├── .gitignore
├── CONTRIBUTING.md
├── Efficient-ConvBN-Blocks-for-Transfer-Learning-and-Beyond
└── tune_mode_convbn.py
├── LICENSE
├── NOTICE
├── OWNERS
├── README.md
├── README_CN.md
├── RELEASE.md
├── SECURITY.md
├── application
├── A-Causal-U-net-based-Neural-Beamforming-Network
│ └── cunet.py
├── ACGNet
│ ├── README.md
│ ├── loss.py
│ ├── main.py
│ └── model.py
├── AccSGD-Parallelizing-Stochastic-Gradient-Descent
│ └── AccSGD.py
├── Adaptive-Nesterov-Momentum-Algorithm
│ └── adan.py
├── Adversarial-Laser-Spot
│ └── laser_simulation.py
├── An-Exploration-of-Conditioning-Methods
│ ├── README.md
│ ├── layers
│ │ ├── __init__.py
│ │ └── conditional.py
│ └── main.py
├── Analysis-of-Black-Hole-Solutions-in-Parabolic-Class-Using-Neural-Networks
│ └── parabolic_eq_solver.py
├── AoA
│ ├── aoa_mindspore
│ │ ├── __init__.py
│ │ ├── aoa.py
│ │ ├── demo1.py
│ │ └── demo2.py
│ └── saoa.png
├── Black-Box-Attacks-against
│ ├── gradmax.py
│ └── readme.md
├── CLIP-It
│ ├── .gitignore
│ ├── LICENSE
│ ├── README.md
│ ├── assets
│ │ └── overview.png
│ ├── clip_it.py
│ ├── docker
│ │ └── Dockerfile
│ └── test.py
├── Castling-ViT
│ ├── README.py
│ └── attention.py
├── Class-balanced-loss-pytorch-master
│ └── class_balanced_loss_ms.py
├── Conv2Former_Simple_Transformer
│ ├── mindspore
│ │ ├── __init__.py
│ │ └── conv2former_mindspore.py
│ ├── train_mindspore.py
│ └── validate_mindspore.py
├── D-Unet_Mindspore
│ ├── DUnet.py
│ ├── DUnet_parts.py
│ ├── loss.py
│ └── workspace_test.py
├── DCTransformer
│ ├── README.md
│ ├── dctransformer.ipynb
│ └── dctransformer.py
├── DNN-with-SimulatedAnnealing
│ ├── README.md
│ ├── main.py
│ ├── neural_network.py
│ └── simulated_annealing.py
├── Distributional-Reinforcement-Learning-with-Quantile-Regression
│ └── logger.py
├── DoWG-Unleashed
│ └── dowg.py
├── DropMax-Adaptive-Variational-Softmax
│ └── dropmax.py
├── Duration-Informed-Attention-Network
│ ├── deepmind_version.py
│ ├── qr-dqn-solution-cool.py
│ └── rl_utils.py
├── ECG-arrhythmia-classification
│ ├── heartnet.py
│ └── readme.md
├── EWC-Overcoming-catastrophic-forgetting
│ ├── demo.ipynb
│ └── elastic_weight_consolidation.py
├── Efficient ConvBN Blocks for Transfer Learning and Beyond
│ └── tune_mode_convbn.py
├── FFperceptron
│ ├── FFperceptron_MNIST.ipynb
│ ├── FFperceptron_MNIST.py
│ └── README.md
├── Fixup-Initialization
│ └── model_build.py
├── Frank-Wolfe-Algorithm
│ └── fgsm.py
├── GAN-master
│ └── gan_ms.py
├── GTE
│ ├── README.md
│ ├── main.py
│ ├── parser.py
│ └── utils.py
├── Generalized-End-to-End-Loss-for-Speaker-Verification
│ └── ge2e.py
├── HTM-mindspore
│ ├── LICENSE
│ ├── README.md
│ ├── htm.png
│ ├── htm_mindspore
│ │ ├── __init__.py
│ │ ├── htm_mindspore.py
│ │ └── test_mindspore.py
│ └── setup.py
├── HeuristicDropout
│ ├── HeuristicDropout.py
│ ├── README.MD
│ └── TestModel.py
├── HyperDreamBooth
│ └── model.py
├── Inverting-Visual-Representations-with-Convolutional-Networks
│ └── inversion.py
├── Investigating
│ ├── data
│ │ ├── generated_showerthoughts_4_gpt2.txt
│ │ ├── generated_showerthoughts_4_neo.txt
│ │ ├── generated_showerthoughts_ChatGPT_df_1.pkl
│ │ ├── generated_showerthoughts_ChatGPT_df_2.pkl
│ │ ├── generated_showerthoughts_ChatGPT_df_3.pkl
│ │ ├── roberta_test_data_GPT2.ndjson
│ │ ├── roberta_test_data_chatGPT.ndjson
│ │ ├── roberta_test_data_mixed.ndjson
│ │ ├── roberta_train_data_GPT2.ndjson
│ │ ├── roberta_train_data_chatGPT.ndjson
│ │ └── roberta_train_data_mixed.ndjson
│ └── showerthought_dataset.py
├── Jeffreys-divergence-based
│ ├── README.md
│ └── main.py
├── KPC-cF-main
│ └── dual_filtering_temp_ver_ms.py
├── Kronecker-Attention-Networks
│ ├── README.md
│ └── kronecker_attention.py
├── LGL-INR-master
│ └── LGL-INR-master
│ │ └── LGLINR_ms.py
├── Large-Batch-Optimization-for-Deep-Learning
│ └── lamb.py
├── Large-Margin-Deep-Networks-for-Classification
│ ├── large_margin.py
│ └── mnist.ipynb
├── Learning-to-Upsample
│ ├── LICENSE
│ ├── README.md
│ ├── complexity.jpg
│ └── dysample.py
├── Learning-with-Noisy-Labels
│ └── NCOD.py
├── MCA
│ ├── MCA.py
│ └── README.md
├── NBC-Softmax
│ ├── NBC-Softmax.py
│ └── README.md
├── NeBLa
│ ├── README.py
│ ├── image_encoder.py
│ ├── mlp.py
│ └── point_embedder.py
├── Neural-Network-based-Speech-Enhancement
│ └── network.py
├── Neural-Side-by-Side
│ ├── LICENSE
│ ├── README.md
│ └── model.py
├── OTCE
│ ├── README.md
│ └── otce.py
├── On-the-Convergence-of-AdaBound-and-its-Connection-to-SGD
│ └── csgd.py
├── Projected-Distribution
│ ├── README.md
│ └── pdl.py
├── PyDSN
│ ├── demo.py
│ └── loss_mindspore.py
├── RAF-ms-main
│ └── raf_ms.py
├── RITA
│ └── compute_fitness.py
├── RawNet
│ ├── README.md
│ └── model.py
├── ReSeg
│ ├── README.md
│ ├── ReNet.py
│ └── train_model.py
├── Real-NVP
│ ├── loss_mindspore.py
│ ├── network_mindspore.py
│ ├── output_figures
│ │ ├── Figure_1.png
│ │ ├── Figure_2.png
│ │ ├── Figure_3.png
│ │ ├── Figure_4.png
│ │ ├── Figure_5.png
│ │ ├── Figure_6.png
│ │ ├── Figure_7.png
│ │ ├── Figure_8.png
│ │ └── Figure_9.png
│ └── train_mindspore.py
├── S2DNet-Minimal
│ ├── README.md
│ ├── adap_layers.py
│ ├── main.py
│ ├── s2dnet.py
│ └── vgg16.py
├── SGDR
│ ├── CosineAnnealingWithRestartsLR.py
│ └── readme.md
├── Scalable-Sharpness-Aware-Minimization
│ └── looksam.py
├── SciNet
│ ├── Analysis.ipynb
│ ├── Generate_Trainingdata.ipynb
│ ├── README.md
│ ├── Training.ipynb
│ ├── models.py
│ └── utils.py
├── SeesawLoss-master
│ └── seesaw_loss_ms.py
├── Spatial and Temporal Mutual Promotion for Video-based Person Re-identification
│ └── ruu.py
├── Spatial-Information-Considered-Network
│ └── SIC_NET.py
├── Sub2Full-OCT-Denoising
│ ├── output_ms.png
│ ├── output_torch.png
│ ├── pytorch2mindspore.py
│ ├── target.png
│ ├── test.png
│ ├── test.py
│ └── unet.py
├── TRSTMI
│ ├── README.md
│ ├── TrustRegion.py
│ ├── requirements.txt
│ └── trstmi.py
├── TSFF
│ └── paper_model.py
├── TSGD
│ ├── README.md
│ └── tsgd
│ │ ├── __init__.py
│ │ ├── main.py
│ │ └── tsgd.py
├── The_RefinedWeb_Dataset_for_Falcon
│ ├── data
│ │ ├── expert_factor.csv
│ │ ├── news_factor.csv
│ │ └── wiki_factor.csv
│ ├── eval_factuality_mindspore.py
│ └── requirements.txt
├── Three-Dimensional-Lip-Motion-Network-for-Text-Independent-Speaker-Recognition-master
│ └── 3LMNet_ms.py
├── Tom
│ └── tom.py
├── Two-Layer-ReLU-Network-Analytically
│ └── anmin.py
├── WaveCRN-master
│ └── model_ms.py
├── WinoGrande
│ ├── README.md
│ ├── data
│ │ ├── easy
│ │ │ ├── gpt_generations.txt
│ │ │ ├── pool_200.tsv
│ │ │ ├── pool_400.tsv
│ │ │ └── test_100.tsv
│ │ ├── hard
│ │ │ ├── gpt_generations.txt
│ │ │ ├── pool_400.tsv
│ │ │ └── test_100.tsv
│ │ └── medium
│ │ │ ├── gpt_generations.txt
│ │ │ └── test_100.tsv
│ └── generate_gpt3_explanations.py
├── __init__.py
├── a-self-attentive-model-for-knowledge-tracing
│ ├── README.md
│ └── model.py
├── adam-aio
│ ├── AdamAIO.py
│ └── README.md
├── alibi
│ ├── README.md
│ ├── alibi
│ │ ├── __init__.py
│ │ ├── attention.py
│ │ ├── config.py
│ │ ├── layers.py
│ │ └── model.py
│ └── main.py
├── auxiliary-tasks-in-multi-task-learning
│ └── test.py
├── aves
│ ├── README.md
│ ├── aves-base-bio.json
│ └── aves.py
├── circle-loss
│ ├── README.md
│ └── circle_loss.py
├── comparing-the-efficacy
│ ├── README.md
│ └── sampler.py
├── coneheads-hierarchy-aware-attention
│ ├── README.md
│ ├── penumbral.py
│ └── umbral.py
├── contextual-learning
│ ├── FCT.py
│ └── README.md
├── corss-dataset-training
│ ├── ms_cross_focal_loss.py
│ └── readme.md
├── cross-transformers-spatially-aware-few-shot-transfer
│ ├── README.md
│ └── crosstransformers.py
├── delving-deeper-into-convolutional
│ ├── Conv-GRU.py
│ └── README.md
├── dice-loss-for-data-imbalanced-nlp-tasks
│ ├── README.md
│ ├── loss.py
│ └── test_loss.py
├── drop-an-octave-reducing-spatial
│ ├── octconv.py
│ └── readme.md
├── dropblock-a-regularization-method
│ ├── README.md
│ └── layer.py
├── dynamic-relu
│ ├── README.md
│ └── dynamic_relu.py
├── effnet-an-efficient-structure
│ ├── README.md
│ └── effnet.py
├── entropy-law
│ ├── README.md
│ ├── ZIP.py
│ ├── formatter.py
│ ├── motivation.png
│ └── script.sh
├── factorized-attention
│ ├── README.md
│ └── efficient_attention.py
├── fake-new-dectection
│ └── GCNN_main.py
├── falformer
│ ├── README.md
│ ├── feature_based_clustering.py
│ └── kmeans.py
├── fastformer-additive
│ ├── Fastformer.py
│ └── README.md
├── fed-ensemble-main-ms
│ ├── fedEnsemble_ms.py
│ ├── main_ms.py
│ ├── models_ms.py
│ └── resnet50.py
├── fisheradversarial-mindspore
│ ├── README.md
│ ├── fisherform.py
│ ├── fishertrace.py
│ ├── setup.py
│ └── usage.py
├── fixed-classifier
│ ├── README.md
│ └── fixed_proj.py
├── from-softmax-to-sparsemax-a-sparse
│ ├── README.md
│ ├── sparsemax.py
│ └── test.py
├── gaitpart-temporal-part-based
│ ├── README.md
│ └── layers.py
├── gated-word-character-recurrent-language-model
│ ├── model.py
│ └── readme.md
├── gaussian_adaptive_attention
│ ├── README.md
│ └── gaussian_adaptive_attention
│ │ ├── GaussianBlock.py
│ │ ├── __init__.py
│ │ └── main.py
├── gdn
│ ├── README.md
│ ├── gdn.py
│ └── main.py
├── generalizing-and-decoupling-neural-collapse
│ ├── HUG_loss.py
│ └── README.md
├── group-normalization
│ ├── README.md
│ └── group_norm.py
├── hyperspherical-consistency-regularization
│ ├── README.md
│ └── hcr.py
├── identifying-untrustworthy-prediction
│ ├── CSM.py
│ └── main.py
├── isr
│ ├── README.md
│ ├── isr.py
│ └── swin_transformer
│ │ ├── features.py
│ │ ├── helper.py
│ │ ├── layers.py
│ │ ├── model.py
│ │ ├── registry.py
│ │ └── utils
│ │ ├── download.py
│ │ └── path.py
├── iterative-a-de-blending
│ └── iadb.py
├── jko_wass_grad
│ ├── jko_gradient_mindspore.py
│ ├── jko_wass_grad_mindspore.py
│ └── pth2pkl.py
├── layer-normalization
│ ├── GRU_layernorm_cell.py
│ └── README.md
├── lcn-master-ms
│ └── local_context_norm_ms.py
├── learning-an-explicit-hyperparameter
│ ├── README.md
│ └── protonet_Tanh.py
├── light-head
│ ├── README.md
│ └── light_head.py
├── local-relation-networks-for-image-recognition
│ ├── README.md
│ └── layer.py
├── locally-consistent-deformable-convolution
│ ├── README.md
│ └── def_conv.py
├── localquantumannealing
│ ├── README.md
│ ├── localquantumannealing
│ │ ├── __init__.py
│ │ ├── lqa.py
│ │ └── lqa_basic.py
│ └── test.py
├── lru
│ ├── README.md
│ └── lru.py
├── lsuv-init
│ ├── README.md
│ └── lsuv_init.py
├── matthews-correlation
│ ├── Example.ipynb
│ ├── README.md
│ └── loss.py
├── mgan-mindspore
│ ├── LICENSE
│ ├── README.md
│ ├── crop_images.py
│ ├── images
│ │ ├── faces-sample.png
│ │ └── mgan.png
│ ├── init_data.sh
│ ├── models.py
│ └── train.py
├── misinfo-reaction-frames
│ └── demo.py
├── model-conversion-via
│ ├── README.md
│ └── utils.py
├── multi-adversarial-domain-adaptation
│ ├── README.md
│ └── mada.py
├── multi-task-learning-using-uncertainty-to
│ ├── README.md
│ └── code.py
├── multimodal-trajectory
│ ├── README.md
│ └── mtp_loss.py
├── multirate-training-of-neural-networks
│ ├── Optimizer_multirate.py
│ └── README.md
├── mvn2vec
│ ├── README.md
│ └── mvn2vec-reg.py
├── neural-audio-synthesis-wavenet
│ ├── README.md
│ ├── WaveNetEncodeTests.ipynb
│ └── WaveNetEncoder.py
├── nystrom-attention
│ ├── nystrom_attention
│ │ ├── _init_.py
│ │ └── nystrom_attention.py
│ ├── setup.py
│ ├── test_attn.py
│ └── test_model.py
├── open-domain-dialogue
│ ├── README.md
│ ├── config.py
│ ├── functions.py
│ └── testdata.csv
├── openfashionclip-vision-and-language
│ ├── README.md
│ ├── maxi_dress.jpg
│ └── quick_start.py
├── optimize-coordconv
│ ├── README.md
│ └── modules.py
├── perceptual-score
│ ├── README.md
│ ├── first_option.py
│ └── second_option.py
├── polyloss
│ ├── APLLoss.py
│ └── README.md
├── privacy-enhancement
│ ├── README.md
│ └── noise.py
├── pro
│ ├── README.md
│ ├── demo.py
│ └── pro.py
├── pruning-artificial-neural-networks
│ ├── how_to_use-ms.ipynb
│ └── src
│ │ └── PSPentropy.py
├── random_quantize
│ ├── README.md
│ └── randomized_quantization.py
├── recurrent-highway-network
│ ├── README.md
│ ├── recurrent_highway_network.py
│ └── test_rhn.py
├── refining-activation
│ ├── readme.md
│ └── softpool.py
├── res_mlp_ms
│ └── res_mlp_ms.py
├── riemann-noise
│ └── riemann_noise_ms.py
├── robustness_depth_lang
│ ├── VPD
│ │ └── models_ms.py
│ ├── data
│ │ └── readme.txt
│ ├── model
│ │ └── readme.txt
│ └── sample_scripts
│ │ ├── create_depth_embeddings_ms.py
│ │ └── depth_file_list.txt
├── root-mean-square-layer-normalization
│ ├── README.md
│ └── norm.py
├── sa-mlp-distilling-graph
│ ├── README.md
│ └── model.py
├── segmentation-dataset
│ ├── README.md
│ └── dataloader.py
├── shallow-rnns
│ ├── LICENSE
│ ├── README.md
│ └── model
│ │ ├── __init__.py
│ │ └── sharnn.py
├── similarity-of-neural-network
│ ├── CKA.py
│ └── README.md
├── smu
│ ├── README.md
│ └── smu.py
├── squeeze-and-attention-networks-for-semantic
│ ├── README.md
│ └── SABlock.py
├── ssFPN
│ ├── README.md
│ └── ssFPN.py
├── stable-sam
│ ├── README.md
│ ├── sam.py
│ └── usam.py
├── stochastic-attention-head-removal-a-simple
│ ├── README.md
│ ├── attention.py
│ └── head_removal.py
├── swish-t
│ ├── README.md
│ └── swisht.py
├── temporal-and-aspectual-entailment
│ ├── Readme.md
│ └── mindspore_models.py
├── the-Soft-Nearest-Neighbor-Loss
│ └── snnl.py
├── translating-math-formula-images
│ ├── README.md
│ ├── positionalembedding2d.py
│ └── visualization.ipynb
├── vat
│ ├── README.md
│ └── vat.py
├── weakly-supervised
│ ├── README.md
│ └── boneloss.py
└── wide-minima-density-hypothesis
│ ├── README.md
│ ├── knee_lr_schedule.py
│ ├── minima_width_compute.py
│ ├── plots
│ ├── 0explore
│ │ ├── 0explore_acc-1.png
│ │ └── 0explore_sharpness-1.png
│ ├── 100explore
│ │ ├── 100explore_acc-1.png
│ │ └── 100explore_sharpness-1.png
│ ├── 30explore
│ │ ├── 30explore_acc-1.png
│ │ └── 30explore_sharpness-1.png
│ └── 60explore
│ │ ├── 60explore_acc-1.png
│ │ └── 60explore_sharpness-1.png
│ └── tables
│ ├── epoch_savings.PNG
│ ├── full_budget.PNG
│ ├── short-budget.PNG
│ └── sota_iwslt.PNG
├── dataset
├── A_Curb_Dataset
│ ├── README.md
│ └── vis_data.py
└── TransNAS-Bench-101
│ ├── README.md
│ ├── api
│ ├── __init__.py
│ └── api_mini.py
│ ├── example.py
│ └── models
│ ├── net_infer
│ ├── __init__.py
│ ├── cell_micro.py
│ └── net_macro.py
│ ├── net_ops
│ ├── __init__.py
│ ├── cell_ops.py
│ ├── he_normal.py
│ ├── meters.py
│ ├── norm.py
│ ├── resnet.py
│ └── spectral_norm.py
│ ├── task_models
│ ├── decoder.py
│ ├── discriminator.py
│ ├── encoder.py
│ ├── feedforward.py
│ ├── gan.py
│ ├── segmentation.py
│ └── siamese.py
│ └── utils
│ └── utils.py
├── intern
├── A-Note-on-the-Inception-Score
│ ├── README.md
│ └── inception_score.py
├── Adaptive-Weighted-Discriminator-for-Training-Generative-Adversarial-Networks
│ ├── README.md
│ └── aw_loss.py
├── Automatic-Feature-Interaction
│ ├── models.py
│ └── readme.md
├── Block_Model
│ ├── README.md
│ └── block_model.py
├── Case_TranslationInvariantAttn
│ ├── README.md
│ └── model
│ │ ├── tisa_ms.py
│ │ └── tisa_pytorch.py
├── Corella
│ ├── Corella.py
│ └── README.md
├── D-Unet_Mindspore
│ ├── DUnet.py
│ ├── DUnet_parts.py
│ ├── loss.py
│ └── workspace_test.py
├── Datasets-Models-main
│ ├── Models.py
│ └── README.md
├── Deep-Edge-Aware-Interactive
│ ├── example
│ │ ├── enh_inputs.png
│ │ ├── gt.png
│ │ └── org_inputs.png
│ └── ms_cdr.py
├── Deep-Gradient-Compression
│ ├── README.md
│ └── ms_dgc.py
├── Deep_Feature_Factorization_For_Concept_Discovery
│ ├── demo.py
│ ├── nmf.py
│ └── utils.py
├── Deformable_Patch_Representation
│ ├── README.md
│ └── deformable_patch_representation.py
├── Fourier-Features-Let-Networks-Learn-High-Frequency
│ ├── data.py
│ ├── model.py
│ ├── night.jpg
│ └── train.py
├── GR-HSTU
│ └── hstu.py
├── HTM-mindspore
│ ├── LICENSE
│ ├── README.md
│ ├── htm.png
│ ├── htm_mindspore
│ │ ├── __init__.py
│ │ ├── htm_mindspore.py
│ │ └── test_mindspore.py
│ └── setup.py
├── Hyena-A-Convolutional-Neural-Network-for-Modelling-Sentences
│ └── hyena.py
├── IEBBMP
│ ├── Iterpretable-mindspore-submit.py
│ └── README
├── INR-Implicit-Neural-Representations-with-Periodic-Activation-Functions
│ ├── INR_images.ipynb
│ ├── data_processor.py
│ ├── network.py
│ └── samples
│ │ ├── bert.jpg
│ │ └── ernie.jpg
├── Integrated-Gradient
│ ├── README.md
│ ├── assets
│ │ ├── heatmap.jpg
│ │ └── n01669191_46.JPEG
│ ├── ig.py
│ ├── result.png
│ └── show.py
├── Knowing-When-to-Look-Adaptive-Attention
│ └── adaptive_attention.py
├── Last-Query-Transformer-RNN
│ └── last_query_model.py
├── Least_Generative
│ ├── Least Generative_mindspore.ipynb
│ └── README.md
├── Luminance-Guided-Chrominance-Enhancement-for-HEVC-Intra-Coding
│ ├── README.md
│ ├── network.py
│ ├── submodule.py
│ └── test.py
├── MicAugment
│ ├── README.md
│ ├── mic_augment_mindspore.py
│ └── test_mic_augment.py
├── NBNet-Noise-Basis-Learning-for-Image-Denoising-with-Subspace-Projection
│ ├── NBNet.py
│ └── README.md
├── Occupational-Biases-in-Norwegian-and-Multilingual-Language-Models
│ ├── README.md
│ ├── codes
│ │ └── compute_scores.py
│ ├── gold_data
│ │ └── gender_equality_NSB.ods
│ └── templates
│ │ ├── templates_er.txt
│ │ └── templates_jobber_som.txt
├── PCGrad-mindspore-example
│ └── pcgrad-example._ms.py
├── PR_Product
│ ├── PR.py
│ └── README.md
├── Patient2Vec-A-Personalized-Interpretable
│ ├── Patient2Vec.png
│ ├── Patient2Vec.py
│ └── README.rst
├── PolyLoss
│ ├── README.md
│ ├── polyloss_mindspore.py
│ └── test_polyloss.py
├── Profiling-Pareto-Front
│ ├── README.md
│ ├── ms_moosvgd.py
│ ├── ms_run_zdt_moosvgd.py
│ └── ms_zdt_functions.py
├── QuantExplainNLP_AlgoAnalysis
│ ├── README.md
│ ├── data_preprocessing.py
│ ├── explainability.py
│ ├── models.py
│ ├── notebook
│ │ ├── ADMISSIONS.csv
│ │ ├── DIAGNOSES_ICD.csv
│ │ ├── NOTEEVENTS.csv
│ │ └── PROCEDURES_ICD.csv
│ └── train.py
├── Quiz_gen
│ ├── Quiz_Gen_mindspore_main.ipynb
│ └── README.md
├── README.md
├── RGNN
│ ├── README.md
│ ├── model_simple.py
│ └── test.py
├── S2Wrapper
│ ├── readme.md
│ └── s2wrapper.py
├── SING
│ ├── SING.py
│ ├── main.py
│ └── readme.md
├── SMOTE
│ ├── README.md
│ └── smote_mindspore.py
├── STCrowd
│ ├── STCrowd_convert.py
│ └── read.md
├── SV-X-Softmax
│ ├── readme.md
│ └── sv-x-softmax.py
├── SVGD
│ ├── 1D_Gaussian_mixture.py
│ ├── SVGD.py
│ └── multivariate_normal.py
├── ShortFuse-Biomedical-Time-Series
│ └── Hybrid_CNN.py
├── Simba
│ ├── README.md
│ ├── main.py
│ └── simba.py
├── Sketch2art
│ ├── README.md
│ ├── example.png
│ └── module.py
├── SmeLU-master
│ ├── example_ms.py
│ ├── smelu
│ │ ├── __init__.py
│ │ └── smelu_ms.py
│ └── speed_test_ms.py
├── Super-Resolution-for-Root-Imaging
│ ├── model_FSRCNN_mindspore.py
│ └── model_srgan_mindspore.py
├── TSA_mindspore
│ └── TSA_crossentropy_loss.py
├── Translation-Invariant
│ └── model
│ │ └── tisa.py
├── UE-Unified-Embedding-Battle-Tested-Feature
│ ├── test.py
│ └── ue.py
├── Uncertainty_Calibration_Object_Detection
│ ├── metrics.py
│ └── utils_.py
├── VAE-Creative-Discovery-using-QD-Search
│ └── VAE2.py
├── ZoneoutRNN
│ ├── README.md
│ ├── ZoneoutRNN.py
│ └── test.py
├── bi-tempered-loss-pytorch
│ ├── README.md
│ ├── bi_tempered_loss.py
│ ├── fusion_result.json
│ └── test_loss.py
├── cyclic-cosine-decay-master
│ ├── example.ipynb
│ └── scheduler.py
├── dora
│ ├── README.md
│ └── dora.py
├── fisheradversarial-mindspore
│ ├── README.md
│ ├── fisherform.py
│ ├── fishertrace.py
│ ├── setup.py
│ └── usage.py
├── hyperparameters-part1
│ ├── README.md
│ ├── main.py
│ ├── onecyclec_mindspore.py
│ └── sched.png
├── iwae
│ ├── README.md
│ └── iwae.py
├── med-flamingo
│ ├── scripts
│ │ ├── convert_weights_ms.py
│ │ ├── demo.py
│ │ └── demo_utils.py
│ └── src
│ │ ├── __init__.py
│ │ ├── ms_wrapper.py
│ │ └── utils.py
├── mgan-mindspore
│ ├── LICENSE
│ ├── README.md
│ ├── crop_images.py
│ ├── images
│ │ ├── faces-sample.png
│ │ └── mgan.png
│ ├── init_data.sh
│ ├── models.py
│ └── train.py
├── nalu.ms
│ ├── images
│ │ └── 1.png
│ ├── mlp_ms.py
│ ├── nalu_ms.py
│ └── train_ms.ipynb
├── nystrom-attention
│ ├── nystrom_attention
│ │ ├── _init_.py
│ │ └── nystrom_attention.py
│ ├── setup.py
│ ├── test_attn.py
│ └── test_model.py
├── pixelshuffle1d
│ ├── README.md
│ ├── demo.py
│ └── pixelshuffle1d.py
├── pytorch_convgru
│ ├── README.md
│ ├── demo.ipynb
│ ├── demo_convgru.ipynb
│ ├── mindspore_convgru.py
│ ├── mindspore_convgru_model.py
│ └── requirements.txt
