bias is not None:
23 | self.bias.data[:] = 0
24 | else:
25 | super().reset_parameters()
26 |
27 | def width_mult(self):
28 | assert hasattr(self.weight, 'infshape'), (
29 | 'Please call set_base_shapes(...). If using torch.nn.DataParallel, '
30 | 'switch to distributed training with '
31 | 'torch.nn.parallel.DistributedDataParallel instead'
32 | )
33 | return self.weight.infshape.width_mult()
34 |
35 | def _rescale_parameters(self):
36 | '''Rescale parameters to convert SP initialization to μP initialization.
37 |
38 | Warning: This method is NOT idempotent and should be called only once
39 | unless you know what you are doing.
40 | '''
41 | if hasattr(self, '_has_rescaled_params') and self._has_rescaled_params:
42 | raise RuntimeError(
43 | "`_rescale_parameters` has been called once before already. "
44 | "Unless you know what you are doing, usually you should not be calling `_rescale_parameters` more than once.\n"
45 | "If you called `set_base_shapes` on a model loaded from a checkpoint, "
46 | "or just want to re-set the base shapes of an existing model, "
47 | "make sure to set the flag `rescale_params=False`.\n"
48 | "To bypass this error and *still rescale parameters*, set `self._has_rescaled_params=False` before this call.")
49 | if self.bias is not None:
50 | self.bias.data *= self.width_mult()**0.5
51 | self.weight.data *= self.width_mult()**0.5
52 | self._has_rescaled_params = True
53 |
54 | def forward(self, x):
55 | return super().forward(
56 | self.output_mult * x / self.width_mult())
57 |
58 |
59 | class MuSharedReadout(MuReadout):
60 | '''`MuReadout` with weights shared with an `nn.Embedding` layer.
61 |
62 | Inputs:
63 | weight: should be weight of an `nn.Embedding` layer
64 | other inputs are fed to `MuReadout`
65 | '''
66 | def __init__(self, weight, bias=True, **kwargs):
67 | super().__init__(*weight.shape, bias=bias, **kwargs)
68 | self.weight = weight
69 |
70 | def rescale_linear_bias(linear):
71 | '''Rescale bias in nn.Linear layers to convert SP initialization to μP initialization.
72 |
73 | Warning: This method is NOT idempotent and should be called only once
74 | unless you know what you are doing.
75 | '''
76 | if hasattr(linear, '_has_rescaled_params') and linear._has_rescaled_params:
77 | raise RuntimeError("`rescale_linear_bias` has been called once before already. Unless you know what you are doing, usually you should not be calling `rescale_linear_bias` more than once.\n"
78 | "If you called `set_base_shapes` on a model loaded from a checkpoint, or just want to re-set the base shapes of an existing model, make sure to set the flag `rescale_params=False`.\n"
79 | "To bypass this error and *still rescale biases*, set `linear._has_rescaled_params=False` before this call.")
80 | if linear.bias is None:
81 | return
82 | fanin_mult = linear.weight.infshape[1].width_mult()
83 | linear.bias.data *= fanin_mult**0.5
84 | linear._has_rescaled_params = True
85 |
--------------------------------------------------------------------------------
/mup/optim.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Microsoft Corporation.
2 | '''
3 | Optimizers with μP scaling.
4 |
5 | Here we provide 3 ready-to-go optimizers MuAdam, MuAdamW, and MuSGD.
6 | However, the user can easily convert their own optimizer to a μP
7 | optimizer: if your `optimizer` is "Adam-like", such as RMSProp and Adagrad,
8 | that involves normalizing the gradient entrywise, then the following creates
9 | the desired μP optimizer:
10 |
11 | def MuOptimizer(params, **kwargs):
12 | return MuAdam(params, impl=optimizer, **kwargs)
13 |
14 | On the other hand, if your `optimizer` is "SGD-like", such as ASGD, then
15 | the following creates the desired μP optimizer:
16 |
17 | def MuOptimizer(params, **kwargs):
18 | return MuSGD(params, impl=optimizer, **kwargs)
19 |
20 | See Appendix B in our paper for discussions of other optimizers.
21 | '''
22 | from collections import defaultdict
23 |
24 | from torch.optim import SGD, Adam, AdamW
25 |
26 |
27 | def process_param_groups(params, **kwargs):
28 | param_groups = list(params)
29 | if not isinstance(param_groups[0], dict):
30 | param_groups = [{'params': param_groups}]
31 | for param_group in param_groups:
32 | if 'lr' not in param_group:
33 | param_group['lr'] = kwargs['lr']
34 | if 'weight_decay' not in param_group:
35 | param_group['weight_decay'] = kwargs.get('weight_decay', 0.)
36 | return param_groups
37 |
38 | def MuAdam(params, impl=Adam, decoupled_wd=False, **kwargs):
39 | '''Adam with μP scaling.
40 |
41 | Note for this to work properly, your model needs to have its base shapes set
42 | already using `mup.set_base_shapes`.
43 |
44 | Inputs:
45 | impl: the specific Adam-like optimizer implementation from torch.optim or
46 | elsewhere
47 | decoupled_wd: if True, skips the mup scaling for weight decay, which should
48 | be used for optimizer implementations that decouple weight decay from
49 | learning rate. See https://github.com/microsoft/mup/issues/1 for a use case.
50 | Outputs:
51 | An instance of `impl` with refined parameter groups, each of which has the correctly
52 | scaled learning rate according to mup.
53 | '''
54 | new_param_groups = []
55 | for param_group in process_param_groups(params, **kwargs):
56 | # For every existing param group, we split into several new groups
57 | def new_group():
58 | new_g = {k:v for k, v in param_group.items() if k != 'params'}
59 | new_g['params'] = []
60 | return new_g
61 | # The matrix-like weights might need multiple groups since weights
62 | # might have different width multipliers
63 | matrix_like_p = defaultdict(new_group) # key is width_mult
64 | vector_like_p = new_group()
65 | for p in param_group['params']:
66 | assert hasattr(p, 'infshape'), (
67 | f'A parameter with shape {p.shape} does not have `infshape` attribute. '
68 | 'Did you forget to call `mup.set_base_shapes` on the model?')
