setActiveLabel(idx)}
22 | />
23 | );
24 | }
25 |
26 | return (
27 |
28 |
29 |
30 | {colors.map(renderColorButton)}
31 |
32 |
33 |
34 | );
35 | }
36 |
37 | export default connectStyle(ChooseLabel);
38 |
--------------------------------------------------------------------------------
/demos/containers/OneClassSVCConfig.jsx:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 |
3 | // import {findHyperParameters} from '../actions/SVC';
4 | import { getHyperParameters, KERNEL } from '../util/fields';
5 | import TableConfigField from '../components/TableConfigField';
6 | import { useFormContext, useWatch } from 'react-hook-form';
7 |
8 | export default function OneClassSVCConfig() {
9 | const { register } = useFormContext();
10 | const values = useWatch();
11 |
12 | return (
13 |
36 | );
37 | }
38 |
--------------------------------------------------------------------------------
/demos/containers/SVCCanvas.jsx:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 |
3 | import { getSVCCanvasData } from '../selectors/index';
4 | import Canvas from '../components/Canvas';
5 | import { useWatch } from 'react-hook-form';
6 | import { connect } from 'react-redux';
7 | import connectStyle from './connectStyle';
8 |
9 | function SVCCanvas(props) {
10 | const { state, actions, currentBreakpoint, ...otherProps } = props;
11 | const config = useWatch();
12 | const canvasProps = getSVCCanvasData(state, config, currentBreakpoint);
13 | return (
14 |
20 | );
21 | }
22 |
23 | export default connectStyle(SVCCanvas);
24 |
--------------------------------------------------------------------------------
/demos/containers/SVCConfig.jsx:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 |
3 | import { getHyperParameters, KERNEL } from '../util/fields';
4 | import TableConfigField from '../components/TableConfigField';
5 | import { useFormContext, useWatch } from 'react-hook-form';
6 |
7 | export default function SVCConfig() {
8 | const { register } = useFormContext();
9 | const values = useWatch();
10 |
11 | return (
12 |
40 | );
41 | }
42 |
--------------------------------------------------------------------------------
/demos/containers/SVRCanvas.jsx:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 | import { getSVRCanvasData } from '../selectors/index';
3 | import Canvas from '../components/Canvas';
4 | import { useWatch } from 'react-hook-form';
5 |
6 | export default function SVRCanvas(props) {
7 | const { state, actions, ...otherProps } = props;
8 | const config = useWatch();
9 |
10 | const canvasProps = getSVRCanvasData(state, config);
11 | return (
12 |
18 | );
19 | }
20 |
--------------------------------------------------------------------------------
/demos/containers/SVRConfig.jsx:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 |
3 | import { KERNEL, getHyperParameters } from '../util/fields';
4 | import TableConfigField from '../components/TableConfigField';
5 | import { useFormContext, useWatch } from 'react-hook-form';
6 |
7 | export default function SVRConfig() {
8 | const { register } = useFormContext();
9 | const values = useWatch();
10 |
11 | return (
12 |
40 | );
41 | }
42 |
--------------------------------------------------------------------------------
/demos/containers/connectStyle.js:
--------------------------------------------------------------------------------
1 | import { connect } from 'react-redux';
2 |
3 | const mapStateToProps = (state) => state.style;
4 |
5 | export default connect(mapStateToProps);
6 |
--------------------------------------------------------------------------------
/demos/hooks/useCanvasPoints.js:
--------------------------------------------------------------------------------
1 | import { useCallback, useMemo, useReducer } from 'react';
2 | import {
3 | ADD_POINT,
4 | LABEL_CHANGED,
5 | CLEAR_POINTS,
6 | SET_ACTIVE_LABEL,
7 | UNDO_POINTS,
8 | REDO_POINTS,
9 | } from '../actions/types';
10 |
11 | const initialState = {
12 | history: {
13 | before: [],
14 | after: [],
15 | },
16 | activeLabel: 0,
17 | };
18 |
19 | function canvasPointsReducer(state = initialState, action) {
20 | switch (action.type) {
21 | case ADD_POINT: {
22 | const newBefore = [
23 | ...state.history.before,
24 | {
25 | points: state.points,
26 | labels: state.labels,
27 | },
28 | ];
29 | const newPoint = [action.payload.point.x, action.payload.point.y];
30 | return {
31 | ...state,
32 | points: state.points.concat([newPoint]),
33 | labels: [...state.labels, state.activeLabel],
34 | history: {
35 | after: [],
36 | before: newBefore,
37 | },
38 | };
39 | }
40 | case LABEL_CHANGED: {
41 | return {
42 | ...state,
43 | activeLabel: action.payload,
44 | };
45 | }
46 | case CLEAR_POINTS: {
47 | return {
48 | ...state,
49 | points: [],
50 | labels: [],
51 | };
52 | }
53 | case SET_ACTIVE_LABEL: {
54 | return {
55 | ...state,
56 | activeLabel: action.payload,
57 | };
58 | }
59 | case UNDO_POINTS: {
60 | const before = state.history.before.slice();
61 | const newData = before.pop();
62 | const newAfterItem = {
63 | points: state.points.slice(),
64 | labels: state.labels.slice(),
65 | };
66 | return {
67 | ...state,
68 | history: {
69 | before,
70 | after: [...state.history.after, newAfterItem],
71 | },
72 | points: newData.points,
73 | labels: newData.labels,
74 | };
75 | }
76 | case REDO_POINTS: {
77 | const after = state.history.after.slice();
78 | const newData = after.pop();
79 | const newBeforeItem = {
80 | points: state.points.slice(),
81 | labels: state.labels.slice(),
82 | };
83 | return {
84 | ...state,
85 | history: {
86 | after,
87 | before: [...state.history.before, newBeforeItem],
88 | },
89 | points: newData.points,
90 | labels: newData.labels,
91 | };
92 | }
93 | default:
94 | return state;
95 | }
96 | }
97 |
98 | export default function useCanvasPoints(points, labels, colors) {
99 | const [state, dispatch] = useReducer(canvasPointsReducer, {
100 | ...initialState,
101 | points,
102 | labels,
103 | colors,
104 | });
105 | const addPoint = useCallback((points) => {
106 | return dispatch({
107 | type: 'ADD_POINT',
108 | payload: points,
109 | });
110 | }, []);
111 |
112 | const clearPoints = useCallback(() => {
113 | dispatch({
114 | type: 'CLEAR_POINTS',
115 | });
116 | });
117 |
118 | const setActiveLabel = useCallback((value) => {
119 | if (value >= colors.length) {
120 | throw new Error('color out of range');
121 | }
122 | dispatch({
123 | type: SET_ACTIVE_LABEL,
124 | payload: value,
125 | });
126 | });
127 |
128 | const undoPoints = useCallback(() => {
129 | dispatch({
130 | type: UNDO_POINTS,
131 | });
132 | });
133 |
134 | const redoPoints = useCallback(() => {
135 | dispatch({
136 | type: REDO_POINTS,
137 | });
138 | });
139 |
140 | const actions = useMemo(() => {
141 | return {
142 | addPoint,
143 | clearPoints,
144 | setActiveLabel,
145 | undoPoints,
146 | redoPoints,
147 | };
148 | }, [addPoint, clearPoints]);
149 | return [state, actions];
150 | }
151 |
--------------------------------------------------------------------------------
/demos/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
9 |
libsvm demos
10 |
11 |
12 |
13 |
14 |
15 | Sorry but this page requires javascript to be enabled to work!
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/demos/libsvm.wasm:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/mljs/libsvm/a76132e70a6deec389cbae79758387abc4c5b658/demos/libsvm.wasm
--------------------------------------------------------------------------------
/demos/public/manifest.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "libsvm-js",
3 | "short_name": "libsvm-j-",
4 | "start_url": "https://mljs.github.io/libsvm/",
5 | "display": "standalone",
6 | "background_color": "#fff",
7 | "description": "A javascript library to do Support Vector Machines",
8 | "icons": []
9 | }
--------------------------------------------------------------------------------
/demos/reducers/reducers.js:
--------------------------------------------------------------------------------
1 | import { combineReducers } from 'redux';
2 |
3 | import styleReducer from './styleReducer';
4 |
5 | export default combineReducers({
6 | style: styleReducer,
7 | });
8 |
--------------------------------------------------------------------------------
/demos/reducers/styleReducer.js:
--------------------------------------------------------------------------------
1 | import { STYLE_BREAKPOINT_UPDATE } from '../actions/types';
2 |
3 | const defaultState = {
4 | currentBreakpoint: 'md'
5 | };
6 |
7 | export default function styleReducer(state = defaultState, action) {
8 | switch (action.type) {
9 | case STYLE_BREAKPOINT_UPDATE: {
10 | if (action.payload === state.currentBreakpoint) {
11 | return state;
12 | } else {
13 | return { ...state, currentBreakpoint: action.payload };
14 | }
15 | }
16 | default: {
17 | return state;
18 | }
19 | }
20 | }
21 |
--------------------------------------------------------------------------------
/demos/selectors/index.js:
--------------------------------------------------------------------------------
1 | import { CANVAS_RESOLUTION, CANVAS_SCALE_FACTOR } from '../constants';
2 | import { getHyperParameters } from '../util/fields';
3 |
4 | export function getSVCCanvasData(SVCPoints, config, currentBreakpoint = 'md') {
5 | let startTime, endTime;
6 | const canvasSize = CANVAS_RESOLUTION[currentBreakpoint];
7 | let points = [];
8 | let background = [];
9 | let SVs = [];
10 | const line = [];
11 | if (config) {
12 | startTime = performance.now();
13 | points = SVCPoints.points.map((p, idx) => {
14 | return {
15 | label: SVCPoints.labels[idx],
16 | x: p[0] * canvasSize,
17 | y: p[1] * canvasSize,
18 | };
19 | });
20 | if (points.length) {
21 | const realConfig = Object.assign({}, config);
22 | const parameters = getHyperParameters(config.type, config.kernel);
23 | for (let param of parameters) {
24 | realConfig[param.name] = param.normalize(config[param.name]);
25 | }
26 | const svm = new SVM({ ...realConfig, quiet: true });
27 | svm.train(SVCPoints.points, SVCPoints.labels);
28 |
29 | SVs = svm.getSVIndices();
30 |
31 | for (let i = 0; i < canvasSize; i++) {
32 | for (let j = 0; j < canvasSize; j++) {
33 | let val = svm.predictOne([j / canvasSize, i / canvasSize]);
34 | if (config.type === SVM.SVM_TYPES.ONE_CLASS) {
35 | if (val < 0) {
36 | val = 1;
37 | } else {
38 | val = 0;
39 | }
40 | }
41 | background.push(val);
42 | }
43 | }
44 | }
45 | endTime = performance.now();
46 | }
47 |
48 | return {
49 | width: canvasSize,
50 | height: canvasSize,
51 | background,
52 | points,
53 | scale: CANVAS_SCALE_FACTOR[currentBreakpoint],
54 | info: startTime ? `${(endTime - startTime).toFixed(1)} ms` : '',
55 | SVs,
56 | line,
57 | };
58 | }
59 |
60 | export function getSVRCanvasData(
61 | canvasPoints,
62 | config,
63 | currentBreakpoint = 'md',
64 | ) {
65 | let startTime, endTime;
66 | const canvasSize = CANVAS_RESOLUTION[currentBreakpoint];
67 | let points = [];
68 | let background = [];
69 | let line = [];
70 | let SVs = [];
71 | if (config) {
72 | const realConfig = Object.assign({}, config);
73 | for (let param of getHyperParameters(config.type, config.kernel)) {
74 | realConfig[param.name] = param.normalize(config[param.name]);
75 | }
76 | startTime = performance.now();
77 | points = canvasPoints.points.map((p) => {
78 | return {
79 | label: 0,
80 | x: p[0] * canvasSize,
81 | y: p[1] * canvasSize,
82 | };
83 | });
84 | if (points.length) {
85 | const svm = new SVM({ ...realConfig, quiet: true });
86 | svm.train(
87 | canvasPoints.points.map((p) => [p[0]]),
88 | canvasPoints.points.map((p) => p[1]),
89 | );
90 | SVs = svm.getSVIndices();
91 |
92 | line = svm.predict(
93 | Array.from({ length: canvasSize }).map((v, i) => [i / canvasSize]),
94 | );
95 | }
96 | }
97 |
98 | endTime = performance.now();
99 | return {
100 | width: canvasSize,
101 | height: canvasSize,
102 | background,
103 | points,
104 | scale: CANVAS_SCALE_FACTOR[currentBreakpoint],
105 | info: startTime ? `${(endTime - startTime).toFixed(1)} ms` : '',
106 | SVs,
107 | line,
108 | };
109 | }
110 |
--------------------------------------------------------------------------------
/demos/store.js:
--------------------------------------------------------------------------------