├── rand_conv-master
│ ├── images
│ │ ├── glasses.jpg
│ │ └── robot.jpg
│ └── rand_conv_ms.py
├── shallow-rnns
│ ├── LICENSE
│ ├── README.md
│ └── model
│ │ ├── __init__.py
│ │ └── sharnn.py
├── signSGD
│ ├── README
│ └── gradient-compression-mindspore.py
├── temporal-normalizing-flows
│ ├── affine_flow.py
│ └── readme.md
├── text-to-music
│ ├── inference_mindspore.py
│ ├── input_text.txt
│ ├── output_tunes
│ │ └── Mon_11_Nov_2024_21_15_04.abc
│ └── readme.md
└── token_learner
│ ├── README.md
│ └── tokenlearner.py
├── papers
├── AECRNet
│ ├── README.md
│ ├── data.py
│ ├── images
│ │ ├── model.png
│ │ ├── results.png
│ │ ├── trade-off.png
│ │ └── visual.png
│ ├── losses
│ │ ├── __init__.py
│ │ ├── contras_loss.py
│ │ └── loss.py
│ ├── main.py
│ ├── models
│ │ ├── DCN.py
│ │ ├── config.py
│ │ ├── model.py
│ │ └── vgg_model.py
│ ├── option.py
│ ├── test.py
│ ├── train.py
│ ├── train_ori0.py
│ └── utils
│ │ ├── __init__.py
│ │ └── var_init.py
├── AGW
│ ├── README.md
│ ├── agw_config.yaml
│ ├── eval.py
│ ├── src
│ │ ├── agw.py
│ │ ├── data
│ │ │ ├── __init__.py
│ │ │ ├── dataset.py
│ │ │ ├── datasets_define.py
│ │ │ └── transforms.py
│ │ ├── metrics
│ │ │ ├── distance.py
│ │ │ └── rank.py
│ │ ├── resnet.py
│ │ └── utils
│ │ │ ├── __init__.py
│ │ │ ├── config.py
│ │ │ ├── local_adapter.py
│ │ │ ├── loss.py
│ │ │ └── lr_generator.py
│ └── train.py
├── AVA_cifar
│ ├── README.md
│ ├── eval.py
│ ├── scripts
│ │ ├── run_eval.sh
│ │ ├── run_eval_gpu.sh
│ │ ├── run_train.sh
│ │ └── run_train_gpu.sh
│ ├── src
│ │ ├── RandAugment
│ │ │ ├── __init__.py
│ │ │ └── augmentations.py
│ │ ├── autoaugment.py
│ │ ├── callbacks.py
│ │ ├── cifar_resnet.py
│ │ ├── config.py
│ │ ├── datasets.py
│ │ ├── knn_eval.py
│ │ ├── loss.py
│ │ ├── lr_schedule.py
│ │ ├── network_define.py
│ │ └── optimizer.py
│ └── train.py
├── AVA_hpa
│ ├── .idea
│ │ ├── AVA_hpa.iml
│ │ ├── inspectionProfiles
│ │ │ └── profiles_settings.xml
│ │ ├── misc.xml
│ │ ├── modules.xml
│ │ ├── vcs.xml
│ │ └── workspace.xml
│ ├── README.md
│ ├── enhanced.csv
│ ├── eval.py
│ ├── pretrain.py
│ ├── scripts
│ │ ├── run_eval.sh
│ │ ├── run_eval_gpu.sh
│ │ ├── run_pretrain.sh
│ │ ├── run_pretrain_gpu.sh
│ │ ├── run_train.sh
│ │ └── run_train_gpu.sh
│ ├── src
│ │ ├── RandAugment
│ │ │ ├── __init__.py
│ │ │ └── augmentations.py
│ │ ├── callbacks.py
│ │ ├── config.py
│ │ ├── datasets.py
│ │ ├── eval_metrics.py
│ │ ├── loss.py
│ │ ├── lr_schedule.py
│ │ ├── network_define_eval.py
│ │ ├── network_define_pretrain.py
│ │ ├── network_define_train.py
│ │ └── resnet.py
│ └── train.py
├── Alexnet-ABeffect
│ ├── AB.png
│ ├── ABM.png
│ ├── ABM1.png
│ ├── README.md
│ ├── alexnet_feature_extraction.py
│ ├── category.png
│ ├── feature_predict_abm.py
│ ├── features_extracted_0616
│ │ ├── features_animal.pickle
│ │ └── features_object.pickle
│ ├── lrdata_0801
│ │ ├── lrmodel_cnn1.pickle
│ │ ├── lrmodel_cnn2.pickle
│ │ ├── lrmodel_cnn3.pickle
│ │ ├── lrmodel_cnn4.pickle
│ │ ├── lrmodel_cnn5.pickle
│ │ ├── lrmodel_cnn6.pickle
│ │ └── lrmodel_cnn7.pickle
│ └── test50_feature
│ │ └── test50_feature.pickle
├── BLS
│ ├── BLSBasic
│ │ ├── BLS.py
│ │ └── __init__.py
│ ├── BLSIncremental
│ │ └── __init__.py
│ ├── __init__.py
│ ├── checkpoints
│ │ └── ms_bls_basic.ckpt
│ ├── train.py
│ └── utils
│ │ ├── BLS_load_checkpoint.py
│ │ ├── BLS_save_checkpoint.py
│ │ └── math.py
├── CAJ
│ ├── ChannelAug.py
│ ├── README.md
│ ├── eval.py
│ ├── pre_process_sysu.py
│ ├── scripts
│ │ ├── eval.sh
│ │ └── run.sh
│ ├── src
│ │ ├── dataset.py
│ │ ├── evalfunc.py
│ │ ├── loss.py
│ │ ├── models
│ │ │ ├── embednet.py
│ │ │ ├── resnet.py
│ │ │ └── trainingcell.py
│ │ └── utils.py
│ └── train.py
├── CME
│ ├── README.md
│ ├── cfg
│ │ ├── darknet19_448.cfg
│ │ ├── darknet_dynamic.cfg
│ │ ├── fewshot
│ │ │ ├── metatune.data
│ │ │ ├── metatune_10shot.data
│ │ │ ├── metatune_10shot_split1.data
│ │ │ ├── metatune_10shot_split2.data
│ │ │ ├── metatune_10shot_split3.data
│ │ │ ├── metatune_1shot.data
│ │ │ ├── metatune_1shot_split1.data
│ │ │ ├── metatune_1shot_split2.data
│ │ │ ├── metatune_1shot_split3.data
│ │ │ ├── metatune_2shot.data
│ │ │ ├── metatune_2shot_split1.data
│ │ │ ├── metatune_2shot_split2.data
│ │ │ ├── metatune_2shot_split3.data
│ │ │ ├── metatune_3shot.data
│ │ │ ├── metatune_3shot_split1.data
│ │ │ ├── metatune_3shot_split2.data
│ │ │ ├── metatune_3shot_split3.data
│ │ │ ├── metatune_5shot.data
│ │ │ ├── metatune_5shot_split1.data
│ │ │ ├── metatune_5shot_split2.data
│ │ │ ├── metatune_5shot_split3.data
│ │ │ ├── metatune_split1.data
│ │ │ ├── metatune_split2.data
│ │ │ ├── metatune_split3.data
│ │ │ ├── metayolo.data
│ │ │ ├── metayolo_split1.data
│ │ │ ├── metayolo_split2.data
│ │ │ └── metayolo_split3.data
│ │ ├── reweighting_net.cfg
│ │ ├── reweighting_net_decoupling.cfg
│ │ ├── tiny-yolo-voc.cfg
│ │ ├── voc.data
│ │ ├── yolo-voc.cfg
│ │ └── yolo.cfg
│ ├── data
│ │ ├── coco.names
│ │ ├── coco_full_10shot.txt
│ │ ├── coco_full_30shot.txt
│ │ ├── coco_novels.txt
│ │ ├── coco_traindict_full.txt
│ │ ├── coco_trainvaldict_full.txt
│ │ ├── voc.names
│ │ ├── voc_novels.txt
│ │ ├── voc_novels_split1.txt
│ │ ├── voc_novels_split2.txt
│ │ ├── voc_novels_split3.txt
│ │ ├── voc_traindict_bbox_10shot.txt
│ │ ├── voc_traindict_bbox_1shot.txt
│ │ ├── voc_traindict_bbox_2shot.txt
│ │ ├── voc_traindict_bbox_3shot.txt
│ │ ├── voc_traindict_bbox_5shot.txt
│ │ ├── voc_traindict_full.txt
│ │ └── vocsplit
│ │ │ ├── box_10shot_aeroplane_train.txt
│ │ │ ├── box_10shot_bicycle_train.txt
│ │ │ ├── box_10shot_bird_train.txt
│ │ │ ├── box_10shot_boat_train.txt
│ │ │ ├── box_10shot_bottle_train.txt
│ │ │ ├── box_10shot_bus_train.txt
│ │ │ ├── box_10shot_car_train.txt
│ │ │ ├── box_10shot_cat_train.txt
│ │ │ ├── box_10shot_chair_train.txt
│ │ │ ├── box_10shot_cow_train.txt
│ │ │ ├── box_10shot_diningtable_train.txt
│ │ │ ├── box_10shot_dog_train.txt
│ │ │ ├── box_10shot_horse_train.txt
│ │ │ ├── box_10shot_motorbike_train.txt
│ │ │ ├── box_10shot_person_train.txt
│ │ │ ├── box_10shot_pottedplant_train.txt
│ │ │ ├── box_10shot_sheep_train.txt
│ │ │ ├── box_10shot_sofa_train.txt
│ │ │ ├── box_10shot_train_train.txt
│ │ │ ├── box_10shot_tvmonitor_train.txt
│ │ │ ├── box_1shot_aeroplane_train.txt
│ │ │ ├── box_1shot_bicycle_train.txt
│ │ │ ├── box_1shot_bird_train.txt
│ │ │ ├── box_1shot_boat_train.txt
│ │ │ ├── box_1shot_bottle_train.txt
│ │ │ ├── box_1shot_bus_train.txt
│ │ │ ├── box_1shot_car_train.txt
│ │ │ ├── box_1shot_cat_train.txt
│ │ │ ├── box_1shot_chair_train.txt
│ │ │ ├── box_1shot_cow_train.txt
│ │ │ ├── box_1shot_diningtable_train.txt
│ │ │ ├── box_1shot_dog_train.txt
│ │ │ ├── box_1shot_horse_train.txt
│ │ │ ├── box_1shot_motorbike_train.txt
│ │ │ ├── box_1shot_person_train.txt
│ │ │ ├── box_1shot_pottedplant_train.txt
│ │ │ ├── box_1shot_sheep_train.txt
│ │ │ ├── box_1shot_sofa_train.txt
│ │ │ ├── box_1shot_train_train.txt
│ │ │ ├── box_1shot_tvmonitor_train.txt
│ │ │ ├── box_2shot_aeroplane_train.txt
│ │ │ ├── box_2shot_bicycle_train.txt
│ │ │ ├── box_2shot_bird_train.txt
│ │ │ ├── box_2shot_boat_train.txt
│ │ │ ├── box_2shot_bottle_train.txt
│ │ │ ├── box_2shot_bus_train.txt
│ │ │ ├── box_2shot_car_train.txt
│ │ │ ├── box_2shot_cat_train.txt
│ │ │ ├── box_2shot_chair_train.txt
│ │ │ ├── box_2shot_cow_train.txt
│ │ │ ├── box_2shot_diningtable_train.txt
│ │ │ ├── box_2shot_dog_train.txt
│ │ │ ├── box_2shot_horse_train.txt
│ │ │ ├── box_2shot_motorbike_train.txt
│ │ │ ├── box_2shot_person_train.txt
│ │ │ ├── box_2shot_pottedplant_train.txt
│ │ │ ├── box_2shot_sheep_train.txt
│ │ │ ├── box_2shot_sofa_train.txt
│ │ │ ├── box_2shot_train_train.txt
│ │ │ ├── box_2shot_tvmonitor_train.txt
│ │ │ ├── box_3shot_aeroplane_train.txt
│ │ │ ├── box_3shot_bicycle_train.txt
│ │ │ ├── box_3shot_bird_train.txt
│ │ │ ├── box_3shot_boat_train.txt
│ │ │ ├── box_3shot_bottle_train.txt
│ │ │ ├── box_3shot_bus_train.txt
│ │ │ ├── box_3shot_car_train.txt
│ │ │ ├── box_3shot_cat_train.txt
│ │ │ ├── box_3shot_chair_train.txt
│ │ │ ├── box_3shot_cow_train.txt
│ │ │ ├── box_3shot_diningtable_train.txt
│ │ │ ├── box_3shot_dog_train.txt
│ │ │ ├── box_3shot_horse_train.txt
│ │ │ ├── box_3shot_motorbike_train.txt
│ │ │ ├── box_3shot_person_train.txt
│ │ │ ├── box_3shot_pottedplant_train.txt
│ │ │ ├── box_3shot_sheep_train.txt
│ │ │ ├── box_3shot_sofa_train.txt
│ │ │ ├── box_3shot_train_train.txt
│ │ │ ├── box_3shot_tvmonitor_train.txt
│ │ │ ├── box_5shot_aeroplane_train.txt
│ │ │ ├── box_5shot_bicycle_train.txt
│ │ │ ├── box_5shot_bird_train.txt
│ │ │ ├── box_5shot_boat_train.txt
│ │ │ ├── box_5shot_bottle_train.txt
│ │ │ ├── box_5shot_bus_train.txt
│ │ │ ├── box_5shot_car_train.txt
│ │ │ ├── box_5shot_cat_train.txt
│ │ │ ├── box_5shot_chair_train.txt
│ │ │ ├── box_5shot_cow_train.txt
│ │ │ ├── box_5shot_diningtable_train.txt
│ │ │ ├── box_5shot_dog_train.txt
│ │ │ ├── box_5shot_horse_train.txt
│ │ │ ├── box_5shot_motorbike_train.txt
│ │ │ ├── box_5shot_person_train.txt
│ │ │ ├── box_5shot_pottedplant_train.txt
│ │ │ ├── box_5shot_sheep_train.txt
│ │ │ ├── box_5shot_sofa_train.txt
│ │ │ ├── box_5shot_train_train.txt
│ │ │ └── box_5shot_tvmonitor_train.txt
│ ├── figures
│ │ ├── contradiction.png
│ │ ├── feature_disturbance.png
│ │ └── framework.png
│ └── output
│ │ ├── aeroplane_pr.pkl
│ │ ├── bicycle_pr.pkl
│ │ ├── bird_pr.pkl
│ │ ├── boat_pr.pkl
│ │ ├── bottle_pr.pkl
│ │ ├── bus_pr.pkl
│ │ ├── car_pr.pkl
│ │ ├── cat_pr.pkl
│ │ ├── chair_pr.pkl
│ │ ├── cow_pr.pkl
│ │ ├── diningtable_pr.pkl
│ │ ├── dog_pr.pkl
│ │ ├── horse_pr.pkl
│ │ ├── motorbike_pr.pkl
│ │ ├── person_pr.pkl
│ │ ├── pottedplant_pr.pkl
│ │ ├── sheep_pr.pkl
│ │ ├── sofa_pr.pkl
│ │ ├── train_pr.pkl
│ │ └── tvmonitor_pr.pkl
├── CS-F-LTR
│ ├── ICDE21-wang.pdf
│ ├── README.md
│ ├── main.py
│ ├── scripts
│ │ └── run.sh
│ ├── server.py
│ └── src
│ │ ├── build_common.py
│ │ ├── build_dics.py
│ │ ├── build_sh_fed.py
│ │ ├── build_sketch.py
│ │ ├── build_sketch_heapq.py
│ │ ├── builder.py
│ │ ├── c_semi.py
│ │ ├── cal_idf.py
│ │ ├── convert.py
│ │ ├── countminsketch.py
│ │ ├── data_preprocess.py
│ │ ├── decision_tree.py
│ │ ├── decision_tree_semi.py
│ │ ├── dictionary.py
│ │ ├── draw.py
│ │ ├── eval_acc.py
│ │ ├── feature_generator.py
│ │ ├── federation.py
│ │ ├── g_semi.py
│ │ ├── gc_semi.py
│ │ ├── gcl_semi.py
│ │ ├── global_variables.py
│ │ ├── linear_classifier.py
│ │ ├── linear_regression.py
│ │ ├── mapper.py
│ │ ├── nserver.py
│ │ ├── semi.py
│ │ ├── sh_server.py
│ │ ├── sketch_heap.py
│ │ ├── stats.py
│ │ ├── transfer.py
│ │ └── utils.py
├── CSD
│ ├── README.md
│ ├── csd_train.py
│ ├── eval.py
│ ├── export.py
│ ├── images
│ │ ├── debug.log
│ │ ├── model.png
│ │ ├── psnr-speed.png
│ │ ├── psnr-tradeoff.png
│ │ ├── table.png
│ │ ├── tradeoff.png
│ │ └── visual.png
│ ├── src
│ │ ├── args.py
│ │ ├── common.py
│ │ ├── config.py
│ │ ├── contras_loss.py
│ │ ├── data
│ │ │ ├── common.py
│ │ │ ├── div2k.py
│ │ │ └── srdata.py
│ │ ├── edsr_model.py
│ │ ├── edsr_slim.py
│ │ ├── metric.py
│ │ ├── metrics.py
│ │ ├── rcan_model.py
│ │ └── vgg_model.py
│ ├── train.py
│ └── utils
│ │ ├── __init__.py
│ │ └── var_init.py
├── Cybertron
│ ├── README.en.md
│ ├── README.md
│ ├── cybertron
│ │ ├── __init__.py
│ │ ├── activation.py
│ │ ├── aggregator.py
│ │ ├── base.py
│ │ ├── block.py
│ │ ├── cutoff.py
│ │ ├── cybertron.py
│ │ ├── dataset.py
│ │ ├── decoder.py
│ │ ├── filter.py
│ │ ├── interaction.py
│ │ ├── model.py
│ │ ├── rbf.py
│ │ ├── readout.py
│ │ └── train.py
│ ├── examples
│ │ ├── dataset_ethanol_normed_trainset_1024.npz
│ │ ├── dataset_ethanol_normed_validset_128.npz
│ │ ├── dataset_ethanol_origin_testset_1024.npz
│ │ ├── dataset_qm9_normed_testset_1024.npz
│ │ ├── dataset_qm9_normed_trainset_1024.npz
│ │ ├── dataset_qm9_normed_validset_128.npz
│ │ ├── dataset_qm9_origin_testset_1024.npz
│ │ ├── dataset_qm9_origin_trainset_1024.npz
│ │ ├── dataset_qm9_origin_validset_128.npz
│ │ ├── tutorial_00.py
│ │ ├── tutorial_01.py
│ │ ├── tutorial_02.py
│ │ ├── tutorial_03.py
│ │ ├── tutorial_04.py
│ │ ├── tutorial_05.py
│ │ ├── tutorial_06.py
│ │ ├── tutorial_07.py
│ │ ├── tutorial_08.py
│ │ └── tutorial_09.py
│ └── sponge
│ │ ├── __init__.py
│ │ ├── colvar
│ │ ├── __init__.py
│ │ ├── colvar.py
│ │ └── index.py
│ │ ├── data
│ │ ├── __init__.py
│ │ └── hyperparam.py
│ │ ├── function
│ │ ├── __init__.py
│ │ ├── functions.py
│ │ ├── operations.py
│ │ └── units.py
│ │ ├── partition
│ │ ├── __init__.py
│ │ └── fullconnect.py
│ │ └── potential
│ │ ├── __init__.py
│ │ └── potential.py
├── CycleCol
│ ├── README.md
│ ├── code-CC-CNN.ipynb
│ ├── code_CC_CNN.txt
│ ├── model
│ │ └── coloring_2-8_775.ckpt
│ └── test.txt
├── DiffNet++
│ ├── DataModule.py
│ ├── Metrics.py
│ ├── Parserconf.py
│ ├── README.md
│ ├── conf
│ │ ├── flickr_Diffnetplus.ini
│ │ └── yelp_Diffnetplus.ini
│ ├── datahelper.py
│ ├── dataset.py
│ ├── eval.py
│ └── train.py
├── EPRNet
│ ├── README.md
│ ├── __init__.py
│ ├── build_seg_data.py
│ ├── data
│ │ ├── __init__.py
│ │ ├── camvid.py
│ │ ├── cityscapes.py
│ │ ├── segbase.py
│ │ └── transform.py
│ ├── eval.py
│ ├── models
│ │ ├── __init__.py
│ │ └── eprnet.py
│ ├── nn
│ │ ├── __init__.py
│ │ └── loss.py
│ ├── requirements.txt
│ ├── tools
│ │ ├── __init__.py
│ │ ├── lr.py
│ │ ├── path.py
│ │ └── utils.py
│ └── train.py
├── FCENet
│ ├── dataset
│ │ ├── Icdar15_Text.py
│ │ ├── __init__.py
│ │ ├── ctw1500
│ │ │ ├── Evaluation_Protocol
│ │ │ │ ├── ctw1500_eval.py
│ │ │ │ └── voc_eval_polygon.py
│ │ │ ├── Evaluation_sort
│ │ │ │ └── detections_text0.5.txt
│ │ │ ├── Readme.md
│ │ │ └── annots.pkl
│ │ ├── ctw1500_text.py
│ │ ├── data_util.py
│ │ ├── dataload.py
│ │ ├── icdar15
│ │ │ ├── Evaluation_Protocol
│ │ │ │ ├── readme.txt
│ │ │ │ ├── rrc_evaluation_funcs.py
│ │ │ │ ├── rrc_evaluation_funcs.pyc
│ │ │ │ └── script.py
│ │ │ ├── eval.sh
│ │ │ ├── gt.zip
│ │ │ ├── submit.zip
│ │ │ └── submit
│ │ │ │ ├── res_img_1.txt
│ │ │ │ ├── res_img_10.txt
│ │ │ │ ├── res_img_100.txt
│ │ │ │ ├── res_img_101.txt
│ │ │ │ ├── res_img_102.txt
│ │ │ │ ├── res_img_103.txt
│ │ │ │ ├── res_img_104.txt
│ │ │ │ ├── res_img_105.txt
│ │ │ │ ├── res_img_106.txt
│ │ │ │ ├── res_img_107.txt
│ │ │ │ ├── res_img_108.txt
│ │ │ │ ├── res_img_109.txt
│ │ │ │ ├── res_img_11.txt
│ │ │ │ ├── res_img_110.txt
│ │ │ │ ├── res_img_111.txt
│ │ │ │ ├── res_img_112.txt
│ │ │ │ ├── res_img_113.txt
│ │ │ │ ├── res_img_114.txt
│ │ │ │ ├── res_img_115.txt
│ │ │ │ ├── res_img_116.txt
│ │ │ │ ├── res_img_117.txt
│ │ │ │ ├── res_img_118.txt
│ │ │ │ ├── res_img_119.txt
│ │ │ │ ├── res_img_12.txt
│ │ │ │ ├── res_img_120.txt
│ │ │ │ ├── res_img_121.txt
│ │ │ │ ├── res_img_122.txt
│ │ │ │ ├── res_img_123.txt
│ │ │ │ ├── res_img_124.txt
│ │ │ │ ├── res_img_125.txt
│ │ │ │ ├── res_img_126.txt
│ │ │ │ ├── res_img_127.txt
│ │ │ │ ├── res_img_128.txt
│ │ │ │ ├── res_img_129.txt
│ │ │ │ ├── res_img_13.txt
│ │ │ │ ├── res_img_130.txt
│ │ │ │ ├── res_img_131.txt
│ │ │ │ ├── res_img_132.txt
│ │ │ │ ├── res_img_133.txt
│ │ │ │ ├── res_img_134.txt
│ │ │ │ ├── res_img_135.txt
│ │ │ │ ├── res_img_136.txt
│ │ │ │ ├── res_img_137.txt
│ │ │ │ ├── res_img_138.txt
│ │ │ │ ├── res_img_139.txt
│ │ │ │ ├── res_img_14.txt
│ │ │ │ ├── res_img_140.txt
│ │ │ │ ├── res_img_141.txt
│ │ │ │ ├── res_img_142.txt
│ │ │ │ ├── res_img_143.txt
│ │ │ │ ├── res_img_144.txt
│ │ │ │ ├── res_img_145.txt
│ │ │ │ ├── res_img_146.txt
│ │ │ │ ├── res_img_147.txt
│ │ │ │ ├── res_img_148.txt
│ │ │ │ ├── res_img_149.txt
│ │ │ │ ├── res_img_15.txt
│ │ │ │ ├── res_img_150.txt
│ │ │ │ ├── res_img_151.txt
│ │ │ │ ├── res_img_152.txt
│ │ │ │ ├── res_img_153.txt
│ │ │ │ ├── res_img_154.txt
│ │ │ │ ├── res_img_155.txt
│ │ │ │ ├── res_img_156.txt
│ │ │ │ ├── res_img_157.txt
│ │ │ │ ├── res_img_158.txt
│ │ │ │ ├── res_img_159.txt
│ │ │ │ ├── res_img_16.txt
│ │ │ │ ├── res_img_160.txt
│ │ │ │ ├── res_img_161.txt
│ │ │ │ ├── res_img_162.txt
│ │ │ │ ├── res_img_163.txt
│ │ │ │ ├── res_img_164.txt
│ │ │ │ ├── res_img_165.txt
│ │ │ │ ├── res_img_166.txt
│ │ │ │ ├── res_img_167.txt
│ │ │ │ ├── res_img_168.txt
│ │ │ │ ├── res_img_169.txt
│ │ │ │ ├── res_img_17.txt
│ │ │ │ ├── res_img_170.txt
│ │ │ │ ├── res_img_171.txt
│ │ │ │ ├── res_img_172.txt
│ │ │ │ ├── res_img_173.txt
│ │ │ │ ├── res_img_174.txt
│ │ │ │ ├── res_img_175.txt
│ │ │ │ ├── res_img_176.txt
│ │ │ │ ├── res_img_177.txt
│ │ │ │ ├── res_img_178.txt
│ │ │ │ ├── res_img_179.txt
│ │ │ │ ├── res_img_18.txt
│ │ │ │ ├── res_img_180.txt
│ │ │ │ ├── res_img_181.txt
│ │ │ │ ├── res_img_182.txt
│ │ │ │ ├── res_img_183.txt
│ │ │ │ ├── res_img_184.txt
│ │ │ │ ├── res_img_185.txt
│ │ │ │ ├── res_img_186.txt
│ │ │ │ ├── res_img_187.txt
│ │ │ │ ├── res_img_188.txt
│ │ │ │ ├── res_img_189.txt
│ │ │ │ ├── res_img_19.txt
│ │ │ │ ├── res_img_190.txt
│ │ │ │ ├── res_img_191.txt
│ │ │ │ ├── res_img_192.txt
│ │ │ │ ├── res_img_193.txt
│ │ │ │ ├── res_img_194.txt
│ │ │ │ ├── res_img_195.txt
│ │ │ │ ├── res_img_196.txt
│ │ │ │ ├── res_img_197.txt
│ │ │ │ ├── res_img_198.txt
│ │ │ │ ├── res_img_199.txt
│ │ │ │ ├── res_img_2.txt
│ │ │ │ ├── res_img_20.txt
│ │ │ │ ├── res_img_200.txt
│ │ │ │ ├── res_img_201.txt
│ │ │ │ ├── res_img_202.txt
│ │ │ │ ├── res_img_203.txt
│ │ │ │ ├── res_img_204.txt
│ │ │ │ ├── res_img_205.txt
│ │ │ │ ├── res_img_206.txt
│ │ │ │ ├── res_img_207.txt
│ │ │ │ ├── res_img_208.txt
│ │ │ │ ├── res_img_209.txt
│ │ │ │ ├── res_img_21.txt
│ │ │ │ ├── res_img_210.txt
│ │ │ │ ├── res_img_211.txt
│ │ │ │ ├── res_img_212.txt
│ │ │ │ ├── res_img_213.txt
│ │ │ │ ├── res_img_214.txt
│ │ │ │ ├── res_img_215.txt
│ │ │ │ ├── res_img_216.txt
│ │ │ │ ├── res_img_217.txt
│ │ │ │ ├── res_img_218.txt
│ │ │ │ ├── res_img_219.txt
│ │ │ │ ├── res_img_22.txt
│ │ │ │ ├── res_img_220.txt
│ │ │ │ ├── res_img_221.txt
│ │ │ │ ├── res_img_222.txt
│ │ │ │ ├── res_img_223.txt
│ │ │ │ ├── res_img_224.txt
│ │ │ │ ├── res_img_225.txt
│ │ │ │ ├── res_img_226.txt
│ │ │ │ ├── res_img_227.txt
│ │ │ │ ├── res_img_228.txt
│ │ │ │ ├── res_img_229.txt
│ │ │ │ ├── res_img_23.txt
│ │ │ │ ├── res_img_230.txt
│ │ │ │ ├── res_img_231.txt
│ │ │ │ ├── res_img_232.txt
│ │ │ │ ├── res_img_233.txt
│ │ │ │ ├── res_img_234.txt
│ │ │ │ ├── res_img_235.txt
│ │ │ │ ├── res_img_236.txt
│ │ │ │ ├── res_img_237.txt
│ │ │ │ ├── res_img_238.txt
│ │ │ │ ├── res_img_239.txt
│ │ │ │ ├── res_img_24.txt
│ │ │ │ ├── res_img_240.txt
│ │ │ │ ├── res_img_241.txt
│ │ │ │ ├── res_img_242.txt
│ │ │ │ ├── res_img_243.txt
│ │ │ │ ├── res_img_244.txt
│ │ │ │ ├── res_img_245.txt
│ │ │ │ ├── res_img_246.txt
│ │ │ │ ├── res_img_247.txt
│ │ │ │ ├── res_img_248.txt
│ │ │ │ ├── res_img_249.txt
│ │ │ │ ├── res_img_25.txt
│ │ │ │ ├── res_img_250.txt
│ │ │ │ ├── res_img_251.txt
│ │ │ │ ├── res_img_252.txt
│ │ │ │ ├── res_img_253.txt
│ │ │ │ ├── res_img_254.txt
│ │ │ │ ├── res_img_255.txt
│ │ │ │ ├── res_img_256.txt
│ │ │ │ ├── res_img_257.txt
│ │ │ │ ├── res_img_258.txt
│ │ │ │ ├── res_img_259.txt
│ │ │ │ ├── res_img_26.txt
│ │ │ │ ├── res_img_260.txt
│ │ │ │ ├── res_img_261.txt
│ │ │ │ ├── res_img_262.txt
│ │ │ │ ├── res_img_263.txt
│ │ │ │ ├── res_img_264.txt
│ │ │ │ ├── res_img_265.txt
│ │ │ │ ├── res_img_266.txt
│ │ │ │ ├── res_img_267.txt
│ │ │ │ ├── res_img_268.txt
│ │ │ │ ├── res_img_269.txt
│ │ │ │ ├── res_img_27.txt
│ │ │ │ ├── res_img_270.txt
│ │ │ │ ├── res_img_271.txt
│ │ │ │ ├── res_img_272.txt
│ │ │ │ ├── res_img_273.txt
│ │ │ │ ├── res_img_274.txt
│ │ │ │ ├── res_img_275.txt
│ │ │ │ ├── res_img_276.txt
│ │ │ │ ├── res_img_277.txt
│ │ │ │ ├── res_img_278.txt
│ │ │ │ ├── res_img_279.txt
│ │ │ │ ├── res_img_28.txt
│ │ │ │ ├── res_img_280.txt
│ │ │ │ ├── res_img_281.txt
│ │ │ │ ├── res_img_282.txt
│ │ │ │ ├── res_img_283.txt
│ │ │ │ ├── res_img_284.txt
│ │ │ │ ├── res_img_285.txt
│ │ │ │ ├── res_img_286.txt
│ │ │ │ ├── res_img_287.txt
│ │ │ │ ├── res_img_288.txt
│ │ │ │ ├── res_img_289.txt
│ │ │ │ ├── res_img_29.txt
│ │ │ │ ├── res_img_290.txt
│ │ │ │ ├── res_img_291.txt
│ │ │ │ ├── res_img_292.txt
│ │ │ │ ├── res_img_293.txt
│ │ │ │ ├── res_img_294.txt
│ │ │ │ ├── res_img_295.txt
│ │ │ │ ├── res_img_296.txt
│ │ │ │ ├── res_img_297.txt
│ │ │ │ ├── res_img_298.txt
│ │ │ │ ├── res_img_299.txt
│ │ │ │ ├── res_img_3.txt
│ │ │ │ ├── res_img_30.txt
│ │ │ │ ├── res_img_300.txt
│ │ │ │ ├── res_img_301.txt
│ │ │ │ ├── res_img_302.txt
│ │ │ │ ├── res_img_303.txt
│ │ │ │ ├── res_img_304.txt
│ │ │ │ ├── res_img_305.txt
│ │ │ │ ├── res_img_306.txt