69 | if p.infshape.ninf() == 2:
70 | matrix_like_p[p.infshape.width_mult()]['params'].append(p)
71 | elif p.infshape.ninf() > 2:
72 | raise NotImplementedError('more than 2 inf dimensions')
73 | else:
74 | vector_like_p['params'].append(p)
75 | for width_mult, group in matrix_like_p.items():
76 | # Scale learning rate and weight decay accordingly
77 | group['lr'] /= width_mult
78 | if not decoupled_wd:
79 | group['weight_decay'] *= width_mult
80 | new_param_groups.extend(list(matrix_like_p.values()) + [vector_like_p])
81 | return impl(new_param_groups, **kwargs)
82 |
83 | def MuAdamW(params, **kwargs):
84 | '''AdamW with μP scaling.
85 |
86 | Note for this to work properly, your model needs to have its base shapes set
87 | already using `mup.set_base_shapes`.
88 | '''
89 | return MuAdam(params, impl=AdamW, **kwargs)
90 |
91 | def MuSGD(params, impl=SGD, decoupled_wd=False, **kwargs):
92 | '''SGD with μP scaling.
93 |
94 | Note for this to work properly, your model needs to have its base shapes set
95 | already using `mup.set_base_shapes`.
96 |
97 | Inputs:
98 | impl: the specific SGD-like optimizer implementation from torch.optim or
99 | elsewhere
100 | decoupled_wd: if True, skips the mup scaling for weight decay, which should
101 | be used for optimizer implementations that decouple weight decay from
102 | learning rate. See https://github.com/microsoft/mup/issues/1 for a use case.
103 | Outputs:
104 | An instance of `impl` with refined parameter groups, each of which has the correctly
105 | scaled learning rate according to mup.
106 | '''
107 | new_param_groups = []
108 | for param_group in process_param_groups(params, **kwargs):
109 | # For every existing param group, we split into several new groups
110 | def new_group():
111 | new_g = {k:v for k, v in param_group.items() if k != 'params'}
112 | new_g['params'] = []
113 | return new_g
114 | # The matrix-like weights might need multiple groups since weights
115 | # might have different width multipliers
116 | vector_like_p = defaultdict(new_group) # key is width mult
117 | matrix_like_p = defaultdict(new_group) # key is fan_in/out ratio
118 | fixed_p = new_group()
119 | for p in param_group['params']:
120 | assert hasattr(p, 'infshape'), (
121 | f'A parameter with shape {p.shape} does not have `infshape` attribute. '
122 | 'Did you forget to call `mup.set_base_shapes` on the model?')
123 | if p.infshape.ninf() == 1:
124 | vector_like_p[p.infshape.width_mult()]['params'].append(p)
125 | elif p.infshape.ninf() == 2:
126 | matrix_like_p[p.infshape.fanin_fanout_mult_ratio()]['params'].append(p)
127 | elif p.infshape.ninf() > 2:
128 | raise NotImplementedError('more than 2 inf dimensions')
129 | else:
130 | fixed_p['params'].append(p)
131 | for width_mult, group in vector_like_p.items():
132 | # Scale learning rate and weight decay accordingly
133 | group['lr'] *= width_mult
134 | if not decoupled_wd:
135 | group['weight_decay'] /= width_mult
136 | for shape_ratio, group in matrix_like_p.items():
137 | group['lr'] /= shape_ratio
138 | if not decoupled_wd:
139 | group['weight_decay'] *= shape_ratio
140 | new_param_groups.extend(list(matrix_like_p.values()) + \
141 | list(vector_like_p.values()) + [fixed_p])
142 | return impl(new_param_groups, **kwargs)
143 |
--------------------------------------------------------------------------------
/mup/shape.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 Microsoft Corporation.
2 | from copy import deepcopy
3 |
4 | import yaml
5 | from torch import nn
6 | from torch.nn import Linear
7 | from torch.nn.modules.conv import _ConvNd
8 |
9 | from mup.infshape import InfShape, zip_infshape
10 | from mup.layer import MuReadout, rescale_linear_bias
11 |
12 | __BSH_COMMENT__ = '''\
13 | # This is a base shape file encoded in yaml
14 | # - `null` indicates a dimension is "finite", i.e. a non-"width" dimension
15 | # - a number indicates the base dimension of an "infinite" dimension, i.e. some notion of "width"
16 | '''
17 |
18 | def get_shapes(model):
19 | # If you want to implement a custom shapes function, you can use this name
20 | if hasattr(model, "get_shapes"):
21 | return model.get_shapes()
22 | return {name: param.shape for name, param in model.named_parameters()}
23 |
24 | def get_infshapes(model):
25 | return {name: param.infshape for name, param in model.named_parameters()}
26 |
27 | def save_base_shapes(model_or_shapes, file):
28 | if isinstance(model_or_shapes, nn.Module):
29 | sh = get_infshapes(model_or_shapes)
30 | elif isinstance(model_or_shapes, dict):
31 | sh = deepcopy(model_or_shapes)
32 | else:
33 | raise ValueError()
34 | sh = {k: s.base_shape() for k, s in sh.items()}
35 | s = yaml.dump(sh, None, indent=4)
36 | s = __BSH_COMMENT__ + s
37 | with open(file, 'w') as f:
38 | f.write(s)
39 |
40 | def load_base_shapes(filename):
41 | '''Get a dict of `InfShape` from a filename.'''
42 | with open(filename, 'r') as f:
43 | d = yaml.safe_load(f)
44 | return {k: InfShape.from_base_shape(v) for k, v in d.items()}
45 |
46 | def _dataparallel_hack(base_shapes, shapes):
47 | '''Fix module name discrepancy caused by (Distributed)DataParallel module.