1 | import { createStore } from 'redux';
2 |
3 | import reducers from './reducers/reducers';
4 |
5 | export default createStore(
6 | reducers,
7 | window.__REDUX_DEVTOOLS_EXTENSION__ && window.__REDUX_DEVTOOLS_EXTENSION__(),
8 | );
9 |
--------------------------------------------------------------------------------
/demos/style.css:
--------------------------------------------------------------------------------
1 | body:before {
2 | content: "xs";
3 | display: none;
4 | }
5 |
6 | @media (min-width: 576px) {
7 | body:before {
8 | content: "sm";
9 | display: none;
10 | }
11 | }
12 |
13 | @media (min-width: 768px) {
14 | body:before {
15 | content: "md";
16 | display: none;
17 | }
18 | }
19 |
20 | @media (min-width: 992px) {
21 | body:before {
22 | content: "lg";
23 | display: none;
24 | }
25 | }
26 |
27 | @media (min-width: 1200px) {
28 | body:before {
29 | content: "xl";
30 | display: none;
31 | }
32 | }
33 |
34 | .choose-label-element {
35 | flex: 1;
36 | height: 25px;
37 | }
38 |
39 | .choose-label-element-active {
40 | background-image: url();
41 | background-repeat: no-repeat;
42 | background-position: center;
43 | }
44 |
45 | .choose-label-container {
46 | display: flex;
47 | justify-content: center;
48 | }
49 |
50 | .flex-align {
51 | display: flex;
52 | align-items: center;
53 | justify-content: center;
54 | }
55 |
56 | .svm-config-table {
57 | table-layout: fixed;
58 | width: 100%;
59 | }
60 |
61 | .svm-config-table td {
62 | padding: 5px 10px 5px 10px;
63 | }
64 |
65 | .svm-config-table td:nth-child(1) {
66 | width: 175px;
67 | }
68 |
69 | .svm-config-table td:nth-child(2) {
70 | width: 100%;
71 | }
72 |
73 | .svm-config-table td input[type="range"] {
74 | width: 100%;
75 | height: 40px;
76 | }
77 |
--------------------------------------------------------------------------------
/demos/util.js:
--------------------------------------------------------------------------------
1 | import chroma from 'chroma-js';
2 |
3 | export function getDistinctColors(numColors) {
4 | var colors = new Array(numColors);
5 | var j = 0;
6 | for (var i = 0; i < 360; i += 360 / numColors) {
7 | j++;
8 | var color = hsl2rgb(i, 100, 30 + j % 4 * 15);
9 | colors[j - 1] = [Math.round(color.r * 255), Math.round(color.g * 255), Math.round(color.b * 255)];
10 | }
11 | return colors.map((c) => chroma(c).hex()).map((c) => chroma(c).brighten().hex());
12 | }
13 |
14 |
15 | function hsl2rgb(h, s, l) {
16 | var m1, m2, hue, r, g, b;
17 | s /= 100;
18 | l /= 100;
19 |
20 | if (s === 0) {
21 | r = g = b = (l * 255);
22 | } else {
23 | if (l <= 0.5) {
24 | m2 = l * (s + 1);
25 | } else {
26 | m2 = l + s - l * s;
27 | }
28 |
29 | m1 = l * 2 - m2;
30 | hue = h / 360;
31 | r = hue2rgb(m1, m2, hue + 1 / 3);
32 | g = hue2rgb(m1, m2, hue);
33 | b = hue2rgb(m1, m2, hue - 1 / 3);
34 | }
35 | return { r: r, g: g, b: b };
36 | }
37 |
38 | function hue2rgb(p, q, t) {
39 | if (t < 0) {
40 | t += 1;
41 | }
42 | if (t > 1) {
43 | t -= 1;
44 | }
45 | if (t < 1 / 6) {
46 | return p + (q - p) * 6 * t;
47 | }
48 | if (t < 1 / 2) {
49 | return q;
50 | }
51 | if (t < 2 / 3) {
52 | return p + (q - p) * (2 / 3 - t) * 6;
53 | }
54 | return p;
55 | }
56 |
--------------------------------------------------------------------------------
/demos/util/fields.js:
--------------------------------------------------------------------------------
1 | import { identity, omitBy } from 'lodash-es';
2 |
3 | export const KERNEL = {
4 | id: 'HP_KERNEL',
5 | name: 'kernel',
6 | type: 'select',
7 | options: omitBy(
8 | SVM.KERNEL_TYPES,
9 | (val) => val === SVM.KERNEL_TYPES.PRECOMPUTED,
10 | ),
11 | };
12 |
13 | export const COST = {
14 | id: 'HP_COST',
15 | name: 'cost',
16 | type: 'range',
17 | min: -3,
18 | max: 3,
19 | normalize: pow10,
20 | format: (num) => num.toExponential(2),
21 | step: 0.2,
22 | gridSearch: true,
23 | };
24 |
25 | export const GAMMA = {
26 | id: 'HP_GAMMA',
27 | name: 'gamma',
28 | type: 'range',
29 | min: -3,
30 | max: 3,
31 | normalize: pow10,
32 | format: (num) => num.toExponential(2),
33 | step: 0.2,
34 | gridSearch: true,
35 | };
36 |
37 | export const NU = {
38 | id: 'HP_NU',
39 | name: 'nu',
40 | type: 'range',
41 | min: 0,
42 | max: 1,
43 | format: identity,
44 | normalize: toNumber,
45 | step: 0.05,
46 | gridSearch: true,
47 | };
48 |
49 | export const EPSILON = {
50 | id: 'HP_EPSILON',
51 | name: 'epsilon',
52 | type: 'range',
53 | min: -3,
54 | max: 0,
55 | format: (num) => num.toExponential(2),
56 | normalize: pow10,
57 | step: 0.1,
58 | gridSearch: true,
59 | };
60 |
61 | export const DEGREE = {
62 | id: 'HP_DEGREE',
63 | name: 'degree',
64 | type: 'number',
65 | normalize: toNumber,
66 | gridSearch: false,
67 | };
68 |
69 | export function getHyperParameters(type, kernel) {
70 | const fields = [];
71 | if (isNu(type)) {
72 | fields.push(NU);
73 | }
74 | if (isCost(type)) {
75 | fields.push(COST);
76 | }
77 | if (hasGamma(kernel)) {
78 | fields.push(GAMMA);
79 | }
80 |
81 | if (kernel === SVM.KERNEL_TYPES.POLYNOMIAL) {
82 | fields.push(DEGREE);
83 | }
84 |
85 | if (type === SVM.SVM_TYPES.EPSILON_SVR) {
86 | fields.push(EPSILON);
87 | }
88 | return fields;
89 | }
90 |
91 | function pow10(value) {
92 | return Math.pow(10, value);
93 | }
94 |
95 | function isNu(type) {
96 | return (
97 | type === SVM.SVM_TYPES.NU_SVC ||
98 | type === SVM.SVM_TYPES.NU_SVR ||
99 | type === SVM.SVM_TYPES.ONE_CLASS
100 | );
101 | }
102 |
103 | function isCost(type) {
104 | return type === SVM.SVM_TYPES.C_SVC || type === SVM.SVM_TYPES.EPSILON_SVR;
105 | }
106 |
107 | function hasGamma(kernel) {
108 | return (
109 | kernel === SVM.KERNEL_TYPES.RBF ||
110 | kernel === SVM.KERNEL_TYPES.SIGMOID ||
111 | kernel === SVM.KERNEL_TYPES.POLYNOMIAL
112 | );
113 | }
114 |
115 | // function isClassification(type) {
116 | // return type === SVM.SVM_TYPES.C_SVC || type === SVM.SVM_TYPES.ONE_CLASS || type === SVM.SVM_TYPES.NU_SVC;
117 | // }
118 | //
119 | // function isRegression(type) {
120 | // return type === SVM.SVM_TYPES.EPSILON_SVR || type === SVM.SVM_TYPES.NU_SVR;
121 | // }
122 |
123 | function toNumber(value) {
124 | return +value;
125 | }
126 |
--------------------------------------------------------------------------------
/demos/vite.config.mjs:
--------------------------------------------------------------------------------
1 | import reactRefresh from '@vitejs/plugin-react-refresh';
2 | import { defineConfig } from 'vite';
3 |
4 | export default defineConfig({
5 | plugins: [reactRefresh()],
6 | worker: {
7 | format: 'es',
8 | },
9 | });
10 |
--------------------------------------------------------------------------------
/examples/bodyfat.js:
--------------------------------------------------------------------------------
1 | import fs from 'node:fs';
2 | import path from 'node:path';
3 |
4 | import { loadSVM } from '../wasm.js';
5 | const SVM = await loadSVM();
6 | let data = fs.readFileSync(
7 | path.join(import.meta.dirname, './bodyfat_scale.txt'),
8 | 'utf-8',
9 | );
10 | data = data.split('\n').map((line) => line.split(' ').filter((el) => el));
11 | let labels = data.map((line) => +line.splice(0, 1)[0]);
12 | const features = data.map((line) => line.map((el) => +el.split(':')[1]));
13 |
14 | const svm = new SVM({
15 | type: SVM.SVM_TYPES.EPSILON_SVR,
16 | kernel: SVM.KERNEL_TYPES.RBF,
17 | epsilon: 0.001,
18 | quiet: false,
19 | probabilityEstimates: true,
20 | });
21 |
22 | svm.train(features, labels);
23 | console.log(svm.predictInterval(features, 0.99));
24 | fs.writeFileSync(
25 | path.join(import.meta.dirname, 'bodyfat.model'),
26 | svm.serializeModel(),
27 | );
28 |
29 | // svm.crossValidation(features, labels);
30 |
--------------------------------------------------------------------------------
/examples/bodyfat_scale.txt:
--------------------------------------------------------------------------------
1 | 1.0708 1:-0.482105 2:-0.966102 3:-0.707746 4:0.585492 5:-0.492537 6:-0.514938 7:-0.598475 8:-0.69697 9:-0.411471 10:-0.465839 11:-0.621622 12:-0.287129 13:-0.0791367 14:-0.535714
2 | 1.0853 1:-0.743158 2:-1 3:-0.552422 4:0.772021 5:-0.263682 6:-0.497364 7:-0.654384 8:-0.562998 9:-0.426434 10:-0.465839 11:-0.418919 12:-0.435644 13:0.136691 14:-0.142857
3 | 1.0414 1:0.0652632 2:-1 3:-0.709789 4:0.523316 5:-0.711443 6:-0.420035 7:-0.52986 8:-0.547049 9:-0.381546 10:-0.267081 11:-0.337838 12:-0.60396 13:-0.395683 14:-0.714286
4 | 1.0751 1:-0.562105 2:-0.864407 3:-0.45841 4:0.772021 5:-0.373134 6:-0.209139 7:-0.56798 8:-0.483254 9:-0.356608 10:-0.465839 11:-0.5 12:-0.247525 13:0.208633 14:-0.142857
5 | 1.034 1:0.208421 2:-0.932203 3:-0.462497 4:0.73057 5:-0.671642 6:-0.367311 7:-0.222363 8:-0.460925 9:-0.201995 10:0.142857 11:-0.337838 12:-0.267327 13:-0.0359712 14:-0.321429
6 | 1.0502 1:-0.12 2:-0.932203 3:-0.249949 4:0.875648 5:-0.21393 6:-0.114236 7:-0.364676 8:-0.272727 9:-0.0623441 10:0.118012 11:-0.121622 12:0.0792079 13:0.381295 14:0.0714286
7 | 1.0549 1:-0.191579 2:-0.864407 3:-0.489066 4:0.668394 5:-0.472637 6:-0.0931459 7:-0.458704 8:-0.511962 9:-0.441397 10:-0.341615 11:-0.486486 12:-0.29703 13:-0.0215827 14:-0.321429
8 | 1.0704 1:-0.477895 2:-0.898305 3:-0.529941 4:0.782383 5:-0.333333 6:-0.286467 7:-0.514612 8:-0.614035 9:-0.361596 10:-0.204969 11:-0.445946 12:-0.435644 13:0.151079 14:0.0714286
9 | 1.09 1:-0.827368 2:-0.898305 3:-0.407317 4:0.84456 5:-0.303483 6:-0.240773 7:-0.66709 8:-0.524721 9:-0.216958 10:-0.341615 11:-0.364865 12:0.0990099 13:0.453237 14:-0.142857
10 | 1.0722 1:-0.507368 2:-0.966102 3:-0.348048 4:0.823834 5:0.0945274 6:-0.286467 7:-0.512071 8:-0.39075 9:-0.206983 10:0.0807453 11:-0.202703 12:0.0693069 13:0.294964 14:0.214286
11 | 1.083 1:-0.701053 2:-0.864407 3:-0.446148 4:0.865285 5:-0.263682 6:-0.219684 7:-0.639136 8:-0.578947 9:-0.376559 10:-0.167702 11:-0.175676 12:-0.207921 13:0.208633 14:-0.0357143
12 | 1.0812 1:-0.671579 2:-0.830508 3:-0.202943 4:0.927461 5:-0.174129 6:-0.14587 7:-0.453621 8:-0.275917 9:-0.0523691 10:-0.229814 11:-0.0810811 12:0.227723 13:0.323741 14:0.142857
13 | 1.0513 1:-0.124211 2:-0.661017 3:-0.493153 4:0.658031 5:-0.273632 6:-0.202109 7:-0.435832 8:-0.397129 9:-0.19202 10:-0.341615 11:-0.675676 12:-0.237624 13:0.0935252 14:-0.321429
14 | 1.0505 1:-0.107368 2:-0.728814 3:-0.290824 4:0.73057 5:-0.174129 6:-0.128295 7:-0.17662 8:-0.247209 9:-0.0623441 10:0.0559006 11:-0.378378 12:0.19802 13:0.52518 14:0.0714286
15 | 1.0484 1:-0.0694737 2:-0.559322 3:-0.433885 4:0.658031 5:-0.0646766 6:-0.226714 7:-0.31385 8:-0.518341 9:0.0872818 10:-0.254658 11:-0.459459 12:0.118812 13:0.366906 14:-0.142857
16 | 1.0512 1:-0.12 2:-0.559322 3:-0.638259 4:0.512953 5:-0.472637 6:-0.304042 7:-0.405337 8:-0.547049 9:-0.206983 10:-0.291925 11:-0.648649 12:-0.376238 13:-0.223022 14:-0.607143
17 | 1.0333 1:0.221053 2:-0.59322 3:-0.368486 4:0.720207 5:-0.223881 6:-0.205624 7:-0.31385 8:-0.355662 9:-0.122195 10:-0.0310559 11:-0.459459 12:0.128713 13:0.410072 14:-0.464286
18 | 1.0468 1:-0.0357895 2:-0.661017 3:-0.258124 4:0.720207 5:0.0945274 6:-0.00527241 7:-0.285896 8:-0.298246 9:-0.0174564 10:-0.130435 11:-0.283784 12:0.326733 13:0.52518 14:0.25
19 | 1.0622 1:-0.326316 2:-0.79661 3:-0.466585 4:0.585492 5:-0.313433 6:-0.0333919 7:-0.486658 8:-0.444976 9:-0.15212 10:-0.291925 11:-0.486486 12:0.227723 13:0.366906 14:-0.0357143
20 | 1.061 1:-0.305263 2:-0.627119 3:-0.237686 4:0.823834 5:-0.114428 6:-0.0544815 7:-0.209657 8:-0.23445 9:-0.0723192 10:-0.0559006 11:-0.337838 12:0.217822 13:0.309353 14:-0.142857
21 | 1.0551 1:-0.195789 2:-0.79661 3:-0.505416 4:0.595855 5:-0.20398 6:-0.156415 7:-0.326557 8:-0.365231 9:-0.187032 10:-0.378882 11:-0.594595 12:-0.237624 13:0.338129 14:-0.0714286
22 | 1.064 1:-0.36 2:-0.79661 3:-0.329655 4:0.668394 5:0.0149254 6:0.128295 7:-0.252859 8:-0.368421 9:-0.19202 10:-0.0559006 11:-0.256757 12:-0.188119 13:0.697842 14:0.464286
23 | 1.0631 1:-0.343158 2:-0.694915 3:-0.822195 4:0.606218 5:-0.721393 6:-0.764499 7:-0.822109 8:-0.69378 9:-0.491272 10:-0.714286 11:-0.581081 12:-0.693069 13:-0.294964 14:-0.678571
24 | 1.0584 1:-0.254737 2:-0.661017 3:-0.752708 4:0.678756 5:-0.562189 6:-0.739895 7:-0.730623 8:-0.732057 9:-0.61596 10:-0.602484 11:-0.594595 12:-0.50495 13:-0.179856 14:-0.535714