│ │ │ │ ├── res_img_307.txt
│ │ │ │ ├── res_img_308.txt
│ │ │ │ ├── res_img_309.txt
│ │ │ │ ├── res_img_31.txt
│ │ │ │ ├── res_img_310.txt
│ │ │ │ ├── res_img_311.txt
│ │ │ │ ├── res_img_312.txt
│ │ │ │ ├── res_img_313.txt
│ │ │ │ ├── res_img_314.txt
│ │ │ │ ├── res_img_315.txt
│ │ │ │ ├── res_img_316.txt
│ │ │ │ ├── res_img_317.txt
│ │ │ │ ├── res_img_318.txt
│ │ │ │ ├── res_img_319.txt
│ │ │ │ ├── res_img_32.txt
│ │ │ │ ├── res_img_320.txt
│ │ │ │ ├── res_img_321.txt
│ │ │ │ ├── res_img_322.txt
│ │ │ │ ├── res_img_323.txt
│ │ │ │ ├── res_img_324.txt
│ │ │ │ ├── res_img_325.txt
│ │ │ │ ├── res_img_326.txt
│ │ │ │ ├── res_img_327.txt
│ │ │ │ ├── res_img_328.txt
│ │ │ │ ├── res_img_329.txt
│ │ │ │ ├── res_img_33.txt
│ │ │ │ ├── res_img_330.txt
│ │ │ │ ├── res_img_331.txt
│ │ │ │ ├── res_img_332.txt
│ │ │ │ ├── res_img_333.txt
│ │ │ │ ├── res_img_334.txt
│ │ │ │ ├── res_img_335.txt
│ │ │ │ ├── res_img_336.txt
│ │ │ │ ├── res_img_337.txt
│ │ │ │ ├── res_img_338.txt
│ │ │ │ ├── res_img_339.txt
│ │ │ │ ├── res_img_34.txt
│ │ │ │ ├── res_img_340.txt
│ │ │ │ ├── res_img_341.txt
│ │ │ │ ├── res_img_342.txt
│ │ │ │ ├── res_img_343.txt
│ │ │ │ ├── res_img_344.txt
│ │ │ │ ├── res_img_345.txt
│ │ │ │ ├── res_img_346.txt
│ │ │ │ ├── res_img_347.txt
│ │ │ │ ├── res_img_348.txt
│ │ │ │ ├── res_img_349.txt
│ │ │ │ ├── res_img_35.txt
│ │ │ │ ├── res_img_350.txt
│ │ │ │ ├── res_img_351.txt
│ │ │ │ ├── res_img_352.txt
│ │ │ │ ├── res_img_353.txt
│ │ │ │ ├── res_img_354.txt
│ │ │ │ ├── res_img_355.txt
│ │ │ │ ├── res_img_356.txt
│ │ │ │ ├── res_img_357.txt
│ │ │ │ ├── res_img_358.txt
│ │ │ │ ├── res_img_359.txt
│ │ │ │ ├── res_img_36.txt
│ │ │ │ ├── res_img_360.txt
│ │ │ │ ├── res_img_361.txt
│ │ │ │ ├── res_img_362.txt
│ │ │ │ ├── res_img_363.txt
│ │ │ │ ├── res_img_364.txt
│ │ │ │ ├── res_img_365.txt
│ │ │ │ ├── res_img_366.txt
│ │ │ │ ├── res_img_367.txt
│ │ │ │ ├── res_img_368.txt
│ │ │ │ ├── res_img_369.txt
│ │ │ │ ├── res_img_37.txt
│ │ │ │ ├── res_img_370.txt
│ │ │ │ ├── res_img_371.txt
│ │ │ │ ├── res_img_372.txt
│ │ │ │ ├── res_img_373.txt
│ │ │ │ ├── res_img_374.txt
│ │ │ │ ├── res_img_375.txt
│ │ │ │ ├── res_img_376.txt
│ │ │ │ ├── res_img_377.txt
│ │ │ │ ├── res_img_378.txt
│ │ │ │ ├── res_img_379.txt
│ │ │ │ ├── res_img_38.txt
│ │ │ │ ├── res_img_380.txt
│ │ │ │ ├── res_img_381.txt
│ │ │ │ ├── res_img_382.txt
│ │ │ │ ├── res_img_383.txt
│ │ │ │ ├── res_img_384.txt
│ │ │ │ ├── res_img_385.txt
│ │ │ │ ├── res_img_386.txt
│ │ │ │ ├── res_img_387.txt
│ │ │ │ ├── res_img_388.txt
│ │ │ │ ├── res_img_389.txt
│ │ │ │ ├── res_img_39.txt
│ │ │ │ ├── res_img_390.txt
│ │ │ │ ├── res_img_391.txt
│ │ │ │ ├── res_img_392.txt
│ │ │ │ ├── res_img_393.txt
│ │ │ │ ├── res_img_394.txt
│ │ │ │ ├── res_img_395.txt
│ │ │ │ ├── res_img_396.txt
│ │ │ │ ├── res_img_397.txt
│ │ │ │ ├── res_img_398.txt
│ │ │ │ ├── res_img_399.txt
│ │ │ │ ├── res_img_4.txt
│ │ │ │ ├── res_img_40.txt
│ │ │ │ ├── res_img_400.txt
│ │ │ │ ├── res_img_401.txt
│ │ │ │ ├── res_img_402.txt
│ │ │ │ ├── res_img_403.txt
│ │ │ │ ├── res_img_404.txt
│ │ │ │ ├── res_img_405.txt
│ │ │ │ ├── res_img_406.txt
│ │ │ │ ├── res_img_407.txt
│ │ │ │ ├── res_img_408.txt
│ │ │ │ ├── res_img_409.txt
│ │ │ │ ├── res_img_41.txt
│ │ │ │ ├── res_img_410.txt
│ │ │ │ ├── res_img_411.txt
│ │ │ │ ├── res_img_412.txt
│ │ │ │ ├── res_img_413.txt
│ │ │ │ ├── res_img_414.txt
│ │ │ │ ├── res_img_415.txt
│ │ │ │ ├── res_img_416.txt
│ │ │ │ ├── res_img_417.txt
│ │ │ │ ├── res_img_418.txt
│ │ │ │ ├── res_img_419.txt
│ │ │ │ ├── res_img_42.txt
│ │ │ │ ├── res_img_420.txt
│ │ │ │ ├── res_img_421.txt
│ │ │ │ ├── res_img_422.txt
│ │ │ │ ├── res_img_423.txt
│ │ │ │ ├── res_img_424.txt
│ │ │ │ ├── res_img_425.txt
│ │ │ │ ├── res_img_426.txt
│ │ │ │ ├── res_img_427.txt
│ │ │ │ ├── res_img_428.txt
│ │ │ │ ├── res_img_429.txt
│ │ │ │ ├── res_img_43.txt
│ │ │ │ ├── res_img_430.txt
│ │ │ │ ├── res_img_431.txt
│ │ │ │ ├── res_img_432.txt
│ │ │ │ ├── res_img_433.txt
│ │ │ │ ├── res_img_434.txt
│ │ │ │ ├── res_img_435.txt
│ │ │ │ ├── res_img_436.txt
│ │ │ │ ├── res_img_437.txt
│ │ │ │ ├── res_img_438.txt
│ │ │ │ ├── res_img_439.txt
│ │ │ │ ├── res_img_44.txt
│ │ │ │ ├── res_img_440.txt
│ │ │ │ ├── res_img_441.txt
│ │ │ │ ├── res_img_442.txt
│ │ │ │ ├── res_img_443.txt
│ │ │ │ ├── res_img_444.txt
│ │ │ │ ├── res_img_445.txt
│ │ │ │ ├── res_img_446.txt
│ │ │ │ ├── res_img_447.txt
│ │ │ │ ├── res_img_448.txt
│ │ │ │ ├── res_img_449.txt
│ │ │ │ ├── res_img_45.txt
│ │ │ │ ├── res_img_450.txt
│ │ │ │ ├── res_img_451.txt
│ │ │ │ ├── res_img_452.txt
│ │ │ │ ├── res_img_453.txt
│ │ │ │ ├── res_img_454.txt
│ │ │ │ ├── res_img_455.txt
│ │ │ │ ├── res_img_456.txt
│ │ │ │ ├── res_img_457.txt
│ │ │ │ ├── res_img_458.txt
│ │ │ │ ├── res_img_459.txt
│ │ │ │ ├── res_img_46.txt
│ │ │ │ ├── res_img_460.txt
│ │ │ │ ├── res_img_461.txt
│ │ │ │ ├── res_img_462.txt
│ │ │ │ ├── res_img_463.txt
│ │ │ │ ├── res_img_464.txt
│ │ │ │ ├── res_img_465.txt
│ │ │ │ ├── res_img_466.txt
│ │ │ │ ├── res_img_467.txt
│ │ │ │ ├── res_img_468.txt
│ │ │ │ ├── res_img_469.txt
│ │ │ │ ├── res_img_47.txt
│ │ │ │ ├── res_img_470.txt
│ │ │ │ ├── res_img_471.txt
│ │ │ │ ├── res_img_472.txt
│ │ │ │ ├── res_img_473.txt
│ │ │ │ ├── res_img_474.txt
│ │ │ │ ├── res_img_475.txt
│ │ │ │ ├── res_img_476.txt
│ │ │ │ ├── res_img_477.txt
│ │ │ │ ├── res_img_478.txt
│ │ │ │ ├── res_img_479.txt
│ │ │ │ ├── res_img_48.txt
│ │ │ │ ├── res_img_480.txt
│ │ │ │ ├── res_img_481.txt
│ │ │ │ ├── res_img_482.txt
│ │ │ │ ├── res_img_483.txt
│ │ │ │ ├── res_img_484.txt
│ │ │ │ ├── res_img_485.txt
│ │ │ │ ├── res_img_486.txt
│ │ │ │ ├── res_img_487.txt
│ │ │ │ ├── res_img_488.txt
│ │ │ │ ├── res_img_489.txt
│ │ │ │ ├── res_img_49.txt
│ │ │ │ ├── res_img_490.txt
│ │ │ │ ├── res_img_491.txt
│ │ │ │ ├── res_img_492.txt
│ │ │ │ ├── res_img_493.txt
│ │ │ │ ├── res_img_494.txt
│ │ │ │ ├── res_img_495.txt
│ │ │ │ ├── res_img_496.txt
│ │ │ │ ├── res_img_497.txt
│ │ │ │ ├── res_img_498.txt
│ │ │ │ ├── res_img_499.txt
│ │ │ │ ├── res_img_5.txt
│ │ │ │ ├── res_img_50.txt
│ │ │ │ ├── res_img_500.txt
│ │ │ │ ├── res_img_51.txt
│ │ │ │ ├── res_img_52.txt
│ │ │ │ ├── res_img_53.txt
│ │ │ │ ├── res_img_54.txt
│ │ │ │ ├── res_img_55.txt
│ │ │ │ ├── res_img_56.txt
│ │ │ │ ├── res_img_57.txt
│ │ │ │ ├── res_img_58.txt
│ │ │ │ ├── res_img_59.txt
│ │ │ │ ├── res_img_6.txt
│ │ │ │ ├── res_img_60.txt
│ │ │ │ ├── res_img_61.txt
│ │ │ │ ├── res_img_62.txt
│ │ │ │ ├── res_img_63.txt
│ │ │ │ ├── res_img_64.txt
│ │ │ │ ├── res_img_65.txt
│ │ │ │ ├── res_img_66.txt
│ │ │ │ ├── res_img_67.txt
│ │ │ │ ├── res_img_68.txt
│ │ │ │ ├── res_img_69.txt
│ │ │ │ ├── res_img_7.txt
│ │ │ │ ├── res_img_70.txt
│ │ │ │ ├── res_img_71.txt
│ │ │ │ ├── res_img_72.txt
│ │ │ │ ├── res_img_73.txt
│ │ │ │ ├── res_img_74.txt
│ │ │ │ ├── res_img_75.txt
│ │ │ │ ├── res_img_76.txt
│ │ │ │ ├── res_img_77.txt
│ │ │ │ ├── res_img_78.txt
│ │ │ │ ├── res_img_79.txt
│ │ │ │ ├── res_img_8.txt
│ │ │ │ ├── res_img_80.txt
│ │ │ │ ├── res_img_81.txt
│ │ │ │ ├── res_img_82.txt
│ │ │ │ ├── res_img_83.txt
│ │ │ │ ├── res_img_84.txt
│ │ │ │ ├── res_img_85.txt
│ │ │ │ ├── res_img_86.txt
│ │ │ │ ├── res_img_87.txt
│ │ │ │ ├── res_img_88.txt
│ │ │ │ ├── res_img_89.txt
│ │ │ │ ├── res_img_9.txt
│ │ │ │ ├── res_img_90.txt
│ │ │ │ ├── res_img_91.txt
│ │ │ │ ├── res_img_92.txt
│ │ │ │ ├── res_img_93.txt
│ │ │ │ ├── res_img_94.txt
│ │ │ │ ├── res_img_95.txt
│ │ │ │ ├── res_img_96.txt
│ │ │ │ ├── res_img_97.txt
│ │ │ │ ├── res_img_98.txt
│ │ │ │ └── res_img_99.txt
│ │ ├── total_text.py
│ │ └── total_text
│ │ │ ├── Evaluation_Protocol
│ │ │ ├── ComputePrecisionRecall.m
│ │ │ ├── Eval.m
│ │ │ ├── Examples
│ │ │ │ ├── Groundtruth
│ │ │ │ │ ├── poly_gt_img1.mat
│ │ │ │ │ ├── poly_gt_img2.mat
│ │ │ │ │ ├── poly_gt_img3.mat
│ │ │ │ │ ├── poly_gt_img4.mat
│ │ │ │ │ └── poly_gt_img5.mat
│ │ │ │ ├── Prediction
│ │ │ │ │ ├── img1.mat
│ │ │ │ │ ├── img2.mat
│ │ │ │ │ ├── img3.mat
│ │ │ │ │ ├── img4.mat
│ │ │ │ │ └── img5.mat
│ │ │ │ └── Result.txt
│ │ │ └── Python_scripts
│ │ │ │ ├── Deteval.py
│ │ │ │ ├── Pascal_VOC.py
│ │ │ │ ├── polygon_fast.py
│ │ │ │ ├── polygon_wrapper.py
│ │ │ │ └── polygon_wrapper.pyc
│ │ │ └── download.sh
│ ├── eval_FourierText.py
│ ├── network
│ │ ├── __init__.py
│ │ ├── resnet.py
│ │ └── textnet.py
│ ├── readme.md
│ ├── requirements.txt
│ ├── src
│ │ └── table1.jpg
│ └── util
│ │ ├── __init__.py
│ │ ├── augmentation.py
│ │ ├── config.py
│ │ ├── detector.py
│ │ ├── eval.py
│ │ ├── io.py
│ │ ├── iterable.py
│ │ ├── misc.py
│ │ ├── option.py
│ │ ├── strs.py
│ │ └── visualize.py
├── FDDE
│ └── train-fine
│ │ ├── dataset.py
│ │ ├── infer.py
│ │ ├── main.py
│ │ ├── net.py
│ │ ├── resnet
│ │ ├── config.py
│ │ └── resnet50.py
│ │ └── train.py
├── FSMAFL
│ ├── README.md
│ ├── Temp
│ │ ├── priv_data_72.npy
│ │ └── total_priv_data_72.pickle
│ ├── collaborate_train.py
│ ├── communication_gan.py
│ ├── data_utils.py
│ ├── images
│ │ └── Framework.png
│ ├── model_initialization.py
│ ├── model_utils.py
│ ├── models.py
│ └── option.py
├── GAF
│ └── gaf_sgdm_lenet.py
├── GraphPAS
│ ├── README.md
│ ├── examples
│ │ └── node_classification_test.py
│ ├── graphpas
│ │ ├── __init__.py
│ │ ├── build_gnn
│ │ │ ├── __init__.py
│ │ │ ├── gnn_manager.py
│ │ │ ├── gnn_net.py
│ │ │ └── message_passing_net.py
│ │ ├── estimation.py
│ │ ├── graphpas_search
│ │ │ ├── __init__.py
│ │ │ ├── search_algorithm.py
│ │ │ ├── search_manager.py
│ │ │ └── utils.py
│ │ └── search_space.py
│ └── parallel_config.py
├── IMM
│ ├── README.md
│ └── ukf.py
├── LECF
│ ├── README.md
│ ├── data
│ │ └── video10
│ │ │ └── video10.npz
│ ├── dataloader.py
│ ├── evaluate.py
│ ├── main.py
│ └── model.py
├── LIE-IQA
│ ├── README.md
│ ├── checkpoint
│ │ └── README.md
│ ├── fig
│ │ ├── LIE-IQA-Framework.png
│ │ ├── optimization-framework.png
│ │ ├── performance-IQA-Dataset.png
│ │ └── performance-LIE-IQA-Dataset.png
│ ├── images
│ │ └── test_file.txt
│ ├── networks
│ │ ├── model.py
│ │ ├── var_init.py
│ │ └── vgg.py
│ ├── predict.py
│ ├── requirements.txt
│ └── utils
│ │ ├── datasets.py
│ │ └── tools.py
├── MTLN
│ ├── .keep
│ ├── MTLN.py
│ └── README.md
├── MVD
│ ├── .idea
│ │ ├── .gitignore
│ │ ├── MVD.iml
│ │ ├── inspectionProfiles
│ │ │ ├── Project_Default.xml
│ │ │ └── profiles_settings.xml
│ │ ├── misc.xml
│ │ └── modules.xml
│ ├── README.md
│ ├── data
│ │ ├── data_loader.py
│ │ ├── data_manager.py
│ │ ├── demo_pre_process_sysu.py
│ │ └── pre_process_sysu.py
│ ├── model
│ │ ├── eval.py
│ │ ├── lr_generator.py
│ │ ├── model_main.py
│ │ ├── resnet.py
│ │ ├── training_cell.py
│ │ └── vib.py
│ ├── train.py
│ └── utils
│ │ ├── loss.py
│ │ └── utils.py
├── PACMOO
│ ├── README.md
│ ├── dataloader.py
│ ├── main.py
│ ├── metrics.py
│ ├── min_norm_solvers_numpy.py
│ └── utils.py
├── RHFL
│ ├── Dataset
│ │ ├── cifar.py
│ │ ├── init_data.py
│ │ └── utils.py
│ ├── Network
│ │ ├── Models_Def
│ │ │ ├── efficientnet.py
│ │ │ ├── resnet.py
│ │ │ └── shufflenet.py
│ │ └── pretrain.py
│ ├── README.md
│ ├── RHFL
│ │ └── RHFL.py
│ └── loss.py
├── SNUH
│ ├── README.md
│ ├── main.py
│ ├── model
│ │ ├── SNUH.py
│ │ └── base_model.py
│ ├── run.sh
│ └── utils
│ │ ├── data.py
│ │ ├── evaluation.py
│ │ ├── logger.py
│ │ └── mindspore_helper.py
├── UColor
│ ├── .gitignore
│ ├── README.md
│ ├── datasets.py
│ ├── loss.py
│ ├── mindspore1.3.yaml
│ ├── model.py
│ ├── train.py
│ ├── utils.py
│ └── vgg.py
├── UKF
│ ├── README.md
│ ├── images
│ │ ├── temp1.png
│ │ └── temp2.png
│ └── ukf.py
├── Zero-DCE++
│ ├── .gitignore
│ ├── README.md
│ ├── data
│ │ ├── test_data
│ │ │ └── .keepme
│ │ └── train_data
│ │ │ └── .keepme
│ ├── dataset.py
│ ├── loss.py
│ ├── lowlight_test.py
│ ├── lowlight_train.py
│ ├── mindspore1.3.yaml
│ ├── models.py
│ ├── pretrain_model
│ │ └── zero_dcepp_epoch99.ckpt
│ └── utils.py
├── Zero-DCE
│ ├── .gitignore
│ ├── README.md
│ ├── data
│ │ ├── test_data
│ │ │ └── .keepme
│ │ └── train_data
│ │ │ └── .keepme
│ ├── dataset.py
│ ├── loss.py
│ ├── lowlight_test.py
│ ├── lowlight_train.py
│ ├── mindspore1.3.yaml
│ ├── models.py
│ ├── pretrain_model
│ │ └── zero_dce_epoch99.ckpt
│ └── utils.py
├── __init__.py
└── informer
│ ├── README.md
│ ├── img
│ ├── informer.png
│ └── probsparse_intro.png
│ ├── model
│ ├── attn.py
│ ├── decoder.py
│ ├── embed.py
│ ├── encoder.py
│ └── model.py
│ └── utils
│ ├── __init__.py
│ ├── he_normal.py
│ ├── masking.py
│ └── trans_tools.py
└── requirements.txt
/NOTICE:
--------------------------------------------------------------------------------
1 | MindSpore
2 | Copyright 2019-2021 Huawei Technologies Co., Ltd
3 |
--------------------------------------------------------------------------------
/OWNERS:
--------------------------------------------------------------------------------
1 | approvers:
2 | - baochong
3 | - kingxian
4 | - sanjaychan
5 | - changzherui
6 | - zhao_ting_v
7 | - c_34
8 | - kisnwang
9 | - qujianwei
10 | - Shawny233
11 | - anzhengqi
12 | - gengdongjie
13 | - lvyufenghw
14 | - wangcong666
15 | - geniuspatrick
--------------------------------------------------------------------------------
/RELEASE.md:
--------------------------------------------------------------------------------
1 | # MindSpore Contribution 0.1
2 |
3 | ## MindSpore Contribution 0.1 Release Notes
4 |
5 |
6 |
--------------------------------------------------------------------------------
/application/An-Exploration-of-Conditioning-Methods/layers/__init__.py:
--------------------------------------------------------------------------------
1 | from .conditional import ConditionalLinear
2 |
3 | __all__ = ['ConditionalLinear']
4 |
--------------------------------------------------------------------------------
/application/AoA/aoa_mindspore/__init__.py:
--------------------------------------------------------------------------------
1 | from aoa_mindspore.aoa import AttentionOnAttention
2 | AoA = AttentionOnAttention
3 |
--------------------------------------------------------------------------------
/application/AoA/saoa.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/AoA/saoa.png
--------------------------------------------------------------------------------
/application/CLIP-It/assets/overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/CLIP-It/assets/overview.png
--------------------------------------------------------------------------------
/application/Castling-ViT/README.py:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Castling-ViT(Compressing Self-Attention via Switching Towards Linear-Angular Attention During Vision Transformer Inference) which is avaliable at https://github.com/GATECH-EIC/Castling-ViT.
--------------------------------------------------------------------------------
/application/Conv2Former_Simple_Transformer/mindspore/__init__.py:
--------------------------------------------------------------------------------
1 | from .conv2former_mindspore import *
2 |
--------------------------------------------------------------------------------
/application/HTM-mindspore/htm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/HTM-mindspore/htm.png
--------------------------------------------------------------------------------
/application/HTM-mindspore/htm_mindspore/__init__.py:
--------------------------------------------------------------------------------
1 | from htm_mindspore.htm_mindspore import HTMAttention, HTMBlock
2 |
--------------------------------------------------------------------------------
/application/Investigating/data/generated_showerthoughts_ChatGPT_df_1.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Investigating/data/generated_showerthoughts_ChatGPT_df_1.pkl
--------------------------------------------------------------------------------
/application/Investigating/data/generated_showerthoughts_ChatGPT_df_2.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Investigating/data/generated_showerthoughts_ChatGPT_df_2.pkl
--------------------------------------------------------------------------------
/application/Investigating/data/generated_showerthoughts_ChatGPT_df_3.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Investigating/data/generated_showerthoughts_ChatGPT_df_3.pkl
--------------------------------------------------------------------------------
/application/Learning-to-Upsample/complexity.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Learning-to-Upsample/complexity.jpg
--------------------------------------------------------------------------------
/application/MCA/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of MCA which is available at https://github.com/csdllab/mca
--------------------------------------------------------------------------------
/application/NBC-Softmax/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of NBC-Softmax which is avaliable at https://github.com/gayanku/nbc-softmax.
--------------------------------------------------------------------------------
/application/OTCE/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of OTCE which is available at https://github.com/tanyang1231/OTCE_Transferability_CVPR21. The paperswidthcocde link is https://paperswithcode.com/paper/otce-a-transferability-metric-for-cross.
2 |
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_1.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_2.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_3.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_4.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_5.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_6.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_7.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_8.png
--------------------------------------------------------------------------------
/application/Real-NVP/output_figures/Figure_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Real-NVP/output_figures/Figure_9.png
--------------------------------------------------------------------------------
/application/S2DNet-Minimal/README.md:
--------------------------------------------------------------------------------
1 | ## 运行
2 | 1. 在本仓库中放入一张test_image.jpg图片,用于测试。
3 | 2. 运行`python main.py`
4 |
--------------------------------------------------------------------------------
/application/Sub2Full-OCT-Denoising/output_ms.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Sub2Full-OCT-Denoising/output_ms.png
--------------------------------------------------------------------------------
/application/Sub2Full-OCT-Denoising/output_torch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Sub2Full-OCT-Denoising/output_torch.png
--------------------------------------------------------------------------------
/application/Sub2Full-OCT-Denoising/target.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Sub2Full-OCT-Denoising/target.png
--------------------------------------------------------------------------------
/application/Sub2Full-OCT-Denoising/test.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/Sub2Full-OCT-Denoising/test.png
--------------------------------------------------------------------------------
/application/TRSTMI/requirements.txt:
--------------------------------------------------------------------------------
1 | mindspore
2 | sys
3 | os
4 | numpy
5 | timeit
6 |
--------------------------------------------------------------------------------
/application/TSGD/tsgd/__init__.py:
--------------------------------------------------------------------------------
1 | from .tsgd import *
--------------------------------------------------------------------------------
/application/The_RefinedWeb_Dataset_for_Falcon/requirements.txt:
--------------------------------------------------------------------------------
1 | mindspore==2.5
2 | numpy
3 | mindnlp==0.4.1
4 |
--------------------------------------------------------------------------------
/application/adam-aio/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of All-In-One Adam Optimizer which is avaliable at https://github.com/kayuksel/pytorch-adamaio.
2 |
--------------------------------------------------------------------------------
/application/alibi/alibi/__init__.py:
--------------------------------------------------------------------------------
1 | from alibi.config import ALiBiConfig
2 | from alibi.model import ALiBiTransformer
3 |