48 |
49 | The parameters of a (Distributed)DataParallel module all have names that
50 | start with 'module'. This causes a mismatch from non-DataParallel modules.
51 | This function tries to match `base_shapes` to `shapes`: if the latter starts
52 | with 'module', then make the former too; likewise if not.
53 | '''
54 | if all(k.startswith('module.') for k in shapes) and \
55 | all(not k.startswith('module.') for k in base_shapes):
56 | return {'module.' + k: v for k, v in base_shapes.items()}, shapes
57 | if all(not k.startswith('module.') for k in shapes) and \
58 | all(k.startswith('module.') for k in base_shapes):
59 | return {k.strip('module.'): v for k, v in base_shapes.items()}, shapes
60 | return base_shapes, shapes
61 |
62 |
63 | def _extract_shapes(x):
64 | '''
65 | Input:
66 | x: can be any of the following:
67 | - `nn.Module`
68 | - dict of shapes
69 | - dict of `InfShape`
70 | - str of path to a base shapes (.bsh) file
71 | Output:
72 | If `x` is dict of `InfShape`, then output itself.
73 | If `x` is path, then output a dict of `InfShapes` loaded from `x`.
74 | Else, output the shapes (not `InfShape`) associated to `x`
75 | '''
76 | if isinstance(x, nn.Module):
77 | x_shapes = get_shapes(x)
78 | elif isinstance(x, dict):
79 | x_shapes = deepcopy(x)
80 | elif isinstance(x, str):
81 | # x is file name
82 | x_shapes = load_base_shapes(x)
83 | else:
84 | raise ValueError(f'unhandled x type: {type(x)}')
85 | return x_shapes
86 |
87 | def _zip_infshape_dict(base_shapes, shapes):
88 | '''make a dict of `InfShape` from two dicts of shapes.
89 | Inputs:
90 | base_shapes: dict of base shapes or InfShape objects
91 | shapes: dict of shapes
92 | Output:
93 | dict of `InfShape` using `zip_infshape`
94 | '''
95 | base_shapes, shapes = _dataparallel_hack(base_shapes, shapes)
96 | basenames = set(base_shapes.keys())
97 | names = set(shapes.keys())
98 | assert basenames == names, (
99 | f'`base_shapes` has extra names {basenames - names}. '
100 | f'`shapes` has extra names {names - basenames}.'
101 | )
102 | infshapes = {}
103 | for name, bsh in base_shapes.items():
104 | infshapes[name] = zip_infshape(bsh, shapes[name])
105 | return infshapes
106 |
107 | def zip_infshapes(base, target):
108 | '''make a dict of `InfShape` from models or dicts.
109 | Inputs:
110 | base: a base `nn.Module` or a dict of shapes
111 | target: a target `nn.Module` or a dict of shapes
112 | Output:
113 | dict of `InfShape` using `zip_infshape`
114 | '''
115 | base_shapes = _extract_shapes(base)
116 | target_shapes = _extract_shapes(target)
117 | return _zip_infshape_dict(base_shapes, target_shapes)
118 |
119 | def clear_dims(infshape_dict):
120 | '''
121 | Input:
122 | infshape_dict: dict of `InfShape`
123 | Output:
124 | the same dict but where all `InfDim` in all `InfShape`
125 | have their `dim` attribute set to None
126 | '''
127 | d = deepcopy(infshape_dict)
128 | for _, v in d.items():
129 | for infdim in v:
130 | infdim.dim = None
131 | return d
132 |
133 | def make_base_shapes(base_shapes, delta_shapes, savefile=None):
134 | '''Make a base shape object from a base model/shapes and a delta model/shapes.
135 |
136 | Inputs:
137 | base:
138 | a base `nn.Module` or a dict of shapes
139 | delta:
140 | a "delta" model or a dict of shapes, for the sole purpose of
141 | determining which dimensions are "width" and will be scaled up and
142 | down in the target model.
143 | savefile:
144 | if a string, then the resulting base shape object is serialized to
145 | this location via yaml encoding.
146 | Outputs:
147 | base infshapes
148 | '''
149 | bsh = clear_dims(zip_infshapes(base_shapes, delta_shapes))
150 | if savefile is not None:
151 | save_base_shapes(bsh, savefile)
152 | return bsh
153 |
154 |
155 | def apply_infshapes(model, infshapes):
156 | for name, p in model.named_parameters():
157 | p.infshape = infshapes[name]
158 |
159 | def set_base_shapes(model, base, rescale_params=True, delta=None, savefile=None, do_assert=True):
160 | '''Sets the `p.infshape` attribute for each parameter `p` of `model`.
161 |
162 | Inputs:
163 | model: nn.Module instance
164 | base: The base model.
165 | Can be nn.Module, a dict of shapes, a str, or None.
166 | If None, then defaults to `model`
167 | If str, then treated as filename for yaml encoding of a dict of base shapes.
168 | rescale_params:
169 | assuming the model is initialized using the default pytorch init (or
170 | He initialization etc that scale the same way with fanin): If True
171 | (default), rescales parameters to have the correct (μP) variances.
172 | do_assert:
173 | Output:
174 | same object as `model`, after setting the `infshape` attribute of each parameter.
175 | '''
176 | if base is None:
177 | base = model
178 | base_shapes = _extract_shapes(base)
179 | if delta is not None:
180 | delta_shapes = _extract_shapes(delta)
181 | base_shapes = _zip_infshape_dict(base_shapes, delta_shapes)
182 | shapes = get_shapes(model)
183 | infshapes = _zip_infshape_dict(base_shapes, shapes)
184 | if savefile is not None:
185 | save_base_shapes(infshapes, savefile)
186 | apply_infshapes(model, infshapes)
187 | if do_assert:
188 | assert_hidden_size_inf(model)
189 | if rescale_params:
190 | for name, module in model.named_modules():
191 | if isinstance(module, MuReadout):
192 | module._rescale_parameters()
193 | elif isinstance(module, (Linear, _ConvNd)):
194 | rescale_linear_bias(module)
195 | return model
196 |
197 | def assert_hidden_size_inf(model):
198 | '''
199 | This tests for any `nn.Linear` whose output dimension is finite but input
200 | dimension is infinite and is not of type `MuReadout`. Such `nn.Linear`
201 | modules should not exist in a correctly parametrized models.
