├── .gitignore
├── LICENSE
├── README.md
├── automl-predict.ipynb
├── media
├── demo.gif
├── demo.mp4
├── notebook.gif
├── pipeline_AutoML.png
├── run-automl.png
├── web-app-advanced.gif
├── web-app-download.gif
├── web-app-notebooks.gif
├── web-app-online.png
├── web-app-predictions.png
├── web-app-xgboost.gif
├── web-app.gif
└── what_is_supervised.png
├── requirements.txt
├── train-automl-advanced.ipynb
└── train-automl.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # poetry
98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102 | #poetry.lock
103 |
104 | # pdm
105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106 | #pdm.lock
107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108 | # in version control.
109 | # https://pdm.fming.dev/#use-with-ide
110 | .pdm.toml
111 |
112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113 | __pypackages__/
114 |
115 | # Celery stuff
116 | celerybeat-schedule
117 | celerybeat.pid
118 |
119 | # SageMath parsed files
120 | *.sage.py
121 |
122 | # Environments
123 | .env
124 | .venv
125 | env/
126 | venv/
127 | ENV/
128 | env.bak/
129 | venv.bak/
130 |
131 | # Spyder project settings
132 | .spyderproject
133 | .spyproject
134 |
135 | # Rope project settings
136 | .ropeproject
137 |
138 | # mkdocs documentation
139 | /site
140 |
141 | # mypy
142 | .mypy_cache/
143 | .dmypy.json
144 | dmypy.json
145 |
146 | # Pyre type checker
147 | .pyre/
148 |
149 | # pytype static type analyzer
150 | .pytype/
151 |
152 | # Cython debug symbols
153 | cython_debug/
154 |
155 | # PyCharm
156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158 | # and can be added to the global gitignore or merged into this file. For a more nuclear
159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160 | #.idea/
161 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 MLJAR
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # New way for building ML pipelines!
3 |
4 | We are working on new way for Python visual programming. We developed desktop application called [MLJAR Studio](https://mljar.com).
5 | It is a notebook based development environment with interactive code recipes and managed Python environment. All running locally on your machine. We are waiting for your feedback.
6 |
7 | It has [code recipes](https://mljar.com/docs/python-automl/) to build ML pipelines with MLJAR AutoML.
8 |
9 |
10 |
13 |
14 |
15 | ---
16 |
17 | # AutoML Web App 🤖
18 |
19 |
20 | 🚀 AutoML
21 | •
22 | 📓 Mercury
23 | •
24 | 🤝 Issues
25 | •
26 | 🐦 Twitter
27 | •
28 | 👩💼 LinkedIn
29 | •
30 | 🌐 MLJAR Website
31 |
32 |
33 |
34 | This is a Web Application designed to train Machine Learning pipelines using MLJAR AutoML, specifically tailored for tabular data. All the generated models are compressed into an archive format, allowing their reuse to compute predictions in batch mode.
35 |
36 | This repo consists of three notebooks:
37 | - [notebook](https://github.com/mljar/automl-app/blob/main/train-automl.ipynb) for training AutoML with simple UI,
38 | - [advanced notebook](https://github.com/mljar/automl-app/blob/main/train-automl-advanced.ipynb) for training AutoML with more advanced UI (you can select feature engineering methods, algorithms, validation strategy, and evaluation metric),
39 | - [notebook](https://github.com/mljar/automl-app/blob/main/automl-predict.ipynb) for computing predictions.
40 |
41 |
42 | The Web App harnesses the capabilities of [mljar-supervised](https://github.com/mljar/mercury) to construct the Machine Learning pipeline with AutoML. This involves the automation of several key tasks:
43 | - data preprocessing,
44 | - features engineering,
45 | - algorithm selection & tuning,
46 | - ML models explanations,
47 | - automatic documentation.
48 |
49 |
50 |
51 |
52 | The Web App is created directly from Jupyter Notebooks with [Mercury](https://github.com/mljar/mercury) framework.
53 |
54 | ### Demo
55 |
56 |
57 |
58 | https://github.com/mljar/automl-app/assets/6959032/3363631a-2187-44cd-94a8-3cbd5418de98
59 |
60 |
61 |
62 | ### Online demo
63 |
64 | The Web App is available online at [automl.runmercury.com](https://automl.runmercury.com). Input data upload is limited to 1MB.
65 |
66 |
67 |
68 |
69 |
70 | ### Run locally 🖥️
71 |
72 | Please run the below commands to run Web App locally. It requires Python >= 3.8.
73 |
74 | ```bash
75 | pip install -r requirements.txt
76 | mercury run
77 | ```
78 |
79 | ### Training Notebook 📓
80 |
81 | If you would like to increase the input file limit, please change the cell:
82 |
83 | ```python
84 | data_file = mr.File(label="Upload CSV with training data", max_file_size="1MB")
85 | ```
86 |
87 | and set your `max_file_size`.