--------------------------------------------------------------------------------
/application/aves/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of AVES: Animal Vocalization Encoder based on Self-Supervision which is avaliable at https://github.com/earthspecies/aves.
2 |
--------------------------------------------------------------------------------
/application/circle-loss/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of circle-loss which is available at https://github.com/qianjinhao/circle-loss.
--------------------------------------------------------------------------------
/application/comparing-the-efficacy/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of imujoco which is available at https://github.com/mpatacchiola/imujoco.
2 | paperswidthcode link is https://paperswithcode.com/paper/comparing-the-efficacy-of-fine-tuning-and
3 |
--------------------------------------------------------------------------------
/application/contextual-learning/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of FCT which is available at https://github.com/gao-xiyuan/fct
--------------------------------------------------------------------------------
/application/corss-dataset-training/readme.md:
--------------------------------------------------------------------------------
1 | This is a mindspore implementation of the paper Cross-dataset Training for Class Increasing Object Detection
--------------------------------------------------------------------------------
/application/cross-transformers-spatially-aware-few-shot-transfer/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of CrossTransformer which is available at https://github.com/lucidrains/cross-transformers-pytorch.
--------------------------------------------------------------------------------
/application/delving-deeper-into-convolutional/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of ConvGRUCell-pytorch which is available at https://github.com/bionick87/ConvGRUCell-pytorch.
--------------------------------------------------------------------------------
/application/drop-an-octave-reducing-spatial/readme.md:
--------------------------------------------------------------------------------
1 | This is a mindspore implementation of the paper Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution.
2 |
--------------------------------------------------------------------------------
/application/dropblock-a-regularization-method/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of dropblock which is available at https://github.com/gan3sh500/dropblock.
2 | paperswidthcode link is https://paperswithcode.com/paper/dropblock-a-regularization-method-for
3 |
--------------------------------------------------------------------------------
/application/dynamic-relu/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Dynamic ReLU which is avaliable at https://github.com/Islanna/DynamicReLU.
2 |
--------------------------------------------------------------------------------
/application/effnet-an-efficient-structure/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of EffNet which is available at https://github.com/andrijdavid/EffNet.
2 | paperswidthcocde link is https://paperswithcode.com/paper/effnet-an-efficient-structure-for.
--------------------------------------------------------------------------------
/application/entropy-law/motivation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/entropy-law/motivation.png
--------------------------------------------------------------------------------
/application/falformer/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of FALFormer which is avaliable at https://github.com/caodoanh2001/FALFormer.
2 |
--------------------------------------------------------------------------------
/application/fisheradversarial-mindspore/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 |
3 |
4 | setup(name='Fisher_Adversarial',
5 | version='0.0',
6 | author='Joerg Martin',
7 | py_modules = ['fisherform', 'fishertrace'])
8 |
--------------------------------------------------------------------------------
/application/gaussian_adaptive_attention/gaussian_adaptive_attention/__init__.py:
--------------------------------------------------------------------------------
1 | from .GaussianBlock import GaussianBlock
2 | from .GaussianBlock import MultiHeadGaussianAdaptiveAttention
3 | from .GaussianBlock import GaussianAdaptiveAttention
4 |
5 |
--------------------------------------------------------------------------------
/application/group-normalization/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of group-normalization which is available at https://github.com/taokong/group_normalization.
--------------------------------------------------------------------------------
/application/hyperspherical-consistency-regularization/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of hyperspherical-consistency-regularization which is available at https://github.com/chengtan9907/Hyperspherical-Consistency-Regularization.
--------------------------------------------------------------------------------
/application/isr/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of ISR which is avaliable at https://github.com/dcp15/ISR_ICCV2023_Oral.
2 |
--------------------------------------------------------------------------------
/application/jko_wass_grad/pth2pkl.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import pickle
3 |
4 | # 加载 .pth 文件
5 | data = torch.load("pushed_data.pth", map_location="cpu")
6 |
7 | # 保存为 pickle 文件
8 | with open("pushed_data.pkl", "wb") as f:
9 | pickle.dump(data, f)
10 |
--------------------------------------------------------------------------------
/application/layer-normalization/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of LayerNorm_GRU which is available at https://github.com/ElektrischesSchaf/LayerNorm_GRU
--------------------------------------------------------------------------------
/application/light-head/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Light Head module in Light-Head R-CNN which is avaliable at https://github.com/princefr/Light-Head.pytorch.
2 |
--------------------------------------------------------------------------------
/application/localquantumannealing/localquantumannealing/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function, division
2 |
3 | from .lqa import *
4 | from .lqa_basic import *
5 |
6 |
7 |
8 |
9 |
10 |
--------------------------------------------------------------------------------
/application/lru/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of LRU which is avaliable at https://github.com/Gothos/LRU-pytorch.
2 |
--------------------------------------------------------------------------------
/application/lsuv-init/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of lsuv-init which is avaliable at https://github.com/ducha-aiki/LSUV-keras.
2 |
--------------------------------------------------------------------------------
/application/matthews-correlation/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of MCC-Loss which is available at https://github.com/kakumarabhishek/MCC-Loss.
2 | paperswidthcode link is https://paperswithcode.com/paper/matthews-correlation-coefficient-loss-for.
--------------------------------------------------------------------------------
/application/mgan-mindspore/images/faces-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/mgan-mindspore/images/faces-sample.png
--------------------------------------------------------------------------------
/application/mgan-mindspore/images/mgan.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/mgan-mindspore/images/mgan.png
--------------------------------------------------------------------------------
/application/model-conversion-via/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of DPDFD which is available at https://github.com/llbbcc/DPDFD.
2 | paperswidthcode link is https://paperswithcode.com/paper/model-conversion-via-differentially-private.
--------------------------------------------------------------------------------
/application/mvn2vec/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of group-normalization which is available at https://github.com/sezinata/mvn2vec-code.
--------------------------------------------------------------------------------
/application/nystrom-attention/nystrom_attention/_init_.py:
--------------------------------------------------------------------------------
1 | from nystrom_attention.nystrom_attention import NystromAttention, Nystromformer
2 | Nystromer = Nystromformer
3 |
4 |
--------------------------------------------------------------------------------
/application/openfashionclip-vision-and-language/maxi_dress.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/openfashionclip-vision-and-language/maxi_dress.jpg
--------------------------------------------------------------------------------
/application/polyloss/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of lsuv-init which is avaliable at https://github.com/lumia-group/apl.
2 |
--------------------------------------------------------------------------------
/application/privacy-enhancement/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Few-Shot-Privacy which is available at https://github.com/ArchitParnami/Few-Shot-Privacy
--------------------------------------------------------------------------------
/application/pro/README.md:
--------------------------------------------------------------------------------
1 | # Unofficial MindSpore implementation of "Deep Weakly-supervised Anomaly Detection" paper
2 |
3 | [](https://opensource.org/licenses/BSD-3-Clause)
4 |
--------------------------------------------------------------------------------
/application/recurrent-highway-network/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Recurrent-Highway-Network which is avaliable at https://github.com/vermaMachineLearning/Pytorch-JIT-Recurrent-Highway-Network.
--------------------------------------------------------------------------------
/application/robustness_depth_lang/data/readme.txt:
--------------------------------------------------------------------------------
1 | 请下载https://github.com/xiandong20/robustness_depth_lang/tree/main/data中的内容并放置在此处
--------------------------------------------------------------------------------
/application/robustness_depth_lang/model/readme.txt:
--------------------------------------------------------------------------------
1 | 下载clip-vit-large-patch14模型文件,放在这里
--------------------------------------------------------------------------------
/application/root-mean-square-layer-normalization/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of RMSNorm which is available at https://github.com/hazdzz/RMSNorm.
--------------------------------------------------------------------------------
/application/sa-mlp-distilling-graph/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of SA-MLP which is available at https://github.com/jc-202/sa-mlp.
--------------------------------------------------------------------------------
/application/segmentation-dataset/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of BCSD which is available at https://github.com/saifkhichi96/bcsd.
--------------------------------------------------------------------------------
/application/shallow-rnns/model/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/shallow-rnns/model/__init__.py
--------------------------------------------------------------------------------
/application/similarity-of-neural-network/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of group-normalization which is available at https://github.com/jayroxis/CKA-similarity.
--------------------------------------------------------------------------------
/application/smu/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of SMU: smooth activation function for deep networks using smoothing maximum technique which is avaliable at https://github.com/iFe1er/SMU_pytorch.
2 |
--------------------------------------------------------------------------------
/application/ssFPN/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of group-normalization which is available at https://github.com/BearCooike/ssFPN-pytorch.
--------------------------------------------------------------------------------
/application/stable-sam/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Stable SAM which is avaliable at https://github.com/cltan023/stablesam2024.
2 |
--------------------------------------------------------------------------------
/application/stochastic-attention-head-removal-a-simple/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of attention_head_removal which is available at https://github.com/s1603602/attention_head_removal.
2 |
--------------------------------------------------------------------------------
/application/swish-t/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of Swish-T which is avaliable at https://github.com/ictseoyoungmin/Swish-T-pytorch.
2 |
--------------------------------------------------------------------------------
/application/temporal-and-aspectual-entailment/Readme.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of iwcs2019 which is available at https://github.com/tttthomasssss/iwcs2019.
2 |
3 | paperswidthcocde link is https://paperswithcode.com/paper/temporal-and-aspectual-entailment.
--------------------------------------------------------------------------------
/application/vat/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of VAT which is avaliable at https://github.com/JohnYKiyo/VAT.
2 |
--------------------------------------------------------------------------------
/application/weakly-supervised/README.md:
--------------------------------------------------------------------------------
1 | This code is a mindspore implementation of group-normalization which is available at https://github.com/Tau-J/JointBoneLoss.
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/0explore/0explore_acc-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/0explore/0explore_acc-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/0explore/0explore_sharpness-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/0explore/0explore_sharpness-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/100explore/100explore_acc-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/100explore/100explore_acc-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/100explore/100explore_sharpness-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/100explore/100explore_sharpness-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/30explore/30explore_acc-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/30explore/30explore_acc-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/30explore/30explore_sharpness-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/30explore/30explore_sharpness-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/60explore/60explore_acc-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/60explore/60explore_acc-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/plots/60explore/60explore_sharpness-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/plots/60explore/60explore_sharpness-1.png
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/tables/epoch_savings.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/tables/epoch_savings.PNG
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/tables/full_budget.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/tables/full_budget.PNG
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/tables/short-budget.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/tables/short-budget.PNG
--------------------------------------------------------------------------------
/application/wide-minima-density-hypothesis/tables/sota_iwslt.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/application/wide-minima-density-hypothesis/tables/sota_iwslt.PNG
--------------------------------------------------------------------------------
/dataset/TransNAS-Bench-101/api/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/dataset/TransNAS-Bench-101/api/__init__.py
--------------------------------------------------------------------------------
/dataset/TransNAS-Bench-101/models/net_infer/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/dataset/TransNAS-Bench-101/models/net_infer/__init__.py
--------------------------------------------------------------------------------
/dataset/TransNAS-Bench-101/models/net_ops/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/dataset/TransNAS-Bench-101/models/net_ops/__init__.py
--------------------------------------------------------------------------------
/intern/Datasets-Models-main/README.md:
--------------------------------------------------------------------------------
1 | # Datasets-Models
2 | Models used in the paper titled "Communication-Efficient Hierarchical Federated Learning for IoT Heterogeneous Systems with Imbalanced Data"
3 |
--------------------------------------------------------------------------------
/intern/Deep-Edge-Aware-Interactive/example/enh_inputs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Deep-Edge-Aware-Interactive/example/enh_inputs.png
--------------------------------------------------------------------------------
/intern/Deep-Edge-Aware-Interactive/example/gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Deep-Edge-Aware-Interactive/example/gt.png
--------------------------------------------------------------------------------
/intern/Deep-Edge-Aware-Interactive/example/org_inputs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Deep-Edge-Aware-Interactive/example/org_inputs.png
--------------------------------------------------------------------------------
/intern/Fourier-Features-Let-Networks-Learn-High-Frequency/night.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Fourier-Features-Let-Networks-Learn-High-Frequency/night.jpg
--------------------------------------------------------------------------------
/intern/HTM-mindspore/htm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/HTM-mindspore/htm.png
--------------------------------------------------------------------------------
/intern/HTM-mindspore/htm_mindspore/__init__.py:
--------------------------------------------------------------------------------
1 | from htm_mindspore.htm_mindspore import HTMAttention, HTMBlock
2 |
--------------------------------------------------------------------------------
/intern/Integrated-Gradient/assets/heatmap.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Integrated-Gradient/assets/heatmap.jpg
--------------------------------------------------------------------------------
/intern/Integrated-Gradient/assets/n01669191_46.JPEG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Integrated-Gradient/assets/n01669191_46.JPEG
--------------------------------------------------------------------------------
/intern/Integrated-Gradient/result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Integrated-Gradient/result.png
--------------------------------------------------------------------------------
/intern/Least_Generative/README.md:
--------------------------------------------------------------------------------
1 | This is a code with paper in article Least Squares Generative Adversarial Networks,it uses mindspore to run.The paper is just with a link of https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FMakeDirtyCode%2FDCGAN-celebA-pytorch
2 |
--------------------------------------------------------------------------------
/intern/Patient2Vec-A-Personalized-Interpretable/Patient2Vec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Patient2Vec-A-Personalized-Interpretable/Patient2Vec.png
--------------------------------------------------------------------------------
/intern/Quiz_gen/README.md:
--------------------------------------------------------------------------------
1 | This is a code with paper Automating Turkish Educational Quiz Generation Using Large Language Models,the link of paper:https://gitee.com/link?target=https%3A%2F%2Fgithub.com%2FKamyarZeinalipour%2FTurkish_Quiz_Generator.