202 | '''
203 | for name, module in model.named_modules():
204 | if isinstance(module, Linear) and not isinstance(module, MuReadout):
205 | if not module.weight.infshape[0].isinf() and module.weight.infshape[1].isinf():
206 | assert False, (
207 | f'{name} has infinite fan-in and finite fan-out dimensions but is not type `MuReadout`. '
208 | 'To resolve this, either change the module to `MuReadout` or change the fan-out to an infinite dimension.'
209 | )
210 |
--------------------------------------------------------------------------------
/mup/test/__main__.py:
--------------------------------------------------------------------------------
1 | import itertools
2 | import unittest
3 | from functools import partial
4 | from itertools import cycle
5 |
6 | import numpy as np
7 | import pandas as pd
8 | import torch
9 | import torch.nn.functional as F
10 | from mup.coord_check import get_coord_data
11 | from mup.optim import MuAdam, MuSGD
12 | from mup.shape import get_infshapes, get_shapes, make_base_shapes, set_base_shapes
13 | from mup.test.models import (generate_CNN, generate_MLP, _generate_MLP, get_lazy_models,
14 | get_train_loader, init_methods)
15 |
16 | train_loader = get_train_loader(batch_size=32, num_workers=4, download=True)
17 |
18 | def reset_seed():
19 | torch.manual_seed(0)
20 |
21 | class SetBaseShapeCase(unittest.TestCase):
22 | mlp_base_shapes_file = 'mlp64.bsh.test'
23 |
24 | def get_mlp_infshapes1(self):
25 | base_model = _generate_MLP(64, True, True, True)
26 | delta_model = _generate_MLP(65, True, True, True)
27 | target_model = _generate_MLP(128, True, True, True)
28 | set_base_shapes(target_model, base_model, delta=delta_model, savefile=self.mlp_base_shapes_file)
29 | return get_infshapes(target_model)
30 |
31 | def get_mlp_infshapes1meta(self):
32 | base_model = _generate_MLP(64, True, True, True, device='meta')
33 | delta_model = _generate_MLP(65, True, True, True, device='meta')
34 | target_model = _generate_MLP(128, True, True, True)
35 | set_base_shapes(target_model, base_model, delta=delta_model, savefile=self.mlp_base_shapes_file)
36 | return get_infshapes(target_model)
37 |
38 | def get_mlp_infshapes2(self):
39 | target_model = _generate_MLP(128, True, True, True)
40 | set_base_shapes(target_model, self.mlp_base_shapes_file)
41 | return get_infshapes(target_model)
42 |
43 | def get_mlp_infshapes3(self):
44 | base_model = _generate_MLP(64, True, True, True)
45 | delta_model = _generate_MLP(65, True, True, True)
46 | base_infshapes = make_base_shapes(base_model, delta_model)
47 | target_model = _generate_MLP(128, True, True, True)
48 | set_base_shapes(target_model, base_infshapes)
49 | return get_infshapes(target_model)
50 |
51 | def get_mlp_infshapes3meta(self):
52 | base_model = _generate_MLP(64, True, True, True, device='meta')
53 | delta_model = _generate_MLP(65, True, True, True, device='meta')
54 | base_infshapes = make_base_shapes(base_model, delta_model)
55 | target_model = _generate_MLP(128, True, True, True)
56 | set_base_shapes(target_model, base_infshapes)
57 | return get_infshapes(target_model)
58 |
59 | def get_mlp_infshapes4(self):
60 | base_model = _generate_MLP(64, True, True, True)
61 | delta_model = _generate_MLP(65, True, True, True)
62 | target_model = _generate_MLP(128, True, True, True)
63 | set_base_shapes(target_model, get_shapes(base_model), delta=get_shapes(delta_model))
64 | return get_infshapes(target_model)
65 |
66 | def get_mlp_infshapes4meta(self):
67 | base_model = _generate_MLP(64, True, True, True)
68 | delta_model = _generate_MLP(65, True, True, True, device='meta')
69 | target_model = _generate_MLP(128, True, True, True, device='meta')
70 | set_base_shapes(target_model, get_shapes(base_model), delta=get_shapes(delta_model))
71 | return get_infshapes(target_model)
72 |
73 | def get_mlp_infshapes5(self):
74 | delta_model = _generate_MLP(65, True, True, True)
75 | target_model = _generate_MLP(128, True, True, True)
76 | # `delta` here doesn't do anything because of base shape file
77 | set_base_shapes(target_model, self.mlp_base_shapes_file, delta=get_shapes(delta_model))
78 | return get_infshapes(target_model)
79 |
80 | def get_mlp_infshapes5meta(self):
81 | delta_model = _generate_MLP(65, True, True, True, device='meta')
82 | target_model = _generate_MLP(128, True, True, True)
83 | # `delta` here doesn't do anything because of base shape file
84 | set_base_shapes(target_model, self.mlp_base_shapes_file, delta=get_shapes(delta_model))
85 | return get_infshapes(target_model)
86 |
87 | def get_mlp_infshapes_bad(self):
88 | base_model = _generate_MLP(64, True, True, True)
89 | target_model = _generate_MLP(128, True, True, True)
90 | set_base_shapes(target_model, base_model, delta=base_model)
91 | return get_infshapes(target_model)
92 |
93 | def test_set_base_shape(self):