25 | 1.0668 1:-0.410526 2:-0.79661 3:-0.732271 4:0.585492 5:-0.661692 6:-0.616872 7:-0.824651 8:-0.655502 9:-0.441397 10:-0.689441 11:-0.486486 12:-0.376238 13:0.00719424 14:-0.357143
26 | 1.0911 1:-0.844211 2:-0.830508 3:-0.666871 4:0.740933 5:-0.542289 6:-0.637961 7:-0.738247 8:-0.633174 9:-0.610973 10:-0.540373 11:-0.540541 12:-0.49505 13:0.0359712 14:-0.321429
27 | 1.0811 1:-0.667368 2:-0.59322 3:-0.893726 4:0.57513 5:-0.492537 6:-0.673111 7:-0.867853 8:-0.990431 9:-0.775561 10:-0.78882 11:-0.689189 12:-0.613861 13:-0.136691 14:-0.75
28 | 1.0468 1:-0.0357895 2:-0.694915 3:-0.758839 4:0.57513 5:-0.233831 6:-0.363796 7:-0.50953 8:-0.69059 9:-0.486284 10:-0.627329 11:-0.743243 12:-0.564356 13:-0.194245 14:-0.571429
29 | 1.091 1:-0.844211 2:-0.830508 3:-0.87942 4:0.46114 5:-0.472637 6:-0.500879 7:-0.885642 8:-0.888357 9:-0.855362 10:-0.813665 11:-0.702703 12:-0.435644 13:-0.00719424 14:-0.5
30 | 1.079 1:-0.629474 2:-0.762712 3:-0.654609 4:0.637306 5:-0.442786 6:-0.363796 7:-0.641677 8:-0.562998 9:-0.416459 10:-0.714286 11:-0.527027 12:-0.475248 13:-0.179856 14:-0.357143
31 | 1.0716 1:-0.498947 2:-0.661017 3:-0.480891 4:0.834197 5:-0.243781 6:-0.254833 7:-0.50953 8:-0.527911 9:-0.486284 10:-0.291925 11:1 12:-0.237624 13:-0.0359712 14:-0.0714286
32 | 1.0862 1:-0.76 2:-0.762712 3:-0.658696 4:0.73057 5:-0.383085 6:-0.500879 7:-0.616264 8:-0.502392 9:-0.436409 10:-0.279503 11:-0.675676 12:-0.475248 13:-0.223022 14:-0.25
33 | 1.0719 1:-0.503158 2:-0.830508 3:-0.59534 4:0.73057 5:-0.303483 6:-0.518453 7:-0.753494 8:-0.69697 9:-0.496259 10:-0.602484 11:-0.27027 12:-0.584158 13:0.294964 14:0.0714286
34 | 1.0502 1:-0.103158 2:-0.355932 3:-0.182506 4:0.720207 5:-0.134328 6:0.13884 7:-0.209657 8:-0.256778 9:-0.0074813 10:0.391304 11:-0.175676 12:0.257426 13:0.510791 14:0.0357143
35 | 1.0263 1:0.36 2:-0.355932 3:0.052524 4:0.823834 5:0.0945274 6:0.325132 7:0.174079 8:-0.00797448 9:0.197007 10:0.279503 11:-0.027027 12:0.237624 13:0.539568 14:0.392857
36 | 1.0101 1:0.688421 2:-0.0847458 3:-0.401185 4:0.471503 5:-0.273632 6:0.377856 7:0.110546 8:-0.0813397 9:-0.266833 10:-0.341615 11:-0.621622 12:-0.287129 13:0.266187 14:-0.571429
37 | 1.0438 1:0.0189474 2:-0.389831 3:-0.315348 4:0.678756 5:-0.263682 6:-0.0439367 7:-0.199492 8:-0.323764 9:-0.187032 10:-0.142857 11:-0.527027 12:0.019802 13:0.381295 14:0.142857
38 | 1.0346 1:0.195789 2:-0.0508475 3:-0.360311 4:0.606218 5:0.0945274 6:-0.0755712 7:-0.252859 8:-0.368421 9:-0.0623441 10:0.0559006 11:-0.243243 12:-0.168317 13:0.366906 14:0.285714
39 | 1.0202 1:0.482105 2:-0.186441 3:1 4:0.772021 5:1 6:1 7:1 8:1 9:1 10:1 11:0.418919 12:1 13:0.151079 14:1
40 | 1.0258 1:0.372632 2:-0.0508475 3:-0.309217 4:0.554404 5:-0.0945274 6:0.247803 7:-0.0165184 8:-0.441786 9:-0.296758 10:0.00621118 11:-0.243243 12:-0.0792079 13:0.438849 14:-0.107143
41 | 1.0217 1:0.452632 2:-0.220339 3:0.179236 4:0.626943 5:0.20398 6:0.72232 7:0.443456 8:0.295056 9:0.261845 10:-0.180124 11:0.0135135 12:0.148515 13:0.683453 14:1
42 | 1.025 1:0.385263 2:-0.254237 3:-0.292867 4:-1 5:-0.452736 6:-0.0615114 7:-0.113088 8:-0.0271132 9:0.167082 10:0.180124 11:-0.378378 12:-0.128713 13:0.107914 14:-0.428571
43 | 1.0279 1:0.330526 2:-0.118644 3:-0.194768 4:0.678756 5:-0.383085 6:0.195079 7:0.0622618 8:-0.0717703 9:0.0224439 10:-0.0186335 11:-0.202703 12:0.178218 13:0.266187 14:-0.0714286
44 | 1.0269 1:0.347368 2:-0.355932 3:-0.235643 4:0.740933 5:0.0348259 6:-0.0404218 7:-0.113088 8:-0.330144 9:-0.112219 10:-0.10559 11:-0.472973 12:0.0891089 13:0.510791 14:0.0714286
45 | 1.0814 1:-0.675789 2:-0.423729 3:-0.944819 4:0.595855 5:-0.960199 6:-0.796134 7:-0.832274 8:-0.897927 9:-0.860349 10:-0.78882 11:-0.743243 12:-0.871287 13:-0.697842 14:-0.892857
46 | 1.067 1:-0.414737 2:-0.288136 3:-0.625996 4:0.813472 5:-0.542289 6:-0.391916 7:-0.692503 8:-0.610845 9:-0.441397 10:-0.354037 11:-0.418919 12:-0.514851 13:-0.0791367 14:-0.107143
47 | 1.0742 1:-0.545263 2:-0.389831 3:-0.877376 4:0.57513 5:-0.751244 6:-0.68717 7:-0.890724 8:-0.888357 9:-0.695761 10:-0.813665 11:-0.540541 12:-0.693069 13:-0.251799 14:-0.464286
48 | 1.0665 1:-0.764211 2:-0.423729 3:-0.754752 4:0.73057 5:-0.651741 6:-0.630931 7:-0.743329 8:-0.754386 9:-0.725686 10:-0.440994 11:-0.621622 12:-0.60396 13:-0.165468 14:-0.25
49 | 1.0678 1:-0.427368 2:-0.220339 3:-0.858982 4:0.61658 5:-0.830846 6:-0.543058 7:-0.644219 8:-0.827751 9:-0.760599 10:-0.652174 11:-0.797297 12:-0.60396 13:-0.352518 14:-0.821429
50 | 1.0903 1:-0.831579 2:-0.152542 3:-0.926426 4:0.544041 5:-0.711443 6:-0.855888 7:-0.974587 8:-0.929825 9:-0.830424 10:-0.826087 11:-0.621622 12:-0.80198 13:-0.309353 14:-0.642857
51 | 1.0756 1:-0.570526 2:-0.152542 3:-0.675046 4:0.772021 5:-0.621891 6:-0.616872 7:-0.560356 8:-0.575758 9:-0.730673 10:-0.478261 11:-0.554054 12:-0.881188 13:-0.309353 14:-0.464286
52 | 1.084 1:-0.722105 2:-0.389831 3:-0.83037 4:0.637306 5:-0.681592 6:-0.652021 7:-0.78399 8:-0.808612 9:-0.790524 10:-0.763975 11:-0.743243 12:-0.811881 13:-0.266187 14:-0.5
53 | 1.0807 1:-0.663158 2:-0.0169492 3:-0.84672 4:0.585492 5:-0.462687 6:-0.634446 7:-0.679797 8:-0.869219 9:-0.895262 10:-0.913043 11:-0.689189 12:-0.524752 13:-0.280576 14:-0.607143
54 | 1.0848 1:-0.734737 2:-0.0847458 3:-0.720008 4:0.823834 5:-0.60199 6:-0.507909 7:-0.740788 8:-0.789474 9:-0.730673 10:-0.428571 11:-0.527027 12:0.356436 13:-0.0791367 14:-0.0357143
55 | 1.0906 1:-0.835789 2:-0.322034 3:-0.854895 4:0.57513 5:-0.333333 6:-0.70826 7:-0.791614 8:-0.885167 9:-0.765586 10:-0.763975 11:-0.540541 12:-0.712871 13:-0.0647482 14:-0.0357143
56 | 1.0473 1:-0.0484211 2:0.0847458 3:-0.350092 4:0.761658 5:-0.124378 6:-0.00527241 7:-0.222363 8:-0.53429 9:-0.501247 10:-0.378882 11:-0.608108 12:0.0990099 13:0.323741 14:0.107143
57 | 1.0524 1:-0.141053 2:0.220339 3:-0.484979 4:0.595855 5:-0.20398 6:-0.272408 7:-0.227446 8:-0.441786 9:-0.256858 10:-0.180124 11:-0.540541 12:-0.178218 13:0.0503597 14:-0.0357143
58 | 1.0356 1:0.178947 2:0.355932 3:-0.323523 4:0.658031 5:-0.0646766 6:0.13181 7:-0.115629 8:-0.336523 9:-0.27182 10:-0.15528 11:-0.513514 12:0.277228 13:0.42446 14:0.214286
59 | 1.028 1:0.326316 2:0.0847458 3:-0.313305 4:0.709845 5:-0.0646766 6:0.268893 7:-0.0876747 8:-0.617225 9:-0.406484 10:-0.378882 11:-0.540541 12:-0.326733 13:0.122302 14:-0.142857
60 | 1.043 1:0.0357895 2:0.322034 3:-0.499285 4:0.502591 5:-0.273632 6:-0.103691 7:-0.265565 8:-0.53429 9:-0.331671 10:-0.416149 11:-0.486486 12:-0.039604 13:0.23741 14:-0.0357143
61 | 1.0396 1:0.0989474 2:0.355932 3:-0.202943 4:0.813472 5:0.0248756 6:0.15993 7:-0.100381 8:-0.422648 9:-0.281796 10:-0.0186335 11:-0.459459 12:0.128713 13:0.553957 14:0.571429
62 | 1.0317 1:0.254737 2:0.152542 3:-0.50746 4:0.61658 5:-0.552239 6:-0.170475 7:-0.357052 8:-0.496013 9:-0.316708 10:-0.378882 11:-0.594595 12:-0.237624 13:0.266187 14:-0.107143
63 | 1.0298 1:0.292632 2:0.0847458 3:-0.388923 4:0.689119 5:-0.313433 6:-0.00527241 7:-0.161372 8:-0.54067 9:-0.311721 10:-0.204969 11:-0.391892 12:-0.217822 13:0.280576 14:0.178571
64 | 1.0403 1:0.0863158 2:0.322034 3:-0.513591 4:0.554404 5:-0.373134 6:-0.086116 7:-0.229987 8:-0.5311 9:-0.321696 10:-0.118012 11:-0.513514 12:-0.128713 13:0.151079 14:0.0714286
65 | 1.0264 1:0.36 2:0.186441 3:-0.28878 4:0.678756 5:-0.104478 6:-0.086116 7:-0.0825921 8:-0.256778 9:-0.112219 10:0.0186335 11:-0.243243 12:0.039604 13:0.453237 14:-0.0714286
66 | 1.0313 1:0.263158 2:0.118644 3:-0.468629 4:0.57513 5:-0.0248756 6:-0.16696 7:-0.21474 8:-0.38756 9:-0.122195 10:-0.10559 11:-0.513514 12:-0.00990099 13:0.309353 14:0.0357143
67 | 1.0499 1:-0.0947368 2:0.0847458 3:-0.730227 4:0.709845 5:-0.552239 6:-0.623902 7:-0.631512 8:-0.716108 9:-0.610973 10:-0.614907 11:-0.648649 12:-0.524752 13:-0.0791367 14:-0.428571
68 | 1.0673 1:-0.418947 2:0.118644 3:-0.703658 4:0.740933 5:-0.422886 6:-0.434095 7:-0.562897 8:-0.783094 9:-0.645885 10:-0.701863 11:-0.675676 12:-0.207921 13:-0.0791367 14:0.0357143
69 | 1.0847 1:-0.734737 2:0.0847458 3:-0.699571 4:0.647668 5:-0.363184 6:-0.648506 7:-0.771283 8:-0.645933 9:-0.561097 10:-0.453416 11:-0.554054 12:-0.227723 13:0.0215827 14:-0.178571
70 | 1.0693 1:-0.456842 2:0.118644 3:-0.687308 4:0.740933 5:-0.482587 6:-0.469244 7:-0.613723 8:-0.703349 9:-0.800499 10:-0.453416 11:-0.662162 12:-0.752475 13:-0.122302 14:-0.464286
71 | 1.0439 1:0.0231579 2:0.355932 3:-0.599428 4:0.740933 5:-0.562189 6:-0.356766 7:-0.438374 8:-0.569378 9:-0.531172 10:-0.304348 11:-0.554054 12:-0.336634 13:-0.0935252 14:6.66134e-16
72 | 1.0788 1:-0.629474 2:0.118644 3:-0.769058 4:0.626943 5:-0.243781 6:-0.676626 7:-0.659466 8:-0.665072 9:-0.416459 10:-0.428571 11:-0.662162 12:-0.455446 13:-0.0935252 14:-0.107143
73 | 1.0796 1:-0.642105 2:0.152542 3:-0.654609 4:0.834197 5:-0.472637 6:-0.497364 7:-0.656925 8:-0.639553 9:-0.715711 10:-0.440994 11:-0.459459 12:-0.514851 13:-0.0935252 14:-0.142857
74 | 1.068 1:-0.431579 2:0.118644 3:-0.946863 4:0.430052 5:-0.791045 6:-0.704745 7:-0.832274 8:-0.885167 9:-0.815461 10:-0.701863 11:-1 12:-0.554455 13:-0.323741 14:-0.607143
75 | 1.072 1:-0.503158 2:0.322034 3:-0.799714 4:0.502591 5:-0.462687 6:-0.504394 7:-0.64676 8:-0.744817 9:-0.586035 10:-0.726708 11:-0.756757 12:-0.544554 13:-0.136691 14:-0.642857
76 | 1.0666 1:-0.221053 2:0.322034 3:-0.756795 4:0.57513 5:-0.512438 6:-0.567663 7:-0.684879 8:-0.6874 9:-0.63591 10:-0.503106 11:-0.689189 12:-0.554455 13:-0.136691 14:-0.107143
77 | 1.079 1:-0.629474 2:0.186441 3:-0.640302 4:0.658031 5:-0.243781 6:-0.567663 7:-0.761118 8:-0.703349 9:-0.526185 10:-0.167702 11:-0.310811 12:-0.465347 13:0.179856 14:-0.178571
78 | 1.0483 1:-0.0652632 2:0.59322 3:-0.515635 4:0.61658 5:-0.243781 6:-0.202109 7:-0.349428 8:-0.575758 9:-0.610973 10:-0.341615 11:-0.635135 12:-0.405941 13:-0.323741 14:0.0714286
79 | 1.0498 1:-0.0947368 2:1 3:-0.650521 4:0.689119 5:-0.333333 6:-0.398946 7:-0.339263 8:-0.54386 9:-0.685786 10:-0.440994 11:-0.675676 12:-0.346535 13:-0.165468 14:-0.107143
80 | 1.056 1:-0.208421 2:0.491525 3:-0.568772 4:0.647668 5:-0.373134 6:-0.177504 7:-0.257942 8:-0.515152 9:-0.53616 10:-0.217391 11:-0.513514 12:-0.455446 13:0.107914 14:0.142857
81 | 1.0283 1:0.322105 2:0.525424 3:-0.630084 4:0.585492 5:-0.273632 6:-0.353251 7:-0.329098 8:-0.614035 9:-0.620948 10:-0.354037 11:-0.378378 12:-0.544554 13:-0.107914 14:0.142857
82 | 1.0382 1:0.128421 2:0.423729 3:-0.740446 4:0.564767 5:-0.303483 6:-0.374341 7:-0.501906 8:-0.620415 9:-0.620948 10:-0.378882 11:-0.608108 12:-0.49505 13:-0.395683 14:-0.321429
83 | 1.0568 1:-0.225263 2:0.423729 3:-0.413448 4:0.792746 5:-0.18408 6:-0.163445 7:-0.278272 8:-0.53429 9:-0.416459 10:-0.254658 11:-0.472973 12:-0.0594059 13:0.23741 14:0.142857
84 | 1.0377 1:0.136842 2:0.627119 3:-0.572859 4:0.678756 5:-0.243781 6:-0.209139 7:-0.35197 8:-0.681021 9:-0.561097 10:-0.565217 11:-0.324324 12:-0.366337 13:-0.0935252 14:0.214286
85 | 1.0378 1:0.136842 2:0.694915 3:-0.59534 4:0.647668 5:-0.263682 6:-0.223199 7:-0.227446 8:-0.642743 9:-0.546135 10:-0.552795 11:-0.608108 12:-0.514851 13:-0.23741 14:-0.214286
86 | 1.0386 1:0.12 2:0.525424 3:-0.603515 4:0.57513 5:-0.462687 6:-0.311072 7:-0.484117 8:-0.642743 9:-0.625935 10:-0.403727 11:0.972973 12:-0.247525 13:-0.0359712 14:-0.142857
87 | 1.0648 1:-0.372632 2:0.694915 3:-0.679133 4:0.564767 5:-0.343284 6:-0.360281 7:-0.524778 8:-0.620415 9:-0.501247 10:-0.416149 11:-0.635135 12:-0.227723 13:0.00719424 14:0.0714286
88 | 1.0462 1:-0.0273684 2:0.423729 3:-0.66074 4:0.502591 5:-0.462687 6:-0.121265 7:-0.453621 8:-0.719298 9:-0.471322 10:-0.192547 11:-0.432432 12:-0.564356 13:0.0647482 14:-0.178571
89 | 1.08 1:-0.650526 2:-0.186441 3:-0.52381 4:0.782383 5:-0.313433 6:-0.367311 7:-0.578145 8:-0.54386 9:-0.311721 10:-0.329193 11:-0.364865 12:-0.465347 13:0.194245 14:0.0714286
90 | 1.0666 1:-0.406316 2:-0.118644 3:-0.529941 4:0.803109 5:-0.442786 6:-0.388401 7:-0.565438 8:-0.575758 9:-0.341646 10:-0.142857 11:-0.283784 12:-0.60396 13:0.23741 14:0.0357143
91 | 1.052 1:-0.136842 2:-0.186441 3:-0.521766 4:0.678756 5:-0.393035 6:-0.282953 7:-0.33418 8:-0.451356 9:-0.446384 10:-0.354037 11:-0.540541 12:-0.574257 13:-0.0359712 14:-0.321429
92 | 1.0573 1:-0.233684 2:-0.254237 3:-0.499285 4:0.658031 5:-0.19403 6:-0.205624 7:-0.395172 8:-0.502392 9:-0.416459 10:-0.167702 11:-0.459459 12:-0.346535 13:0.0647482 14:0.0714286