88 |
89 | Please change the following cell to increase training time:
90 |
91 | ```python
92 | time_limit = mr.Select(label="Time limit (seconds)", value="60", choices=["60", "120", "240", "300"])
93 | ```
94 |
95 | Times are in seconds. Please just increase the values.
96 |
97 |
98 |
99 |
100 |
101 | ### Training models in Web App
102 |
103 | Please upload a CSV file with training data, select input features & target, and click `Start training`.
104 |
105 |
106 |
107 |
108 |
109 | All models created during the training are available for download as a zip file:
110 |
111 |
112 |
113 |
114 |
115 | ### Advanced Training Notebook 💪
116 |
117 | Please use advanced mode if you would like to tweak AutoML parameters:
118 |
119 |
120 |
121 |
122 |
123 | ## 👩💼🐦 Connect with Us on LinkedIn & Twitter
124 |
125 | Stay up-to-date with the latest updates about MLJAR 🎨🤖 by following us on Twitter ([MLJAR Twitter](https://twitter.com/MLJAROfficial)) and LinkedIn ([Aleksandra LinkedIn](https://www.linkedin.com/in/aleksandra-p%C5%82o%C5%84ska-42047432/) & [Piotr LinkedIn](https://www.linkedin.com/in/piotr-plonski-mljar/)). We look forward to connecting with you and hearing your thoughts, ideas, and experiences.
126 |
127 |
128 | ### Good luck with ML training!
129 |
--------------------------------------------------------------------------------
/automl-predict.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "cd859f09",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import os\n",
11 | "import shutil\n",
12 | "import pandas as pd\n",
13 | "import mercury as mr\n",
14 | "from supervised.automl import AutoML "
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 2,
20 | "id": "d5e4f553",
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "import warnings\n",
25 | "warnings.filterwarnings(\"ignore\")"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 3,
31 | "id": "e4a86241",
32 | "metadata": {},
33 | "outputs": [
34 | {
35 | "data": {
36 | "application/mercury+json": "{\n \"widget\": \"App\",\n \"title\": \"Predict with AutoML \\ud83c\\udfaf\",\n \"description\": \"Compute predictions on test data with AutoML\",\n \"show_code\": false,\n \"show_prompt\": false,\n \"output\": \"app\",\n \"schedule\": \"\",\n \"notify\": \"{}\",\n \"continuous_update\": true,\n \"static_notebook\": false,\n \"show_sidebar\": true,\n \"full_screen\": true,\n \"allow_download\": true,\n \"stop_on_error\": false,\n \"model_id\": \"mercury-app\",\n \"code_uid\": \"App.0.40.25.1-randc8be43bc\"\n}",
37 | "text/html": [
38 | "Mercury Application
This output won't appear in the web app."
39 | ],
40 | "text/plain": [
41 | "mercury.App"
42 | ]
43 | },
44 | "metadata": {},
45 | "output_type": "display_data"
46 | }
47 | ],
48 | "source": [
49 | "app = mr.App(title=\"Predict with AutoML 🎯\", description=\"Compute predictions on test data with AutoML\")"
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "id": "9ab46d42",
55 | "metadata": {},
56 | "source": [
57 | "# Compute predictions\n",
58 | "\n",
59 | "Please follow the steps:\n",
60 | "1. Upload zip file with AutoML.\n",
61 | "2. Upload test data as CSV file.\n",
62 | "3. Download predictions."
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 4,
68 | "id": "f2acef34",
69 | "metadata": {},
70 | "outputs": [
71 | {
72 | "data": {
73 | "application/mercury+json": "{\n \"widget\": \"File\",\n \"max_file_size\": \"100MB\",\n \"label\": \"Upload zip with AutoML\",\n \"model_id\": \"43b96d54f6c24b73949563e6d4b933b8\",\n \"code_uid\": \"File.0.40.18.1-rand3b8fa11b\",\n \"disabled\": false,\n \"hidden\": false\n}",
74 | "application/vnd.jupyter.widget-view+json": {
75 | "model_id": "43b96d54f6c24b73949563e6d4b933b8",
76 | "version_major": 2,
77 | "version_minor": 0
78 | },
79 | "text/plain": [
80 | "mercury.File"
81 | ]
82 | },
83 | "metadata": {},
84 | "output_type": "display_data"
85 | }
86 | ],
87 | "source": [
88 | "automl_zip = mr.File(label=\"Upload zip with AutoML\")"
89 | ]
90 | },
91 | {
92 | "cell_type": "code",
93 | "execution_count": 5,
94 | "id": "c4bef80f",
95 | "metadata": {},
96 | "outputs": [],
97 | "source": [
98 | "if automl_zip.filepath is None:\n",
99 | " mr.Stop()"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": null,
105 | "id": "172440f1",
106 | "metadata": {},
107 | "outputs": [],
108 | "source": [
109 | "extract_dir = \"my_automl\""
110 | ]
111 | },
112 | {
113 | "cell_type": "code",
114 | "execution_count": null,
115 | "id": "00c491c1",
116 | "metadata": {},
117 | "outputs": [],
118 | "source": [
119 | "shutil.unpack_archive(automl_zip.filepath, extract_dir, \"zip\")"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": null,
125 | "id": "144d9d52",
126 | "metadata": {},
127 | "outputs": [],
128 | "source": [
129 | "automl = AutoML(results_path=extract_dir)"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": null,
135 | "id": "8a070136",
136 | "metadata": {},
137 | "outputs": [],
138 | "source": []
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": null,
143 | "id": "ab4d18b1",
144 | "metadata": {},
145 | "outputs": [],
146 | "source": [
147 | "test_data = mr.File(label=\"Upload test data\")"
148 | ]
149 | },
150 | {
151 | "cell_type": "code",
152 | "execution_count": null,
153 | "id": "69c8bfc6",
154 | "metadata": {},
155 | "outputs": [],
156 | "source": [
157 | "if test_data.filepath is None:\n",
158 | " mr.Stop()"
159 | ]
160 | },
161 | {
162 | "cell_type": "code",
163 | "execution_count": null,
164 | "id": "45d2a28e",
165 | "metadata": {},
166 | "outputs": [],
167 | "source": [
168 | "df = pd.read_csv(test_data.filepath)"
169 | ]