94 | self.assertEqual(self.get_mlp_infshapes1(), self.get_mlp_infshapes1meta())
95 | self.assertEqual(self.get_mlp_infshapes1(), self.get_mlp_infshapes2())
96 | self.assertEqual(self.get_mlp_infshapes3(), self.get_mlp_infshapes2())
97 | self.assertEqual(self.get_mlp_infshapes3(), self.get_mlp_infshapes4())
98 | self.assertEqual(self.get_mlp_infshapes3(), self.get_mlp_infshapes3meta())
99 | self.assertEqual(self.get_mlp_infshapes4(), self.get_mlp_infshapes4meta())
100 | self.assertEqual(self.get_mlp_infshapes5(), self.get_mlp_infshapes4())
101 | self.assertEqual(self.get_mlp_infshapes5(), self.get_mlp_infshapes5meta())
102 | self.assertNotEqual(self.get_mlp_infshapes5(), self.get_mlp_infshapes_bad())
103 |
104 |
105 | class BackwardCompatibleCase(unittest.TestCase):
106 |
107 | def gen_model(self, arch, width, batchnorm=False, mup=True):
108 | if arch == 'mlp':
109 | return generate_MLP(width=width, batchnorm=batchnorm, readout_zero_init=False, base_width=256, mup=mup)
110 | elif arch == 'cnn':
111 | return generate_CNN(width=width, batchnorm=batchnorm, readout_zero_init=False, base_width=8, mup=mup)
112 | else:
113 | raise ValueError()
114 |
115 | def test_MLP_CNN_at_base_width(self):
116 | for arch, batchnorm in itertools.product(['mlp', 'cnn'], [False, True]):
117 | for init_name, init in init_methods.items():
118 | reset_seed()
119 | mup_model = self.gen_model('mlp', 256, mup=True, batchnorm=batchnorm)
120 | reset_seed()
121 | init(mup_model)
122 | reset_seed()
123 | SP_model = self.gen_model('mlp', 256, mup=False, batchnorm=batchnorm)
124 | reset_seed()
125 | init(SP_model)
126 | for (name, mup_param), (_, SP_param) in zip(
127 | mup_model.named_parameters(), SP_model.named_parameters()):
128 | with self.subTest(name=f'{arch}, {name}, {init_name}, bn={batchnorm}'):
129 | self.assertEqual((mup_param.data - SP_param.data).abs().sum().item(), 0)
130 |
131 | def test_MLP_at_diff_width_init(self):
132 | for init_name, init in init_methods.items():
133 | reset_seed()
134 | mup_model = self.gen_model('mlp', 128, mup=True)
135 | reset_seed()
136 | init(mup_model)
137 | reset_seed()
138 | SP_model = self.gen_model('mlp', 128, mup=False)
139 | reset_seed()
140 | init(SP_model)
141 |
142 | mup_params = dict(mup_model.named_parameters())
143 | SP_params = dict(SP_model.named_parameters())
144 |
145 | if init_name == 'default' or 'fan_in' in init_name:
146 | diff_names = ['2.bias', '4.bias', '4.weight']
147 | same_names = ['0.weight', '0.bias', '2.weight']
148 | elif 'fan_out' in init_name:
149 | diff_names = ['2.bias', '4.bias', '0.weight']
150 | same_names = ['4.weight', '0.bias', '2.weight']
151 | elif 'xavier' in init_name:
152 | diff_names = ['2.bias', '4.bias', '0.weight', '4.weight']
153 | same_names = ['0.bias', '2.weight']
154 | elif 'const' in init_name:
155 | diff_names = ['2.bias', '4.bias', '2.weight']
156 | same_names = ['0.weight', '0.bias', '4.weight']
157 | else:
158 | raise ValueError()
159 |
160 | for name in diff_names:
161 | with self.subTest(name=f'{name}, {init_name}'):
162 | self.assertNotEqual(
163 | (mup_params[name] - SP_params[name]).abs().sum().item(), 0)
164 | for name in same_names:
165 | with self.subTest(name=f'{name}, {init_name}'):
166 | self.assertEqual(
167 | (mup_params[name] - SP_params[name]).abs().sum().item(), 0)
168 |
169 | def test_CNN_at_diff_width_init(self):
170 | for init_name, init in init_methods.items():
171 | reset_seed()
172 | mup_model = self.gen_model('cnn', 16, mup=True)
173 | reset_seed()
174 | init(mup_model)
175 | reset_seed()
176 | SP_model = self.gen_model('cnn', 16, mup=False)
177 | reset_seed()
178 | init(SP_model)
179 |
180 | mup_params = dict(mup_model.named_parameters())
181 | SP_params = dict(SP_model.named_parameters())
182 |
183 | if init_name == 'default' or 'fan_in' in init_name:
184 | diff_names = ['3.bias', '7.bias', '9.bias', '11.bias', '11.weight']
185 | same_names = ['0.bias', '0.weight', '3.weight', '7.weight', '9.weight']
186 | elif 'fan_out' in init_name:
187 | diff_names = ['3.bias', '7.bias', '9.bias', '11.bias', '0.weight']
188 | same_names = ['0.bias', '3.weight', '7.weight', '9.weight', '11.weight']
189 | elif 'xavier' in init_name:
190 | diff_names = ['3.bias', '7.bias', '9.bias', '11.bias', '0.weight', '11.weight']
191 | same_names = ['0.bias', '3.weight', '7.weight', '9.weight']
192 | elif 'const' in init_name:
193 | diff_names = ['3.bias', '7.bias', '9.bias', '11.bias', '3.weight', '7.weight', '9.weight']
194 | same_names = ['0.bias', '0.weight', '11.weight']
195 | else:
196 | raise ValueError()
197 |
198 | for name in diff_names:
199 | with self.subTest(name=f'{name}, {init_name}'):
200 | self.assertNotEqual(
201 | (mup_params[name] - SP_params[name]).abs().sum().item(), 0)
202 | for name in same_names:
203 | with self.subTest(name=f'{name}, {init_name}'):
204 | self.assertEqual(