93 | 1.0795 1:-0.642105 2:-0.152542 3:-0.617821 4:0.699482 5:-0.363184 6:-0.370826 7:-0.651842 8:-0.668262 9:-0.516209 10:-0.341615 11:-0.594595 12:-0.475248 13:0.0359712 14:-0.0714286
94 | 1.0424 1:0.0484211 2:-0.186441 3:-0.395054 4:0.751295 5:-0.313433 6:-0.0404218 7:-0.285896 8:-0.502392 9:-0.416459 10:-0.068323 11:-0.27027 12:-0.158416 13:0.23741 14:0.178571
95 | 1.0785 1:-0.621053 2:-0.152542 3:-0.462497 4:0.865285 5:-0.383085 6:-0.286467 7:-0.506989 8:-0.476874 9:-0.491272 10:-0.180124 11:-0.256757 12:-0.455446 13:-0.00719424 14:-0.285714
96 | 1.0991 1:-0.267368 2:0.0508475 3:-0.133456 4:1 5:-0.00497512 6:0.191564 7:-0.242694 8:-0.282297 9:-0.276808 10:0.15528 11:-0.445946 12:-0.19802 13:0.410072 14:0.642857
97 | 1.077 1:-0.595789 2:-0.457627 3:-0.42571 4:0.813472 5:-0.363184 6:-0.304042 7:-0.435832 8:-0.444976 9:-0.331671 10:-0.204969 11:-0.486486 12:-0.326733 13:0.309353 14:-0.0357143
98 | 1.073 1:-0.524211 2:-0.0508475 3:-0.640302 4:0.533679 5:-0.243781 6:-0.293497 7:-0.560356 8:-0.642743 9:-0.256858 10:-0.217391 11:-0.432432 12:-0.425743 13:-0.0215827 14:-0.142857
99 | 1.0582 1:-0.250526 2:-0.186441 3:-0.689352 4:0.606218 5:-0.522388 6:-0.44464 7:-0.522236 8:-0.751196 9:-0.625935 10:-0.465839 11:-0.621622 12:-0.326733 13:-0.0647482 14:-0.142857
100 | 1.0484 1:-0.0652632 2:-0.152542 3:-0.358267 4:0.761658 5:-0.114428 6:-0.00878735 7:-0.374841 8:-0.403509 9:-0.226933 10:-0.254658 11:-0.567568 12:0.039604 13:0.42446 14:-0.107143
101 | 1.0506 1:-0.107368 2:-0.0847458 3:-0.346004 4:0.823834 5:-0.104478 6:-0.0439367 7:-0.349428 8:-0.467305 9:-0.411471 10:-0.204969 11:-0.567568 12:-0.267327 13:0.438849 14:6.66134e-16
102 | 1.0524 1:-0.141053 2:-0.118644 3:-0.548334 4:0.761658 5:-0.412935 6:-0.304042 7:-0.425667 8:-0.575758 9:-0.396509 10:-0.329193 11:-0.554054 12:-0.693069 13:-0.251799 14:-0.571429
103 | 1.053 1:-0.153684 2:-0.355932 3:-0.556509 4:0.73057 5:-0.482587 6:-0.388401 7:-0.496823 8:-0.575758 9:-0.361596 10:-0.329193 11:-0.445946 12:-0.386139 13:0.179856 14:-0.0714286
104 | 1.048 1:-0.0610526 2:-0.0847458 3:-0.360311 4:0.834197 5:-0.0447761 6:-0.149385 7:-0.336722 8:-0.470494 9:-0.406484 10:-0.15528 11:-0.148649 12:-0.386139 13:0.338129 14:0.392857
105 | 1.0412 1:0.0694737 2:-0.288136 3:-0.521766 4:0.647668 5:-0.154229 6:-0.13181 7:-0.257942 8:-0.53748 9:-0.386534 10:-0.614907 11:-0.608108 12:-0.475248 13:-0.107914 14:-0.321429
106 | 1.0578 1:-0.242105 2:-0.288136 3:-0.615778 4:0.61658 5:-1 6:-0.514938 7:-0.545108 8:-0.629984 9:-0.625935 10:-0.254658 11:-0.22973 12:-0.386139 13:0.208633 14:0.0714286
107 | 1.0547 1:-0.187368 2:-0.288136 3:-0.331698 4:0.823834 5:-0.253731 6:-0.0896309 7:-0.151207 8:-0.406699 9:-0.301746 10:-0.217391 11:-0.405405 12:-0.435644 13:0.0791367 14:-0.178571
108 | 1.0569 1:-0.229474 2:0.0169492 3:-0.307174 4:0.854922 5:0.0845771 6:0.0790861 7:-0.181703 8:-0.499203 9:-0.571072 10:-0.291925 11:-0.418919 12:0.019802 13:0.23741 14:0.178571
109 | 1.0593 1:-0.271579 2:-0.288136 3:-0.382792 4:0.906736 5:-0.263682 6:0.0826011 7:-0.50953 8:-0.454545 9:-0.486284 10:-0.130435 11:-0.22973 12:0.019802 13:0.395683 14:0.214286
110 | 1.05 1:-0.0989474 2:-0.389831 3:-0.591253 4:0.647668 5:-0.691542 6:-0.349736 7:-0.418043 8:-0.502392 9:-0.486284 10:-0.52795 11:-0.5 12:-0.277228 13:-0.280576 14:-0.464286
111 | 1.0538 1:-0.170526 2:-0.288136 3:-0.572859 4:0.61658 5:-0.393035 6:-0.40246 7:-0.461245 8:-0.54386 9:-0.266833 10:-0.378882 11:-0.567568 12:-0.158416 13:0.0359712 14:-0.178571
112 | 1.0355 1:0.178947 2:-0.288136 3:-0.470672 4:0.678756 5:-0.402985 6:0.00878735 7:-0.0952986 8:-0.425837 9:-0.177057 10:-0.130435 11:-0.391892 12:-0.138614 13:-0.0215827 14:-0.428571
113 | 1.0486 1:-0.0694737 2:-0.152542 3:-0.511547 4:0.678756 5:-0.0945274 6:-0.282953 7:-0.349428 8:-0.566188 9:-0.246883 10:-0.36646 11:-0.351351 12:0.039604 13:0.453237 14:0.428571
114 | 1.0503 1:-0.103158 2:-0.322034 3:-0.636215 4:0.689119 5:-0.58209 6:-0.500879 7:-0.486658 8:-0.527911 9:-0.286783 10:-0.403727 11:-0.621622 12:-0.415842 13:-0.0503597 14:-0.428571
115 | 1.0384 1:0.124211 2:-0.118644 3:-0.536072 4:0.751295 5:-0.313433 6:-0.247803 7:-0.415502 8:-0.601276 9:-0.396509 10:-0.36646 11:-0.635135 12:-0.306931 13:-0.0935252 14:-0.392857
116 | 1.0607 1:-0.296842 2:-0.389831 3:-0.67709 4:0.647668 5:-0.482587 6:-0.377856 7:-0.562897 8:-0.757576 9:-0.566085 10:-0.590062 11:-0.594595 12:-0.50495 13:-0.23741 14:-0.464286
117 | 1.0529 1:-0.153684 2:-0.118644 3:-0.519722 4:0.792746 5:-0.432836 6:-0.413005 7:-0.476493 8:-0.5311 9:-0.421446 10:-0.329193 11:-0.5 12:-0.49505 13:0.00719424 14:-0.178571
118 | 1.0671 1:-0.414737 2:-0.0169492 3:-0.505416 4:0.761658 5:-0.0149254 6:-0.300527 7:-0.476493 8:-0.636364 9:-0.521197 10:-0.279503 11:-0.432432 12:-0.148515 13:0.266187 14:0.321429
119 | 1.0404 1:0.0863158 2:-0.389831 3:-0.407317 4:0.84456 5:-0.283582 6:-0.434095 7:-0.415502 8:-0.38437 9:-0.13217 10:0.00621118 11:-0.22973 12:-0.128713 13:0.223022 14:-0.0357143
120 | 1.0575 1:-0.237895 2:-0.254237 3:-0.435929 4:0.772021 5:-0.313433 6:-0.209139 7:-0.540025 8:-0.489633 9:-0.436409 10:-0.229814 11:-0.27027 12:-0.277228 13:0.0935252 14:-0.214286
121 | 1.0358 1:0.174737 2:0.0169492 3:-0.280605 4:0.865285 5:-0.0348259 6:-0.121265 7:-0.242694 8:-0.39075 9:-0.436409 10:-0.217391 11:-0.256757 12:-0.0990099 13:0.467626 14:0.321429
122 | 1.0414 1:0.0652632 2:-0.254237 3:-0.454323 4:0.740933 5:-0.164179 6:-0.300527 7:-0.270648 8:-0.476874 9:-0.506234 10:-0.068323 11:-0.445946 12:-0.188119 13:0.23741 14:-0.0714286
123 | 1.0652 1:-0.381053 2:-0.389831 3:-0.658696 4:0.626943 5:-0.422886 6:-0.297012 7:-0.64676 8:-0.601276 9:-0.336658 10:-0.291925 11:-0.527027 12:-0.049505 13:0.00719424 14:-0.357143
124 | 1.0623 1:-0.326316 2:-0.152542 3:-0.730227 4:0.544041 5:-0.422886 6:-0.483304 7:-0.575604 8:-0.674641 9:-0.456359 10:-0.565217 11:-0.594595 12:-0.425743 13:-0.0647482 14:-0.357143
125 | 1.0674 1:-0.418947 2:-0.0508475 3:-0.652565 4:0.533679 5:-0.343284 6:-0.311072 7:-0.626429 8:-0.712919 9:-0.436409 10:-0.552795 11:-0.405405 12:-0.049505 13:0.179856 14:-0.214286
126 | 1.0587 1:-0.263158 2:-0.186441 3:-0.603515 4:0.554404 5:-0.452736 6:-0.237258 7:-0.479034 8:-0.521531 9:-0.326683 10:-0.627329 11:-0.621622 12:0.0693069 13:0.323741 14:-0.357143
127 | 1.0373 1:0.145263 2:-0.322034 3:-0.517678 4:0.626943 5:-0.223881 6:-0.318102 7:-0.423126 8:-0.569378 9:-0.326683 10:-0.52795 11:-0.581081 12:-0.108911 13:0.338129 14:-0.5
128 | 1.059 1:-0.267368 2:-0.288136 3:-0.724096 4:0.585492 5:-0.363184 6:-0.41652 7:-0.781449 8:-0.738437 9:-0.685786 10:-0.652174 11:-0.77027 12:-0.0990099 13:0.0359712 14:-0.428571
129 | 1.0515 1:-0.124211 2:-0.389831 3:-0.397098 4:0.813472 5:-0.134328 6:-0.135325 7:-0.387548 8:-0.53748 9:-0.276808 10:-0.254658 11:-0.635135 12:-0.158416 13:0.23741 14:-0.178571
130 | 1.0648 1:-0.372632 2:-0.322034 3:-0.617821 4:0.668394 5:-0.283582 6:-0.405975 7:-0.552732 8:-0.591707 9:-0.491272 10:-0.515528 11:-0.581081 12:-0.326733 13:-0.0215827 14:-0.321429
131 | 1.0575 1:-0.237895 2:-0.0847458 3:-0.564684 4:0.740933 5:-0.562189 6:-0.349736 7:-0.473952 8:-0.655502 9:-0.511222 10:-0.291925 11:-0.445946 12:-0.732673 13:-0.208633 14:-0.357143
132 | 1.0472 1:-0.0442105 2:-0.389831 3:-0.568772 4:0.699482 5:-0.482587 6:-0.462214 7:-0.468869 8:-0.550239 9:-0.346633 10:-0.31677 11:-0.472973 12:-0.366337 13:0.0647482 14:-0.535714
133 | 1.0452 1:-0.00631579 2:-0.152542 3:-0.358267 4:0.813472 5:-0.333333 6:-0.14587 7:-0.227446 8:-0.419458 9:-0.301746 10:-0.36646 11:-0.527027 12:-0.138614 13:0.0935252 14:-0.25
134 | 1.0398 1:0.0989474 2:-0.0508475 3:-0.685265 4:0.544041 5:-0.333333 6:-0.258348 7:-0.491741 8:-0.767145 9:-0.55611 10:-0.677019 11:-0.810811 12:-0.128713 13:0.194245 14:-0.464286
135 | 1.0435 1:0.0273684 2:-0.355932 3:-0.593297 4:0.658031 5:-0.462687 6:-0.328647 7:-0.547649 8:-0.572568 9:-0.561097 10:-0.515528 11:-0.472973 12:-0.0891089 13:0.266187 14:-0.178571
136 | 1.0374 1:0.141053 2:-0.254237 3:-0.448191 4:0.668394 5:-0.333333 6:-0.110721 7:-0.194409 8:-0.454545 9:-0.416459 10:-0.391304 11:-0.513514 12:-0.39604 13:0.122302 14:-0.357143
137 | 1.0491 1:-0.0821053 2:-0.423729 3:-0.605559 4:0.709845 5:-0.412935 6:-0.521968 7:-0.575604 8:-0.661882 9:-0.421446 10:-0.614907 11:-0.554054 12:-0.217822 13:0.0503597 14:-0.535714
138 | 1.0325 1:0.237895 2:-0.288136 3:-0.433885 4:0.84456 5:-0.343284 6:-0.349736 7:-0.257942 8:-0.502392 9:-0.182045 10:-0.229814 11:-0.364865 12:-0.0594059 13:0.0647482 14:-0.321429
139 | 1.0481 1:-0.0568421 2:-0.389831 3:-0.593297 4:0.73057 5:-0.681592 6:-0.332162 7:-0.514612 8:-0.575758 9:-0.456359 10:-0.329193 11:-0.540541 12:-0.316832 13:-0.0791367 14:-0.357143
140 | 1.0522 1:-0.141053 2:-0.0847458 3:-0.229512 4:0.88601 5:-0.0348259 6:-0.107206 7:-0.0546379 8:-0.275917 9:-0.0374065 10:0.180124 11:-0.27027 12:0.0594059 13:0.266187 14:0.0357143
141 | 1.0422 1:0.0484211 2:-0.389831 3:-0.52381 4:0.720207 5:-0.373134 6:-0.321617 7:-0.397713 8:-0.470494 9:-0.406484 10:-0.180124 11:-0.662162 12:-0.405941 13:-0.00719424 14:-0.714286
142 | 1.0571 1:-0.229474 2:-0.389831 3:-0.552422 4:0.658031 5:-0.462687 6:-0.289982 7:-0.400254 8:-0.54386 9:-0.341646 10:-0.354037 11:-0.608108 12:-0.287129 13:0.0791367 14:-0.285714
143 | 1.0459 1:-0.0189474 2:0.0169492 3:-0.603515 4:0.585492 5:-0.363184 6:-0.177504 7:-0.45108 8:-0.556619 9:-0.506234 10:-0.540373 11:-0.567568 12:-0.326733 13:-0.0647482 14:-0.25
144 | 1.0775 1:-0.604211 2:-0.966102 3:-0.662784 4:0.772021 5:-0.562189 6:-0.550088 7:-0.80432 8:-0.716108 9:-0.55611 10:-0.614907 11:-0.513514 12:-0.435644 13:-0.107914 14:-0.142857
145 | 1.0754 1:-0.566316 2:-0.966102 3:-0.430615 4:0.989637 5:-0.313433 6:-0.391916 7:-0.595934 8:-0.441786 9:-0.406484 10:-0.428571 11:-0.445946 12:-0.306931 13:0.251799 14:-0.107143
146 | 1.0664 1:-0.402105 2:-0.932203 3:-0.69344 4:0.709845 5:-0.542289 6:-0.528998 7:-0.682338 8:-0.671451 9:-0.541147 10:-0.565217 11:-0.608108 12:-0.138614 13:0.0503597 14:-0.464286
147 | 1.055 1:-0.191579 2:-0.932203 3:-0.264255 4:0.792746 5:-0.19403 6:-0.202109 7:-0.245235 8:-0.199362 9:0.197007 10:0.304348 11:-0.175676 12:0.118812 13:0.338129 14:0.0357143
148 | 1.0322 1:0.246316 2:-0.898305 3:-0.280605 4:0.668394 5:-0.0248756 6:0.110721 7:-0.209657 8:-0.323764 9:0.0573566 10:-0.0310559 11:-0.256757 12:-0.158416 13:0.251799 14:-0.0714286
149 | 1.0873 1:-0.776842 2:-0.898305 3:-0.793583 4:0.782383 5:-0.59204 6:-0.543058 7:-0.819568 8:-0.773525 9:-0.765586 10:-0.664596 11:-0.608108 12:-0.90099 13:-0.395683 14:-0.607143
150 | 1.0416 1:0.0610526 2:-0.864407 3:-0.145718 4:0.689119 5:-0.0547264 6:0.223199 7:-0.0495553 8:-0.0781499 9:0.0174564 10:0.204969 11:-0.243243 12:0.108911 13:0.352518 14:-0.0714286
151 | 1.0776 1:-0.604211 2:-0.864407 3:-0.724096 4:0.637306 5:-0.572139 6:-0.521968 7:-0.791614 8:-0.728868 9:-0.516209 10:-0.639752 11:-0.824324 12:-0.326733 13:0.151079 14:-0.285714
152 | 1.0542 1:-0.174737 2:-0.864407 3:0.00756182 4:0.865285 5:0.0646766 6:0.0193322 7:-0.148666 8:-0.062201 9:0.281796 10:0.304348 11:-0.189189 12:0.356436 13:0.841727 14:0.357143
153 | 1.0758 1:-0.574737 2:-0.830508 3:-0.775189 4:0.772021 5:-0.701493 6:-0.676626 7:-0.913596 8:-0.805423 9:-0.680798 10:-0.52795 11:-0.364865 12:-0.70297 13:-0.23741 14:-0.428571
154 | 1.061 1:-0.305263 2:-0.830508 3:-0.687308 4:0.564767 5:-0.323383 6:-0.483304 7:-0.522236 8:-0.674641 9:-0.521197 10:-0.453416 11:-0.5 12:-0.425743 13:0.0503597 14:-0.25
155 | 1.051 1:-0.115789 2:-0.830508 3:-0.331698 4:0.823834 5:-0.293532 6:-0.233743 7:-0.219822 8:-0.362041 9:-0.256858 10:-0.130435 11:-0.216216 12:-0.118812 13:0.179856 14:0.285714
156 | 1.0594 1:-0.271579 2:-0.79661 3:-0.566728 4:0.896373 5:-0.552239 6:-0.550088 7:-0.641677 8:-0.575758 9:-0.496259 10:-0.403727 11:-0.648649 12:-0.267327 13:-0.0359712 14:-0.321429
157 | 1.0287 1:0.313684 2:-0.79661 3:-0.286736 4:0.637306 5:-0.263682 6:-0.0755712 7:-0.0952986 8:-0.317384 9:0.0673317 10:-0.130435 11:-0.175676 12:0.029703 13:0.395683 14:0.178571
158 | 1.0761 1:-0.578947 2:-0.79661 3:-0.476804 4:0.772021 5:-0.412935 6:-0.325132 7:-0.456163 8:-0.441786 9:-0.321696 10:-0.31677 11:-0.202703 12:-0.326733 13:0.00719424 14:6.66134e-16
159 | 1.0704 1:-0.473684 2:-0.728814 3:-0.852851 4:0.626943 5:-0.522388 6:-0.669596 7:-0.817027 8:-0.84689 9:-0.855362 10:-0.776398 11:-0.635135 12:-0.782178 13:1 14:-0.607143
