├── notebooks ├── model_scores.p ├── arima_model_scores.p ├── 04_viewing_results.ipynb └── 03_arima_modeling.ipynb ├── model_output ├── lstm_forecast.png ├── XGBoost_forecast.png ├── arima_forecast.png ├── compare_models.png ├── RandomForest_forecast.png └── LinearRegression_forecast.png ├── README.md ├── results.py ├── data_preprocessing.py └── models.py /notebooks/model_scores.p: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/notebooks/model_scores.p -------------------------------------------------------------------------------- /model_output/lstm_forecast.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/model_output/lstm_forecast.png -------------------------------------------------------------------------------- /notebooks/arima_model_scores.p: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/notebooks/arima_model_scores.p -------------------------------------------------------------------------------- /model_output/XGBoost_forecast.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/model_output/XGBoost_forecast.png -------------------------------------------------------------------------------- /model_output/arima_forecast.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/model_output/arima_forecast.png -------------------------------------------------------------------------------- /model_output/compare_models.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/model_output/compare_models.png -------------------------------------------------------------------------------- /model_output/RandomForest_forecast.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/model_output/RandomForest_forecast.png -------------------------------------------------------------------------------- /model_output/LinearRegression_forecast.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/mollyryanruby/sales_forecasting/HEAD/model_output/LinearRegression_forecast.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # NEW LOCATION FOR UPDATED CODE: https://github.com/mollyryanruby/auto_forecast 2 | # 5 Machine Learning Techniques for Forecasting Sales 3 | 4 | ## Objective: 5 | Predict the number of monthly product sales using regressive and time-series modeling techniques. 6 | Paper: 7 | https://medium.com/towards-data-science/5-machine-learning-techniques-for-sales-forecasting-598e4984b109 8 | 9 | ## Featured Techniques: 10 | * EDA 11 | * Linear Regression 12 | * Random Forest Regression 13 | * XGBoost 14 | * Long Short Term Memory (artifical recurrent neural network) 15 | * ARIMA Time Series Forecasting 16 | 17 | ## Results: 18 | * Best results were obtained from the XGBoost and LSTM models 19 | * All models predicted within 2% of monthly mean sales for 12 month prediction 20 | 21 | ## Data Source: 22 | https://www.kaggle.com/c/demand-forecasting-kernels-only/data 23 | 24 | -------------------------------------------------------------------------------- /results.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script creates a csv of the model scores and outputs a plot to visualize 3 | the comparison. 4 | 5 | Models include Linear Regression, Random Forest, XGBoost, LSTM,and ARIMA. 6 | """ 7 | 8 | import pickle 9 | import pandas as pd 10 | import numpy as np 11 | 12 | import matplotlib.pyplot as plt 13 | import seaborn as sns 14 | 15 | def create_results_df(): 16 | """Returns a pandas dataframe with the root mean squared error, mean 17 | absolute error, and R2 score for each model. 18 | """ 19 | # Load pickled scores for each model 20 | results_dict = pickle.load(open("model_scores.p", "rb")) 21 | 22 | # Create pandas df and save as csv 23 | results_df = pd.DataFrame.from_dict(results_dict, orient='index', 24 | columns=['RMSE', 'MAE', 'R2']) 25 | 26 | results_df = results_df.sort_values(by='RMSE', 27 | ascending=False).reset_index() 28 | 29 | results_df.to_csv('../data/results.csv') 30 | 31 | return results_df 32 | 33 | def plot_results(results_df): 34 | """Generates and saves and lineplot with one line indicating RMSE scores 35 | for each model and one line indicating MAE scores for each model. 36 | """ 37 | fig, ax = plt.subplots(figsize=(12, 5)) 38 | sns.lineplot(np.arange(len(results_df)), 'RMSE', data=results_df, ax=ax, 39 | label='RMSE', color='mediumblue') 40 | sns.lineplot(np.arange(len(results_df)), 'MAE', data=results_df, ax=ax, 41 | label='MAE', color='Cyan') 42 | 43 | plt.xticks(np.arange(len(results_df)), rotation=45) 44 | ax.set_xticklabels(results_df['index']) 45 | ax.set(xlabel="Model", 46 | ylabel="Scores", 47 | title="Model Error Comparison") 48 | sns.despine() 49 | 50 | plt.savefig(f'../model_output/compare_models.png') 51 | 52 | def main(): 53 | """Calls functions to compare modelling results""" 54 | 55 | results = create_results_df() 56 | plot_results(results) 57 | 58 | main() 59 | -------------------------------------------------------------------------------- /data_preprocessing.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script loads data from Kaggle, generates monthly dataframe and performs 3 | differencing to create stationarity. Exports csv files for regression 4 | modeling and for Arima modeling. 5 | 6 | Data: https://www.kaggle.com/c/demand-forecasting-kernels-only/data 7 | 8 | Output CSV files 9 | -- ../data/monthly_data.csv 10 | -- ../data/stationary_df.csv 11 | -- ../data/model_df.csv 12 | -- ../data/arima_df.csv 13 | """ 14 | 15 | import pandas as pd 16 | 17 | def load_data(): 18 | """Returns a pandas dataframe from the train data set in Kaggle's Demand 19 | Forecasting competition. 20 | """ 21 | 22 | url = """https://www.kaggle.com/c/demand-forecasting-kernels-only/download/ 23 | ryQFx3IEtFjqjv3s0dXL%2Fversions%2FzjbSfpE39fdJlMotCpen%2Ffiles%2 24 | Ftrain.csv""" 25 | 26 | return pd.read_csv(url) 27 | 28 | 29 | def monthly_sales(data): 30 | """Returns a dataframe where each row represents total sales for a given 31 | month. Columns include 'date' by month and 'sales'. 32 | """ 33 | monthly_data = data.copy() 34 | 35 | # Drop the day indicator from the date column 36 | monthly_data.date = monthly_data.date.apply(lambda x: str(x)[:-3]) 37 | 38 | # Sum sales per month 39 | monthly_data = monthly_data.groupby('date')['sales'].sum().reset_index() 40 | monthly_data.date = pd.to_datetime(monthly_data.date) 41 | 42 | monthly_data.to_csv('../data/monthly_data.csv') 43 | 44 | return monthly_data 45 | 46 | def get_diff(data): 47 | """Returns the dataframe with a column for sales difference between each 48 | month. Results in a stationary time series dataframe. Prior EDA revealed 49 | that the monthly data was not stationary as it had a time-dependent mean. 50 | """ 51 | data['sales_diff'] = data.sales.diff() 52 | data = data.dropna() 53 | 54 | data.to_csv('../data/stationary_df.csv') 55 | 56 | return data 57 | 58 | 59 | def generate_supervised(data): 60 | """Generates a csv file where each row represents a month and columns 61 | include sales, the dependent variable, and prior sales for each lag. Based 62 | on EDA, 12 lag features are generated. Data is used for regression modeling. 63 | 64 | Output df: 65 | month1 sales lag1 lag2 lag3 ... lag11 lag12 66 | month2 sales lag1 lag2 lag3 ... lag11 lag12 67 | """ 68 | supervised_df = data.copy() 69 | 70 | #create column for each lag 71 | for i in range(1, 13): 72 | col_name = 'lag_' + str(i) 73 | supervised_df[col_name] = supervised_df['sales_diff'].shift(i) 74 | 75 | #drop null values 76 | supervised_df = supervised_df.dropna().reset_index(drop=True) 77 | 78 | supervised_df.to_csv('../data/model_df.csv', index=False) 79 | 80 | def generate_arima_data(data): 81 | """Generates a csv file with a datetime index and a dependent sales column 82 | for ARIMA modeling. 83 | """ 84 | dt_data = data.set_index('date').drop('sales', axis=1) 85 | dt_data.dropna(axis=0) 86 | 87 | dt_data.to_csv('../data/arima_df.csv') 88 | 89 | 90 | def main(): 91 | """Loads data from Kaggle, generates monthly dataframe and performs 92 | differencing to create stationarity. Exports csv files for regression 93 | modeling and for Arima modeling. 94 | """ 95 | sales_data = load_data() 96 | monthly_df = monthly_sales(sales_data) 97 | stationary_df = get_diff(monthly_df) 98 | 99 | generate_supervised(stationary_df) 100 | generate_arima_data(stationary_df) 101 | 102 | main() 103 | -------------------------------------------------------------------------------- /models.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script predicts the number of monthly product sales using regressive and 3 | time-series modeling techniques. A graph of predicted values against actual 4 | values is plotted for each model and the root mean squared error, mean absolute 5 | error, and R2 scores are pickled for comparison. 6 | 7 | Modeling techniques include: 8 | -- Linear Regression 9 | -- Random Forest Regression 10 | -- XGBoost 11 | -- Long Short Term Memory (artifical recurrent neural network) 12 | -- ARIMA Time Series Forecasting 13 | 14 | """ 15 | 16 | import pickle 17 | 18 | import pandas as pd 19 | import numpy as np 20 | 21 | import matplotlib.pyplot as plt 22 | import seaborn as sns 23 | 24 | from sklearn.preprocessing import MinMaxScaler 25 | from sklearn.linear_model import LinearRegression 26 | from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 27 | from sklearn.ensemble import RandomForestRegressor 28 | from xgboost.sklearn import XGBRegressor 29 | 30 | import keras 31 | from keras.layers import Dense 32 | from keras.models import Sequential 33 | from keras.layers import LSTM 34 | 35 | import statsmodels.api as sm 36 | 37 | def load_data(file_name): 38 | """Returns a pandas dataframe from a csv file.""" 39 | return pd.read_csv(file_name) 40 | 41 | model_scores = {} 42 | 43 | def tts(data): 44 | """Splits the data into train and test. Test set consists of the last 12 45 | months of data. 46 | """ 47 | data = data.drop(['sales', 'date'], axis=1) 48 | train, test = data[0:-12].values, data[-12:].values 49 | 50 | return train, test 51 | 52 | def scale_data(train_set, test_set): 53 | """Scales data using MinMaxScaler and separates data into X_train, y_train, 54 | X_test, and y_test. 55 | 56 | Keyword Arguments: 57 | -- train_set: dataset used to train the model 58 | -- test_set: dataset used to test the model 59 | """ 60 | 61 | #apply Min Max Scaler 62 | scaler = MinMaxScaler(feature_range=(-1, 1)) 63 | scaler = scaler.fit(train_set) 64 | 65 | # reshape training set 66 | train_set = train_set.reshape(train_set.shape[0], train_set.shape[1]) 67 | train_set_scaled = scaler.transform(train_set) 68 | 69 | # reshape test set 70 | test_set = test_set.reshape(test_set.shape[0], test_set.shape[1]) 71 | test_set_scaled = scaler.transform(test_set) 72 | 73 | X_train, y_train = train_set_scaled[:, 1:], train_set_scaled[:, 0:1].ravel() 74 | X_test, y_test = test_set_scaled[:, 1:], test_set_scaled[:, 0:1].ravel() 75 | 76 | return X_train, y_train, X_test, y_test, scaler 77 | 78 | def undo_scaling(y_pred, x_test, scaler_obj, lstm=False): 79 | """For visualizing and comparing results, undoes the scaling effect on 80 | predictions. 81 | 82 | Keyword arguments: 83 | -- y_pred: model predictions 84 | -- x_test: features from the test set used for predictions 85 | -- scaler_obj: the scaler objects used for min-max scaling 86 | -- lstm: indicate if the model run is the lstm. If True, additional 87 | transformation occurs 88 | """ 89 | 90 | #reshape y_pred 91 | y_pred = y_pred.reshape(y_pred.shape[0], 1, 1) 92 | 93 | if not lstm: 94 | x_test = x_test.reshape(x_test.shape[0], 1, x_test.shape[1]) 95 | 96 | #rebuild test set for inverse transform 97 | pred_test_set = [] 98 | for index in range(0, len(y_pred)): 99 | pred_test_set.append(np.concatenate([y_pred[index], x_test[index]], 100 | axis=1)) 101 | 102 | #reshape pred_test_set 103 | pred_test_set = np.array(pred_test_set) 104 | pred_test_set = pred_test_set.reshape(pred_test_set.shape[0], 105 | pred_test_set.shape[2]) 106 | 107 | #inverse transform 108 | pred_test_set_inverted = scaler_obj.inverse_transform(pred_test_set) 109 | 110 | return pred_test_set_inverted 111 | 112 | def predict_df(unscaled_predictions, original_df): 113 | """Generates a dataframe that shows the predicted sales for each month 114 | for plotting results. 115 | 116 | Keyword arguments: 117 | -- unscaled_predictions: the model predictions that do not have min-max or 118 | other scaling applied 119 | -- original_df: the original monthly sales dataframe 120 | """ 121 | #create dataframe that shows the predicted sales 122 | result_list = [] 123 | sales_dates = list(original_df[-13:].date) 124 | act_sales = list(original_df[-13:].sales) 125 | 126 | for index in range(0, len(unscaled_predictions)): 127 | result_dict = {} 128 | result_dict['pred_value'] = int(unscaled_predictions[index][0] + 129 | act_sales[index]) 130 | result_dict['date'] = sales_dates[index+1] 131 | result_list.append(result_dict) 132 | 133 | df_result = pd.DataFrame(result_list) 134 | 135 | return df_result 136 | 137 | def get_scores(unscaled_df, original_df, model_name): 138 | """Prints the root mean squared error, mean absolute error, and r2 scores 139 | for each model. Saves all results in a model_scores dictionary for 140 | comparison. 141 | 142 | Keyword arguments: 143 | -- unscaled_predictions: the model predictions that do not have min-max or 144 | other scaling applied 145 | -- original_df: the original monthly sales dataframe 146 | -- model_name: the name that will be used to store model scores 147 | """ 148 | rmse = np.sqrt(mean_squared_error(original_df.sales[-12:], unscaled_df.pred_value[-12:])) 149 | mae = mean_absolute_error(original_df.sales[-12:], unscaled_df.pred_value[-12:]) 150 | r2 = r2_score(original_df.sales[-12:], unscaled_df.pred_value[-12:]) 151 | model_scores[model_name] = [rmse, mae, r2] 152 | 153 | print(f"RMSE: {rmse}") 154 | print(f"MAE: {mae}") 155 | print(f"R2 Score: {r2}") 156 | 157 | def plot_results(results, original_df, model_name): 158 | """Plots predictions over original data to visualize results. Saves each 159 | plot as a png. 160 | 161 | Keyword arguments: 162 | -- results: a dataframe with unscaled predictions 163 | -- original_df: the original monthly sales dataframe 164 | -- model_name: the name that will be used in the plot title 165 | """ 166 | fig, ax = plt.subplots(figsize=(15, 5)) 167 | sns.lineplot(original_df.date, original_df.sales, data=original_df, ax=ax, 168 | label='Original', color='mediumblue') 169 | sns.lineplot(results.date, results.pred_value, data=results, ax=ax, 170 | label='Predicted', color='red') 171 | ax.set(xlabel="Date", 172 | ylabel="Sales", 173 | title=f"{model_name} Sales Forecasting Prediction") 174 | ax.legend() 175 | sns.despine() 176 | 177 | plt.savefig(f'../model_output/{model_name}_forecast.png') 178 | 179 | def regressive_model(train_data, test_data, model, model_name): 180 | """Runs regressive models in SKlearn framework. First calls scale_data 181 | to split into X and y and scale the data. Then fits and predicts. Finally, 182 | predictions are unscaled, scores are printed, and results are plotted and 183 | saved. 184 | 185 | Keyword arguments: 186 | -- train_set: dataset used to train the model 187 | -- test_set: dataset used to test the model 188 | -- model: the sklearn model and model arguments in the form of 189 | model(kwarga) 190 | -- model_name: the name that will be used to store model scores and plotting 191 | """ 192 | 193 | # Split into X & y and scale data 194 | X_train, y_train, X_test, y_test, scaler_object = scale_data(train_data, 195 | test_data) 196 | # Run sklearn models 197 | mod = model 198 | mod.fit(X_train, y_train) 199 | predictions = mod.predict(X_test) 200 | 201 | # Undo scaling to compare predictions against original data 202 | original_df = load_data('../data/monthly_data.csv') 203 | unscaled = undo_scaling(predictions, X_test, scaler_object) 204 | unscaled_df = predict_df(unscaled, original_df) 205 | 206 | # print scores and plot results 207 | get_scores(unscaled_df, original_df, model_name) 208 | plot_results(unscaled_df, original_df, model_name) 209 | 210 | def lstm_model(train_data, test_data): 211 | """Runs a long-short-term-memory nueral net with 2 dense layers. Generates 212 | predictions that are then unscaled. Scores are printed and results are 213 | plotted and saved. 214 | 215 | Keyword arguments: 216 | -- train_set: dataset used to train the model 217 | -- test_set: dataset used to test the model 218 | """ 219 | 220 | # Split into X & y and scale data 221 | X_train, y_train, X_test, y_test, scaler_object = scale_data(train_data, test_data) 222 | 223 | X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1]) 224 | X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1]) 225 | 226 | # Build LSTM 227 | model = Sequential() 228 | model.add(LSTM(4, batch_input_shape=(1, X_train.shape[1], X_train.shape[2]), stateful=True)) 229 | model.add(Dense(1)) 230 | model.add(Dense(1)) 231 | model.compile(loss='mean_squared_error', optimizer='adam') 232 | model.fit(X_train, y_train, epochs=200, batch_size=1, verbose=1, shuffle=False) 233 | predictions = model.predict(X_test, batch_size=1) 234 | 235 | # Undo scaling to compare predictions against original data 236 | original_df = load_data('../data/monthly_data.csv') 237 | unscaled = undo_scaling(predictions, X_test, scaler_object, lstm=True) 238 | unscaled_df = predict_df(unscaled, original_df) 239 | 240 | # print scores and plot results 241 | get_scores(unscaled_df, original_df, 'LSTM') 242 | plot_results(unscaled_df, original_df, 'LSTM') 243 | 244 | def sarimax_model(data): 245 | """Runs an arima model with 12 lags and yearly seasonal impact. Generates 246 | dynamic predictions for last 12 months. Prints and saves scores and plots 247 | results. 248 | """ 249 | # Model 250 | sar = sm.tsa.statespace.SARIMAX(data.sales_diff, order=(12, 0, 0), 251 | seasonal_order=(0, 1, 0, 12), 252 | trend='c').fit() 253 | 254 | # Generate predictions 255 | start, end, dynamic = 40, 100, 7 256 | data['pred_value'] = sar.predict(start=start, end=end, dynamic=dynamic) 257 | 258 | # Generate predictions dataframe 259 | original_df = load_data('../data/monthly_data.csv') 260 | unscaled_df = predict_df(data, original_df) 261 | 262 | # print scores and plot results 263 | get_scores(unscaled_df, original_df, 'ARIMA') 264 | plot_results(unscaled_df, original_df, 'ARIMA') 265 | 266 | def main(): 267 | """Calls all functions to load data, run regression models, run lstm model, 268 | and run arima model. 269 | """ 270 | # Regression models 271 | model_df = load_data('../data/model_df.csv') 272 | train, test = tts(model_df) 273 | 274 | # Sklearn 275 | regressive_model(train, test, LinearRegression(), 'LinearRegression') 276 | regressive_model(train, test, RandomForestRegressor(n_estimators=100, 277 | max_depth=20), 278 | 'RandomForest') 279 | regressive_model(train, test, XGBRegressor(n_estimators=100, 280 | learning_rate=0.2, 281 | objective='reg:squarederror'), 282 | 'XGBoost') 283 | # Keras 284 | lstm_model(train, test) 285 | 286 | # Arima 287 | ts_data = load_data('../data/arima_df.csv').set_index('date') 288 | ts_data.index = pd.to_datetime(ts_data.index) 289 | 290 | sarimax_model(ts_data) 291 | 292 | main() 293 | 294 | # Save mmodel scores to compare all model results in results.py 295 | pickle.dump(model_scores, open("model_scores.p", "wb")) 296 | 297 | 298 | # 299 | -------------------------------------------------------------------------------- /notebooks/04_viewing_results.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 87, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import pandas as pd\n", 10 | "import numpy as np\n", 11 | "\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import seaborn as sns\n", 14 | "%matplotlib inline\n", 15 | "\n", 16 | "import pickle" 17 | ] 18 | }, 19 | { 20 | "cell_type": "markdown", 21 | "metadata": {}, 22 | "source": [ 23 | "# Create Results Dataframe" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": 98, 29 | "metadata": {}, 30 | "outputs": [], 31 | "source": [ 32 | "def create_results_df():\n", 33 | " results_dict = pickle.load(open(\"model_scores.p\", \"rb\"))\n", 34 | " \n", 35 | " results_dict.update(pickle.load(open(\"arima_model_scores.p\", \"rb\")))\n", 36 | " \n", 37 | " restults_df = pd.DataFrame.from_dict(results_dict, orient='index', \n", 38 | " columns=['RMSE', 'MAE','R2'])\n", 39 | " \n", 40 | " restults_df = restults_df.sort_values(by='RMSE', ascending=False).reset_index()\n", 41 | " \n", 42 | " return restults_df" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": 99, 48 | "metadata": {}, 49 | "outputs": [ 50 | { 51 | "data": { 52 | "text/html": [ 53 | "