170 | },
171 | {
172 | "cell_type": "code",
173 | "execution_count": null,
174 | "id": "559e0c12",
175 | "metadata": {},
176 | "outputs": [],
177 | "source": [
178 | "df"
179 | ]
180 | },
181 | {
182 | "cell_type": "code",
183 | "execution_count": null,
184 | "id": "99dfd387",
185 | "metadata": {},
186 | "outputs": [],
187 | "source": []
188 | },
189 | {
190 | "cell_type": "code",
191 | "execution_count": null,
192 | "id": "d67b4d0e",
193 | "metadata": {},
194 | "outputs": [],
195 | "source": [
196 | "predictions = automl.predict_all(df)"
197 | ]
198 | },
199 | {
200 | "cell_type": "code",
201 | "execution_count": null,
202 | "id": "a8a5d19e",
203 | "metadata": {},
204 | "outputs": [],
205 | "source": [
206 | "predictions"
207 | ]
208 | },
209 | {
210 | "cell_type": "code",
211 | "execution_count": null,
212 | "id": "c3dc1562",
213 | "metadata": {},
214 | "outputs": [],
215 | "source": [
216 | "output_dir = mr.OutputDir()"
217 | ]
218 | },
219 | {
220 | "cell_type": "code",
221 | "execution_count": null,
222 | "id": "b995ba03",
223 | "metadata": {},
224 | "outputs": [],
225 | "source": [
226 | "predictions.to_csv(os.path.join(output_dir.path, \"predictions.csv\"), index=False)"
227 | ]
228 | },
229 | {
230 | "cell_type": "code",
231 | "execution_count": null,
232 | "id": "ca7e1737",
233 | "metadata": {},
234 | "outputs": [],
235 | "source": []
236 | }
237 | ],
238 | "metadata": {
239 | "kernelspec": {
240 | "display_name": "appenv",
241 | "language": "python",
242 | "name": "appenv"
243 | },
244 | "language_info": {
245 | "codemirror_mode": {
246 | "name": "ipython",
247 | "version": 3
248 | },
249 | "file_extension": ".py",
250 | "mimetype": "text/x-python",
251 | "name": "python",
252 | "nbconvert_exporter": "python",
253 | "pygments_lexer": "ipython3",
254 | "version": "3.8.10"
255 | }
256 | },
257 | "nbformat": 4,
258 | "nbformat_minor": 5
259 | }
260 |
--------------------------------------------------------------------------------
/media/demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/demo.gif
--------------------------------------------------------------------------------
/media/demo.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/demo.mp4
--------------------------------------------------------------------------------
/media/notebook.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/notebook.gif
--------------------------------------------------------------------------------
/media/pipeline_AutoML.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/pipeline_AutoML.png
--------------------------------------------------------------------------------
/media/run-automl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/run-automl.png
--------------------------------------------------------------------------------
/media/web-app-advanced.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app-advanced.gif
--------------------------------------------------------------------------------
/media/web-app-download.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app-download.gif
--------------------------------------------------------------------------------
/media/web-app-notebooks.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app-notebooks.gif
--------------------------------------------------------------------------------
/media/web-app-online.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app-online.png
--------------------------------------------------------------------------------
/media/web-app-predictions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app-predictions.png
--------------------------------------------------------------------------------
/media/web-app-xgboost.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app-xgboost.gif
--------------------------------------------------------------------------------
/media/web-app.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/web-app.gif
--------------------------------------------------------------------------------
/media/what_is_supervised.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljar/automl-app/047a6903d3276b85643af0b7e69a0b594898ea3d/media/what_is_supervised.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | mljar-supervised
2 | mercury
3 |
--------------------------------------------------------------------------------
/train-automl-advanced.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "9aab5e1e",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import os\n",
11 | "import shutil\n",
12 | "import pandas as pd\n",
13 | "import mercury as mr\n",
14 | "from supervised.automl import AutoML "
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 2,
20 | "id": "5b576b07",
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "import warnings\n",
25 | "warnings.filterwarnings(\"ignore\")"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 3,
31 | "id": "6313fc0d",
32 | "metadata": {},
33 | "outputs": [
34 | {
35 | "data": {
36 | "application/mercury+json": "{\n \"widget\": \"App\",\n \"title\": \"Train AutoML (advanced) \\ud83e\\udd13\",\n \"description\": \"Train ML pipeline with MLJAR AutoML with more params\",\n \"show_code\": false,\n \"show_prompt\": false,\n \"output\": \"app\",\n \"schedule\": \"\",\n \"notify\": \"{}\",\n \"continuous_update\": true,\n \"static_notebook\": false,\n \"show_sidebar\": true,\n \"full_screen\": true,\n \"allow_download\": true,\n \"stop_on_error\": false,\n \"model_id\": \"mercury-app\",\n \"code_uid\": \"App.0.40.25.1-randb32964f3\"\n}",
37 | "text/html": [
38 | "Mercury Application
This output won't appear in the web app."