160 | 1.0477 1:-0.0526316 2:-0.694915 3:-0.519722 4:0.740933 5:-0.492537 6:-0.233743 7:-0.415502 8:-0.54386 9:-0.391521 10:-0.254658 11:-0.256757 12:-0.475248 13:0.0359712 14:-0.142857
161 | 1.0775 1:-0.604211 2:-0.694915 3:-0.732271 4:0.772021 5:-0.61194 6:-0.483304 7:-0.700127 8:-0.792663 9:-0.735661 10:-0.552795 11:-0.743243 12:-0.782178 13:-0.23741 14:-0.75
162 | 1.0653 1:-0.385263 2:-0.627119 3:-0.366442 4:0.803109 5:-0.263682 6:-0.13884 7:-0.33418 8:-0.358852 9:-0.291771 10:-0.0559006 11:-0.202703 12:-0.356436 13:0.179856 14:0.178571
163 | 1.069 1:-0.452632 2:-0.627119 3:-0.462497 4:0.626943 5:-0.0447761 6:-0.311072 7:-0.423126 8:-0.409888 9:-0.162095 10:-0.465839 11:-0.405405 12:-0.138614 13:0.381295 14:0.392857
164 | 1.0644 1:-0.364211 2:-0.59322 3:-0.824239 4:0.699482 5:-0.512438 6:-0.652021 7:-0.644219 8:-0.85327 9:-0.740648 10:-0.677019 11:-0.824324 12:-0.653465 13:-0.251799 14:-0.75
165 | 1.037 1:0.149474 2:-0.59322 3:-0.180462 4:0.761658 5:-0.164179 6:0.128295 7:-0.0698856 8:-0.240829 9:-0.17207 10:0.118012 11:-0.418919 12:-0.0891089 13:0.467626 14:-0.0357143
166 | 1.0549 1:-0.191579 2:-0.559322 3:-0.194768 4:0.834197 5:-0.0646766 6:-0.00878735 7:-0.346887 8:-0.37799 9:-0.122195 10:0.0310559 11:-0.121622 12:0.148515 13:0.827338 14:0.285714
167 | 1.0492 1:-0.0821053 2:-0.559322 3:-0.609646 4:0.595855 5:-0.263682 6:-0.304042 7:-0.466328 8:-0.661882 9:-0.586035 10:-0.850932 11:-0.621622 12:-0.465347 13:0.107914 14:-0.321429
168 | 1.0525 1:-0.145263 2:-0.559322 3:-0.131412 4:0.772021 5:0.273632 6:0.0158172 7:-0.212198 8:-0.304625 9:-0.197007 10:0.0807453 11:-0.256757 12:0.227723 13:0.741007 14:0.428571
169 | 1.018 1:0.444211 2:-0.559322 3:-0.1028 4:0.658031 5:-0.0746269 6:0.251318 7:0.181703 8:-0.141946 9:0.356608 10:-0.0559006 11:-0.337838 12:0.118812 13:0.553957 14:0.0714286
170 | 1.061 1:-0.305263 2:-0.559322 3:-0.556509 4:0.658031 5:-0.353234 6:-0.304042 7:-0.456163 8:-0.582137 9:-0.356608 10:-0.242236 11:-0.418919 12:-0.237624 13:0.266187 14:-0.428571
171 | 1.0926 1:-0.873684 2:-0.559322 3:-0.724096 4:0.585492 5:-0.412935 6:-0.546573 7:-0.682338 8:-0.751196 9:-0.625935 10:-0.602484 11:-0.594595 12:-0.445545 13:-0.0791367 14:-0.321429
172 | 1.0983 1:-0.970526 2:-0.559322 3:-0.940732 4:0.492228 5:-0.711443 6:-0.595782 7:-0.857687 8:-0.866029 9:-0.860349 10:-0.776398 11:-0.608108 12:-1 13:-0.294964 14:-0.607143
173 | 1.0521 1:-0.136842 2:-0.559322 3:-0.519722 4:0.720207 5:-0.273632 6:-0.254833 7:-0.468869 8:-0.562998 9:-0.471322 10:-0.465839 11:-0.554054 12:-0.386139 13:0.107914 14:-0.321429
174 | 1.0603 1:-0.288421 2:-0.525424 3:-0.527897 4:0.740933 5:-0.243781 6:-0.335677 7:-0.468869 8:-0.524721 9:-0.401496 10:-0.416149 11:-0.675676 12:-0.247525 13:0.0647482 14:-0.285714
175 | 1.0414 1:0.0652632 2:-0.525424 3:-0.115062 4:0.751295 5:0.0348259 6:0.265378 7:0.00127065 8:-0.062201 9:0.0972569 10:0.167702 11:-0.337838 12:0.049505 13:-1 14:0.535714
176 | 1.0763 1:-0.583158 2:-0.491525 3:-0.78132 4:0.647668 5:-0.512438 6:-0.384886 7:-0.74587 8:-0.866029 9:-0.845387 10:-0.776398 11:-0.581081 12:-0.386139 13:-0.151079 14:-0.607143
177 | 1.0689 1:-0.448421 2:-0.491525 3:-0.734314 4:0.554404 5:-0.58209 6:-0.532513 7:-0.649301 8:-0.636364 9:-0.361596 10:-0.36646 11:-0.608108 12:-0.336634 13:-0.194245 14:-0.678571
178 | 1.0316 1:0.258947 2:-0.491525 3:0.00347435 4:0.740933 5:0.0945274 6:0.40246 7:0.0393901 8:-0.0781499 9:0.127182 10:0.192547 11:-0.22973 12:-0.049505 13:0.223022 14:-0.0714286
179 | 1.0477 1:-0.0526316 2:-0.457627 3:-0.437973 4:0.647668 5:-0.313433 6:-0.177504 7:-0.407878 8:-0.460925 9:-0.127182 10:-0.192547 11:-0.243243 12:-0.00990099 13:0.338129 14:-0.178571
180 | 1.0603 1:-0.288421 2:-0.423729 3:-0.0496628 4:0.865285 5:0.164179 6:0.0615114 7:-0.108005 8:-0.205742 9:0.112219 10:0.254658 11:-0.0945946 12:0.415842 13:0.654676 14:0.464286
181 | 1.0387 1:0.12 2:-0.423729 3:-0.176374 4:0.854922 5:-0.114428 6:0.026362 7:-0.105464 8:-0.208931 9:0.042394 10:0.217391 11:-0.324324 12:0.0693069 13:0.151079 14:0.142857
182 | 1.1089 1:-1 2:-0.389831 3:-1 4:0.595855 5:-0.731343 6:-1 7:-1 8:-1 9:-1 10:-0.937888 11:-0.851351 12:-0.712871 13:-0.482014 14:-0.75
183 | 1.0725 1:-0.515789 2:-0.389831 3:-0.777233 4:0.564767 5:-0.562189 6:-0.43058 7:-0.639136 8:-0.789474 9:-0.65586 10:-0.602484 11:-0.635135 12:-0.346535 13:0.0503597 14:-0.5
184 | 1.0713 1:-0.490526 2:-0.389831 3:-0.666871 4:0.668394 5:-0.58209 6:-0.543058 7:-0.557814 8:-0.645933 9:-0.461347 10:-0.204969 11:-0.513514 12:-0.485149 13:-0.223022 14:-0.428571
185 | 1.0587 1:-0.263158 2:-0.389831 3:-0.574903 4:0.854922 5:-0.343284 6:-0.311072 7:-0.466328 8:-0.665072 9:-0.591022 10:-0.267081 11:-0.554054 12:-0.435644 13:0.136691 14:-0.321429
186 | 1.0794 1:-0.637895 2:-0.389831 3:-0.599428 4:0.740933 5:-0.174129 6:-0.641476 7:-0.636595 8:-0.582137 9:-0.496259 10:-0.167702 11:-0.527027 12:-0.19802 13:0.194245 14:-0.142857
187 | 1.0453 1:-0.00631579 2:-0.355932 3:-0.0660127 4:0.854922 5:0.0746269 6:0.342707 7:0.0139771 8:-0.240829 9:0.0224439 10:0.0310559 11:-0.243243 12:0.227723 13:0.553957 14:0.5
188 | 1.0524 1:-0.141053 2:-0.355932 3:-0.247905 4:0.761658 5:-0.263682 6:-0.0123023 7:-0.250318 8:-0.39075 9:-0.187032 10:-0.15528 11:-0.405405 12:0.148515 13:0.352518 14:0.178571
189 | 1.052 1:-0.136842 2:-0.355932 3:-0.315348 4:0.782383 5:-0.0348259 6:0.0509666 7:-0.273189 8:-0.464115 9:-0.221945 10:0.0310559 11:-0.22973 12:0.168317 13:0.640288 14:0.0714286
190 | 1.0434 1:0.0273684 2:-0.355932 3:-0.456366 4:0.606218 5:-0.313433 6:-0.1529 7:-0.191868 8:-0.422648 9:-0.286783 10:-0.0807453 11:-0.486486 12:-0.148515 13:0.179856 14:-0.0357143
191 | 1.0728 1:-0.52 2:-0.355932 3:-0.717964 4:0.647668 5:-0.472637 6:-0.574692 7:-0.715375 8:-0.767145 9:-0.645885 10:-0.590062 11:-0.635135 12:-0.524752 13:-0.0935252 14:-0.25
192 | 1.014 1:0.604211 2:-0.322034 3:0.0279992 4:0.927461 5:0.0646766 6:0.261863 7:0.125794 8:-0.125997 9:0.0623441 10:0.490683 11:-0.135135 12:0.217822 13:0.467626 14:0.464286
193 | 1.0624 1:-0.330526 2:-0.322034 3:-0.386879 4:0.699482 5:-0.0447761 6:-0.100176 7:-0.3723 8:-0.435407 9:-0.331671 10:-0.304348 11:-0.243243 12:-0.0891089 13:0.309353 14:0.0357143
194 | 1.0429 1:0.04 2:-0.322034 3:-0.131412 4:0.875648 5:-0.263682 6:-0.0369069 7:-0.0775095 8:-0.145136 9:-0.0972569 10:0.279503 11:-0.0675676 12:-0.118812 13:0.280576 14:-0.0357143
195 | 1.047 1:-0.04 2:-0.322034 3:-0.638259 4:0.792746 5:-0.572139 6:-0.546573 7:-0.58831 8:-0.633174 9:-0.351621 10:-0.267081 11:-0.554054 12:-0.316832 13:-0.122302 14:-0.535714
196 | 1.0411 1:0.0736842 2:-0.322034 3:-0.497241 4:0.606218 5:-0.263682 6:-0.216169 7:-0.308767 8:-0.502392 9:-0.306733 10:-0.329193 11:-0.324324 12:-0.19802 13:0.266187 14:0.0714286
197 | 1.0488 1:-0.0736842 2:-0.322034 3:-0.691396 4:0.637306 5:-0.562189 6:-0.349736 7:-0.578145 8:-0.642743 9:-0.476309 10:-0.304348 11:-0.337838 12:-0.366337 13:-0.0935252 14:-0.428571
198 | 1.0583 1:-0.254737 2:-0.322034 3:-0.59534 4:0.740933 5:-0.462687 6:-0.553603 7:-0.484117 8:-0.489633 9:-0.246883 10:-0.378882 11:-0.567568 12:-0.405941 13:-0.0215827 14:-0.607143
199 | 1.0841 1:-0.722105 2:-0.322034 3:-0.601471 4:0.792746 5:-0.353234 6:-0.483304 7:-0.781449 8:-0.553429 9:-0.486284 10:-0.130435 11:-0.540541 12:-0.425743 13:0.294964 14:-0.0357143
200 | 1.0462 1:-0.00631579 2:-0.288136 3:-0.572859 4:0.57513 5:-0.373134 6:-0.142355 7:-0.484117 8:-0.706539 9:-0.436409 10:-0.254658 11:-0.324324 12:-0.108911 13:0.122302 14:0.0714286
201 | 1.0709 1:-0.486316 2:-0.288136 3:-0.511547 4:0.689119 5:-0.333333 6:-0.177504 7:-0.496823 8:-0.547049 9:-0.351621 10:-0.229814 11:-0.364865 12:-0.316832 13:0.0647482 14:6.66134e-16
202 | 1.0484 1:-0.0694737 2:-0.288136 3:-0.742489 4:0.647668 5:-0.59204 6:-0.585237 7:-0.585769 8:-0.620415 9:-0.586035 10:-0.664596 11:-0.608108 12:-0.544554 13:-0.194245 14:-0.428571
203 | 1.034 1:0.208421 2:-0.288136 3:-0.329655 4:0.740933 5:-0.323383 6:-0.0193322 7:-0.143583 8:-0.346093 9:0.0773067 10:-0.341615 11:-0.378378 12:-0.277228 13:0.136691 14:0.0357143
204 | 1.0854 1:-0.747368 2:-0.254237 3:-0.464541 4:0.84456 5:-0.323383 6:-0.244288 7:-0.499365 8:-0.438596 9:-0.331671 10:-0.254658 11:-0.337838 12:-0.19802 13:0.179856 14:-0.0714286
205 | 1.0209 1:0.465263 2:-0.254237 3:-0.145718 4:0.668394 5:-0.0248756 6:0.486819 7:0.130877 8:-0.295056 9:-0.187032 10:-0.0931677 11:-0.635135 12:-0.00990099 13:0.395683 14:-0.428571
206 | 1.061 1:-0.301053 2:-0.254237 3:-0.262211 4:0.803109 5:0.0746269 6:-0.0755712 7:-0.316391 8:-0.457735 9:-0.197007 10:-0.15528 11:-0.324324 12:0.237624 13:-0.697842 14:0.285714
207 | 1.025 1:0.385263 2:-0.254237 3:-0.61169 4:0.492228 5:-0.20398 6:-0.251318 7:-0.377382 8:-0.518341 9:-0.416459 10:-0.428571 11:-0.689189 12:-0.178218 13:0.223022 14:-0.464286
208 | 1.0254 1:0.381053 2:-0.152542 3:-0.374617 4:0.782383 5:-0.0945274 6:-0.177504 7:-0.189327 8:-0.467305 9:-0.326683 10:-0.204969 11:-0.432432 12:0.178218 13:0.52518 14:-0.0714286
209 | 1.0771 1:-0.595789 2:-0.152542 3:-0.656652 4:0.689119 5:-0.512438 6:-0.279438 7:-0.631512 8:-0.783094 9:-0.710723 10:-0.602484 11:-0.540541 12:-0.346535 13:-0.0647482 14:-0.321429
210 | 1.0742 1:-0.545263 2:-0.152542 3:-0.662784 4:0.709845 5:-0.661692 6:-0.521968 7:-0.618806 8:-0.712919 9:-0.561097 10:-0.354037 11:-0.527027 12:-0.584158 13:-0.251799 14:-0.357143
211 | 1.0829 1:-0.701053 2:-0.0847458 3:-0.820151 4:0.595855 5:-0.532338 6:-0.581722 7:-0.74587 8:-0.872408 9:-0.805486 10:-0.751553 11:-0.648649 12:-0.39604 13:0.122302 14:-0.428571
212 | 1.0373 1:0.145263 2:-0.0847458 3:-0.200899 4:0.865285 5:-0.0945274 6:0.275923 7:-0.120712 8:-0.23445 9:-0.177057 10:-0.0931677 11:-0.445946 12:0.188119 13:0.438849 14:0.107143
213 | 1.0543 1:-0.178947 2:-0.0847458 3:-0.593297 4:0.751295 5:-0.283582 6:-0.332162 7:-0.484117 8:-0.550239 9:-0.546135 10:-0.279503 11:-0.472973 12:-0.534653 13:-0.00719424 14:6.66134e-16
214 | 1.0561 1:-0.212632 2:-0.0508475 3:-0.376661 4:0.709845 5:-0.21393 6:-0.142355 7:-0.283355 8:-0.38756 9:-0.361596 10:-0.0186335 11:-0.135135 12:-0.217822 13:0.294964 14:0.142857
215 | 1.0543 1:-0.178947 2:-0.0508475 3:-0.556509 4:0.803109 5:-0.373134 6:-0.318102 7:-0.537484 8:-0.645933 9:-0.506234 10:-0.36646 11:-0.635135 12:-0.623762 13:-0.179856 14:-0.214286
216 | 0.995 1:1 2:-0.0169492 3:-0.178418 4:0.430052 5:0.00497512 6:0.42355 7:0.339263 8:-0.113238 9:-0.236908 10:-0.515528 11:-0.391892 12:-0.019802 13:0.165468 14:-0.0714286
217 | 1.0678 1:-0.427368 2:-0.0169492 3:-0.74862 4:0.668394 5:-0.631841 6:-0.525483 7:-0.702668 8:-0.639553 9:-0.670823 10:-0.565217 11:-0.675676 12:-0.356436 13:-0.23741 14:-0.285714
218 | 1.0819 1:-0.684211 2:-0.0169492 3:-0.705702 4:0.678756 5:-0.422886 6:-0.507909 7:-0.692503 8:-0.700159 9:-0.625935 10:-0.254658 11:-0.527027 12:-0.732673 13:-0.294964 14:6.66134e-16
219 | 1.0433 1:0.0315789 2:0.0169492 3:-0.339873 4:0.751295 5:-0.174129 6:-0.0333919 7:-0.222363 8:-0.362041 9:-0.167082 10:-0.229814 11:-0.486486 12:0.0792079 13:0.352518 14:0.214286
220 | 1.0646 1:-0.368421 2:0.0508475 3:-0.705702 4:0.647668 5:-0.353234 6:-0.486819 7:-0.50953 8:-0.69697 9:-0.67581 10:-0.602484 11:-0.608108 12:-0.633663 13:-0.323741 14:-0.535714
221 | 1.0706 1:-0.477895 2:0.0847458 3:-0.715921 4:0.699482 5:-0.263682 6:-0.307557 7:-0.43075 8:-0.642743 9:-0.476309 10:-0.36646 11:-0.351351 12:-0.346535 13:0.280576 14:0.107143
222 | 1.0399 1:0.0947368 2:0.0847458 3:-0.0884938 4:0.772021 5:0.134328 6:0.427065 7:0.0419314 8:-0.346093 9:-0.15212 10:0.204969 11:0.0675676 12:0.346535 13:0.582734 14:0.357143
223 | 1.0726 1:-0.515789 2:0.0847458 3:-0.646434 4:0.57513 5:-0.373134 6:-0.476274 7:-0.537484 8:-0.661882 9:-0.376559 10:-0.10559 11:-0.418919 12:-0.693069 13:-0.136691 14:-0.285714
224 | 1.0874 1:-0.781053 2:0.118644 3:-0.805845 4:0.564767 5:-0.59204 6:-0.528998 7:-0.659466 8:-0.779904 9:-0.640898 10:-0.726708 11:-0.540541 12:-0.544554 13:-0.165468 14:-0.571429
225 | 1.074 1:-0.541053 2:0.118644 3:-0.499285 4:0.626943 5:-0.00497512 6:-0.029877 7:-0.341804 8:-0.578947 9:-0.491272 10:-0.490683 11:-0.635135 12:-0.0792079 13:0.453237 14:0.214286
226 | 1.0703 1:-0.473684 2:0.118644 3:-0.9346 4:0.544041 5:-0.771144 6:-0.666081 7:-0.776366 8:-0.920255 9:-0.820449 10:-1 11:-0.918919 12:-0.950495 13:-0.856115 14:-1