\n", 54 | "\n", 67 | "\n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | "
indexRMSEMAER2
0Random Forest18599.23296615832.7500000.987794
1LinearRegression16221.04079112433.0000000.990716
2ARIMA14959.89346711265.3357490.983564
3LSTM14638.74835011951.0833330.992439
4XGBoost13574.79263211649.6666670.993498
\n", 115 | "
" 116 | ], 117 | "text/plain": [ 118 | " index RMSE MAE R2\n", 119 | "0 Random Forest 18599.232966 15832.750000 0.987794\n", 120 | "1 LinearRegression 16221.040791 12433.000000 0.990716\n", 121 | "2 ARIMA 14959.893467 11265.335749 0.983564\n", 122 | "3 LSTM 14638.748350 11951.083333 0.992439\n", 123 | "4 XGBoost 13574.792632 11649.666667 0.993498" 124 | ] 125 | }, 126 | "execution_count": 99, 127 | "metadata": {}, 128 | "output_type": "execute_result" 129 | } 130 | ], 131 | "source": [ 132 | "results = create_results_df()\n", 133 | "results" 134 | ] 135 | }, 136 | { 137 | "cell_type": "markdown", 138 | "metadata": {}, 139 | "source": [ 140 | "# Plot Results" 141 | ] 142 | }, 143 | { 144 | "cell_type": "code", 145 | "execution_count": 117, 146 | "metadata": {}, 147 | "outputs": [], 148 | "source": [ 149 | "def plot_results(results_df):\n", 150 | " fig, ax = plt.subplots(figsize=(12, 5))\n", 151 | " sns.lineplot(np.arange(len(results_df)), 'RMSE', data=results_df, ax=ax, \n", 152 | " label='RMSE', color='mediumblue')\n", 153 | " sns.lineplot(np.arange(len(results_df)), 'MAE', data=results_df, ax=ax, \n", 154 | " label='MAE', color='Cyan')\n", 155 | " \n", 156 | " plt.xticks(np.arange(len(results_df)),rotation=45)\n", 157 | " ax.set_xticklabels(results_df['index'])\n", 158 | " ax.set(xlabel = \"Model\",\n", 159 | " ylabel = \"Scores\",\n", 160 | " title = \"Model Error Comparison\")\n", 161 | " sns.despine()\n", 162 | " \n", 163 | " plt.savefig(f'../model_output/compare_models.png')" 164 | ] 165 | }, 166 | { 167 | "cell_type": "code", 168 | "execution_count": 118, 169 | "metadata": {}, 170 | "outputs": [ 171 | { 172 | "data": { 173 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAGHCAYAAADxx+d2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3yV5f3/8dcni0BIgixlypYpUaiCgKIi4Lb9ObC2WrWirXu031p3a2utWq2z2mpb26+A2n7bOgC1iAIyBERkiKwoS/ZKWBmf3x/XneQkhp3kZLyfj8d5cM51n/vkc6ePmneufO7rMndHRERERESqRkK8CxARERERqUsUwEVEREREqpACuIiIiIhIFVIAFxERERGpQgrgIiIiIiJVSAFcRERERKQKKYCLiFQSM2tnZm5mSQfw3h+Y2eSqqKuuMrMcM+sQ7zpERBTARUQAM8s2sz1m1rTM+JwoRLeLT2WlgnxOmcclcaili5m9ZmYbzGyrmc01s9vMLLGqazlY7t7Q3ZfFuw4REQVwEZESy4FLi16YWS+gfvzK+YZGUYgseowp703lheGDDcjlzdqbWUdgOrAC6OXumcBFQF8g/WA+vyodyF8gRESqkgK4iEiJvwGXx7y+Ang59g1mlmlmL5vZejP70szuNrOE6FiimT0azQ4vA84u59wXzWyNma0yswcrYubYzP5iZs+Z2dtmlgucupexfdX+AzObYmaPm9km4P5yvtQDwEfufpu7rwFw90Xu/l133xJ9znlmNt/MtpjZRDPrFlNntpn9JJo1z42+F0ea2Vgz225m75nZEdF7i2b9R5rZ6uh7dnvMZ51gZlOjr7PGzJ42s5SY425m15vZYmBxzFin6PlZZrYg+rqrzOyOmHOvMbMlZrbJzP5jZi3LfO51ZrbYzDab2TNmZof7v6GI1C0K4CIiJaYBGWbWLQrGlwB/L/Oep4BMoANwCiGwXxkduwY4BziOMCt8YZlz/wrkA52i9wwFflhBtX8X+BVhJnryXsb2VTvAicAyoHl0XllDgNf3VoCZdQFGAbcAzYC3gTdigzHw/4AzgC7AucBY4OdAU8LPpJvKfOypQGfC9+pnZjYkGi8Abo3O6w+cDvy4zLkXRNfUvZxyXwSudfd0oCcwIbqG04CHgIuBFsCXwOgy554DfAvoHb1v2F6+JSIi5VIAFxEprWgW/Azgc2BV0YGYUH6nu29392zgMeD70VsuBp5w9xXuvokQ5IrOPRI4E7jF3XPdfR3wODDiIGrbEM34Fj26xRz7t7tPcfdCd99VdgzI20/tAKvd/Sl3z3f3neV8/SbAmn3Udwnwlru/6+55wKOEFp6TYt7zlLuvdfdVwCRgurt/4u67gf8j/GIS64Ho+/UZ8GeiFiF3n+Xu06Jas4HnCb9UxHrI3Tft5VrygO5mluHum919djR+GfCSu8+OaroT6F/mHoDfuPsWd/8KeB/I2sf3RETkG9QXJyJS2t+AD4H2lGk/Icy2phBmRYt8CbSKnrck9EfHHityNJAMrInpWEgo8/79aeru+Xs5Vt7nxI7tr/a9fUasjYRZ4b1pGfv57l5oZivKfI21Mc93lvO6YZnPLPv97AXFs+2/I/yloQHh59msfZxb1v8D7gZ+Y2ZzgZ+5+9ToGorCOO6eY2Ybo2vIjoa/jvmcHeXULCKyT5oBFxGJ4e5fEm7GPAv4Z5nDGwgzp0fHjLWlZJZ8DdCmzLEiK4DdhBDdKHpkuHuPiip9P2P7q31vnxHrPUJw3ZvVsZ8f9Ua3KfM1DlbZ7+fq6PlzhL9QdHb3DEIbS9le7L1ej7t/7O7nE9pt/gW8updrSCPM/B/ONYiIlKIALiLyTVcDp7l7buyguxcQgtqvzCzdzI4GbqOkT/xV4CYzax3dTPizmHPXAO8Aj5lZhpklmFlHMyvbNlEpDqD2A3EfcJKZPWJmRwGYWScz+7uZNYo+/2wzO93MkoHbCb90fHQYpd9jZg3MrAehX71o5Zd0YBuQY2ZdgR8d6AeaWYqZXWZmmVGrzDZCTznAK8CVZpZlZvWAXxPaZLIP4xpEREpRABcRKcPdl7r7zL0cvhHIJdysOJkQ2F6Kjv0RGA98SmhjKDuDfjmhDWQBsJlwQ+O+WjrK2mKl1wG/7SDO3V/t++XuSwk3PLYD5pvZVuAfwExgu7svAr5HuNlzA+Emy3Pdfc9B1hnrA2AJ8F/gUXd/Jxq/g3CT6XbC973cJRn34ftAtpltA66L6sbd/wvcE13XGqAjB9enLyKyX+a+v784ioiIVK3opsflQPI++t5FRGokzYCLiIiIiFQhBXARERERkSqkFhQRERERkSqkGXARERERkSqkAC4iIiIiUoXq3E6Yw4cP93HjxsW7DBERERGp/cpuEAbUwRnwDRs2xLsEEREREanD6lwAFxERERGJJwVwEREREZEqpAAuIiIiIlKF6txNmCIiIiJS8fLy8li5ciW7du2KdylVLjU1ldatW5OcnHxA71cAFxEREZHDtnLlStLT02nXrh1m5S7+USu5Oxs3bmTlypW0b9/+gM5RC4qIiIiIHLZdu3bRpEmTOhW+AcyMJk2aHNTMvwK4iIiIiFSIuha+ixzsdSuAi4iIiEitkJiYSFZWFj179uTcc89ly5YtAGRnZ2Nm3HPPPcXv3bBhA8nJydxwww0ALFq0iMGDB5OVlUW3bt0YOXIkABMnTiQzM5OsrKzix3vvvXdYdSqAi4iIiEitUL9+febMmcO8efNo3LgxzzzzTPGxDh068Oabbxa/fu211+jRo0fx65tuuolbb72VOXPmsHDhQm688cbiY4MGDWLOnDnFjyFDhhxWnQrgVWDjxnzOP38pM2bkxrsUERERkTqhf//+rFq1qvh1/fr16datGzNnzgRgzJgxXHzxxcXH16xZQ+vWrYtf9+rVq9Jq0yooVWDhwl1MnZrLiScu4oILMnnwwZb06FE/3mWJiIiIVIpbblnBnDk7K/Qzs7Lq88QTbQ7ovQUFBfz3v//l6quvLjU+YsQIRo8ezVFHHUViYiItW7Zk9erVANx6662cdtppnHTSSQwdOpQrr7ySRo0aATBp0iSysrKKP+cf//gHHTt2PORr0Qx4FRg4sCFLl/bgF79owYQJ2+nVayGXX57N8uW7412aiIiISK2xc+dOsrKyaNKkCZs2beKMM84odXz48OG8++67jBo1iksuuaTUsSuvvJKFCxdy0UUXMXHiRPr168fu3SGrlW1BOZzwDZoBrzLp6Yncc08LfvzjZjz88Nc89dR6Ro/ezMiRTbn77qM46qgDW7hdREREpLo70JnqilbUA75161bOOeccnnnmGW666abi4ykpKfTp04fHHnuM+fPn88Ybb5Q6v2XLllx11VVcddVV9OzZk3nz5lVKnZoBr2JNmiTx29+2ZsmSHlx1VROef349HTvO5+c/X8XmzfnxLk9ERESkxsvMzOTJJ5/k0UcfJS8vr9Sx22+/nYcffpgmTZqUGh83blzxe7/++ms2btxIq1atKqU+BfA4adUqhT/8oS0LF3bnggsy+c1v1tKhw3weeuhrcnML4l2eiIiISI123HHH0bt3b0aPHl1qvEePHlxxxRXfeP8777xDz5496d27N8OGDeORRx7hqKOOAkp6wIser7/++mHVZu5+WB9Q0/Tt29eL7n6tTubO3cFdd63mzTe3ceSRSdxzTwuuuaYJKSn6HUlERESqv4ULF9KtW7d4lxE3e7n+cnfoUbqrJo49tgFvvNGJyZO7cMwxqdxwwwqOOWYBL7+8kYKCuvVLkoiIiEhtpgBezQwY0JCJEzszdmxHjjgikSuu+JLevRfyr39toa79tUJERESkNlIAr4bMjOHDM5k5syuvvtqe/Hzn299eRv/+i5gwYXu8yxMRERGRw6AAXo0lJBgXXXQE8+Z158UX27J6dR6nn76YIUMWa1dNERERkRpKAbwGSEoyrrqqKV980YPHH2/Np5/u5MQTF/Gd7yxlwYKK3WVKRERERCqXAngNkpqawC23NGfZsh488EAL3nsv7Kp5xRXZZGdrV00RERGRmkABvAZKT0/k3ntbsGxZT267rTmvvrqZLl0WcOONK1i7Nm//HyAiIiJSC5kZ3//+94tf5+fn06xZM84555xS7zv//PPp379/qbH777+fVq1alVrve8uWLZVSpwJ4Dda0aRKPPBJ21bzyyiY899x6OnSYz113rWLLFu2qKSIiInVLWloa8+bNY+fO0KL77rvvfmM3yy1btjB79my2bNnC8uXLSx279dZbmTNnTvGjUaNGlVKnAngt0KpVCs8/H3bVPP/8TH7967W0bz+f3/zma3bsKIx3eSIiIiJV5swzz+Stt94CYNSoUVx66aWljv/jH//g3HPPZcSIEd/YJbOqKIDXIp07p/LKK+2ZM6crAwakceedq+nYcR7PPruePXsUxEVERKRq3AIMruDHLQf4tYuC9a5du5g7dy4nnnhiqeNFofzSSy9l1KhRpY49/vjjxe0np5566gF+xYOnAF4L9e7dgDff7MSkSV3o3DmV669fQdeuC/jb37SrpoiIiNRuxx57LNnZ2YwaNYqzzjqr1LG1a9eyZMkSBg4cSJcuXUhKSmLevHnFx2NbUN5///1KqzGpsj7YzF4CzgHWuXvPaCwL+AOQCuQDP3b3GdGxO4GrgQLgJncfH433Af4C1AfeBm52dzezesDLQB9gI3CJu2dX1vXURAMHNuSDDzozfvw2fv7z1Vx++Zf89rdrefDBlpx3XiZmFu8SRUREpBZ6Is5f/7zzzuOOO+5g4sSJbNy4sXh8zJgxbN68mfbt2wOwbds2Ro8ezYMPPlil9VXmDPhfgOFlxn4LPODuWcC90WvMrDswAugRnfOsmSVG5zwHjAQ6R4+iz7wa2OzunYDHgYcr7UpqsNhdNceMac+ePc4FF2hXTREREam9rrrqKu6991569epVanzUqFGMGzeO7OxssrOzmTVrVlz6wCstgLv7h8CmssNARvQ8E1gdPT8fGO3uu919ObAEOMHMWgAZ7j7V3Z0w431BzDl/jZ6/DpxumtLdq4QE4+KLj2D+/O786U9tWbUq7Kp5xhmL+fhj7aopIiIitUfr1q25+eabS41lZ2fz1Vdf0a9fv+Kx9u3bk5GRwfTp04HSPeBZWVlkZ2dXSn0Wcm3lMLN2wJsxLSjdgPGAEcL/Se7+pZk9DUxz979H73sRGAtkA79x9yHR+CDgf9z9HDObBwx395XRsaXAie6+oZw6RhJm0Wnbtm2fL7/8stKuuabYtauQ555bz69/vZYNG/L5znca8eCDLejWrX68SxMREZEaaOHChXTr1i3eZcTNXq6/3Mnhqr4J80fAre7eBrgVeDEaL68438f4vs755qD7C+7e1937NmvW7CBLrp1SUxO49dYjWbo07Kr57rvb6NlzIVdeqV01RURERCpTVQfwK4B/Rs9fA06Inq8E2sS8rzWhPWVl9LzseKlzzCyJ0NJStuVF9iMjo2RXzVtvbc6oUWFXzZtu0q6aIiIiIpWhqgP4auCU6PlpwOLo+X+AEWZWz8zaE262nOHua4DtZtYv6u++HPh3zDlXRM8vBCZ4ZfbT1HJNmybx6KNhV80f/KAxzz6rXTVFREREKkOlBXAzGwVMBY4xs5VmdjVwDfCYmX0K/JqoL9vd5wOvAguAccD17l4QfdSPgD8RbsxcSugNh9C+0sTMlgC3AT+rrGupS1q3TuGFF45mwYLunHde2FWzQ4f5PPywdtUUERGRfaurc6EHe92VehNmddS3b1+fOXNmvMuoMebM2cFdd63m7be30aJFMvfccxRXX92ElBTt4SQiIiIlli9fTnp6Ok2aNKlTe424Oxs3bmT79u3F64vHKPcboQAuB2Ty5Bx+/vPVTJqUQ4cOKTzwQAsuvbQxiYl15/9gIiIisnd5eXmsXLmSXbt2xbuUKpeamkrr1q1JTk4ue0gBHBTAD4e7M25c2FVzzpyd9OyZyq9+1ZJzz9WumiIiIiLlqBbLEEoNZmaceWYms2Z1ZfToduze7Zx//jJOOukL3n9fu2qKiIiIHAgFcDloCQnGJZc0Zv787rzwQltWrNjDaactZujQxcycqV01RURERPZFAVwOWXKycc01TVmypAePPdaK2bN38K1vLeLCC5excOHOeJcnIiIiUi0pgMthS01N4LbbjmTZsp7cf38L3nmnZFfNL7/UrpoiIiIisRTApcJkZCRy331hV81bbinZVfPmm1ewbp121RQREREBBXCpBE2bJvHYY61ZvLgHl1/emGeeCbtq3n33arZuLdj/B4iIiIjUYgrgUmnatEnhj38Mu2qec04mv/rV17RvP4/f/la7aoqIiEjdpQAula5Ll1RGj27P7Nld6dcvjf/5n9V06jSfP/xhPXl5dWsdehEREREFcKkyxx3XgLff7sSHH3ahQ4cUfvSjFXTtOp///d9NFBYqiIuIiEjdoAAuVW7QoIZMmtSFt97qSHp6It/7XjZZWQt5440t1LWdWUVERKTuUQCXuDAzzjork9mzuzJqVDt27nTOO28ZAwZ8wcSJ2lVTREREai8FcImrhARjxIjGLFgQdtX86qs9nHrqYoYNW8ysWTviXZ6IiIhIhVMAl2qhaFfNxYt78OijrZg1awd9+37OhRcu4/PPd8W7PBEREZEKowAu1Ur9+gncfnvYVfO++45i/Pht9OixgKuu+pKvvtoT7/JEREREDpsCuFRLGRmJ3H9/S5Yt68HNNzfnlVc20bnzfG65RbtqioiISM2mAC7VWrNmyfzudyW7aj79dNhV8557tKumiIiI1EwK4FIjFO2qOX9+d84+O4MHH/yaDh3m8cgja9m5U7tqioiISM2hAC41yjHHpDJmTAdmzerKCSek8dOfrtKumiIiIlKjKIBLjXT88Q0YO7YTH3zQmXbtwq6a3bot4JVXtKumiIiIVG8K4FKjnXxyOpMnd+HNNzvSsGECl12WzXHHfc6bb27VrpoiIiJSLSmAS41nZpx9dsmumjt2FHLuuUsZOPALPvhAu2qKiIhI9aIALrVG7K6azz/fluzsPQwevJjhw5cwe7Z21RQREZHqodICuJm9ZGbrzGxezNgYM5sTPbLNbE7MsTvNbImZLTKzYTHjfczss+jYk2Zm0Xi96POWmNl0M2tXWdciNUtysjFyZFOWLOnBI4+04uOPc+nT53Muuki7aoqIiEj8VeYM+F+A4bED7n6Ju2e5exbwD+CfAGbWHRgB9IjOedbMEqPTngNGAp2jR9FnXg1sdvdOwOPAw5V4LVID1a+fwB13hF0177nnKMaODbtqXn21dtUUERGR+Km0AO7uHwKbyjsWzWJfDIyKhs4HRrv7bndfDiwBTjCzFkCGu0/1cEfdy8AFMef8NXr+OnB60ey4SKzMzER+8Yuwq+ZNNzXn738Pu2reeutK7aopIiIiVS5ePeCDgLXuvjh63QpYEXN8ZTTWKnpedrzUOe6eD2wFmlRizVLDNW+ezOOPh101v//9xjz55Do6dpzPvfdqV00RERGpOvEK4JdSMvsNUN7Mte9jfF/nfIOZjTSzmWY2c/369QdVqNQ+bdum8Kc/Hc2CBd0588wMfvnLsKvmo49qV00RERGpfFUewM0sCfgOMCZmeCXQJuZ1a2B1NN66nPFS50SfmcleWl7c/QV37+vufZs1a1YRlyG1wDHHpPLqqx2YObMr3/pWGj/5SdhV8/nntaumiIiIVJ54zIAPAT5399jWkv8AI6KVTdoTbrac4e5rgO1m1i/q774c+HfMOVdEzy8EJrh2XpFD0KdPA8aN68TEiWFXzeuuW0H37gsYNUq7aoqIiEjFq8xlCEcBU4FjzGylmV0dHRpB6fYT3H0+8CqwABgHXO/uRU25PwL+RLgxcykwNhp/EWhiZkuA24CfVda1SN1wyilhV8033uhIgwYJfPe72Rx//Oe89ZZ21RQREZGKY3UtWPTt29dnzpwZ7zKkmissdMaM2cw996xh6dLdDBiQxq9/3ZKTT06Pd2kiIiJSc5S7Qp92whQpR0KCcemljVm4sDt/+EMbli/fwymnLObMM5fwySfaVVNEREQOnQK4yD4kJxvXXtuseFfNGTNyOf74z7nkkmUsWqRdNUVEROTgKYCLHICyu2q+9VbYVfOHP/ySFSu0q6aIiIgcOAVwkYMQu6vmDTc0429/20SnTmFXzfXrtaumiIiI7J8CuMghaN48mSeeaMMXX3Tne98Lu2p26DCf++5bzbZt2lVTRERE9k4BXOQwHH10PV588Wjmz+/O8OEZ/OIXYVfNxx7TrpoiIiJSPgVwkQrQtWsqr70WdtXs2zeNO+5YRefO83nhhQ3aVVNERERKUQAXqUCxu2q2bZvCtdd+RffuCxg9WrtqioiISKAALlIJTjklnSlTuvCf/3Sgfn3j0ku1q6aIiIgECuAilcTMOPfcRsyZ042//70d27cXcM45Szn55C+YNCkn3uWJiIhInCiAi1SyhATjsssa8/nnPXjuuTYsXbqHk0/+grPO0q6aIiIidZECuEgVSU42rrsu7Kr529+2Ytq0sKvmiBHL+eIL7aopIiJSVyiAi1SxBg0S+MlPjmT58p7cffdRvPnmVrp3X8A112hXTRERkbpAAVwkTjIzE/nlL1uydGkPrr++GS+/vInOnedz223aVVNERKQ2UwAXibMjj0zm978Pu2p+97uN+f3vw66a99+vXTVFRERqIwVwkWri6KPr8dJLRzNvXjeGDcvggQfCrpq/+5121RQREalNFMBFqplu3erz+usd+PjjY+jTpwG33x521fzjHzeQn681xEVERGo6BXCRaqpv3zTGj+/M++93pk2bFEaODLtqjhmjXTVFRERqMgVwkWpu8OB0PvqoC//+dwfq1TNGjMimT5/Peftt7aopIiJSEymAi9QAZsZ555XsqrltWwFnnx121Zw8WbtqioiI1CQK4CI1SGJi2FVz4cLuPPts2FVz0KAvOPvsJfzrX1u0aoqIiEgNYHXtT9h9+/b1mTNnxrsMkQqxY0chTz+9jocfXsumTQUkJcFJJzVk+PAMhg3LICurPgkJFu8yRURE6qpyfwgrgIvUAnv2FDJ1ai7jx29j3LhtfPLJTgCaN09i6NAMhg/P4Iwz0mnePDnOlYqIiNQpCuCgAC51w9q1ebzzzjbGj9/G+PHb2bAhH4Djj69fPDvev39DkpM1Oy4iIlKJFMBBAVzqnsJC55NPdjJu3FbGj9/ORx/lUFAA6ekJnH56enEgb9euXrxLFRERqW2qNoCb2UvAOcA6d+8ZM34jcAOQD7zl7j+Nxu8ErgYKgJvcfXw03gf4C1AfeBu42d3dzOoBLwN9gI3AJe6evb+6FMClrtu6tYAJE7YzblyYIf/yyz0AHHNMPYYNC+0qp5ySToMGukdbRETkMFV5AD8ZyAFeLgrgZnYqcBdwtrvvNrPm7r7OzLoDo4ATgJbAe0AXdy8wsxnAzcA0QgB/0t3HmtmPgWPd/TozGwF8290v2V9dCuAiJdydRYt2F/eOT5y4nV27nHr1jJNPblgcyLt3T8VM7SoiIiIHqepbUMysHfBmTAB/FXjB3d8r8747Adz9oej1eOB+IBt43927RuOXAoPd/dqi97j7VDNLAr4Gmvl+LkgBXGTvdu4sZNKknKh3fBvz5+8CoFWr5OIwPmRIOkcckRTnSkVERGqEcgN4Vf8U7QIMMrNfAbuAO9z9Y6AVYYa7yMpoLC96Xnac6N8VAO6eb2ZbgSbAhkq9ApFarH79BIYOzWDo0AweewxWrNjDO++E2fF//nMLL720kYQEOPHEtOLe8b59G5CYqNlxERGRA1XVTZ5JwBFAP+AnwKsW/q5d3k9v38c4+zlWipmNNLOZZjZz/fr1B1+1SB3Vpk0KV1/dlNde68D69ccyZUoX7r77KAoKnPvvX0O/foto3nwuI0Ys589/3sjq1XviXbKIiEi1V9Uz4CuBf0ZtIjPMrBBoGo23iXlfa2B1NN66nHFizlkZtaBkApvK+6Lu/gLwAoQWlAq7GpE6JCnJOOmkhpx0UkMeeKAlGzbk895724r7x8eM2QxAr16pxbPjAwc2pF493cwpIiISq6p/Mv4LOA3AzLoAKYSWkf8AI8ysnpm1BzoDM9x9DbDdzPpFM+WXA/+OPus/wBXR8wuBCfvr/xaRitO0aRIjRjTmz39ux+rVvfj00648/HBLmjVL5okn1jNkyBIaN57LOecs4emn17F48S70f1EREZHKXQVlFDCYMMO9FrgP+BvwEpAF7CH0gE+I3n8XcBVhecJb3H1sNN6XkmUIxwI3RssQpkafdxxh5nuEuy/bX126CVOk8uXkFDBxYk7xUodLluwGoEOHlOKbOU89NZ309MQ4VyoiIlKptBEPxCeA7wF+C9wGNKjSryxSPSxdWrLU4YQJ28nNLSQ52RgwII1hw0K7Su/e9UlI0M2cIiJSqyiAQ3wC+DjgLKA78BrQrUq/ukj1smdPIVOm5BYH8k8/3QnAkUcmMXRomB0/44x0mjVLjnOlIiIih00BHOLXgvIecBlhZ6I/AN+v8gpEqqc1a/J4553QqvLOO9vYuLEAM+jTp0Fxu0q/fmkkJWl2XEREahwFcIhvD/hq4LvAB4Rm96dQS4pIrIICZ/bsHcW949Om5VJQAJmZiZx+enrUrpLO0UfXi3epIiIiB0IBHOJ/E2Y+YYvPXwM9CC0pXeNWjUj1tmVLPv/97/bidpUVK/IA6Nq1HsOHZzJsWDqnnJJO/fpa6lBERKolBXCIfwAvMh74HrCTsED5d+Nbjki15+58/vmuaHZ8Ox98sJ1du5zUVOPkkxsWrz3erVsqYdVSERGRuFMAh+oTwAFWAZcCk4BrgN8T1loUkf3bubOQDz8sWepw4cJdALRpk1zcO3766ek0alTV+42JiIgUUwCH6hXAIbSk3As8BPQGXgW6xLUikZrpq6/2FLeqvPfeNrZtKyQxEfr1K1nqsE+fBiQmanZcRESqjAI4VL8AXmQsYWWU3cCfgEviW45IjZaX50yfXrLU4axZO3CHJk0SOeOMMDs+dGgGLVpoqUMREalUCv62l9sAACAASURBVOBQfQM4wEpgBDAFuA54HEiNa0UitcP69Xm8+264mXP8+G2sXZsPQO/e9YvbVQYMSCMlRTdziohIhVIAh+odwAHygLsJO2dmEVZJ6RTXikRql8JCZ+7cncW941Om5JKX56SlJXDaaenFgbxjRy11KCIih00BHKp/AC/yJnAFIZC/CFwU33JEaq3t2wt4//2SpQ6XLdsDQMeO9aKVVdI59dR0GjZMjHOlIiJSAymAQ80J4ABfEVpSpgLXA48BmpMTqVxLluwqnh2fMCGHHTsKSU42Bg5MK17q8Nhj62upQxERORAK4FCzAjiEGfA7CeH7eMIqKR3jWpFI3bF7dyFTpuQybtxWxo/fzty5OwFo0SKZoUPTGT48gzPOyKBJEy11KCIi5VIAh5oXwIv8h9CSUgi8BPy/+JYjUietXr2Hd97Zzrhx23j33W1s2lSAGXzrWw2Klzo88cQ0kpI0Oy4iIoACeFBTAzhANmF5whnATYQbNdWSIhIfBQXOzJk7invHp0/PpbAQMjMTGTIkvbhdpU2blHiXKiIi8aMADjU7gAPsAX5GWKLwW8AYoH1cKxIRgM2b83nvvZKbOVetygOge/fU4pVVTj65IampWupQRKQOUQCHmh/Ai/wL+AHhf9U/AxfEtRoRieXuLFhQcjPnhx/msHu3k5pqDB5cstThMcfU082cIiK126EHcDO7CBjn7tvN7G7C/YAPuvvsiq2x8tWWAA6wHLgYmAncCvwG0B+7RaqfHTsK+eCDktnxRYt2A9C2bUrxUoenn55BZqaWOhQRqWUOK4DPdfdjzWwg8BDwKPBzdz+xYmusfLUpgEPYuv6nwJPACYSWlHbxLEhE9is7e3fxrpzvvbed7dsLSUyE/v1Lljo8/vgGJCRodlxEpIY7rAD+ibsfZ2YPAZ+5+ytFYxVdZWWrbQG8yD+Aq4AE4K/AefEtR0QOUF6eM21ayVKHs2btAKBp06TipQ6HDs3gyCOT41ypiIgcgsMK4G8Cq4AhQB9gJzDD3XtXZIVVobYGcIClhJaU2cDthD9V6Ee2SM2ybl0e774bljp8551trFuXD0BWVv3i2fGTTkojJUU3c4qI1ACHFcAbAMMJs9+LzawF0Mvd36nYGitfbQ7gEFpSbgeeAfoRWlLaxrUiETlUhYXOnDk7i3vHP/ooh/x8aNgwgdNOK1nqsEMHLUgqIlJNHd4qKFH/d2d3/7OZNQMauvvyCiywStT2AF7kVeCHhBnwl4Gz41uOiFSAbdsKmDCh5GbO7Ow9AHTuXK94ZZXBgxuSlqabOUVEqonDmgG/D+gLHOPuXcysJfCauw+o2BorX10J4ABLgIuAOYQbNR9ELSkitYW7s3jx7uIw/v7729m500lJMQYNalgcyHv2TNVShyIi8XNYAXwOcBwwu+jGy6KVUSq0xCpQlwI4wC7gNuA5YAAwGmgd14pEpDLs2lXI5Mk5xYF83rxdALRsmcywYWGpwzPOyKBx46Q4VyoiUqeUG8AP9C6ePR6SugOYWdp+v5rZS2a2zszmxYzdb2arzGxO9Dgr5tidZrbEzBaZ2bCY8T5m9ll07EmLpnLMrJ6ZjYnGp5tZuwO8ljolFXgWGAV8CmQBY+NakYhUhtTUBIYMyeCRR1rz2WfdWbGiJy++2JYBA9L417+2MGJENs2azaVfv8+5//7VTJ2aQ0FB3dqITUSkujjQGfA7gM7AGYTFNa4CXnH3p/ZxzslADvCyu/eMxu4Hctz90TLv7U7IiCcALYH3gC7uXmBmM4CbgWnA28CT7j7WzH4MHOvu15nZCODb7n7J/q6lrs2Ax/qC0JIyl7Cd/S8BzYWJ1H4FBc7HH+8oXupwxoxcCgvhiCMSGTKk5GbOVq20lZeISAU77JswzwCGRh803t3fPYBz2gFvHkAAvxPA3R+KXo8H7geygffdvWs0fikw2N2vLXqPu081syTga6CZ7+eC6nIAh7B+5C3AC8Agwm89reJakYhUtU2b8nnvvbDU4fjx21i9Og+AHj1Si8P4oEENSU3VUociIoep3AC+3wlQM0skBO4hwH5D9wG4wcwuJ+ygfru7byZkwGkx71kZjeVFz8uOE/27AsDd881sK9AE2FDONYwERgK0bVu3F+WrDzwPnAxcS2hJ+TswbF8niUit0rhxEhdffAQXX3wE7s68ebuKe8efemo9jz22jvr1jcGDS2bHu3Spp5s5RUQqyH4DeNQGssPMMt1962F+vecInQ8e/fsYoZ2lvP+q+z7G2c+x0oPuLxAmfenbt6+aHoHLCDsqXQScCfyc8CcHtaSI1C1mRq9e9enVqz533HEkubkFTJxYcjPnzTeHOZCUFKNx40QaN04q9W+TJkl7GQuvGzZMUHAXESnjQPPWLuAzM3sXyC0adPebDuaLufvaoudm9kfgzejlSqBNzFtbA6uj8dbljMeeszJqQckENh1MPXVdV2A6cBPwK2AyoSWlRTyLEpG4SktL5OyzMzn77EwAli3bzbvvhjXHN20qYNOmfDZuzOfLL/fwySf5bNpUQG5u4V4/LykpzLjHhvKif5s0KRvoS8bS0xXcRaT2OtAA/lb0OCxm1sLd10Qvvw0UrZDyH+AVM/sd4SbMzoSt7gvMbLuZ9SNkxcuBp2LOuQKYClwITNhf/7d8UwPgT4SWlB8RWlL+FxgSz6JEpNro0KEe117bbJ/v2b27sDicx/67cWP+N8ZWrNjDp5+G1zk5ew/uiYmUO6Ne/lhiccjPyFBwF5Hq72BuwkwBukQvF7l73n7ePwoYDDQF1gL3Ra+zCK0i2cC1RYHczO4itKPkA7e4+9hovC/wF0L78ljgRnd3M0sF/kZYn3wTMMLdl+3vOur6TZj7soDQkrIQuAe4F9B+eiJSWfbsKWTz5qKgXjrAlz8W/t2+fd/B/Ygj9jXLXn7bTGZmIgkJCu4iUuEOayOewcBfCaHZCK0fV7j7hxVXX9VQAN+3XOAGwm88pxFmw4+KZ0EiImXk5TmbN5c/y14U0subid+2be/BPSEhLMtYdkZ9f20zmZmJJCYquIvIXh3aKiiRx4Ch7r4IwMy6ENqF+1RMbVJdpAF/Bk4Bfkz4c8UrhDAuIlIdJCcbzZsn07x58kGdl5fnbNkSG8r3Puu+fn0+ixbtYuPGArZuLdjrZ5p9M7jvq0Wm6HmjRgruInXZgQbw5KLwDeDuX5jZwf2XT2qUHwDfIrSkDCH0D92NWlJEpOZKTjaaNUumWbOD+/GVn+9s2bLv3vai8L5xYz6LF+9m06Z8tmwpYF9/ZG7UqPygvq8A36hRIklJCu4iNd2BBvCZZvYioecawip2syqnJKkuegAzCDPh9xNWSfk7cGQcaxIRqWpJSUbTpkk0bXpwC7UWFJQO7vvrbV+6NAT3zZv3HdwzMxMPuse9ceMkBXeRauRAe8DrAdcDAwm9LB8Cz7r77sotr+KpB/zgOfASoTe8EaH3aHA8CxIRqcUKC78Z3A+kbWbz5gIK997mTkZGwkH3uB9xRCIpKdoRVeQwHNZNmGnALncviF4nAvXcfUeFllgFFMAP3WeElpTFwAOEzXv0n2URkeqhsNDZtq1gnzei7i3Q7yu4p6cn7KdFpvy2GQV3EeAwA/g0YIi750SvGwLvuPtJFVpiFVAAPzzbgesIN2YOJbSk7HuFYBERqc4KC53t2wv32yJT3ljB3u9PJS0t4QA3YEqkfft6tGmTUnUXLVJ1DmsVlNSi8A3g7jlm1qBCypIaJZ0Quk8h7KCZBYwGBsWzKBEROWQJCUZmZlgLvX37egd8nntscP9mSC87yz5/fl5xyM/P/+bntW2bwsCBaQwa1JCBAxvSvXuq1maXWutAA3iumR3v7rOheHOcnZVXllRnBowETiS0pJwK/BL4H9SSIiJSV5gZGRmJZGQk0q7dgZ/n7uTkFJYK6QsX7mLy5Bzefz+HV17ZDITlHQcMSGPgwBDI+/ZtQL16+ikjtcOBtqB8izDRuZpwT15L4BJ3r3EroagFpWJtJ4Tx0cBwwjI5TeNakYiI1FTuzvLle5g8OYdJk3KYPDmHzz8P6z3Uq2eccEIaAweGUH7SSWk0anRwK9OIxMHB94BHwXuFu38drft9LfAdwq7l97r7psqotDIpgFc8B54HbiGE7zHAgLhWJCIitcX69XlMmZLL5MkhkM+atYP8/LAJUq9e9Uu1rbRurT5yqXYOKYDPJtx8ucnMTiZMdN5IaP3t5u4XVkallUkBvPJ8QmhJyQZ+DdyBWlJERKRi5eYWMGPGjuJA/tFHueTkhGVcjj66dB95t27qI5e4O6QA/qm7946ePwOsd/f7o9dz3D2rEgqtVArglWsb8EPgNeBs4K9Ak7hWJCIitVl+vjN37s5SbStffx3u8mzcOJEBAxoWt6306aM+cqlyhxTA5wFZ7p5vZp8DI939w6Jj7t6zUkqtRArglc+BZ4HbCLtmjgH6x7UiERGpK9ydZctK95EvWhT6yFNTS/rIBw1qSP/+DcnMTIxzxVLLHVIAvws4C9gAtAWOd3c3s07AX929xrX6KoBXnVmElpQVwG8IgVx/CBQRkaq2bl3pPvLZs0v6yI89tj4DBzZk0KAwS96qlfrIpUId2kY8ZtYPaEHYeCc3GusCNCxalrAmUQCvWluAq4F/AucCfwEax7MgERGp83JzC5g+fUfxLPnUqbnk5oY+8nbtUop7yAcOTKNbt1TMNH0kh+zQd8KsTRTAq54DTwO3E9avHENYQ1xERKQ6yM93Pv10Z3HLyuTJOaxdG/rImzQp6iNvyKBBDTn++PqkpKiPXA6YAjgogMfTx8DFwCrgt8DNqCVFRESqH3dn6dLdTJpU0rbyxRclfeQnnphWHMj7908jI0N95LJXCuCgAB5vm4GrgH8B5wN/Bo6Ia0UiIiL7t3ZtHlOm5DB5cm5xH3lBASQkhD7y2LaVli3VRy7FFMBBAbw6cOD3wE+A1sCrwLfiWpGIiMjByckpYPr0XCZPzi3uI9+xI/SRt29fuo+8a1f1kddhCuCgAF6dTCe0pKwBHiXs8KT/PImISE2Ul+d8+umO4kA+eXIO69aV9JGHMB7aVo47Tn3kdYgCOCiAVzebgB8AbwDfAV4EGsWzIBERkQrg7ixZsjsK46FtZfHi0Edev37oIy+aJe/XT33ktZgCOCiAV0cO/A74GWGx+VeBPnGtSEREpOJ9/XVJH/mkSTl88skOCgtDH3nv3rF95A1p0SI53uVKxVAABwXw6mwqcAmwlhDIf4xaUkREpPbavr2ojzyHSZNymTatpI+8Y8d6DByYVhzIjzmmnvrIayYFcFAAr+42ApcDbxN20fwjkBnXikRERKpGXp4zZ86OmPXIc1m/PvSRN22aVBzIQx95A5KTFchrAAVwUACvCQqBx4A7gXbAa8Bx8SxIREQkDtydL77YXbwW+eTJuSxZEvrIGzRI4MQTG5TqI09PVx95NVS1AdzMXgLOAda5e88yx+4AHgGaufuGaOxOwq7lBcBN7j4+Gu9D2MG8PmFi9GZ3dzOrB7xMaBfeCFzi7tn7q0sBvOaYQmhJWQ88AVyHWlJERKRuW7OmqI88h0mTcpgzZyeFhZCYCFlZDUq1rRx1lPrIq4EqD+AnAznAy7EB3MzaAH8CugJ93H2DmXUHRgEnEHYrfw/o4u4FZjaDsGniNEIAf9Ldx5rZj4Fj3f06MxsBfNvdL9lfXQrgNcsG4PvAOEIYfwHIiGtFIiIi1cf27QVMm1ay9OG0abns3BmyXadO9Uq1rXTurD7yOKj6FhQzawe8WSaAvw78Evg30DcK4HcCuPtD0XvGA/cD2cD77t41Gr8UGOzu1xa9x92nmlkS8DVhRn2fF6QAXvMUErauvxvoQGhJ6R3XikRERKqnvDxn9uwdpdpWNmwIfeTNmoU+8qK2laws9ZFXgXK/wUlVWoHZecAqd/+0zG9grQgz3EVWRmN50fOy40XnrABw93wz2wo0IUyalv26I4GRAG3btq2Qa5Gqk0BYonAAMAI4EXgSuAa1pIiIiMRKTg5rjJ94Yhq3334k7s6iRSV95JMm5fB//7cVCH3k/fqlMWhQWnEfecOG6iOvClUWwM2sAXAXMLS8w+WM+T7G93XONwfdXyB0L9C3b9+6dddpLTII+ITQknIt8AHwPNAwnkWJiIhUY2ZG166pdO2ayg9/2BSA1av3MGVKbnEg/+Uvvy7uIz/uuAZRD3kI5UceqT7yylCVM+AdgfZA0ex3a2C2mZ1AmNluE/Pe1sDqaLx1OePEnLMyakHJJGysKLVYc2As8BBwLzCL0JLSK55FiYiI1CAtW6Zw0UUpXHTREQBs21a6j/z559fzxBPrAOjcuV5xD/nAgWl06qQ+8opQ5T3gMceyKekB7wG8QslNmP8FOkc3YX4M3AhMJ9yE+ZS7v21m1wO9Ym7C/I67X7y/mtQDXntMBC4FtgBPA1ehlhQREZHDtWdPIZ98sjNmPfIcNm4sAKB586RSgTwrqwFJSfrpuw9VvgrKKGAw0JSwueF97v5izPFsogAevb6LkKHygVvcfWw03peSZQjHAjdGyxCmAn8jLBG9CRjh7sv2V5cCeO2yFvgeYdmc7wPPopYUERGRiuTufP75LiZPLmlbWb58DwBpaQn0759W3LbSr18aaWnqI4+hjXhAAbw2KgB+RVg25xhCS8o3/uQiIiIiFWbVqtBHXjRL/umnO3EPfeTHH9+geJZ8wIA0mjev033kCuCgAF6bTQC+C2wjzIT/IK7ViIiI1B1bt5buI58+PZddu0LG7NKldB95x451qo9cARwUwGu7rwkh/H3gCuAZIC2uFYmIiNQ9e/YUMmvWjuK2lcmTc9i0KfSRH3VUUvFunQMHNqR37/q1uY9cARwUwOuCAuAXhN2euhFaUrrHtSIREZG6rbDwm33k2dmhj7xhw5I+8kGDGnLCCQ1qUx+5AjgogNcl7wGXATnAHwg3aYqIiEj1sHLlHqZMyWHSpBDK584NfeRJSd/sI2/WrMb2kSuAgwJ4XbOa0JLyAWGJnaeABnGtSERERMqzdWsBH31UtPRhLtOn57J7d8ipxxxTL+ohD48OHVJqSh+5AjgogNdF+YQVUn4N9CC0pHSNZ0EiIiKyX7t3F/WR5xS3rmzeHPrIW7RILt6ts6iPPDGxWgZyBXBQAK/LxhPWDN9J2ML+sviWIyIiIgehsNBZuHBXcQ/55Mm5fPll6CNPTy/bR55GgwYJca4YUAAPFMDrtlWE3TMnAdcAvyfs8CQiIiI1z4oVRX3kIZB/9llJH3mfPiV95GeemUFKSlwCuQI4KIBLaEm5F3gIOJbQktIlrhWJiIhIRdiyJZ+PPsotbluZMSMXM9i6tbcCeDwpgEuRsYSVUXYDfwRGxLccERERqWC7dxfyxRe76dUrbn/vLjeAV4vmGJF4OBOYA/QmtKX8CNgV14pERESkItWrlxDP8L1XCuBSp7Um7Jr5U8Ja4f2BJXGtSERERGo7BXCp85KBh4E3gK+A4wl94SIiIiKVQQFcJHIO8AnQE7gYuIHQHy4iIiJSkRTARWK0JeyaeTvwDHASsDSuFYmIiEhtowAuUkYy8Cjwb2AZoSXlH3GtSERERGoTBXCRvTiP0JLSFbgQuAm1pIiIiMjhUwAX2Yd2hF0zbwWeAgYCy+NZkIiIiNR4CuAi+5EC/A74P2AxcFz0XERERORQKICLHKALCC0pnYHvEGbF98S1IhEREamJFMBFDkJ7YDKhH/wJYBCQHc+CREREpMZRABc5SPWA3wOvA58TWlL+E9eKREREpCZRABc5RP8PmA10AM4H7gDy4lqRiIiI1AQK4CKHoSPwEXA98BhwMmE7exEREZG9qbQAbmYvmdk6M5sXM/ZLM5trZnPM7B0zaxlz7E4zW2Jmi8xsWMx4HzP7LDr2pJlZNF7PzMZE49PNrF1lXYvIvtQDngZeBeYDWcCbca1IREREqrPKnAH/CzC8zNgj7n6suxdllHsBzKw7MALoEZ3zrJklRuc8B4wkLD7ROeYzrwY2u3sn4HHg4cq7FJH9u4jQknI0cC7wU9SSIiIiIt9UaQHc3T8ENpUZ2xbzMg3w6Pn5wGh33+3uy4ElwAlm1gLIcPep7u7Ay4TV4IrO+Wv0/HXg9KLZcZF46QRMBX4EPAIMBlbEsyARERGpdqq8B9zMfmVmK4DLiGbAgVaUzikro7FW0fOy46XOcfd8YCvQpPIqFzkwqcCzwChgLmGVlLFxrUhERESqkyoP4O5+l7u3Af4XuCEaLm/m2vcxvq9zvsHMRprZTDObuX79+oMtWeSQjABmEX5TPAu4E8iPa0UiIiJSHcRzFZRXCCu5QZjZbhNzrDWwOhpvXc54qXPMLAnIpEzLSxF3f8Hd+7p732bNmlXYBYjsTxdgGuEmht8ApwGr4lqRiIiIxFuVBnAz6xzz8jzCPiYQ9jEZEa1s0p5ws+UMd18DbDezflF/9+XAv2POuSJ6fiEwIeoTF6lW6gPPA38n3KSZBYyPa0UiIiIST0mV9cFmNopwD1pTM1sJ3AecZWbHAIXAl8B1AO4+38xeBRYQ/kp/vbsXRB/1I8KKKvUJrbRF7bQvAn8zsyWEme8RlXUtIhXhMqAPYbWU4cDPgQeoxP8TioiISLVkdW3SuG/fvj5z5sx4lyF12A7gJsJvkKcQerFa7vMMERERqaHKXaFPO2GKVLEGwJ8Ia2h+TGhJeTeuFYmIiEhVUgAXiZPLgZlAc2AYYU3Ogn2eISIiIrWBArhIHHUDphPuJv4lcAbwdVwrEhERkcqmAC4SZ2nAn6PHNEJLyoS4ViQiIiKVSQFcpJr4AaEnvDEwhLBCilpSREREah8FcJFqpAcwA/gecD+hN3xtPAsSERGRCqcALlLNNCSskPInYAqhJWViPAsSERGRCqUALlINGXA1YTY8EzgdeJCwg5WIiIjUbArgItVYL0Jf+AjgHsIOmuviWpGIiIgcLgVwkWouHfg78ALwIXBc9K+IiIjUTArgIjWAAdcQ1gxPA04FHkItKSIiIjWRArhIDdIbmAVcDPwcOBvYENeKRERE5GApgIvUMOnAK8BzwPuEVVKmxLUiERERORgK4CI1kAHXAVOBVOAU4FzgceBT1JoiIiJSnSXFuwAROXTHAbOB+4C3gDej8aaEPvHTokdnQmgXERGR+FMAF6nhMggz348DKwhtKROA/wKvRe9pTUkYPw1oU/VlioiISEQBXKQWaQNcHj0cWEII4xOAt4GXo/d1oiSMnwo0r/JKRURE6i4FcJFaygitJ52Bawl94fMJM+MTgNGEtcUhbPhTFMhPBhpVdbEiIiJ1iLl7vGuoUn379vWZM2fGuwyRuMsn9I8XzZBPBnYS7szuA5xOCOQDgAZxqlFERKSGK/cWLAVwEQFgNzCNkkA+jRDSk4H+hDB+OnACkBKnGkVERGoYBXBQABc5UDmE9cWLWlZmE/rKGwCDKGlZOQ5IjFONIiIi1Vy5AVw94CJSrobAsOgBsBn4gJIVVv4nGm8EDKYkkHdHSx6KiIjsiwK4iByQI4ALogfA15QseTgB+Fc0fiRhZZWiHvL2KJCLiIjEUgAXkUNyFHBp9ADIpiSMF62yAnA0pdcgb1mlVYqIiFQ/6gEXkQrnwCJK2lXeJ7SwAHSlJIwPBprEoT4REZEqUu4fgRMq7auZvWRm68xsXszYI2b2uZnNNbP/M7NGMcfuNLMlZrbIzIbFjPcxs8+iY0+amUXj9cxsTDQ+3czaVda1iMjBMULQ/jHwD2AD4SbOR4EOhA2BLgSaEW7ivIOwUdD2eBQrIiJSxSotgAN/AYaXGXsX6OnuxwJfAHcCmFl3YATQIzrnWTMrWljhOWAkJXuKFH3m1cBmd+9E2IX74Uq7EhE5LAmEoH078BawibDCyi8IveVPA2dHz08C7ibMnu+KR7EiIiKVrNICuLt/SPg5Gzv2jrvnRy+nAa2j5+cDo919t7svJ+ygfYKZtQAy3H2qh16Zlym5B+x84K/R89eB04tmx0WkekumdNDeTMnKKg78hnATZ6Po318BU4G8eBQrIiJSweJ5E+ZVwJjoeStCIC+yMhrLi56XHS86ZwWA///27j3e8rHu//jrbcb5bEhyPiURYRwqIW7nSHImbkXpjkgKqZ9SuSWPu0gHdFDocKdyKymVU8JMihANcoopTDNOM8zx/fvjulZ7zZ5tTnuvtfZe+/18PNbD3t/13du19W2t97q+n+tz2TMkPUcpJ53Q+18k6X2UWXTWWmutgfsLImJALElPXTjA88Dv6Kkh/0Q9vgywAz0dVjajtbfxIiIiWqEjAVzSGZRN9q5oHOrjNM/l+Nx+Zs6D9sXAxVAWYS7QYCOi7ZajlKTsXb+fANxIT4eVX9TjK1FaHjZ26XwtaXkYMdjNosymjWt6vEgpQZvXI7vwRrdoewCXdBTwdmAX97RgeQJYs+m0NYDx9fgafRxv/pknJI0ElqdXyUtEdIeVKYs2D6jfP0lPGP8tZaEnlBaHzS0P127vMCOiyfPMHrIfaPrnS03nLUMpN5sETJ7H71ya+QvqK/VxbNEB+JsiBkpbA7ikPShlnjvantL01NXA9yT9D+U9dENgrO2Zkl6QtB0wBjgS+HLTzxxFKQ09ALjew62nYsQwtTrw7vow8DA9gfw64PJ63nr0lKu8jbJJUEQMnBnAI8wZssdRNutqWISyKddGlP8/blQfrwVWo+fO1TTgWUoYn0SZVZs0l8fDTV/3J7z3FdgT3qOVWtYHXNL3KW1+VwaeAs6kdD1ZHPhXPe1228fV88+g1IXPAE6yfW09PprSUWVJ4FrgBNuWtARwGaW5wkTgENsPz2tc6QMe0d0M/IWeQH4j8Fx9bhN6ylV2pMy6RcTcmVIG1jtgjwP+xuyLo0fRE64bAXsjYH3Km38rTWPuYf2VHhOBKX38vmbN4X1ewe4fiQAAH9VJREFUYT3hPXrpszIyG/FERFebSelB3gjkv6Pc/l4E2JKecpXtKW+yEcPVy5QWZL1D9jh6NtKCUoe9AXOG7I0YuhtrLUh47z0rP6/wvgzzH9abw/0KJLx3iQRwSACPGO6mAmMptePXU9ovTae80W1HTyDfltbP2EW0mylrKPoK2Y9RFkg2vIa+Q/Y6wAiiYV7hfW5lNP0N7680G5/wPqgkgEMCeETMbjJlU6DGgs4/UULIkpRZ8UbJypYkdMTQ8SJ9h+wHmL1WeinmDNiN75dt43iHq6nMXvM+P3Xv/Qnv81s+08ke1V0oARwSwCNi7iYBN9NTsnJvPb48pW68MUO+KWl5GJ01kzJr3Ttkj6OnXRiU63Qd5gzZG1EWNOc6Hpoa4X1+A/uChvcFrXVfiTLznvA+hwRwSACPiAXzFHADPYH8b/X4Ksze8nB9EmSiNSbS90z2Q5QQ1rACcwbsjSj12ku0cbwx+E1lwReqNr5+qY/f12xZFq5NZBeH9wRwSACPiP55jBLIGzXkjZnGNekpV3kbs29gEDEv0ygf7vrqm928vfNIyoe9voL2yuRDYLTe/IT3V5qVX9jwPq/Z+EEe3hPAIQE8IgaOKSGpMTt+Az09Vl9Lz+z42yjhKIY3U3pj9xWyH6GUlDSsSt8he10GddCImKtXCu/zU0azIOG9r8B+Kh1bx5MADgngEdE6s4C76QnkN1EWwwFsTk8g3wFYrhMDjLaYwuy7PjaH7eebzluCvuuyX0tZcxARPZrD+4LWvc+ktNns0B2iBHBIAI+I9pkO/JGeDiu/p7yJjAC2pieQv5nSdSWGjlnA4/TdaeTvvc5di75D9pqUfvQR0VpT6Whb2QRwSACPiM55GbiNnhnyMZSZmcUoIbwRyLchPXwHi2fpO2Q/SPnfs2E5+g7ZG1Ja/UXEsJUADgngETF4vEDZmbMRyO+i1AkvTSlTaQTyzUkP8laaTqnB7qud39NN540A1qPvzWlWJQsgI6JPfb40ZC1HRESHLAvsVR9QFnDeSE8g/2g9viJlIWcjkL+OhL0FZeAZ+g7ZDwMzms5dhRKq92H2kL0e5W5FRER/JYBHRAwSo4B31QeUFoeNHuS/BX5Sj7+anjC+C2WTlSheppSH9NU3+9mm8xanlIe8gfLfu7l0ZMU2jjcihqeUoEREDAGmlElc3/R4qj63LrO3PFytEwNso1nAk/Qdsh+j/LdqWIO+t1pfi5T1RERbpAYcEsAjojsYuI+eMH4jPTO8r6cnkO9I6Yk7FL1A3z2zH2D2rbSXoe+QvWF9LiKigxLAIQE8IrrTTMoizsYOnb+jhFQBW9BTrrI9gyuUzgAeZc6e2eOAfzSdtwil1KavzWlWIzXxETFoJYBDAnhEDA/TgLH0zJDfVo+NBLalZ4b8TbSnP+4E+m7n9xClC0nDSvQdstdv0zgjIgZYAjgkgEfE8DSFshFQI5DfQamlXoIyK94I5Fux8KvzpwJ/o+9OIxObzlsU2IC+g/aohfx3R0QMUmlDGBExXC0F7FofAM8BN9NTsvLxenxZSt34LpRAvimz79ZoSmlIXyH7UUqob1iNEqoPZPaQvTZ584mI4S2vgRERw9DylD7X+9Tvn6anB/lvgZ/X4ysDO1FmrRt12i82/Z6lKIsftwaOoGcx5Gspu0NGRMScEsAjIoJXAQfVB8Dj9PQgv5EyC74RpVyluePI6sw+Qx4REfOWAB4REXNYCziqPiIiYmBl4iIiIiIioo0SwCMiIiIi2igBPCIiIiKijRLAIyIiIiLaqGUBXNK3JD0t6d6mYwdK+oukWZJG9zr/dEkPSRonafem41tJuqc+d4Ek1eOLS/phPT5G0jqt+lsiIiIiIgZKK2fALwX26HXsXmB/yv4P/ybp9cAhwCb1Z74qaUR9+mvA+4AN66PxO98LTLK9AfBF4PMD/ydERERERAyslgVw2zcz++7D2L7f9rg+Tn8H8APbU20/AjwEbCNpNWA527fZNvBdYL+mn/lO/fpKYJfG7HhERERExGA1WGrAVwf+3vT9E/XY6vXr3sdn+xnbMyg7K4/q65dLep+kOyTd8cwzzwzw0CMiIiIi5t9gCeB9zVx7Lsfn9jNzHrQvtj3a9uhVVlllIYcYEREREdF/gyWAPwGs2fT9GsD4enyNPo7P9jOSRgLL06vkJSIiIiJisBksAfxq4JDa2WRdymLLsbb/Abwgabta330k8H9NP9PYJfkA4PpaJx4RERERMWipVZlV0veBnYCVgaeAMykz1F8GVgGeBe6yvXs9/wzgPcAM4CTb19bjoykdVZYErgVOsG1JSwCXAVvU33uI7YfnY1zPAI8N2B+6YFYGJnTo3x3dL9dXtFKur2ilXF/RSp28vibY7t0VsHUBPOYk6Q7bo+d9ZsSCy/UVrZTrK1op11e00mC8vgZLCUpERERExLCQAB4RERER0UYJ4O11cacHEF0t11e0Uq6vaKVcX9FKg+76Sg14REREREQbZQY8IiIiIqKNEsAjIiIiItooAXwIk7S8pOXr1+vVHUEjItqqbpQWMWAkvUXSnrm2olslsA1RkhYFtgK2lrQ0pcn8KZSNjCJaQpKy42wASNoAmGH70VwTMZAkrQBcA/wFWFLSVbZndXhY0eXqhOZ021MkrQ083srXtizCHMIkvRb4LrAGZSfQWySNsD2zw0OLLibprZTdbJ+wPbbT44n2qjOSa1B2FP4j8GPgAmCa7Rl5DYr+qtfYZ4BNgbHAI8AP8kEvWkXSYsCOlGtuaWAUcIbtKa36d2YGfIhpnoG0/YCkXwKvAvaU9LTtB3qfF9FfjetJ0mjKh75bgWmStrN9QYeHF21UX1f+Lul84CVgV2BdYIqkz9nOduKxUCQtYfvl+lpzK/BO4H7gDcBMST/K+1q0gu1pksYDZwOvBt5ZZ8JbNqGQGvAhpvHiI+nDkr5k+1PAVwEBH5C0tKQ3UT7JRQyI+oa4C3AM5YXpcMrM52aSTujs6KJdJI1o+vZBYEVKAP8Y8Drg95LeI2n3Towvhq56zVwj6UQA278AzgP+CTwFvBV4l6TklhgwvdYY3Af8HrgW2FvSmq28m5cLeQiqL1AHUBvL274XuAx4AfgFZYbysY4NMLrVxsD7gPXr97cAPwXeJOnkjo0q2kLSHsDJkl4NYPurwEbAocAmlFnwHwGrAp+pi8SzgC7mSdKawErABpRr7AJJh1FKnWZRSpzuAfYA9u3YQKPrNE9qAp+2fRLwNWBZ4HgV29SJzQGVEpQhRtLilJmmQ4ClJB0LHAx8Ajgf+B3wiO1HOjfK6AZNZSejbP/L9oWSpgLfkjTO9r2SbqF8kH+0s6ONVqqLvo8DRgMTJN1k+2Hgs8AJlAXhH7J9VT3/AtuTOzbgGDLqzPeJwEnAR4D9gaWAifX711MWY15Rf+S2DgwzulgN3wcA76+H7qr/PBi4kTKpMOB39RLAB7netdy2p9YQ9CNgAvBryovTycBhtn/dmZFGN2kK328HjpM0k/JCdBEwE/iNpN1t/1nSL7LorrvZni7pZ5QZ7y2ARSS9SJmVXAW43PZVtTzACd8xP2r4Pg/4QF3TNJHygf7dwMvA2+tjvO3Jki5JDXgMJElLUhZevgtYRtJ7KHdZzgS+CIwB7rU94FUF6YIyREg6DlgeWNT2ZyVtBzxge6KknSktCA+x/XxHBxpDWvMHPkmvA34GHEYpL9gQWNX2hyR9DDgDWB2YkhZh3UnSKGCy7Zfr99+mrDcR5Y3pEuDNwDnAkbYf7NRYY2iRtBvwE+CHtt/bdHwFSug+HDjX9g1Nz6W5QPRLX9dQfV1bD3geuJkSyGX7yFaOJTPgQ4Ck4ymfzk4Cfilpqu0v1Oc+QpktODLhO/pD0lrAzpIuqzPaKwF/tv0H4A+SNgPOkLSt7XMlXWn7xY4OOlqm1jz+Crhc0jW2rwGupLxvPEe5XWvgbuAGSslAxDxJ2hH4MnA8sF/9QH+J7Um2n613W2YBZ9XOOr+EnnrdiIXRa4LpMMqk5ou2j5b0ZuBR2+Ml7Uqp/17W9gutGk8WYQ5CzQuX6tfrUWYEdgHuAL5Yb5tAuU13qO272z7Q6DYC/gyMUtncaRywuqQjAOo19iywWT3/McguiF3sJUoP5g2Bz0s6mtJd6RTgb8CXgN2ANYEv2P5XpwYaQ4ekdYDlKJNGlwKfpHTSOabOfmP7OUpDgQsoJZYR/dYUvo8DPgwsCrxb0q9t31rD98nAF4BPtDJ8QwL4oNPrE9o+lEVPrwa+D2wDHGh7BuXFai/bX7F9f+dGHN1A0iK1xu0eymKn0yi13l8CdpB0Vi172oEy40mj7juzUt1F0maSzrR9FyUcXU9pzTUDeBLYEtjP9hjgQuBm25M6NuAYMiTtBXwFmGB7jKRFbd9DWYS5G3Csym6E2H4WuNL23zs34ug2kkYCOwEn2b7A9m7Ai5K+VU9ZhjKpeU+rx5IAPsg0he9tgePr7f/LKTME37T9cp2RPI4yQxnRL/VD3yyVnVVHAB+kdLU4mnLH5VuUmrj3AqfV4BVdprbbErAksKWkj9u+jdJu8nlgPdvnU16LrgOw/Vvb4zs26Bgy6oLL/6Ysumy8hswAsH0fpcRyZ+DEphCeD/fRL33coZ1Fue5e3XTsdGAqgO2z2jWpmUWYg5Ckd1LaCn7d9iX12LuBTwE3Udoyvdd2bs3FgJC0L/D/gPfb/mNdgHk+8FvgS3WXsEVrN4wshOpyKjuenkJZ/f/ZWh95BPA4cGFq/2NBSFoC+AGlW86VtcRtScpd3euAmbXr0maU97ljbGdNQfRLr4qCHSl7pUyglPX+GNjb9u21vO5w4B2UpgJteX9LAB8EegcaScsAV1O6D+zTdHx9YDJlYuCp9o80upGkrYBvAgfVVmCrUWYDRlLaXf4GODutBruXpLdRFnrfAYy1fZ+kbSizkvfVEP4mykZMfwXOhcxQxvxR2UH1IuDbwBOU+tt1KQH8duBY2xPquYvZntapsUb3kfRflNeuW4C9KI0rlqHcjfkDpbXqEe2e1EwA77Ben9B2oZQFPQCMB34JPGj7uN7nRvRHr+tuS+BDlKC9BmXDAVPqwCcBK9oe26mxRmvV0oBzKC0nN6K8/nyWcg1sQQnhd9v+7xrKH8sEQMxLHxNLJ1E2Nlmd8lrzc8pOutcCt9v+VF8/F9EfdeLy+8DBth+RtD3lutuFMhu+GDDd9pNtH1uu88GhthM8kLKjoCiLnr5GeXEa3+p+lDF8NN7gav/4acDfgYPq4wuUtQU7A0/a/t/OjTRard7yvwvYyfbNNWB/Fnif7UfrOVsBnwZuarQ/jZgXSSNtz2ie0Za0EbCEywZejedPqsfO6eyIoxtI2hpYEXii3slbkbLw91jXDcIknQgsbfvsDg41izA7pXYaWKt+vTLltsiuwKGUN8DtKC2/9gNWk/TqV/pdEQuihu89KbeEF7H9WA1Wb6mBe1HKgsunOznOaItHKLNB7weodzpmAWdKOr7elfszZVe4K17xt0Q0qe9pD0laqa4fWQzA9jjbf65fz6hrm/4T+L/OjTa6RX1f+zZwLHCKpLVrh6blgYubTl2KsoNvRyWAd4CkPYCvAkvXQyOBVYHV6q23hyi9T7eui512s/3Pjgw2uo6kVYCzgP+ss55bq2w5v2GdEb0Y+LjtGzs5zmidxgf62uf2sHrsR5LOpcwejaOUo3ydclfk3nQ7iflV67lPAG6VtGIN4SMbHSkkrSDpVEp50xFppRv9VXPVl4B32T4QWAHYXNIStvcGVpF0taQvUaoNLp7Lr2uLlKC0Wf2Edg7wAdu3SlrK9hRJnwTeCJxs+7HaDH5DyovYLGer7xggdTbqXGA68CpK4FqGsir8B8CouhgztZhdqHa4uY/S5eY+25fUrhTnU8L4Ck0lAysAy6YXcyyM+n53ITDa9qSmspNtKO93v7D9RGdHGUNdbVzxRcok5tvrot9HKXtWTAHutH22pP2AxYE/2X6wYwOuEsDbqM46fY+yoOkkSatSXpxOpyx2+yDwHsqCgQOAfWz/tVPjje7QVPO9KSVo30vZUOeNlMVP10s6krIRxpH5sNfdJK1J+aB1NWUh0j+AH1Kuiw9TFskdbnt6xwYZXaOPEH48ZeOdtyV8R381tcfdnFKyuyZlH4vzbV9aW6ieCnxusDUTSAlKez1NeeN7UdIplLq3m20/ZPtfts8C/gu4Adgj4TsGQg3fewH/C7yTMvs53vbZNXy/BfgIcEXCd/ers9ljKTta7kXptvR+4LvAN4C1KbNJEf1m+1rgeOCmemf3g5QdnRO+o19qI4FPStq7ri24lnJn91nKHV1s3wq8DKzcsYG+gsyAt0nTLOQI4CjgEMp2vI36y0Uz4xStUPt6X0a5u7IBZUX4W21PkLQ28BngR7Z/lrKT7tb0OrQYJXCfBLyOsnDpN8BywEzg07az024MGEl7U1pdbtFYiBmxsOqk0qcpa1T+avvuenxTyqY6iwGfBN4CfB44wPbDHRpunxLA26jpzW8Ryq5ymwH3AFfanpzwEwOt9kD9J3AMZee5/YFDbf9N0v6UXrxL2X4219/wUBfCNd6c1qPMhJ9m+ypJG1ImBiZ1cozRnRprnjo9jhjaJG0LXE5ZwDum6fhuwPWU17UjKZ3kVqRsMndfJ8Y6NylBaaHGiu+Gxgx4vc1/BXA/pQ73iLpSN+EnBkzdcOBCYGNKW8ujgHfW8D2a0u7y9bafhexqOFy4mEq5K/IflNKjq+pzDyZ8R6skfMcAWQX4pu0xtaoASV8ALqCU0T1KKff9I4M0fEMCeMs0zybWDgMA2J5ZQ/hM4FJKy8F1KCtzIwaEpE0orZa+avsO4GzKavDjJZ0HfAs41fZdHRxmdFAtMTkVGCFpqU6PJyJibiTtLGk7Sveu3eDfmWoTYDXKmpYXgZNs3wt8bLCGbyj9p6MFmsL3icC7JDW2272hOYRL+jqwjO3nOjrg6Db/Qel0MknSDbbvkXQ4MJrSCeWntn+fspNh7zZKWVJExGC3I2VTnc8BO0p6B/Az23+RdFTNVI9QNpOj0U51sEoAH2CSFml0kpD0BmB7ygKANwAH11KTa3vNhCd8x4CoMwHb2T5f0svANsB2kn5fu+rM1lkn4Xt4s/1XSQenNCAihoDfA0fZfkbSOOBtlBz745qpDgH2peyEOeglgA+gOpvYCN87A5sDY2xfI+k+YE9gX0mL2f6/Gr4j+qVpce/2wNHAFpJesn1RLS04AFhU0vW19jfi3xK+I2KwkrQLZR3TncCDwHqSlqXs0vteSqY6FbiREr4PsP1Ah4a7QNIFpQUkHQWcRtmFaXtg89rybS1KXe6awBm2J3dwmNFFJO1I2Vr3NMptuqUpJU/flHQ6ZVfVj9r+VweHGRERMd/qRk4HAqMo72tbUbac/x1wO6Wj0+7AE8CTth/tzEgXXAL4AJO0A/AJ4BDbEyV9jTITvp/tpyWtAUxOp4EYCE2ddj5IWUtwjqTlKS9I7wO+YfsHktay/XjHBhoREdEPktal1H8vWx8TKMH8Qts/7uTYFka6oPRTc6tBSUsCm1B6UB4BYPsDwJ+AGyWtYvuJhO/or8Z1V1vKGfg7cJCkDeuC3p8Ck4GdJe1o+/Hafz4iImLIaLx32X4E+ANlr4KdgBMo3eTu7Njg+iFvyP3Qq9XgSsAI21+jtHzbWNJhALaPp2z3vPQr/rKI+dRU872DpNPrjmCPUXrLf0jSxpQPgSOBEZSNVnC2mY+IiCGm13vXT+jpcvIP298ZbDtczq8E8IXUK3x/BPghcHttO3gr5VPajpKOBrB98lCqTYrBq4bvvSmb7EwEPk4pObkeGE/ZgOAy4GTKwpQNJI3svTFURETEEPMcsGXdDXNISxeUhdQUvnelLBDYg7KhzmcAAxdRtv5+o6TlbD/foaFGl6mdTXambDqwPqWv97dtPw3cKekbwFRga8p6hP1tz+jUeCMiIgbIc8D3KGWXQ1oC+AKqfZbPA95Rm7wvDjxYt/O+S9IpwG8oM+DfA2YlfEd/SHoNZcHJDNt/sz2l9vi+GFgB2Lcu8N0beMn29ZJGAXtTtp4ftDuBRUREzK96B/icbphUSgnKgnsEeBr4oaRFKVvJLyZp47rJzjhKOcritidlh8voD0mvA66hbOb0FUkH1qduoOwI9o26wPJNwP8AMwBqu8HTE74jIqKbdEP4hrQhnG+9ar53BM4FHgCOBE4FNqWsxJ1OWZm7+1BdGBCDg6SNgMuBz1J2ANsbeKPtD0t6FXAopfZ7BmXR5Wm2f57t5SMiIga3BPAFJOlkyvantwO7UPpQHgy8g9Lvey3gPNv3d2yQ0RUkfQZ4j+3V6/frUj74fRJ4wfaTNYivCkyzPS7hOyIiYvBLAF8AkhYHrgQ+Zvt+SctQFltOA461PUPSorand3SgMaT1uttyKbCG7f+QdAxl/cGfgDUoXU9+Y/vKjg02IiIiFlhqwOeij7ZtIyi9vN9Qv58M/IgyE35pPTazLYOLrtUUvrcGzgT+Kel+4FhKp523U8pRJlLWIERERMQQkgD+CnrXfEta1/YU4BzgHEm71ucXB74MnA7Z7CQGhqTNgf8GlrJ9BPArYLrtZ21Psf0g8Enbd3V0oBEREbHAUoLSh17h+xjgDOB+4A7gm5Tt5i8GrgN2oiy4fLAzo41uI2l1ygY6P7T9iabj3wE2BPZIa8uIiIihKwF8LiQdRFlweQrwOmAfyuY651F6qC8PTLY95BvCx+Ai6XPAccAOtv/SdPwK4HzbYzs2uIiIiOiXBPBXIGlJSn33xrbXr8e2odTejgK+bvveDg4xukTjjoukjSkf8P5se6ak04CDgCNzrUVERHSP1IBXvRdc2n6J0uP7CUnfrcfGUmpxx1M244notxq+9wZ+ChwD/EnSOrbPAS4DfiLpDXP9JRERETFkZAacOWq+jwVWBqbYPl/SysA3gEm2j67nLGH75c6NOLqJpC2BbwP7UnrJXwHcB7zb9gOSPgrcZvuWDg4zIiIiBkgCeBNJJ1A21TkRuBX4ou3TJI2i9P/+q+0PZLOTGEi1n/y6wKsonU+2By6hrD/YJQt8IyIiuktKUCpJa1H6ee8HvBm4GdhN0sW2/wUcAHwOevo0RyyMRrmTpNVre8sXbd8DbAX80vY04MfAM8CyHRxqREREtMCwnQGXtD1lQ51HKLf3n5O0PLAlcJbtt0raBLgHONX2Fzo43OgykvajdNeZADwJnA1sS/mg9wBl9vsjtu/o2CAjIiKiJYblDLik3YGvAW8B3g2cWLeQfw6YAYyv286vRykF+HHHBhtdp36wOwnYg3KnZVtKEB8D/Jyyzfy5Cd8RERHdaWSnB9BuknamtBfcyPY/JO1D2dp7Rj1lPPB8PWcDYB/bD3dksNGtBPwSOBQ4EDjI9lRJy9j+HvA9mH1xcERERHSPYVeCImkz4E5Kh4lG0LmF0gLuQUowWg1YCXgu4Tv6q6nPd+OfqwNfAVYHDrP9oKQ9gLOA/YEnE7wjIiK617AL4ACSRgO/Bk4GXgMcBtwNLAG8Efgf4MKEoBgotc/3LsBE4POU2e93ANcDk4GPUtYa/Lxjg4yIiIi2GJYBHEDS1sB1wMTGTpf1+NuBu2w/0bHBRVepm+hcDlwMjKbMfO8F7Aq8CVgOuMb2r1N2EhER0f2GbQCHf5ej3AR8yPZlnR5PdIe6edNyth+uH/SOB261fVF9/hJgbWA/21MkjbQ9Yy6/MiIiIrrIsOyC0mD7bsos5HckHd3p8cTQJ2kJ4HBgVu33/TywEbBVbXOJ7WOBfwI3ShoBDN9PwREREcPQsJ4Bb5C0BWXr+XGdHksMfZKWBZYGPkhZbLkc8HVKO8vLbD9fz9vU9r0dG2hERER0RAJ4xACpveSn16+3BY4EngK+CqwKfBH4FXBJI4RHRETE8DOsS1AiBoKkdSUtb3u6pJEAtscAl1K2kj+BUnLyEWBfYMVOjTUiIiI6LwE8ov/WBx6VtILtGZIWA7D9B+BKSnvLj1Jmw/e2/VjnhhoRERGdlgAe0U+2f0Pp6/1HSSvaniZp8dpScAxwA2Wh5XK2X+zoYCMiIqLjUgMeMUAk7QlcCGxte2I9tgOwJ6XuO7uqRkRERGbAIwaK7WspPb/vAJC0CaXzydiE74iIiGjIDHjEAKsz4T8BngOOs31VdriMiIiIhgTwiBaQtDOwgu2fJHxHREREswTwiBZK+I6IiIjeEsAjIiIiItooizAjIiIiItooATwiIiIioo0SwCMiIiIi2igBPCJiGJFkSZc1fT9S0jOSfr6Av+dRSSv395yIiOEoATwiYniZDGwqacn6/a7Akx0cT0TEsJMAHhEx/FwL7F2/PhT4fuMJSStJukrS3ZJul7RZPT5K0nWS7pR0EaCmnzlC0lhJd0m6SNKIdv4xERFDTQJ4RMTw8wPgEElLAJsBY5qe+zRwp+3NgI8D363HzwRusb0FcDWwFoCkjYGDgbfYfiMwEzi8LX9FRMQQNbLTA4iIiPayfbekdSiz37/o9fT2wLvqedfXme/lgR2A/evxayRNqufvAmwF/EESwJLA063+GyIihrIE8IiI4elq4DxgJ2BU03H1ca57/bOZgO/YPn1ARxcR0cVSghIRMTx9CzjL9j29jt9MLSGRtBMwwfbzvY7vCaxYz/8tcICkV9XnVpK0duuHHxExdGUGPCJiGLL9BHB+H099Cvi2pLuBKcBR9finge9L+hNwE/B4/T33SfoEcJ2kRYDpwAeBx1r7F0REDF2y+7qjGBERERERrZASlIiIiIiINkoAj4iIiIhoowTwiIiIiIg2SgCPiIiIiGijBPCIiIiIiDZKAI+IiIiIaKME8IiIiIiINkoAj4iIiIhoo/8Pe44Cj/ZWOsQAAAAASUVORK5CYII=\n", 174 | "text/plain": [ 175 | "
" 176 | ] 177 | }, 178 | "metadata": { 179 | "needs_background": "light" 180 | }, 181 | "output_type": "display_data" 182 | } 183 | ], 184 | "source": [ 185 | "plot_results(results)" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 111, 191 | "metadata": {}, 192 | "outputs": [ 193 | { 194 | "name": "stdout", 195 | "output_type": "stream", 196 | "text": [ 197 | "With XGBoost, prediction is within 1.3% of the actual.\n" 198 | ] 199 | } 200 | ], 201 | "source": [ 202 | "average_monthly_sales = 894478 #see eda notebook\n", 203 | "gboost = 11649.666667\n", 204 | "percentage_off = round(gboost/average_monthly_sales*100, 2)\n", 205 | "\n", 206 | "print(f\"With XGBoost, prediction is within {percentage_off}% of the actual.\")" 207 | ] 208 | }, 209 | { 210 | "cell_type": "code", 211 | "execution_count": null, 212 | "metadata": {}, 213 | "outputs": [], 214 | "source": [] 215 | } 216 | ], 217 | "metadata": { 218 | "kernelspec": { 219 | "display_name": "Python [conda env:metis] *", 220 | "language": "python", 221 | "name": "conda-env-metis-py" 222 | }, 223 | "language_info": { 224 | "codemirror_mode": { 225 | "name": "ipython", 226 | "version": 3 227 | }, 228 | "file_extension": ".py", 229 | "mimetype": "text/x-python", 230 | "name": "python", 231 | "nbconvert_exporter": "python", 232 | "pygments_lexer": "ipython3", 233 | "version": "3.7.4" 234 | }, 235 | "toc": { 236 | "base_numbering": 1, 237 | "nav_menu": {}, 238 | "number_sections": true, 239 | "sideBar": true, 240 | "skip_h1_title": false, 241 | "title_cell": "Table of Contents", 242 | "title_sidebar": "Contents", 243 | "toc_cell": false, 244 | "toc_position": {}, 245 | "toc_section_display": true, 246 | "toc_window_display": true 247 | } 248 | }, 249 | "nbformat": 4, 250 | "nbformat_minor": 2 251 | } 252 | -------------------------------------------------------------------------------- /notebooks/03_arima_modeling.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import pandas as pd\n", 10 | "import numpy as np\n", 11 | "\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import seaborn as sns\n", 14 | "%matplotlib inline\n", 15 | "\n", 16 | "import statsmodels.tsa.api as smt\n", 17 | "import statsmodels.api as sm\n", 18 | "from statsmodels.tools.eval_measures import rmse\n", 19 | "\n", 20 | "from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score\n", 21 | "\n", 22 | "import pickle" 23 | ] 24 | }, 25 | { 26 | "cell_type": "markdown", 27 | "metadata": {}, 28 | "source": [ 29 | "# Load Data" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": 2, 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "def load_data():\n", 39 | " return pd.read_csv('../data/arima_df.csv').set_index('date')\n", 40 | "\n", 41 | "ts_data = load_data()" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 3, 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "ts_data.index = pd.to_datetime(ts_data.index)" 51 | ] 52 | }, 53 | { 54 | "cell_type": "markdown", 55 | "metadata": {}, 56 | "source": [ 57 | "# SARIMAX Modeling" 58 | ] 59 | }, 60 | { 61 | "cell_type": "code", 62 | "execution_count": 162, 63 | "metadata": {}, 64 | "outputs": [], 65 | "source": [ 66 | "def get_scores(data):\n", 67 | " \n", 68 | " model_scores = {}\n", 69 | " \n", 70 | " rmse = np.sqrt(mean_squared_error(data.sales_diff[-12:], data.forecast[-12:]))\n", 71 | " mae = mean_absolute_error(data.sales_diff[-12:], data.forecast[-12:])\n", 72 | " r2 = r2_score(data.sales_diff[-12:], data.forecast[-12:])\n", 73 | " model_scores['ARIMA'] = [rmse, mae, r2]\n", 74 | " \n", 75 | " print(f\"RMSE: {rmse}\")\n", 76 | " print(f\"MAE: {mae}\")\n", 77 | " print(f\"R2 Score: {r2}\")\n", 78 | " \n", 79 | " pickle.dump(model_scores, open( \"arima_model_scores.p\", \"wb\" ))" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": 175, 85 | "metadata": {}, 86 | "outputs": [ 87 | { 88 | "name": "stderr", 89 | "output_type": "stream", 90 | "text": [ 91 | "/Users/mollyliebeskind/opt/anaconda3/envs/metis/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.\n", 92 | " % freq, ValueWarning)\n", 93 | "/Users/mollyliebeskind/opt/anaconda3/envs/metis/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.