39 | ],
40 | "text/plain": [
41 | "mercury.App"
42 | ]
43 | },
44 | "metadata": {},
45 | "output_type": "display_data"
46 | }
47 | ],
48 | "source": [
49 | "app = mr.App(title=\"Train AutoML (advanced) 🤓\", \n",
50 | " description=\"Train ML pipeline with MLJAR AutoML with more params\")"
51 | ]
52 | },
53 | {
54 | "cell_type": "markdown",
55 | "id": "6d62fe00",
56 | "metadata": {},
57 | "source": [
58 | "# Train Machine Learning Pipeline with MLJAR AutoML\n",
59 | "\n",
60 | "You can control AutoML behavior with more parameters. This notebook is running autoML in the `Compete` mode. \n",
61 | "\n",
62 | "You can choose:\n",
63 | "- feature preprocessing parameters: golden features and features selection\n",
64 | "- select algorithms, stack, and ensemble them,\n",
65 | "- set cross-validation strategy (number of folds, stratify and shuffle),\n",
66 | "- choose evaluation metric.\n",
67 | "\n",
68 | "### Steps\n",
69 | "1. Upload CSV file with data. Data should have column names in the first line.\n",
70 | "2. Select input features and target column.\n",
71 | "3. Select AutoML training mode, algorithms, and training time limit.\n",
72 | "4. Directory with all ML models will be zipped and available to download."
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 4,
78 | "id": "aafac626",
79 | "metadata": {},
80 | "outputs": [
81 | {
82 | "data": {
83 | "application/mercury+json": "{\n \"widget\": \"File\",\n \"max_file_size\": \"1MB\",\n \"label\": \"Upload CSV with training data\",\n \"model_id\": \"6594fd64518f4a9b974e68aaec3702fc\",\n \"code_uid\": \"File.0.40.18.1-rand943e01dd\",\n \"disabled\": false,\n \"hidden\": false\n}",
84 | "application/vnd.jupyter.widget-view+json": {
85 | "model_id": "6594fd64518f4a9b974e68aaec3702fc",
86 | "version_major": 2,
87 | "version_minor": 0
88 | },
89 | "text/plain": [
90 | "mercury.File"
91 | ]
92 | },
93 | "metadata": {},
94 | "output_type": "display_data"
95 | }
96 | ],
97 | "source": [
98 | "data_file = mr.File(label=\"Upload CSV with training data\", max_file_size=\"1MB\")"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": 5,
104 | "id": "cb3cfa8c",
105 | "metadata": {},
106 | "outputs": [],
107 | "source": [
108 | "if data_file.filepath is None:\n",
109 | " mr.Stop()"
110 | ]
111 | },
112 | {
113 | "cell_type": "code",
114 | "execution_count": null,
115 | "id": "02c8b639",
116 | "metadata": {},
117 | "outputs": [],
118 | "source": [
119 | "df = pd.read_csv(data_file.filepath)"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": null,
125 | "id": "7557b68a",
126 | "metadata": {},
127 | "outputs": [],
128 | "source": [
129 | "mr.Markdown(\"### Training data\")"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": null,
135 | "id": "83921208",
136 | "metadata": {},
137 | "outputs": [],
138 | "source": [
139 | "df"
140 | ]
141 | },
142 | {
143 | "cell_type": "code",
144 | "execution_count": null,
145 | "id": "44fbf6e2",
146 | "metadata": {},
147 | "outputs": [],
148 | "source": [
149 | "x_columns = mr.MultiSelect(label=\"Input features\", value=list(df.columns)[:-1], \n",
150 | " choices=list(df.columns))"
151 | ]
152 | },
153 | {
154 | "cell_type": "code",
155 | "execution_count": null,
156 | "id": "81d64072",
157 | "metadata": {},
158 | "outputs": [],
159 | "source": [
160 | "y_column = mr.Select(label=\"Target\", value=list(df.columns)[-1], choices=list(df.columns))"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": null,
166 | "id": "465f07df",
167 | "metadata": {},
168 | "outputs": [],
169 | "source": [
170 | "if x_columns.value is None or len(x_columns.value) == 0 or y_column.value is None:\n",
171 | " print(\"Please select input features and target column\")\n",
172 | " mr.Stop()"
173 | ]
174 | },
175 | {
176 | "cell_type": "code",
177 | "execution_count": null,
178 | "id": "c91f5ef3",
179 | "metadata": {},
180 | "outputs": [],
181 | "source": [
182 | "_ = mr.Note(\"#### Prepare data\")"
183 | ]
184 | },
185 | {
186 | "cell_type": "code",
187 | "execution_count": null,
188 | "id": "5adbefad",