227 | 1.065 1:-0.376842 2:0.118644 3:-0.583078 4:0.606218 5:-0.393035 6:-0.212654 7:-0.448539 8:-0.614035 9:-0.531172 10:-0.31677 11:-0.527027 12:-0.148515 13:0.194245 14:0.0714286
228 | 1.0418 1:0.0610526 2:0.118644 3:-0.346004 4:0.854922 5:-0.283582 6:-0.086116 7:-0.306226 8:-0.311005 9:-0.162095 10:0.192547 11:-0.418919 12:-0.168317 13:0.294964 14:-0.0714286
229 | 1.0647 1:-0.372632 2:0.152542 3:-0.542203 4:0.658031 5:-0.303483 6:-0.13181 7:-0.491741 8:-0.572568 9:-0.441397 10:-0.453416 11:-0.540541 12:-0.029703 13:0.309353 14:0.0714286
230 | 1.0601 1:-0.284211 2:0.152542 3:-0.597384 4:0.61658 5:-0.373134 6:-0.321617 7:-0.400254 8:-0.617225 9:-0.591022 10:-0.279503 11:-0.445946 12:-0.247525 13:0.251799 14:0.142857
231 | 1.0745 1:-0.553684 2:0.186441 3:-0.760883 4:0.502591 5:-0.59204 6:-0.286467 7:-0.56798 8:-0.837321 9:-0.710723 10:-0.751553 11:-0.702703 12:-0.316832 13:-0.0935252 14:-0.607143
232 | 1.062 1:-0.322105 2:0.186441 3:-0.478847 4:0.751295 5:-0.174129 6:-0.1529 7:-0.306226 8:-0.499203 9:-0.396509 10:-0.304348 11:-0.5 12:-0.306931 13:0.165468 14:0.142857
233 | 1.0636 1:-0.351579 2:0.220339 3:-0.534028 4:0.740933 5:-0.313433 6:-0.265378 7:-0.524778 8:-0.591707 9:-0.506234 10:-0.267081 11:-0.391892 12:-0.39604 13:0.23741 14:-0.214286
234 | 1.0384 1:0.124211 2:0.220339 3:-0.646434 4:0.564767 5:-0.60199 6:-0.45167 7:-0.35197 8:-0.515152 9:-0.521197 10:-0.639752 11:-0.743243 12:-0.70297 13:-0.266187 14:-0.357143
235 | 1.0403 1:0.0863158 2:0.288136 3:-0.679133 4:0.57513 5:-0.0746269 6:-0.370826 7:-0.39263 8:-0.712919 9:-0.645885 10:-0.664596 11:-0.743243 12:-0.356436 13:0.107914 14:-0.107143
236 | 1.0563 1:-0.216842 2:0.355932 3:-0.589209 4:0.57513 5:-0.283582 6:-0.107206 7:-0.33418 8:-0.722488 9:-0.640898 10:-0.490683 11:-0.513514 12:-0.455446 13:-0.23741 14:-0.107143
237 | 1.0424 1:0.0442105 2:0.355932 3:-0.403229 4:0.772021 5:-0.0547264 6:-0.13181 7:-0.268107 8:-0.486443 9:-0.396509 10:-0.0931677 11:-0.472973 12:-0.227723 13:0.0791367 14:0.142857
238 | 1.0372 1:0.149474 2:0.389831 3:-0.177192 4:0.658031 5:-0.0945274 6:0.346221 7:0.128335 8:-0.145136 9:-0.19202 10:0.00621118 11:-0.567568 12:0.019802 13:0.23741 14:-0.0357143
239 | 1.0705 1:-0.477895 2:0.423729 3:-0.699571 4:0.658031 5:-0.323383 6:-0.420035 7:-0.659466 8:-0.69697 9:-0.301746 10:-0.242236 11:-0.567568 12:-0.50495 13:0.136691 14:-0.107143
240 | 1.0316 1:0.258947 2:0.457627 3:-0.417535 4:0.502591 5:-0.0348259 6:-0.0474517 7:-0.209657 8:-0.505582 9:-0.401496 10:-0.36646 11:-0.337838 12:0.0990099 13:0.366906 14:0.178571
241 | 1.0599 1:-0.284211 2:0.457627 3:-0.926426 4:0.502591 5:-0.641791 6:-0.518453 7:-0.738247 8:-0.917065 9:-0.825436 10:-0.950311 11:-0.864865 12:-0.633663 13:-0.453237 14:-0.75
242 | 1.0207 1:0.473684 2:0.457627 3:-0.133456 4:0.606218 5:-0.233831 6:0.41652 7:0.23507 8:-0.0653907 9:-0.296758 10:0.130435 11:-0.418919 12:-2.22045e-16 13:0.309353 14:0.285714
243 | 1.0304 1:0.28 2:0.491525 3:-0.0537503 4:0.761658 5:0.0248756 6:0.420035 7:0.00635324 8:-0.23126 9:-0.177057 10:0.167702 11:-0.256757 12:0.0693069 13:0.395683 14:0.321429
244 | 1.0256 1:0.372632 2:0.525424 3:-0.106887 4:0.792746 5:0.0149254 6:0.282953 7:0.11817 8:-0.208931 9:-0.0822943 10:0.614907 11:-0.148649 12:0.039604 13:0.266187 14:0.321429
245 | 1.0334 1:0.221053 2:0.525424 3:-0.33783 4:0.61658 5:-0.0447761 6:0.370826 7:-0.0673443 8:-0.470494 9:-0.451372 10:-0.279503 11:-0.324324 12:-0.277228 13:0.194245 14:-0.0357143
246 | 1.0641 1:-0.36 2:0.559322 3:-0.697527 4:0.647668 5:-0.482587 6:-0.363796 7:-0.621347 8:-0.700159 9:-0.645885 10:-0.440994 11:-0.527027 12:-0.564356 13:-0.0935252 14:-0.0357143
247 | 1.0308 1:0.271579 2:0.59322 3:-0.20703 4:0.699482 5:-0.0348259 6:0.209139 7:-0.0292249 8:-0.202552 9:-0.197007 10:0.36646 11:-0.527027 12:0.257426 13:0.669065 14:0.0714286
248 | 1.0736 1:-0.536842 2:0.627119 3:-0.871245 4:0.554404 5:-0.621891 6:-0.652021 7:-0.639136 8:-0.878788 9:-0.880299 10:-0.776398 11:-0.675676 12:-0.920792 13:-0.323741 14:-0.0357143
249 | 1.0236 1:0.414737 2:0.694915 3:-0.325567 4:0.668394 5:-0.0248756 6:0.026362 7:-0.0952986 8:-0.37799 9:-0.381546 10:-0.0310559 11:-0.445946 12:0.029703 13:0.0935252 14:0.535714
250 | 1.0328 1:0.233684 2:0.694915 3:-0.44206 4:0.512953 5:-0.223881 6:0.11775 7:0.0698856 8:-0.467305 9:-0.346633 10:-0.465839 11:-0.675676 12:-0.356436 13:-0.107914 14:-0.214286
251 | 1.0399 1:0.0947368 2:0.694915 3:-0.40936 4:0.699482 5:-0.223881 6:0.0193322 7:-0.189327 8:-0.591707 9:-0.561097 10:0.068323 11:-0.513514 12:-0.435644 13:0.208633 14:0.428571
252 | 1.0271 1:0.343158 2:0.762712 3:-0.27243 4:0.678756 5:-0.0348259 6:0.163445 7:-0.00635324 8:-0.295056 9:-0.396509 10:0.142857 11:-0.256757 12:-0.118812 13:0.294964 14:0.821429
--------------------------------------------------------------------------------
/examples/oneClass.js:
--------------------------------------------------------------------------------
1 | import { loadSVM } from '../wasm.js';
2 | const SVM = await loadSVM();
3 |
4 | let svm = new SVM({
5 | kernel: SVM.KERNEL_TYPES.RBF,
6 | type: SVM.SVM_TYPES.ONE_CLASS,
7 | gamma: 1,
8 | cost: 1,
9 | nu: 0.1,
10 | });
11 | const features = [
12 | [0, 0],
13 | [1, 1],
14 | [1, 0],
15 | [0, 1],
16 | ];
17 | const toPredict = [
18 | [0.5, 0.5],
19 | [1.5, 1],
20 | ];
21 | const expected = [1, -1];
22 | const labels = [0, 0, 0, 0];
23 | svm.train(features, labels);
24 | for (let i = 0; i < toPredict.length; i++) {
25 | const pred = svm.predictOne(toPredict[i]);
26 | console.log(`pred: ${pred}, expected: ${expected[i]}`);
27 | }
28 |
--------------------------------------------------------------------------------
/examples/precomputed.js:
--------------------------------------------------------------------------------
1 | import Kernel from 'ml-kernel';
2 | import range from 'lodash.range';
3 | import { loadSVM } from '../wasm.js';
4 | import data from 'ml-dataset-iris';
5 |
6 | const SVM = await loadSVM();
7 |
8 | const gamma = 0.2;
9 | const cost = 1;
10 |
11 | function exec(time, precomputed) {
12 | const MILISECONDS = time * 1000;
13 | var trainData;
14 |
15 | const features = data.getNumbers();
16 | let labels = data.getClasses();
17 | const classes = data.getDistinctClasses();
18 | const c = {};
19 | classes.forEach((v, idx) => (c[v] = idx));
20 | labels = labels.map((l) => c[l]);
21 |
22 | let result;
23 | const t1 = performance.now();
24 | let t2 = performance.now();
25 | let count = 0;
26 | while (t2 - t1 < MILISECONDS) {
27 | if (precomputed) {
28 | const kernel = new Kernel('gaussian', { sigma: 1 / Math.sqrt(gamma) });
29 | trainData = kernel
30 | .compute(features)
31 | .addColumn(0, range(1, labels.length + 1));
32 | } else {
33 | trainData = features;
34 | }
35 |
36 | const svm = new SVM({
37 | quiet: true,
38 | cost: cost,
39 | kernel: precomputed ? SVM.KERNEL_TYPES.PRECOMPUTED : SVM.KERNEL_TYPES.RBF,
40 | gamma,
41 | });
42 | result = svm.crossValidation(trainData, labels, labels.length);
43 | svm.free();
44 | count++;
45 | t2 = performance.now();
46 | }
47 |
48 | console.log(
49 | 'accuracy: ',
50 | result.reduce(
51 | (prev, current, idx) => (current === labels[idx] ? prev + 1 : prev),
52 | 0,
53 | ) / labels.length,
54 | );
55 | return count;
56 | }
57 |
58 | let count;
59 | count = exec(5, false);
60 | console.log('not precomputed count', count);
61 | count = exec(5, true);
62 | console.log('precomputed count', count);
63 |
--------------------------------------------------------------------------------
/examples/probabilities.js:
--------------------------------------------------------------------------------
1 | import Kernel from 'ml-kernel';
2 | import range from 'lodash.range';
3 | import data from 'ml-dataset-iris';
4 | import { loadSVM } from '../wasm.js';
5 |
6 | const SVM = await loadSVM();
7 |
8 | const gamma = 0.2;
9 | const cost = 1;
10 |
11 | async function exec(precomputed) {
12 | var trainData;
13 |
14 | const features = data.getNumbers();
15 | let labels = data.getClasses();
16 | const classes = data.getDistinctClasses();
17 | const c = {};
18 | classes.forEach((v, idx) => (c[v] = idx));
19 | labels = labels.map((l) => c[l]);
20 |
21 | if (precomputed) {
22 | const kernel = new Kernel('gaussian', { sigma: 1 / Math.sqrt(gamma) });
23 | trainData = kernel
24 | .compute(features)
25 | .addColumn(0, range(1, labels.length + 1));
26 | } else {
27 | trainData = features;
28 | }
29 |
30 | const svm = new SVM({
31 | quiet: true,
32 | cost: cost,
33 | kernel: precomputed ? SVM.KERNEL_TYPES.PRECOMPUTED : SVM.KERNEL_TYPES.RBF,
34 | gamma,
35 | probabilityEstimates: true,
36 | });
37 | svm.train(trainData, labels);
38 | var pred = svm.predictProbability(trainData);
39 | console.log(JSON.stringify(pred, null, 2));
40 | }
41 |
42 | await exec(true);
43 |
--------------------------------------------------------------------------------
/examples/svr.js:
--------------------------------------------------------------------------------
1 | import { loadSVM } from '../wasm.js';
2 |
3 | const SVM = await loadSVM();
4 | const svm = new SVM({
5 | type: SVM.SVM_TYPES.EPSILON_SVR,
6 | });
7 | const l = 20;
8 | const data = Array.from({ length: l }).map((val, idx) => {
9 | const x = (idx / l) * 2 * Math.PI;
10 | const y = Math.sin(x) + 1;
11 | return [[x], y];
12 | });
13 |
14 | const x = data.map((d) => d[0]);
15 | const y = data.map((d) => d[1]);
16 |
17 | svm.train(x, y);
18 | const pred = svm.predict(x);
19 |
20 | y.forEach((v, idx) => console.log(v, pred[idx]));
21 |
--------------------------------------------------------------------------------
/examples/xor.js:
--------------------------------------------------------------------------------
1 | import { loadSVM } from '../wasm.js';
2 |
3 | const SVM = await loadSVM();
4 |
5 | let svm = new SVM({
6 | kernel: SVM.KERNEL_TYPES.RBF,
7 | type: SVM.SVM_TYPES.C_SVC,
8 | gamma: 1,
9 | cost: 1,
10 | });
11 | const features = [
12 | [0, 0],
13 | [1, 1],
14 | [1, 0],
15 | [0, 1],
16 | ];
17 | const labels = [0, 0, 1, 1];
18 | svm.train(features, labels);
19 | for (let i = 0; i < features.length; i++) {
20 | const pred = svm.predictOne(features[i]);
21 | console.log(`actual: ${labels[i]}, predicted: ${pred}`);
22 | }
23 |
24 | console.log('sv indices', svm.getSVIndices());
25 | console.log('labels', svm.getLabels());
26 | console.log('save model', svm.serializeModel());
27 |
--------------------------------------------------------------------------------
/js-interfaces.c:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include "js-interfaces.h"
7 | #include "libsvm/svm.h"
8 | #define Malloc(type, n) (type *)malloc((n) * sizeof(type))
9 |
10 | void print_null(const char *s) {}
11 |
12 | void exit_with_help() { exit(1); }
13 |
14 | #ifdef __cplusplus
15 | extern "C" {
16 | #endif
17 |
18 | void parse_command_line(const char *input_command, struct svm_parameter *param)
19 | {
20 | void (*print_func)(const char *) = NULL; // default printing to stdout
21 | char command[256];
22 | char *curr = NULL;
23 | char *prev = NULL;
24 |
25 | strcpy(command, input_command);
26 | curr = strtok(command, " \t\n"); // label
27 |
28 | // default values
29 | param->svm_type = C_SVC;
30 | param->kernel_type = RBF;
31 | param->degree = 3;
32 | param->gamma = 0; // 1/num_features
33 | param->coef0 = 0;
34 | param->nu = 0.5;
35 | param->cache_size = 100;
36 | param->C = 1;
37 | param->eps = 1e-3;
38 | param->p = 0.1;
39 | param->shrinking = 1;
40 | param->probability = 0;
41 | param->nr_weight = 0;
42 | param->weight_label = NULL;
43 | param->weight = NULL;
44 |
45 | if (curr == NULL)
46 | return;
47 |
48 | do
49 | {
50 | if (curr[0] != '-')
51 | break;
52 |
53 | prev = curr;
54 | if ((curr = strtok(NULL, " \t\n")) == NULL)
55 | exit_with_help();
56 |
57 | switch (prev[1])
58 | {
59 | case 's':
60 | param->svm_type = atoi(curr);
61 | break;
62 | case 't':
63 | param->kernel_type = atoi(curr);
64 | break;
65 | case 'd':
66 | param->degree = atoi(curr);
67 | break;
68 | case 'g':
69 | param->gamma = atof(curr);
70 | break;
71 | case 'r':
72 | param->coef0 = atof(curr);
73 | break;
74 | case 'n':
75 | param->nu = atof(curr);
76 | break;
77 | case 'm':
78 | param->cache_size = atof(curr);
79 | break;
80 | case 'c':
81 | param->C = atof(curr);
82 | break;
83 | case 'e':