2 |
--------------------------------------------------------------------------------
/intern/Sketch2art/example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/Sketch2art/example.png
--------------------------------------------------------------------------------
/intern/SmeLU-master/smelu/__init__.py:
--------------------------------------------------------------------------------
1 | from .smelu import SmeLU
2 | from .smelu_ms import SmeLU
3 |
--------------------------------------------------------------------------------
/intern/fisheradversarial-mindspore/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 |
3 |
4 | setup(name='Fisher_Adversarial',
5 | version='0.0',
6 | author='Joerg Martin',
7 | py_modules = ['fisherform', 'fishertrace'])
8 |
--------------------------------------------------------------------------------
/intern/hyperparameters-part1/sched.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/hyperparameters-part1/sched.png
--------------------------------------------------------------------------------
/intern/med-flamingo/src/__init__.py:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/intern/mgan-mindspore/images/faces-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/mgan-mindspore/images/faces-sample.png
--------------------------------------------------------------------------------
/intern/mgan-mindspore/images/mgan.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/mgan-mindspore/images/mgan.png
--------------------------------------------------------------------------------
/intern/nalu.ms/images/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/nalu.ms/images/1.png
--------------------------------------------------------------------------------
/intern/nystrom-attention/nystrom_attention/_init_.py:
--------------------------------------------------------------------------------
1 | from nystrom_attention.nystrom_attention import NystromAttention, Nystromformer
2 | Nystromer = Nystromformer
3 |
4 |
--------------------------------------------------------------------------------
/intern/pytorch_convgru/requirements.txt:
--------------------------------------------------------------------------------
1 | mindspore==2.3.0
2 | numpy>=1.21.6
3 |
--------------------------------------------------------------------------------
/intern/rand_conv-master/images/glasses.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/rand_conv-master/images/glasses.jpg
--------------------------------------------------------------------------------
/intern/rand_conv-master/images/robot.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/rand_conv-master/images/robot.jpg
--------------------------------------------------------------------------------
/intern/shallow-rnns/model/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/intern/shallow-rnns/model/__init__.py
--------------------------------------------------------------------------------
/intern/text-to-music/input_text.txt:
--------------------------------------------------------------------------------
1 | This is a traditional Irish dance music.
2 | Note Length-1/8
3 | Meter-6/8
4 | Key-D
--------------------------------------------------------------------------------
/intern/text-to-music/readme.md:
--------------------------------------------------------------------------------
1 | paper:Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music Generation Task implemented in minspore
2 | implemented in pytorch:https://github.com/sander-wood/text-to-music
--------------------------------------------------------------------------------
/papers/AECRNet/images/model.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AECRNet/images/model.png
--------------------------------------------------------------------------------
/papers/AECRNet/images/results.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AECRNet/images/results.png
--------------------------------------------------------------------------------
/papers/AECRNet/images/trade-off.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AECRNet/images/trade-off.png
--------------------------------------------------------------------------------
/papers/AECRNet/images/visual.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AECRNet/images/visual.png
--------------------------------------------------------------------------------
/papers/AECRNet/losses/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AECRNet/losses/__init__.py
--------------------------------------------------------------------------------
/papers/AECRNet/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AECRNet/utils/__init__.py
--------------------------------------------------------------------------------
/papers/AGW/src/data/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AGW/src/data/__init__.py
--------------------------------------------------------------------------------
/papers/AGW/src/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/AGW/src/utils/__init__.py
--------------------------------------------------------------------------------
/papers/AVA_cifar/src/RandAugment/__init__.py:
--------------------------------------------------------------------------------
1 |
2 | from src.RandAugment.augmentations import RandAugment
3 |
--------------------------------------------------------------------------------
/papers/AVA_hpa/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/papers/AVA_hpa/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/papers/AVA_hpa/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/papers/AVA_hpa/src/RandAugment/__init__.py:
--------------------------------------------------------------------------------
1 |
2 | from src.RandAugment.augmentations import RandAugment
3 |
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/AB.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/AB.png
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/ABM.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/ABM.png
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/ABM1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/ABM1.png
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/category.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/category.png
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/features_extracted_0616/features_animal.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/features_extracted_0616/features_animal.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/features_extracted_0616/features_object.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/features_extracted_0616/features_object.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn1.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn1.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn2.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn2.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn3.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn3.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn4.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn4.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn5.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn5.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn6.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn6.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn7.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/lrdata_0801/lrmodel_cnn7.pickle
--------------------------------------------------------------------------------
/papers/Alexnet-ABeffect/test50_feature/test50_feature.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Alexnet-ABeffect/test50_feature/test50_feature.pickle
--------------------------------------------------------------------------------
/papers/BLS/BLSBasic/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/BLS/BLSBasic/__init__.py
--------------------------------------------------------------------------------
/papers/BLS/BLSIncremental/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/BLS/BLSIncremental/__init__.py
--------------------------------------------------------------------------------
/papers/BLS/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/BLS/__init__.py
--------------------------------------------------------------------------------
/papers/BLS/checkpoints/ms_bls_basic.ckpt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/BLS/checkpoints/ms_bls_basic.ckpt
--------------------------------------------------------------------------------
/papers/CME/data/voc.names:
--------------------------------------------------------------------------------
1 | aeroplane
2 | bicycle
3 | bird
4 | boat
5 | bottle
6 | bus
7 | car
8 | cat
9 | chair
10 | cow
11 | diningtable
12 | dog
13 | horse
14 | motorbike
15 | person
16 | pottedplant
17 | sheep
18 | sofa
19 | train
20 | tvmonitor
21 |
--------------------------------------------------------------------------------
/papers/CME/data/voc_novels.txt:
--------------------------------------------------------------------------------
1 | bird,bus,cow,motorbike,sofa
2 | aeroplane,bottle,cow,horse,sofa
3 | boat,cat,motorbike,sheep,sofa
4 | bicycle,bird,motorbike,train,tvmonitor
5 | aeroplane,bird,bus,cat,person
6 | car,diningtable,motorbike,pottedplant,tvmonitor
--------------------------------------------------------------------------------
/papers/CME/data/voc_novels_split1.txt:
--------------------------------------------------------------------------------
1 | bird,bus,cow,motorbike,sofa
2 | aeroplane,bottle,cow,horse,sofa
3 | boat,cat,motorbike,sheep,sofa
4 | bicycle,bird,motorbike,train,tvmonitor
5 | aeroplane,bird,bus,cat,person
6 | car,diningtable,motorbike,pottedplant,tvmonitor
--------------------------------------------------------------------------------
/papers/CME/data/voc_novels_split2.txt:
--------------------------------------------------------------------------------
1 | aeroplane,bottle,cow,horse,sofa
2 | bird,bus,cow,motorbike,sofa
3 | boat,cat,motorbike,sheep,sofa
4 | bicycle,bird,motorbike,train,tvmonitor
5 | aeroplane,bird,bus,cat,person
6 | car,diningtable,motorbike,pottedplant,tvmonitor
--------------------------------------------------------------------------------
/papers/CME/data/voc_novels_split3.txt:
--------------------------------------------------------------------------------
1 | boat,cat,motorbike,sheep,sofa
2 | bird,bus,cow,motorbike,sofa
3 | aeroplane,bottle,cow,horse,sofa
4 | bicycle,bird,motorbike,train,tvmonitor
5 | aeroplane,bird,bus,cat,person
6 | car,diningtable,motorbike,pottedplant,tvmonitor
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_aeroplane_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_006761.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_bicycle_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_005064.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_bird_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/003614.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_boat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_000906.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_bottle_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002956.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_bus_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2011_000969.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_car_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/008388.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_cat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_chair_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_cow_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001713.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_diningtable_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_dog_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002273.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_horse_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_005107.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_motorbike_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_001691.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_person_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002273.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_pottedplant_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002733.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_sheep_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_000189.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_sofa_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007050.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_train_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_003788.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_1shot_tvmonitor_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_005678.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_aeroplane_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_006761.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/005620.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_bicycle_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_005064.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_004609.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_bird_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/003614.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001208.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_boat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_000906.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002620.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_bottle_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002956.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_004609.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_bus_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/008883.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_car_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/008388.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_004930.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_cat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/005307.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_chair_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_003821.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_cow_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001713.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_005681.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_diningtable_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/000950.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_dog_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002273.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002601.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_horse_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007850.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_motorbike_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_001691.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007428.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_person_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002273.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/005307.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_pottedplant_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007428.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002733.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_sheep_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_000189.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_000084.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_sofa_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001543.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007050.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_train_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002624.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_2shot_tvmonitor_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_005678.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001543.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_aeroplane_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_006761.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/005620.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_005719.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_bicycle_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_005064.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_004609.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007915.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_bird_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/003614.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001208.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_000677.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_boat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_001136.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_bottle_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002956.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_004609.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_000502.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_bus_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/008883.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2011_000969.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_car_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/008388.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_004930.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_001018.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_cat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/005819.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_chair_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_003821.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/004785.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_cow_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001713.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_005681.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/006404.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_diningtable_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_000502.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/004785.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_dog_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002273.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002601.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_004465.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_horse_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/004553.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007850.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_person_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002273.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/004553.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_pottedplant_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007428.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_004497.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_sheep_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/006679.jpg
2 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_sofa_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001543.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_004497.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007050.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_train_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002624.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_003788.jpg
3 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_3shot_tvmonitor_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_005678.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/001543.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_005190.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_5shot_boat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_001136.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_000906.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_002620.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_5shot_bus_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/008883.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001633.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2011_000969.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_5shot_cat_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_001057.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/005819.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_002311.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_5shot_horse_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/004553.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_007850.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2009_004497.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/data/vocsplit/box_5shot_sheep_train.txt:
--------------------------------------------------------------------------------
1 | /scratch/bykang/datasets/VOCdevkit/VOC2007/JPEGImages/006679.jpg
2 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2010_000189.jpg
3 | /scratch/bykang/datasets/VOCdevkit/VOC2012/JPEGImages/2008_000084.jpg
4 |
--------------------------------------------------------------------------------
/papers/CME/figures/contradiction.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/figures/contradiction.png
--------------------------------------------------------------------------------
/papers/CME/figures/feature_disturbance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/figures/feature_disturbance.png
--------------------------------------------------------------------------------
/papers/CME/figures/framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/figures/framework.png
--------------------------------------------------------------------------------
/papers/CME/output/aeroplane_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/aeroplane_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/bicycle_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/bicycle_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/bird_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/bird_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/boat_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/boat_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/bottle_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/bottle_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/bus_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/bus_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/car_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/car_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/cat_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/cat_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/chair_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/chair_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/cow_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/cow_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/diningtable_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/diningtable_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/dog_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/dog_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/horse_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/horse_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/motorbike_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/motorbike_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/person_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/person_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/pottedplant_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/pottedplant_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/sheep_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/sheep_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/sofa_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/sofa_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/train_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/train_pr.pkl
--------------------------------------------------------------------------------
/papers/CME/output/tvmonitor_pr.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CME/output/tvmonitor_pr.pkl
--------------------------------------------------------------------------------
/papers/CS-F-LTR/ICDE21-wang.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CS-F-LTR/ICDE21-wang.pdf
--------------------------------------------------------------------------------
/papers/CS-F-LTR/scripts/run.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | sudo python3 ../builder.py -b 2 -f 3
3 | sudo python3 ../builder.py -b 2 -f 4
4 |
5 | sudo python3 ../server.py
6 |
7 |
8 |
--------------------------------------------------------------------------------
/papers/CSD/images/model.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/images/model.png
--------------------------------------------------------------------------------
/papers/CSD/images/psnr-speed.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/images/psnr-speed.png
--------------------------------------------------------------------------------
/papers/CSD/images/psnr-tradeoff.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/images/psnr-tradeoff.png
--------------------------------------------------------------------------------
/papers/CSD/images/table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/images/table.png
--------------------------------------------------------------------------------
/papers/CSD/images/tradeoff.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/images/tradeoff.png
--------------------------------------------------------------------------------
/papers/CSD/images/visual.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/images/visual.png
--------------------------------------------------------------------------------
/papers/CSD/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CSD/utils/__init__.py
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_ethanol_normed_trainset_1024.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_ethanol_normed_trainset_1024.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_ethanol_normed_validset_128.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_ethanol_normed_validset_128.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_ethanol_origin_testset_1024.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_ethanol_origin_testset_1024.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_qm9_normed_testset_1024.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_qm9_normed_testset_1024.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_qm9_normed_trainset_1024.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_qm9_normed_trainset_1024.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_qm9_normed_validset_128.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_qm9_normed_validset_128.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_qm9_origin_testset_1024.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_qm9_origin_testset_1024.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_qm9_origin_trainset_1024.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_qm9_origin_trainset_1024.npz
--------------------------------------------------------------------------------
/papers/Cybertron/examples/dataset_qm9_origin_validset_128.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Cybertron/examples/dataset_qm9_origin_validset_128.npz
--------------------------------------------------------------------------------
/papers/CycleCol/model/coloring_2-8_775.ckpt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/CycleCol/model/coloring_2-8_775.ckpt
--------------------------------------------------------------------------------
/papers/EPRNet/__init__.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | __version__ = '0.1.0'
4 |
--------------------------------------------------------------------------------
/papers/EPRNet/models/__init__.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | from .eprnet import *
4 |
5 | _nets_map = {
6 | 'eprnet': EPRNet,
7 | }
8 |
9 |
10 | def get_model_by_name(name: str, **kwargs):
11 | return _nets_map[name.lower()](**kwargs)
12 |
--------------------------------------------------------------------------------
/papers/EPRNet/nn/__init__.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | from .loss import SoftmaxCrossEntropyLoss
4 |
--------------------------------------------------------------------------------
/papers/EPRNet/requirements.txt:
--------------------------------------------------------------------------------
1 | mindspore-gpu
2 | mpmath==1.1.0
3 | numpy==1.17.5
4 | opencv-python==4.5.1.48
5 | packaging==20.9
6 | Pillow==8.1.0
7 | pycparser==2.20
8 | pyparsing==2.4.7
9 | scipy==1.3.3
10 |
--------------------------------------------------------------------------------
/papers/EPRNet/tools/__init__.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | from .path import *
4 | from .lr import *
5 | from .utils import *
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/__init__.py:
--------------------------------------------------------------------------------
1 | from .dataload import *
2 | from .total_text import TotalText
3 | from .ctw1500_text import Ctw1500Text
4 | from .Icdar15_Text import Icdar15Text
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/ctw1500/annots.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/ctw1500/annots.pkl
--------------------------------------------------------------------------------
/papers/FCENet/dataset/data_util.py:
--------------------------------------------------------------------------------
1 | from PIL import Image
2 | import numpy as np
3 |
4 |
5 | def pil_load_img(path):
6 | image = Image.open(path)
7 | image = np.array(image)
8 | return image
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/Evaluation_Protocol/rrc_evaluation_funcs.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/Evaluation_Protocol/rrc_evaluation_funcs.pyc
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/gt.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/gt.zip
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit.zip
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_1.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_1.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_101.txt:
--------------------------------------------------------------------------------
1 | 819,116,998,71,1019,154,839,199
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_102.txt:
--------------------------------------------------------------------------------
1 | 612,268,615,243,700,253,697,278
2 | 693,277,695,253,740,257,738,281
3 | 861,223,895,212,902,232,868,243
4 | 896,212,940,199,946,220,902,233
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_104.txt:
--------------------------------------------------------------------------------
1 | 52,444,159,385,187,435,80,495
2 | 48,188,56,109,153,119,145,199
3 | 63,362,154,329,173,382,82,414
4 | 430,220,431,211,470,213,469,222
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_105.txt:
--------------------------------------------------------------------------------
1 | -9,58,8,0,280,86,261,144
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_106.txt:
--------------------------------------------------------------------------------
1 | 941,396,951,374,992,392,982,414
2 | 890,375,898,355,950,378,942,398
3 | 305,557,434,537,440,578,311,598
4 | 905,401,914,384,953,404,943,422
5 | 997,446,1004,432,1051,455,1044,470
6 | 947,426,954,410,997,430,990,445
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_107.txt:
--------------------------------------------------------------------------------
1 | 253,45,471,23,477,81,259,103
2 | 609,107,700,107,700,156,609,156
3 | 496,20,705,7,708,65,499,78
4 | 517,141,605,136,606,162,518,167
5 | 514,116,562,112,564,135,515,139
6 | 608,156,642,154,643,171,609,172
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_109.txt:
--------------------------------------------------------------------------------
1 | 447,268,455,209,620,229,612,288
2 | 336,357,415,354,416,380,337,383
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_11.txt:
--------------------------------------------------------------------------------
1 | 398,77,498,64,501,89,401,102
2 | 403,62,467,55,469,72,405,79
3 | 409,97,485,85,488,106,412,118
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_110.txt:
--------------------------------------------------------------------------------
1 | -5,482,74,455,89,499,9,526
2 | -5,432,92,403,106,449,7,478
3 | -4,385,67,369,77,413,5,429
4 | 72,457,168,426,181,465,84,496
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_111.txt:
--------------------------------------------------------------------------------
1 | 152,175,161,138,271,164,262,201
2 | 162,456,268,411,283,447,177,492
3 | 356,384,413,362,422,385,365,407
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_115.txt:
--------------------------------------------------------------------------------
1 | 184,341,240,329,244,344,187,357
2 | 100,360,182,342,186,360,104,379
3 | 106,385,153,371,157,386,110,400
4 | 104,338,147,329,150,345,108,354
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_116.txt:
--------------------------------------------------------------------------------
1 | 386,196,441,178,451,206,396,225
2 | 819,252,867,250,869,301,821,303
3 | 814,208,859,205,862,254,818,257
4 | 771,236,809,235,811,303,773,304
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_117.txt:
--------------------------------------------------------------------------------
1 | 741,78,868,0,891,37,764,115
2 | 15,102,36,64,132,116,111,154
3 | 758,28,831,-10,846,19,773,57
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_118.txt:
--------------------------------------------------------------------------------
1 | 921,219,1015,206,1018,233,924,245
2 | 1143,228,1147,197,1213,205,1209,235
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_119.txt:
--------------------------------------------------------------------------------
1 | 3,104,11,50,186,75,178,129
2 | 173,126,181,84,305,108,297,150
3 | 304,128,306,111,347,117,345,133
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_12.txt:
--------------------------------------------------------------------------------
1 | 63,180,141,175,143,211,65,217
2 | 75,244,169,238,171,271,77,277
3 | 96,221,129,218,131,238,97,241
4 | 116,426,160,426,160,442,116,442
5 | 88,428,124,428,124,444,88,444
6 | 327,146,403,140,404,156,328,162
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_120.txt:
--------------------------------------------------------------------------------
1 | 42,232,43,206,159,209,158,235
2 | 778,239,873,233,874,256,779,262
3 | 631,39,714,-11,732,18,649,69
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_123.txt:
--------------------------------------------------------------------------------
1 | 211,163,220,135,353,174,345,203
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_124.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_124.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_127.txt:
--------------------------------------------------------------------------------
1 | 424,80,449,30,583,95,558,146
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_128.txt:
--------------------------------------------------------------------------------
1 | 1136,66,1245,54,1248,74,1139,86
2 | 1010,23,1130,-5,1138,28,1017,56
3 | 711,120,733,120,733,132,711,132
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_129.txt:
--------------------------------------------------------------------------------
1 | 915,552,1028,542,1031,581,918,591
2 | 1195,188,1262,176,1265,190,1197,201
3 | 1184,174,1242,162,1245,175,1187,187
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_130.txt:
--------------------------------------------------------------------------------
1 | 160,85,185,53,289,137,263,169
2 | 687,241,717,229,722,242,692,254
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_131.txt:
--------------------------------------------------------------------------------
1 | 620,217,770,208,771,233,621,243
2 | 201,387,202,368,275,370,274,389
3 | 742,338,803,333,804,352,743,357
4 | 932,359,988,356,989,374,933,377
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_132.txt:
--------------------------------------------------------------------------------
1 | 370,219,374,189,485,204,481,234
2 | 790,276,879,272,880,295,791,299
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_133.txt:
--------------------------------------------------------------------------------
1 | 211,125,222,99,345,152,333,178
2 | 457,288,737,283,738,320,458,325
3 | 84,68,96,40,214,91,202,119
4 | 470,430,471,417,503,420,502,434
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_134.txt:
--------------------------------------------------------------------------------
1 | 513,421,514,391,606,396,604,426
2 | 459,49,816,23,822,101,465,127
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_135.txt:
--------------------------------------------------------------------------------
1 | 371,408,442,408,442,431,371,431
2 | 365,432,452,432,452,457,365,457
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_136.txt:
--------------------------------------------------------------------------------
1 | -2,238,-1,218,118,224,117,244
2 | 238,122,238,24,283,24,283,122
3 | 284,71,286,9,327,10,325,72
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_137.txt:
--------------------------------------------------------------------------------
1 | 54,376,171,331,182,360,65,405
2 | 428,230,492,202,498,217,434,245
3 | 299,275,381,244,389,267,307,298
4 | 493,199,573,167,580,186,500,217
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_138.txt:
--------------------------------------------------------------------------------
1 | 47,131,244,118,247,161,50,174
2 | 465,93,545,90,546,119,466,122
3 | 315,171,383,163,385,182,317,190
4 | 597,83,639,78,642,110,600,115
5 | 188,196,258,188,259,204,189,212
6 | 821,116,826,91,898,106,893,131
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_139.txt:
--------------------------------------------------------------------------------
1 | 325,156,325,111,497,111,497,156
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_14.txt:
--------------------------------------------------------------------------------
1 | 336,162,342,95,430,102,425,169
2 | -1,167,4,70,262,85,256,181
3 | 267,161,269,86,337,88,335,163
4 | -7,218,193,193,201,253,0,278
5 | 203,199,344,180,349,219,208,238
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_140.txt:
--------------------------------------------------------------------------------
1 | 532,366,578,366,578,388,532,388
2 | 878,225,1069,108,1106,167,915,285
3 | 619,433,621,415,654,418,652,436
4 | 237,330,240,317,290,324,287,338
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_143.txt:
--------------------------------------------------------------------------------
1 | 1020,471,1025,369,1250,379,1245,482
2 | 835,339,1025,328,1033,458,843,469
3 | 595,437,606,380,709,399,698,456
4 | 811,613,855,442,1177,525,1133,696
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_145.txt:
--------------------------------------------------------------------------------
1 | 718,201,891,76,941,145,768,270
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_146.txt:
--------------------------------------------------------------------------------
1 | 416,468,483,444,493,470,425,495
2 | 369,485,419,469,428,496,378,512
3 | 684,355,739,340,744,357,689,372
4 | 525,424,584,404,591,426,532,446
5 | 610,548,626,528,668,561,652,581
6 | 572,506,599,481,630,516,603,540
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_147.txt:
--------------------------------------------------------------------------------
1 | 844,134,850,94,944,110,938,150
2 | 780,130,787,88,850,99,843,141
3 | 945,164,948,135,1072,147,1069,176
4 | 955,142,958,110,1066,123,1063,155
5 | 1062,153,1065,123,1177,134,1174,164
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_148.txt:
--------------------------------------------------------------------------------
1 | 778,254,779,237,860,244,859,260
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_149.txt:
--------------------------------------------------------------------------------
1 | 820,365,986,362,987,390,821,393
2 | 752,440,754,424,795,431,792,447
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_15.txt:
--------------------------------------------------------------------------------
1 | 1155,162,1267,157,1268,187,1156,192
2 | 1149,131,1276,123,1278,153,1151,161
3 | 363,39,398,28,403,45,368,56
4 | 396,28,433,17,438,34,401,45
5 | 467,6,504,-2,509,16,472,25
6 | 435,16,469,8,474,26,439,35
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_150.txt:
--------------------------------------------------------------------------------
1 | 1061,159,1255,107,1272,171,1079,223
2 | 727,310,728,281,796,283,795,312
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_151.txt:
--------------------------------------------------------------------------------
1 | 792,311,837,311,837,349,792,349
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_153.txt:
--------------------------------------------------------------------------------
1 | 1065,541,1067,340,1139,341,1137,542
2 | 1074,697,1074,554,1138,554,1138,697
3 | 1065,333,1067,169,1129,170,1127,334
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_154.txt:
--------------------------------------------------------------------------------
1 | 365,543,365,402,412,402,412,543
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_155.txt:
--------------------------------------------------------------------------------
1 | 413,666,476,640,487,666,424,692
2 | 430,628,501,605,509,630,439,653
3 | 460,590,506,577,512,600,467,613
4 | 476,641,506,634,511,655,481,662
5 | 425,700,455,684,466,704,435,720
6 | 481,693,481,662,504,662,504,693
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_156.txt:
--------------------------------------------------------------------------------
1 | 996,233,1260,69,1312,151,1048,316
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_157.txt:
--------------------------------------------------------------------------------
1 | 727,132,837,93,850,128,739,168
2 | 821,86,928,53,941,96,835,129
3 | 427,266,503,266,503,292,427,292
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_158.txt:
--------------------------------------------------------------------------------
1 | 392,172,539,172,539,206,392,206
2 | 564,175,668,175,668,201,564,201
3 | 137,274,222,269,224,299,138,304
4 | 146,297,226,297,226,324,146,324
5 | 954,281,966,200,989,204,977,285
6 | 177,351,178,328,231,330,230,353
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_159.txt:
--------------------------------------------------------------------------------
1 | 4,302,7,268,130,280,127,314
2 | 579,404,580,389,637,393,636,408
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_160.txt:
--------------------------------------------------------------------------------
1 | 869,535,882,491,957,512,944,556
2 | 1029,194,1279,132,1304,231,1054,293
3 | 699,436,702,397,737,400,734,439
4 | 1057,413,1060,375,1111,380,1108,418
5 | 523,438,523,365,544,365,544,438
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_161.txt:
--------------------------------------------------------------------------------
1 | 824,468,824,223,873,223,873,468
2 | 904,452,904,234,946,234,946,452
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_162.txt:
--------------------------------------------------------------------------------
1 | 926,285,1056,280,1057,316,927,321
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_163.txt:
--------------------------------------------------------------------------------
1 | 442,167,447,147,531,169,526,190
2 | 526,188,532,168,591,186,585,206
3 | 345,261,346,247,385,249,384,262
4 | 865,263,866,251,905,255,904,267
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_166.txt:
--------------------------------------------------------------------------------
1 | 509,57,730,43,734,112,513,126
2 | 212,220,264,218,265,239,213,241
3 | 255,170,296,170,296,188,255,188
4 | 1112,278,1212,275,1213,305,1113,308
5 | 1199,249,1272,249,1272,272,1199,272
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_167.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_167.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_168.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_168.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_169.txt:
--------------------------------------------------------------------------------
1 | 287,451,288,422,406,427,405,457
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_17.txt:
--------------------------------------------------------------------------------
1 | 1070,117,1071,97,1131,99,1130,120
2 | 1053,134,1055,115,1088,119,1085,139
3 | 1093,136,1094,117,1158,121,1157,140
4 | 1136,118,1136,102,1157,102,1157,118
5 | 1164,123,1190,123,1190,140,1164,140
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_170.txt:
--------------------------------------------------------------------------------
1 | 40,562,352,473,373,546,60,635
2 | 135,627,244,582,258,615,149,660
3 | 183,669,236,644,246,667,193,691
4 | 238,595,304,564,315,587,249,619
5 | 137,686,190,665,198,685,146,706
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_171.txt:
--------------------------------------------------------------------------------
1 | 662,49,734,49,734,69,662,69
2 | 347,63,434,57,435,81,348,87
3 | 1217,73,1269,70,1270,83,1218,86
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_172.txt:
--------------------------------------------------------------------------------
1 | 9,30,10,3,173,12,172,39
2 | 1181,34,1185,10,1253,20,1249,44
3 | 564,346,640,335,646,381,570,392
4 | 1245,44,1247,21,1277,23,1275,46
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_173.txt:
--------------------------------------------------------------------------------
1 | 293,234,377,232,378,248,294,250
2 | 261,247,261,233,287,233,287,247
3 | 275,234,276,217,329,219,328,236
4 | 335,217,379,217,379,231,335,231
5 | 301,192,304,176,356,187,353,203
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_174.txt:
--------------------------------------------------------------------------------
1 | 974,85,1157,-5,1181,43,998,134
2 | 434,87,451,68,495,107,478,126
3 | 721,130,756,130,756,158,721,158
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_175.txt:
--------------------------------------------------------------------------------
1 | 262,220,325,214,328,242,264,248
2 | 626,88,706,85,707,114,627,118
3 | 264,254,311,247,315,277,269,284
4 | 302,256,331,251,334,274,306,278
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_176.txt:
--------------------------------------------------------------------------------
1 | 589,307,590,276,694,281,693,313
2 | 502,295,505,264,587,272,584,303
3 | 748,319,752,290,859,304,856,332
4 | 350,280,353,249,436,257,433,287
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_179.txt:
--------------------------------------------------------------------------------
1 | 1117,280,1254,280,1254,304,1117,304
2 | 1148,434,1149,413,1275,416,1274,437
3 | 913,639,915,206,1026,207,1024,640
4 | 1128,258,1244,258,1244,281,1128,281
5 | 1108,414,1165,414,1165,438,1108,438
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_18.txt:
--------------------------------------------------------------------------------
1 | 749,286,755,233,824,240,819,293
2 | 559,76,561,48,605,50,603,78
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_180.txt:
--------------------------------------------------------------------------------
1 | 704,152,793,140,798,174,709,186
2 | 26,211,170,190,173,215,29,235
3 | 859,109,932,107,944,510,870,512
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_181.txt:
--------------------------------------------------------------------------------
1 | 1055,484,1069,405,1196,427,1182,506
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_182.txt:
--------------------------------------------------------------------------------
1 | 229,268,407,260,409,306,231,313
2 | 11,284,225,275,227,326,13,335
3 | 938,282,1144,235,1153,275,947,322
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_183.txt:
--------------------------------------------------------------------------------
1 | 294,516,403,516,403,581,294,581
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_184.txt:
--------------------------------------------------------------------------------
1 | 819,124,954,108,957,139,822,155
2 | 906,152,1045,137,1048,164,909,178
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_185.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_185.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_186.txt:
--------------------------------------------------------------------------------
1 | 203,433,209,378,302,388,296,443
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_187.txt:
--------------------------------------------------------------------------------
1 | 726,428,734,390,817,407,809,445
2 | 687,419,695,386,747,398,739,431
3 | 589,298,616,292,628,346,601,351
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_188.txt:
--------------------------------------------------------------------------------
1 | 454,165,530,159,533,191,457,197
2 | 455,207,539,199,541,220,456,228
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_189.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_189.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_19.txt:
--------------------------------------------------------------------------------
1 | 414,254,481,241,486,269,419,281
2 | 449,223,491,214,495,238,454,246
3 | 357,260,413,251,418,281,362,290
4 | 486,240,525,237,528,264,488,267
5 | 352,236,443,215,450,244,358,265
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_190.txt:
--------------------------------------------------------------------------------
1 | 1015,335,1016,310,1113,313,1112,338
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_191.txt:
--------------------------------------------------------------------------------
1 | 1016,313,1259,255,1275,319,1031,378
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_192.txt:
--------------------------------------------------------------------------------
1 | 723,263,803,263,803,283,723,283
2 | 691,285,785,283,786,305,692,307
3 | 686,265,722,263,723,282,687,284
4 | 225,295,339,291,340,322,226,326
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_193.txt:
--------------------------------------------------------------------------------
1 | 448,202,524,202,524,268,448,268
2 | 1171,72,1235,53,1245,85,1180,104
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_194.txt:
--------------------------------------------------------------------------------
1 | 96,27,275,17,278,60,99,71
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_196.txt:
--------------------------------------------------------------------------------
1 | 952,442,955,425,996,431,994,449
2 | 921,379,983,370,986,388,923,397
3 | 917,362,977,355,979,375,920,382
4 | 901,438,904,420,960,428,957,446
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_197.txt:
--------------------------------------------------------------------------------
1 | 108,169,111,147,191,158,188,179
2 | 282,622,327,611,333,635,288,646
3 | 330,610,363,600,370,624,337,633
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_199.txt:
--------------------------------------------------------------------------------
1 | 1130,39,1206,-4,1224,25,1148,69
2 | 985,141,1130,41,1155,77,1010,177
3 | 947,186,999,152,1013,174,961,207
4 | 906,214,954,181,968,202,921,235
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_20.txt:
--------------------------------------------------------------------------------
1 | 512,263,535,262,538,338,515,339
2 | 483,232,510,228,524,331,497,335
3 | 464,218,484,215,499,334,479,337
4 | 506,190,529,189,532,281,509,282
5 | 677,260,677,213,690,213,690,260
6 | 1216,152,1261,144,1264,162,1220,170
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_200.txt:
--------------------------------------------------------------------------------
1 | 1034,236,1188,236,1188,310,1034,310
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_201.txt:
--------------------------------------------------------------------------------
1 | 965,420,1119,420,1119,472,965,472
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_205.txt:
--------------------------------------------------------------------------------
1 | 729,151,876,41,903,76,755,187
2 | 875,43,973,-16,996,20,899,81
3 | 807,446,890,438,895,485,812,493
4 | 47,31,55,10,133,41,125,62
5 | 1040,512,1041,490,1102,493,1101,514
6 | 1065,461,1119,461,1119,490,1065,490
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_206.txt:
--------------------------------------------------------------------------------
1 | 354,110,449,61,465,92,370,140
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_207.txt:
--------------------------------------------------------------------------------
1 | 214,180,228,154,296,191,281,217
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_208.txt:
--------------------------------------------------------------------------------
1 | 89,183,209,179,211,226,90,230
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_209.txt:
--------------------------------------------------------------------------------
1 | 1005,304,1146,277,1155,328,1015,355
2 | 548,228,551,208,608,217,605,238
3 | 483,220,486,200,547,209,544,229
4 | 230,192,233,169,284,176,281,199
5 | 604,235,607,217,673,226,670,244
6 | 179,187,183,162,231,169,227,194
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_210.txt:
--------------------------------------------------------------------------------
1 | 859,58,1166,-16,1182,46,874,121
2 | 731,106,821,77,836,123,746,152
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_211.txt:
--------------------------------------------------------------------------------
1 | 28,507,28,227,107,227,107,507
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_212.txt:
--------------------------------------------------------------------------------
1 | 500,295,547,290,549,313,503,317
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_213.txt:
--------------------------------------------------------------------------------
1 | 43,94,61,59,181,123,162,158
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_215.txt:
--------------------------------------------------------------------------------
1 | 180,69,287,52,296,104,189,121
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_216.txt:
--------------------------------------------------------------------------------
1 | 514,482,528,452,629,500,615,530
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_217.txt:
--------------------------------------------------------------------------------
1 | 1195,158,1273,145,1279,180,1201,194
2 | 1141,101,1171,95,1175,115,1145,121
3 | 89,412,186,399,189,425,92,439
4 | 82,233,123,215,132,235,91,253
5 | 45,251,92,234,98,251,51,268
6 | 941,285,1107,250,1117,299,951,334
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_219.txt:
--------------------------------------------------------------------------------
1 | 272,143,320,135,323,154,275,162
2 | 175,160,258,147,261,166,178,179
3 | 324,135,362,129,364,147,327,153
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_22.txt:
--------------------------------------------------------------------------------
1 | 407,327,523,308,528,344,412,363
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_220.txt:
--------------------------------------------------------------------------------
1 | 268,200,273,164,393,180,389,216
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_221.txt:
--------------------------------------------------------------------------------
1 | 16,324,61,296,79,323,33,352
2 | 92,385,144,343,163,366,111,408
3 | 151,348,175,331,185,344,161,361
4 | -11,538,98,508,114,569,4,599
5 | 34,356,142,265,183,315,75,405
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_222.txt:
--------------------------------------------------------------------------------
1 | 637,133,734,111,739,133,642,155
2 | 632,156,748,132,754,162,638,186
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_223.txt:
--------------------------------------------------------------------------------
1 | 203,75,214,27,358,59,347,107
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_224.txt:
--------------------------------------------------------------------------------
1 | 173,106,349,89,352,117,176,134
2 | 23,117,169,105,172,136,26,148
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_225.txt:
--------------------------------------------------------------------------------
1 | 15,161,30,95,373,170,358,237
2 | 502,186,741,173,743,209,504,222
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_226.txt:
--------------------------------------------------------------------------------
1 | 830,250,839,207,903,220,894,263
2 | 782,341,785,303,897,310,894,348
3 | 785,242,794,198,842,209,833,252
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_227.txt:
--------------------------------------------------------------------------------
1 | 461,165,467,116,605,135,599,184
2 | 79,262,150,259,151,282,80,285
3 | 320,253,396,239,401,268,325,283
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_228.txt:
--------------------------------------------------------------------------------
1 | 124,221,310,204,318,288,132,305
2 | 95,435,278,415,284,470,101,490
3 | -7,233,98,220,122,424,16,437
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_229.txt:
--------------------------------------------------------------------------------
1 | 1005,66,1065,52,1073,84,1013,98
2 | 689,157,815,124,823,154,697,187
3 | 827,117,957,85,964,114,834,145
4 | 962,87,1004,76,1010,99,968,110
5 | 1071,49,1142,39,1146,70,1076,80
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_23.txt:
--------------------------------------------------------------------------------
1 | 648,172,738,165,740,186,650,194
2 | 737,191,737,172,775,172,775,191
3 | 684,193,746,190,747,207,685,210
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_230.txt:
--------------------------------------------------------------------------------
1 | 444,426,445,374,683,377,682,429
2 | 1001,434,1003,391,1090,395,1088,438
3 | 703,424,706,381,917,397,914,440
4 | 1095,436,1099,395,1193,404,1189,445
5 | 920,434,921,400,994,402,993,436
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_231.txt:
--------------------------------------------------------------------------------
1 | 50,501,113,475,127,508,64,534
2 | 8,464,77,441,89,478,20,501
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_232.txt:
--------------------------------------------------------------------------------
1 | 167,354,179,268,407,300,395,387
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_233.txt:
--------------------------------------------------------------------------------
1 | 954,251,957,220,1049,228,1046,259
2 | 696,152,762,152,762,205,696,205
3 | 851,244,852,214,958,220,957,250
4 | 792,233,794,214,842,219,840,238
5 | 766,211,769,138,1034,148,1031,221
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_234.txt:
--------------------------------------------------------------------------------
1 | 850,88,969,76,972,107,853,119
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_235.txt:
--------------------------------------------------------------------------------
1 | 373,54,413,54,413,78,373,78
2 | 449,102,450,80,519,85,518,107
3 | 295,71,296,49,376,55,375,77
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_237.txt:
--------------------------------------------------------------------------------
1 | 853,58,957,43,962,72,857,87
2 | 960,37,1038,31,1041,66,963,73
3 | 900,88,998,76,1001,103,903,114
4 | 1077,322,1209,278,1267,454,1136,497
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_239.txt:
--------------------------------------------------------------------------------
1 | 570,159,571,144,610,146,609,161
2 | 608,148,635,146,636,161,609,163
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_24.txt:
--------------------------------------------------------------------------------
1 | 399,467,537,437,543,466,406,496
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_240.txt:
--------------------------------------------------------------------------------
1 | 627,219,700,217,701,238,628,240
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_241.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_241.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_242.txt:
--------------------------------------------------------------------------------
1 | 302,287,579,228,601,333,324,393
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_243.txt:
--------------------------------------------------------------------------------
1 | 1044,30,1139,26,1140,44,1045,48
2 | 1143,29,1227,24,1228,38,1144,43
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_244.txt:
--------------------------------------------------------------------------------
1 | 185,102,194,59,412,102,404,146
2 | 404,144,409,118,527,140,522,166
3 | 507,156,511,139,564,152,560,169
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_245.txt:
--------------------------------------------------------------------------------
1 | 668,125,853,117,856,178,671,186
2 | 858,114,1023,103,1027,168,862,179
3 | 1063,128,1216,125,1217,168,1064,171
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_246.txt:
--------------------------------------------------------------------------------
1 | 866,567,1031,524,1044,577,880,620
2 | 949,501,1025,479,1038,524,962,546
3 | 859,523,942,500,955,546,872,569
4 | 859,493,916,483,921,511,865,522
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_247.txt:
--------------------------------------------------------------------------------
1 | 352,161,398,148,403,164,356,177
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_249.txt:
--------------------------------------------------------------------------------
1 | 371,214,466,203,470,244,376,254
2 | 331,373,528,335,537,382,340,420
3 | 402,306,439,301,441,323,404,328
4 | 358,255,469,247,472,284,361,292
5 | 434,304,461,294,467,312,440,321
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_25.txt:
--------------------------------------------------------------------------------
1 | 523,63,669,58,670,93,524,98
2 | 668,59,783,46,787,79,672,93
3 | 1117,88,1167,88,1167,101,1117,101
4 | 954,148,994,143,995,155,955,160
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_250.txt:
--------------------------------------------------------------------------------
1 | 323,253,376,251,377,271,324,273
2 | 377,271,377,251,414,251,414,271
3 | 578,246,614,242,616,260,580,264
4 | 361,202,374,165,429,186,416,222
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_253.txt:
--------------------------------------------------------------------------------
1 | 650,63,749,12,781,76,683,126
2 | 949,116,991,104,999,133,958,145
3 | 2,110,4,39,52,40,50,111
4 | 721,37,801,0,828,58,748,95
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_257.txt:
--------------------------------------------------------------------------------
1 | 661,239,662,203,765,207,764,244
2 | 279,99,280,78,368,81,367,102
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_258.txt:
--------------------------------------------------------------------------------
1 | 549,5,615,3,616,36,550,38
2 | 492,174,545,161,554,200,500,212
3 | 446,181,500,173,506,211,452,219
4 | 404,193,450,185,456,220,410,228
5 | 371,201,413,195,418,229,376,235
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_260.txt:
--------------------------------------------------------------------------------
1 | 1148,196,1274,162,1289,217,1163,251
2 | 1203,251,1258,242,1262,265,1207,274
3 | 509,296,529,296,529,369,509,369
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_261.txt:
--------------------------------------------------------------------------------
1 | 279,350,345,335,348,351,282,366
2 | 117,417,120,122,203,123,200,418
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_262.txt:
--------------------------------------------------------------------------------
1 | 953,72,1058,21,1075,56,970,108
2 | -1,209,217,164,226,211,8,256
3 | 66,245,151,227,154,244,69,261
4 | 856,191,906,172,910,185,861,204
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_263.txt:
--------------------------------------------------------------------------------
1 | 1061,171,1064,123,1243,132,1240,180
2 | 999,169,999,137,1079,137,1079,169
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_264.txt:
--------------------------------------------------------------------------------
1 | 948,9,1076,1,1080,67,952,75
2 | 1077,6,1186,0,1190,67,1081,74
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_265.txt:
--------------------------------------------------------------------------------
1 | 75,116,97,71,191,116,169,161
2 | 165,153,182,115,254,147,237,186
3 | 727,162,814,92,833,115,746,185
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_266.txt:
--------------------------------------------------------------------------------
1 | 51,87,67,45,190,92,174,134
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_267.txt:
--------------------------------------------------------------------------------
1 | 167,387,219,382,220,397,168,402
2 | 160,364,207,356,212,383,165,392
3 | 204,364,230,360,232,379,206,382
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_268.txt:
--------------------------------------------------------------------------------
1 | 355,176,408,145,422,168,369,200
2 | 500,67,591,7,611,38,521,98
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_269.txt:
--------------------------------------------------------------------------------
1 | 245,161,253,135,328,158,320,184
2 | 134,125,143,99,258,135,249,162
3 | 53,98,65,67,144,97,132,128
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_27.txt:
--------------------------------------------------------------------------------
1 | 52,133,64,68,286,109,274,174
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_270.txt:
--------------------------------------------------------------------------------
1 | 1017,297,1018,279,1087,282,1086,300
2 | 762,35,837,4,857,53,782,84
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_272.txt:
--------------------------------------------------------------------------------
1 | 345,425,415,402,425,435,356,458
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_274.txt:
--------------------------------------------------------------------------------
1 | 24,170,36,89,226,117,214,198
2 | 840,164,887,157,890,173,842,181
3 | 314,292,344,236,370,249,340,306
4 | 421,283,455,276,460,299,426,306
5 | 597,168,599,152,627,155,625,171
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_275.txt:
--------------------------------------------------------------------------------
1 | 296,79,419,0,442,34,319,114
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_276.txt:
--------------------------------------------------------------------------------
1 | 0,489,134,477,136,502,2,514
2 | 42,87,47,70,128,95,123,112
3 | 40,120,44,109,69,117,66,128
4 | 69,83,73,70,130,86,126,100
5 | 218,115,224,98,275,116,269,133
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_277.txt:
--------------------------------------------------------------------------------
1 | 619,147,620,125,699,131,697,153
2 | 598,170,599,143,716,148,715,175
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_278.txt:
--------------------------------------------------------------------------------
1 | 696,2,814,-2,822,156,704,161
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_279.txt:
--------------------------------------------------------------------------------
1 | 638,253,740,226,749,258,647,286
2 | 739,210,1001,150,1012,198,750,258
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_281.txt:
--------------------------------------------------------------------------------