189 | "metadata": {},
190 | "outputs": [],
191 | "source": [
192 | "golden_features = mr.Checkbox(label=\"Construct Golden Features\")"
193 | ]
194 | },
195 | {
196 | "cell_type": "code",
197 | "execution_count": null,
198 | "id": "c829fd4c",
199 | "metadata": {},
200 | "outputs": [],
201 | "source": [
202 | "features_selection = mr.Checkbox(label=\"Features Selection\")"
203 | ]
204 | },
205 | {
206 | "cell_type": "code",
207 | "execution_count": null,
208 | "id": "6e4cc96d",
209 | "metadata": {},
210 | "outputs": [],
211 | "source": [
212 | "_ = mr.Note(\"#### Algorithms\")"
213 | ]
214 | },
215 | {
216 | "cell_type": "code",
217 | "execution_count": null,
218 | "id": "4ad21129",
219 | "metadata": {},
220 | "outputs": [],
221 | "source": [
222 | "algos = [\"Decision Tree\", \"Linear\", \"Random Forest\", \"Extra Trees\", \"LightGBM\", \n",
223 | " \"Xgboost\", \"CatBoost\", \"Neural Network\", \"Nearest Neighbors\"]\n"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": null,
229 | "id": "e957c5a2",
230 | "metadata": {},
231 | "outputs": [],
232 | "source": [
233 | "algorithms = mr.MultiSelect(label=\"Algorithms\", value=algos, choices=algos)"
234 | ]
235 | },
236 | {
237 | "cell_type": "code",
238 | "execution_count": null,
239 | "id": "b85b4124",
240 | "metadata": {},
241 | "outputs": [],
242 | "source": []
243 | },
244 | {
245 | "cell_type": "code",
246 | "execution_count": null,
247 | "id": "9cd4a21b",
248 | "metadata": {},
249 | "outputs": [],
250 | "source": []
251 | },
252 | {
253 | "cell_type": "code",
254 | "execution_count": null,
255 | "id": "78506f25",
256 | "metadata": {},
257 | "outputs": [],
258 | "source": [
259 | "stack_models = mr.Checkbox(label=\"Stack Models\")"
260 | ]
261 | },
262 | {
263 | "cell_type": "code",
264 | "execution_count": null,
265 | "id": "5bd6c864",
266 | "metadata": {},
267 | "outputs": [],
268 | "source": [
269 | "train_ensemble = mr.Checkbox(label=\"Train Ensemble\")"
270 | ]
271 | },
272 | {
273 | "cell_type": "code",
274 | "execution_count": null,
275 | "id": "052df3f7",
276 | "metadata": {},
277 | "outputs": [],
278 | "source": []
279 | },
280 | {
281 | "cell_type": "code",
282 | "execution_count": null,
283 | "id": "532ff2e5",
284 | "metadata": {},
285 | "outputs": [],
286 | "source": [
287 | "_ = mr.Note(\"#### Validation\")"
288 | ]
289 | },
290 | {
291 | "cell_type": "code",
292 | "execution_count": null,
293 | "id": "d1d8d9ab",
294 | "metadata": {},
295 | "outputs": [],
296 | "source": [
297 | "folds = mr.Numeric(label=\"Number of Folds\", value=5, min=2, max=100)"
298 | ]
299 | },
300 | {
301 | "cell_type": "code",
302 | "execution_count": null,
303 | "id": "9f103cf9",
304 | "metadata": {},
305 | "outputs": [],
306 | "source": [
307 | "shuffle = mr.Checkbox(label=\"Suffle Samples\")"
308 | ]
309 | },
310 | {
311 | "cell_type": "code",
312 | "execution_count": null,
313 | "id": "2d234a75",
314 | "metadata": {},
315 | "outputs": [],
316 | "source": [
317 | "stratify = mr.Checkbox(label=\"Stratify Samples\")"
318 | ]
319 | },
320 | {
321 | "cell_type": "code",
322 | "execution_count": null,
323 | "id": "21de4493",
324 | "metadata": {},
325 | "outputs": [],
326 | "source": [
327 | "eval_metric = mr.Select(label=\"Evaluation Metric\", value=\"auto\", \n",
328 | " choices=[\"auto\", \"logloss\", \"f1\", \"average_precision\",\n",
329 | " \"accuracy\", \"rmse\", \"mse\", \"mae\", \"r2\",\n",
330 | " \"mape\", \"spearman\", \"pearson\"])"
331 | ]
332 | },
333 | {
334 | "cell_type": "code",
335 | "execution_count": null,
336 | "id": "bc779217",
337 | "metadata": {},
338 | "outputs": [],
339 | "source": [
340 | "time_limit = mr.Select(label=\"Time Limit (seconds)\", value=\"60\", choices=[\"60\", \"120\", \"240\", \"300\"])"
341 | ]
342 | },
343 | {
344 | "cell_type": "code",
345 | "execution_count": null,
346 | "id": "b3e6ba6c",
347 | "metadata": {},
348 | "outputs": [],
349 | "source": [
350 | "start_training = mr.Button(label=\"Start Training\", style=\"success\")"
351 | ]
352 | },
353 | {
354 | "cell_type": "code",