84 | param->eps = atof(curr);
85 | break;
86 | case 'q':
87 | print_func = &print_null;
88 | break;
89 | case 'p':
90 | param->p = atof(curr);
91 | break;
92 | case 'h':
93 | param->shrinking = atoi(curr);
94 | break;
95 | case 'b':
96 | param->probability = atoi(curr);
97 | break;
98 | case 'w':
99 | ++param->nr_weight;
100 | param->weight_label = (int *)realloc(param->weight_label, sizeof(int) * param->nr_weight);
101 | param->weight = (double *)realloc(param->weight, sizeof(double) * param->nr_weight);
102 | param->weight_label[param->nr_weight - 1] = atoi(&prev[2]);
103 | param->weight[param->nr_weight - 1] = atof(curr);
104 | break;
105 | default:
106 | fprintf(stderr, "Unknown option: -%c\n", prev[1]);
107 | exit_with_help();
108 | }
109 | } while ((curr = strtok(NULL, " \t\n")) != NULL);
110 |
111 | svm_set_print_string_function(print_func);
112 | }
113 |
114 | void add_instance(struct svm_problem *prob, double *features, int nb_dimensions, double y, int i)
115 | {
116 | for (int j = 0; j < nb_dimensions; j++)
117 | {
118 | prob->x[i][j].index = j + 1;
119 | prob->x[i][j].value = features[j];
120 | }
121 | prob->x[i][nb_dimensions].index = -1;
122 | prob->y[i] = y;
123 | }
124 |
125 | char *serialize_model(struct svm_model *model)
126 | {
127 | int success = svm_save_model("testfile.txt", model);
128 | if (success < 0)
129 | return NULL;
130 | FILE *f = fopen("testfile.txt", "rb");
131 | fseek(f, 0, SEEK_END);
132 | long fsize = ftell(f);
133 | fseek(f, 0, SEEK_SET); //same as rewind(f);
134 |
135 | char *string = Malloc(char, fsize + 1);
136 | fread(string, fsize, 1, f);
137 | fclose(f);
138 |
139 | string[fsize] = 0;
140 | return string;
141 | }
142 |
143 | struct svm_model *deserialize_model(const char *serialized)
144 | {
145 | FILE *f = fopen("testfile.txt", "w");
146 | fprintf(f, "%s", serialized);
147 | fclose(f);
148 | return svm_load_model("testfile.txt");
149 | }
150 |
151 | struct svm_problem *create_svm_nodes(int nb_features, int nb_dimensions)
152 | {
153 | struct svm_problem *prob = Malloc(struct svm_problem, 1);
154 | prob->l = nb_features;
155 | prob->y = Malloc(double, prob->l);
156 | prob->x = Malloc(struct svm_node *, prob->l);
157 | struct svm_node *x_space = Malloc(struct svm_node, prob->l * (nb_dimensions + 1));
158 |
159 | for (int i = 0; i < prob->l; ++i)
160 | prob->x[i] = x_space + i * (nb_dimensions + 1);
161 |
162 | return prob;
163 | }
164 |
165 | void svm_free_model(struct svm_model *model)
166 | {
167 | svm_free_and_destroy_model(&model);
168 | }
169 |
170 | struct svm_model *libsvm_train_problem(struct svm_problem *prob, const char *command)
171 | {
172 | struct svm_parameter param;
173 | parse_command_line(command, ¶m);
174 |
175 | if (param.svm_type == EPSILON_SVR || param.svm_type == NU_SVR)
176 | {
177 | if (param.gamma == 0)
178 | param.gamma = .1;
179 | }
180 | else
181 | {
182 | if (param.gamma == 0)
183 | param.gamma = .5;
184 | }
185 |
186 | struct svm_model *model = svm_train(prob, ¶m);
187 |
188 | svm_destroy_param(¶m);
189 | return model;
190 | }
191 |
192 | void libsvm_cross_validation(struct svm_problem *prob, const char *command, int kFold, double *target)
193 | {
194 | struct svm_parameter param;
195 | parse_command_line(command, ¶m);
196 | svm_cross_validation(prob, ¶m, kFold, target);
197 | svm_destroy_param(¶m);
198 | }
199 |
200 | void free_problem(struct svm_problem *prob)
201 | {
202 | free(prob->y);
203 | if (prob->l > 0)
204 | {
205 | free(prob->x[0]);
206 | }
207 | free(prob->x);
208 | free(prob);
209 | }
210 |
211 | struct svm_node *init_node(double *data, int size)
212 | {
213 | struct svm_node *node = Malloc(struct svm_node, size + 1);
214 | for (int i = 0; i < size; i++)
215 | {
216 | node[i].index = i + 1;
217 | node[i].value = data[i];
218 | }
219 | node[size].index = -1;
220 | return node;
221 | }
222 |
223 | double libsvm_predict_one(struct svm_model *model, double *data, int size)
224 | {
225 | struct svm_node *node = init_node(data, size);
226 | double pred = svm_predict(model, node);
227 | free(node);
228 | return pred;
229 | }
230 |
231 | double libsvm_predict_one_probability(struct svm_model *model, double *data, int size, double *prob_estimates)
232 | {
233 | struct svm_node *node = init_node(data, size);
234 | double pred = svm_predict_probability(model, node, prob_estimates);
235 | return pred;
236 | }
237 |
238 | struct svm_model *libsvm_train(double *data, double *labels, int nb_features, int nb_dimensions, const char *command)
239 | {
240 | struct svm_problem *prob = create_svm_nodes(nb_features, nb_dimensions);
241 | for (int i = 0; i < nb_features; i++)
242 | {
243 | for (int j = 0; j < nb_dimensions; j++)
244 | {
245 | prob->x[i][j].index = j + 1;
246 | prob->x[i][j].value = data[i * nb_dimensions + j];
247 | }
248 | prob->x[i][nb_dimensions].index = -1;
249 | prob->y[i] = labels[i];
250 | }
251 |
252 | return libsvm_train_problem(prob, command);
253 | }
254 |
255 | double get_svr_epsilon(struct svm_model *model)
256 | {
257 | return model->param.p;
258 | }
259 |
260 | #ifdef __cplusplus
261 | }
262 | #endif
263 |
--------------------------------------------------------------------------------
/js-interfaces.h:
--------------------------------------------------------------------------------
1 | #ifndef JS_INTERFACES
2 | #define JS_INTERFACES
3 |
4 | #include "libsvm/svm.h"
5 |
6 | #ifdef __cplusplus
7 | extern "C" {
8 | #endif
9 |
10 | void print_null(const char *s);
11 | void exit_with_help();
12 | void parse_command_line(const char* input_command, struct svm_parameter* param);
13 | void add_instance(struct svm_problem* prob, double* features, int nb_dimensions, double y, int i);
14 | char* serialize_model(struct svm_model* model);
15 | struct svm_model* deserialize_model(const char* serialized);
16 | struct svm_problem* create_svm_nodes(int nb_features, int nb_dimensions);
17 | void svm_free_model(struct svm_model *model);
18 | struct svm_model* libsvm_train_problem(struct svm_problem* prob, const char* command);
19 | double libsvm_predict_one(struct svm_model* model, double* data, int size);
20 | struct svm_model* libsvm_train(double *data, double *labels, int nb_features, int nb_dimensions, const char* command);
21 | double get_svr_epsilon(struct svm_model* model);
22 | void free_problem(struct svm_problem* prob);
23 | void libsvm_cross_validation(struct svm_problem* problem, const char* command, int kFold, double* target);
24 |
25 | #ifdef __cplusplus
26 | }
27 | #endif
28 |
29 | #endif
30 |
--------------------------------------------------------------------------------
/package.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "libsvm-js",
3 | "version": "0.2.1",
4 | "description": "A port of libsvm to javascript using emscripten",
5 | "type": "module",
6 | "module": "wasm.js",
7 | "files": [
8 | "src",
9 | "build",
10 | "wasm.js",
11 | "LICENSE"
12 | ],
13 | "scripts": {
14 | "benchmark": "node benchmark/bin",
15 | "build": "run-s build-emscripten-wasm build-emscripten-clean",
16 | "build-benchmark": "(cd benchmark/iris; make clean && make)",
17 | "build-emscripten-clean": "make clean",
18 | "build-emscripten-wasm": "rm -rf build && make wasm",
19 | "demo-build": "vite build demos",
20 | "docs": "jsdoc2md src/loadSVM.js -t .docs/Readme.hbs --no-cache > README.md",
21 | "prepare": "git submodule init && git submodule update",
22 | "dev": "vite demos",
23 | "test": "npm run test-mocha",
24 | "test-mocha": "mocha --require should --recursive test"
25 | },
26 | "repository": {
27 | "type": "git",
28 | "url": "git+https://github.com/mljs/libsvm.git"
29 | },
30 | "keywords": [
31 | "svm",
32 | "libsvm",
33 | "machine",
34 | "learning",
35 | "support",
36 | "vector",
37 | "machines"
38 | ],
39 | "author": "Daniel Kostro ",
40 | "license": "BSD-3-Clause",
41 | "bugs": {
42 | "url": "https://github.com/mljs/libsvm/issues"
43 | },
44 | "homepage": "https://github.com/mljs/libsvm#readme",
45 | "devDependencies": {
46 | "@types/react": "^18.3.23",
47 | "@types/react-dom": "^18.3.7",
48 | "@vitejs/plugin-react-refresh": "^1.3.6",
49 | "bootstrap": "^5.3.7",
50 | "chroma-js": "^3.1.2",
51 | "cli-table": "^0.3.1",
52 | "jsdoc-to-markdown": "^9.1.1",
53 | "lodash-es": "^4.17.4",
54 | "lodash.range": "^3.2.0",
55 | "ml-dataset-iris": "^1.0.0",
56 | "ml-kernel": "^3.0.0",
57 | "ml-svm": "^2.1.2",
58 | "mocha": "^11.7.1",
59 | "npm-run-all": "^4.1.2",
60 | "react": "^18.3.1",
61 | "react-dom": "^18.3.1",
62 | "react-icons": "^5.5.0",
63 | "react-hook-form": "^7.29.0",
64 | "react-redux": "^9.2.0",
65 | "react-router": "^7.6.3",
66 | "react-router-dom": "^7.6.3",
67 | "redux": "^5.0.1",
68 | "redux-undo": "^1.0.0",
69 | "should": "^13.2.3",
70 | "vite": "^7.0.4"
71 | },
72 | "volta": {
73 | "node": "24.4.0"
74 | }
75 | }
76 |
--------------------------------------------------------------------------------
/src/loadSVM.js:
--------------------------------------------------------------------------------
1 | import { getCommand } from './util.js';
2 |
3 | export default function loadSVM(libsvm) {
4 | /* eslint-disable camelcase */
5 | const predict_one = libsvm.cwrap('libsvm_predict_one', 'number', [
6 | 'number',
7 | 'array',
8 | 'number',
9 | ]);
10 | const predict_one_probability = libsvm.cwrap(
11 | 'libsvm_predict_one_probability',
12 | 'number',
13 | ['number', 'array', 'number', 'number'],
14 | );
15 | const add_instance = libsvm.cwrap('add_instance', null, [
16 | 'number',
17 | 'array',
18 | 'number',
19 | 'number',
20 | 'number',
21 | ]);
22 | const create_svm_nodes = libsvm.cwrap('create_svm_nodes', 'number', [
23 | 'number',
24 | 'number',
25 | ]);
26 | const train_problem = libsvm.cwrap('libsvm_train_problem', 'number', [
27 | 'number',
28 | 'string',
29 | ]);
30 | const svm_get_nr_sv = libsvm.cwrap('svm_get_nr_sv', 'number', ['number']);
31 | const svm_get_nr_class = libsvm.cwrap('svm_get_nr_class', 'number', [
32 | 'number',
33 | ]);
34 | const svm_get_sv_indices = libsvm.cwrap('svm_get_sv_indices', null, [
35 | 'number',
36 | 'number',
37 | ]);
38 | const svm_get_labels = libsvm.cwrap('svm_get_labels', null, [
39 | 'number',
40 | 'number',
41 | ]);
42 | const svm_free_model = libsvm.cwrap('svm_free_model', null, ['number']);
43 | const svm_cross_validation = libsvm.cwrap('libsvm_cross_validation', null, [
44 | 'number',
45 | 'string',
46 | 'number',
47 | 'number',
48 | ]);
49 | const svm_get_svr_probability = libsvm.cwrap(
50 | 'svm_get_svr_probability',
51 | null,
52 | ['number'],
53 | );
54 | const free_problem = libsvm.cwrap('free_problem', null, ['number']);
55 | const serialize_model = libsvm.cwrap('serialize_model', 'number', ['number']);
56 | const deserialize_model = libsvm.cwrap('deserialize_model', 'number', [
57 | 'string',
58 | ]);
59 |
60 | /* eslint-enable camelcase */
61 |
62 | class SVM {
63 | /**
64 | * @constructor
65 | * @param {object} options
66 | * @param {number} [options.type=SVM_TYPES.C_SVC] - Type of SVM to perform,
67 | * @param {number} [options.kernel=KERNEL_TYPES.RBF] - Kernel function,
68 | * @param {number} [options.degree=3] - Degree of polynomial, for polynomial kernel
69 | * @param {number} [options.gamma] - Gamma parameter of the RBF, Polynomial and Sigmoid kernels. Default value is 1/num_features
70 | * @param {number} [options.coef0=0] - coef0 parameter for Polynomial and Sigmoid kernels
71 | * @param {number} [options.cost=1] - Cost parameter, for C SVC, Epsilon SVR and NU SVR
72 | * @param {number} [options.nu=0.5] - For NU SVC and NU SVR
73 | * @param {number} [options.epsilon=0.1] - For epsilon SVR
74 | * @param {number} [options.cacheSize=100] - Cache size in MB
75 | * @param {number} [options.tolerance=0.001] - Tolerance
76 | * @param {boolean} [options.shrinking=true] - Use shrinking euristics (faster),
77 | * @param {boolean} [options.probabilityEstimates=false] - weather to train SVC/SVR model for probability estimates,
78 | * @param {object} [options.weight] - Set weight for each possible class
79 | * @param {boolean} [options.quiet=true] - Print info during training if false
80 | */
81 | constructor(options) {
82 | this.options = Object.assign({}, options);
83 | this.model = null;
84 | }
85 |
86 | /**
87 | * Trains the SVM model.
