15 |
16 |
17 |
18 | Date |
19 |
20 | Presenter |
21 |
22 | Topic |
23 |
24 |
25 |
26 |
27 |
28 | Jan 27
29 | |
30 |
31 |
32 |
33 | all
34 |
35 | |
36 |
37 | 5-10 minutes on your research (past or present or interests) |
38 |
39 |
40 |
41 |
42 |
43 | Feb 3 |
44 |
45 | Yasin
46 | |
47 |
48 |
49 |
50 | [A Fast and Reliable Policy Improvement Algorithm](http://statlearning.pbworks.com/w/file/104808253/pi-aistats.pdf), Yasin Abbasi-Yadkori, Peter L. Bartlett, and Stephen Wright. Artificial Intelligence and Statistics (AISTATS), 2016.
51 |
52 | |
53 |
54 |
55 |
56 |
57 |
58 | Feb 10 |
59 |
60 | Billy |
61 |
62 | O. Dekel, R. Eldan, T. Koren. [Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff.](http://tx.technion.ac.il/~tomerk/papers/bco58.pdf) |
63 |
64 |
65 |
66 |
67 |
68 | Feb 17 |
69 |
70 | Will |
71 |
72 | Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. [Identifying and attacking the saddle point problem in high-dimensional non-convex optimization.](http://arxiv.org/abs/1406.2572)
73 | |
74 |
75 |
76 |
77 |
78 |
79 | Feb 24 |
80 |
81 | Ben Rubinstein |
82 |
83 |
84 |
85 | **12-1pm**
86 |
87 | **Title**: Private Bayesian Inference
88 |
89 |
90 |
91 | **Abstract**: Differential privacy is a leading framework for guaranteeing privacy of data when releasing aggregate statistics or models fit to data. While much is known about privatising many common learning algorithms, and frameworks such as regularised ERM, little work has focused on inference in the Bayesian setting. In that setting, the defender wishes to release a posterior on sensitive data while the untrusted third party is modelled as an adversary wishing to uncover information about the private data given query access to the defender’s release mechanism, full knowledge of the likelihood family, prior, and unbounded computation. I’ll present a natural response mechanism that simply samples from the (non-private) posterior. If either of two assumptions are met, then this mechanism is both robust and differentially private: uniformly-Lipschitz likelihoods, or a prior that concentrates on smooth likelihoods. A selection of results will be presented taken from: bounds on utility, privacy; necessary conditions; examples of common distributions; and specialisation to graphical models and alternate mechanisms which demonstrate the influence of graph structure on privacy. This is joint work with Christos Dimitrakakis, Zuhe Zhang, Katerina Mitrokotsa, Blaine Nelson; papers at ALT’14 (longer version with corrections in submission to JMLR) and AAAI’16.
92 |
93 |
94 |
95 | |
96 |
97 |
98 |
99 |
100 |
101 | Mar 2 |
102 |
103 | Aldo
104 | |
105 |
106 |
107 |
108 | [Learning Polynomials with Neural Networks.](http://jmlr.org/proceedings/papers/v32/andoni14.pdf) Alexandr Andoni, Rina Panigrahy, Gregory Valiant, Li Zhang. Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 2014\. JMLR: W&CP volume 32.
109 |
110 | |
111 |
112 |
113 |
114 |
115 |
116 | Mar 9 |
117 |
118 | Alan
119 | |
120 |
121 |
122 |
123 | (1 hour: 11-12) COLT paper: Minimax Linear Regression
124 |
125 | |
126 |
127 |
128 |
129 |
130 |
131 | Mar 16 |
132 |
133 |
134 |
135 | **-- no meeting -- **
136 |
137 | |
138 |
139 |
140 |
141 |
142 |
143 | Mar 23 |
144 |
145 | **-- no meeting -- ** |
146 |
147 |
148 |
149 |
150 |
151 | Mar 30 |
152 |
153 | Sören |
154 |
155 | Deep Online Convex Optimization by Putting Forecaster to Sleep. D. Balduzzi. [https://dl.dropboxusercontent.com/u/5874168/doco.pdf](https://dl.dropboxusercontent.com/u/5874168/doco.pdf) |
156 |
157 |
158 |
159 |
160 |
161 | Apr 6 |
162 |
163 | Xiang
164 | |
165 |
166 |
167 |
168 | Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, and Yann LeCun. [The loss surface of multilayer networks](http://arxiv.org/abs/1412.0233). See also:
169 |
170 | * [Complexity of random smooth functions on the high-dimensional sphere](http://arxiv.org/abs/1110.5872). A. Auffinger and G. Ben Arous. October 2011.
171 |
172 | * [Random Matrices and complexity of Spin Glasses](http://arxiv.org/abs/1003.1129). A. Auffinger, G. Ben Arous, and J. Cerny. March 2010.
173 |
174 | |
175 |
176 |
177 |
178 |
179 |
180 | Apr 13
181 | |
182 |
183 | Thomas
184 | |
185 |
186 | (1 hour: 11-12) Sparse and spurious: dictionary learning with noise and outliers. Rémi Gribonval, Rodolphe Jenatton, Francis Bach. 2014. [https://hal.inria.fr/hal-01025503v3](https://hal.inria.fr/hal-01025503v3) |
187 |
188 |
189 |
190 |
191 |
192 | Apr 20
193 | |
194 |
195 | Arturo
196 | |
197 |
198 | [Proximal Algorithms](http://stanford.edu/~boyd/papers/pdf/prox_algs.pdf). N. Parikh and S. Boyd. Foundations and Trends in Optimization, 1(3):123-231, 2014.
199 |
200 | |
201 |
202 |
203 |
204 |
205 |
206 | Apr 27 |
207 |
208 | Niladri
209 | |
210 |
211 | Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization. 2013 - Alekh Agarwal, Animashree Anandkumar, Prateek Jain, Praneeth Netrapalli, and Rashish Tandon. [http://arxiv.org/abs/1310.7991](http://arxiv.org/abs/1310.7991)
212 | |
213 |
214 |
215 |
216 |
217 |
218 | May 4 |
219 |
220 | **-- no meeting -- ** |
221 |
222 |
223 |
224 |
225 |
226 | May 11 |
227 |
228 | **-- no meeting -- ** |
229 |
230 |
231 |
232 |
233 |
234 | May 18 |
235 |
236 | Walid |
237 |
238 |
239 |
240 | On a Natural Dynamics for Linear Programming. Damian Straszak, Nisheeth K. Vishnoi. [http://arxiv.org/abs/1511.07020](http://arxiv.org/abs/1511.07020)
241 |
242 | |
243 |
244 |
245 |
246 |
247 |
248 | May 25 |
249 |
250 |
251 |
252 |
253 |
254 |