1 | 336,275,439,272,440,305,337,308
2 | 143,291,327,275,330,311,146,327
3 | 0,80,107,73,109,104,2,110
4 | 169,103,170,60,269,63,268,106
5 | 1007,259,1184,235,1194,305,1016,329
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_282.txt:
--------------------------------------------------------------------------------
1 | 1022,116,1211,105,1214,148,1025,159
2 | 423,172,644,159,647,207,426,220
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_283.txt:
--------------------------------------------------------------------------------
1 | 104,283,109,228,365,251,360,305
2 | 331,292,336,258,492,280,487,314
3 | 22,437,23,419,98,424,97,442
4 | 409,472,410,458,462,461,461,475
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_284.txt:
--------------------------------------------------------------------------------
1 | 594,450,700,444,701,471,596,477
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_285.txt:
--------------------------------------------------------------------------------
1 | 1014,290,1015,249,1217,258,1215,299
2 | 494,121,547,115,550,138,496,143
3 | 480,20,481,-4,540,-1,539,24
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_286.txt:
--------------------------------------------------------------------------------
1 | 896,58,1136,-7,1151,45,911,111
2 | 168,170,169,144,262,147,261,173
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_287.txt:
--------------------------------------------------------------------------------
1 | 215,82,227,31,369,66,357,117
2 | 523,162,527,145,567,153,564,170
3 | 561,170,564,153,599,158,597,175
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_288.txt:
--------------------------------------------------------------------------------
1 | 1059,101,1091,91,1099,117,1067,127
2 | 1021,32,1148,-15,1173,52,1047,100
3 | 1088,85,1161,47,1176,76,1103,114
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_289.txt:
--------------------------------------------------------------------------------
1 | 625,351,626,327,696,332,695,356
2 | 693,357,694,330,776,335,774,362
3 | 676,376,677,356,734,358,733,378
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_290.txt:
--------------------------------------------------------------------------------
1 | 733,69,736,41,786,47,783,74
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_292.txt:
--------------------------------------------------------------------------------
1 | 609,293,655,288,657,311,611,317
2 | 655,286,701,279,705,305,658,312
3 | 164,180,188,123,332,184,308,241
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_293.txt:
--------------------------------------------------------------------------------
1 | 740,303,817,297,819,331,742,337
2 | 821,303,879,299,881,325,823,329
3 | 954,272,954,243,1078,243,1078,272
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_294.txt:
--------------------------------------------------------------------------------
1 | 673,209,739,207,740,233,674,235
2 | 158,185,319,170,322,200,161,215
3 | 69,263,70,237,137,239,136,265
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_295.txt:
--------------------------------------------------------------------------------
1 | 355,273,355,233,390,233,390,273
2 | 355,313,355,275,390,275,390,313
3 | 335,511,394,482,410,514,351,543
4 | 384,316,386,281,419,283,417,318
5 | 388,283,388,246,417,246,417,283
6 | 357,248,361,161,422,164,418,251
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_296.txt:
--------------------------------------------------------------------------------
1 | 666,81,789,79,790,98,667,100
2 | 801,245,851,245,851,263,801,263
3 | 789,79,866,76,867,94,790,97
4 | 853,244,945,241,946,258,854,261
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_297.txt:
--------------------------------------------------------------------------------
1 | 1165,154,1278,149,1279,178,1166,183
2 | 264,78,286,39,381,93,359,132
3 | 540,270,586,270,586,290,540,290
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_298.txt:
--------------------------------------------------------------------------------
1 | 321,28,335,-1,412,33,398,63
2 | 0,93,4,62,81,72,78,102
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_299.txt:
--------------------------------------------------------------------------------
1 | 337,132,342,108,403,121,398,145
2 | 394,144,399,120,500,142,495,166
3 | 492,162,495,140,566,153,562,174
4 | 288,123,294,99,343,110,338,134
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_3.txt:
--------------------------------------------------------------------------------
1 | 478,17,533,14,534,36,479,39
2 | 533,58,578,58,578,75,533,75
3 | 483,61,534,59,535,74,484,76
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_30.txt:
--------------------------------------------------------------------------------
1 | 829,289,830,254,1004,257,1003,292
2 | 899,324,935,324,935,337,899,337
3 | 520,137,521,118,574,122,573,141
4 | 832,332,833,320,864,323,863,334
5 | 867,333,868,322,895,324,894,335
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_300.txt:
--------------------------------------------------------------------------------
1 | 595,314,653,308,656,333,598,339
2 | 781,302,841,297,843,317,783,322
3 | 853,328,909,324,910,340,854,343
4 | 850,59,914,43,918,60,855,76
5 | 352,664,389,664,389,699,352,699
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_301.txt:
--------------------------------------------------------------------------------
1 | 692,149,759,135,763,155,696,169
2 | 6,639,127,592,144,636,24,684
3 | 255,345,296,345,296,362,255,362
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_302.txt:
--------------------------------------------------------------------------------
1 | 725,59,771,37,782,59,736,82
2 | 430,203,436,173,501,187,495,216
3 | 796,287,844,284,846,302,797,306
4 | 490,212,495,183,539,190,535,218
5 | 654,96,676,94,678,114,656,116
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_303.txt:
--------------------------------------------------------------------------------
1 | 543,144,549,113,626,130,619,161
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_304.txt:
--------------------------------------------------------------------------------
1 | 388,84,614,75,615,117,389,126
2 | 1005,155,1005,142,1036,142,1036,155
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_305.txt:
--------------------------------------------------------------------------------
1 | 486,251,705,238,708,275,488,289
2 | 616,174,616,152,670,152,670,174
3 | 673,175,673,152,789,152,789,175
4 | 522,172,523,151,614,154,613,175
5 | 818,274,819,244,955,247,954,277
6 | 739,254,804,252,805,272,740,274
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_306.txt:
--------------------------------------------------------------------------------
1 | 1150,133,1188,133,1188,154,1150,154
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_307.txt:
--------------------------------------------------------------------------------
1 | 1112,106,1112,48,1252,48,1252,106
2 | 774,170,832,141,849,176,792,205
3 | 595,277,595,259,624,259,624,277
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_308.txt:
--------------------------------------------------------------------------------
1 | 734,42,862,32,866,75,737,86
2 | 901,66,901,50,940,50,940,66
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_309.txt:
--------------------------------------------------------------------------------
1 | 704,480,740,447,832,547,797,580
2 | 773,559,820,511,981,668,934,716
3 | 689,434,762,297,1063,456,990,594
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_31.txt:
--------------------------------------------------------------------------------
1 | 560,113,653,94,660,127,567,146
2 | 301,176,363,163,370,193,308,206
3 | 519,126,563,117,569,147,525,156
4 | 274,187,305,181,309,206,278,211
5 | 133,221,174,212,180,235,138,244
6 | 942,56,987,47,992,71,947,81
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_311.txt:
--------------------------------------------------------------------------------
1 | 1128,39,1272,-6,1306,99,1162,146
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_314.txt:
--------------------------------------------------------------------------------
1 | 84,125,109,53,246,101,221,174
2 | -16,94,10,18,112,55,85,131
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_315.txt:
--------------------------------------------------------------------------------
1 | 672,33,805,33,805,65,672,65
2 | 670,6,800,6,800,38,670,38
3 | 1069,201,1187,178,1193,207,1074,231
4 | 779,163,815,146,823,163,786,179
5 | 808,145,874,108,884,126,818,163
6 | 680,99,681,82,774,84,773,101
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_316.txt:
--------------------------------------------------------------------------------
1 | 819,61,882,21,895,42,833,82
2 | 882,18,943,-8,953,14,892,41
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_317.txt:
--------------------------------------------------------------------------------
1 | 757,251,852,245,854,272,758,278
2 | 1039,229,1176,204,1193,298,1057,324
3 | 1103,351,1104,335,1140,337,1139,353
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_318.txt:
--------------------------------------------------------------------------------
1 | 915,401,929,345,1116,391,1102,446
2 | 899,458,919,394,1154,467,1135,530
3 | 1031,235,1180,233,1181,319,1032,321
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_319.txt:
--------------------------------------------------------------------------------
1 | 807,60,876,58,877,96,808,98
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_32.txt:
--------------------------------------------------------------------------------
1 | 677,129,678,104,779,107,778,132
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_320.txt:
--------------------------------------------------------------------------------
1 | 53,513,127,513,127,534,53,534
2 | 55,514,55,485,126,485,126,514
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_321.txt:
--------------------------------------------------------------------------------
1 | 1033,325,1038,301,1097,313,1092,337
2 | 1092,335,1099,305,1226,334,1219,365
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_322.txt:
--------------------------------------------------------------------------------
1 | 134,120,143,84,294,122,285,158
2 | 0,92,7,56,139,84,131,120
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_323.txt:
--------------------------------------------------------------------------------
1 | 109,334,109,285,255,285,255,334
2 | 958,343,958,183,1064,183,1064,343
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_324.txt:
--------------------------------------------------------------------------------
1 | 472,497,513,481,526,514,485,530
2 | 520,502,530,469,595,489,585,522
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_325.txt:
--------------------------------------------------------------------------------
1 | 700,102,803,66,816,104,714,140
2 | 665,180,666,162,746,165,745,183
3 | 653,98,674,72,716,107,694,132
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_326.txt:
--------------------------------------------------------------------------------
1 | 860,177,861,143,958,145,957,178
2 | 705,265,707,244,762,251,760,272
3 | 816,218,817,205,859,209,858,222
4 | 707,233,735,231,736,248,708,251
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_328.txt:
--------------------------------------------------------------------------------
1 | 31,157,48,92,255,145,238,210
2 | 291,198,296,181,345,195,340,212
3 | 291,212,296,194,367,215,361,233
4 | 337,206,341,191,380,201,375,216
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_329.txt:
--------------------------------------------------------------------------------
1 | 1059,304,1069,228,1288,258,1278,334
2 | 1011,429,1038,366,1191,431,1165,494
3 | 952,403,967,363,1031,387,1016,427
4 | 1171,481,1200,430,1295,481,1266,533
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_33.txt:
--------------------------------------------------------------------------------
1 | 555,164,694,161,695,188,556,191
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_330.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_330.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_331.txt:
--------------------------------------------------------------------------------
1 | 415,205,466,205,466,219,415,219
2 | 198,464,249,452,255,478,204,490
3 | 170,161,200,161,200,173,170,173
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_332.txt:
--------------------------------------------------------------------------------
1 | 29,98,128,96,129,139,30,141
2 | 129,137,129,98,210,98,210,137
3 | 906,63,1129,15,1138,57,915,106
4 | 428,56,472,54,473,78,429,79
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_333.txt:
--------------------------------------------------------------------------------
1 | 614,156,727,152,728,189,615,192
2 | 1056,95,1223,60,1230,96,1063,130
3 | 132,174,134,142,188,145,186,177
4 | 61,167,65,134,133,144,129,176
5 | 335,135,362,135,362,149,335,149
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_334.txt:
--------------------------------------------------------------------------------
1 | 530,197,584,193,585,205,531,209
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_335.txt:
--------------------------------------------------------------------------------
1 | 139,225,140,193,280,200,279,232
2 | 436,335,439,304,484,307,481,339
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_336.txt:
--------------------------------------------------------------------------------
1 | 735,124,738,103,808,111,806,132
2 | 536,264,537,247,581,249,580,266
3 | 529,516,574,512,575,530,530,534
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_337.txt:
--------------------------------------------------------------------------------
1 | 514,262,514,248,560,248,560,262
2 | 463,261,464,246,509,248,508,263
3 | 430,248,467,248,467,263,430,263
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_338.txt:
--------------------------------------------------------------------------------
1 | 506,252,507,221,578,225,576,256
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_339.txt:
--------------------------------------------------------------------------------
1 | 730,172,813,160,818,195,735,207
2 | 679,193,730,182,736,208,684,219
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_34.txt:
--------------------------------------------------------------------------------
1 | 653,544,664,519,730,549,719,574
2 | 720,204,795,201,796,238,721,241
3 | 677,248,677,211,718,211,718,248
4 | 720,570,734,544,795,577,781,603
5 | 657,517,666,499,720,525,711,543
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_340.txt:
--------------------------------------------------------------------------------
1 | 755,269,760,228,854,240,849,281
2 | 847,278,857,241,933,262,923,299
3 | -2,205,124,203,125,248,-1,250
4 | 647,415,722,391,728,410,652,434
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_341.txt:
--------------------------------------------------------------------------------
1 | 708,155,866,111,883,173,725,217
2 | 872,81,1143,16,1162,94,891,159
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_342.txt:
--------------------------------------------------------------------------------
1 | 995,317,1063,317,1063,353,995,353
2 | 995,252,1061,250,1062,282,996,283
3 | 999,279,1061,279,1061,305,999,305
4 | 1014,357,1049,357,1049,379,1014,379
5 | 551,278,551,253,578,253,578,278
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_343.txt:
--------------------------------------------------------------------------------
1 | 215,360,283,360,283,378,215,378
2 | 332,355,403,354,404,374,333,376
3 | 214,130,218,111,278,123,274,142
4 | 288,358,326,358,326,373,288,373
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_344.txt:
--------------------------------------------------------------------------------
1 | 338,290,438,287,439,310,339,313
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_345.txt:
--------------------------------------------------------------------------------
1 | 22,172,27,140,124,155,119,188
2 | 15,199,20,170,64,178,58,207
3 | 63,207,68,180,126,190,121,217
4 | 259,321,261,300,323,305,321,326
5 | 266,294,267,276,321,278,320,296
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_346.txt:
--------------------------------------------------------------------------------
1 | 319,49,342,26,398,82,375,105
2 | 100,212,105,191,140,198,136,219
3 | 53,202,57,180,107,190,103,212
4 | 72,256,77,233,114,240,109,263
5 | 64,230,70,209,102,217,96,238
6 | 96,239,96,215,123,215,123,239
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_347.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_347.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_348.txt:
--------------------------------------------------------------------------------
1 | 5,281,21,239,193,301,177,344
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_349.txt:
--------------------------------------------------------------------------------
1 | 70,74,126,72,127,103,71,105
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_35.txt:
--------------------------------------------------------------------------------
1 | 238,654,337,572,351,588,251,670
2 | 329,60,331,30,448,38,446,68
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_351.txt:
--------------------------------------------------------------------------------
1 | 953,310,954,288,1022,290,1021,312
2 | 619,342,620,314,705,316,704,344
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_352.txt:
--------------------------------------------------------------------------------
1 | 1009,363,1110,340,1117,369,1016,392
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_353.txt:
--------------------------------------------------------------------------------
1 | 426,422,427,406,499,411,498,427
2 | 94,354,109,311,161,330,146,372
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_354.txt:
--------------------------------------------------------------------------------
1 | 426,125,427,78,674,83,673,130
2 | 583,56,647,56,647,81,583,81
3 | 444,78,445,45,561,48,560,81
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_355.txt:
--------------------------------------------------------------------------------
1 | 996,410,997,377,1145,383,1144,416
2 | 1050,423,1051,408,1143,411,1142,426
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_356.txt:
--------------------------------------------------------------------------------
1 | 816,84,871,78,874,103,819,109
2 | 771,93,816,89,818,110,773,114
3 | 954,69,1005,62,1007,78,956,85
4 | 1196,95,1280,91,1281,107,1197,111
5 | 902,75,939,72,941,89,903,92
6 | 1006,62,1076,51,1079,67,1009,78
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_357.txt:
--------------------------------------------------------------------------------
1 | 895,173,977,129,991,157,910,200
2 | 855,192,903,172,915,201,867,221
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_358.txt:
--------------------------------------------------------------------------------
1 | 1204,206,1261,206,1261,239,1204,239
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_359.txt:
--------------------------------------------------------------------------------
1 | 211,224,213,197,312,203,310,230
2 | 311,232,312,206,447,215,445,241
3 | 106,225,106,205,144,205,144,225
4 | 138,201,191,198,192,220,139,223
5 | 322,283,324,269,366,273,365,288
6 | 366,286,367,273,411,277,410,290
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_36.txt:
--------------------------------------------------------------------------------
1 | 432,240,434,221,473,224,472,243
2 | 384,237,386,218,434,222,432,241
3 | 545,243,546,226,623,231,622,248
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_361.txt:
--------------------------------------------------------------------------------
1 | 667,157,743,88,774,122,698,191
2 | 718,103,821,15,855,54,752,143
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_362.txt:
--------------------------------------------------------------------------------
1 | 44,182,49,165,86,174,82,192
2 | 377,37,418,30,421,46,379,53
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_363.txt:
--------------------------------------------------------------------------------
1 | 297,59,344,59,344,74,297,74
2 | 493,51,494,38,530,41,529,54
3 | 321,69,354,69,354,83,321,83
4 | 398,56,452,56,452,71,398,71
5 | 785,351,816,351,816,373,785,373
6 | 356,61,396,61,396,76,356,76
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_364.txt:
--------------------------------------------------------------------------------
1 | 1157,231,1160,180,1274,185,1272,236
2 | 760,227,761,164,929,168,928,231
3 | 1177,374,1180,345,1244,350,1242,380
4 | 957,232,958,169,1121,172,1120,236
5 | 1054,366,1057,333,1175,344,1172,377
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_367.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_367.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_368.txt:
--------------------------------------------------------------------------------
1 | 622,88,730,16,748,43,640,115
2 | 1055,406,1056,372,1120,374,1119,408
3 | 1117,413,1120,380,1162,383,1159,416
4 | 1049,454,1057,397,1171,415,1163,471
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_369.txt:
--------------------------------------------------------------------------------
1 | 619,72,738,-7,756,19,636,98
2 | 1144,393,1150,335,1267,348,1260,406
3 | 1148,339,1158,274,1263,290,1253,355
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_37.txt:
--------------------------------------------------------------------------------
1 | 803,78,803,56,835,56,835,78
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_370.txt:
--------------------------------------------------------------------------------
1 | 67,241,79,175,301,218,288,284
2 | 377,325,459,315,462,345,380,356
3 | 485,350,485,71,548,71,548,350
4 | 135,277,139,250,250,267,246,294
5 | 857,62,916,53,919,71,859,80
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_371.txt:
--------------------------------------------------------------------------------
1 | 223,125,224,87,304,90,302,128
2 | 337,110,346,61,504,90,495,139
3 | 551,167,626,160,629,187,554,195
4 | 353,135,356,116,439,132,435,151
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_372.txt:
--------------------------------------------------------------------------------
1 | 194,195,202,146,438,182,430,231
2 | 272,347,347,344,348,368,273,371
3 | 853,270,857,247,893,254,889,277
4 | 1213,392,1215,361,1278,366,1276,396
5 | 644,277,645,258,711,264,710,283
6 | 885,291,889,273,926,280,922,298
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_373.txt:
--------------------------------------------------------------------------------
1 | 1046,245,1047,197,1268,200,1267,248
2 | 1060,360,1115,360,1115,377,1060,377
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_374.txt:
--------------------------------------------------------------------------------
1 | 1002,244,1100,234,1105,288,1008,298
2 | -4,150,2,99,128,116,121,167
3 | 383,247,386,219,502,230,499,258
4 | 1018,319,1077,310,1084,355,1024,363
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_375.txt:
--------------------------------------------------------------------------------
1 | 106,213,110,181,193,193,189,224
2 | 443,230,453,200,498,215,488,245
3 | 485,267,491,244,530,254,524,277
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_376.txt:
--------------------------------------------------------------------------------
1 | 523,159,538,111,717,166,701,215
2 | 709,207,720,168,810,193,799,232
3 | 358,233,398,233,398,357,358,357
4 | 5,378,47,376,48,393,6,395
5 | 147,357,148,334,238,337,237,360
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_377.txt:
--------------------------------------------------------------------------------
1 | 646,195,691,180,697,197,652,212
2 | 843,266,903,259,906,286,846,293
3 | 804,304,806,283,849,286,848,307
4 | 896,274,950,272,951,302,897,304
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_378.txt:
--------------------------------------------------------------------------------
1 | -23,175,3,100,146,151,119,226
2 | 381,244,388,222,432,236,425,258
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_379.txt:
--------------------------------------------------------------------------------
1 | 340,92,372,55,474,145,442,181
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_38.txt:
--------------------------------------------------------------------------------
1 | 648,153,650,95,931,106,929,164
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_380.txt:
--------------------------------------------------------------------------------
1 | 673,571,691,537,806,597,787,631
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_381.txt:
--------------------------------------------------------------------------------
1 | 630,116,784,116,784,168,630,168
2 | 940,305,1015,277,1027,310,951,338
3 | 5,155,47,153,48,173,6,174
4 | 470,242,539,206,557,239,487,275
5 | 795,119,852,119,852,166,795,166
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_382.txt:
--------------------------------------------------------------------------------
1 | 682,298,754,257,774,291,701,332
2 | 70,144,154,131,159,162,75,175
3 | 72,178,160,163,165,192,77,207
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_383.txt:
--------------------------------------------------------------------------------
1 | 947,41,1018,32,1022,58,951,67
2 | 1150,298,1177,295,1179,312,1152,316
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_384.txt:
--------------------------------------------------------------------------------
1 | 0,238,0,222,44,222,44,238
2 | 757,172,758,158,786,160,785,174
3 | 717,171,718,155,761,158,760,174
4 | 1019,95,1021,14,1074,15,1072,96
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_385.txt:
--------------------------------------------------------------------------------
1 | 105,304,105,285,175,285,175,304
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_386.txt:
--------------------------------------------------------------------------------
1 | 509,493,510,461,591,463,590,495
2 | 589,467,630,465,631,494,590,495
3 | 332,220,333,197,416,199,415,222
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_387.txt:
--------------------------------------------------------------------------------
1 | 808,333,950,325,951,352,809,360
2 | 584,337,630,337,630,362,584,362
3 | 643,332,690,332,690,357,643,357
4 | 732,98,773,83,780,100,738,116
5 | 551,413,552,400,581,402,580,415
6 | 122,353,124,331,166,334,164,356
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_390.txt:
--------------------------------------------------------------------------------
1 | 339,78,367,-14,751,100,723,193
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_391.txt:
--------------------------------------------------------------------------------
1 | 741,266,757,226,819,251,804,291
2 | 800,287,813,251,866,270,853,306
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_392.txt:
--------------------------------------------------------------------------------
1 | 485,90,486,50,632,55,631,95
2 | 794,95,795,60,924,63,923,98
3 | 277,88,278,47,382,50,381,91
4 | 579,277,622,264,628,285,585,298
5 | 578,239,619,230,623,248,581,257
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_393.txt:
--------------------------------------------------------------------------------
1 | 574,178,628,162,637,192,582,208
2 | 580,207,628,193,636,218,587,232
3 | 571,158,628,139,635,162,578,181
4 | 590,228,615,218,620,232,595,241
5 | 592,239,610,231,614,239,595,247
6 | 612,222,636,217,639,230,614,235
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_394.txt:
--------------------------------------------------------------------------------
1 | 564,335,624,316,633,346,573,365
2 | 562,303,627,284,637,317,572,336
3 | 561,277,627,257,635,283,569,304
4 | 1159,99,1163,49,1280,58,1276,108
5 | 434,66,437,-1,704,11,701,79
6 | 1024,92,1029,38,1155,50,1150,104
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_395.txt:
--------------------------------------------------------------------------------
1 | 324,134,329,101,387,108,383,141
2 | 430,167,432,139,471,142,469,170
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_397.txt:
--------------------------------------------------------------------------------
1 | 315,287,321,237,430,250,424,300
2 | 314,230,323,175,477,202,468,258
3 | 455,300,459,257,545,264,541,307
4 | 1145,153,1259,150,1260,185,1146,188
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_399.txt:
--------------------------------------------------------------------------------
1 | 233,185,296,178,299,198,236,206
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_4.txt:
--------------------------------------------------------------------------------
1 | 766,422,770,406,820,421,815,436
2 | 773,389,775,369,816,374,814,395
3 | 1178,335,1244,317,1252,347,1187,365
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_40.txt:
--------------------------------------------------------------------------------
1 | 649,155,705,155,705,176,649,176
2 | 703,149,754,147,755,170,704,172
3 | 688,129,729,127,731,151,689,154
4 | 643,132,696,130,697,152,644,153
5 | 729,126,764,124,765,146,730,148
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_400.txt:
--------------------------------------------------------------------------------
1 | 131,486,195,436,221,469,156,519
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_401.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_401.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_402.txt:
--------------------------------------------------------------------------------
1 | 978,636,979,618,1005,620,1003,638
2 | 949,610,951,586,1001,590,999,614
3 | 941,632,943,613,970,616,968,635
4 | 952,572,953,560,991,564,990,575
5 | 680,309,701,309,701,323,680,323
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_403.txt:
--------------------------------------------------------------------------------
1 | 238,476,318,428,343,470,263,518
2 | 241,590,343,510,360,533,258,613
3 | 255,556,335,497,349,516,269,576
4 | 150,483,204,452,214,469,160,500
5 | 200,461,239,447,246,467,208,481
6 | 428,292,477,282,482,308,434,318
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_404.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_404.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_407.txt:
--------------------------------------------------------------------------------
1 | 673,294,747,283,753,324,679,334
2 | 837,273,918,265,922,302,841,309
3 | 754,285,828,276,833,313,758,322
4 | 921,265,995,258,999,294,925,301
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_408.txt:
--------------------------------------------------------------------------------
1 | 661,427,666,399,741,413,736,441
2 | 868,440,869,425,942,430,941,445
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_409.txt:
--------------------------------------------------------------------------------
1 | 720,204,759,199,762,224,723,229
2 | 216,177,322,174,323,212,217,215
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_41.txt:
--------------------------------------------------------------------------------
1 | -3,319,275,299,280,361,0,381
2 | 660,448,711,435,716,456,665,469
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_410.txt:
--------------------------------------------------------------------------------
1 | 692,233,693,216,764,219,763,236
2 | 705,248,706,230,789,234,788,252
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_411.txt:
--------------------------------------------------------------------------------
1 | 352,258,357,230,498,252,493,280
2 | 350,235,353,210,484,229,481,254
3 | 0,348,0,330,36,330,36,348
4 | 80,217,83,200,122,208,118,225
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_412.txt:
--------------------------------------------------------------------------------
1 | 1060,201,1137,199,1138,229,1061,231
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_414.txt:
--------------------------------------------------------------------------------
1 | 491,203,494,157,685,169,682,215
2 | 693,210,694,173,849,178,848,215
3 | 421,192,422,154,479,156,478,194
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_415.txt:
--------------------------------------------------------------------------------
1 | 189,279,197,225,399,253,391,307
2 | 181,329,184,283,387,294,384,340
3 | 688,231,689,192,856,195,855,234
4 | 255,341,373,341,373,389,255,389
5 | 388,202,418,202,418,215,388,215
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_416.txt:
--------------------------------------------------------------------------------
1 | 738,176,774,173,776,194,740,198
2 | 52,116,234,99,237,135,55,151
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_417.txt:
--------------------------------------------------------------------------------
1 | 83,144,130,89,276,214,229,268
2 | -30,58,20,0,158,121,107,180
3 | 268,595,268,572,330,572,330,595
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_418.txt:
--------------------------------------------------------------------------------
1 | 549,324,705,311,708,340,552,354
2 | 616,374,650,371,651,387,617,389
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_419.txt:
--------------------------------------------------------------------------------
1 | 1032,460,1033,435,1126,442,1124,467
2 | 1025,436,1027,411,1123,418,1121,443
3 | 625,324,626,299,669,301,668,326
4 | 1022,363,1023,339,1117,343,1116,367
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_42.txt:
--------------------------------------------------------------------------------
1 | 502,164,621,111,635,143,517,196
2 | 1091,149,1151,148,1153,410,1093,411
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_420.txt:
--------------------------------------------------------------------------------
1 | 428,219,454,179,526,225,501,265
2 | 286,142,320,85,484,181,451,238
3 | 511,268,522,247,563,268,552,290
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_423.txt:
--------------------------------------------------------------------------------
1 | 776,187,899,178,902,223,779,233
2 | 705,403,705,387,732,387,732,403
3 | 686,388,711,388,711,405,686,405