355 | "execution_count": null,
356 | "id": "a735b3a7",
357 | "metadata": {},
358 | "outputs": [],
359 | "source": [
360 | "output_dir = mr.OutputDir()"
361 | ]
362 | },
363 | {
364 | "cell_type": "code",
365 | "execution_count": null,
366 | "id": "022b6eec",
367 | "metadata": {},
368 | "outputs": [],
369 | "source": [
370 | "automl = AutoML(mode=\"Compete\", \n",
371 | " algorithms=algorithms.value,\n",
372 | " train_ensemble=train_ensemble.value,\n",
373 | " stack_models=stack_models.value,\n",
374 | " golden_features=golden_features.value,\n",
375 | " features_selection=features_selection.value,\n",
376 | " validation_strategy={\n",
377 | " \"validation_type\": \"kfold\",\n",
378 | " \"k_folds\": int(folds.value),\n",
379 | " \"shuffle\": shuffle.value,\n",
380 | " \"stratify\": stratify.value,\n",
381 | " \"random_seed\": 123\n",
382 | " },\n",
383 | " eval_metric=eval_metric.value,\n",
384 | " total_time_limit=int(time_limit.value))"
385 | ]
386 | },
387 | {
388 | "cell_type": "code",
389 | "execution_count": null,
390 | "id": "f07b6a70",
391 | "metadata": {},
392 | "outputs": [],
393 | "source": []
394 | },
395 | {
396 | "cell_type": "code",
397 | "execution_count": null,
398 | "id": "79246d1b",
399 | "metadata": {},
400 | "outputs": [],
401 | "source": [
402 | "if start_training.clicked:\n",
403 | " mr.Markdown(\"### AutoML training logs\")\n",
404 | " automl.fit(df[x_columns.value], df[y_column.value])\n",
405 | " \n",
406 | " output_filename = os.path.join(output_dir.path, automl._results_path)\n",
407 | " shutil.make_archive(output_filename, 'zip', automl._results_path)"
408 | ]
409 | },
410 | {
411 | "cell_type": "code",
412 | "execution_count": null,
413 | "id": "30eefe3c",
414 | "metadata": {},
415 | "outputs": [],
416 | "source": [
417 | "if automl._best_model is None:\n",
418 | " mr.Stop()"
419 | ]
420 | },
421 | {
422 | "cell_type": "code",
423 | "execution_count": null,
424 | "id": "8fcfbc1a",
425 | "metadata": {},
426 | "outputs": [],
427 | "source": [
428 | "automl.report()"
429 | ]
430 | },
431 | {
432 | "cell_type": "code",
433 | "execution_count": null,
434 | "id": "202bccd9",
435 | "metadata": {},
436 | "outputs": [],
437 | "source": []
438 | }
439 | ],
440 | "metadata": {
441 | "kernelspec": {
442 | "display_name": "appenv",
443 | "language": "python",
444 | "name": "appenv"
445 | },
446 | "language_info": {
447 | "codemirror_mode": {
448 | "name": "ipython",
449 | "version": 3
450 | },
451 | "file_extension": ".py",
452 | "mimetype": "text/x-python",
453 | "name": "python",
454 | "nbconvert_exporter": "python",
455 | "pygments_lexer": "ipython3",
456 | "version": "3.8.10"
457 | }
458 | },
459 | "nbformat": 4,
460 | "nbformat_minor": 5
461 | }
462 |
--------------------------------------------------------------------------------
/train-automl.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "9aab5e1e",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import os\n",
11 | "import shutil\n",
12 | "import pandas as pd\n",
13 | "import mercury as mr\n",
14 | "from supervised.automl import AutoML "
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 2,
20 | "id": "d7009f5f",
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "import warnings\n",
25 | "warnings.filterwarnings(\"ignore\")"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 3,
31 | "id": "6313fc0d",
32 | "metadata": {},
33 | "outputs": [
34 | {
35 | "data": {
36 | "application/mercury+json": "{\n \"widget\": \"App\",\n \"title\": \"Train AutoML \\ud83e\\uddd1\\u200d\\ud83d\\udcbb\",\n \"description\": \"Train ML pipeline with MLJAR AutoML\",\n \"show_code\": false,\n \"show_prompt\": false,\n \"output\": \"app\",\n \"schedule\": \"\",\n \"notify\": \"{}\",\n \"continuous_update\": true,\n \"static_notebook\": false,\n \"show_sidebar\": true,\n \"full_screen\": true,\n \"allow_download\": true,\n \"stop_on_error\": false,\n \"model_id\": \"mercury-app\",\n \"code_uid\": \"App.0.40.25.1-randfee23f4b\"\n}",
37 | "text/html": [
38 | "Mercury Application
This output won't appear in the web app."