\n", 94 | " % freq, ValueWarning)\n" 95 | ] 96 | }, 97 | { 98 | "name": "stdout", 99 | "output_type": "stream", 100 | "text": [ 101 | "RMSE: 14959.893467320022\n", 102 | "MAE: 11265.335748850031\n", 103 | "R2 Score: 0.9835642876210896\n" 104 | ] 105 | }, 106 | { 107 | "data": { 108 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9eZgcZ3nu/Xt7X2ef0W7tsnbJtizvxqBgzA6GJA6QOAcSJwTCCcTnBHCAw/Z9J/mISbgISUggNoQlxEBYbONFlo1tyZuMlpE0o5nRYu2arXtmeu+u9/ujqqZ7prfqRZqa6bqvS9doqrpqamq637vuZ7kfIaXEggULFixYqBa2mb4ACxYsWLAwu2ERiQULFixYqAkWkViwYMGChZpgEYkFCxYsWKgJFpFYsGDBgoWa4JjpC5gJdHR0yGXLls30ZViwYMHCrMLevXuHpJSd07c3JJEsW7aMV155ZaYvw4IFCxZmFYQQJwttt0JbFixYsGChJlhEYsGCBQsWaoJFJBYsWLBgoSZYRGLBggULFmqCRSQWLFiwYKEmWERiwYIFCxZqQs1EIoRYIoTYJYQ4IoQ4JIT4n9r2NiHEE0KIPu1ra84xnxJC9AsheoUQb8rZfo0Q4qC272tCCKFtdwsh/lPb/qIQYlnOMXdrP6NPCHF3rb+PBQsWLFioDPVQJGngL6WU64DrgY8IIdYDnwR2SilXAzu179H23QVsAO4AviGEsGvn+ifgHmC19u8ObfuHgFEp5Srgq8DfaOdqAz4HXAdsBz6XS1gWLFiwMFP4wQ9GGBlJz/RlXBbUTCRSynNSyle1/48DR4BFwDuBB7WXPQi8S/v/O4EfSikTUsrjQD+wXQixAGiSUu6R6pCU70w7Rj/XQ8AOTa28CXhCSjkipRwFniBLPhYsWLAwI7hwIcX73neCf/3XoZm+lMuCuuZItJDTVcCLwDwp5TlQyQbo0l62CDiVc9hpbdsi7f/Tt085RkqZBsJAe4lzFbq2e4QQrwghXhkcHKzuF7RgwYIFA9CVSG9vYoav5PKgbkQihAgAPwb+Qko5VuqlBbbJEturPWbqRim/KaXcJqXc1tmZZxVjwYIFC3XD6GgGgKNH4zN8JZcHdSESIYQTlUS+J6X8ibb5ghauQvt6Udt+GliSc/hi4Ky2fXGB7VOOEUI4gGZgpMS5LFiwYGHGEArpRGIpEkPQchXfAo5IKe/P2fVzQK+iuhv4Wc72u7RKrOWoSfWXtPDXuBDieu2cfzDtGP1c7wWe0vIojwG3CyFatST77do2CxYsWJgx6IpkcDDN6OjcT7jXw/33JuD3gYNCiH3atk8D/xf4kRDiQ8BrwG8DSCkPCSF+BBxGrfj6iJQyox33YeABwAs8qv0Dlai+K4ToR1Uid2nnGhFCfBF4WXvdF6SUI3X4nSxYsGChauiKBFRVct11c9tovebfTkr5HIVzFQA7ihzzZeDLBba/AmwssD2ORkQF9n0b+LbR67VgwYKFS41cFXL0aJzrrvPP4NVcelid7RYsWLBQZ4RCGdxugd3eGHkSi0gsWLBgoc4YHUnzWfd3uGHxSENUbllEYsFCBXj22YmGaTKzUD1s58/y6bG/50+dP2+IXhKLSCxYqAD/9E+DfPzjp1GLBi1YKAw5pD5sbKSfvr4EijK33y8WkVgoigceGGb37omZvgxTYWQkQySicO5caqYvxTTYuzfK2rWHGBqa+2WuRmEfHQZgabiHaFTh7Nm5/X6xiMRCUfyv/3WGr3zlwkxfhqmgW180QgLVKF5+OUJvb4Lnn7ceOnQ4wmoXQvPQCXzE5vz7xSISCwWhKJKRkTQDA8mZvhRTYWRE7Q/o65vbC0Ml0JXIq69GZ/hKzAP3xCgAQko2MDDnE+4WkVgoiHA4g6JAf3/CygfkIKtI5vbCUAksIpkKRZF4Y6HJ77e5+ud8wt0iEgsFMTysLg7RqML581bsGyCTkQ3noWQEWSKJzfCVmANjYxnaCJFyecHv5+am43P+wcMiEgsFMTyctXjo77cWTVBVmi7O5vrCUAmGhtT3ytmzKc6fn9tJZSMYHc3QTphEsB02bWKz6JvzDx4WkVgoCF2RgEUkOvSw1oIFTgYGkmQyVsgPVEXS3KwOObXCW2pXezth0s1tsGkTKyZ6OX4sTjKpzPSlXTJYRGKhIKYSifX0DdlE+/XX+0ilJCdPWoUIoL5XXv/6AGARCWQViWxth82b8cVCdClDHDs2d98vFpGg5gHuvHPAWjBzoIe22trsliLRoCuS669XDfis8JaKoaE0y5e7WbPGbREJEAqlaSeMaFcVCcBm+ub0+8UiEuDw4Rg//WmYRx4pNdixsTA8nEYIuOYan1UCrCGrSHQisQg2HleYmFDo6HBw9dU+K+GOrkhC2LvapxHJ3H2/WESCOnwGYGBg7v6hK8XISJrWVjtr1nisEmANuiJZu9ZDMGizeknIhkB1Ijl5MjklLNqICI2kaGUc14IOaGuDxYu51j23e0ksIgEuXrSIZDqGhzO0tztYtcpNOJyZUsXVqNAVSVubgzVrPHN6YTAKvfS3o8PO1Vd7AfjNbxo7vBU/P4IdRSUSgE2buMrebymSuQ5LkeRjeDg9SSRgVW6Bqkiammw4HII1a9xzemEwiiyROLjqKh9gJdxTF1R7FNGhEcnmzSyLH2OgZ3wGr+rSwiISskRy/Hhyzrt0GoVKJPYcIrGevkdGMrS1qUNF16xxc/Jkknh87pZ0GoFOJO3tDtraHCxf7mLv3sYmEmVQGzPQ3q5+3bQJh5Ki+cIAY2NzU9lbREKWSBIJyZkzVkMVZENby5e7EMJSJKAqkrY2tV9i9WoPUsKxY419X/RmxI4OlWCthDuIEdX5d5JINm9Wv9A3Z/NqFpEAg4NZ8rDCWyr00JbbbeOKK1wWkZCvSMCq3NIViX5frr7aR39/gnB4bj55G4E9pIa2JonkyitRHE420T9n82oWkaAm21evVhcGi0ggkVCIRBTa29Wn71Wr3BaRMF2R6EQyNxcGoxgeTtPSYsfpFACTCfd9+xo3vOUc14ikrU396nLB2rVzugTYIhLU0NbVV/twOCwigWxJp/6UaRGJilxF0tLioKvLMWcXBqMYGkpPhrUAK+EOeCZGUIQNWlomt9m2bOYqez+9vXPzwcMiElQiWbDAybJlbotIyHa1t7erC8TKlW6GhzOEQo3bHyClnKJIQFUlczXmbRTTiWTePCeLFjkbOk/ii4eIeZrBlrO8bt7MwswFzh2+OHMXdgnR8ESid+Z2djpYudJtdXGTbbzLDW0BDX1vxscVMpmsSgOsXhJ0IrFP2aYm3BtTkcTjCi2ZEHF/29QdWoe7+2j3nGzubXgi0Su2OjsdrFjhshQJ2dCWrkisEuAsuU4lEjfnz6fnbEmnEUxXJKDmSXp64kQijXdfdOffVLB16g6tcmtlrI8LF+aesm94ItG72nVFEgplJheNRsX00NaKFS6gsUuAR0ezJpY69MqtRg5vFSKSa67xoSiwf3/jhbdCoQxthMm0tk/dsXAhqUALm+mbk3mShicSvfS3q0slErB6A6YrEr/fzsKFzoYmkkKKZPVqDwB9fXNvYTCCaFQhFpMFFEnjJtxHR1Xn38mKLR1CkNmwac5WbllEMjhVkYBVuTU8nMbjEfh82bdHo1duZX22sopED/nNxYXBCHK72nOxcKGTri5HQybc9dCW6OzI2+e6dgsbGaCvd+4RrEUk03Ik0NhJZch2tefCIpJ8ReL1qs2ajZpwz/XZyoUQomET7uGLUQLEcM5rz9tn27yZIFFC+wZm4MouLSwiGUzjdAqam+34/Xbmz3dYikTras/FqlVqYnliovESqJBVJK2tUyuUGtm8MddCfjquvtrLoUOxhvMii59RfbbcC/IViZ5wd/Z0X85LuiywiGRQTRYKoXbmqiXAjbkw6BgentovAbklwI15b0ZG0vh8NjyeqR8ZvZdkLpZ0lkMxRQJqniSdhu7uxgpvJc8NAuBdXIBINmxAQdB57gjpdI3vl3gcFPOQdMMTycWLabq6sh8Ei0iKKxJo3Mottavdnrd9zRoPoVBmclFtJJQjEqDmPMnQUJr3ve/4rGmGzVxUDRud8zvzdwYCTHQtY4NytLY1JpOBlSvhn/+5+nPUGQ1PJIODaTo7pxLJmTOphpPkuSiUI9ELERqXSNJT8iM6Gtm8cWhIHcc8PdwHsGyZi9ZWe82W8k88McYPfjDKK6/MjnyLHJrm/DsNti2b2EQ/P/tZqPofcuwYnD0LA+bJtVhEUoBIpITjxxtvYYCsFYje1a6jqclOZ2fj5o+KK5LGJpK2Njt2u8jbpyfcayUSvediYmJ2PNjZRksTSeCGrazmFP/572eqD4cePqx+nZio7vhLAItIBlN5RAKNW7k1NqZagUxXJNDYlVvFFMmyZW4cjsbsJSnUjJiLm2/28+qrUQ4dqj681dOjvt9mS5GHPTyq/qcIkbB1K3YU2nperD7sZxGJuZBIKIyNKVOIJFsC3JgL5vRmxFw0NpEUViQOh2DFisas3BoaypQkko9+tItAwMZnP3uu6p/R0zO7FIl7YoS4zQNeb+EXvPnNKJ1dfML2A77zneHqfohGJJFB84zurQuRCCG+LYS4KIToztnWJoR4QgjRp31tzdn3KSFEvxCiVwjxppzt1wghDmr7via0UiohhFsI8Z/a9heFEMtyjrlb+xl9Qoi7K7luvYekq8s5ua2z00EgYLOIpD1/0Vy1ys2pUylisdnxoa4niikS0EuALUUyHR0dDv7yL+fxk5+EePnlSMXnVxTJ0aNxlnN61hCJNzpK1NNS/AUeD7aPfoQ3K8/x8nf2kkxW/nulDx4C4FzfaLWXWXfUS5E8ANwxbdsngZ1SytXATu17hBDrgbuADdox3xBC6KvWPwH3AKu1f/o5PwSMSilXAV8F/kY7VxvwOeA6YDvwuVzCKofcZkQdQoiGrtwqp0ig8fJHsZhCPC4LKhJQK7f6+hIoytSY99hYhr/7uwucPz83xzeXIxKAj3+8i/Z2O3/912crPv+pU0k2xw5wjHcS6N9f7WVeVvgTIWLeMkvQhz9MxuXhf4Qe5NFHxyr7AYqC6OkBwB6rnJwvFepCJFLKXwMj0za/E3hQ+/+DwLtytv9QSpmQUh4H+oHtQogFQJOUco9Us1DfmXaMfq6HgB2aWnkT8ISUckRKOQo8QT6hFUUhIoHGLgGebtiYi0YtAS7U1Z6LNWvcxOOSM2eyhPH88xNs3XqEe+89w7e+NWTo5xw7luBHPzLPU2YpSCkZGsovE5+OpiY7n/rUfB5/fJxnnqksFNPbm2ALRwFwXayciC43FEXSlBolMd35dzo6O+EP7+YPeJifffNoZT/k5EnsCTW34kiYp5LtUuZI5kkpzwFoX7u07YuAUzmvO61tW6T9f/r2KcdIKdNAGGgvca48CCHuEUK8IoR4ZXBQbRoqTiQujh9Pksk0XpNZdjpi4dAWNCKR5Pts5UI3bzx6NE4qJfnMZ85y663qAtHSYjdcuHH//Rd53/uOz4rmxkhEIZnMN2wshD/7s04WLnRy331nK/rdenrirNSXhHC42ku9bBgfV2gnTLqprexr7X/5CZykWfmrf5v8zBmClh/pZzGu5BxTJBUiv1YQZInt1R4zdaOU35RSbpNSbuvsVJuFSimSZHLqE2ajQH9Tt7bmLxBtbQ5aW+0NSCTlFQnAww+PceONvXzpS+e5++529u9fx6ZNXsP3q78/QSYzOxLLpZoRp8PrtfHZz87n+ecjFYVyenriXOlQlYhtwjyJ5WLQnX+VtiIVW7lYs4bx172FP1F+xI+/e8b4D9GI5GU24E41BpFc0MJVaF/1GZOngSU5r1sMnNW2Ly6wfcoxQggH0IwaSit2LkO4eDGF3a4+NeaikV2Ah4cztLTYcTgKcbR6bwotjLt2jfPhD782Jxs5yymShQud+Hw2vvrVixw7luChh5bz7W8vJRi0s3Kl8WFp+n0Nh81f6polksL3ZDo++MEOVqxwcd99Z/NyScXQ25tgrUtdZG0TFeYSZgCh0TRtjCGKlf5OQ/MX/4oOwoz+/bcN/4z4q92cpYPTdOHJmMd+5lISyc8BvYrqbuBnOdvv0iqxlqMm1V/Swl/jQojrtfzHH0w7Rj/Xe4GntDzKY8DtQohWLcl+u7bNEPRmRJtt6qLZ2ERSOu49vQQ4nZZ89rNn2bGjj3/+5yF27zbPU1K9oCuSQioNwGYT3HlnC29/ezMHD67jPe/JxshXrnRz9mz5SrdUSnLixGwkkvKKBMDpFHzhCwvZty/GQw8Z6+ruORLjipQauXZEza9Ixk+P4CCDvauAz1Yh3Hwz55ds5d0nH6DnsLF8R/w3hzjMChSvH48SV+1STIB6lf/+ANgDXCmEOC2E+BDwf4E3CiH6gDdq3yOlPAT8CDgM/Ar4iJRSvxsfBv4NNQE/ADyqbf8W0C6E6Ac+gVYBJqUcAb4IvKz9+4K2zRCmd7XrWLLEhcPRmAOuCnW152LVKjcnTyZJJhVOn07yhjf08cUvnue971VLHg8cMM9TUr1QTpEAfPe7y/j5z1eycKFrynY9r1TuvXTiRGJyTZiLRAJw112tbNzo4TOfOVvWtHB8PEPi3CDelNp054qZX5FET+s+W8YUCULgue9e1vAaL3/2h+VfLyXe4z0cZjnzVmolxlFzJNzrVbX1e1LKBVJKp5RysZTyW1LKYSnlDinlau3rSM7rvyylXCmlvFJK+WjO9leklBu1fR/VVAdSyriU8rellKuklNullMdyjvm2tn2VlPLfK7lulUicedsdDsGyZY1ZuVXIZysXq1a5URT4x38cZMuWI7z6apTvfncpP/rRCubNc7B/vzne2PXEyIg6asDvr/zjYtSjLHf/7CAS9RorIRK7XfClLy3k6NFE2Wa83t6cRDvgSpini7sYEmd1598Cho1F0PKh3+WCdxFX/uLr5Yt7Tp/GnYww1LkGb0dQ3WaS7vaG7mwvpkhALwFuPJsUI6EtgE984gxLl7p49dW1fOAD6hPYli3eOatI2trsk6MGKoHRMOnsI5I0djs0NxvLkeh4xzua2bLFy7/9W2kiya3YStrdeBLmD22lL6hl3r5CFvLF4HBw9rf/jO3J37D3G7tKv1ZLtDs2b0A0BQCQ4+a4Lw1NJBcvliIS40nSuQSVSIovDhs3elm50s3HPtbJnj1XsmaNZ3Lf5s1eDh2KG5q10NcX57XXZgdRl+pqL4e2NodWAjz3iKS9PT+/WA5CCO64o4lXXokSjRbPG/X2JlgtVCI517YGb9ocT96loFvI+5YYVyQA677yEcIEkH/3dyVfN/7iQQA6bt2EvUlVJMlRc9yXhiWSZFIhHM5MmUWSixUr3IRCmclEay6+8Y1BPvrRUwWOmt1IJhW1Fr6EImluttPfv4F/+IcluN1T3z5btnhJJKQhu5A77zzGxz42O+5hMZ8tozDiUdbfn2D1alW9zBYiqSSslYtbbgmQSklefLF4YUZPT5zNgfOwcCHRYCf+tDmevEtBjKhEYiswr70UPJ3NvLTpLq45+RiR08WbV0d3d3ORVjbetgRHs6pIohfNkTtqWCLRk4WlQluQH5J47LExPvrRU3zjG4OVNRLNAuhJ5XLdysWwebNqVLd/f+nw1uhomu7u+KyxDqlFkYCxMGlfX4ItW7zY7bODSMqFQEvhppv8CAHPPlv8abq3N86VztOwciUZfxNBGTF9g7AtNIyCgFbDLk2TaLvnd3GQ4eBX/rv4i44c5jAruOoqH85WVZHEh8xBsA1LJMWaEXUUIpLjxxP83u8dp6vLgZRq78RcQqmudiNYu9aD0ynK5kleeklNyOvEZXbUqkhWrnRx8mSiaMgvnZYcP64qkqYmO+Gw+XtxVEVS3T1paXGwebOXX/+6MJFkMpKjRxMsSZ5SiSTQRBMRIhFz3xfX2Cjj9iDYK78vW++5jSHRSuqnvyz8AilpPXeUcy2rCAbtuNpUIkmMmGMNsoikCJFMt5OPRhXe/e5jSAnPPLOGQMDGzp3m+CPWC6UMG43A5bKxbp2nrCJ54QU1pDE6OluIpDZFsmqVh3Saojmh115Lkk6rIbDmZvusUCS1hLYAbr01wJ49EVKpfHI9eTKJSMRonrigjpQNqkRi9pkk7sgI467K1QiA3eVgYPXrWf/a00TCBcKgFy4QTIVJrl4HgKddDW0lLSKZWVy8WJpI/H478+c7GBhIIqXknntOcuBAjO9/fxlXXunhda8LzEEiqS20BWp4q5wiyRJJ2vS+UsmkwsSEUrMigeIlwPr22UIkumFjLURyyy0BolGFV1/NLxfv7Y2zXDeoWLECmoJ4STAxYm6rfl8sRLSc828JBH/vHbQT5sV/eCpv3/CzBwAIXLsRAE9HEwCpUXOsQQ1LJIVmkUyH7gL89a8P8r3vjfKFLyzgzW9uBmDHjiB9fQlOnZodlUdGoBcWlKraKoctW7ycOZMqmj+SUk2y2mxqU+74uLnDFbpqqjVHAsVLgGcbkYyNKaTTlfWQTMctt6hP1IXyJFPMGleuxNaqNt/FLtQw5/wyIJAMEfdXTyRX/vk7SOEg/L2f5e07t1O10V98+1YAfF0qkaTD5nCSaGgisduhtbX4orlypZu9e6N84hOnecc7mvn0p+dP7tuxQ41RPvWUOZ4I6oFaQ1uQTbgXUyV9fQlGRzPccIMfoGBVnJmQNWysnlwXLHDi8YiiRNLXl8Dns7FggXNWEEk1Xe3TMX++k9Wr3QXzJL29CTb5NEWyciX2VnXRTAyam0ia0yFS5SzkS8De3srxRdtZ0/dkXhgvtrebEZrY8IalAAQ6AygIlDFzrD8NTSTl6uBXrnQTiSisWOHmO99ZNuW1Gzd66ehwzKnw1vBwBperug5uHVu2lCYSPaz15jeri4PZ8yRZe5TqF02bTRQ1uwTo74+zapUbIUTDEAmoeZLnnpvIM3Hs6YlzVdM5CAahvR1nuxoFSAya10o+kVBok2EyLeUt5EvB/s63sUEOsOvfD07Z7jnWwwnfSgJB9Z4Hm+xE8CLHrT6SGcXgYKpofkTHrbcGWLbMxU9/uiKvg9dmE7zhDWqexOxxfqPQSzqr6eDWMW+ek64uR9GE+wsvRGhqsnHTTWpooxEUCZQeltbfn5h0DGgkIrnllgCjoxkOHZqa+1Dt48+oiXYhcHWoRJIeNi+RhC7GaCKCNGIhXwLLPnonAOe+lS0DllKyYLSPsUVXTm4LBjUiiVihrRlFqa52HbfdFuT48Y2sX+8tuH/HjibOnk3R21u62ezhh8OMjpp7wYTyXe1GUcoq5YUXImzf7p8MnzWCIoEskUx/6MhkJMeOJXOIxMbYWMbUDyf1VCQwNU8SCqW5cCHNosRrKpEA7i41XJQeMS+RjJ1QfbZsnbURiX3dlVxsWc7Sg08wPq6+984fPEuHHMW2cf3k6xwOQUR4sUUsRTKjGBxMF+1qNwo9T1IqvLV79wRve9sADzxQ2lvIDChn2GgUmzd76e6O5fVNRCIZDhyIcd11/sknfLP3ktRLkaxa5SYWk5w7N7UJ8/TpJMmknKJIMhlM3TOh59JqJZJly1wsWuSckifp7U0gUGgZPTVJJJ4uVZEoIfMSSfSUSiQOoxbyJZC6/S3cprzMrx5SZ7EM/HIfAB23bp7yupjNj80kc9sbmkgKOf9WghUrXCxd6mLnzuI2BV/5ygWAvAXEjBgeTte8YELWKqWvb2rIYu/eKJkMXH+9f3K2h/lDWxlsNnX2eC3IVm5NrfLLrdiCrAmimcNbQ0OqG3IwWNvyIYTg1lsDPPvsxKQC6+2Ns4iL2NNJtfQX8M1Xq7Zk2Lz5yNhplUjcCyvz2SqEBX/8btyk6P+XRwAYeU7Nlyx/61VTXhd3eLHHLSKZMUiphlTKhbbKQQjBjh1Bdu2aKGjf0NcX57//W32K0vtWzIxabC9yUcwq5cUX1Z6B667z4fUK3G4xC0JbaVpb7RWbE06H3ksyPU/S1zc7iaS9vTo35Om45ZYAZ8+mOHZMJdienjhrbNnSXwBXh0okYsy8VVup86pHlrcS598isN16CzFXkHkvP66GOQ8dZsLmx7tqyZTXJZ1+nAmLSGYMesilViIBNbwVCmX4zW/yG6vuv/8iTqdg6VLXZN+KWSGlrBuRrFvnweHIr9x64YUIK1e66ex0IoSgtdU+KxRJrfkRgKVL3djt+UTS35/A4xEsWqSq49lCJLWGtXRMz5P09ia4vktV8TqR4PWSwmHque3pC2roOrC0dkWCy0Xkpt/iDuVZfv7fI7SeO8qF9tUwjbiTbh+upDnm/1hEUiPe8IbCeZLBwRQPPDDMH/xBG+vXe0yvSMbH1SazehBJIasUKSV79kS4/nrf5La2NsesUCT1CPfpDxTTS4D7+xOsXOmeVDyzg0gydSOSdes8tLXZJ/Mkk6W/Dgcs0Z7AhWDC5scWMS+RyGF1bl/TsjoQCdD2++9gIUM8+v88w6rUAMmV6/Jek3b7cacsIpkx1JNI5s93sn69J68x8RvfGCIel3ziE110dTlMTyT16GrPxXSrlNOnU5w7l+L66/2T2xpJkUDhEuDc0l+YLURSP0ViswluuUXNk6TTkr6+BKttZ2DpUpVMNETsAZxRc1imF4IYGSaBE7dmplgrbG99CwqCa3t/wkKG8GvWKLnIeP14MhaRzBh0o7haq7Z07NgR5NlnJ0gk1EqbWEzh618f5G1va2LdOi+dnQ4uXkyZuqSzHj5budiyxcfp06lJotAbEa+7LkskjaRIIJ9IFEUyMFCYSMbGzFu1VU8iATVP0t+fYPfuCVIpycJEtmJLR9QRwBUzryJxhEcYtbXkhZ+qRlcXkQ3b+CPUfpL5b9ic9xLFF8CrmGMiaUMSSVp7CK6HIgGVSGIxOblYPvjgMENDae69dx6g+nnF43JWlHTWi0imW6W88EIEt1tMdr6DrkjqTyT1JOx6KpJVq9yMjGQme4rOnk0Rj8tZpUgURc2l1ZNI9DyJPn63ZfjEZMWWjpgriNvE43ZdEyOMOVvqek7/Xe8ggPr5cW3NVyT4fHhlXDWtm2E0KJFIhKi9yUzH614XwGZT85cgLWIAACAASURBVCSZjOT++y9y7bW+yQ+IrnzMHN7KEkl9nr6nW6W88EKEa67x4XJl33KqIqn/Pfnwh0/xO79zrObzZDKSUKi2WSS5mG7eOL1iCyAQsGGzmZdIQqEMilJ7D0kurrrKh99v47/+a5RmxnGOjeYpkqQ7gCdpjua7QvBGR5lw15dIbG9/OwAZjw+uuCL/BUFtbvvEzN+XhiSSVErS3u7Abq+PDG1pcbBtm4+dO8f5xS/C9PUluPfeeZPlkbOLSOqzQMyb56CzU7VKSSYV9u6NTsmPgKpIxseVgjMpasFjj43l2W5Ug1CoPl3tOqYTiZ5410fsglpSrg63MieR1KsZMRcOh+DGG/3E45JrW8+pG6cTiSdo6rnt/vgosRos5Ati82ZYvBj7+rVgy1+qbRqRxOo8JTEWU4oOYSuGhiSSdFrWLaylY8eOIC++GOGLXzzHsmUu7rwz+3Si/6yLF+vflLhnzwSDg7WfV8+R6I2CtUIIMWmVcuBAjERC5hGJ/qQfCtWPYEOhNCdOJJmYqD2MWK+udh3ZYWlqz0R/fwKXS7B4sWvK68zst1Uve5Tp0G3lb5g3rfRXQ9oXJJAxb2irKRUiEazNsDEPQsCDD8JXv1pwt71JvWeRC/UtQrjuuh4+//lzFR3TsERSr0S7jh07gmQy8OqrMT7+8S4cjqza0Wee1FuRxGIKt93Wxz/8w2DN5xoeTtPUZMPprFOykKxVynPPqbmjfEWid7fXb9HUS451n6JaUC+fLR1+v50FC5yTSqS/P8GKFa48ZdyIRKKHgbcGNfv45cun7E/7mwgo5mi+y4OUtGTCpJvqTCQAb3gD3HprwV2OFrVCLDZYPyIZH89w8GCcY8dK+wdOR8MSSb0VyY03BnC71Sa7D35wqnGb/rPq3ZR46FCMZFJOfrhrQb2aEXOxZYuXeFzyH/8xwsKFThYvnmpJoz/p17NySyeS+iqS+t2XlStdU0JbufkRHeYmEr26rz4qTcf27X6uuMLFZv856OpSLeRzoASa8JBExs03JVEJj+EkjdJ6CYikBJytGpEM1S/k19ur3t9KPz8NSSSpVP0qtnR4vTY+85n53H//YgIBe96+YNBWd0WiL5r1WHTqZdiYC71ya+/eKNdd58uz1LgUflv79qn3JJWSJJO1kUlWkdRv0cx1AVaJxJP3muZmW92J5IUXIrznPccKWvlUgkulSLxeGydPbmSV7UxeWAuAJm241ZD5ekkmXlPtUUT75SUSV5uq4hLD9bsnupO5RSQGkMnUX5EA3HffAv7wDwvbSOu9JPWEXhFVHyKpvyLRrVIgP6wFl0aR7NuXbdCqdYzvpVAkq1a5OXNG9ZaKRpXLpkgefHCYn/wkVLMqHhpK43bXNvysJAYG8kp/AUSzSiTRc6N1+1GJhMJf/dWZmnOMkdcuAmCvg/NvJfC0q4okNVo/RdLTE8dGhonxyt4nDUkkUH9FUg5dXc5LpkjGxuqRD6jPLJJcuN021q5Vn7gLE0l9FUkqJTl0KD75t50+rrRS6IqkpaW+igTg8cfVp8jcii0dl4JI9uxR8wu15o70ZsR6GDbmIZmEU/nNiMDk3Pb4xfoZNz7zzAT/39+e4/HHa0vi6xbyzvmXl0i8HRqRhOpXhNDTE+cVfp/fP/GPFR3XsESiJ8Av389z1DVHIqU0fWgL1PCW3Q7XXOPL26cv0PVSJD09cZJJyU03qaRVa55kZCRNc7N9SuFErdCJ5LHHVCIppUjq1Vg5Npbh4EG9CKG2e1LvrvYpOHkSFKUgkehz2+MX6zeTpPfxXkLchv/ACzWdJ3FWDW15FtXHZ8sofF3qPcmE66dIBg+e4ip6WRw5XtFxDUskl1+R1Ndv69SpFKFQpi7Na+m0JBy+NETyyU/O54EHluL35z/VOxyCpiZb3RSJHta6+WY1dlw7kdSvGVGHThxPPTWOwwFXXOHKe01zs510GmKx+hDJSy9FULRbUS9FckkwMKB+LUAk+tz25FD9iMT5+CM0EcF9oq+m8+gW8r4ll1eR+OdpA7/G6qNIMhlJ64A6RMudqqxCziKSy/jzBgdTKEp9Fof9+9VF86qrfIZ9mV54IcLb3tY/2VSmo96GjbnYtMnLBz5QfPxoa2v9/Lb27Yvh8YhJ9VProqn6bNX3fdLW5qClRW3EXL7cXVDt1NsmRQ9rgckViU4kBXIk2bnt9QttLel7FgAZri1ZrQyq1i7BeljIV4BApx8FgTJen7LokyeTbE0fAsCbtojEEGYiR5JOZ7ula4Ue1rr5Zj9jYxlDBPX00+M8/PAY73//iSnVOzqx1HvRNIK2tvo5AO/fH2PjRu9kyMyMigSy4a1CYS2oP5Hs3h3B51M/6rWSa719tqZgYAB8Ppg/P2+XZ56aI8mM1keRnHktxo3xl9Rvap1zMjxMiAAtHYX/npcKdoeNCF6o09z2np442zgMgF9GK6p6bFgiuRRhnFLQGyDrlSfZvz/GihUuFi92IaWxRVNfmB57bGxK52q9nX8rQWuroy4NiVJK9u2LsnWrl0BAfVvXnmyvvyKB7LTEy0EkiqKaib7+9Wq4rxZFkslIRkYydHTUn1wBOHZMVSMFEvmeLpVIlFB9Sl2P/nAPragEYhuv7Zy20AgjNNc8jrkaRG0+bJH6KJKeIzGu1YgkSKQik9mGJBK7XdQ1gWoE9fbb2r8/xpYt3hzb8fKLTiikDiT64Afb+eIXz/PLX6pPd/U2bKwEbW32uoS2zpxJMTycYetWH8Gg+nvUXv57aRSJTiCFKragvkTS0xMnFMpw++1qYrYWRXLxYhop699DMokipb8A/nY/KewwVh8iSTz6BABx4cYere2J3jU2QsjeXPM45moQt3uxxepDJBdfGaCLURS7gyDRihR9QxKJ8/IWbAH19duKRDL09yfYssVHU5P6JzSy6IRCGVpb7Xz960u4+movH/jACfr743U3bKwE9RpupYf6piqS6olEUeQlVCSXL7Sl50fe+Ea1VLQWIvnUp85gs6kuDnWHlKoiKdSMCASCdsYIIMbqE9rqOvAMfZ41DDm7cERrC225IqOMu+ps2GgQcYcPe7w+ROLc/yoAw6uu0YjE+HulIYnkcqsRqK/fVnd3HCmpSpG0tNjxem38+McrsNvhPe85zqlTKrnNBJHow61qLXXVK7Y2b/bi9doQorbQ1vi4gqLUt6tdx+23N/GudzVzww35vTVQXyLZvTtCW5udtWs9+P22qlXaD34wwoMPjvCZz8zn6qvzS7lrxvg4rFsHmzYV3O3z2RjDj6jD3HYlEmX9yF5Orr6FmNOPM1GDIjl4kMWjvQz6FtV8XdUg4fTjTNRnSmLXyd+QtjkZ23g9AaJMVPDQcflXDhNgJohEDwfUI0eiP31v2eLl/HmVBIwqEj0RvWyZm+99bxlvecsAfX1xHA4IBi//c0Vrq51kUhKNKgVLhI1i374YK1e6J8Nafr+tJkVyKbradSxe7OKnPy385A31VyQ33OBHCEEwaKtKkRw/nuBP//Q1brzRz1//9YKar6kgmprglVeK7rbbBeMigCNSe2jrzEPPsIQk6dfvIHFmP55qiWRsDN7zHsbtTfxw7f/kvTVfWeVIuXy46jCCeGQkzfpoN0OL1yE62rEhiQ1PAMbU55xQJEKIO4QQvUKIfiHEJ8u9fiaIxOkUtLXZ66JI9u+PEgzaWLrUNZngM0Yk6Sld2nfc0cznP7+AWEydz3JJupXLQF+oa82T7NsXY+vW7PTFYNBeUxhHv55LoUjKIRBQFVWtRDIykubIkfhkKEq9J5WRazotef/7TwDwve8tm5HPjo6II4CjDuN2x378GCnsLP69HaTcAdypKohESvjQh+DYMT6+8CvIefmVZpcDaY8fd7p2RdJ7JMo1HCGx8RrsmqtwJb5ms55IhBB24B+BNwPrgd8TQqwvdcxMlLlC/fy29u+PsXmzF5tNVDTjOxxW8uw+7rtvPu95T8uUEbiXE62t6vXUkicZH88wMJCYQiSBgHkVSTnYbPUZbqWPfr7xRjWEVo0i+eIXz7FnT4R/+ZcrWLbs8pa3TkfMGcBdByIJvPQ0L9k2sXZbJylvEF+FPRMAfO1r8NBDJD73JX5weiNr187Mvcl4/XgytRPJ2V8foYUJPLdux9mm9uwkKmj+nPVEAmwH+qWUx6SUSeCHwDtLHTATIRyoj9+WokgOHIhNLvyVhEFCofTk63XYbIL/+q/lPProqpquq1rUQ5EcPBibzBnpqJ1IZk6RQH38tvbsiWC3w7XXqjmNShXJs89O8KUvnecP/7CNu+66vM62hRB3BXEnaySS0VGWXDhA76KbcDgEGV8Qf6VzTnbvhnvvhXe+k51X/ymZDLz+9cHyx10CSK8fXx2IJLVb7alpf9MNuCbNII3f67lAJIuAUznfn9a2TYEQ4h4hxCtCiFcGB2sfBFUN6uG3deJEkvFxhS1b1MXB7zcWBkkkFGIxWdCAUAgxI6WLkKtIql80dev4rVuzSeBaQ1uPPz6GyyVYuHAGSvyoj5X87t0RtmzxTuaeKlEko6Np3v/+46xY4eZrX1tS03XUCwl3sOa57eknnsKGJHLDGwBQAkGCcsK448TgIPzO76gz1B94gKefmcDpFJemks0ApD+An1jNjhm+w68SEx4cmzfg6VBLxdMNRiSFVsC8uyql/KaUcpuUcltn5+W1MtBRD78t3Tpef/rWwyDlqrb0RamlxVz1FVkr+ervy759Udra7FMGZ9WiSI4ejfPAA8P86Z92zNj9qlWRpNOSl16KcMMN2QWuEkXy539+inPnUnz/+8smCxhmGklvEF+Nc9tHf/w4E3jpetuN6oZgED9xImMGQs6ZDLzvfTA0BA89BC0t7No1wfXX+yedAy43RDCAl4Sx6y+BRef2c7J1PTgceDrV0FamgubPuUAkp4HcR6bFwNkZupaS6Ox0MDycJp2u/ulh//4YQsDGjdmBSE1N5Z9edWuWelqi1wP1GLerN2fmFguoRFLdOT/3uXO43TY+/emZSaBC7UTS3R1jYkKZzI9AZSrtV78a4/d/v51rry1cojwTSPuCuGUSEpWNgc2F85mdPMPVXHOD2imvzzmJnDeQD/ja1+DJJ+HrX4erriIczvDqq9FJ14CZgC2oOV3XMLc9FUuxLnaY4ZVXAeDQnJaVcGMpkpeB1UKI5UIIF3AX8PMZvqaC6OpyIiV5pomVYP/+KKtXu6eUyjY3l1ckZiWSYNCG3V69Ikmn1ZxRblgLIBCwV6VI9u+P8sMfjvIXf9HJvHkzE9YCnUiqz/HojYhTicRYH4mUqhv0/PnmUq+KX8tDVNvdfuoULRcG2O29frIp1KYPzLpgwAxyzx61YfJDHwLg178eR1FmLj8CYG9Wf3akBiI5/cR+fCSQV1+jbtDGHMsJ4+pv1hOJlDINfBR4DDgC/EhKeWhmr6ow6uG3pT9958LIopMNbZmLSIQQNflt9fXFicfllIotML5oTsdnPnOO5mY79947r6rrqRdqVSS7d0eYP9/B0qVZm/pg0E40qpQdtxuNKqTT5BVmzDSUoBpyqZpIdu4EYHjr6ybVq6NNJZLYBQOKJByGjo5JL7BduyZwu0XBoW2XC45m9WfHhqovQgg9oc5jadpxvbohoCosMd5YigQp5SNSyjVSypVSyi/P9PUUQ9YmpToiGRvLcOxYMo9IjJSK6orEbIsD1Oa3lWuNkgtVkVTWMf/CCxF+8Ysw//t/z5sMuc0U9L9ptR3/e/ZEuPHGwJRwn16tWE6p6e8l071XmmpTJOlfPcEF2uh8/VWT2/QwjqFS11AImpsnv3366XFuuMGPxzNzy6hLI8J4DUTCyy8Txs/S39qofq8Ria0CD7I5QSSzBVnjxuoSY/qUu82b8xXJbA1tQW1+W/v2xXA6xeRIXx2BgI1MBhIJ4wvxffedpavLwcc+NjPFGLlobraTSkni8cqJ5MKFFAMDiTwLlqyZpbHCDLMRidAW8cxIFTNJpER5cidPcS3btmdzGu5OfWCWAXIKh6FFza2MjKTZty82o2EtAGer1jw4XH1oq6V/Hwdd62lu1UK5Dgdxm6ciDzKLSC4javXbylqjTM0HGAmDmJlIdL+tarBvX4wNGzy4XFPfykYXTR07d47x1FPjfPrT8wkEZv4e1WKTUig/AllFUp5IlCnXYBbo43YTg1UYNx4+jGv4Ak+yne3bs/dFr1BKGZlzkqNIfv3rCaSc2fwIgKddJcXkaJXGjYkEi0eOcGr+limbY3Z/RWaQFpFcRrS12bHZaiOSlhY7S5ZMTQIbq9pKY7erfSdmQy3DrfQZJNNRiQOwlJL77jvLkiVO/uRPLu+41GKolUicTpFnrmjUXt+s+TR7m6oGEoNVKJInnwTg0LwbWbAg+/nxdOkqpzJFsmvXOF6vYPv2S2BgWQG8nVrPR6i60Jbcvx+nTDGx9uop2xNOH6648dCWucoy5jhsNkFHR/VNiXpH+3RPrOZmO4mEJJFQcLsLE4Vu2DgTflrlUG2y/fz5FBcupPMUGlRGJL/4RZgXX4zyr/96xYzGu3NRC5Hs3j3BNdf48n4X44rEnKEtfdxuVXPbd+7kpHMJC25YPWWzf75KDLLc3PNEAuLxSUWya9c4N90UKPp5u1zwdWlEUkGpbi4mnn6JIGC/fvuU7Ql3AHfCUiSmhdqUWHmORFEkBw/mV2wBhqzkw+GM6ZoRdbS1qaG5ctVE01Es0Q5MhqfK9ZIoiuSv//osq1e7ufvu4rPlLzeqJZJkUuGVV6J5YS2oXJGYlUgqntsuJcozv+ax1LYpYS0A/3z1nGXntoc18mppYWgozcGDcW67beb6R3T4OtXQmjJWXWgr8vSLDNLCohumWiQl3QE8FZhZWkRymVGt39bAQIJIRClIJEYcgEOhDM3N5vxzt7Y6kLLyRVOfQVLonmSfvksvmj09cQ4ejHPvvfNwOs2j1vS/VaX35MCBGPG4LFiSOtsVibfVRwp7RR3XAJw6hW0szG+4ctJ3TIfd6yaOq/yck5BGXs3NPPOM+tqZzo8A2PRKtgp6PnLh2r+Xl9nA2nVTi1XS3kBFZpDmXFnmMKq1SSmWaIdcRVJ80VRDW+ZVJFC5cWN3d5zFi50FS3WNzm3X59WvWOEq+brLjWoVif4+KTR8yqgiCYUy2GzZe2gWBIIOwgSQlRJJd7f6hVVs25Z/XyaEH1s5IslRJLt2TeD328zR9e/1oiCQ1cxtj0RoOdfLPsd6liyZ+v5XvH78SsSwh5e53ikNgM7O6nIk+/fHsNlgwwZP3j6jisRsyVMd1VrJHzoUY+PGwvb32dBWuUUzrV2DuUi2WiI5eDCG329j+fJ8Yqyk/LepyXz5tEDAxhiByvtIDqn9yfEV6wo+TEXtfuzl7OlzFMmuXePcfHPAHApWCGLCiy1ShSL5zW+wSYXzi7fmmbYq/iBBokSjxpp6LSK5zOjqchAOZ0gkKuu63rcvypVXegomg43kSMxMJNVYyWcyksOH41M8x3JhNLSl/0yz3Rt90a8mtLVxo6egm7PXK7DZjOVIzBbWAp1I/IjxypLt8tAhLtg6WHN94emOUWcAZzki0RTJcMbP4cPxGfXXmo6Y3Yc9VoUiefllABKbt+XtkoEgQSKGbYYsIrnM0HtJKlElyaTCM89McPPN1c/4NjORVKNIBgYSJBKSDRvKKRJj/TX6NZgFdrs6GrcSIpFS9R2b3rCqQx23W9640bxEYmcMA2GoaUjsPcgBZSU33VR48Y87A7jKjdvVFMmew+rn1wz5ER1xZ2U9Hzoye17kNF0suGpx3j7RFCRAjIlxY59Ji0guM7Ld7cYXzeeeizA+rvDWtzYX3N/UVDoxm05LIpH86YhmQTWKpLtbzQUUUyQej/r0Xe6JSv+ZZlw4K/XbOncuxfBwpiiRgDEPMrXCz3z3IxCwESaAo5IZ5YqC/WgPh1jB615XmEiS7kD5OSeaItm510YwaCuYg5opJJ1enBWU6gJqJduup3mGq/NcIQBsTQHsKESGjJ3XIpLLDN1vqxJF8sgjYVwuwY4dhZ+CyoW2zFqFo6MaRdLdHUcIWLeuMJEIIQzNJAmFMjQ12bDbTRDvnoZKiUSfVVOaSGavInG5BBPCXz4MlYsTJ3Amo5wMrGb9+sLvlZQngDdVZsEMhUAIfvWcwi23BGZ0dv10pFx+XKkKpyQePoxz6AI72V6QSPS57fFBY6RtEcllRjV+Ww8/HOa22wJFrTtcLhsejyi66JjZHgXA7bbh89kqUiSHDsVYsWKqnf50GFk0R0fTpq1mUz3UjOfSdCLZtKl2RWJGIhFCEHMGK5vbrlVsebdtKlo8kPYF8WXKKxKlqZmeoylThbUA0p4A7kqJROv038l2Vq/OnzfvaK1sbrtFJJcZlfptHTuWoKcnwVveUjispUN1iy28QJidSEA3bqwktFU80a7DqCIxW35ER6WK5ODBOEuWFC6H1jGbFQlA3BXAXcG43dHn9gOw9M1bi74m4zcwtz0UIupUCcRsRJLx+irq+QBg507OB5Yil1xR8GHM2aabQRojbYtILjOammy4XMIwkTz8sPpE8Na3NpV8XSkHYL3E1cxEolrJG7sniYTC0aPxgqXQudCt5EthdNSc+QCoLrRVSo1A+bnt+lArszavJjxBnIrxKYkjzx3gFPO44Y6FRV8jA034iSNTJaIE4TCjMkhTk62gk8JMQvEF8Muo8cmr6TTy6ad5XNme5xCtw92uEklq1AptmRJCiIp6SR55