205 | (mup_params[name] - SP_params[name]).abs().sum().item(), 0)
206 |
207 | def train_model(model, train_loader, step=-1, optcls=MuSGD, lr=0.1, flatten_input=False, cuda=True):
208 | model.train()
209 | train_loss = 0
210 | train_losses = []
211 | optimizer = optcls(model.parameters(), lr=lr)
212 | for batch_idx, (data, target) in enumerate(cycle(iter(train_loader)), 1):
213 | if cuda:
214 | data, target = data.cuda(), target.cuda()
215 | optimizer.zero_grad()
216 | if flatten_input:
217 | data = data.view(data.size(0), -1)
218 | output = model(data)
219 | loss = F.cross_entropy(output, target)
220 | loss.backward()
221 | train_loss += loss.item()
222 | train_losses.append(train_loss / batch_idx)
223 | optimizer.step()
224 | if batch_idx == step: break
225 | # train_loss /= batch_idx
226 | return train_losses
227 |
228 | train_model_MuSGD = partial(train_model, optcls=MuSGD, lr=0.1)
229 | train_model_MuAdam = partial(train_model, optcls=MuAdam, lr=1e-3)
230 |
231 | class CoordCheckCase(unittest.TestCase):
232 |
233 | def test_MLP_CNN(self):
234 | combos = list(itertools.product(['mlp', 'cnn'], [True], [False, True], ['sgd', 'adam'], init_methods.keys()))
235 | # comment out the following 2 lines to do all tests
236 | idx = np.random.choice(np.arange(len(combos)), size=10)
237 | combos = np.array(combos)[idx]
238 | for arch, mup, batchnorm, optimizer, init in combos:
239 | widths = [128, 512] if arch == 'cnn' else [1000, 4000]
240 | models = get_lazy_models(arch, widths, mup=mup, batchnorm=batchnorm, init=init)
241 | df = get_coord_data(models, train_loader, mup=mup, optimizer=optimizer, flatten_input=arch == 'mlp')
242 | df = df[df.module != '']
243 | df['module'] = pd.to_numeric(df['module'])
244 | for t, module in itertools.product([1, 2, 3], df['module'].unique()):
245 | with self.subTest(
246 | name=f'{arch}, mup={mup}, bn={batchnorm}, {optimizer}, {init}, t={t}, module={module}'):
247 | data = df[(df['module'] == module) & (df['t'] == t)]
248 | std0 = data[data.width==widths[0]]['l1'].unique()[0]
249 | std1 = data[data.width==widths[1]]['l1'].unique()[0]
250 | if t == 1 and module == df['module'].max():
251 | self.assertTrue(std0 == std1 == 0,
252 | f'output should be 0 due to readout_zero_init: {std0}, {std1}')
253 | else:
254 | tol = 1.2
255 | self.assertGreater(std1/std0, 1/tol, f'{std0}, {std1}')
256 | self.assertLess(std1/std0, tol, f'{std0}, {std1}')
257 |
258 |
259 | class MLPTrainCase(unittest.TestCase):
260 |
261 | def train_adam(self, model, step):
262 | return train_model_MuAdam(model, train_loader, step=step, flatten_input=True)
263 |
264 | def train_sgd(self, model, step):
265 | return train_model_MuSGD(model, train_loader, step=step, flatten_input=True)
266 |
267 | def setUp(self):
268 | self.models = {w: generate_MLP(w, bias=True, readout_zero_init=True, base_width=256, init='kaiming_fan_in_normal', bias_zero_init=True).cuda() for w in [64, 256, 1024]}
269 |
270 | def test_init(self):
271 | stds = {}
272 | for w, model in self.models.items():
273 | for i, module in enumerate(list(model.modules())[1::2]):
274 | stds[(w, i+1, 'weight')] = module.weight.data.std()
275 | stds[(w, i+1, 'bias')] = module.bias.data.std()
276 |
277 | for w in [64, 256]:
278 | self.assertLess(
279 | torch.abs(
280 | stds[(1024, 1, 'weight')] - stds[(w, 1, 'weight')]
281 | ) / stds[(1024, 1, 'weight')], 3e-3)
282 | # for l in [1, 2]:
283 | # self.assertLess(
284 | # torch.abs(
285 | # stds[(1024, l, 'bias')] - stds[(w, l, 'bias')]
286 | # ) / stds[(1024, l, 'bias')], 1e-1)
287 | self.assertTrue(
288 | stds[(1024, 2, 'weight')] < stds[(256, 2, 'weight')] < stds[(64, 2, 'weight')])
289 | for w in [64, 256, 1024]:
290 | self.assertEqual(stds[(w, 3, 'weight')], 0)
291 | self.assertEqual(stds[(w, 3, 'bias')], 0)
292 |
293 | def _test_train(self, opt):
294 | loss = {w: getattr(self, f'train_{opt}')(model, 201) for w, model in self.models.items()}
295 | with self.subTest(name=f'{opt}, step 1'):
296 | self.assertTrue(
297 | loss[64][0] == loss[256][0] == loss[1024][0],
298 | {k: v[0] for k, v in loss.items()})
299 | for t in [100, 200]:
300 | with self.subTest(name=f'{opt}, step {t+1}'):
301 | self.assertTrue(
302 | loss[64][t] > loss[256][t] > loss[1024][t],
303 | {k: v[t] for k, v in loss.items()})
304 |
305 | def test_sgd(self):
306 | self._test_train('sgd')
307 |
308 | def test_adam(self):
309 | self._test_train('adam')
310 |
311 | class CNNTrainCase(unittest.TestCase):
312 |
313 | def train_adam(self, model, step):
314 | return train_model_MuAdam(model, train_loader, step=step, flatten_input=False)
315 |
316 | def train_sgd(self, model, step):
317 | return train_model_MuSGD(model, train_loader, step=step, flatten_input=False)
318 |
319 | def setUp(self):
320 | self.models = {w: generate_CNN(w, mup=True, bias=True, readout_zero_init=True, base_width=8, init='kaiming_fan_in_normal', bias_zero_init=False).cuda() for w in [8, 32, 128]}