39 | ],
40 | "text/plain": [
41 | "mercury.App"
42 | ]
43 | },
44 | "metadata": {},
45 | "output_type": "display_data"
46 | }
47 | ],
48 | "source": [
49 | "app = mr.App(title=\"Train AutoML 🧑💻\", description=\"Train ML pipeline with MLJAR AutoML\")"
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "id": "6d62fe00",
55 | "metadata": {},
56 | "source": [
57 | "# Train Machine Learning Pipeline with MLJAR AutoML\n",
58 | "Please follow the steps:\n",
59 | "1. Upload CSV file with data. Data should heave column names in the first line.\n",
60 | "2. Select input features and target column.\n",
61 | "3. Select AutoML training mode, algorithms and training time limit.\n",
62 | "4. Directory with all ML models will be zipped and available to download."
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 4,
68 | "id": "aafac626",
69 | "metadata": {},
70 | "outputs": [
71 | {
72 | "data": {
73 | "application/mercury+json": "{\n \"widget\": \"File\",\n \"max_file_size\": \"1MB\",\n \"label\": \"Upload CSV with training data\",\n \"model_id\": \"0d0815292051454cb67184fa96a7d7d5\",\n \"code_uid\": \"File.0.40.18.1-rand74e7cef0\",\n \"disabled\": false,\n \"hidden\": false\n}",
74 | "application/vnd.jupyter.widget-view+json": {
75 | "model_id": "0d0815292051454cb67184fa96a7d7d5",
76 | "version_major": 2,
77 | "version_minor": 0
78 | },
79 | "text/plain": [
80 | "mercury.File"
81 | ]
82 | },
83 | "metadata": {},
84 | "output_type": "display_data"
85 | }
86 | ],
87 | "source": [
88 | "data_file = mr.File(label=\"Upload CSV with training data\", max_file_size=\"1MB\")"
89 | ]
90 | },
91 | {
92 | "cell_type": "code",
93 | "execution_count": 5,
94 | "id": "cb3cfa8c",
95 | "metadata": {},
96 | "outputs": [],
97 | "source": [
98 | "if data_file.filepath is None:\n",
99 | " mr.Stop()"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": null,
105 | "id": "02c8b639",
106 | "metadata": {},
107 | "outputs": [],
108 | "source": [
109 | "df = pd.read_csv(data_file.filepath)"
110 | ]
111 | },
112 | {
113 | "cell_type": "code",
114 | "execution_count": null,
115 | "id": "7557b68a",
116 | "metadata": {},
117 | "outputs": [],
118 | "source": [
119 | "mr.Markdown(\"### Training data\")"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": null,
125 | "id": "83921208",
126 | "metadata": {},
127 | "outputs": [],
128 | "source": [
129 | "df"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": null,
135 | "id": "44fbf6e2",
136 | "metadata": {},
137 | "outputs": [],
138 | "source": [
139 | "x_columns = mr.MultiSelect(label=\"Input features\", value=list(df.columns)[:-1], \n",
140 | " choices=list(df.columns))"
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": null,
146 | "id": "81d64072",
147 | "metadata": {},
148 | "outputs": [],
149 | "source": [
150 | "y_column = mr.Select(label=\"Target\", value=list(df.columns)[-1], choices=list(df.columns))"
151 | ]
152 | },
153 | {
154 | "cell_type": "code",
155 | "execution_count": null,
156 | "id": "465f07df",
157 | "metadata": {},
158 | "outputs": [],
159 | "source": [
160 | "if x_columns.value is None or len(x_columns.value) == 0 or y_column.value is None:\n",
161 | " print(\"Please select input features and target column\")\n",
162 | " mr.Stop()"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": null,
168 | "id": "c91f5ef3",
169 | "metadata": {},
170 | "outputs": [],
171 | "source": []
172 | },
173 | {
174 | "cell_type": "code",
175 | "execution_count": null,
176 | "id": "6e4cc96d",
177 | "metadata": {},
178 | "outputs": [],
179 | "source": [
180 | "mode = mr.Select(label=\"AutoML Mode\", value=\"Explain\", choices=[\"Explain\", \"Perform\", \"Compete\"])"