88 | * @param {Array>} samples - The training samples. First level of array are the samples, second
89 | * level are the individual features
90 | * @param {Array} labels - The training labels. It should have the same size as the samples. If you are
91 | * training a classification model, the labels should be distinct integers for each class. If you are training
92 | * a regression model, each label should be the value of the predicted variable.
93 | * @throws if SVM instance was instantiated from SVM.load.
94 | */
95 | train(samples, labels) {
96 | if (this._deserialized)
97 | throw new Error(
98 | 'Train cannot be called on instance created with SVM.load',
99 | );
100 | this.free();
101 | this.problem = createProblem(samples, labels);
102 | const command = this.getCommand(samples);
103 | this.model = train_problem(this.problem, command);
104 | }
105 |
106 | /**
107 | * Performs k-fold cross-validation (KF-CV). KF-CV separates the data-set into kFold random equally sized partitions,
108 | * and uses each as a validation set, with all other partitions used in the training set. Observations left over
109 | * from if kFold does not divide the number of observations are left out of the cross-validation process. If
110 | * kFold is one, this is equivalent to a leave-on-out cross-validation
111 | * @param {Array>} samples - The training samples.
112 | * @param {Array} labels - The training labels.
113 | * @param {number} kFold - Number of datasets into which to split the training set.
114 | * @throws if SVM instance was instantiated from SVM.load.
115 | * @return {Array} The array of predicted labels produced by the cross validation. Has a size equal to
116 | * the number of samples provided as input.
117 | */
118 | crossValidation(samples, labels, kFold) {
119 | if (this._deserialized)
120 | throw new Error(
121 | 'crossValidation cannot be called on instance created with SVM.load',
122 | );
123 | const problem = createProblem(samples, labels);
124 | const target = libsvm._malloc(labels.length * 8);
125 | svm_cross_validation(problem, this.getCommand(samples), kFold, target);
126 | const data = libsvm.HEAPF64.subarray(
127 | target / 8,
128 | target / 8 + labels.length,
129 | );
130 | const arr = Array.from(data);
131 | libsvm._free(target);
132 | free_problem(problem);
133 | return arr;
134 | }
135 |
136 | /**
137 | * Free the memory allocated for the model. Since this memory is stored in the memory model of emscripten, it is
138 | * allocated within an ArrayBuffer and WILL NOT BE GARBARGE COLLECTED, you have to explicitly free it. So
139 | * not calling this will result in memory leaks. As of today in the browser, there is no way to hook the
140 | * garbage collection of the SVM object to free it automatically.
141 | * Free the memory that was created by the compiled libsvm library to.
142 | * store the model. This model is reused every time the predict method is called.
143 | */
144 | free() {
145 | if (this.problem) {
146 | free_problem(this.problem);
147 | this.problem = null;
148 | }
149 | if (this.model !== null) {
150 | svm_free_model(this.model);
151 | this.model = null;
152 | }
153 | }
154 |
155 | getCommand(samples) {
156 | const options = {};
157 | Object.assign(options, this.options, {
158 | gamma: this.options.gamma ? this.options.gamma : 1 / samples[0].length,
159 | });
160 | return getCommand(options);
161 | }
162 |
163 | /**
164 | * Predict the label of one sample.
165 | * @param {Array} sample - The sample to predict.
166 | * @return {number} - The predicted label.
167 | */
168 | predictOne(sample) {
169 | if (this.model === null) {
170 | throw new Error('Cannot predict, you must train first');
171 | }
172 | return predict_one(
173 | this.model,
174 | new Uint8Array(new Float64Array(sample).buffer),
175 | sample.length,
176 | );
177 | }
178 |
179 | /**
180 | * Predict the label of many samples.
181 | * @param {Array>} samples - The samples to predict.
182 | * @return {Array} - The predicted labels.
183 | */
184 | predict(samples) {
185 | let arr = [];
186 | for (let i = 0; i < samples.length; i++) {
187 | arr.push(this.predictOne(samples[i]));
188 | }
189 | return arr;
190 | }
191 |
192 | /**
193 | * Predict the label with probability estimate of many samples.
194 | * @param {Array>} samples - The samples to predict.
195 | * @return {Array} - An array of objects containing the prediction label and the probability estimates for each label
196 | */
197 | predictProbability(samples) {
198 | let arr = [];
199 | for (let i = 0; i < samples.length; i++) {
200 | arr.push(this.predictOneProbability(samples[i]));
201 | }
202 | return arr;
203 | }
204 |
205 | /** Predict the label with probability estimate.
206 | * @param {Array} sample
207 | * @return {object} - An object containing the prediction label and the probability estimates for each label
208 | */
209 |
210 | predictOneProbability(sample) {
211 | const labels = this.getLabels();
212 | const nbLabels = labels.length;
213 | const estimates = libsvm._malloc(nbLabels * 8);
214 | const prediction = predict_one_probability(
215 | this.model,
216 | new Uint8Array(new Float64Array(sample).buffer),
217 | sample.length,
218 | estimates,
219 | );
220 | const estimatesArr = Array.from(
221 | libsvm.HEAPF64.subarray(estimates / 8, estimates / 8 + nbLabels),
222 | );
223 | const result = {
224 | prediction,
225 | estimates: labels.map((label, idx) => ({
226 | label,
227 | probability: estimatesArr[idx],
228 | })),
229 | };
230 | libsvm._free(estimates);
231 | return result;
232 | }
233 |
234 | /** Predict a regression value with a confidence interval
235 | * @param {Array} sample
236 | * @param {number} confidence - A value between 0 and 1. For example, a value 0.95 will give you the 95% confidence interval of the predicted value.
237 | * @return {object} - An object containing the prediction value and the lower and upper bounds of the confidence interval
238 | */
239 | predictOneInterval(sample, confidence) {
240 | const interval = this._getInterval(confidence);
241 | const predicted = this.predictOne(sample);
242 | return {
243 | predicted,
244 | interval: [predicted - interval, predicted + interval],
245 | };
246 | }
247 |
248 | /** Predict regression values with confidence intervals
249 | * @param {Array>} samples - An array of samples.
250 | * @param {number} confidence - A value between 0 and 1. For example, a value 0.95 will give you the 95% confidence interval of the predicted value.
251 | * @return {Array} - An array of objects each containing the prediction label and the probability estimates for each label
252 | */
253 | predictInterval(samples, confidence) {
254 | const interval = this._getInterval(confidence);
255 | const predicted = this.predict(samples);
256 | return predicted.map((pred) => ({
257 | predicted: pred,
258 | interval: [pred - interval, pred + interval],
259 | }));
260 | }
261 |
262 | _getInterval(confidence) {
263 | const sigma = svm_get_svr_probability(this.model);
264 | if (sigma === 0)
265 | throw new Error(
266 | 'the model is not a regression with probability estimates',
267 | );
268 | if (confidence <= 0 || confidence >= 1)
269 | throw new Error('confidence must be greater than 0 and less than 1');
270 | const p = (1 - confidence) / 2;
271 | return sigma * Math.sign(p - 0.5) * Math.log2(1 - 2 * Math.abs(p - 0.5));
272 | }
273 |
274 | /**
275 | * Get the array of labels from the model. Useful when creating an SVM instance with SVM.load
276 | * @return {Array} - The list of labels.
277 | */
278 | getLabels() {
279 | const nbLabels = svm_get_nr_class(this.model);
280 | return getIntArrayFromModel(svm_get_labels, this.model, nbLabels);
281 | }
282 |
283 | /**
284 | * Get the indices of the support vectors from the training set passed to the train method.
285 | * @return {Array} - The list of indices from the training samples.
286 | */
287 | getSVIndices() {
288 | const nSV = svm_get_nr_sv(this.model);
289 | return getIntArrayFromModel(svm_get_sv_indices, this.model, nSV).map(
290 | (i) => i - 1,
291 | );
292 | }
293 |
294 | /**
295 | * Uses libsvm's serialization method of the model.
296 | * @return {string} The serialization string.
297 | */
298 | serializeModel() {
299 | if (!this.model)
300 | throw new Error('Cannot serialize model. No model was trained');
301 | const result = serialize_model(this.model);
302 | const str = libsvm.UTF8ToString(result);
303 | libsvm._free(result);
304 | return str;
305 | }
306 |
307 | /**
308 | * Create a SVM instance from the serialized model.
309 | * @param {string} serializedModel - The serialized model.
310 | * @return {SVM} - SVM instance that contains the model.
311 | */
312 | static load(serializedModel) {
313 | const svm = new SVM();
314 | svm.model = deserialize_model(serializedModel);
315 | svm._deserialized = true;
316 | return svm;
317 | }
318 | }
319 |
320 | /**
321 | * SVM classification and regression types
322 | * @memberof SVM
323 | * @type {{C_SVC: string, NU_SVC: string, ONE_CLASS: string, EPSILON_SVR: string, NU_SVR: string}}
324 | * @property C_SVC - The C support vector classifier type
325 | * @property NU_SVC - The nu support vector classifier type
326 | * @property ONE_CLASS - The one-class support vector classifier type
327 | * @property EPSILON_SVR - The epsilon support vector regression type
328 | * @property NU_SVR - The nu support vector regression type
329 | */
330 | SVM.SVM_TYPES = {
331 | C_SVC: '0', // C support vector classification
332 | NU_SVC: '1', // NU support vector classification
333 | ONE_CLASS: '2', // ONE CLASS classification
334 | EPSILON_SVR: '3', // Epsilon support vector regression
335 | NU_SVR: '4', // Nu support vector regression
336 | };
337 |
338 | /**
339 | * SVM kernel types
340 | * @memberof SVM
341 | * @type {{LINEAR: string, POLYNOMIAL: string, RBF: string, SIGMOID: string}}
342 | * @property LINEAR - Linear kernel
343 | * @property POLYNOMIAL - Polynomial kernel
344 | * @property RBF - Radial basis function (gaussian) kernel
345 | * @property SIGMOID - Sigmoid kernel
346 | */
347 | SVM.KERNEL_TYPES = {
348 | LINEAR: '0',
349 | POLYNOMIAL: '1',
350 | RBF: '2', // Radial basis function
351 | SIGMOID: '3',
352 | PRECOMPUTED: '4',
353 | };
354 |
355 | function getIntArrayFromModel(fn, model, size) {
356 | const offset = libsvm._malloc(size * 4);
357 | fn(model, offset);
358 | const data = libsvm.HEAP32.subarray(offset / 4, offset / 4 + size);
359 | const arr = Array.from(data);
360 | libsvm._free(offset);
361 | return arr;
362 | }
363 |
364 | function createProblem(samples, labels) {
365 | const nbSamples = samples.length;
366 | const nbFeatures = samples[0].length;
367 | const problem = create_svm_nodes(nbSamples, nbFeatures);
368 | for (let i = 0; i < nbSamples; i++) {
369 | add_instance(
370 | problem,
371 | new Uint8Array(new Float64Array(samples[i]).buffer),
372 | nbFeatures,
373 | labels[i],
374 | i,
375 | );
376 | }
377 | return problem;
378 | }
379 |
380 | return SVM;
381 | }
382 |
--------------------------------------------------------------------------------
/src/util.js:
--------------------------------------------------------------------------------
1 | 'use strict';
2 |
3 | const mapOptionToCommand = {
4 | quiet: 'q',
5 | type: 's',
6 | kernel: 't',
7 | degree: 'd',
8 | gamma: 'g',
9 | coef0: 'r',
10 | cost: 'c',
11 | nu: 'n',
12 | epsilon: 'p',
13 | cacheSize: 'm',
14 | tolerance: 'e',
15 | shrinking: 'h',
16 | probabilityEstimates: 'b',
17 | weight: 'w',
18 | };
19 |
20 | export function getCommand(options) {
21 | var str = '';
22 | var keys = Object.keys(options);
23 | for (var i = 0; i < keys.length; i++) {
24 | var key = keys[i];
25 | if (options[key] == null) continue;
26 | if (mapOptionToCommand[key] == null) throw new Error('Bad option');
27 | if (str) str += ' ';
28 | switch (key) {
29 | case 'probabilityEstimates':
30 | case 'shrinking':
31 | str += `-${mapOptionToCommand[key]} ${options[key] ? 1 : 0}`;
32 | break;
33 | case 'quiet': {
34 | if (options[key]) {
35 | str += `-${mapOptionToCommand[key]} 1`;
36 | }
37 | break;
38 | }
39 | case 'weight': {
40 | const weightKeys = Object.keys(options.weight);
41 | for (let j = 0; j < weightKeys.length; j++) {
42 | if (j !== 0) str += ' ';
43 | str += `-w${weightKeys[j]} ${options.weight[weightKeys[j]]}`;
44 | }
45 | break;
46 | }
47 | default: {
48 | str += `-${mapOptionToCommand[key]} ${options[key]}`;
49 | break;
50 | }
51 | }
52 | }
53 |
54 | return str;
55 | }
56 |
--------------------------------------------------------------------------------
/test/util.js:
--------------------------------------------------------------------------------
1 | import { getCommand } from '../src/util.js';
2 |
3 | describe('util', function () {
4 | it('should return proper command string', function () {
5 | getCommand({
6 | weight: {
7 | 1: 3,
8 | 2: 5,
9 | },
10 | }).should.equal('-w1 3 -w2 5');
11 | getCommand({ quiet: true }).should.equal('-q 1');
12 | getCommand({ quiet: false }).should.equal('');
13 | getCommand({ probabilityEstimates: true }).should.equal('-b 1');
14 | getCommand({ probabilityEstimates: false }).should.equal('-b 0');
15 | getCommand({ type: 0 }).should.equal('-s 0');
16 | getCommand({ kernel: 2 }).should.equal('-t 2');
17 | getCommand({ degree: 2 }).should.equal('-d 2');
18 | getCommand({ cost: 0.01 }).should.equal('-c 0.01');
19 | getCommand({ coef0: 0 }).should.equal('-r 0');
20 | getCommand({ epsilon: 1 }).should.equal('-p 1');
21 | getCommand({ cacheSize: 300 }).should.equal('-m 300');
22 | getCommand({ shrinking: true }).should.equal('-h 1');
23 | getCommand({ shrinking: false }).should.equal('-h 0');
24 | getCommand({ nu: 0.5 }).should.equal('-n 0.5');
25 | getCommand({ tolerance: 0.001 }).should.equal('-e 0.001');
26 | getCommand({
27 | degree: 2,
28 | shrinking: true,
29 | }).should.equal('-d 2 -h 1');
30 | });
31 |
32 | it('should throw if bad option', function () {
33 | (function () {
34 | getCommand({ bad: true });
35 | }).should.throw(/Bad option/);
36 | });
37 | });
38 |
--------------------------------------------------------------------------------
/tools/iris.js:
--------------------------------------------------------------------------------
1 | import fs from 'node:fs';
2 | import path from 'node:path';
3 | import data from 'ml-dataset-iris';
4 |
5 | const dataset = data.getDataset();
6 | const distinctClasses = data.getDistinctClasses();
7 | dataset.forEach((d) => {
8 | d[4] = distinctClasses.indexOf(d[4]);
9 | });
10 | const str = dataset.map((d) => d.join(' ')).join('\n');
11 | fs.writeFileSync(
12 | path.resolve(import.meta.dirname, '../benchmark/iris/data.txt'),
13 | str,
14 | );
15 |
--------------------------------------------------------------------------------
/wasm.js:
--------------------------------------------------------------------------------
1 | import load from './src/loadSVM.js';
2 | import libsvm from './build/libsvm.js';
3 |
4 | export async function loadSVM() {
5 | const module = await libsvm();
6 | return load(module);
7 | }
8 |
--------------------------------------------------------------------------------