321 |
322 | def test_init(self):
323 | stds = {}
324 | names = [0, 3, 7, 9, 11]
325 | for w, model in self.models.items():
326 | for i, module in enumerate(model):
327 | if i in names:
328 | stds[(w, i, 'weight')] = module.weight.data.std()
329 | stds[(w, i, 'bias')] = module.bias.data.std()
330 |
331 | for w in [8, 32]:
332 | self.assertLess(
333 | torch.abs(
334 | stds[(128, 0, 'weight')] - stds[(128, 0, 'weight')]
335 | ) / stds[(128, 0, 'weight')], 3e-3)
336 | for name in names[:-1]:
337 | self.assertLess(
338 | torch.abs(
339 | stds[(128, 0, 'bias')] - stds[(w, 0, 'bias')]
340 | ) / stds[(128, 0, 'bias')], 2e-1)
341 | for name in names[1:-1]:
342 | self.assertTrue(
343 | stds[(128, name, 'weight')] < stds[(32, name, 'weight')] < stds[(8, name, 'weight')])
344 | for w in [8, 32, 128]:
345 | self.assertEqual(stds[(w, 11, 'weight')], 0)
346 | self.assertEqual(stds[(w, 11, 'bias')], 0)
347 |
348 | def _test_train(self, opt):
349 | loss = {w: getattr(self, f'train_{opt}')(model, 201) for w, model in self.models.items()}
350 | with self.subTest(name=f'{opt}, step 1'):
351 | self.assertTrue(
352 | loss[8][0] == loss[32][0] == loss[128][0],
353 | {k: v[0] for k, v in loss.items()})
354 | for t in [200]:
355 | with self.subTest(name=f'{opt}, step {t+1}'):
356 | losses = {k: v[t] for k, v in loss.items()}
357 | # print(losses)
358 | self.assertTrue(
359 | loss[8][t] > loss[32][t] > loss[128][t],
360 | losses)
361 |
362 | def test_sgd(self):
363 | self._test_train('sgd')
364 |
365 | def test_adam(self):
366 | self._test_train('adam')
367 |
368 | def suite():
369 | suite = unittest.TestSuite()
370 | suite.addTests(unittest.makeSuite(BackwardCompatibleCase))
371 | suite.addTests(unittest.makeSuite(MLPTrainCase))
372 | suite.addTests(unittest.makeSuite(CNNTrainCase))
373 | suite.addTests(unittest.makeSuite(CoordCheckCase))
374 | suite.addTests(unittest.makeSuite(SetBaseShapeCase))
375 | return suite
376 |
377 | if __name__ == '__main__':
378 | runner = unittest.TextTestRunner(failfast=False)
379 | runner.run(suite())
380 |
--------------------------------------------------------------------------------
/mup/test/models.py:
--------------------------------------------------------------------------------
1 |
2 | import torch
3 | from torchvision import transforms, datasets
4 | from mup.shape import set_base_shapes
5 | from torch import nn
6 | from torch.nn import Linear
7 | from mup.layer import MuReadout
8 | from functools import partial
9 | from mup.init import (kaiming_normal_, kaiming_uniform_, normal_,
10 | trunc_normal_, uniform_, xavier_normal_,
11 | xavier_uniform_)
12 | from torch.nn.modules.conv import _ConvNd
13 |
14 | samplers = {
15 | 'default': lambda x: x,
16 | 'const_uniform': partial(uniform_, a=-0.1, b=0.1),
17 | 'const_normal': partial(normal_, std=0.1),
18 | 'const_trunc_normal': partial(trunc_normal_, std=0.1, a=-0.2, b=0.2),
19 | 'xavier_uniform': xavier_uniform_,
20 | 'xavier_normal': xavier_normal_,
21 | 'kaiming_fan_in_uniform': partial(kaiming_uniform_, mode='fan_in'),
22 | 'kaiming_fan_in_normal': partial(kaiming_normal_, mode='fan_in'),
23 | 'kaiming_fan_out_uniform': partial(kaiming_uniform_, mode='fan_out'),
24 | 'kaiming_fan_out_normal': partial(kaiming_normal_, mode='fan_out')
25 | }
26 |
27 |
28 | def init_model(model, sampler):
29 | for param in model.parameters():
30 | if len(param.shape) >= 2:
31 | sampler(param)
32 | return model
33 |
34 | init_methods = {
35 | k: partial(init_model, sampler=s) for k, s in samplers.items()
36 | }
37 |
38 | def _generate_MLP(width, bias=True, mup=True, batchnorm=False, device='cpu'):
39 | mods = [Linear(3072, width, bias=bias, device=device),
40 | nn.ReLU(),
41 | Linear(width, width, bias=bias, device=device),
42 | nn.ReLU()
43 | ]
44 | if mup:
45 | mods.append(MuReadout(width, 10, bias=bias, readout_zero_init=False, device=device))
46 | else:
47 | mods.append(Linear(width, 10, bias=bias, device=device))
48 | if batchnorm:
49 | mods.insert(1, nn.BatchNorm1d(width, device=device))
50 | mods.insert(4, nn.BatchNorm1d(width, device=device))
51 | model = nn.Sequential(*mods)
52 | return model
53 |
54 | def generate_MLP(width, bias=True, mup=True, readout_zero_init=True, batchnorm=False, init='default', bias_zero_init=False, base_width=256):
55 | if not mup:
56 | model = _generate_MLP(width, bias, mup, batchnorm)
57 | # set base shapes to model's own shapes, so we get SP
58 | return set_base_shapes(model, None)
59 | # it's important we make `model` first, because of random seed
60 | model = _generate_MLP(width, bias, mup, batchnorm)
61 | base_model = _generate_MLP(base_width, bias, mup, batchnorm, device='meta')
62 | set_base_shapes(model, base_model)
63 | init_methods[init](model)
64 | if readout_zero_init:
65 | readout = list(model.modules())[-1]
66 | readout.weight.data.zero_()
67 | if readout.bias is not None:
68 | readout.bias.data.zero_()
69 | if bias_zero_init:
70 | for module in model.modules():
71 | if isinstance(module, nn.Linear) and module.bias is not None:
72 | module.bias.data.zero_()
73 | return model
74 |
75 |
76 | def _generate_CNN(width, bias=True, mup=True, batchnorm=False, device='cpu'):
77 | mods = [
78 | nn.Conv2d(3, width, kernel_size=5, bias=bias, device=device),
79 | nn.ReLU(inplace=True),
80 | nn.MaxPool2d(kernel_size=2, stride=2),
81 | nn.Conv2d(width, 2*width, kernel_size=5, bias=bias, device=device),
82 | nn.ReLU(inplace=True),
83 | nn.MaxPool2d(kernel_size=2, stride=2),
84 | nn.Flatten(),
85 | nn.Linear(2*width*25, width*16, bias=bias, device=device),
86 | nn.ReLU(inplace=True),
87 | nn.Linear(width*16, width*10, bias=bias, device=device),
88 | nn.ReLU(inplace=True),
89 | ]
90 | if mup:
91 | mods.append(MuReadout(width*10, 10, bias=bias, readout_zero_init=False, device=device))
92 | else:
93 | mods.append(nn.Linear(width*10, 10, bias=bias, device=device))
94 | if batchnorm:
95 | mods.insert(1, nn.BatchNorm2d(width, device=device))
96 | mods.insert(5, nn.BatchNorm2d(2*width, device=device))
97 | mods.insert(10, nn.BatchNorm1d(16*width, device=device))
98 | mods.insert(13, nn.BatchNorm1d(10*width, device=device))
99 | return nn.Sequential(*mods)
100 |
101 | def generate_CNN(width, bias=True, mup=True, readout_zero_init=True, batchnorm=False, init='default', bias_zero_init=False, base_width=8):
102 | if not mup:
103 | model = _generate_CNN(width, bias, mup, batchnorm)
104 | # set base shapes to model's own shapes, so we get SP
105 | return set_base_shapes(model, None)
106 | # it's important we make `model` first, because of random seed
107 | model = _generate_CNN(width, bias, mup, batchnorm)
108 | base_model = _generate_CNN(base_width, bias, mup, batchnorm, device='meta')
109 | set_base_shapes(model, base_model)
110 | init_methods[init](model)
111 | if readout_zero_init:
112 | readout = list(model.modules())[-1]
113 | readout.weight.data.zero_()
114 | if readout.bias is not None:
115 | readout.bias.data.zero_()
116 | if bias_zero_init:
117 | for module in model.modules():
118 | if isinstance(module, (nn.Linear, _ConvNd)) and module.bias is not None:
119 | module.bias.data.zero_()
120 | return model
121 |
122 | def get_lazy_models(arch, widths, mup=True, init='kaiming_fan_in_normal', readout_zero_init=True, batchnorm=True, base_width=None):
123 | '''if mup is False, then `init`, `readout_zero_init`, `base_width` don't matter.'''
124 | if arch == 'mlp':
125 | base_width = base_width or 256
126 | generate = generate_MLP
127 | elif arch == 'cnn':
128 | base_width = base_width or 8
129 | generate = generate_CNN
130 | def gen(w):
131 | def f():
132 | model = generate(w, mup=mup, init=init, readout_zero_init=readout_zero_init, batchnorm=batchnorm, base_width=base_width)
133 | return model
134 | return f
135 | return {w: gen(w) for w in widths}
136 |
137 |
138 | def get_train_loader(batch_size, num_workers=0, shuffle=False, train=True, download=False):
139 |
140 | transform = transforms.Compose(
141 | [transforms.ToTensor(),
142 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
143 | trainset = datasets.CIFAR10(root='dataset', train=train,
144 | download=download, transform=transform)
145 | return torch.utils.data.DataLoader(trainset, batch_size=batch_size,
146 | shuffle=shuffle, num_workers=num_workers)
147 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy>=1.18.5
2 | pandas>=1.1.2
3 | torch>=1.6.0
4 | torchvision>=0.7.0
5 | seaborn>=0.11.2
6 | tqdm
7 | pyyaml
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [metadata]
2 | description-file = README.md
3 | license_files=LICENSE
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | import setuptools
2 |
3 | with open("README.md", "r", encoding="utf-8") as fh:
4 | long_description = fh.read()
5 |
6 | setuptools.setup(
7 | name="mup",
8 | version="1.0.0",
9 | author="Edward J Hu, Greg Yang",
10 | author_email="edwardjhu@edwardjhu.com, gregyang@microsoft.com",
11 | description="Maximal Update Parametrization",
12 | long_description=long_description,
13 | long_description_content_type="text/markdown",
14 | url="https://github.com/microsoft/mup",
15 | download_url="https://github.com/microsoft/mup/archive/refs/tags/v1.0.0.tar.gz",
16 | install_requires=[
17 | 'numpy',
18 | 'pandas',
19 | 'torch',
20 | 'torchvision',
21 | 'seaborn',
22 | 'tqdm',
23 | 'pyyaml'
24 | ],
25 | packages=setuptools.find_packages(),
26 | classifiers=[
27 | "Programming Language :: Python :: 3",
28 | "License :: OSI Approved :: MIT License",
29 | "Operating System :: OS Independent",
30 | ],
31 | python_requires='>=3.6',
32 | )
--------------------------------------------------------------------------------