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_424.txt:
--------------------------------------------------------------------------------
1 | 690,141,831,38,864,84,724,187
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_426.txt:
--------------------------------------------------------------------------------
1 | 1003,123,1147,116,1149,148,1004,155
2 | 305,127,571,120,572,164,306,172
3 | 526,171,608,168,609,190,527,192
4 | 451,178,520,175,521,195,452,197
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_428.txt:
--------------------------------------------------------------------------------
1 | 145,175,344,169,345,215,146,221
2 | 1051,285,1178,263,1185,300,1058,322
3 | 1138,378,1235,378,1235,412,1138,412
4 | 404,346,405,332,463,334,462,348
5 | 657,304,659,281,702,284,700,307
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_429.txt:
--------------------------------------------------------------------------------
1 | -1,201,100,195,102,226,0,232
2 | 665,384,726,384,726,410,665,410
3 | 155,358,156,343,219,346,218,361
4 | 389,324,390,304,432,307,430,327
5 | 647,315,707,312,708,337,648,340
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_43.txt:
--------------------------------------------------------------------------------
1 | 13,189,183,168,188,208,18,229
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_430.txt:
--------------------------------------------------------------------------------
1 | 265,46,291,15,370,80,344,112
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_431.txt:
--------------------------------------------------------------------------------
1 | 291,212,291,189,389,189,389,212
2 | 96,196,97,141,415,145,414,200
3 | 297,282,302,263,345,274,340,294
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_432.txt:
--------------------------------------------------------------------------------
1 | 391,123,433,42,686,174,644,255
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_433.txt:
--------------------------------------------------------------------------------
1 | 608,196,676,196,676,218,608,218
2 | 596,165,735,165,735,200,596,200
3 | 490,198,490,166,593,166,593,198
4 | 682,197,732,195,733,214,683,217
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_434.txt:
--------------------------------------------------------------------------------
1 | 222,250,224,81,288,82,286,251
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_437.txt:
--------------------------------------------------------------------------------
1 | 936,122,1156,-14,1179,21,958,158
2 | 1046,358,1159,356,1160,376,1047,378
3 | 698,490,698,460,734,460,734,490
4 | 696,415,731,410,735,436,700,441
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_438.txt:
--------------------------------------------------------------------------------
1 | 978,141,1074,55,1106,90,1009,176
2 | 1148,449,1271,438,1276,491,1153,502
3 | 1138,400,1270,390,1274,444,1143,454
4 | 1067,60,1154,-5,1182,30,1095,97
5 | 667,356,715,346,719,363,671,373
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_439.txt:
--------------------------------------------------------------------------------
1 | 708,204,796,167,807,191,719,228
2 | 661,222,713,202,722,223,670,243
3 | 1004,435,1012,398,1064,409,1057,446
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_44.txt:
--------------------------------------------------------------------------------
1 | 1029,287,1029,252,1170,252,1170,287
2 | 844,73,894,65,897,85,847,93
3 | 698,102,736,96,739,113,700,119
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_440.txt:
--------------------------------------------------------------------------------
1 | 970,335,970,266,990,266,990,335
2 | 989,268,1008,268,1008,339,989,339
3 | 858,360,859,348,907,352,906,364
4 | 861,342,862,329,936,332,935,345
5 | 974,70,990,69,992,171,976,172
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_441.txt:
--------------------------------------------------------------------------------
1 | 168,32,177,-1,247,18,237,52
2 | 115,70,127,18,224,40,212,92
3 | 185,115,192,82,263,98,256,131
4 | 130,99,138,71,190,86,182,114
5 | 210,88,223,40,286,58,273,105
6 | 277,463,288,243,340,245,330,465
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_442.txt:
--------------------------------------------------------------------------------
1 | 259,183,264,160,380,184,375,207
2 | 588,404,590,201,630,202,628,405
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_443.txt:
--------------------------------------------------------------------------------
1 | 1011,163,1083,147,1090,176,1018,193
2 | 1109,147,1201,120,1206,139,1114,166
3 | 159,44,185,6,271,65,245,103
4 | 1202,120,1233,112,1238,132,1207,139
5 | 1089,150,1122,143,1126,161,1093,168
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_446.txt:
--------------------------------------------------------------------------------
1 | -6,107,32,60,178,182,139,229
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_447.txt:
--------------------------------------------------------------------------------
1 | 146,160,160,127,308,193,294,226
2 | 304,245,315,212,405,242,394,275
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_448.txt:
--------------------------------------------------------------------------------
1 | 212,237,222,210,284,233,274,260
2 | 272,257,282,231,329,249,320,275
3 | 11,205,18,178,132,208,124,235
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_45.txt:
--------------------------------------------------------------------------------
1 | 724,133,725,107,783,109,782,135
2 | 459,116,460,97,502,99,501,117
3 | 377,112,378,93,458,97,457,116
4 | 163,145,202,145,202,174,163,174
5 | 162,202,163,176,239,177,238,204
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_450.txt:
--------------------------------------------------------------------------------
1 | 738,56,796,52,798,74,739,79
2 | 444,287,529,268,534,291,449,310
3 | 698,62,733,58,736,80,701,84
4 | 478,87,524,79,528,103,482,111
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_453.txt:
--------------------------------------------------------------------------------
1 | 457,149,572,143,573,166,458,172
2 | 198,162,280,158,281,180,199,184
3 | 460,388,539,362,547,384,467,411
4 | 808,411,900,365,914,392,822,439
5 | 376,411,465,386,471,408,382,433
6 | 435,170,595,155,598,182,438,197
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_455.txt:
--------------------------------------------------------------------------------
1 | 735,142,803,136,805,155,737,161
2 | 697,151,735,144,738,162,700,169
3 | 973,17,1014,12,1017,34,976,39
4 | 750,298,814,295,815,308,751,311
5 | 586,176,622,173,623,186,587,189
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_456.txt:
--------------------------------------------------------------------------------
1 | 262,409,342,402,345,425,264,432
2 | 129,93,130,67,205,70,204,96
3 | 166,415,262,410,263,433,167,438
4 | 239,99,240,71,320,75,319,103
5 | 206,95,206,70,243,70,243,95
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_457.txt:
--------------------------------------------------------------------------------
1 | 297,10,615,-3,618,72,300,86
2 | 640,5,898,-5,901,51,643,62
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_458.txt:
--------------------------------------------------------------------------------
1 | 112,38,172,17,182,46,122,67
2 | 170,17,246,-7,256,22,180,47
3 | 365,329,365,205,389,205,389,329
4 | 707,199,743,198,745,342,709,343
5 | 997,236,1036,236,1036,357,997,357
6 | 250,-2,296,-11,300,10,255,19
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_459.txt:
--------------------------------------------------------------------------------
1 | 828,249,880,247,881,265,829,267
2 | 766,252,826,249,827,269,767,272
3 | 745,313,800,310,801,330,746,333
4 | 714,175,762,162,769,188,721,202
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_46.txt:
--------------------------------------------------------------------------------
1 | 846,240,927,235,929,269,848,273
2 | 1065,294,1153,294,1153,324,1065,324
3 | 1074,343,1094,343,1094,356,1074,356
4 | 1073,345,1073,333,1091,333,1091,345
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_463.txt:
--------------------------------------------------------------------------------
1 | 1052,631,1106,513,1289,597,1235,716
2 | 1092,528,1119,451,1280,508,1254,584
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_465.txt:
--------------------------------------------------------------------------------
1 | 883,311,884,271,994,275,993,315
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_467.txt:
--------------------------------------------------------------------------------
1 | 903,22,1018,12,1021,46,906,56
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_469.txt:
--------------------------------------------------------------------------------
1 | 82,243,83,209,175,212,174,246
2 | 853,255,854,227,959,230,958,258
3 | 627,249,628,209,850,218,849,258
4 | 178,215,241,215,241,246,178,246
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_470.txt:
--------------------------------------------------------------------------------
1 | 417,66,425,40,526,71,518,97
2 | 638,130,644,103,723,122,717,148
3 | 516,95,523,69,602,91,595,117
4 | 1173,295,1181,247,1279,265,1271,313
5 | 1195,253,1203,213,1282,229,1274,269
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_471.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_471.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_472.txt:
--------------------------------------------------------------------------------
1 | 1130,208,1221,203,1225,257,1134,263
2 | 1117,169,1181,160,1188,207,1124,216
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_473.txt:
--------------------------------------------------------------------------------
1 | 217,131,217,107,329,107,329,131
2 | 684,264,747,257,748,273,685,280
3 | 212,110,212,71,325,71,325,110
4 | 765,254,839,250,840,267,766,271
5 | 750,269,854,259,857,285,753,295
6 | 721,317,813,306,815,321,723,333
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_475.txt:
--------------------------------------------------------------------------------
1 | 513,106,615,99,619,149,516,156
2 | 493,197,534,194,535,211,494,214
3 | 737,426,823,397,832,425,746,454
4 | 436,200,492,199,493,217,437,219
5 | 435,185,435,167,490,167,490,185
6 | 443,268,479,261,483,281,447,288
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_477.txt:
--------------------------------------------------------------------------------
1 | 908,121,1025,66,1044,105,926,160
2 | 972,214,1021,205,1025,228,976,237
3 | 979,241,1024,234,1029,265,984,271
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_478.txt:
--------------------------------------------------------------------------------
1 | 1032,88,1077,86,1080,161,1035,163
2 | 1050,93,1130,37,1162,83,1082,139
3 | 966,164,1027,119,1052,152,992,198
4 | 1139,-3,1206,-5,1209,93,1142,95
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_479.txt:
--------------------------------------------------------------------------------
1 | 36,168,43,94,300,120,292,193
2 | 260,41,275,-16,407,17,392,75
3 | 464,104,488,58,593,113,568,160
4 | 404,29,446,27,449,104,406,106
5 | 445,47,480,46,482,111,447,112
6 | 122,525,189,494,200,518,133,549
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_481.txt:
--------------------------------------------------------------------------------
1 | 313,432,399,417,404,444,318,459
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_483.txt:
--------------------------------------------------------------------------------
1 | 874,82,970,1,995,30,899,112
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_484.txt:
--------------------------------------------------------------------------------
1 | 267,328,320,324,321,340,268,344
2 | 281,357,321,357,321,377,281,377
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_485.txt:
--------------------------------------------------------------------------------
1 | 1118,489,1166,489,1166,607,1118,607
2 | 688,274,767,274,767,303,688,303
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_487.txt:
--------------------------------------------------------------------------------
1 | 591,120,594,92,688,104,685,132
2 | 301,230,303,213,336,216,334,233
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_488.txt:
--------------------------------------------------------------------------------
1 | 247,357,250,329,322,337,318,365
2 | 343,570,431,565,434,602,346,608
3 | 246,385,250,362,293,368,290,391
4 | 274,297,275,271,321,273,320,300
5 | 247,329,248,299,329,304,328,333
6 | 269,599,273,567,344,574,340,607
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_489.txt:
--------------------------------------------------------------------------------
1 | 492,287,496,249,551,256,547,293
2 | 200,314,203,288,274,295,271,321
3 | 196,295,201,258,318,273,313,311
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_49.txt:
--------------------------------------------------------------------------------
1 | 1116,76,1209,73,1211,126,1118,129
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_490.txt:
--------------------------------------------------------------------------------
1 | 834,199,917,199,917,231,834,231
2 | 781,201,829,195,833,227,785,233
3 | 577,212,579,158,626,160,624,214
4 | 786,229,911,221,913,258,788,265
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_491.txt:
--------------------------------------------------------------------------------
1 | 160,228,174,172,317,208,303,264
2 | 11,222,18,151,166,165,159,236
3 | 202,592,202,441,227,441,227,592
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_492.txt:
--------------------------------------------------------------------------------
1 | 997,282,998,260,1116,265,1115,287
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_493.txt:
--------------------------------------------------------------------------------
1 | 314,224,360,221,361,240,315,243
2 | 365,221,400,221,400,240,365,240
3 | 400,217,442,217,442,235,400,235
4 | 355,239,374,239,374,250,355,250
5 | 399,233,435,231,436,244,400,246
6 | 326,240,353,238,354,249,327,251
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_495.txt:
--------------------------------------------------------------------------------
1 | 532,68,548,21,705,75,688,122
2 | 31,342,34,284,270,294,267,353
3 | 515,360,545,360,545,379,515,379
4 | 411,345,413,331,453,336,451,351
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_498.txt:
--------------------------------------------------------------------------------
1 | 814,66,814,26,940,26,940,66
2 | 898,68,978,65,979,100,899,103
3 | 819,73,891,70,892,103,820,106
4 | 949,26,987,26,987,59,949,59
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_499.txt:
--------------------------------------------------------------------------------
1 | 344,262,379,256,382,271,346,277
2 | 384,217,425,211,428,228,386,234
3 | 343,244,391,237,393,253,346,260
4 | 397,237,423,230,427,244,400,251
5 | 341,227,380,220,383,236,344,242
6 | 383,253,425,247,427,264,385,270
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_5.txt:
--------------------------------------------------------------------------------
1 | 618,73,661,73,661,94,618,94
2 | 621,142,662,142,662,160,621,160
3 | 608,199,679,196,681,231,610,234
4 | 603,116,604,93,674,96,673,119
5 | 617,134,619,115,661,119,660,138
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_50.txt:
--------------------------------------------------------------------------------
1 | 815,438,880,407,895,438,831,469
2 | 747,441,819,433,822,464,750,472
3 | 688,629,758,592,776,626,706,663
4 | 1238,18,1275,18,1275,39,1238,39
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_500.txt:
--------------------------------------------------------------------------------
1 | 217,44,218,15,333,22,331,51
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_52.txt:
--------------------------------------------------------------------------------
1 | 591,260,636,255,638,279,593,284
2 | 696,253,735,251,736,270,697,272
3 | 636,257,668,254,670,275,638,279
4 | 664,256,694,254,695,274,665,276
5 | 735,251,776,249,777,268,736,270
6 | 541,175,567,171,569,188,543,192
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_53.txt:
--------------------------------------------------------------------------------
1 | 106,314,243,311,244,335,107,338
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_54.txt:
--------------------------------------------------------------------------------
1 | 15,15,185,-10,190,22,20,48
2 | 900,46,955,40,958,68,903,75
3 | 243,144,252,118,313,139,304,165
4 | 211,132,220,109,257,124,248,147
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_56.txt:
--------------------------------------------------------------------------------
1 | 733,246,770,246,770,263,733,263
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_57.txt:
--------------------------------------------------------------------------------
1 | 601,174,654,167,656,185,603,192
2 | 373,205,437,198,440,221,376,229
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_58.txt:
--------------------------------------------------------------------------------
1 | 415,639,552,630,554,664,418,673
2 | 803,258,804,245,865,247,864,260
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_59.txt:
--------------------------------------------------------------------------------
1 | 401,270,590,175,629,253,440,347
2 | 550,300,605,270,620,296,565,326
3 | 509,307,555,290,566,321,520,338
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_6.txt:
--------------------------------------------------------------------------------
1 | 223,237,268,232,269,241,224,246
2 | 217,228,267,224,268,234,218,238
3 | 779,47,812,43,813,54,781,59
4 | 724,55,749,53,750,63,725,65
5 | 751,51,783,49,784,58,752,60
6 | 494,82,524,79,525,88,495,91
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_60.txt:
--------------------------------------------------------------------------------
1 | 437,188,601,171,606,223,442,240
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_61.txt:
--------------------------------------------------------------------------------
1 | 227,287,312,285,313,315,228,317
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_62.txt:
--------------------------------------------------------------------------------
1 | 602,324,763,300,771,352,610,376
2 | 608,209,732,191,737,221,613,239
3 | 667,279,754,269,757,299,671,310
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_64.txt:
--------------------------------------------------------------------------------
1 | 141,185,141,158,200,158,200,185
2 | 771,122,830,107,835,127,776,142
3 | 970,57,1113,6,1139,80,997,130
4 | 835,103,886,91,892,115,840,127
5 | 719,137,765,125,770,143,723,155
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_65.txt:
--------------------------------------------------------------------------------
1 | 741,417,744,370,888,379,885,425
2 | 774,314,854,311,855,343,775,346
3 | 789,441,790,426,824,429,823,444
4 | 824,444,826,426,874,432,872,451
5 | 726,320,774,320,774,348,726,348
6 | 708,197,726,188,759,254,741,263
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_66.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/icdar15/submit/res_img_66.txt
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_67.txt:
--------------------------------------------------------------------------------
1 | 693,185,757,180,759,200,694,205
2 | 678,142,768,131,771,152,681,163
3 | 697,162,746,160,747,179,698,182
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_69.txt:
--------------------------------------------------------------------------------
1 | 835,74,949,53,960,114,846,135
2 | 257,172,263,144,307,154,300,182
3 | 211,162,217,135,267,146,261,173
4 | 940,47,1104,26,1113,96,949,118
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_7.txt:
--------------------------------------------------------------------------------
1 | 1216,202,1279,202,1279,227,1216,227
2 | 1081,249,1165,247,1166,281,1082,284
3 | 1166,200,1214,200,1214,226,1166,226
4 | 1154,369,1154,354,1198,354,1198,369
5 | 1143,386,1143,370,1202,370,1202,386
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_70.txt:
--------------------------------------------------------------------------------
1 | 67,488,176,443,190,477,81,522
2 | 98,431,149,412,158,437,107,456
3 | 94,540,167,496,179,517,106,560
4 | 68,448,99,438,106,457,75,468
5 | 63,403,148,373,156,396,72,426
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_71.txt:
--------------------------------------------------------------------------------
1 | 526,158,590,146,597,180,533,193
2 | 476,174,529,161,537,192,484,205
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_74.txt:
--------------------------------------------------------------------------------
1 | 253,108,254,53,404,55,403,110
2 | 71,49,242,46,243,107,72,110
3 | 4,150,4,133,44,133,44,150
4 | 37,150,38,134,83,136,82,152
5 | 1034,43,1143,43,1143,114,1034,114
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_76.txt:
--------------------------------------------------------------------------------
1 | 275,38,327,36,328,61,276,62
2 | 226,39,274,37,275,60,227,62
3 | 235,63,319,63,319,87,235,87
4 | 118,157,174,157,174,221,118,221
5 | 24,54,67,50,70,74,26,78
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_78.txt:
--------------------------------------------------------------------------------
1 | 565,142,567,117,623,121,621,146
2 | 454,138,455,114,529,116,528,140
3 | 815,111,897,59,919,94,837,145
4 | 408,151,409,137,467,141,466,155
5 | 889,63,995,6,1016,46,909,102
6 | 503,168,504,156,545,160,544,171
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_8.txt:
--------------------------------------------------------------------------------
1 | 470,88,540,82,541,100,471,106
2 | 1020,232,1086,215,1100,268,1033,284
3 | 871,423,980,412,983,441,873,452
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_80.txt:
--------------------------------------------------------------------------------
1 | 1169,184,1202,181,1203,196,1171,199
2 | 1129,204,1272,182,1277,218,1134,240
3 | 1148,187,1175,182,1177,196,1150,201
4 | 783,86,898,28,919,70,804,128
5 | 1201,178,1240,173,1242,191,1203,197
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_81.txt:
--------------------------------------------------------------------------------
1 | 30,366,271,342,277,401,36,425
2 | 479,103,524,103,524,118,479,118
3 | 441,103,470,101,471,118,442,120
4 | 561,99,609,97,610,115,562,117
5 | 378,121,379,101,436,103,435,123
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_84.txt:
--------------------------------------------------------------------------------
1 | 101,229,178,224,179,240,102,245
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_86.txt:
--------------------------------------------------------------------------------
1 | 1012,360,1013,314,1136,317,1135,363
2 | 1169,161,1238,157,1240,202,1172,206
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_87.txt:
--------------------------------------------------------------------------------
1 | 563,113,657,84,673,134,578,163
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_88.txt:
--------------------------------------------------------------------------------
1 | 596,132,640,119,649,149,605,162
2 | 643,184,713,175,720,224,650,234
3 | 653,318,657,292,733,303,729,329
4 | 543,144,592,129,604,164,554,179
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_9.txt:
--------------------------------------------------------------------------------
1 | 231,190,340,174,345,211,236,227
2 | 212,182,215,40,320,42,318,184
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_90.txt:
--------------------------------------------------------------------------------
1 | 141,225,150,189,211,205,202,241
2 | 139,259,146,226,210,241,202,274
3 | 142,297,148,263,211,273,205,307
4 | -1,109,63,104,66,142,1,147
5 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_92.txt:
--------------------------------------------------------------------------------
1 | 352,218,378,175,464,227,438,269
2 | 852,14,950,12,951,38,853,40
3 | 441,280,442,225,478,226,476,281
4 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_93.txt:
--------------------------------------------------------------------------------
1 | 89,268,207,237,217,274,99,305
2 | 90,241,202,211,210,242,98,271
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_94.txt:
--------------------------------------------------------------------------------
1 | 28,77,64,6,209,81,173,151
2 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_95.txt:
--------------------------------------------------------------------------------
1 | 108,284,108,257,242,257,242,284
2 | 645,195,678,195,678,209,645,209
3 | 595,207,596,191,644,194,643,210
4 | 691,206,692,192,724,194,723,208
5 | 667,192,668,179,710,181,709,194
6 | 609,194,609,180,649,180,649,194
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_96.txt:
--------------------------------------------------------------------------------
1 | 94,258,164,249,168,284,98,293
2 | 84,615,216,609,217,636,85,641
3 | 84,320,87,291,156,298,153,326
4 | 73,344,76,317,152,324,149,351
5 | 394,164,397,147,433,154,430,171
6 | 380,301,436,301,436,318,380,318
7 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_97.txt:
--------------------------------------------------------------------------------
1 | 1114,162,1266,128,1274,166,1123,200
2 | 1012,205,1075,194,1078,214,1015,225
3 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/icdar15/submit/res_img_99.txt:
--------------------------------------------------------------------------------
1 | 869,262,1098,262,1098,324,869,324
2 | 865,373,866,311,1150,317,1149,379
3 | 886,654,892,591,1175,616,1169,679
4 | 276,213,277,198,330,200,329,215
5 | 895,705,899,649,1128,664,1124,720
6 |
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img1.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img1.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img2.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img2.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img3.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img3.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img4.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img4.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img5.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Groundtruth/poly_gt_img5.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img1.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img1.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img2.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img2.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img3.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img3.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img4.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img4.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img5.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Examples/Prediction/img5.mat
--------------------------------------------------------------------------------
/papers/FCENet/dataset/total_text/Evaluation_Protocol/Python_scripts/polygon_wrapper.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/dataset/total_text/Evaluation_Protocol/Python_scripts/polygon_wrapper.pyc
--------------------------------------------------------------------------------
/papers/FCENet/network/__init__.py:
--------------------------------------------------------------------------------
1 | from . import *
--------------------------------------------------------------------------------
/papers/FCENet/src/table1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FCENet/src/table1.jpg
--------------------------------------------------------------------------------
/papers/FCENet/util/__init__.py:
--------------------------------------------------------------------------------
1 | from .visualize import *
2 | from .detector import *
--------------------------------------------------------------------------------
/papers/FSMAFL/Temp/priv_data_72.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FSMAFL/Temp/priv_data_72.npy
--------------------------------------------------------------------------------
/papers/FSMAFL/Temp/total_priv_data_72.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FSMAFL/Temp/total_priv_data_72.pickle
--------------------------------------------------------------------------------
/papers/FSMAFL/images/Framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/FSMAFL/images/Framework.png
--------------------------------------------------------------------------------
/papers/GraphPAS/graphpas/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/GraphPAS/graphpas/__init__.py
--------------------------------------------------------------------------------
/papers/GraphPAS/graphpas/build_gnn/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/GraphPAS/graphpas/build_gnn/__init__.py
--------------------------------------------------------------------------------
/papers/GraphPAS/graphpas/graphpas_search/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/GraphPAS/graphpas/graphpas_search/__init__.py
--------------------------------------------------------------------------------
/papers/LECF/data/video10/video10.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/LECF/data/video10/video10.npz
--------------------------------------------------------------------------------
/papers/LIE-IQA/checkpoint/README.md:
--------------------------------------------------------------------------------
1 | + download the checkpoint from [Baidu Drive](https://pan.baidu.com/s/1oqE7VQHpmtfyjMuTQqeTfw) (ae9a)
--------------------------------------------------------------------------------
/papers/LIE-IQA/fig/LIE-IQA-Framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/LIE-IQA/fig/LIE-IQA-Framework.png
--------------------------------------------------------------------------------
/papers/LIE-IQA/fig/optimization-framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/LIE-IQA/fig/optimization-framework.png
--------------------------------------------------------------------------------
/papers/LIE-IQA/fig/performance-IQA-Dataset.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/LIE-IQA/fig/performance-IQA-Dataset.png
--------------------------------------------------------------------------------
/papers/LIE-IQA/fig/performance-LIE-IQA-Dataset.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/LIE-IQA/fig/performance-LIE-IQA-Dataset.png
--------------------------------------------------------------------------------
/papers/LIE-IQA/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy >= 1.20.3
2 | Pillow >= 8.2.0
3 | mindspore == 1.2.1
--------------------------------------------------------------------------------
/papers/MTLN/.keep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/MTLN/.keep
--------------------------------------------------------------------------------
/papers/MVD/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 |
--------------------------------------------------------------------------------
/papers/MVD/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/papers/MVD/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/papers/UColor/.gitignore:
--------------------------------------------------------------------------------
1 | .vscode
--------------------------------------------------------------------------------
/papers/UKF/images/temp1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/UKF/images/temp1.png
--------------------------------------------------------------------------------
/papers/UKF/images/temp2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/UKF/images/temp2.png
--------------------------------------------------------------------------------
/papers/Zero-DCE++/.gitignore:
--------------------------------------------------------------------------------
1 | .vscode
2 |
--------------------------------------------------------------------------------
/papers/Zero-DCE++/data/test_data/.keepme:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Zero-DCE++/data/test_data/.keepme
--------------------------------------------------------------------------------
/papers/Zero-DCE++/data/train_data/.keepme:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Zero-DCE++/data/train_data/.keepme
--------------------------------------------------------------------------------
/papers/Zero-DCE++/pretrain_model/zero_dcepp_epoch99.ckpt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Zero-DCE++/pretrain_model/zero_dcepp_epoch99.ckpt
--------------------------------------------------------------------------------
/papers/Zero-DCE/.gitignore:
--------------------------------------------------------------------------------
1 | .vscode/
2 |
--------------------------------------------------------------------------------
/papers/Zero-DCE/data/test_data/.keepme:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Zero-DCE/data/test_data/.keepme
--------------------------------------------------------------------------------
/papers/Zero-DCE/data/train_data/.keepme:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Zero-DCE/data/train_data/.keepme
--------------------------------------------------------------------------------
/papers/Zero-DCE/pretrain_model/zero_dce_epoch99.ckpt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/Zero-DCE/pretrain_model/zero_dce_epoch99.ckpt
--------------------------------------------------------------------------------
/papers/informer/img/informer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/informer/img/informer.png
--------------------------------------------------------------------------------
/papers/informer/img/probsparse_intro.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/informer/img/probsparse_intro.png
--------------------------------------------------------------------------------
/papers/informer/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mindspore-ai/contrib/c6dfba7f4320f116c4656e9fc341e2252b083bc3/papers/informer/utils/__init__.py
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy >= 1.17.0
--------------------------------------------------------------------------------