181 | ]
182 | },
183 | {
184 | "cell_type": "code",
185 | "execution_count": null,
186 | "id": "4ad21129",
187 | "metadata": {},
188 | "outputs": [],
189 | "source": [
190 | "algos = {\n",
191 | " \"Explain\": [\"Baseline\", \"Linear\", \"Decision Tree\", \"Random Forest\", \"Xgboost\", \"Neural Network\"],\n",
192 | " \"Perform\": [\"Linear\", \"Random Forest\", \"LightGBM\", \"Xgboost\", \"CatBoost\", \"Neural Network\"],\n",
193 | " \"Compete\": [\"Decision Tree\", \"Random Forest\", \"Extra Trees\", \"LightGBM\", \n",
194 | " \"Xgboost\", \"CatBoost\", \"Neural Network\", \"Nearest Neighbors\"]\n",
195 | "}"
196 | ]
197 | },
198 | {
199 | "cell_type": "code",
200 | "execution_count": null,
201 | "id": "e957c5a2",
202 | "metadata": {},
203 | "outputs": [],
204 | "source": [
205 | "algorithms = mr.MultiSelect(label=\"Algorithms\", value=algos[mode.value], choices=algos[mode.value])"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": null,
211 | "id": "b85b4124",
212 | "metadata": {},
213 | "outputs": [],
214 | "source": [
215 | "time_limit = mr.Select(label=\"Time limit (seconds)\", value=\"60\", choices=[\"60\", \"120\", \"240\", \"300\"])"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": null,
221 | "id": "b3e6ba6c",
222 | "metadata": {},
223 | "outputs": [],
224 | "source": [
225 | "start_training = mr.Button(label=\"Start training\", style=\"success\")"
226 | ]
227 | },
228 | {
229 | "cell_type": "code",
230 | "execution_count": null,
231 | "id": "a735b3a7",
232 | "metadata": {},
233 | "outputs": [],
234 | "source": [
235 | "output_dir = mr.OutputDir()"
236 | ]
237 | },
238 | {
239 | "cell_type": "code",
240 | "execution_count": null,
241 | "id": "022b6eec",
242 | "metadata": {},
243 | "outputs": [],
244 | "source": [
245 | "automl = AutoML(mode=mode.value, algorithms=algorithms.value,\n",
246 | " total_time_limit=int(time_limit.value))"
247 | ]
248 | },
249 | {
250 | "cell_type": "code",
251 | "execution_count": null,
252 | "id": "79246d1b",
253 | "metadata": {},
254 | "outputs": [],
255 | "source": [
256 | "if start_training.clicked:\n",
257 | " mr.Markdown(\"### AutoML training logs\")\n",
258 | " automl.fit(df[x_columns.value], df[y_column.value])\n",
259 | " \n",
260 | " output_filename = os.path.join(output_dir.path, automl._results_path)\n",
261 | " shutil.make_archive(output_filename, 'zip', automl._results_path)"
262 | ]
263 | },
264 | {
265 | "cell_type": "code",
266 | "execution_count": null,
267 | "id": "30eefe3c",
268 | "metadata": {},
269 | "outputs": [],
270 | "source": [
271 | "if automl._best_model is None:\n",
272 | " mr.Stop()"
273 | ]
274 | },
275 | {
276 | "cell_type": "code",
277 | "execution_count": null,
278 | "id": "8fcfbc1a",
279 | "metadata": {},
280 | "outputs": [],
281 | "source": [
282 | "automl.report()"
283 | ]
284 | },
285 | {
286 | "cell_type": "code",
287 | "execution_count": null,
288 | "id": "202bccd9",
289 | "metadata": {},
290 | "outputs": [],
291 | "source": []
292 | }
293 | ],
294 | "metadata": {
295 | "kernelspec": {
296 | "display_name": "appenv",
297 | "language": "python",
298 | "name": "appenv"
299 | },
300 | "language_info": {
301 | "codemirror_mode": {
302 | "name": "ipython",
303 | "version": 3
304 | },
305 | "file_extension": ".py",
306 | "mimetype": "text/x-python",
307 | "name": "python",
308 | "nbconvert_exporter": "python",
309 | "pygments_lexer": "ipython3",
310 | "version": "3.8.10"
311 | }
312 | },
313 | "nbformat": 4,
314 | "nbformat_minor": 5
315 | }
316 |
--------------------------------------------------------------------------------