ZIw1a9ysWlV60Sy16MwORWLcb+vo0QTpNEV7SHQYCePMFUWSTCocORIvmR+B8nPbIxGFTMa8+bSUV3ugMthL4ug9TK9zVcn3imhSk/DRiyXOGQoxhp+lS13my6f5ffiJGR8t/fLLiPFxfhG9hje+sfAD6uTcdotIzAujfluRSIZdu8bLhrWg9HCrrJurOXMBUJkiOXRIr9gqvWgamduu5kjMuWhWQiS9vQlSKWmASEorErMXZqR9WlgpbCB2n8kwf7SfiSvWFuyr0aHPOYmcK+HhFQ4zSnCywtBMEAG1VNfwRNCdO5FCsIttvPGNhcN0Xt0V2aAZpEUkMwCjfltPPTVOIiHLhrVA9WYqHtoy9+IAlSmS7u44DgdceWV+kjAXRua2q4rEfIsDTHV1LgcjFVtQXpGYnUiUgPEpieefP4JbJvFdu6nk67IVSiXIKRRiJBOYtPMxE2xNAbwkGA8ljR3w5JMMBNfRtno+S5cW/gy5tByJHDOWj7KIZAZg1G/rkUfGCARs3HJL+S7acqEtIbLd3mZEJeN2u7tjrFmTP8xqOsol29Npyfi4eftrKrFJOXgwhsslWLOmfAFCMilJJgvfF7POItFRydz23p+8CsDSt15d8nWONvWcJee2h8MMpgKmVCT2JjXPER00oB4iEeSePfwyuo3bby/+gCqatH3jVmjLtDCSI5FS8vDDYX7rt4KGZh40NRUvFVWdf+0l5f1Mo7XVTjSqEI+Xf/o2UrEF5SuU9EXTvDkS4w7ABw7EWLfOU9b/qZxxo9kViWg2niPRK7ZWvb14xRaAU5t7nhwuQiSKAuEwF+M+U75X9HG7MSM9H889h0gmeTR9bdGwFgBBdZ8w6CpsEckMoKvLQTSqEIkUXyC6u+OcOpUq2s0+HXrVViG3TjPbo+gw2t0ejSocO5Yoao2SC12RSFm4mkXPyZj13lSiSEpZo+SinJX8rCESAzkSZ+9hLngXY28uXa5bdm77xARIyVDGnIpEJ5L4kAFFsnMnaZuTPbaruO22EvfF4SAu3NiiFpGYFkZ6SfSy3ze/uXx+BFRFImVhS5DZQSS6lXxppXbkSBwpi1uj5CIQsCElxGKFicTs1WxGiWR4OM2ZMymDRFJOkZhzXrsOe6s+iKo0kZw7l+KKiT4mlq0re87JxHKoyDk1n60w5syRuFrV0HdixBiR7PdvZdP1HWX/xjG7D7tFJOaFEb+tRx4ZY+tWL4sWGZuTUcomxazeSbnQE97lEu5Zj61KFs3C59TVj5mT7VCeSA4eNJZoh/KKRO85MiuRONq1KYllylJ/vXOEKzlZNtEO4NPG7RYtddVIK2TSqi1Ph/qwmRots+gPDyN/8xt+Nn5N6bCWhpjDj9Pg3HaLSGYA5fy2RkfT7N49YTisBaUXHT1HYmYYVSTd3THcbsHKlaUrtqD83PbZo0hK540qI5LyORK7Hfx+cy4NnmYvSRykylh39PziIC7SdL1+S9lz+uapnzOl2Nx2kysSrzZuN11u4NeuXQgpeZLtRftHcpFwBnAZNIM057tljqOc39Zjj42RycBb3mIsrAWlHYBnQ2jLuCKJs369x1BTWDkr+awiMee9MapIDhyI0dHhYN688k/L5XMkiimHWukIBB2M4Sc9Unpue+j5gwDYt5RXJME2DzHciGIJfLMrEq0LPR0us+g/+SQxZ4CewMa82fWFkHD7cRuc224RyQxAVyTFQluPPDJGe7ud664zPsqzVGgrFDJv050Oo+N2u7tjhhLtkFUkxZ6+zW4dY2TyJWQT7UYWf12RFFNpZvbZguyURKVEaOvixRTNZ3pQhA3Wri17TodDMI6v+Nx2kysSoVVYKeV6PnbuZLfjGm7d0WZoumPa7cdTzhVZg0UkMwC/347fbytIJJmM5NFHx7jjjqaKrBiKPb1mMpKxMfP2SuhobrYjRGkr+XA4w+nTKUOJdshdNIsrEqdT4POZ82Ngt6tW+KWIJJORdHeXt0bRUS5vNDuIxI8SLk4kzzwzwUYGSCxaDl5j9yViC2CPlCYSsyoSAmqyXU6UWPRPnoT+fn4R22YorAWQ9gbwGjSDNOcnqAHQ2VnYJuXll6MMDaUN2aLkIvv0OvVJU1coZrZHAbDZBC0tpZsSjVqj6DCSI2lpMW8YB8rbpBw7liAaVSogktIqzeyFGYGAnTCB4mEoVCLZ2hFW6wAAIABJREFUJI7hvrp8WEtH1OHHESvyRK+FtiZsgcn3lKng1yIXpXo+du4E0PIjxtyLMz7VFblY+XwuTHhXGgNdXflNicmkwpe/fA67Hd70JuP5ESge2jJ7p3IuVCv54oqkuzsOGCv9hfJEMjpqXsNGHeWIxKg1ig6324bTKWa9Iik1t333rmFW8Rq2TRsMnzfmDOCKF1ckSbubQLvPnA8dXi8KonTPx86djLo7GF+yruD8kUKQgQBBIiQSFpGYFtNtUuJxhTvvPMYvfznG/fcvpr29MgURCNgQIj+0NRt8tnS0tTlKKpLu7hiBgI0rrjBWEl0ujDMbihDKEcnBgzFsNopO/yuEUq7Is4VIioWhhobSpA/3YpcZ2GCcSBIuP65kkdBQOEzUGTRlfgQAIYjZfdhiRa5fSuTOnTypbOONtzcZJ8NAQJvbXr4h1iKSGUKucWM0qvDOdw7w8MNjfOMbS/jYx7oqPp8QQrNJKUwkZl8wwYgiibFxo7GkMhhRJGnT9pDoMKJIVq924/Ua/yiXso4xP5HYGcOPI1qYSJ59doINDKjfbNxo+LxJdxBPsrgiGbOZND+iIeHw4UgUyWccOoS4cIFHU8bDWqD6bTnIEBkun3C3iGSGoPttjY9neOtb+3niiXG+9a0r+PCHO6s+Z6FFZzYRSTlFcuhQ+WFWuXC5BA5H8WT7XFAkBw4YT7TrKGYlnx1qZd57EgjYCBMoOrf9mWfG2eo4hrTbYc0aw+dNewP40sUVyZhJK7Z0JF1+XIkioa2nnwZgF9eyY4fxkLlNs5aJljKz1F9r+KwW6oquLgeplOT1r+/j2Wcn+I//WMYHP9hR0zmbmvIrfGYTkZQat3vxYoqLF9OGE+2gqrRAoLht+mzPkUxMZBgYSFRBJIXvycSEgqKYOwzq86nlv45MEuLxvP0vvhjlxuYTiNWrwW0sFwCQ9jcVH7cbCjGimFuRpFw+nKlY4Z3d3Yw5mmm/eiUdHcZ/h6y9fnkzSItIZgh6U+L+/VF++MPlvO99bTWfUzVunLpAzCYi0YdbFaoSOXSoskS7jmCwsJW8lHKWKJLi5b968UG9FInZDRtBLYmOO7UqpWmVW4oi6e6OcWV6oKKwFoD0B/DKOKQLhFbDYYbTflMrkrSneM9H+uAhutPLeGMJ2/hC0M0gE8MWkZgWW7b4WLDAyY9/vIL3vre1Lucs9PSqf6+XB5sZra0OMpnCpamVeGzlotjc9mhUIZWSs0KRxOOF54dUYo2Si2KKJEsk5l4Wkp7CVvInTyZJT0TpHDtZUaIdQAbVc8oCZcUyFGIwHTB1Pi3j9eOTUVKp/IewTPcRDrHccP+IDme7bq9vEYlpsWmTl7NnN/GOd7TU7ZyFxu2GQhmCQZv55kwXQCm/re7uOO3tdkM2ILkoNtwqq9TMuzhAaZuUAwdiBIM2li41VsWmo5wiMfs9SXoLT0k8eDDGWk4gpKyYSEST9vRdyEo+HNaaEc370CF9fvzE8/+uQ0O4x4bps6/gxhuNO2UAuDUiKWeQCTUSiRDit4UQh4QQihBi27R9nxJC9AsheoUQb8rZfo0Q4qC272tCK8ERQriFEP+pbX9RCLEs55i7hRB92r+7c7Yv117bpx1b2SdqjkGfSZKL2WCPoqOU39ahQ6o1SqV1/MUqlMzus6WjHJFs2lTtPSmlSMx9TzL+wnPbDx6MsVGv2KqQSPTEcuTc6NQdiQQiHtfsUUxMsH4/AaL57/UjRwCQa9fi8VS23Gft9cvb09eqSLqBO4Ff524UQqwH7gI2AHcA3xBC6O/OfwLuAVZr/+7Qtn8IGJVSrgK+CvyNdq424HPAdcB24HNCCD0W9DfAV6WUq4FR7RwNi2JVW7OFSPQnvuklwFJKw1MRp6O8IjH3vSnmAByJZNi/XyWSSqErkum5qNkS2lIChUNb3d1xbmw6AU4nrF5d0Tn1OSexi9OevqcYNpr3vSKCQY1Ipr5PEvsOAdB5q/Eufx26PX0mfImJREp5RErZW2DXO4EfSikTUsrjQD+wXQixAGiSUu6R6rv4O8C7co55UPv/Q8AOTa28CXhCSjkipRwFngDu0Pa9QXst2rH6uRoSTU02EglJIpF9M6lEYuInqRzo6iC3BFhKyQsvRAiHMxXnR6A4kejhs9mqSD73uXOEwxne//7KizSCQTuZDMTjxYjE3PdEz2cUCm3d6jioGjU6nRWd09muh7amlbpOMWw07+fIFiwc2rr49AEieNj01isrPqeuSGQxe/0cXKo7swh4Ief709q2lPb/6dv1Y04BSCnTQogw0J67fdox7UBISpkucK48CCHuQVVCXHHFFVX9UmZHrk1KZ6f6jBAKZViyZHZE/PQP6vPPRzh2LMHzz0d4/vkJhofVD8e11/oqPmex0NbsUyTZ32Hv3ihf/epF7rmng1tuCVR8ztyO/9xGxtnigiBaNB+6HCJJJhXael5kQ+Zl+OTfVnxOd4eaq8wbtzupSMzdR2JvDuIlwUQoOWV7cv9heljGDTcZb0ScPGeLRtjFXJFzUJZIhBBPAvML7LpPSvmzYocV2CZLbK/mmFLnyt8h5TeBbwJs27atvHnMLETuotPZ6Zz8/6ZN5v0A5KKtzYEQ8Pd/fxGA1avdvP3tzdx8c4Bbbw2wenX9Qltmn46oYzqRpFKSP/qjk8yb5+Rv/mZhVefMNW7syjFR0IdamdUNWYdNJ5KcHElPT5z7Mt8kHmzH82d/VvE53fqUwZFiisTcfSQObdxudHAcyKrU4Jmj9LRcwzXVRCWcTuK4sJUyg9R/frkXSCl/q/Ir4DSwJOf7xcBZbfviAttzjzkthHAAzcCItv22acc8DQwBLUIIh6ZKcs/VkNBLfHN7SWbDdEQdPp+NH/94BULAjTf6J2fb14JAwEYkoqAoEpst++wxW56+pxPJ/fdfYN++GD/+8fKqQ5bFPMj0rnZTGhPmwBX0kMSBK0eRnPvJs7yJFzj/R19ivr+y6iQA77wi43ZzFImZ1aurRSWS+HBWPaRD43TFz6FsKT+3vhiiNl9pM0gNl+rR4+fAXVol1nLUpPpLUspzwLgQ4notx/EHwM9yjtErst4LPKXlUR4DbhdCtGpJ9tuBx7R9u7TXoh1bTCE1BKYvOooiTW8LPh3vfncL73pXS11IBLJTEqPRqapkdFQti3Y4zL1o5g636u+P83/+zzne/e5m7ryz+t6jYlbyZrdH0REI2hkjMCW0tfw7/y+DtND+mY9Vdc7JcbvT55xoikQGm01dQu/Wcjyp0SyR9P1iPwCtN1ZWwZaLmL2EvX4Oai3/fbcQ4jRwA/CwEOIxACnlIeBHwGHgV8BHpJT648+HgX9DTcAPAI9q278FtAsh+oFPAJ/UzjUCfBF4Wfv3BW0bwF8Bn9COadfO0bCYTiS65cVsIpJ6o9iiOVvKoh0Ogd9vIxTK8Cd/cgqXS/D1ry8pf2AJlFIks+GeqDNJcoZbvfgia44/w3/M/x+T3dgVn7NVHbebl1jWFImtrX79XpcCes9HcjS76L/2q30ArHrHVVWfN+b04yzm4ZWDmoJ+UsqfAj8tsu/LwJcLbH8FyPMvkFLGgd8ucq5vA98usP0YakmwBXJDW+oCMVsSypcSU+e2Z1WO6rNl3ph3Lpqb7Xz/+yNcuJDmn/95CQsX1lY8UWxueziszA5Foo3bzYyE1Cfhz3+eEVsLB27+YNXnDAZthPAhxqcRSSiEgphcqM0Kl5YjSef0fET2HiKFg/k3VR/aSrgCuA0QibmzahYqwnRFYvaZ5JcDxazkZ1N/TXOznQsX0txyS4A//uPajD0hV5HM0tCWPm43NAYvvQSPPsrfKh9gzdXV3xuXy8Y4fmyR/BzJhD1Ia3t9Qq2XCvrc9kxYXfSllHhP9HKxeVnFpdC5SLn8uFLlx+1aRDKH0NSk/jl1ItGb2GbLgnkpUCyMMxucf3U0N9txuQTf/OYVUwoGqkVxRTJbiESdSSLDY/D5z5NqbuMf+Z2qmjNzEbH7sU9PLIdCjAlz95AAk3PbM2Pq9ff3J1iROEZyReX9I7lIefx4i9nr58Dkd8dCJXC5bHg8Iie0pSqS2bA4XCrMBUXyqU/NI5WSrF1beflzIejhvvy80WwhEnUmievYy3BkP6++8z4mfuZn06ba7k/MEaBp+pyTcJiQNHdXO5A3t333rhE+wClGrv3dmk6b9gXxZSwiaTioNinqAmHlSIoTyWyYjqijnsaeoCbwvd6pc9sVRTI2NnuI5Ax+bIk4tLXxo67309SUMDyCuRjirgAd8aEp22QoxEjGP2sUiU4kA7/qxo5Cx62bazqt4gsUn9OSAyu0NceQ6wA8WxxuLyWmJttVpNOS8XGloQl2unHjxISClLNDveqhLQD+8i95pdde0QjmYki4AniSU0NbymiYUYLmD4NqikRE1XxGaE+3+v369TWdVvoDBIiSKjDGIBcWkcwx5DoAz5amu0uJQuW/OtGafnG4hJhuHTNbfLZAVSSvspbw4iuRH/mI6vpbhQ/bdKQ8ATzT8gFyZNT0PlsAeL0oCOyxCS5cSNFy/ihSCLiythwJwSBOMkRGSifcLSKZY8h1AA6FMvj9NpxO8zZSXWr4/XpoK7toWiE/3QE4n1xnwz3x+238F7fzky88z9kJL6OjmZrzI6DlA9LTku1jY6b32QJACBJOP45EhOeem2AdJ0jMvwJ8lfvTTTltk7G57RaRzDE0NdkmFclsaTC7lHC5bLhcYkqOZLY4/15KzG5Fkg1X6lMia63Ygv+/vbOPj6o68/j3mZfMZDKTEBJEhCq0iiICEalxxe2LrKC2UtdtrXxADd3auvKxa11ZdVWUl7bU3a5+fEPjirDUXay4xRcUlQoFWuoKNisqKhZRIraGQEISkpCXs3/ce5NJMgnC3JnMzTzfz2c+uZx775lzD3fu7z7nOed5rDwnXdLttrfjr6/1hkUCHA7mEmw+xObNDYyVXeSMP/b1Iw6fN2+7CskAo7tF4oUHQ6rp/vatvqPeLRIv3C/xEyicvPVuCEl71F4V7yxKrK9HjMn4XCQOLaE8cloa+N3GWk7jI3xnHHtoFIeAIySJMkfGoUIywOguJNlukUDPvO1eyY6YSrxskYRCgt/faZGccELQFYvBWdTXkbfdI7lIHFrDeeSZRg788QNyzGEYk7xFEii0VvQnTEEchwrJACM/35qN095uVEhsuoeSVx9J71aaF4REROyXg3a2bz+2LJEJ6y2wAjcedpJbxWVH9MJLR3s4jzwaOdV8aBW4ICQ5RU54fRWSrKKgwI8xltmvQmLRXUjUR+JtiwTsRYm1bbzzzrGlYE6E4w9o/MwWEtsiaQ7lH3W+8/6g3Z6qO1bcE5LwEFtIuofX70bm22vKUREfdtwrEW5TTfeHZk1NG4FA5idwSiWxmM+ODm3laamttfokN9cbM/yiUR8VFY00NxvXLJLAYMsiafqsq0XSnl/gSv0pJy+PKI1MLvwYco6HwmNPNeDQkbe9pu8sidn7SxqgxAdu1FlbFj0tEivyb6YncEolTgyyhgarX7yS1MohGvW7OmMLIDjY8Qd0tUh8hd4QEolFyaOR8cGPXLFGID5PiwpJVuEIyaefttDa6p2hilTS3dmuQ349AzdaLx3eGaCIRn20t4PPB2PGuDO0FRpiPTRbqrsKib8o+Tf7dJBTGCPKIYbXfeC6kNA9vH43vHPnKJ8LJwLwRx8dBrJ7iqtDd8fygQMqJN1DyVsWiXfeK52FpqecEiI31512d/oD7IemPbSVM8QbFknxyAKEWjiEa0KSEw3TTBDq1SLJKhwL5OOPHSHJ7gcmOENb8RZJa1Y72iGxReIl69VZS+LWsBZA7nH2MM6BToukkRD5Q44+B3x/IE7gRnBNSAAaJIKvoe/AjSokAwznYdBpkXjn4ZAqolE/jY2GtjYDqEUCvVkk3ukTZ3W7GzG2HGKDrXS7Hf6AWmdVu0f6JV5IkgzWGE+DLw//IbVIsgpn1pZaJJ04b6+OY7mmxjtpdlNF94RfXouC0GmRuOMfAatPDpIHddZU19bqA3acLY/cK46QFBTA8ce7Vm1jII9AY9/pdlVIBhjRqA+fT4UknviHpjFGLRJ6RkX2nkXi/tBWNOqjjghi+wNaq2uoJeqdYVAnudWYMeDi7LumYB7BI+RtVyEZYIgI+fl+9uxpAXTWFnSNzdTYaGhpMd55OKSIeHFtb7fys3jpXpk8OcqUKTG++MWQa3WGQkIdefhtIWnfX2PH2fKYReKifwTgcDCPnMPqI8k68vP9tLRY/gAvPRxSRbyQOKva1SLptEjq6ryT1Mrh4osLWLfuFPx+9968RYRDgWjnMI7XfCSOReKifwTgcDhKuEWFJOtwpnGGw+KJ0A6pJv7t24kple0+krw8HyJWn3gpF0mqaQzkEWyyLBLfwVpvWSTDh1t/v/xlV6ttDUfJbe1bSDzSQ8rR4LxZ6oPBIt4iCQT0oQlO4ENrfY3X4mylkuacKKHmjwAINBz0lkUyZgzs3g0nneRqtW2RKJE2FZKsw5m5le0PS4dEeduz3UcCnTHIVEg6aQ7HCNfUQ3MzgZYmb1kk4LqIALRHouSZvlPteqiHlM9Lp0Wi/73Q1SJxfEcqss6KfxWSeDqGcexV7fW+aMf9k62YaJQcWmlvbOr1GH3S2LS0tFBZWUlTU++d5RWuu66Vq67yEw43s2PHjrR+dzgcZsSIEQSDwbR+b1/E+0gaGy3nbLb7SMCxSNo9lYsk1bRGYoTbm2DfPgBaogWeCWSZMvK7hddPgP6abCorK4nFYowcOdLzN05l5WH+/OcWCgsDfOlL7k2PPBLGGKqrq6msrGTUqFFp+94j4cRlqq+3ZieBPjRBLZJEGCfdbmWl9e+YN+JspRJfvhWD7NBfeheS7LbZ4mhqaqKoqMjzIgJ0TIkMpPk1QUQoKirKOKsuEBDCYelI9hWN+ggGvf//nCyORaJC0omx0+2yZ4/1d9Cg/mtMhuAvsNanNO3rPUyKWiRxDAQRAfD7nb/pv55M7UPHsdzY2K7+EZt4iyQYtMQ264lZb9+OkPgHq0Xi5G1vqtKhrazCEZD+EJJMxUluVVfXpjO2bOItkkGDvJPUKpX4BtkZAT/6GD8QHOKNXCSpxEn4dbi693S7OrQ1AOm0SPq3HZmEE0reirOl70/Q1SLRYS0L5+27bbdlkYSO06GtkJ1ut2W/CsmAoqysjFWrVvW6PxmLZOTIkeyzZ6yce+65HeVz585l7NixzJ07l6qqKkpLSznzzDPZtGnTUX9Hf2BlSWy3I//qQxMsi6SpyVBd3apCYhMY3Dm01Y4QGapCEiqy+qS1j7zt+mqWgBtu2ENFRaOrdZaU5HLvvV9wtc7eCIWEYFCIRJJ7T/j973/fsf3II49QVVVFKBRi5cqVnHbaaSxfvjzZpqaNWMzHwYPtHDjQxoQJ+tCEzmnRn3zSwtChmTNduz/JKbJ8Iv5PKjlIHoOLtV9yj7OtNBWSzKehoYHLL7+cyspK2trauOOOO3jvvfd47rnnaGxs5Nxzz+WRRx7pMY69bds2brzxRurr6ykuLmbZsmUMGzaM3/72P5gx42ECgQCnn346K1euTPi91dXVzJgxg6qqKs4++2yMMz8WiEaj1NfXM336dBoaGigtLWXGjBk8+OCDNDY2UlJSwpYtW8jNdS+Ud6qIRv3s3dui2RHjcAI37tlzmNGj0zdNPJNx8rb7mxqoYZiuN6Izb7s5qEJyVKTLcohn7dq1nHDCCaxZswaA2tpaLrjgAubNmwfAlVdeyfPPP88ll1zScU5LSwvXX389zzzzDEOGDOHJJ5/ktttuY+nSpSxevJgPP/yQUChETU1Nr987f/58zjvvPObNm8eaNWsoLy/vccyzzz5LNBqloqICgKFDh7J161YeeOABN7sgpUSjPmpr2zh4UGdtOTgWycGD3gohn0rCcfnZPRVnK4VEiyIcJoCpS5GPRET+VUTeFZE3ReTXIjIobt+tIvKBiLwnItPiys8Ske32vvvEfsUWkZCIPGmXvyYiI+POuVpEdtqfq+PKR9nH7rTPzUnmevqTcePGsW7dOm6++WY2bdpEQUEB69evp7S0lHHjxvHqq6/y9ttvdznnvffe46233uKCCy6gpKSERYsWUWkvpBo/fjwzZ87kl7/8JYE+FpRs3LiRWbNmAfCNb3yDwsKBOUslFrMsEtBV7Q6ORQK6hsQhVpjDISzrzHNxtlJEOCzUE0Hqew/cmKyz/RXgDGPMeOB94FYAETkduAIYC1wIPCQizp26BPgBcIr9udAu/3vggDHmZOAe4Od2XYOBO4FS4GzgThFxnnY/B+4xxpwCHLDr8CSjR49m27ZtjBs3jltvvZUFCxZw3XXXsWrVKrZv384111zTY6GfMYaxY8dSUVFBRUUF27dv5+WXXwZgzZo1zJkzh23btnHWWWfR2tra63dnw7TPaNRHmx2zUS0SC8ciARUSh1jMTx1WXg9LSLRfRIR6ieBr6H1oKykhMca8bIxxnlB/AEbY298CVhpjmo0xHwIfAGeLyDAg3xizxViD8f8JXBp3juO9XQVMsa2VacArxpj9xpgDWOJ1ob3vfPtY7HOdujzH3r17iUQizJo1i5tuuok33ngDgOLiYurr6xPO0jr11FOpqqpiy5YtgDXU9fbbb9Pe3s6ePXv4+te/zt13301NTQ319YlTZX7lK1/hiSeeAODFF1/kwIEDKbrC/iU+8J76SCziLRIVV4tYzGflbccZ2lKLBOCQPw9/H3nb3eyl7wFP2tvDsYTFodIua7G3u5c75+wBMMa0ikgtUBRf3u2cIqAmTsji6/Ic27dvZ+7cufh8PoLBIEuWLGH16tWMGzeOkSNH8uUEyWpycnJYtWoVP/rRj6itraW1tZUbbriB0aNHM2vWLGprazHG8OMf/5hBvYR6uPPOO5kxYwYTJ07kq1/9KieeeGKqL7VfiH/71oemhVokPYlG/VQSAaCGqN4rNo2BKMFkhERE1gHHJ9h1mzHmGfuY24BW4AnntATHmz7Kj+WcvurqgYj8AGtILSMfltOmTWPatGldyiZNmsSiRYt6HLts2bKO7ZKSEjZu3NjjmM2bN3+u7y0qKuoYDgO45557OrbjrZj47bKyMsrKyj5X/ZlCV4tE3zJBfSSJyM0VDmLFlmoO5Wt0CJvmYISCPvK2H/EXZYz5m772287vbwJTTOfc0UogfurTCGCvXT4iQXn8OZUiEgAKgP12+de6nbMB2AcMEpGAbZXE15XoOsqBcoBJkyb1KjjKwCReSPQt00Itkp6ICE2BPGiFljyNs+VwOCdKqKm61/3Jztq6ELgZmG5MlxRazwJX2DOxRmE51f/XGPMpUCci59g+jquAZ+LOcWZkfRt41Raml4CpIlJoO9mnAi/Z+9bbx2Kf69SldOPxxx+npKSky2fOnDn93ay04WRJBPWROIRC0hFGR4Wkk8agZZG0OQEcFQ6Ho4RbUucjeQAIAa/YM3/+YIy51hjztoj8CngHa8hrjjHGyXP6D8AyIBd40f4APAasEJEPsCyRKwCMMftFZCHwun3cAmPMfnv7ZmCliCwC/mjXoSRg9uzZzJ49u7+b0W84wzh+f2d+kmxHRIjF/NTUaKyteJpDedAIFGh4FIfWcJRIaxJDW31hT9Xtbd9PgJ8kKN8KnJGgvAn4Ti91LQWWJijfhTUlWFH6xLFICgsDWTHd+fMSi/lUSLrRErZykvgKdWjLoT2SR25773nb9dVMyQocH4n6R7ri+ElUSDppzbWEJFA8MBfnHgvteTFCtPS6X4VEyQqcB6b6R7oSi/kIhYRwWB8FDq15lpDkDNGhLQcTjfa5X++eDOK+++5jzJgxzJw5s7+bQkVFBS+88EJ/N8M11CJJTCzmV2ukG3uGn8XvmIB/ZPpj7mUqkt/3xAMVkgzioYce4oUXXuhYad4XfYU8cYOBJiROSH21SLpSWOjXMCDdqBo1kfNYSv7QWH83JWPw5fdtkejKrETccAPYkW5do6QE7r23193XXnstu3btYvr06ZSVlbFp0yZ27dpFJBKhvLyc8ePHc9ddd7F37152795NcXExK1as4JZbbmHDhg00NzczZ84cfvjDHwJw9913s2LFCnw+HxdddBGLFy/m0Ucfpby8nMOHD3PyySezYsUKIpEITz31FPPnz8fv91NQUMC6deuYN28ejY2NbN68mVtvvZXvfve77vZHmvH7rfwsmh2xK/PnD+PAgbYjH5hFONarvnR04h/Ut6jqrypDePjhh1m7di3r169n/vz5nHnmmaxevZpXX32Vq666qiOE+7Zt29i8eTO5ubmUl5dTUFDA66+/TnNzM5MnT2bq1Km8++67rF69mtdee41IJML+/dZs6csuu4xrrrkGgNtvv53HHnuM66+/ngULFvDSSy8xfPhwampqyMnJYcGCBZ4LFX8kFi4cxjnn5PV3MzKKMWMyP5dMunH8aRpnqxMnBXGv+9PUDm/Rh+WQDjZv3szTTz8NwPnnn091dTW1tbUATJ8+vSOR1Msvv8ybb77ZEdCxtraWnTt3sm7dOmbPnk0kYsUMGjx4MABvvfUWt99+e0cQRycky+TJkykrK+Pyyy/nsssuS+u1ppMbbxza301QPICz5kiH/DrJKVIh8RzxWQodnLUPeXl5XY67//77e8ToWrt2bcK1EmVlZaxevZoJEyawbNkyNmzYAFjW0GuvvcaaNWsoKSnpsH4UJRs59dQw+fk+RozwbHoj1wkV9T20pc72DCQ+tPuGDRsoLi4mP8GsiWnTprFkyRJaWqz53e+//z4NDQ1MnTqVpUuXcuiQtYDIGdqqq6tj2LBhtLS0dHHo/+lPf6K0tJQFCxZQXFzMnj17iMVi1NX1nn9AUQYqF12Uz/79E3Q2WxzBE4fzLX7R6361SDKQu+66i9mzZzN+/HhBlMa+AAAGdklEQVQikQjLly9PeNz3v/99du/ezcSJEzHGMGTIEFavXs2FF15IRUUFkyZNIicnh4svvpif/vSnLFy4kNLSUk466STGjRvXIRRz585l586dGGOYMmUKEyZM4MQTT2Tx4sWUlJQMCGe7onxeRDpjkCkWecV5PNsldm5XJNEwykBn0qRJZuvWrV3KduzYwZgxY/qpRQML7UtFGVjs29fKtdd+zNNPf2mbMWZS9/06tKUoiqL0SXFxgFWrvtjrfhUSRVEUJSlUSOLIxmE+t9E+VJTsQ4XEJhwOU11drQ/CJDDGUF1dTTgc7u+mKIqSRnTWls2IESOorKykqqqqv5viacLhMCNGjDjygYqiDBhUSGyCwSCjRo3q72YoiqJ4Dh3aUhRFUZJChURRFEVJChUSRVEUJSmycmW7iFQBH33OwwuAWhe+1o163KijGNiXZB1utSVT6gB3+iWTridT7hXtk9S0w616jraOk4wxQ3qUGmP008cHKM+UelyqY+sAux63/n+S7pcMu56MuFe0TzL+elxpiw5tHZnnMqget9riBplyPdonqa0nWbRPepJJ1+NKW7JyaCubEZGtJkHQtWxH+6Un2ic90T5JjFok2Ud5fzcgQ9F+6Yn2SU+0TxKgFomiKIqSFGqRKIqiKEmhQqIoiqIkhQqJxxGRL4jIehHZISJvi8g/2uWDReQVEdlp/y20y4vs4+tF5IFe6nxWRN5K53W4jZv9IiIbROQ9EamwP8f1xzUli8t9kiMi5SLyvoi8KyJ/1x/XlCxu9YmIxOLujwoR2Sci9/bXdaUbFRLv0wr8kzFmDHAOMEdETgduAX5jjDkF+I39b4Am4A7gpkSVichlQH3KW516XO0XYKYxpsT+fJbitqcKN/vkNuAzY8xo4HTgt6lufIpwpU+MMXVx90cJ1oLn/0nXRfQ3KiQexxjzqTHmDXu7DtgBDAe+BSy3D1sOXGof02CM2Yz1g+iCiESBG4FFaWh6SnGzXwYKLvfJ94Cf2ce1G2PciJaQdlJxn4jIKcBxwKYUNj2jUCEZQIjISOBM4DVgqDHmU7B+LFg39pFYCPwCOJSiJvYLLvQLwOP2kMUdIiIpaWgaSaZPRGSQvblQRN4QkadEZGgKm5sWXLpPAGYAT5osmhKrQjJAsK2Jp4EbjDEHj+H8EuBkY8yvXW9cP5Jsv9jMNMaMA/7a/lzpVvv6Axf6JACMAH5njJkIbAH+zcUmph2X7hOHK4D/Tr5V3kGFZAAgIkGsH8ETxhhnXPYvIjLM3j8MONK4/l8BZ4nIbmAzMFpENqSmxenBpX7BGPOJ/bcO+C/g7NS0OPW41CfVWFar89LxFDAxBc1NC27dJ/axE4CAMWZbShqboaiQeBx7mOUxYIcx5t/jdj0LXG1vXw0801c9xpglxpgTjDEjgfOA940xX3O/xenBrX4RkYCIFNvbQeCbgCdntLl4rxisGE1fs4umAO+42tg04VafxDGDLLNGQFe2ex4ROQ/LqbcdaLeL/wVrnPdXwInAx8B3jDH77XN2A/lADlADTDXGvBNX50jgeWPMGWm5iBTgVr9gzb7ZCAQBP7AOuNEY05aua3ELN+8VETkJWAEMAqqA2caYj9N3Ne7g9u9HRHYBFxtj3k3jZfQ7KiSKoihKUujQlqIoipIUKiSKoihKUqiQKIqiKEmhQqIoiqIkhQqJoiiKkhQqJIqSZkTkLhHpLTgkInKpHThQUTyBComiZB6XYkXUVRRPoOtIFCUNiMhtwFXAHqwFfNuAWuAHWAvbPsCK4VUCPG/vqwWcPB8PAkOwQpNck20L3pTMRoVEUVKMiJwFLANKsQIevgE8DDxujKm2j1kE/MUYc7+ILMOKLLDK3vcb4FpjzE4RKQV+Zow5P/1XoiiJCfR3AxQlC/hr4NfGmENgZaC0y8+wBWQQEAVe6n6iHZX2XOCpuOj1oZS3WFGOAhUSRUkPiUz/ZcClxpj/E5EyOoMgxuMDauyse4qSkaizXVFSz0bgb0UkV0RiwCV2eQz41I4qPDPu+Dp7H3ZujA9F5DtgRau1Q5UrSsagPhJFSQNxzvaPgEqssOsNwD/bZduBmDGmTEQmA48CzcC3saLSLgGGYUUhXmmMWZD2i1CUXlAhURRFUZJCh7YURVGUpFAhURRFUZJChURRFEVJChUSRVEUJSlUSBRFUZSkUCFRFEVRkkKFRFEURUmK/wfIXWPiTuz96gAAAABJRU5ErkJggg==\n", 109 | "text/plain": [ 110 | "
" 111 | ] 112 | }, 113 | "metadata": { 114 | "needs_background": "light" 115 | }, 116 | "output_type": "display_data" 117 | } 118 | ], 119 | "source": [ 120 | "def sarimax_model(data):\n", 121 | " \n", 122 | " # Model\n", 123 | " sar = sm.tsa.statespace.SARIMAX(ts_data.sales_diff, order=(12,0,0), seasonal_order=(0,1,0,12), trend='c').fit()\n", 124 | "\n", 125 | " # Predictions\n", 126 | " start, end, dynamic = 40, 100, 7\n", 127 | " data['forecast'] = sar.predict(start=start, end=end, dynamic=dynamic) \n", 128 | " pred_df = data.forecast[start+dynamic:end]\n", 129 | " \n", 130 | " data[['sales_diff', 'forecast']].plot(color=['mediumblue', 'Red'])\n", 131 | " \n", 132 | " get_scores(data)\n", 133 | "\n", 134 | " return sar, data, pred_df\n", 135 | "\n", 136 | "sar, ts_data, predictions = sarimax_model(ts_data)" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": 164, 142 | "metadata": {}, 143 | "outputs": [ 144 | { 145 | "data": { 146 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHwCAYAAAAB5dMOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydeZhcVZn/P6f26rU6vXc6SWcFAklIWA2LYVNQNhU1soZxRBQQ+akj6MyIjigII47bIIiEXRgEkX0JBAgBJEBIQvalk3TS+1LdVd21n98f997q6urauru6qpOcz/PkSVfde885davuue993/d8XyGlRKFQKBQKhUKRO0z5HoBCoVAoFArFoYYywBQKhUKhUChyjDLAFAqFQqFQKHKMMsAUCoVCoVAocowywBQKhUKhUChyjDLAFAqFQqFQKHKMMsAUKRFCLBFCNGWxvQYhhBRCWPTXLwghrshW+3qbNwshHspmm0n6+ZEQ4s8ptjcKIc7MQj/LhBCrxtqOQmEghPhECLEk3+PIJ0KIlUKIf833OJIhhPAIIWbkexyJ0OfwWRnuO+7z8XjcR3KBMsAOAIQQJwshVgsh3EKILiHE20KI4/RtB/TNWUp5jpTy/nyPYzRIKX8hpZywE7ji0CSR4R8/T0gpj5RSrkzTzpCHJcX4kcgYlFIWSSl3jkNfB/Q9IxGx95ED6fOpC2uCI4QoAZ4FvgU8DtiAUwB/PseVCUIIi5QylO9xpOJAGKNCcTCirj3FoY7ygE185gBIKR+VUoallANSypellOuEEEcAdwGf0t3VPQBCiM8LIT4SQvQKIfYKIW42Got5qr1CCLFHCNEhhPhxzHanEGK5EKJbCLEROC52MEKIG4UQO4QQfUKIjUKIL8RsW6Z75+4UQnQBNwshzEKIO/R+dgKfj2sv+uQnhPhY/xzGP2mESYQQJ+pewB59vyUxbUwXQryhj+kVoCLZyTRCqkKIHwohWoD79PfPFUKs1dtfLYSYH3PMD4UQ+/T2twghztDfH+JaF0JcJoTYLYTojD2n+rblQoifx48jk/OqUGSbWC+ZEOJ4IcQafb5oFUL8Wt/tTf3/Hv16/JQQwiSE+Hf9d94mhHhACFEa0+7lMdfAf8T1c7MQ4gkhxENCiF5gmd73O/p11yyE+L0QwhbTnhRCfFsIsU2/Nv5LCDFTP6ZXCPF47P5xn9GYj34ntOjBZuPaTbBv/LUcnyqxTAixUx/DLiHEJUnaMcVcy536+Cbp2xz6Z+/UP+/7QohqIcQtaA/Vv9fP8+9jPvss/e/lQog/Ci3U5tE/V40Q4jdCm6s3CyEWxowj4Xwikt8z7EKbp/fov4G7hBDOmPZ+oH8/+4UQ/5Los8fsO12kmI9F6rl8pf4dv60f/7IQoiLV+Ys57l8TfT4hxHH6Z7LE9PMlIcTaVJ8jJ0gp1b8J/A8oATqB+4FzgLK47cuAVXHvLQHmoRnY84FW4EJ9WwMggXsAJ7AAzZt2hL79VuAtYBIwBdgANMW0/WWgTm/7q4AXqI0ZSwi4Ds276gSuBjbrbU0CXtf7t+jHrAT+NcHnvko/rgSYrJ+Dz+n9nqW/rtT3fQf4NWAHTgX6gIeSnM8l+hhv0/d3AouANuAEwAxcATTq2w8D9gJ1Medvpv73zUY/wFzAo/dv18cTAs7Uty8Hfh43jpGc11WJPo/6p/7F/9N/u2fGvTfkNxS7j379XKb/XQScqP/dEHut6u/9C7AdmKHv+yTwoL7NuAZORvPU3wEEY/q5WX99of47dwLHACeizRcNwCbguzH9SeAf+jxwJNpctULvvxTYCFyR5Dws06/BGwCrfl25gUn69pXoc0/stRz/2YFCoBc4TN9WCxyZpM/vAu8C9fo88CfgUX3bN4FngAK0eeYYoCR+LHGffZb+93KgQz/GAbwG7AIu19v6OfB6zLEjmk+A3+jneRJQrI/zl/q2s9HuIUfp5+KR2LElOAdJ52PSz+UrgR1ojgen/vrWkZy/JJ9vI3BOzOungO/l+1pVHrAJjpSyF21CM4ymdiHEPwzLP8kxK6WU66WUESnlOuBR4NNxu/1Uat60j4GP0QwxgK8At0gpu6SUe4HfxrX9f1LK/XrbjwHbgONjdtkvpfydlDIkpRzQ2/uNlHKvlLIL+GW6zyyEOBltQjlf//yXAs9LKZ/X+30FWAN8TggxFc1L9x9SSr+U8k20izQVEeAn+v4DwDeAP0kp35Oal/F+tIn+RCCMNpHMFUJYpZSNUsodCdq8CHhWSvmmlNIP/IfeT0ZkcF4VipHwd/3pv0f3cvwxxb5BYJYQokJK6ZFSvpti30uAX0spd0opPcBNwFLdu3AR8IyUcpWUMgD8J9q8Fcs7Usq/67/zASnlB1LKd/X5ohHNYImfq26TUvZKKT9BeyB8We/fDbwALCQ5bWjzT1C/rrYQ54XPkAhwlBDCKaVs1seSiG8CP5ZSNunzwM3ARfr5CQLlaIZLWP/svSMYw1P6MT40A8InpXxAShkGHiPmPIxkPhFCCLQ58AZ93u8DfgEs1Xf5CnCflHKDlNKrf6aEZDAfJ53LY/a5T0q5VZ+bHweO1t8fy/m7X+8b3SP5WTRDMq8oA+wAQEq5SUq5TEpZj/YUUof2xJIQIcQJQojXhRDtQgg3mhcqPizXEvN3P9rTLHrbe2O27Y5r+3IxGKrr0ccT23bssWnbSzD2KWgX3RVSyq3629OAL8fdUE5GexKtA7r1iSGjPoB2fRIzmAZ8L679KWher+1oT7U3A21CiL8KIeoStDnkc+rj6UwzjigZnFeFYiRcKKV0Gf+Ab6fY9+toHofNeljn3BT71jH0+tqN5iWqZvg10M/wa2DI/CCEmCOEeFYI0SK0sOQvGP67b435eyDB6yKSs09KGWsE7tbHmTH6tfxVtHm0WQjxnBDi8CS7TwOeirmON6E9xFUDDwIvAX/VQ3m/EkJYRzCUjM/DCOeTSjSv0gcx+7+ovw8jm8PTzcep5nKDZPemsZy/h4DzhBBFaAblW1LK5gyPHTeUAXaAIaXcjOaOPsp4K8Fuj6C5k6dIKUvRYuIiwy6a0YwPg6nGH0KIaWheuGuBcn1i3xDXdvx4krYXj55z8He0J9YXYjbtRQtzuGL+FUopb9XbLxNCFGbSR5Ix7kXz+sW2XyClfBRASvmIlPJktMlDooUv4xnyOYUQBWhPawZetEnOoCZm30zOq0IxLkgpt0kpvwZUof22n9Cvp0Rzy36068BgKlqYrxXtGqg3NujXczlDiW/zf9FSDWZLKUuAH5Hd3/1k3cMTO979CfZLen0CSClfklKehWYobEa7XhOxFy3UFTuXOKSU+3Qv3E+llHOBxcC5aCFESHyuR0UG80l8Xx1oBtyRMWMulVIahk/Gczjp5+NUc3lK0py/IbsmOHYfWmj0C8BlaMZc3lEG2ARHCHG4EOJ7Qoh6/fUU4GtoeQagTXz1YmgiajHQJaX0CSGOBy4eQZePAzcJIcr0Pq+L2WZMyu36WK5k0BBM1d53hBD1Qogy4MYU+/4F2Cyl/FXc+8bTy2eFltTvEFoSe72UcjeaC/unQgibHr48L9MPq3MPcLXuORRCiEKhLWQoFkIcJoQ4XQhhB3xoE1U4QRtPAOcKTTLEBvyModfXWrSQ6SQhRA2aV81gNOdVocgKQohLhRCVUsoI0KO/HUb7PUbQ8q0MHgVuEFqidRGax+oxqa1mfALtOl2sXwM/Jb0xVYyWX+XRvUrfytoH06hCm3+sQogvA0cAzyfYby1wqhBiqtAWFdxkbBBaovz5ulHhR8tzSzQHgPawe4tuBCGEqBRCXKD/fZoQYp4Qwoz2mYMx7bQy9DyPhXTzyZB7hv693wPcKYSo0o+ZLIT4rL7/42gLJubqD5Y/SdZxBvNx0rk83YdKc/5iSXRPBHgA+De0/Oin0vWXC5QBNvHpQ0sOf08I4UUzvDYA39O3vwZ8ArQIITr0974N/EwI0YeWh/H4CPr7KZrLeBfwMjFPClLKjcB/oz1JtKL9kN9O0949aG7jj4EP0ZJ2k7EU+IIYuhLyFKnlol2A9nTcjvYU9QMGf78Xo52jLrTJ4YGMP632udag5UD8HuhGSzJepm+2oy1M6EBzjVfp44hv4xPgGjTvY7PeTqyA7YNo56AR7bw+FnPsaM6rQpEtzgY+EUJ4gP8BlkopfXoI8RbgbT1cdCLaQ9KDaCskd6E9lFwH0WvgOuCvaNdAH1oOVirJnO+jXb99aHPFYyn2HQ3vAbPRrt9bgIuklMNSA/RcpMeAdcAHaNI/Bia0+XY/2hzzaZKHdP8HLfrwsj7/vos2N4HmVXsCzXjYBLyBZpAYx10ktBWNv2UMZDCfJLpn/BBt3ntXDwW/irYACT0a8Rv9uO36/6lIOh9nMJenItX5iyXR5wPN6JqGlkvnTXBczhFDw+MKhUKhUIwd3UPWgxZe3JWH/pehrYw7Odd9KyYmQogdwDellK/meyygPGAKhUKhyBJCiPOEEAV6uO4OYD2a11ehyCtCiC+hhWbTefByhlLCVygUCkW2uAAtRCnQcoGWShVmUeQZIcRKNJ26y/SctwmBCkEqFAqFQqFQ5BgVglQoFAqFQqHIMcoAUygUCoVCocgxB1QOWEVFhWxoaMj3MBQKRQ754IMPOqSUlen3nNio+UuhOPRINX8dUAZYQ0MDa9asyfcwFApFDhFCpCstdUCg5i+F4tAj1fylQpAKhUKhUCgUOUYZYAqFQqFQKBQ5RhlgCoVCoVAoFDnmgMoBUygUCoVCMXEIBoM0NTXh8/nyPZS84nA4qK+vx2q1ZnyMMsAUCoVCoVCMiqamJoqLi2loaEAIke/h5AUpJZ2dnTQ1NTF9+vSMj1MhSIVCoVAoFKPC5/NRXl5+yBpfAEIIysvLR+wFVAaYYkITCEX4+vL3+WB3V76HolAoFIoEHMrGl8FozoEKQSomNLs6vKzY3IbDZuaYaZPyPRyFQnEA0nDjc1lvs/HWz2e9TcXoKCoqwuPxAPD8889z/fXXs2LFCv7yl79wzz33UFlZidfrZd68efz85z9n7ty5ACxZsoTm5macTicAs2bN4oknnsjZuJUBppjQ7OrwAvD65jYGAmGcNvO49tfh8bO9zcOJM8rHtR+FQqFQZJcVK1Zw3XXX8fLLLzN16lQAbrjhBr7//e8D8Nhjj3H66aezfv16Kis1cfqHH36YY489Ni/jzVsIUggxRQjxuhBikxDiEyHE9fkai2Li0tipGWD9gTBvbG0f9/7uX93IJX9+j/5AaNz7UigUCkV2eOutt/jGN77Bc889x8yZMxPu89WvfpXPfOYzPPLIIzkeXWLy6QELAd+TUn4ohCgGPhBCvCKl3JjHMSkmGLs7vbgKrAjgxQ3NnH1Uzbj21+UNEI5INrf0sWhq2bj2pVAoFAcVL9wILeuz22bNPDjn1pS7+P1+LrjgAlauXMnhhx+ect9FixaxefPm6OtLLrkkGoI866yzuP3228c+5gzJmwEmpWwGmvW/+4QQm4DJgDLAFFF2dXiZUVHIrKoinl/fgj8Uxm4ZvzBkn0/zfG3c36sMMIVCoTgAsFqtLF68mHvvvZf/+Z//SbmvlHLI63yGICdEDpgQogFYCLyX35EoJhqNHf0snlXOOfNqeXxNE6u2dXDGEdXj1l+fLwjAxubecetDoVAoDkrSeKrGC5PJxOOPP86ZZ57JL37xC370ox8l3fejjz7Km8EVT95lKIQQRcDfgO9KKYfd9YQQVwkh1ggh1rS3j38OkGLiMBAI09LrY3p5ISfNrKDYYeH59S3j2qfhAdukDDCFQqE4YCgoKODZZ5/l4Ycf5t577024z9/+9jdefvllvva1r+V4dInJqwdMCGFFM74ellI+mWgfKeXdwN0Axx57rEy0j+LgxEjAb6goxGYxcdbcal7Z2EIgNA+bZXyeHQwDbHNzH+GIxGxS+jYKhUJxIDBp0iRefPFFTj31VCoqKgC48847eeihh/B6vRx11FG89tpr0RWQMDQHrKKigldffTVn482bASY01bJ7gU1Syl/naxyKiUujLkExvaIQgHOOquXJD/fxzs5OPj2nMtWho6bPF8RmMTEQDNPY6WVmZdG49KNQKBSK7GBogAFMmTKFXbt2AXDBBRdw8803Jz1u5cqV4zyy1OQzBHkScBlwuhBirf7vc3kcj2KCsSvGAwZwyuwKCm1mXljfPG599vlCHD3FBWiJ+AqFQqFQjAd5M8CklKuklEJKOV9KebT+7/l8jUcx8Wjs8FJRZKfIrjlqHVYzZxxRzUuftBAKR7LeXyQi8QRCLJpahtUsVCK+QqFQKMaNvCfhKxTJaOzsZ3pFwZD3Pjevhu7+IO/tyn5tSE8ghJRQXmhjVlWxSsQ/hBFCnC2E2CKE2C6EuDHFfscJIcJCiItyOT6FQnHgowwwxYSlscPLtPLCIe99ek4VTquZFzZkPwxpJOAXOywcUVusQpCHKEIIM/AH4BxgLvA1IcTcJPvdBryU2xEqFIqDAWWAKSYkXn+Itj5/NAHfwGkzc9rhlby4oZVwJLuLYg0NsGKHlbm1JbT1+Wnv82e1D8UBwfHAdinlTillAPgrcEGC/a5DW8XdlsvBKRSKgwNlgCkmJFEJijgPGGirITs8ftY0ZjcMGesBm1tXAig9sEOUycDemNdN+ntRhBCTgS8Ad+VwXAqF4iBiQijhKxTxNHb0A9AQlwMGcNrhVdgtJl7Y0MIJM8qz1uegB8wS9bxtbO7l1HGSvFBMWBKJv8W7W38D/FBKGdYUdZI0JMRVwFUAU6dOzdoAFRMbt9/NgxsfxBv0DnnfJExcMOsC5pTNydPIFBMJ5QFTTEhSecCK7BY+PaeSFzY0E8liGHLQA2bFVWBjssupPGCHJk3AlJjX9cD+uH2OBf4qhGgELgL+KIS4ML4hKeXdUspjpZTHxoo/Kg5eGt2NXPL8Jdyz/h6e3v70kH+Pbn6US5+/lNf3vJ7vYR5UCCH43ve+F319xx13DNH/+s1vfsMDDzwAQFdXF2eddRazZ8/mrLPOoru7O2GbZ599Ni6Xi3PPPXfI+0uXLmXbtm1ZGbcywBQTkl0dXqqK7RTaEztpF88sp7XXT4c3fY5WJCIzkq3o1Q2wEofWp0rEP2R5H5gthJguhLABS4F/xO4gpZwupWyQUjYATwDfllL+PfdDVUwk/tn8Ty55/hJ6/b3c99n7WH3x6iH/XvzSi8woncH1r1/P8g3LhxWGVowOu93Ok08+SUdHx7BtoVCIv/zlL1x88cUA3HrrrZxxxhls27aNM844g1tvTVy/8gc/+AEPPvjgsPe/9a1v8atf/Sor41YhSMWEZHenNyrAmoiaUgcAbb1+qoodKdv63zd28I+1+3nphlNT7hebhA8wt7aE1za34QuGcVjNIxm+4gBGShkSQlyLtrrRDPxFSvmJEOJqfbvK+1IM44mtT3DLu7cwrWQavzvjd0wpnjJsn6qCKu47+z5+vOrH/PcH/82u3l38+wn/jtVszcOIs89t/7yNzV2bs9rm4ZMO54fH/zDlPhaLhauuuoo777yTW265Zci21157jUWLFmGxaObO008/HVXAv+KKK1iyZAm33XbbsDbPOOOMhEr5p5xyCsuWLSMUCkXbHC3KA6aYkOzq6Gd6gvCjQVWJZnRlskpxfZOb7e2etE+bfb4QFpPAYdUui7l1JUQkbGnpG8HI808oHOGsX7/B02v35XsoByxSyuellHOklDOllLfo792VyPiSUi6TUj6R+1EqJgLhSJjb37+dn77zU06oPYEHP/dgQuPLwGlxcsen7+Cq+Vfx5LYnueqVq+jx9eRwxAcn11xzDQ8//DBut3vI+2+//TbHHHNM9HVrayu1tbUA1NbW0tY2skXMJpOJWbNm8fHHH495zMoDpphw9PmCdHj8TEuQgG9QVWwHoLXXl7a95l4f4YjE4w9FvVvJ+i12WDCSqufWlgJaIv4CvTzRgUCXN8C2Ng+vbmrjgqMnpz9AoVCMmj+v/zMPbHyAiw+/mB8c9wMspvS3VZMwcd3C62goaeAnq3/C/3vj/3HvZ+4l1YKOA4F0nqrxpKSkhMsvv5zf/va30eLaAM3NzRxxxBFZ7auqqor9+/cPMexGg/KAKSYcuzu1FZCpPGCVugHWloEHrMU9AEBPfzDlfn2+oQZafZmTYrvlgMsDM87J+ib1VK1QjCd7evdw97q7+WzDZ7nphJsyMr5iOW/medx4/I283/I+z+58dpxGeejw3e9+l3vvvRevd3D1qdPpxOcbfFCvrq6muVkT8m5ubqaqqmrE/fh8viFG3mhRBphiwrGrY2gR7kTYLWbKCqy09aX2gAXDkahB4h7IxAAbnEBNJsERtSUH3ErIDo/2eRs7+3GnMToVCsXokFJyy3u3YDPb+Lfj/m3U7Vw05yLmV87njjV34Pa70x+gSMqkSZP4yle+wr333ht974gjjmD79u3R1+effz73338/APfffz8XXKBpLO/bt48zzjgjo362bt3KkUceOebxKgNMMeFo7EguQRFLVbGD1t7UHrD2Pj9G6ld6Ayw4xAADbSXkpuberMpdjDcdnkD07/X71ISuUIwHL+1+idX7V3PdwuuoKhi5F8XAJEz854n/idvv5jcf/iaLIzw0+d73vjdkNeQ555zDm2++GX1944038sorrzB79mxeeeUVbrxRK/Xa3Nw8JKn+lFNO4ctf/jIrVqygvr6el17SKo61trbidDqjeWRjQeWAKSYcuzq91JQ4cNpSrzysKrGnDUE2uwc9ZJl4wKZMGpp3NreuBO87YfZ09af0yE0kDA8YwMdNPZw8uyKPo1EoDkJMPn71zz8wt3wuXz3sq2Nu7rBJh3HpEZdy/8b7uWDmBRxddXQWBnno4PF4on9XV1fT398ffT1t2jTKy8vZtm0bs2fPpry8nBUrVgxr49133+Waa66Jvn7rrbcS9vXII4/wzW9+MyvjVh4wxYSjscObUAE/nqpiB21pkvBbRmiAxXvAYhPxM+XdnZ15XTnZ3ufHaTXTUF7A+iblAVMoso298mU6fZ3856f+E7MpOxI13z7621QXVPOzd39GMKJSB7LJrbfeGs37Ssa1117L+eefn7Ytl8vFFVdckZVxKQNMMeHY3dk/rAh3IqpL7LT3+VOGB5v1BHxIn4Tf6wtSErdKcnZ1EWaTGFEi/o+fWs9/v7wl4/2zTYfHT0WxjXn1LtapRHyFIquYHE1Yy95h6WFLObJ87HlABgXWAm464Sa2dW/jkU2PZK1dBRx22GGcempqHchMufLKK8es/2WgDDDFhKLXF6TTG2Bamvwv0KQoQhFJV38g6T4tbh8Oqwmb2ZTSAxaJylQMvbAcVjOzKotGlIjf5wtltDpzvOjw+KkssrOgvpT9bl9GWmkKhSITIjhqnkKGirh24bVZb/30KaezpH4Jf1j7B5o9qT02igOfQ8YAa+vzsbvTm35HRV7JNAEfoLpkUA0/Gc29PmpLnZQ4rbgHkhtq3kAIKRlmgIFekmgEBlh/IDwkDyvXtPf5qSiyM2+yFj5dv095wRSKbGB1/ROzcx/+1vMothVnvX0hBDedcBMAt6+5PevtKyYWh4wB9rNnNnLVAx/kexiKNBgSFJmEIKtKDC2w5HlgLW4fNSUOXAXWlB4wj3+wEHc8c+tKaHb76PImN+AMpJR4AyF99WV+Vk52eAJUFNs5cnIpQsA6lQemUGSBCLbyNwj1TyPUN2/ceqkrquPyuZfzyu5X2N27e9z6UeSfvBpgQoi/CCHahBAbxruvne1eGju9qvjpBKexQ1u9Mq08syR8SO0Ba3H7qC11UOq0pswB6/MZBthwD5iRiJ9JGHIgGEZK8IciUaMulwTDEbr7A1QW2SmyW5hVWaQMMIUiC1iKN2KydRPsOgUYX8X6pYcvxWqy8vCmh8e1n4OFoqKiIa+XL1/OtddqIeK77rqLBx54IOmxK1euZPXq1eM6vmTkW4ZiOfB7IPnZyRJN3f34QxG6vAHKi+zj3d1BQZc3wFvb2nNazqax00tdqSOj4teDaviJPWDhiKS110dNqQP3QJCWFCsm4wtxxzKnRru4t7d5OGlWakkHrz8c/bvDE0hZ+mg86PIGkBIq9HMzr76UN7d2IKU84MucKBT5xDppFZFAGaG+uePeV4WzgnOmn8Pft/+daxdeS4mtZNz7zBYNNz6X1fYab/38mI6/+uqrU25fuXIlRUVFLF68eEz9jIa8esCklG8CXePdT68vSK/u4YjVhToUeW1zK/+y/P2MPIGPr9nL9X9dm9N8pl0d3oz1thxWM6VOa1Ix1k6Pn1BEZuQB603hASt1akZUJh6t/sDgPvlIfjf6rCyyAbCg3kWHxz+uv/tub4AfPrEObx48fgpFLjA5mrAUNBLoXkyubpuXzb2MgdAAT259Mif9HazcfPPN3HHHHQD89re/Ze7cucyfP5+lS5fS2NjIXXfdxZ133snRRx+dVPtrvMi3Bywn7OselCLY1zPAUXpy8qHIkx/u47XNbXR6A1Sk8QTu79HOW3cG+2aL3Z1ezpmXucJwdYk9qQfMMDpqSp2UFnjpTZEDZoQgSxIYYDazCYtJZGSADfWA5d4AM/o0vq959dpvfV2TmzrX2GuXJWLV9g4eW7OXcxfUcsrsynHpQ6HIJ7ayt5FhG8Ge43LW5+GTDue4muN4ZPMjXDr30hHXmTyUGBgY4OijB8Vru7q6Emp63XrrrezatQu73U5PTw8ul4urr76aoqIivv/97+dyyMABkIQvhLhKCLFGCLGmvb19VG00xRhgzT0DKfY8+Ploj7Yibn8G52F/j2bAdOeonqC7P0h3fzBlEe54UpUjMgwwwwPW5w8RCkcS7psqBCmEoNBuof8A8IAZZYiM8Ozc2hIsJjGuemCG1lqqXDyF4kBFWHqxlK4j6D4WIo6c9n3pEZfS7G1mxZ7hyu2KQZxOJ2vXro3++9nPfpZwv/nz53PJJZfw0EMPZU3LayxMeANMSnm3lPJYKeWxlZWje7re160ldgsB+w/hEGRbr499uuGViQHW0qt7wFLobGWTXbpMSCYJ+AZVuhhrIlp0w6BGN8BgMNQYT6okfP5AUeMAACAASURBVIAiuwVPjHcrGd5Afj1gxrkwPGAOq5k51cXjWhPSMHRb0xRGVygORKxl7wIRAl0n5bzvT9d/minFU3ho40M57/tg5LnnnuOaa67hgw8+4JhjjiEUym/axIQ3wLJBU/cADquJqZMKMjI8DlY+3NMd/XtfT/qbpVHGpydHBljjCCQoDKqKHbT1+RLmtDX3+rCZTUwqsOEq0AywZFIUfb4gZpPAmST5v8BmzijHKdZLlq8QpNNqptA+aEgumFLKuib3uK0ANn4nygOmOOgQQayu9wh5jkAGy3Pevdlk5pIjLmFt+1rWt6/Pef8HE5FIhL1793Laaafxq1/9ip6eHjweD8XFxfT15ad0XL5lKB4F3gEOE0I0CSG+Ph79NHUPMNnlpK7UeYgbYD3YzCbsFlPaUKw/FI6Gs3IVgtzV4UUIhhXETkV1iZ1gWCYcY4vbR3WpHZNJRD1gyYzJPl+IIrsl6UrBQrsFbyC9ARbVE7Nb8hSC9EfDjwbzJrtwDwTZ09Wf5KixYXjAUumxKRQHItbSjzBZvATz4P0yuHDWhRRZi3hw04N5G8PBQDgc5tJLL2XevHksXLiQG264AZfLxXnnncdTTz116CXhSym/lot+9vUMUF9WQEWRndU7OnLR5YTkoz3dHDm5BPdAkP3u1AZYq3vQeMhVCFKToHBmJEFhENUC6/MxqdA2ZFuz20dtiZZ4XurUtiX3gA0vQxRLkd2SmQdMD0FOLS+g3ZOb8xaLpoI/9DzMj0nEz6TE00jJRg7Yy5+0sK7Jzfc/e1i2hqVQjBGJtextwr5awv0z8jaKQmshX5j9BR7d9Cgtx7RQU1iTt7FkwlhlI0aDx+MZ8nrZsmUsW7YM0FZBGqxatWrYsXPmzGHdunXjObykHCIhyH4mlzmpczlo7fUlTcQebyIRmTcDMBCKsK7JzaKpZUx2OdOGIGMNNHeOPGD7ewaoLxvZSj1DDT9RIn6LW9MAg0EpiVQhyFSaXYV285AVjskwvGQN5YV05MkDFr9i9bCaYmwW07gk4gfDkWjdy7HkgD36zz386c0dhFMUVlcocom5YDtmRyuBrpMZb+HVdFx8+MVEiPDYlsfyOg5FdjnoDTCvP0R3f5D6Mid1LicRCa15Kk78j4/3c/E977FhHBOik7GpuRd/KMKiqWXUljrShmKNvB6bxZQzD1iz2zdiqYTqqBr+0Ju/lDKqgg+kzQHrTeMBK7RZMtMB84cxCagvc9LuyX05og5PYFgI0mo2Mbe2ZFwU8bWSS9rihbbe0X/era0egmFJU/f4hEkVipFinbSaSKiIUO+CfA+F+uJ6Tp9yOv+39f/wh1Wu5cHCQW+AGav+6ssKojfjfOWBvblVk9HIx03GSMBfNM1FnctJe58ffyi5R8fI6zmsujijHLBgOMJ/v7xl1N6yiK5abxTYzpTBepBDJ6Uub4BAODLMA5ZMjLXPF0qoAWZQaLcMkZhIhjcQotBmobLYTiAUoS+H4qRGGaJEmm3z60vZsM+ddQ+T8TtZUO/CH4okXWWaij5fMHqd7tQXYigU+USYPViKthDsOQZk/uUKAC6acxFuv5u3mnKbp6QYPw56A8wwdia7nEzWvSv5MMCklKzaroUfW/IghfHRnh5qSx3UljqjXqbYPK94mt0DlDgs1LkcGa2CXNfUw+9e284z6/aPanxd/QGCYRk1kjPFYTVT4rAM84DFaoCB5gUqtJnHEIK0ZBSC7PeHKbCbo0ZQLhPx48sQxTJvcineQJhdHZ4ER44eI//LyDOL/x4yYVvb4Jh2tisDTJF/LCXrECJCqHdhvocS5YTaE6hwVvDszmfzPZRhqBrLozsHB70BZqjgTylzUhs1wHJvAG1v80S9NC15WK7/4Z5uFk51AUQN0X0pDFEjHFhWYMvIA2asmBxtnlFLVLV+5EKHVSWOYR6wlhgVfINU5YjSJeEX2swEwhECodT5g4YHzDDAcpkHFl+GKJYFU7Tv/uO92Q1DGufZaD/+e8iErS3aEnCTIOsGokIxGqylHxH21RLxT5yEd4vJwjnTz+HNpjdx+3OfxpIMh8NBZ2fnIW2ESSnp7OzE4RjZ/Wti+FbHkabuAWwWExVFmhxBicMSfWrPJYb3q8BmjgqE5oq2Ph9N3QMsW9wADHqFUp2HZvcANaUOXAU2evoDaYs5d0YNsNFNDNGyQSMMQYImRdEa7wHrHeoBAygtsCX0gEkp8fjTGGC6rlZ/IITNMtzAMfD6QxTaLdE8rPYcaoEZumPxOWAAMyuLKLCZWb/PzZeOqU/bli8Y5rXNbZxzVE3K773Z7cNpNTO7SitYHv89ZMLWVg8Oq4nDqouVB0yRd4S1A7NzL77Wz+V7KMM4d8a5PLjxQV7e/TJfnvPlfA8HgPr6epqamhhtpZqDBYfDQX19+rk1lkPCAJvscmIyaTeROld+tMDe3t5BQ7kmhdEyipvUWPhwt+aVWji1DCAagkx1HlrcPuZNdlFWYCUYlngDYYrsyX8uXV7t5r+1tY/+QIgC28h+WoZROtIQJGhSFO83Dq3p3uIewGwSQ/KhSp0W3APDw6n9gTDhiEwZgjQ+u8cfwlWQwgALhCmwmaNSEPnwgCXKATObBEfVlfJxhh7K+95u5LYXN/P8d05hbl1J0v1a3D5qXQ6qSgw5kFF4wFr7mF1VzMzKIt7Z2Tni4xWKbGIt/QgpxYRIvo/niElHMKN0Bs/ueHbCGGBWq5Xp06fnexgHJAd9CLIpTtpAWwGYWwMoGI7w7s4uTppVQU2pI+c5YB/t7cZmNnHUZO1G6rCaKS+0JZWiMERYa0sdlOnGRrc3dR6YEYKMSNiwr3fEY2zp9WExCcpHUfS7qtg+bAVes9tHdbEds2nQe1PqtCb0gKUrQwRQYNe0ydLlgfUHNA9YWYENs0lEz0suMPpKVjh9Xn0pG/f3EkwjwyKl5IkP9gKaOG4q9rsHqC11UGS3UGgzj9ID1sec6mKmVxTS7PZltNhBoRgfJNbStYT7ZyJDpfkezDCEEJw741w+bPuQfZ59+R6OYowc9AbYvu7+aM4T6B6wHIcA1zX14PGHOHlWBTUlDlp6E5fOGS8+2t3DkZNLsFsGBU5TeQKN5HwtBJl69aBBpzcQXWn48d6R54E1u7UVkLEGU6ZUlTgIhCNDjKtYDTADlzNxCDJVIW4DIwSZTg2/3695wEwmQXmhLadJ+B0ePwW2oWWIYjlxRjn+UISVW1KHCtbu7WGHHgps7ExtgLW4fdToYrfVCXLx0tHTH6Ctz89hNUXMqNTCmOmMPoVivDA59mKydRJ0H53voSTlczO00OjzO5/P80gUY+WgNsAGAponJ9YDVudy0tMfZCCQfkVbtli1rRMh4FMzy6kpdeALRugdyM1TfjAcYd2+HhZOKRvyfm2pI2kOmPF+XakzGm5LpwXW6fEzu6qIyS5nxmGuWFrcPqpLRu79As0DBkPFWDUNsKGaYqUFiZPwezPwgBkhyHRq+EYSPmieqFzWg9RU8JOfw9MOq6S6xM5D7+5O2c7fPmzCYTVR6rSyO4UBFtJFWI2wcWWxfcSrILe2akn3s3UPGCgDTJE/rKUfISMWQn1H5XsoSZlcNJlFVYt4Zuczh3Ti+8HAQW2AxWqAGdS5dC2wHHrBVm1vZ97kUlwFtqhXprk3N/1vau7FF4ywaJpryPt1Lif7ugcSF7GOWZFYZnjAksg3GHR5A0wqtDG/PvM8o1haeocbTJlSXTJYjgi0EFpzAg9YqdOKPxTBFxxqfBsesJQ6YLbMDDBDhgI0gyTXSfjxZYhisZhNLD1uKm9sbU9qWPmCYf6xdj+fPbKGOdVFNHYm16zr8AQIRyS1+jU1Gg/YllZtBeRhMQaYSsRX5IcwlpKPCfXNhUiyXFRJLZ3MFPtg/0ewezVsfxUaV0EkdxVWzp15Lrvcu9jYtTFnfSqyz0FtgEU1wIbkgOVWC8zjD/HRnh5OmlUBDK7yy1Ue2Ed7NGNo0dShHrDJLifeQDihcGashpbhAUunBdbhCVBeZGfBFBd7uwboSpMzFouhWj8aCQoY9IAZtQh7B0IMBMPDEvqTlSMazAFLXYoIUueASSmHe8ByHIJMtAIylq8dPxWzSfDIe3sSbl+xqY1eX4iLjqlnWnlhSg9Yc9zCiUS5eOnY2tJHsd1CbakDp81MXalDecAUecFctBWTpZ9gEu2varp4zPZfvOO4jhX2H8DdS+C+c+ChL8Hyz8M9S2D7CsiBV+oz0z6D1WTl2R0TTxNMkTkHtQE26AEbNMCMfLDmHCXi/3NXJ6GI5GTDACvNrQH24Z5uakocw0r8GF6LRIZoiy7CWmi3RHPAur3JPWCRiNQV2G0xhZ8z94L1+kL0B8KjkqCAmHqQugfM8C7Ge9SSlSPKJAk/kxwwfyhCRA4m7FcU2+jwBHIWJujwJFbBj6Wm1MFZR1Tz+Jq9wzyBAE98sJeaEgeLZ1bQUF5Aa68/aVL8oHSIdp6rSuwMBMMjUv/f2trH7OqiqNTFjMoipYavyAvWko+IhAoIe+YM23ayaT3P2X/EPLGLW4NL+U7gWlj6CFz2d/iXl+GCP8JANzz0RXjgfNj3wbiOtdReyqn1p/LCrhcIRdSilQOVg9oAa+oewGISVBUP3tirSxwIkVqENJus2taJ3WLimGmaB8oYS66kKGIFWGMxDLJEeWD7Y/KnrGYTxXZLyhww90CQcEQyqdDGvMmlCDEywc+xiLACFNgsFNstUQ9Yc5L2kpUjyiQJP1aGIhnGNmPfyiI7gXDqfL81jV2jWrQQTzAcocub3gADuPTEaXT3B3l+ffOQ99t6fby5rYMvLpqM2SSYVq6FBPd0JQ5DxlcbiIaCMxQallKytbWPw2qKo+9NryhkZ7tH5bYocovJh6V4oy49MbhYyUSEGyxP8ID1VjplCecFfs5d4fP5R2QxHP55mHkaTD0BFl4C166Bs2+D1o1wz+nw2GXgaRu3IZ8741w6fZ281/zeuPWhGF8OegOszuUcsrLOZjFRWWTPmRjr29s7OK5hEg6rOdp/RdFw4dDxoL3Pz96ugWHhR4hVwx8+DkPbycBVaE0ZguzUNcDKi+wUO6zMrCwakQesJYFo6kipLLFHc8Ba3Inbczm1cGoiD5hJaGr3ybBbTJhE6hywfj08aWigZSLGetOT6/mvZ8eex2GEfBOVIYpn8cxyZlQUDkvG//vafYQjMirU2qAbYI0diQ2wFvcAdosp6lmsjIaCM/ttd3gCdPcHmV011ADr84XoHEEIW6EYK5biDQhTiKB7MPxYgZsHrL/kesuTPBk5hQsDP2OHnJyiETuceDVcvxaW3ATbXoF7PwNdO8dlzKfWn0qxrXhCliZSZMZBbYDt6+4fEn40qHU5c6IF1tbnY0trXzT/y6Cm1B71HownH8UU4I6nssiO1SwShiCbdW0ng3TliKL6U4WagbOg3sXHTT0ZezEMEdbResAAqosdQzxgJjFcEX7QAzb05t7nC1Jkt6RUfBdCpK0HaYQnDUOu0ihHlMQA84fC7OzwZiXnabAMUXoDzGQSXHzCVD7c08Mn+zVPpZSSv32wj4VTXczU5SCmlmuLV5LlgRnlqozzVj1CMdatRgJ+jAdsRqVKxFfkHmvpWiKBciK+KdprQjxo+yXHmrbyg+BVfD94NQNkOD/Zi2HJjXDFM+Dr0Yyw/WuzPmab2cZnGz7Lij0r6A8mXyyjmLgc1AaYoYIfz2SXIyerIFdv11S9T443wEpyI8b64Z4erGbBkXXDBQVNJkF1iWOYATYowjp43oxyRMkwyhAZIqoLppTS4QmwP8PPaBijsaHikVJVYo/mgLW4B6gstmM1D/15l6bIAUsVfjQosltSe8B0A6xAD0Ea3qhkWmA7272EI5JOb4BeX/p6m6loj5YhSr4KMpaLjqnHbjHx0LtaMv6Gfb1sae3jS4sGS2mUOq1MKrQlXQnZ7PYNydsblAPJ7Hs3DLDZ1UXR92ZUGFpg+a0JKYQ4WwixRQixXQhxY4LtFwgh1gkh1goh1gghTs7HOBVjR5g9mAt2EHQvALSHiWstf+cI0x6uCX6H/wsvGV3DU47T8sMsDi1Jf8frWRuzweemf46B0ABv7nsz620rxp+D1gDzBcO09fmHSFAY1JZqIqTjnWeyansHrgLrsFIuNaWOnOSAfbinmyPrSqPhz3jqXM5hixEML1LNEA+YNaUHzChDNCnGAwaZC7K2uH1UFNmxWUb/c6wucURX4GkSFMMN72K7BSGGG2C9aQpxGxTYzCmT8A3vmOEBq0jjAduiF6EGaByjF6wjRRmiRLgKbJy/oI6n1+6jzxfkiQ/2YrOYOG9+3ZD9ppUXJPWAaVprg7+TIruFApt5RB6wsgLrEK/d5DInNrMpr4n4Qggz8AfgHGAu8DUhxNy43VYAC6SURwP/Avw5t6NUZAtL8UaEkIT65gEwVzTybfPTPBk+mRWRY8bWeOUc+PrL4JoKD38Z1j+RhREPsqhqEZMck1ixe0VW21XkhoPWADO8KolCkHUuJ75gJK26+1iQUvL29g4Wzywfpu5eU+Kgpz+YcBVatlj+9i7+uauLT80sT7rPZJdz2GIEwyM2PASZ3APW4QkgBFHNsMNri7GaRcZ6YJoG2Oi9X6B5X/yhCL2+kGYYJFhRaTKJhOWI+nxBSjL2gCX/zqIeMD0HzOW0YjGJpB4wQwMLxi4+mq4MUSIuPXEa/YEwj72/l6c/3s9Zc6ujXkKDhvJCdifwgIUjktbeodIhQgiqijPPb9zSopUgig39asn/BfkOQR4PbJdS7pRSBoC/AhfE7iCl9MjBJ7hCQK0aOECxFG/Qwo/+GiyEuN36J3oo4qfBy7PTQUkdXPkCTDke/vZ1WHNfdtoFzCYzp005jTeb3sQfzp3kjSI75LUYtxDibOB/0Jad/FlKeWu22k6kAWZQp9809vUMUFaYWchmpOzs8NLs9nFtXPgRiHpnWnt90ZVm2UJKyZ2vbuO3K7bxmbnVXH/G7KT71rk0T1w4IqNG4mBC/OB5K3Va6fOFCIUjWMzDbfZOr5+yAlt0m91iZm5tCesyXAnZ4vYxZdJwT+VIiBaD7vXR4vYNy7szSGSAefyhjCQwCtOEIKMeMF2GwmQSlBfZknrAtrb00VBewO6u/qSJ7pnS3pe6DFEiFkxxMW9yKbe/tAV/KMJFx9QP22daeQF/X7sPXzA8xJPa6fETikhq40L8VRmKsUop2dbq4cKFw5OaZ1QWRksh5YnJwN6Y103ACfE7CSG+APwSqAI+n5uhKbKKqR9z4XYCnacAgqvNz3CkaTffDNyAm6KUhzbc+NyIurLzDf7X6mXJMzfw3Se38Y/IScP2abx15D+js6adxd+2/Y3V+1Zz2tTTRny8In/kzQOWoZt/1OzrHq4BZjAowTB+YcC3t3cAw/O/YFCMNdv9hyOS/3h6A79dsY2vHFvPHy9ZlDT8CJqRFY7I6OpBILo4oTYuBAnJ1fANFfxY5te7WL/PTSSS3jEQn0s0Goz8ox3tXvr8oaQetVLn8HJEfRmGIAvtlpQyFNEk/BgjSCtHlNh7uKW1j3n1LupKnWlrLqZDU8EfeSmny06chj8UobLYzikJfqsN5YVIOfhAY2Dk98V7GquK7RnVv2x2++jzh5gTk4BvML2iiN2dXkJpioaPI4lWYwz7IUspn5JSHg5cCPxXwoaEuErPEVvT3p66Bqci91iKNiNEhFDfUcwRe/mO5UmeCZ/IS5Hjst6XHxvfCn6X9yJH8Gvr/3KmKTtaYcfXHE+xrZhX97yalfYUuSOfIci0bv6x0NQ9gNkkEt7YU4mQZotV2zqoL3MyNYFnxwjbZFOKIhCKcP1fP+Khd/fwzU/P4LYvzU/orYrFWKAQuyI0VoTVwPASJgvZdngClMcZYAumuPD4Q+xMk0w9EAjjHgiOaQUkDBpghvxFsvaShSAzScIvtJnpT1FDdDAHbPDcVSYxSDz+EE3dAxxWXURDRUEWQpDpVfATcd6COqqK7Vx8/NSEv5dp+krIeA9dspWrVcWOjH7XRgL+nKrhXoYZlYUEwzJnWn0JaAKmxLyuB/Yn21lK+SYwUwgxzIKVUt4tpTxWSnlsZWVl9keqGBOWkg1EgqUIXw23W/9EL4X8JLhs3PrzY+Nfg99jg5zOH6y/ZbFpw5jbtJqtLKlfwsq9KwlGxi+tRpF98hmCzMjNH0tnZyfLly/PqPE39hdTZLLy0IMPDNsWkWAWFby86n3k1pUZDzhT/GHByh2TOKrYz/33359wO1TwzIpVdK8d+03GHxY8vr+EHV4bZ1V6qG19j/vvTy/O1+o3A5N49OkXWV+iGQnvNpXgkOYh53m7xwq4eOSJvzO1YLgHaOe+MqrsoSHHtOlt//7RZzm6NLlHpDOg7bd93fss370qsw+cAOOcvvDPTYCNtatX0r12+GTU1VJMs88SHauU4O6vYNe2TSxfviZlH00tRXT02ZP+Bt9pLwAK+OvDD2KkNfW0FLPbax12zN4BC1BG0yfv4/fa2NKbvN1M2La3jHJbeFRtfKMWzE1NLF++eti2fv28/t+LK2n65+Bv9d0uJ1DEGy/8nTWWQefQ3k4n/YEi/nTv/djNyb2fb3dqx3/w+rNsenPofnv6tXPzp0efZk5RXvTA3gdmCyGmA/uApcDFsTsIIWYBO6SUUgixCLABnTkfqWL0CD+Wwq0Ee47nG+YXWGDayTWB79BFSfpjx4AXJ1cEfshjtv/iHut/c2ngR3wkk6eKZMKZ087kmZ3P8H7L+yyuW5ylkSrGm3x6wDJy88e68Pv6+hIckhh30IzLmthbYRJQYongDo7Px1/baycQMbHIldgTYDdLbKYIfaGx9d8ZMPFiayF37pjETq+VC2p6Oak8c4Ou1KKFeGLPQ2/IRIllaOjHqd9I+8OJx+sNmSiMu9lW2MLYTBH2DaT2LPXqfRdbxhZuMs7pfp/2TFFiSfzdO80SX2TwcwQlRBA4TOn7t5kkgUhyrbBARGAzSWLlxIrMETwh07DycG1+bZxV9hCTbGEGIibd2BkdnrCJolGeQ6tJuyYS4TRJHKYIXYGhoezekAmzkBTEfe/GGNL9ttsDFoos4WHHA5TbtO+uM5A8fD6eSClDwLXAS8Am4HEp5SdCiKuFEFfru30J2CCEWIuWSvFVqeT7DygsRVsQphCOvhl8x/IUL4WP5blISh9A1nBTxGWBG2mXLpbbbuNwkbg2a6YsrluM0+Lk1d0qDHkgkU8PWEZufinl3cDdAMcee6xctmxZRo3/6Zcr+NTMcpZ95eiE21/40zuEI5Jly740wmGnJhKR3P/rNzh6ipV//1byhMqHfv0Gk6rqWHbpyJY5hyOSlVvaeOCd3byxsx2LSXD2UTV8/eTpLEygeJ+OP/zkJSbPPopl5x8JwO9//irHza1i2RfnR/fZ29XPPb96nUWfOoWvHDtlyPGhcISbf/wCJx07n2VnDq2h9vLd7zAQCLNsWXKJpCc/bIK9H7PsKxcwozJ10ms6HrhjZVS+4Nv/cgl2y/AbePtLm/nojZ1cccUVCCFo6/Xxi1+sYMlJJ3LpidNStu9+dRurX93KpZddnjBct/lv69i5uY3Y32h41S5WPbuRL3z14mhhc4Ddz3yCs3Mv3/3Xy3htcxsvP7CGE886P2HVgnQE9e/g5ATfQTZ46vercDitLFs2eHP68NGPqBc9XHnluUP2Xb29g6f+/B4nnfm5lCtwn/z9Ko6utLJs2fnDtkkpuftnr1A5Yy7LLpzHlVdemb0PkyFSyueB5+Peuyvm79uA23I9LkX2sBRvIBIq5DL/Vgqsfu4IfYXEfoHxoZ0yLgn8iP+z/5QHbb/ky4H/HHVbDouDUyafwoo9K/jxCT/GbMrPw4tiZOTTAxZ18wshbGhu/n9ko+FAKEJLry+hBpjBZJdzXJLw39jazq4OL1ee1JByv5oSx6j6v/2lLXz9/jVsau7lu2fOZvWNp/P7ixeNyvgCbUGCkWujibD6o8WVDYxSM4nEWLv6h4qwxrJgiotNzX0EQsk9M8aqy7HmgMGg8n1FkS2h8QVaOaJwREaT6XszKMRtYKxu9CbJA/MGwsNWIVYUaUZX/ErIra19zKkuwmQSTK80Sv6MLg8sWoZoFEn4mTAtgRRFs3sgYX6lURg9dmFHPJGItgJyTvXwBHzQ5Cy0mpBKDV8xTogglqLNyL7DudLyMq+HF7BNDl8FPN7so5LLAjchkDxk+yX07E1/UBLOmnYWXb4u1rZnX3VfMT7kzQBL5uZPdUwoIglmsDKqxe1DysQrIA1qYyQYsslf3t5FdYmdz82rTblfTWlmycrx7OnyMq28gLdvPJ3vnjknKr8wWupcg2r4hghrbB1I0PSvLCaRUIy1M64MUSwL6l0EwhE2t/Qm7b/F7aPUaY1qZ40FoxROKmMuviC3UYg7Ux0wSF4Pst8foiCunmS0PmJcIr6hgQUwpawAkxi9AdY+QhHWkdJQXkBTd/8QQ7rZnVi7rSqDgtxN3QMMBMPMqU7u8ZxRWZiVEk0KRSLMhdsQ5gAneqFS9HJ3+Nz0B40TO+RkrgjcSAn98OCF4BndatlT6k/BZrKpMOQBRF6FWKWUz0sp50gpZ0opb0m3/6bmXmb/+AXm3/wSS25/nS/+8W3uemPHsP2MJfP1CcoQGdS5hkswjJXtbX28ta2DS0+YNqwMTjw1ul7SSA1Ajz+Mq8CWtv1M0epiagZYIhFW0DwSycoRGd6XeBkK0DxgkFoRPxsSFAbGSsh4D14s8eWI+kbgAStIY4B5A6FhHrDBepCD567D46fDE4jWQLRZTNSXFbArScmfdIy0DNFImVZeSEQS9ZRGoiKsiasNOKymlA8XhgBtIgkKgxkVhTS7fVFxW4Uim1iLP0GGHfzA/x4bIg28E8maAtKo+EQ2cGXgB9C7Hx76AgxkJmIdS6G1kMV1GKnExgAAIABJREFUi3l1z6vjXuVFkR0OKCX8OpeTG86cwxcWTuaoyaWEI5JbX9jMvat2DdmvqcfQAEsegqwrNSQYsrfUffnqRmwWExefMDXtvjWlDsIRmVSkMxlefyha6iYbTHY56e4PMhAIx4iwDjeIygqsdHuHe8CM8ScKQdaVOqgosrE2hSBrvJr6WDDCX6lU9Q0P2HADLBMPWJoQpD887LsxvFKxUhSJilA3VBSO2gPWES3EnZ3zGE+DIUWha5V1egMEw5I61/D+hNBqjKYSY43WgEwgQWFg5AMqL5gi+4SxFG+kwlPNEab93B06l1zmfiXjA3kYfPUhaN8Cj3wFAiP/7Z857UxavC180pkymKSYIBxQBlh5oY3rz5zNTy84it9fvIinvn0S5xxVw8+f28gL65uj+zV1DyBE6lBUXQINrLHg7g/ytw/2cf6CuoTGSDyG12ekRbm9/uFelrFg3ET3uweiOWmJPBuuAmvCckTREGTRcO+LEIKFU8tYs7sraf/JQlmjIZMQpGuYB0z7P6McMFt6D1hB3HdT6rRiNYshhvZWvQbkYTE5UNPLC2js8I7qydXwgFWMowcMYLduDDUbGmBJPJdVxfaUnuWtrX1MdjlTGr3TK7Q+lQGmyDbmgp0I8wBL+1tokhU8Hzk+30MaZNYZ8KV7oel9ePRrEByZg2DJlCVYhEWFIQ8QDigDLB6TSXDnV49m0dQyrn9sLR/oN/qm7n5qShwpiztnW4z18TV7GQiG0ybfGxhGwkgT8b2B7HrAYj2BzT0DFDss0VynWLQQZIIcMK8fs0kkzaE6eVYFuzv72ds1PLwWCEW0pP8sGWBGvtXoPGCZKeEDSdXw+xN4wEwmQXmhPeqlAi0E5yqwDhFObagopM8fotM7ct2rjr4ABTZzVvLoElFRZKPQZqZRD5Eav9naBIY6aGKsqXLAtrZ6UuZ/gabAD6hEfEXWsZRsQEQsLPNv577Q2YTyW5FvOHPPhwv/F3a9OWIjrNReynE1x6kw5AHCAW2AATisZu65/Fgmu5z86/1r2NnuYV/3QMoEfNCSrovtlqyshAxHJPe/08jx0ydxZF1pRseMVg2/3z98pd1YGPQEah6wuiQ31bICKz0DiXPAJhXaMCURkjJqMr61rWPYtrY+bbFEtnLAFtS7uPDouoTlnwwSJeELMVS9PhnGeU+Wl+QNhBIaQZXF9qiXCrQE/MPiilA3VIx+JeRoVfAzRQihr4TUxtbiTr1ytarEnjQEGQpH2NGWfAWkgdNmZrLLqTxgiiwTwVL8CUd5LQQiTv4anqC1ExcshQv/CDtXjtgIO3Pamezu3c22nm3jNz5FVjjgDTDQEsCXX3kcJiFYdt/77Gj3RMvspKLW5chKuZNXNrbS1D3AlYsbMj5mUoENq1mM2AD0ZDkEWV3iQAgtFNvsTp6PVVZgo7s/OOypKlEZolhmVhZSW+qI1saMpTWLEhSgGUi/Wbow5cpQp9WMzWyKesB6fSGK7JakBuTQ9jXvlsc/PAdMSkl/IBzdJ5aKmILcUkq2tnqG5H8BTC8ffchttHUgR0JDRUFUiqLZ7cNmNiX93quKHXj8oYSh2sbOfgLhSFoDDNClKFKXslIoRoLJuReTxcMl/U08HD4DL+nvE3nj6IsHjbC/XpyxEXb61NMRCF7b89r4jk8xZg4KAwy0PJV7lx1HW5+PDk8gZQK+QZ3LGc1nGQvLV+9issvJWXOrMz7GZNKSlUfiAQuFI/hDkYy8NZlis5ioKrZHPWDJwneuAhuBUISB4FDjozPNzV8IwUmzKnh7R8ewFZ/pQlnjgRCCEqcVt+7N6/OFMpKggNQyFP5QhHBEJvSAVRQN1oPc7/bh8YeGGSD1ZU4sJjGqotztff6EOXjZZFp5IXu7+wmFIzS7B6gutSc1WqtLEktvwGCR+oVTXWn7nFGptMAU2cVa/AkmCSf2B1ge+my+h5Oeoy+GC/4AO17P2AircFYwv3K+MsAOACZY8HtsHD3Fxe++tohvPrgm5RJ3g9pSJ+uakq/Qy4TVOzp4d2cXN51zeNri1/HUlDhGlIRvrL5L5GUZC7WlTnZ39tPh8Sc1hsr05PXu/uAQI6PTm97YPWV2BU980MQn+93Mrx+88UZDWVkKQWaKq8A6JAk/k/wv0LxnQmh6X/EYRboT5edVFtvp9ASIRCRbdE20eA+YxWxiyqSCYUWvM6HD4+eEGZNGfNxIaCgvIBiWNLs1T2ltCqmPquLB8LqRTG/wysZWZlYWZlT1YLqeF6dQZAtb0SccN+Dn9fBiWhnfayZrLLxE+//pazQjbOkjYE390Hr61NO584M7mf7vDyND6R92RkLjrckrvChGxkHjATM4a2417//4TM6bn1oIFWCyy0GXN4AvmFhWIBWRiOSPK7dz+b3/pL7MydLj0ktPxFNd6ohKP2SCkXuUzRAkaFIU6/ZpujOpPGAA3XFJ4l2eAOVpvC+LZ2o5WaviwpDNbh9Oq5kSZ26fA0qd1pgcsFDGBpgQgkKbJWEI0vCKJfpuKorshCIS90CQLS1aSG1O1fAHhIbygmgppUwJhiN09wfHPQRprIRs7PTSkiJUDck9YO6BIO/u7OSsuTUZ9TnW0lQKRSwmWxvYOzmz38uDoTPzPZyRsfCSQU/Yw18Gf+rQ/GlTtNw2S/GmXIxOMUoOOgMMNE2q2ATnZNSOUgusrc/H5X/5J796cQufPbKG575zSlTgcyTU6h6wTFerGDf5eLX1sVLncuALairn8Sr4BmUFQ5PXAXzBMH3+UNqbf2WxncNrilkVl4jf0quFPDP5rrKJyxnjAfMHE676TEah3ZwwBOlNYRwbCfLtHj9bW/uoLXUk/L00VGiJ7iNZvWQYxJlIn4wFY1ViY4dmgCX7ncCgB6wt7uFi5ZY2QhGZcah+RkVhypXMCsVIsBRvBKDBU8LHcmaeRzMKFl4CX7wbdr8ND30JfMkrjEwvnU5DSQOWoo05HKBipBzSs5uxAnAkifArt7Rxzm/eYs3uLn75xXn8/uKF0ZV1I6Wm1MFAMEzvQGZhFq/ueRmJwZAJdTELFpJ5wMr0hOtYLbBUKvjxnDK7gjWN3QzEiJim86SMF8M9YJl/f4U2S9TYisX4bhIZx4aB2tHnH1KCKJ4ZFYX0B8IpRUzj6dENSdcof4OZUlVsx2E18dGeHgLhCLUpwsYlTgt2i2nY53hlYysVRXYWTsksJFJf5mTzz84e07gVCoOC4o+Z6/fzZuAUJoLw6qiY/xW46C+wb41WtmigO+mup009DXPhDjBlT2xckV0OcQNMu4lkuhLy9pc2s+y+96kstvPMtSfzteOnjsl7YxgfmYYhBz1g2TXAYvO+EomwQuKC3IYBlmoVpMFJsyoIhCO83zgoytqSxTJEI6G0wErvwMhDkKB5uBJ5wFKFh40SQS29Pra3D18BadAwCvFRw5M32oeATDGZBNMmFfLOzk4g+e8EtFBtVYl9iAfMH/r/7N13mFx19fjx95m2fTfZbBrpkJAQiiGEJiV06VWaiIBgxK+CWCiCgoooyk+pCkZRUOlF6RCqCgRJQg0JhCQkpGfTtu/Ozsz5/XHvbGY3M9uyM/fu7nk9zzy7c+fOvSezkztnPuV84rz2SSVH7DKkUzNOk8fp7L7GtEdC1cTz13BoXSP/ih/gdTjbZ9dT4Iy/w9oP4d4ToW5j2t0OG3UYIglCxZ/kOEDTWf06ARteVkBJfoiXFqzrcN+3lm7k968u4fS9RvKvbx/AhE5Mo+9IMvno7EzM5CD8nm4BS5bsyFSEFWBAQbIFbGsXZHvLELW1z7hyIsFAyziwresJetMCVtMUIxZPuIPwu9AClhdsae1K1V4LWHKJoLnLNxONZS7BkNrN11lV9blJwADGDCpMmbna/t9taEk+61KKsb61dBO1TbEuzRQ2pqeEiheCQHntcFaTuU5grzHpWDjrAdiwCO49Pu0C3nsM3oNErNi6IX2sXydgkVCACw8cx6wF65i/KvNsSFXl/73wCUNL87j+5N3ID/fMGKyuFmNtaQHr4VmQyZbA9j5UI6EARZFgqy7I9pYhaqswEmLqmAEt48A21DURS2iPLUPUFcnuusraJprj2rUWsEgobSX8lhawNK2TpQUhIsFASwmGSRlawHYYUEAkGOCzLpSiyFULGGxtoYOOEzCnGOvW9/WLC9ZSGAm2FOY1JpfKS+YwojnGWw3TvQ6l50w4Ar7yEGxa6nRH1rde8i0gAWI1uzgtYGKzif2oXydgAF8/cByl+SFueWlRxn1eW1TJ3OWbueSwCT2WfMHWwcprqzo35ic59qinW8DKiyLkhQId1uNquxzRxrqmlud3xkETBrNgTTUbaptSqqnnvhBicgD8ik1Oy2NpF7sg01XCT7ZOpkuORYRBxRGWb6xHBMZnWIQ6GBBGu2tCdlYuE7Ax7qLcoYB0OPEidTkiVeWlBes5eMLgHv3/Y0xn1DfX01S4ioPqm3jBT+s+9oQdD3HKUmxYBP84FRpbNyTEaicjwSaChUs9Cc+0r98nYKX5Yb5x0I68tHA9H6zcss3jiYTT+jW6vJAzpo3q0XNHQgEqiiOsre5kF2SWZkGKCNN3Hsz+Ow1qd7+BReFWY8A21kWJhAKdTgiTSwS9sXjD1oW/vRgD5iYrKzc7Nbe61gWZvgxFsjZYptciORNy7KCidpOQsYOKulQLLJmAleaiBcztIh1amt/h2KwhpXnUNMWoj8b4cFUVa6sbrfvReOKNz18jHlAKasb5u/J9d40/HM74mzMmrE2JinjdeDQRaZkBavyl3ydgAOcfMJYBhWFufnHbVrDnP1rLR6urueyICVmZEj+srPPFWJPjjHqyEn7SzK9N4+Lp7U/NTi5HlLSxNkpFUaTTExF2G1FGWUGYNxZv6PFliLqizB3PlmwB60oXZHGmMhRNMUQgP5Q+uUq2GHW0CPW4ikKWbawjkehcKYqqhmZK8kIEczBYPdkC1plu462lKJp4ccE6ggHhsElDshqfMem8suB+yuJx5tUd7nUo2TPxGGd25Mq58MBZEHW/xGmYWO0EdxyYLc7tN5aA4bSAfOOgHXn1k0re/XzrtN54Qvndi4uYMKSYk6aMyMq5h5Xmd7oMRl1TjMJI0LOZYU4XZOoYsCbKu7AETjAgfHGnQbz+6QZWb2kkHJROzaDsadvTAlYYCdHQHN9mWaW6aJzCcOa/zWA3AZvYweSNsRVFNMUSnZ4ZW93QnJPWL3AmrUSCgU4lzanFWF9csI5pYwa2lDIxJleaE838Z9N89qlPMDuxu9fhZNfkk+CUP8Ky1+GhcyDmDAGI1U4mEK4mkL/K4wBNW5aAuc774ljKiyLc/NLWFeT/9e4qFq+v5QdH7Zy1FoZhZZ1fD7IuGu/xEhRdMbAw3KoFbFNdlEFFXSsAesD4ClZXNTJ76UaGlHTclZUNyZIaK1oSsK60gDn7th0HVh+NUdhOV2yFW4pi4rDSdo8/roszIasamnMy/gucBPqyIyd0qis+2QI2d/kmPl5bY92PxhPvLnuVauIEa8aT6A8fd3ucDifeDktegae+Cyix2kmoBqwb0of6wTuyc4rzQsw4eEf+s6iSecs3EY0luPmlRew+oowv7dq5pVO6Y1hpPpvrmzu1HFJdU4ziHp4B2RUDCiNUNza3tP5s6MQyRG0dNMEZB/b+ii2ezICE1BawrndBFrUsyN3671XXFE+7DmRSMiGZOKz9LsiWWmCdnAlZ3dic06Wc/u+Q8Ry88+AO90u2gN3/v88BOKqTyw8Z05Ne+fBe8hIJ3q3pBQtv95Sp58Kh18D7DzAj+DTEi4jXjyVU/JHXkZk2LAFL8bX9xzCoKMLNL37KQ3NXsHJzAz84auesLpWTnAXYmVaw+mjM8xYwVafVRVXZWNfU5S7EMYOKGFXu/Ju9GP8FEA46JTWSXb9drQMGbFMNv6O/zclTRvDb07/ATh2sbzisNJ+8UIDPKv3XAtYVZQVhIqEAKzc3MHFoCaMHtb9guzE9TVV5dfN89tMIixM7eh1Obh18Oex6KleFHuSwwDvEaiYTzF+HhNMXbTXe8OTTXEROB34K7ALso6pzvYijrcJIiIun78QNzy7k/RVb2HvsQKZ34tv+9kjOAlxb1diy4HEmtU2xHi9B0RUDC7cuR5QXCtDYnOjWGoQHjq/ggbdXeNYCBk6CUOcmYF1aCzKSbAFrnYDVNcVbkrO05ysMc9peIzs8fiAgzkzITraA+TUBExGGlOSxcnODdT8aTyxa8gKrJcGMHQ7i6cxVhnxl7FXP9Nix8jmBhyPvclv4Dk6s+wGVOOthNm86qMfOYbaPVy1g84FTgf94dP6MvrrfGCqKnSn0l39pUtYXih5W5iQwnRl0XR+N93gR1q5IXY6oK8sQtXXgeCepHepBCYqkMjeZLO7iDMJkF2TbYqz10VjaZYi6Y1xFUaeXI/JrAgbO+pGAJWDGE6/M/xuiyvS9vu11KJ5oJI9vRH9AHfncw0xoHGJV8X3GkwRMVReqqi8XqCqIBLnhlN245LDx7DOuPOvnS3ZBdqYURW1Tz33Id8eAZAtYXXPLMkQdFeRM56CdK9hnbHmHdceyqcwdN9WV8V+wtQuyvu0YsGi8x8qDjK0oYsWmhm1mWrbVFIvT2JzwbQI2uryQEQMK2H1EmdehmH7olU3zmUIeFYN38ToUz6yjnBnR7zNUtnB8/WaChcuQYG3HTzQ54d2neSeJyAxgBsDo0aNzcs4v7TosqwPvUxXnOesvdqoFrIOB3tk20G0BS12OqLNV8FOV5od5+OL9eyyu7kiubdn1BMztgoy27YKM9ViB3HEVhUTjCVZvaWBUeeaxU7msgt8dPz5+Mg3RuC2obXJu1bL/8HFQ+cHgvb0OxXPv63gub57Btxpm8nT5cILFHxOrmuZ1WIYstoCJyEsiMj/N7aSuHEdVZ6rqNFWdNnhwdsdjeWVwSR6VNR0vR1TnkxawqobmrV2QXZwF6RfJpKUrA/Bh63ixtl2QPfm3GeJ2zVbWtv+eqM5hFfzuqCjOazeBNCZbXv3gLwActuc3PI7EH55MHMBb9YewQ3OMIaVveR2OcWXt01xVj8jWsfua0oIwNY3tL5aqqtRFY1mpgt9ZpfnOeKnN9VGi8QRAl+uA+UVyPchut4ClJGCq6ozP66EWsOS4uk210Xb383sLmDFeeXnDu4wPhBg9fC+vQ/GNX8e+wil1P+aF0hWUyBZqdIDXIfV7VobCB0rzQy0fppk0NidIKJ62gIkIAwqcYqwba6MURoIUeNgluj262wJW6K7jmFoHLBpPEEtoj/1tkt26yVbGTCwBM2Zbm1fN4Z1AnMMqpngdiq80kse86hNoDginl97tdTgGjxIwETlFRFYC+wPPiMgLXsThF2UFYaob20/Akl1e7ZU6yIUBhc6C3Btrm3pt9yOkJmBdS5oCAaEw0no9yOSA/J5qAWtJwOotATOmq/797p9JiHDY7ud7HYrvLKo7gLx4kMaSZRwVmON1OP2eV7Mg/6mqI1U1T1WHqmo/KlO8rdKCMNUN7XdBJpe+8bILEtwFueua2diNZYj8ZEA3uyDBaYVMHYSf/L2nWsAKIyHyw4GOW8DqLQEzpq1X1r3NMA0yefTBXofiQ0Hqa/bg5cIifh6+m0FUeR1Qv2ZdkD5Qmt+bWsAibK6PsrE26slC2j0lmbSUdrELEqAoEmzVBVkfjbvbey45Li+MsLHDMWDOe8Kvg/CNybWGdfOZHYhy2MDJWa/h2FtFa3ajPgif5sf5VfjPQPvlbkz2WALmA6UFIaKxRLvrQbZ8yHs4BgycUhRb6pudZYh6cRdkd8tQgNsCltIFmUyOe7JIbnlxpFW5j3SqGpopjAQJB+2/sTEAb877I42BAIfteo7XofhWrG4Cmgjzu4LdOCo4j9OD//Y6pH7Lrtw+kGyNqW5nIH7Lh7zXXZBFTmKwqS7arWWI/GKHAc6ai2M7WP4pnaK8UKsyFMkxYD3aAlaUx8YOuiCrG/1bBb+3E5GjReQTEVksIlelefwcEfnAvb0pIl/wIk7T2itr3qBUhak7HuV1KP6lEWJ1E1hUXM9biYlcHbqfAdR4HVW/ZAmYDyS7wdrrhkx+yHu5FiQ4yWJTLEFzXHt1F+Sg4jzevfZIDppQ0eXnFkWCLS2SsHUMWE8NwgcoLwyzuROzIC0B63kiEgR+DxwDTAbOFpHJbXb7DJiuqnsA1wMzcxulaStWuYjXpJHppRMIB+z/RXtiNbsSCFfxo8BxlFDP90OPeh1Sv2QJmA8kx/C0V4qirqnnP+S7I7kgN/TeIqxJhZFQt8aJtO2CrO/hQfjgtIB1pgyFjf/Kin2Axaq6VFWjwINAqwLSqvqmqm52774FdLzSusmqd975I9XBIIfvcobXofherHYSqsKqko38PX4k5wRfYhdZ7nVY/Y4lYD5Q6o5Dam8mZLKVxesWsORyRNB7i7Bur+I2XZB1LV2QPZccDyqOUNsUoymWeVxgtbWAZcsIYEXK/ZXutkwuBJ7LakSmQ6+sfI08hf3Hn+B1KP4XLyJeP45Q8QJujp3GFor5afhebEB+blkC5gMtY8Da6YKsy8JA7+4Y0IdawLqrKC/Uqgsy2QJW2IPJ8cCUhc8zsS7IrEnXLJr2k0lEDsVJwK7M8PgMEZkrInMrKyt7MESTSjcs5hXq2b94DIVhW/6qM2I1kwnmr6Mm3MhNsTPZN/AxJwRmex1Wv2IJmA+UdmIQfl00Tjgo5IU87oIsshawokiQumgMVeczOdkClqyS3xOSxVg31mVeD9ISsKxZCYxKuT8SWN12JxHZA/gzcJKqbkx3oP6wlq0ffPzeX1kTCnHYhFO8DqXXiNU6wxpDJQt4OH4IHybGcnX4fgpp9Diy/sMSMB9IlkLoaAyY1zMgofUYsPJePAh/exTlhVDdWhqkPhqjMBIkEOi5ukMdLUfUHE9QH41bApYdc4AJIjJORCLAWcCTqTuIyGjgceBcVV3kQYwmxYvLZxFQmD7RErDO0uZy4o3DCZfMJ0GA65rPZ7hs4v9CT3gdWr9hCZgP5IWC5IcDVLezIHddU9zz8V+wtYJ8aX6ISKh/vn3aLshd2xTv8eS4owTMliHKHlWNAd8BXgAWAg+r6kcicrGIXOzudi0wCPiDiLwnInM9Crff003LeDFRw96FO1CeX+51OL1KrHp3goWfI6EtvKM781j8QL4RfIbRss7r0PqF/vkJ6kNlBeH2uyCbYp7PgAQnWSyMBKnoxTXAtldyNYK6lBawnl6hYJAlYJ5S1WdVdWdV3UlVb3C33aWqd7m/X6SqA1V1inub5m3E/dei9+9hWSTMUeNP6nhn00pzze4AhEo/BODG5rNpJsRPQv/wMqx+wxIwnyjND7ffBRmNeV4FP2lgYaTfdj/C1oKryRawuiy0gJUVhAkIGWuBWQJmjGPWZ88TUDh8lzO9DqXX0ehg4o3DCJc4CVglA/l97GSODM5jmnzscXR9nyVgPlFa0P56kHVNMV90QQJMGFrMpOElXofhmeTfIVmKoj4a69ESFACBgDCwMJKxGn4yAbM6YKY/0y0rmRXfwrSCYQwqGOR1OL1SrHqPlm5IgL/Gv8Q6HcAV4YewshTZZQmYTzhdkJnHgNVH477oggS4+7y9+fmJu3kdhmeS5SaS5SfqovEeLUGRNLAokrELsrqlBcwfSbkxXvj0/Xvd7scTvQ6l12rphiyZD0AjedwWO5V9Ap9wSOA9L0Pr8ywB84nS/FC7LWC1PmoBCwakR2f89TbF7nivWrf8RH1TrGVbTypvJwGzFjBjYNZnzzrdj5PP9jqUXqulG9IdBwbwUPwQliWGckXoYYSEh9H1bZaA+URpQftjwOqjcc+LsBpH21mQTutkzyfHgzrVAmYJmOmftGYds5o3slf+ECoKur6mq9nKmQ25HAlVOfcJ8bvYl5kcWM4Jgbc8jq7vsgTMJ0rznVmQyeKebdU2+WcQfn9XGGlbhqLnx4CB0wW5uT5zC1h+OOB5YV5jvLL4vXv4LBLmqJ2O9zqUXq+5Zg8AQiVbW8GeSuzPwsRovh96hBCZh8eY7rMEzCfKCsIkdGtpg1TN8QTRWKJl9p3xVjLZSlbAr4/GsjIGbFBRhM31zSQS2yblVgXf9Hezlj6NKByx61e9DqXXS3ZDhlK6IZUAv4mdydjAOs4MvuZdcH2YJWA+UVqQXJB7227I+uRiz9YC5guhYID8cIC6aIxoLEFzXLPSAlZeFCGe0LRd05aAmX6tbiOzopXslTeYikJb4qknxGp2J5TSDQnwamIKcxI7c2nocfLJvCya6R5PEjARuUlEPhaRD0TknyIywIs4/KQ03/kwTfdhW+fOtsvGh7zpnuK8EHVNsa0LcWehdbKlGn6abkhLwEx/tvj9e1kaCXPUjsd4HUqfEatuPRvSIfy6+SyGyhbOC87yJrA+zKsWsBeB3VR1D2AR8COP4vCN9hbkTo41shYw/yiMOAlYssu4pyvhQ/vLEVU1xCwBM/3WrMVPIgpH7n6+16H0GYnoEOKNQ1t1QwLM1Um8Ep/Ct0JPUkqdR9H1TZ4kYKo6y11vDeAtYKQXcfhJ8sM03XqQ2fyQN91TlBeitilOfRaT4+TC5xtrt03AqhuarQSF6Z8atjCraS1T8wZZ92MPi9XsTrBgORKqbrX9t7EzGCB1XBB83qPI+iY/jAH7OvBcpgdFZIaIzBWRuZWVlTkMK7fa7YJMfsjbIHzfKM4Ltm4By0YZimInAUs3E9K6IE1/teSDv7MkEuaosUd7HUqfE6veAxFtNRsS4CMdy/Pxvbkw9Bw0bPYour4nawmYiLwkIvPT3E5K2ecaIAbcl+k4qjpTVaep6rTBg/vut532BuHXWhek7xRGQtRHYy0tYNlYpSDZAta2CzIWT1DbZF2Qpn+ateifiCpH7n6B16H0OZm6IQFuiZ1GqdRBOTBgAAAgAElEQVTD7D94EFnflLUETFWPUNXd0tyeABCR84DjgXM0U/GrfqQkP9kFmWYWZNQSML8pzgtR2xTLanKcHw5SFAluk4Alu6ktATP9jdZt5JmmNewVqWBw8VCvw+mTYtV7ECpchoRat3R9rKN5Nr4PvHUn1G/yKLq+xatZkEcDVwInqmq9FzH4TTAglOSF0q4HmVzyxmZB+kdRXpC6pjj1bhdkttbpLC/ethp+yzJE+ZaAmf7lg3dmsjwc4sQJp3gdSp/VXL0nAOGyd7d57JbYaRCthdl35DqsPsmrMWB3ACXAiyLynojc5VEcvpJpOaJsDvQ23VMYCVEXjW0tEZKlv015YYSNGRIwawEz/c1TS58iT+HIPb7udSh9ljaXE6sbR7jsHaB159QiHQW7ngz/+yPUbfQmwD7Eq1mQ41V1lKpOcW8XexGH35RkWJA7OQi/IGwtYH6RrANWl8UxYOCUotjctgsymYAVWgJm+o/ols95Lr6Fw4pGU5xX4nU4fVqsaiqBvA0E8lds++D0qyBaB2/elvvA+hg/zII0rtKCcPo6YNE4RZEggYB4EJVJpygvREJpaZ3KRiFWgPKivIxdkNYCZvqT/8y5nepgkBN3PdfrUPq85prd0UQobTckQybBbqfB23+C2r5bmSAXLAHzkbKCcPo6YE3ZWWvQdF+xW5OtsqaJgnCQYJaS4/KiMBvrWi8BYgmY6Y+eXPkqFSrsN+nLXofS9yXyidXsSrj0fUi3EPf0KyHWAG/emvPQ+hJLwHykND9zC1ixJWC+kmzxqqxpymqB3PKiPBqbEzSkLNJuCZjpbzavfZ//SiPHDZhMKGDXwlxorpqKhOoJFX+y7YODd4bdvgxv/xlq1+c+uD7CEjAfKS0IZVyKKFtjjEz3JAfdr69uylr3I8Agdzmi1Faw6oZmIqEA+TYm0PQTz8+9g5gIJ0yx4cK5Eq8bTyJWTKjsnfQ7TL8S4k3w+s25DawPsQTMR0rzw9Q0xYgnWs88qWuK2QxIn0m2SK6vacxqcjzQTcA2121NzK0Kvulvnlr/NhM1xMSxh3gdSj8SJFY1hVDJxxBMswZkxXj4wtkw526oXp378PoAS8B8JPmhWtNmJmRdNGY1wHym0O123FzfnNXkuDxNC5glYKY/Wbr0ZT4MJjhhyL5eh9LvNFdNRSROuPSD9DtMvwI0Dv/9bW4D6yMsAfOR5OLKbYux1jfFrQXMZ1LH5GWzBSyZgKXOhLQEzPQnT783k4Aqx+39Xa9D6XcSTTsQbxxGuDTNbEiAgWNhz6/CvHthy+c5ja0vsATMR0rz3fUg27SA1TbFbCFun0lNiLP5t7EEzPRniUScp6oWsL8UUjF4F6/D6Zeaq6YSLPwciWQoOXHw5SAC/7kpt4H1AZaA+UhZSwtY6wSsPmotYH6T2iWczb9NaX6IUEAsATP90twFD7I2ACeOPMzrUPqtWPUUVCV9TTCAspGw1/nw7n2waWlOY+vtLAHzkWQXZOpyRKpKXTTWUnfK+EOrFrAs/m1EhIFFETbXt07Akq2lxvRlTy64j6JEgkP3vtTrUPotjZUSr5tAuPQdIJF+p4N+AMEw/Ps3OY2tt7MEzEdaxoCldEE2NMdRxQqx+kw4GCAScv77ZLMMBTilKDbWOglYPKHUNMasBcz0eVX1m3ih/nOODpZTULqD1+H0a81b9iIQ2UKw6NP0O5QMg70vgg8egspFuQ2uF7MEzEdaxoClDMKvtYW4fSs5ED/bM1QHFkZauiCTM2RLLQEzfdy//vcbGkU4a9eveR1Kvxer2ZVErJjIwNmZdzrwexAqgH/fmLvAejlLwHykOC9EQFp3QdY3ORXQrQyF/yRnP2a7dbK8OMImtwsymZxbC5jpyxKa4KHPZ7Fnc4JJUy7wOhxDiObN+xIs/oQVNWkW6AYoqoB9vwnzH4d1C3IbXi9lCZiPiIizIHdKF6S1gPlXrlrABhVtbQGzZYhMf/DGp0+ygmbOHro/BO3a5wfNW/YFhIc/eTjzTl+8BPJK4eWf5yyu3swSMJ9pux5kfTTZAmYXIb9JJsXZbgEbWBhhS30zsXjCEjDTLzzw3p0MisU5Yv8rvA7FuDRWSqxmVx7/9HEaYg3pdyoshwMvg0XPwbI3chtgL2QJmM+UFoSobtw6BqyupQXMuiD9JtkFme0ZqoOKnVpgWxqatyZghZaAmb5pRdUyXq9fxemhQYQrdvY6HJOiedP+VEeree6z5zLvtN+3oHQEvPgTUM28n7EEzG/KCsKtxoDVRa0L0q+SXZDZngWZWozVWsBMX/fQ278lCJy++4Veh2LaiDeMY8LACTzw8QNopuQqXACHXg2r5sGCf+U2wF7GEjCfadsFWWdjwHyrqGUMWJYTsEJLwEz/0BBr4PHV/+WwpjhD9jjb63DMNoSzJp7Fx5s+5v3K9zPv9oWzYchkZyxYvDnzfv2cJWA+U5rfehB+nc2C9K2illmQ2f3blBe3TsDCQaEgbO+HbBKRo0XkExFZLCJXpXl8kojMFpEmEfmhFzH2Rc8ufJAa4py9w3QI5Xkdjknj+B2PpyRcwv0f3595p0AQjviZUxl/3j05i6238SQBE5HrReQDEXlPRGaJiFXZc5UWhFrVAUu2gGW7m8t0Xa5bwDa6CVhZQRgRyeo5+zMRCQK/B44BJgNni8jkNrttAi4F/l+Ow+uzVJUH59/DhGiUvfb9ntfhmAwKw4WcNP4kXlz+IhsaNmTeccKRMPYgeO1GaKzOXYC9iFctYDep6h6qOgV4GrjWozh8p6wgTENznGjMWfKhNhojklJ13fhHSb7TDZjtCRID3TFgm+uiVDc0WxHW7NsHWKyqS1U1CjwInJS6g6quV9U5gPWv9JD31r/Lx9FNnBUaggyZ6HU4ph1nTTqLWCLGo4sezbyTCBz5M6jfAG/enrvgehFPmlVUNTUdLgJsqoQrdTmiiuI86pviNgPSp06dOoLBJXktiVi2hIMBSvNDLV2QNv4r60YAqdUmVwL7dudAIjIDmAEwevTo7Y+sD3tg3u2UxBMcP+UbjL3qGa/DMRkk/zYFo3bm9jl/58YHdgAyf0bdHt6Pw/99K9NnjaGSgds8vuzG47IVqu951qwiIjeIyArgHKwFrEWp+2GeHIhf1xSz7kefGlqaz5f3GpmTc5UXRVq6IEuznPAZ0vXvdutLoqrOVNVpqjpt8ODB2xlW37WqdhUvVs7jpIZmCnf7stfhmE6Ibt6fQLiaUNl77e53U+xMQsT4YeiRHEXWe2QtARORl0RkfprbSQCqeo2qjgLuA77TznFmiMhcEZlbWVmZrXB9o7TASbaSs93qorGWcgem/yovirDZWsByZSUwKuX+SGC1R7H0C3+adyuiCc4b/SWIFHodjumEeO1E4o3DyRv0KhDPuN/nOpS/xI/hzNBrTBVbqDtV1hIwVT1CVXdLc3uiza73A6e1c5x+9Q2yrKUL0hl8X9cUz/osO+N/qS1gloBl3RxggoiME5EIcBbwpMcx9VmralfxxLLnOa2mjmEHfN/rcEynBYhuOJxA3gZCpe2UpABuj53CGi3n+vBfCZDIUXz+59UsyAkpd08EPvYiDj/apgvSWsAMbgJW20RNoyVg2aaqMZxW+ReAhcDDqvqRiFwsIhcDiMgwEVkJfB/4sYisFJFS76Luvf70zh2IJrhw+MFQPs7rcEwXxGomO61gFa/QXitYHQX8ovmr7BpYzjnBl3IXoM959cl+o4hMBBLAcuBij+LwndRB+OCMARtSYvVw+rvyojzW1zQBVoQ1F1T1WeDZNtvuSvl9LU7XpNkOq2pX8cRnz/DlmlqGHfsjr8MxXea0ghWM/Aeh0veJVU/NuOcziX05K74bl4ce5tn4vmykLIdx+pMnLWCqeprbHbmHqp6gqqu8iMOPkh+uLWPAmuJWBd9QXrQ16bIEzPQVf3r3907r1+B9YMgkr8Mx3dDZVjAQfho7j3ya+FH4gVyF52tWXMpn8kIBIsFASzHWumgs64U+jf+VF21tBbU6YKYvWFW7iieWPs1pNbUMO/hqr8Mx3db5sWBLdAR/jh/Hl4P/YZrYyCNLwHxGRJxq+G4XZL21gBlgkFuMFawFzPQNf3rvTqf1a8AXYIcpXodjtkPnW8Hg9tjJrNJBXB++h2AH+/Z1loD5UHJB7mgsQTSesHUgTUs1fLAEzPR+q2pX8cSSp5zWr+k29qv363wrWAP5XN98LrsEPudrwVk5is+fLAHzodKCMFUNzdRHnW5IawEzrVrACi0BM73bn97/I6JxLiyeCKP38zoc0wO60gr2fGJvXot/gctDD8PGJbkJ0IcsAfOh0oIw1Y0xapuSCZi1gPV31gJm+orl1ct5YvET7tivK70Ox/SYra1g4bJ3OthX+FHzRcQIwr++BYn+2RVpCZgPleaHqGlopj7qvCmtBcwURYJEQgGCAbEuadNrqSq/mH09+ZpgRv4Y2PFQr0MyPShWM5l4/RgiQ56DYF27+65hED9pPh9W/A/euDU3AfqMJWA+lOyC3NoCZglYfyciDCqKUJofQiTdUoXG+N/zy57nrbX/49KNmxg8/Wqw93IfE6Bx7clIsJG8wc93uPcTiQNg8knw6i9h7Yc5iM9fLAHzobKCMNWNzdQlEzArQ2GAgYUR6340vVZNtIbf/O9X7Bpt5owdpsPOX/I6JJMFiabhNG86kMjAOQQKlnewt8BxN0NhOTz+TYg15SRGv7BPdh8qzQ/THFc21kYBGwNmHCMHFrSUJzH9w9irnunxYy678bgeP2Zn3P7O7Wxq2swdWxoInnGTJzGY3GiqPJxQ6fvkD/sn9Z9dArTzGVY0CE68He4/A169AY78ec7i9Jq1gPlQaYGTF6+pagSsBcw4fnnq7tx61p5eh2FMl3208SMe+uRBzqyqYdfpP4ayEV6HZLJJ82hadwLB/LWEy9/oeP+dvwRTz4M3boPls7Mfn09YAuZDyQW511Q1ADYGzDgqivMYWprvdRjGdEk8Eef6N66jPB7nksIdYdrXvQ7J5ECsZldiNZPIG/wSEtrS8RO+9EsYOAb+OQPqN2U/QB+wBMyHkuN8Vm9xW8CsC9IY00s9vOhhPtr8CVds2kLJCXdAwK5n/YPQuO5EQMkb+lTHu+cVw2l3Q81aePQCiMeyHqHXLAHzoeRaf2uqGhCBgrBdsIwxvU9lfSW3zf0d+zU0cPSUb8LQyV6HZHJIm8uJbjiccOlHBIsXdPyEkdPguN/B0tfgpeuyHp/XLAHzodJ8p8txbVUjRRErO2CM6X2aE81c/u8fEIs18uNYCTL9Cq9DMh6IbjyQeOMw8oc/1rmuyKnnwj4zYPYd8P6D2Q/QQ5aA+VCyBWxjXdS6H40xvdItc29m3vp3ua5yA2OOuxXCNn6xfwrRsOocRGIUjPwHSCe6Fr/0Sxh7EDx5KazqqKp+72UJmA8lB+GDzYA0xvQ+z3/2PH9b+He+UlXD8Qf+BMYd7HVIxkMaHUzjmtMJFqzs3HiwYBhOvweKh8JDX4Xa9VmP0QuWgPlQJBRoGfdlMyCNMb3Jki1LuPa/P2JKYxM/3OU82P//vA7J+ECsZjeaNkwnMvB/hMrmdvyEogo46z5nRuRD50JzY/aDzDFLwHwqWQus0Nb9M8b0ErXRWi577nwKm5v47ZDphI/4qdchGR+JVh5FrG4n8of9i0D+qo6fMHwPOPkPsOItePjcPlcp3xIwn0p2QxZbC5gxphdQVX787AWsaNrMTQUTGHLinbbWo2kjSOOqs9F4EQUj/gGB+o6fstupcPwt8OkseOQCiPed1UA8TcBE5IcioiJS4WUcfpSsBVZoCZgxxudUldtf+D9ervqY7+lA9j79QQjatctsS+PFNKz8KhKqpmDkP2iINXT8pGkXwDE3wSfPwGMX9pkaYZ4lYCIyCjgS+NyrGPwsOROy2GZBGmN8TGsrueX+I/nTutc5NZHP1858EsIFXodlfCzROIrGNV8mWPgZ337529Q3d6IlbN8ZzuzIBU/AP78JiXj2A80yL1vAbgauANTDGHwrWQus0GZBGmN8Sj96gpv+dhB/ia3jjJKdue7cN5DCgV6HZXqBWPWeNK4+k3fWvcPFL11MbbS24yft/2044qcw/1F44ju9Pgnz5NNdRE4EVqnq+1ZkNL1kF6TNgjSmb/hwVRVjr3qmzVallDoGSxVDZAuDqaJCqsiniTyJcUUoRhjnFiNIPXk0aD715FFPHlu0mHU6kLVazgbKSOTqO3XtehLPXcWv1r7Cg6UlFG3anbsXfoW7334xN+c3fUKsegq/PngaV/3nKr750je584g7KY2Utv+kA7/njAN79QZo2AynzoT8Dp7jU1n7dBeRl4BhaR66BrgaOKqTx5kBzAAYPXp0j8Xnd8kuyCKbBWlMn5BPlOMCbzFeVjE+sIrxsppxsoZ8yTyoOKpBooSJESRIgiIaCUj6ToO4CpUMYI0OYpkOZbkOZVlimPNTh7KZEmA7vvDWbYCFT8GCf5H47L9cP2gAj5aW0LzxANauP377jm36rS+N/RKhQIgf/vuHfGPWN5h55EzK8sraf9L0K6BgIDx3Jdx9FJx9P5TvmJuAe1DWEjBVPSLddhHZHRgHJFu/RgLviMg+qro2zXFmAjMBpk2b1m+6K5OzIK0FzJi+YYKs5PeR20iosEIHs1hH8HpiN9ZqOZU6gErKWK8D2KBlNJBHlBDbJjVKHs0U0kiRNDGAGobJZobKZobKJoaxmRGygb0Dn3ASbxIIbb1kVmsBK3QIPPQgDBzr3AoHQcEAyB/g/MwrhWgd1FU6CVddJdSuc9bmW/Y6aJyagWP52S778kLDSi7a/SJufninNHEa03mHjz6cWw+9lctevYzznz+f3x7yW3Ys6yCh2ucbULEzPHIe/OkwOP1e2HF6bgLuITn/dFfVD4EhyfsisgyYpqobch2LnyXrgNlSRMb0DZ/rEI5p+glLdThNRLp5FKGJCE1E2KywksHMz/C1NEIzo2Q9Y2UtY2Udo2Q9Y2Qdu65fAJ88B4kuTOcv3wkOvIz3d9iVKxfMZG3dGr631/e4YNcLuPnhZ7v5bzFmq4NHHswfjvgDV/z7Cs56+iyu3PtKTp1wavtrIe84Hb7xCjxwNvz9FDjm17D3Rb2m/Ik1r/hUyxgwG4RvTJ9QRTELdUzOzhclzBIdwRId0Wr7skuOcwYv16x1xtA0boHGKmhwf0aKoGiwe6uAogri4ULunn83f5hzPcOKhnHP0fcwZciUnP1bTP+w3/D9ePTER7n69av56eyf8sbqN7hu/+va75Is3xEufBEenwHP/hCW/ReO+Q2UpBsB5S+ef7qr6livY/CjwSXOwrWDirv7TdkYYzIIBKFshHPrwNq6tVz92neZs3YOx4w9hp/s/xNKIiU5CNL0R0MKhzDzyJn8df5fuePdO/hww4fceNCN7DV0r8xPyi91li164xZ47dew5DU48mcw9TwI+LfevH8j6+emjh7AIxfvz9TRNqXbGJN7VU1V3PbObZz4rxOZv2E+1x9wPb8++NeWfJmsC0iAC3e/kL8d8zfCgTAXPH8BV/z7CpZVLWvnSUE46AfwrTedJYyevgzuORYqP8lZ3F1lCZhPiQh7jy1vv//bGGN6WH1zPTM/mMkxjx/Dnz78E9NHTuexEx7j5PEn2/XI5NTug3fnkRMe4aLdL+K1la9x8hMnc+0b17K6dnXmJ1WMh/OegpP+AJUfw50HwAvXQHU7z/GI512QxhhjvLexYSNPLnmSez66h02Nmzhk5CF8Z8/vMLF8otehmX6sKFzEpVMv5ZxdzuHPH/6Zhz95mKeWPsWXJ3yZsyadxU4Ddtr2SSKw5zkw4Sh48Vp46w/wvz/CHmfCAZfCYH+8py0BM8aYfqoh1sCrn7/K00uf5s3VbxLXOPsO35dL9ryELwz+gtfhGdNiUMEgrtznSs7b9Tz++MEfeXTRozz4yYPsUr4Lx+94PMfueCwVBW2WlS4eDKfcCYdcCbN/D+/8Hd77B0w8Dva7GMYc4HRdekRUe09prWnTpuncuXO9DsMYk0MiMk9Vp3kdx/bKGz5Bh593i9dh8NZP9mLO2jm8teYtXv78Zeqa6xhWNIzjxh3HcTsex4SBE7p0vG2r+xvTectuPK5bz9vQsIHnPnuOp5c+zYKNCwhIgP2H78/BIw9mr6F7MWHgBALSZpRV3QZ4e6Zza9gMhRUw6TiYfCKMPRhCPT/prb3rl7WAGWNMGyJyNHArEAT+rKo3tnlc3MePBeqB81X1nZwH2hGJEsirJJC3mlDhZwQLP+PIRzcDUBIp4agxR3H8jsczbdi0bT+sjPGxioIKzp18LudOPpelW5by9NKnefazZ3nj7TcAKMsrY+qQqew1dC92q9iNncp2YkBRBRx6NRzwXfh0Fix4EuY/Bu/cC/llMP4IGLkPjJgKw3bP+qLyloAZY0wKEQkCvweOBFYCc0TkSVVdkLLbMcAE97YvcKf7M8fiSKgGCVUTCFe7Pzc5SVdkPYHI5pY9E7FC4vXj+NEBM5g2bBoTBkwg6GH3izE9ZccBO3Lp1Eu5dOqlrKpdxdy1c5m3bh5z183l1RWvtuxXnl/OuLJx7FS2E6NLRzN4r9MZ8sVvMGTDEgYvfZ2CJa85CRlAIARDd4XhU5xaYwPHwIAxzgoSBQN7pNirJWDGGNPaPsBiVV0KICIPAicBqQnYScDf1BnD8ZaIDBCR4aq6JuNRpYlg4WIQBRIgCYQESBwkARJDJO7eb0YCze7PKASakUATEmxAAg3uz0YINiBt1obURIhEdDDxhtE0V00j0TSERNNQEtEKIMBXJ3evy8eY3mBE8QhGjB/BSeNPAmBd3ToWbV7E0qqlfFb1GUu2LOH5Zc9THa3e5rlFOwykNDSSEgKUxmOUROspWT2LguWNFCSUPFXyVSkIRAhHighHigiFiwlHSgjnlxAMFRIM5REMFRAI5RPsoAXNEjBjjGltBLAi5f5Ktm3dSrfPCCBjAhbIq6RwzJ+7FIgmQpCIoBpCE/kQL0DjxSSig9F4ARovRGNlJGKlaHMpGitF44VYhSFjHEOLhjK0aCgHjTyoZZuqUttcS2V9Jevq11HZUMn6+vVsbNhIdbSa6mg1NdEaVkVrqCkqozHWQGOsgYZ4U8qRFagFrYWmtdC0zak71KsSsHnz5m0QkeU5Ol0F4If1Kb2Ow+vzJ/khDovBmxhyt36PI13fQtvZSp3ZBxGZAcxw79bOP3++F1UhW/295Nfent8jXsfQ38+fMYYcvh+9eg0yXr96VQKmqoNzdS4RmeuHmVdex+H1+f0Uh8XgnxiybCUwKuX+SKBtFcfO7IOqzgRm9nSAXeH138vr8/shhv5+fj/E4PX507F2amOMaW0OMEFExolIBDgLeLLNPk8CXxPHfkBVu+O/jDGmjV7VAmaMMdmmqjER+Q7wAk4Zir+o6kcicrH7+F3AszglKBbjlKG4wKt4jTG9kyVgmXnabZDC6zi8Pn+SH+KwGBx+iCGrVPVZnCQrddtdKb8r8O1cx9VNXv+9vD4/eB9Dfz8/eB+D1+ffRq+qhG+MMcYY0xfYGDBjjDHGmBzrMwmYiIwSkVdFZKGIfCQi33W3l4vIiyLyqftzoLt9kLt/rYjckeGYT4rI/HbOuZeIfCgii0XktpQYNopIg4isFJFFIlLV1RhE5DUR+URE3nNvQ7oYwzI3hriIfLk7r0MPxNATr0NERGa6z/9YRE7z4HXobgzixrFCRBrdONaLyJauxiEiJSl/h/dEZIOIpF1YMFuvxXbGIO72m1Oev0hEtqR7vulZInK9iHzgvu6zRGSHHJ//Jvf/zgci8k8RGZDL87sxnC7OZ0NCRHI2G05EjhbnOrpYRK7K1Xndc//FveZk/BzL8vnTfi7nOIZ8EXlbRN53Y/hZrmPISFX7xA0YDkx1fy8BFgGTgd8AV7nbrwJ+7f5eBBwIXAzckeZ4pwL3A/PbOefbwP44NYGeA76SJoYbgA+6GgPwGjCtE//utDEAY4H9gGrgsu68DtsbQw+9Dj8DfuH+HgAqPHgduhvDMWz7vlwPPN6dONqcax5wcK5fi+2I4Zg0+1yCM8Dd8+tHX78BpSm/XwrclePzHwWE3N9/nXyv5TiGXYCJdPK61kPnDAJLgB2BCPA+MDmH/+aD3f/7GT/Hsnz+tJ/LOY5BgGL39zDwP2A/L16Ptrc+0wKmqmvUXQxXVWuAhTiVqU8C7nV3uxc42d2nTlVfBxrbHktEioHvA7/IdD4RGY5zUZutzl/2b8D0NDGcDAzsagyd0V4MqrpMVd8CtgDl3XkdtjcG9/jb+zp8HfiVu19CVbct5Jf916G7MZyc5n0ZwrkAdPvvISITgCHAfz14Lbobw8lpDnM28ECmc5ieo6qp664UkaZobJbPP0tVY+7dt3DqpuWUqi5U1VwXwm1Z1kpVo0ByWaucUNX/AJtydb4058/0uZzLGFRVa927Yffmi8HvfSYBSyUiY4E9cT7ohqpbn8f9mbYbrY3rgd/iTC/PZAROMcak5FIkqTFMAwYBJd2IAeCvbpfBT5JdON2IoRz4lO69Dj0VQ7deh5RuiutF5B0ReUREhnYzhm69Dj0Vg3usA4Ay4I9djaONs4GH3OSmS3H00Htiu2Jw4xgDjANe6cI5zXYQkRtEZAVwDnCth6F8HadVtD/ItGRVv9PmcznX5w6KyHs4PRAvqmrOY0inzyVgbuvVY8Blbb71dfb5U4DxqvrPjnZNs03bxPAy8EhXY3Cdo6q7Awe5t3O7GcPbQIPHMXT3dQjhfFN+Q1WnArOB/9fNGLr7Omx3DClxPAQ8r6rbO+7pLDK3HGX7PbFdMbR5/qOqGt/OOIxLRF4SkflpbicBqOo1qjoKuA/4Tq7P7+5zDRBzY+hxnYkhxzq1ZFVft72fy9tLVeOqOgXnWr6PiOyW6xjS6aVdvKUAACAASURBVFN1wEQkjPNHvk9VH3c3rxOR4aq6xu0aWd/BYfYH9hKRZTivzxAReQ04HGfMCzhVsO+kdTP6SGB1agw4Ccu3gaO6GAOqusr9WSMi9+O8ae7rRgx7dPN16MkYuvs6bMRphUwmw48AF4pIMIevw3bFAK3el+CMhetOHLjH+gLOWJp57v1cvhbbFUObw5xF76mj1Suo6hGd3PV+4BngulyeX0TOA44HDs/Qcpr1GDzQqSWr+rIMn8ueUNUt7uf50YAnExNS9ZkWMLd77G5goar+LuWhJ4Hz3N/PA55o7ziqeqeq7qCqY3EGIi9S1UOSGbR7u9btsqkRkf3cc3/NPfbdOP3cz+CMeZrd1RhEJCQiFe7vYZyL1vyuxrA9r0NPxbA9r4N7kX4KOMTddDiwIJevw/bGkPK+XIvzzX92d+JI0WrcVC5fix6IAQARmcjW94TJAXHG7CWdCHyc4/MfDVwJnKiq7Q3t6Gs6s6xVn9XO53IuYxicHEoiIgXAEeT4/Z+R+mAmQE/ccJIlxZlp9557OxZn7NHLOGNeXgbKU56zDGeAYi3ON5XJbY45lvZnQU7DyaKXAHe0iWEtsK47MeAMkp3nHucj4FYg2MUYPgWiQBxn1tvHHsSwXa+Du30M8B/3WC8Do3P5OmxnDJISxzr3tl3vS2ApMKmD/wtZey22IwZJeeynwI1eXzP60w2nBWK++x5+ChiR4/MvxhkLlbw253QWphvDKe57ucn9v/hCjs57LM7svyXANTn+Nz8ArAGa3X/7hTk+f9rP5RzHsAfwrhvDfODaXJ6/vZtVwjfGGGOMybE+0wVpjDHGGNNbWAJmjDHGGJNjloAZY4wxxuSYJWDGGGOMMTlmCZgxxhhjTI5ZAmaMMcYYk2OWgBljjDHG5JglYMYYY0wPEpFlIuK3ZZGMz1gCZnotEfmpiPzD6ziMMf4jIl8RkbkiUisia0TkORE50Ou4jEmyBMxk5H6LWyciRSnbLnIXM/U9ERkgIneKyFoRqReRD90FgTt63mQReVJEqkSkRkReEZH9chGzMWb7icj3gVuAXwJDgdHAH4CTunicUGe25Yq78L3pIywBMx0JAd/d3oOII2fvN3fh25dw1nHcHygDLgd+IyKXtvO8nYA3gA+BccAOwL+AF0Vkn2zHbYzZPiJSBvwc+LaqPq6qdararKpPqerlIpInIreIyGr3douI5LnPPUREVorIlSKyFvhrum3uvseLyHsiskVE3hSRPTLEk/F87uNXuC10q90vuCoi493H7nG/RD4rInXAoSJynIi8KyLVIrJCRH6acqyx7vMvcB/bLCIXi8jeIvKBG+sd2XrtTddYAmY6chPww+Rq8m2JyBdFZI7bWjRHRL6Y8thrInKDiLwB1AM7utt+4V6wakXkKREZJCL3uReUOSIyNuUYt7oXkmoRmSciB3Uy7nNxvvWerqqfuRfg54FLgV+ISEmG5/0UmK2q16jqJlWtUdXbgH8Av+7kuY0x3tkfyAf+meHxa4D9gCnAF4B9gB+nPD4MKMf58jYj3TYRmQr8BfgmMAj4I/BkamLVmfOJyNHA94EjgPHA9DTP/wpwA1ACvA7UAV8DBgDHAd8SkZPbPGdfYAJwJk5L4DXuOXYFzhCRdOcxOWYJmOnIXOA14IdtHxCRcuAZ4Daci9DvgGdEZFDKbufiXMRKgOXutrPc7SOAnYDZON8qy4GFwHUpz5+Dc+EqB+4HHhGR/E7EfSTwnKrWtdn+GFCIc0HM9LxH0mx/GDiok+c2xnhnELBBVWMZHj8H+LmqrlfVSuBnONejpARwnao2qWpDhm3fAP6oqv9T1biq3gs0kf660t75zgD+qqofqWq9+1hbT6jqG6qaUNVGVX1NVT90738APMC2idv17r6zcBK2B9zzrwL+C+yZ4bUxOWQJmOmMa4FLRGRwm+3HAZ+q6t9VNaaqDwAfAyek7HOPe3GJqWqzu+2vqrpEVauA54AlqvqSe8F8hJSLg6r+Q1U3us//LZAHTOxEzBXAmrYb3XNsANr+W9p9nrstiJMIGmP8ayNQ0c5YrR3Y+mUQ9/cdUu5Xqmpjm+e03TYG+IHbpbdFRLYAo9ocpzPn2wFYkfJY6u9pt4nIviLyqohUikgVcDHOdSvVupTfG9LcL05zHpNjloCZDqnqfOBp4Ko2D7W9sODeH5FyP90FpdMXBxH5gYgsdLs4t+CM5Wp7sUlnAzC87Ub3olwBVIrIOW43aK2IPNfe89xt6j5ujPGv2UAj0LZbLmk1TgKVNNrdlqRpntN22wrgBlUdkHIrdL+EduV8a4CRKY+N6sS57weeBEapahlwFyBpnmd8zhIw01nX4TS7pyZXbS8s4FxcVqXcT3cx6xR3vNeVOM30A1V1AFBF5y42LwHHSMoMTtdpQDPwtqrep6rF7u2YlOednuZ4ZwBvqWq0O/8WY0xuuC3r1wK/F5GTRaRQRMIicoyI/Aany+7HIjJYRCrcfbtazuZPwMVua5SISJE7OD7d2NL2zvcwcIGI7CIihe5jHSkBNqlqozsx6CtdjN34hCVgplNUdTHwEM4g9qRngZ3FqbcTEpEzgck4rWU9oQSIAZVASESuBUo7+dy/AytxxoyNdS/AX8IZr/Yb9yKdzs+AL7qTB8pFpERELgEuoPXYNGOMT6nq73AGt/8Y5/qxAvgOzozmX+CMbf0AZ7bzO+62rhx/Ls4X0juAzcBi4PwMu2c8n6o+h3NNetU9xmz3OU3tnP7/gJ+LSA1OwvZwV2I3/iGq3W6gMH2ciCwDLlLVl9z7o4BPcVqCDnG3HQjcijODZzHwXVV93X3sNeAfqvrnlGO22iYivwBGqur57v0jgLtUdbw4NW9m4rRI1QE341x8LlLVl9zp1+NV9asZ4i8HfoXTFTEIZwzX1cCvVTXRzr97N+BG4GCgCKgBznYvlsYYkxUisgswH8hrZxKB6SMsATP9goiEcQb8rwLO106+8UVkJPAWzgyou7MYojGmHxKRU3BmkxcB9wIJVc00fs30IdYFafoFdwbmacASOjeLMvm8lcAxwHARsZlDfYiI/EVE1ovI/AyPi4jcJiKL3SKWU1MeO1pEPnEfazs5xZiu+CZON+kSIA58y9twTK5YC5gxpl8SkYOBWuBvqrpbmsePBS4BjsUpbHmrqu7rdo0vwqkZtxKnVt3ZqrogZ8EbY3o9awEzxvRLqvofYFM7u5yEk5ypqr4FDBCR4TiVzBer6lJ3VuyDdHGNQWOMsQTMGGPSG0HrOnYr3W2ZthtjTKd5tqp7d1RUVOjYsWO9DsMYk0Pz5s3boKqZVi7IpnT15rSd7dseQGQG7nqCRUVFe02aNKndE66vaWJdddsi7DC0NJ8hJemWGTTG+Fl7169elYCNHTuWuXPneh2GMSaHRKTtagu5spLWlclH4hQfjmTYvg1VnYlTSoVp06ZpR9evlxeu45IH3qU+Gm/ZVhgJcvvZe3L4LkO7828wxnioveuXdUEaY0x6TwJfc2dD7gdUqeoanEH3E0RknIhEcBaXf7InTnjIxCFMGTUAiUdBExRGgkwZNYBDJg7picMbY3ykV7WAGWNMTxGRB4BDcBZuXomz0kEYQFXvwlnp4VicAsP1OKshoKoxEfkO8AJOcd+/qOpHPRFTMCD8/cJ92f/UC4kWDeG3P/4eh0wcQjBgS/0Z09dYAmaM6ZdU9ewOHlfg2xkeexYnQetxwYBQuGUphVuWWrejMX2YdUEaY4wxxuSYJWDGGGOMMTlmCZgxxhhjTI5ZAmaM8d6qVXDuufDmm15HYowxOWEJmDHGOw0N8ItfwM47wyOPwPy062IbY0yfY7MgjTG5pwqPPQY//CEsXw6nnQY33QTjxnkdmTHG5IS1gBljcuu99+CQQ+D006GsDF55BR591JIvY0y/YgmYMSY31q+Hb34Tpk6Fjz6Cu+6Cd96BQw/1OjJjjMk564I0xmRXNAp33AE/+xnU18N3vwvXXgsDB3odmTHGeMYSMGNMdqjCs8/C978PixbBMcfA734HkyZ5HZkxxnjOuiCNMT1v4UI49lg4/ngQgWeecZKxDMnXfffB2LEQCDg/77svp9EaY0zOWQJmjOk5mzfDZZfB7rvD7NlOi9cHHzjJWAb33QczZjiTIVWdnzNmWBJmjOnbLAEzxnRLaqvVTmNivH3BnTBhAtx2G1x0EXz6KXzvexCJtHuca65xhoalqq93thtjTF9lY8CMMV2WbLWqr4dDeYVbPr+MPe75kHWTpjP0pVtgypROH+vzz7u23Rhj+gLPWsBEZJSIvCoiC0XkIxH5rlexGGO65pprYGj9Uh7jVF7hcEqo4TQeZd/6V7uUfAGMHt217cYY0xd42QUZA36gqrsA+wHfFpHJHsZjjOmMmhq+ufxqFrILRzGLa/gFk1nA45zG5yuky4e74QYoLGy9rbDQ2W6MMX2VZwmYqq5R1Xfc32uAhcAIr+IxxnQgkYB774Wdd+ZH/IqHOJOJfMIvuYZGCoDutVqdcw7MnAljxjgTJseMce6fc04Px5+GiBwtIp+IyGIRuSrN45eLyHvubb6IxEWk3H1smYh86D42N/vRGmP6El+MARORscCewP+8jcQYk9bs2U4B1TlzYJ99eP7if/Gt3+zbavD89rRanXNObhKuVCISBH4PHAmsBOaIyJOquiC5j6reBNzk7n8C8D1V3ZRymENVdUMOwzbG9BGez4IUkWLgMeAyVa1O8/gMEZkrInMrKytzH6Ax/dnKlfDVr8IXv+j8/re/wezZHH3dvp61WvWgfYDFqrpUVaPAg8BJ7ex/NvBATiIzxvR5niZgIhLGSb7uU9XH0+2jqjNVdZqqThs8eHBuAzSmv2pogOuvh4kTnYWyr7nGqWZ/7rlO3QmcZGvZMqdnctmyXpd8gTPkYUXK/ZVkGAYhIoXA0TjXqyQFZonIPBGZkbUojTF9kmddkCIiwN3AQlX9nVdxGGNSqDoJ1+WXOxVRTzsNbroJxo3zOrJsSDdjQDPsewLwRpvuxwNUdbWIDAFeFJGPVfU/rU7gJGYzAEbbtE5jTAovW8AOAM4FDksZ5Jq5XLYxJrvefRemT4czzoCyMnj1VScZ65vJFzgtXqNS7o8EVmfY9yzadD+q6mr353rgnzhdmrTZx1rwjTFpedYCpqqvk/4bqDEml9avd7oY774bBg2Cu+5yKtkHg15Hlm1z+P/t3Xl8VOW9x/HPLyxCwKUgKioQq5GKG2qKWq2taxUX1Hu9LrhrEXdcQfGqFVEE674grmjjWqUqohXQ1u1qFUQBEUEkgKAsioIokMzv/nHOwGSYmUxIZs33/XrN65zznO03kxB+8zzPeR4oN7NtgK8JkqyT4g8ys42BPwAnx5S1AUrcfVm4fghwQ1aiFpGikBdPQYpIDqxaBXffDTfcEAxp368fXHstbLJJriPLCnevNrMLgH8CzYBH3H2qmfUN9w8PDz0GeN3df4o5fXNgVNCTgubAk+7+WvaiF5FCpwRMpKlxh1degUsvDeZr7NkzmDS7a9dcR5Z17j4GGBNXNjxu+zHgsbiyWcCuGQ5PRIpYzoehEJEsmjYNDjsMjjwyeJpxzJggGWuCyZeISC4pARNpCr7/PhhIdeed4f334fbbYfLkIBmLUVkJZWVBblZWFmyLiEjjUwImUsyqq+G++6C8nMjd9/C31n9msx9mUHZHPyqfbVHr0MpK6NMnGH3CPVj26aMkTEQkE5SAiRSJ+NqrcVeNh912g/PP55vNd2HvDT7mlOX3s4gOCZOrgQOpNbUQBNsDB2bzXYiINA1KwESKQGzt1Tb+JbdXHcNBQw5i2bc/wfPPs9fy8fznl11qnROfXM2Zk/jaycpFRGT9KQETKQIDB0LJimXczAA+oxsHM5aruImK1p/BsccyZ27iIfdik6tkA7VrAHcRkcanBEyk0EUiHFD1KDMoZwC38DQnsD1fMISrmDG3FZBecjV4MJSW1t5fWhqUi4hI41ICJlLI3n0XevTgEc7kK7ahBx9wOiNZwJbA2gQrneSqd28YMQK6dAGzYDliREFOsi0ikveUgIkUorlz4aSTYN99YcEC3j33bxzc+l0+jJmOMDbBSje56t0bZs+GSCRYKvkSEckMJWAihWTFimDqoK5dYdQouOYamD6dfe7rzQMPlqRMsJRciYjkDyVgIoXAHZ55Bn7zG7juOkbbEWzzyzTKnhhE5YttASVYIiKFRAmYSL6bOBH22w9OOIHvStpzyAb/5sgVzzKbMg2WKiJSoJSAieSrb7+Fs8+GigqYPh1GjKDCP2Lsyv1qHabBUkVECo8SMJF8s3IlDBvG6rJyVj88ktv8EnZuNYPK0j8ze26zhKdosFQRkcLSPNcBiEjIHUaPhksvhZkzGVtyBP34KzPYHuYGTY3t2sGSJeueqsFSRUQKi2rARLIsfs7Gykp4eehnvFV6KBx1FDNnN+d/NnyVwyMvB8lXKDpPowZLFREpfDlNwMzsETNbaGZTchmHSGOJT67OO2/d7eicje7wY9V3LD31Qg7rvws7//IfLuYOdqj+lOeWHZrw+t99p8FSG5OZHWpm081sppkNSLD/j2b2g5lNCl/XpnuuiEgquW6CfAy4B3g8x3GINFh0QuxoTVVVFdx//9r9VVUwfHiQeDWjmnN4gBu4lk0iS3mAc7iWG1jCpinv0blzkGwp4Wo4M2sG3AscDMwDPjSzl9z9s7hD33b3I9bzXBGRhHJaA+bubwHf5TIGkcYycODa5CsZdziQcUyiO/dyAZPoTncmcT731Zl8qamx0fUAZrr7LHdfBTwN9MrCuSIi6gMm0ljqehJxW2YyiqMZx8G05meO4QUOYhxT2Dnh8e3bq6kxw7YC5sZszwvL4u1tZp+Y2atmtmM9zxURSSjXTZB1MrM+QB+AznrUS/JY585BM2O8DfmRgQymH3ewmhZcxc3cTj9W0gqAFi2CJGvVqrXnlJbCnXcq4cowS1DmcdsTgS7uvtzMegL/AMrTPFd/v0QkqbyvAXP3Ee5e4e4VHTp0yHU4IkkNHlz7CUUjwhk8whdsT3+G8iQnsWvrGfxw7gC26NJqTc3Wo4/CI4+otisH5gGdYra3BubHHuDuP7r78nB9DNDCzDZN59zwHP39EpGE8r4GTCSfVFYGfb3mzAlqvHr2hDFj1m6fdlqw3anqHe5reTE7r5rIhA32ptfKl/i2Sw8GD06eWCnhyroPgXIz2wb4GjgBOCn2ADPbAvjW3d3MehB8aV0CLK3rXBGRVHKagJnZU8AfgU3NbB5wnbs/nMuYROJFk66qqqCGysOGpkRPOY5/dA7/6t6fsqqnocNWMLSSPU48kQ8sUYuV5JK7V5vZBcA/gWbAI+4+1cz6hvuHA/8NnGtm1cDPwAnu7kDCc3PyRkSkIOU0AXP3E3N5f5G6xA8t4ev08gm0ZgVXMpQrfxlKyQcO//u/0L8/tGmTvWCl3sJmxTFxZcNj1u8hGConrXNFRNKV933ARLItdjDV006ra2gJ53ieZjpduZ6/8DJH8hv/HG64QcmXiIgkVWcCZmbbmtkG4fofzewiM9sk86GJZF+0xis6Un1NTfJjd2cCb/N7nuZEFtGB3/MWJ/BM0IteREQkhXRqwJ4HasxsO+BhYBvgyYxGJZIj6Qymujnf8BBn8SG/pZwZnMVD/JYPeYffa7BUERFJSzoJWMTdq4FjgDvc/RKgY2bDEsmuaLNjonG8olqykisYyhdszyk8wYMbXcYtZ37B+C5n4dZMw0eIiEja0umEv9rMTgROA44My1pkLiSR7IrvaL8u5+iSlxgWuYzt+JJ5ux3JRs/8lXPKywG4LWuRiohIsUinBuwMYG9gsLt/FY5787fMhiWSWel2tN+RKYwvOYRRkaPZrtsG8PrrbD3xJQiTLxERkfVRZw2Yu39mZv2BzuH2V8CQTAcmkinxNV6JOtq3YwnXcz3ncj81rTeCm++Cvn2DeYNEREQaKJ2nII8EJgGvhdvdzeylTAcmkimpOto3ZzUXcDczKOdc7qf5+X3ZoGoGXHihki8REWk06TRBXg/0IJh6A3efRPAkpEhBmjMncflBjGUS3bmbi/ikZHdeu3kS3HMPtG+f3QBFRKTopZOAVbv7D3FlScYDF8l/nTvX3t6OGbzIUYzlEFrxC3/u8A/mjxzLEQN2yk2AIiJS9NJJwKaY2UlAMzMrN7O7gfcyHJdIo4sdasIMNuIHhnIFU9mR/XmTj48fwra/fMaDC3vR+2TN3SgiIpmTzjAUFwIDgZXAUwSTzw7KZFAijS22430JNZzuj3ETV9OBRfy9zek0u+Um/uv8LXIdpoiI5EAk4jjgHl2C42vm/41ut2hWQotmjTOLYzpPQa4gSMAGNsodRXIg2vF+H97hTi5mDybyLr/j7C1e4eUFFbkOT0QkqZqIE/HaPX/iNnFS74+3JrEIk4z45ANPvs+DneskKmuOi48tZjsa59r7xx7ntcpqX2ftebH3jUQSJ0oJ31Ot8mBfpJ4dqrbZtA1bbNyqficlkTQBM7OXSdHXy92PapQIRLLAq+bwFFdyAs8wl605gad4huOxb9XUKCLZU10ToTrirK6JUBNxVtc41ZEI1TVBWXRfdVi+umbdhEaKQ6oasFuzFoVIhjz98E98e9lQPmcojnE91zGUK/mZUmDdDvkiIolEIk6NBzVR7mtrpSIe7Iuup0qmqmvqX+MixStpAubu/85mICKNyp13L3iKfe/vz9Y+j6c4gf7cwlzWZlyaOFuKQU3E+fHn1Wu24/9/9wTVJ4lygLqatJKdWLsJKfH5tcsTx5aslidV7U/CGNM8f03yFCZVkcja9SC5CuKLros0tlRNkM+6+/+Y2WQS/LNz910yGpnI+vroI7j4YvZ57z0msDsn8iTv8Ptah3TpEiRfmji7aTOzQ4E7gWbAQ+4+JG5/b6B/uLkcONfdPwn3zQaWATUEw/XkpDPhyuoaPv9mWS5uLTEiEWfS3KXMXvITZe3b0L3TJpSUqIuDJJeqCfLicHlENgIRabBvvuHL469m27ce5Vs24yoeZiSnEaFZrcPMYPbs3IQo+cPMmgH3AgcD84APzewld/8s5rCvgD+4+/dmdhgwAtgzZv/+7r44a0FLXopEnJtencbMhctZVR2hZfMSttusLVcftoOSMEkq6bOU7r4gXD3P3atiX8B5jXFzMzvUzKab2UwzG9AY15Sm56nHVjLkV7ewrGM5nd76G0O5gnJm8ChnrpN8gfp9yRo9gJnuPsvdVwFPA71iD3D399z9+3DzfWDrLMcoBWDS3KXMXLicldURHFhZHWHmwuVMmrs016FJHktnMIuDE5Qd1tAbx3z7PAzoBpxoZt0ael1pGioroayLc7T9gx5ndGPA0gG8wQHsyFT6M5RlbJTwPPX7khhbAXNjtueFZcmcBbwas+3A62Y2wcz6JDrBzPqY2Udm9tGiRYsaHLDkp9lLfmJVdaRW2arqCLOX/JSjiKQQpOoDdi5BTdevzezTmF0bAu82wr3XfPsM7xf99vlZyrOkyaushDvPnszDv/TjQN5gKt04mNcZl/C7QsAsqPlSvy+JkahtKGF3azPbnyAB2zemeB93n29mmwFjzexzd3+r1sXcRxA0W1JRUaGu3EWqrH0bWjYvYWVMEtayeQll7dvkMCrJd6n6gD1J8G3vZiC2eXCZu3/XCPdO9O1zzyTHilBZCbcOWMzZ867j/xjOD2zMBdzNcPpSk+JXuUsX9fmShOYBnWK2twbmxx9kZrsADwGHufuSaLm7zw+XC81sFMGXyrfiz5fi173TJmy3WVumzlkMzZqzQYvmbLdZW7p32iTXoUkeS9UH7Ad3n+3uJxL8oVpN8O2wrZk1Ri+atL59qgpfAJ4cuZqPz7iLN+aVcw4PcB/nUc4M7uWClMmXmhwlhQ+BcjPbxsxaAicAL8UeEP6tewE4xd2/iClvY2YbRteBQ4ApWYtc8kpJiXH1YTvQ9rN/0Pqrt7nogHJ1wJc61TkVkZldAFwPfAtE61cdaOgwFGl9+1QVftNWWQmvXfo6Vy3sx0lMYywH0Y87+Iwdk55jFoz9o6EmJBV3rw7/vv2TYBiKR9x9qpn1DfcPB64F2gP3mRmsHW5ic2BUWNYceNLdX8vB25A8UVJitFwyE5bMZPcu/es+QZq8dCbj7gd0ja16byRrvn0CXxN8+zypke8hBaiyMpi7sWXVF/yVy3iC0cxkW47iRV7mSBJVnirpkvXh7mOAMXFlw2PWzwbOTnDeLGDXjAcoIkUrnacg5wI/NPaN3b0aiH77nAY86+5TG/s+UhgqK6GsLEikzj/5B86vuoIp7MQf+DdXcgs7MpWXOYpEyVeXLvDEE0ECNnu2ki8REcl/6dSAzQL+ZWavACujhe5+W0NvnujbpzQN0VquOXOgXTtYtgyqV9VwFo9yE1ezKYt5jNO5mpv4li0SXqO0FEaMUMIlIlLMinWWgXQSsDnhq2X4EmmQykro0wdWrAi2lyyBfXmbO7mY3fmYd9iHw3iVieyR9BpqahQRKX7FPMtAnQmYu/8lG4FI8YvWelVVrS3rTBVDuZLjeZa5bM0JPMUzHE/ih2RV6yUi0pTEzjIAtWcZ2L3Lr3IcXcOk8xRkB+BKYEegVbTc3Q/IYFxSZOJrvUr5if7cwhUMwzGu43qGcQU/U7rOuepgLyLSNKWaZaDQE7B0OuFXAp8D2wB/AWYTPMEoklC0Q31JCWy6afA6+eRo8uWcRCXT6cq1DGIUx9CV6dzAdbWSLwsrwNTBXkSk6YrOMhCrWGYZSCcBa+/uDwOr3f3f7n4msFeG45ICEp9wnXlm0MzoHvTvWhIOYFLBh7zLPlRyMt+wBfvwDr15knl0okULaN8+SLyUdImICKydZYDqVeARNgj7gBXDLAPpJGCrw+UCMzvczHYjGDRVmrDYYSNOOaV2wrVqOfObzQAAIABJREFUVe1jt2ABj3I6H9KDXzOLM3mYHvyH99gHCBKuRx+FxYshElHSJSIigWKeZSCdpyBvNLONgcuAu4GNgEsyGpXktfj+XJ5kfoIN+IVLuJ2ruYmWrGII/bmJq1nGRoA61IuISN2KdZaBdJ6CHB2u/gDsn9lwJJ/EjtXVuTP07AljxtR+ijEx52j+wV+5jF/zFf+gF5dzK1+y3Zoj1KFeRESasnSegnyUBJNkh33BpEjF13JVVcH999d93s58yh304wDeZDI7cSDjeIMD1+xXrZeIiEh6fcBGA6+Er/EETZDLMxmU5N7AgWuTr3S0ZzH3ch4fsxu78glXtLmX3fmYT9ofWKtzvZIvERGR9Jogn4/dNrOngHEZi0hyJrbJMVm/rnjNWc153Mf1XM+GLOPxDS+g7bDrGHZOO4ZlNlwRKWLFOv2MSFQ6nfDjlQOdGzsQya34Jsd0/InXuJ1L2IHPmb/zIfzq6ds5o1u3zAUpIk1CMU8/IxJVZxOkmS0zsx+jS+BloHgeQxCgfk2O2zOd0RzOaxzGVptXw8svs+Unr4GSLxFpBLHTzzi1p58RKRZ1JmDuvqG7bxSz3D6+WVIKU+wAqqmebIz237r0zKWM2PAyprAT+9nbTDxxGBvNmQpHHLF26HqRAmJmh5rZdDObaWYDEuw3M7sr3P+pme2e7rmy/lJNPyNSLFI2QZpZa6A3EK3a+Aj4u7uvSn6W5KvYPl7t2sGyZesOmhqvSxeY/WUNPPwwXHMNLF8MZ59FixtvZPfNN89O4CIZYGbNgHuBg4F5wIdm9pK7fxZz2GEE3S7KgT2B+4E90zxX1lN0+pmVMUlYsUw/IxKVtAbMzHYGpgG/J5j/sQr4E/CumW1iZjdmJUJpFNE+XqlGrI9XWgoPnvIWVFTAOedA167w0Ufw4IOg5EsKXw9gprvPCr9UPg30ijumF/C4B94HNjGzjmmeK+upmKefEYlKVQN2F/Bndx8bW2hmBwFTgKmZDEwaV336eJnB77acTeVWV9LlxueCUVifeQaOO05NjVJMtgLmxmzPI6jlquuYrdI8t5ZZi37i+Af+L63AFnQ7HiCt4yPuLF9ZndZ1C4m7U/LLUmjWkg7tOlITiXDjmPyuYPyxezDGzg2j9d9jY8uXz7ZVi2a0bJbOCF51S5WAdYxPvgDcfZyZrQaOaZQIJGPWZ1iJ33T6iWmnDYFhw+C7ErjhBrj8cmjdOrPBimRfom8T8f9Skh2TzrmYWR+gD0DbjtumHVj3XbunfWx9zPhsCgDl3XbK++uaGV3L0//M6iNTn0NjXy+qkH5umbpuoX226UiVgJWY2QbuvjK20MxaAavdvR4DFtRmZscB1wM7AD3c/aP1vVZTFT9N0ODBQXl9+3hFGRHOaPkkdy/vDzfOh5NOgiFDoFOnzL0JkdyaB8T+gm8NzE/zmJZpnIu7jwBGAFRUVPgz5+zd8KjjrFhVzSdzf0jr2POfvAqAa698qVFjyNR1M0XxFuZ1M6G+sW6zaRu22LhV2td/tm/yfanq0R4HnjezsmhBuP4s8ETad09sCnAs8FYDr9MkxD6tWFYG551Xuz9XVRWccQaceWb9+ni1aAHt28OefMCElr/j4VWnULrtlvDuu8FNlXxJcfsQKDezbcysJXACEP9X+CXg1PBpyL2AH9x9QZrniogklTQBc/cbgdeAt8xssZktBv4NjHX3QQ25qbtPc/fpDblGMYpPtCor1+08X1UFw4ev259r9ep61HaFw0o8fdt8Fh9+Gu+zF7u1q4LHHoMPPoDf/a6R35lI/nH3auAC4J8EDxw96+5TzayvmUW/t44BZgEzgQeB81Kdm+W3UC+RiLOq/Xb83GUfJlZ9TySSZr+EHF1XAvp8i1fKYSjc/R7gHjPbMNxelpWomqBEk1/36RN0vYpPttLtz5VIly4w+/Nf4LbbYMBNQebWv3/Qdrnhhut/YZEC5O5jCJKs2LLhMesOnJ/uufkqOrL88m5HQ7Pm3PXGjEYZWT5T15VAIX6+0YSxpu3mTKz6XlNIpZBWV353X1bf5MvMxpnZlASvej2qbWZ9zOwjM/to0aJF9Tm1oCR6SnHFiqApsbGUtnYe7/U87LBDcMNDDoHPPgv6ein5Eila0ZHlad4SrKTRRpbP1HUlUGifb2zC+PM2v+euN2Zw06vTVGuXROM8S5mAux/k7jsleL1Yz+uMcPcKd6/o0KFDpsLNuTlz6nd8/GgQLVpAy5brlrVvHxx7aMdP+LLsAPa767+hbVsYNw5eeAG2zcxTRiKSPzI1srxGrM+sQvt8Cy1hzLWMJWBSP52TTG/evn0wIGqs0lLo2zdoToz253r0UXjkkXXLFk9bRKRPX179dne2WDgZ7rsPPv4YDjww829KRPJCdGT5WI0xsnymriuBQvt8Cy1hzLV0JuMuNbP/NbMHw+1yMzuiITc1s2PMbB6wN/CKmf2zIdcrBoMHJ0607rwTRoyonViNGBHkUbNnQyQSLHv3Dl5ryr5YRe+Ft0N5OTz0EFx4IcyYAeeeC81Tdv0TkSITHVl+g+YlGDTayPKZuq4EMvn5ZqJzf6EljLmWzv/EjwITCJIlCMbFeQ4Yvb43dfdRwKj1Pb+QJRq/K5o8QeJ9sHaZlldfhUsugenT4U9/Cjrcd+tW93kiUpRKSoyrD9uBSXOXMnvJT5S1b9MonaMzdV0JZOrzzVTn/mjCOHPhclZVR2iphDyldBKwbd39eDM7EcDdfzbTfDTrI9mTjrA2CatXohVv+nS49FIYMyao+Ro9Gnr21PRBIkJJibF7l1+xe5dfFcR1JZCJz7dWXy2o1VerIfcptIQ8109sptMHbJWZtSacZsPMtgVWpj5FEkn2pOPAgQ288NKlQeK1007wzjtw660wZQocfriSLxERqSWTfbWiCeOxu2/N7l1+ldfJV66f2EwnAbuOYEDWTmZWCYwHrsxoVEUq2ZOO9X0Cco2aGnjggaC26447guHwZ8yAyy5b95FIERER1FcL8uOJzToTsHBC7mOB04GngAp3/1dmwypOyZ50TFae0r/+BXvsETwO2a0bTJgQ9M7fbLOGhCgiIkVOD0/kxxObSfuAmdnucUULwmVnM+vs7hMzF1ZxGjy4dh8wCJ50jE6knZavvoIrroDnnw8yt2eegeOOU1OjiEgact3vJx8UWl+tTIjWAq6MScKyXQuYqhP+X1Psc+CARo6l6NX1pGNKy5cHI9bfeis0awaDBgVNja1bZzRmEZFiUYhT+2RKU394Ih+e2EyagLn7/lmLogmp95OOkUjw+OSAATB/Ppx8Mtx8M2y9dcZiFBEpRpl6+k8KTz7UAtY5DIWZtQLOA/YlqPl6Gxju7r9kODZ5/33o1w8++AB++1v4+99h773rPk9ERNaRqt+PErCmJ9e1gOk8Bfk4sCNwN3AP0A14IpNBNXlffw2nnBIkW3PmwMiRQTKm5EtEZL3p6T/JJ+kkYF3d/Sx3fzN89QG2z3RghayyEsrKoKQkWFZWpnnizz8HncK23x6eew6uvhq++AJOPTW4mIiIrDc9/Sf5JJ2R8D82s73c/X0AM9sTeDezYRWuuka7T8g9eKrx8suDE445Juhs/+tfZyVmEZGmIB/6/YhEpVOtsifwnpnNNrPZwP8BfzCzyWb2aUajK0D1Hu1+0iTYf/9gKImNNoI33oAXXlDyJZJBZtbOzMaa2YxwuU4nEDPrZGZvmtk0M5tqZhfH7LvezL42s0nhq2d234Gsr0IZqV2KXzo1YIdmPIoikvZo94sWwTXXwIMPQrt2cP/9cPbZ0DydH4mINNAAYLy7DzGzAeF2/7hjqoHL3H2imW0ITDCzse7+Wbj/dne/NYsxi0gRSWck/CrgR2BjoH305e5V4T6JUedo96tWwW23BdMHPfIIXHxxMH1Q375KvkSypxcwMlwfCRwdf4C7L4gOOO3uy4BpwFZZi1BEilo6w1AMIpiG6EvCCbnRQKxJpRztfswYuOSSoGP9n/4Et98OO+yQs1hFmrDN3X0BBImWmaWcw8vMyoDdgA9iii8ws1OBjwhqyr7PUKwiUoTSqXL5H2Bbd1+V6WCKQaLR7u8+/3OOrLwUXn01eMLxlVegp7qMiGSSmY0DtkiwK1mPzGTXaQs8D/Rz9x/D4vuBQQRfRgcRzBxyZoJz+wB9ADqv16SvIlKs0knApgCbAAszHEvRWDPa/fffww03wNX3QJs2QdPj+edDy5a5DlGk6Ln7Qcn2mdm3ZtYxrP3qSJK/b2bWgiD5qnT3F2Ku/W3MMQ8Co5PEMAIYAVBRUeGJjhGRpimdBOxmgqEopgAro4XuflTGoip0NTXw0ENBJ/slS4I2yUGDoEOHXEcmIoGXgNOAIeHyxfgDzMyAh4Fp7n5b3L6O0SZM4BiCL6oiImlLJwEbCdwCTAYidRybFjMbBhwJrCLoW3aGuy9tjGvn3JtvBtMHffop/OEPcMcd0L17rqMSkdqGAM+a2VnAHOA4ADPbEnjI3XsC+wCnAJPNbFJ43tXuPgYYambdCZogZwPnZDn+NVo1b8ZOW220Zju+ms0T1bslKPO4wkTnJbxUzIFeqzzJtROvrjk+9tiEsdcRT6r4apdDxJ2aiBPx4LgadyKRoDx4QU3E8XA94l5nTCLpSicBW+zudzXyfccCV7l7tZndAlzFuo+AF5ZZs+CKK4IxvMrKgnkbjz0WTGPMiOQbd18CHJigfD7QM1x/B0j4D9jdT8logPVQUmJs2KpFrsNoMiKRIDmrCZOx2CQuEnGqI051JEJ1jbO6JkJ1JFzWrC2PKIkT0kvAJpjZzQRV9rFNkBPX96bu/nrM5vvAf6/vtXJu2TK4+eagf1fz5nDjjXDppdC6da4jExGRRlZSYpRgaf3nmUx1mJhVR5zqmgira1InbatrVPNWjNL5HdotXO4VU9aYw1CcCTzTSNfKnkgEnngCrroKFiwIJs+++WbYSsMEiYhIcs2bldC8WcOuEd+0Gp+grdsU7Qn3uwfNvmuagGO2PTzPo9dPsc+DnWuPZW1zcu3m6NrxJGzqTtEcXfu+sbHExJbGewpqIePOj32vWVBnAubu+6/PhVM9Au7uL4bHDCQYbTrpdNV5+Rj3++/DRRfBhx/CnnvCqFHBUkREJAssrntL3b1d1B2mPmond2sTs2aNOHVVWrWoZnY4sCPQKia4G1Kdk+oR8PCapwFHAAd6sl6S5Nlj3PPmwYABwYzbHTvC448H402UpDOlpoiIiBQCM4tJajOTvKYzEv5woBTYH3iIoL/WfxpyUzM7lKDT/R/cfUVdx+fczz/DrbfCkCHBEBMDBwaJWNu2uY5MREREClA6VTe/c/dTge/d/S/A3kCnBt73HmBDYKyZTQqTvPzjDs89F0wXdO21cNhhMG1a0NFeyZeIiIisp3SaIH8OlyvCMXKWANs05Kbuvl1Dzs+Kjz8OJsp++23YZZdgfK8//jHXUYmIiEgRSKcGbLSZbQIMAyYSDDr4VCaDyqmFC+HPf4Y99ghqux54ACZOVPIlIiIijSadpyAHhavPm9looJW7/5DZsHJg1Sq4++5g7sYVK4LR7K+9FjbZJNeRiYiISJFJWgNmZr81sy1itk8FngUGmVm7bASXFe4wejTstBNcfjnsuy9MmRIMrKrkS0RERDIgVRPkAwRzNWJm+xHMnfY48APhsBAFb9q0oGP9kUcGQ0m88krw6to115GJiIhIEUuVgDVz9+/C9eOBEe7+vLv/L5D/nehT+f77oIP9zjsHg6refjtMngw9e+Y6MhEREWkCUiZgZhbtI3Yg8EbMvoZMg5U71dVw331QXg733BN0tp8xI+jv1UKT2YqIiEh2pEqkngL+bWaLCYaieBvAzLYjaIYsLOPHB4nWlCnBE4133AG77prrqERERKQJSpqAuftgMxsPdARej5kuqAS4MBvBNYpZs4LO9aNGQVkZPP88HHNMOhNniYiIiGREyqZEd38/QdkXmQunES1bBjfdFDzN2KJFsH7JJdCqVd3nioiIiGRQYfblSiUSCSbJvuoq+OYbOPVUuPlm2HLLXEcmInkiHErnGaCMYHDp/3H37xMcNxtYBtQA1e5eUZ/zRUSSSWck/MLx3nuw555wxhlBc+MHH8DIkUq+RCTeAGC8u5cD48PtZPZ39+7R5Gs9zhcRWUdxJGDz5kHv3rDPPjB/Pvztb/Duu9CjR64jE5H81AsYGa6PBI7O8vki0sQVdgL2888waFAwcOoLL8A118D06UEyVlLYb01EMmpzd18AEC43S3KcA6+b2QQz61Pf882sj5l9ZGYfLVq0qBHDF5FCV7h9wJYvDwZSnT0bjjsOhg4Nmh1FRAAzGwdskWDXwHpcZh93n29mmwFjzexzd38r3ZPdfQThzCEVFRVex+Ei0oQUbgLWtm0wkOq++8J+++U6GhHJM+5+ULJ9ZvatmXV09wVm1hFYmOQa88PlQjMbBfQA3gLSOl9EJJnCbqe7+molXyKyPl4CTgvXTwNejD/AzNqY2YbRdeAQYEq654uIpFLYCZiIyPoZAhxsZjOAg8NtzGxLMxsTHrM58I6ZfQL8B3jF3V9Ldb6ISLoKtwkyRyorYeBAmDMHOneGwYODPv8iUjjcfQnBHLfx5fOBnuH6LCDhfGXJzhcRSVdOEjAzG0TwGHeEoO/E6dG+FvmsshL69IEVK4LtqqpgG5SEiYiISPpy1QQ5zN13cffuwGjg2hzFUS8DB65NvqJWrAjKRURERNKVkwTM3X+M2WxDMNZO3pszp37lIiIiIonkrBO+mQ02s7lAb1LUgOXTQIadO9evXERERCSRjCVgZjbOzKYkePUCcPeB7t4JqAQuSHYddx/h7hXuXtGhQ4dMhZuWwYOhtLR2WWlpUC4iIiKSrox1wk81CGKcJ4FXgOsyFUtjiXa011OQIiIi0hC5egqy3N1nhJtHAZ/nIo710bu3Ei4RERFpmFyNAzbEzLoSDENRBfTNURwiIiIiWZeTBMzd/ysX9xURERHJB5qKSERERCTLlICJiIiIZJkSMBEREZEsUwImIiIikmVKwERERESyrMknYJWVUFYGJSXBsrIy1xGJiIhIsWvSCVhlJfTpA1VV4B4s+/RREiZS7MysnZmNNbMZ4fJXCY7pamaTYl4/mlm/cN/1ZvZ1zL6e2X8XIlLImnQCNnAgrFhRu2zFiqBcRIraAGC8u5cD48PtWtx9urt3d/fuwB7ACmBUzCG3R/e7+5isRC0iRaNJJ2Bz5tSvXESKRi9gZLg+Eji6juMPBL5096qMRiUiTUaTTsA6d65fuYgUjc3dfQFAuNysjuNPAJ6KK7vAzD41s0cSNWGKiKTSpBOwwYOhtLR2WWlpUC4ihc3MxpnZlASvXvW8TkvgKOC5mOL7gW2B7sAC4K9Jzu1jZh+Z2UeLFi1az3ciIsUoV5Nx54XevYPlwIFBs2PnzkHyFS0XkcLl7gcl22dm35pZR3dfYGYdgYUpLnUYMNHdv4259pp1M3sQGJ0khhHACICKigqv51sQkSLWpGvAIEi2Zs+GSCRYKvkSaRJeAk4L108DXkxx7InENT+GSVvUMcCURo1ORIpek0/ARKRJGgIcbGYzgIPDbcxsSzNb80SjmZWG+1+IO3+omU02s0+B/YFLshO2iBSLJt0EKSJNk7svIXiyMb58PtAzZnsF0D7BcadkNEARKXqqARMRERHJMiVgIiIiIlmmBExEREQky3KagJnZ5WbmZrZpLuMQERERyaacJWBm1ong6SJN/CMiIiJNSi5rwG4HrgQ0OKGIiIg0KTlJwMzsKOBrd/8kjWM1lYeIiIgUlYyNA2Zm44AtEuwaCFwNHJLOdTSVh4iIiBSbjNWAuftB7r5T/AuYBWwDfGJms4GtgYlmlihZS6qyEsrKoKQkWFZWNvY7EBEREcmMrI+E7+6Tgc2i22ESVuHui9O9RmUl9OkDK1YE21VVwTZoLkcRERHJfwU5DtjAgWuTr6gVK4JyERERkXyX87kg3b2svufMSTJwRbJyERERkXxSkDVgnTvXr1xEREQknxRkAjZ4MJSW1i4rLQ3KRURERPJdQSZgvXvDiBHQpQuYBcsRI9QBX0RERApDzvuAra/evZVwiYiISGEqyBowEZGGMLPjzGyqmUXMrCLFcYea2XQzm2lmA2LK25nZWDObES5/lZ3IRaRYKAETkaZoCnAs8FayA8ysGXAvcBjQDTjRzLqFuwcA4929HBgfbouIpE0JmIg0Oe4+zd2n13FYD2Cmu89y91XA00CvcF8vYGS4PhI4OjORikixUgImIpLYVsDcmO15YRnA5u6+ACBcboaISD0UVCf8CRMmLDazqiS7NwXSns6oCOj9Fje937W6rM8FzWwckGiO2YHu/mI6l0hQ5vWMoQ8QTpTGcjOrq9YtVqH9DijezFK8mZPJWJP+/SqoBMzdOyTbZ2YfuXvSzrTFRu+3uOn9Npy7H9TAS8wDOsVsbw3MD9e/NbOO7r7AzDoCC5PEMAIYsT43L7TfAcWbWYo3c3IVq5ogRUQS+xAoN7NtzKwlcALwUrjvJeC0cP00IJ0aNRGRNZSAiUiTY2bHmNk8YG/gFTP7Z1i+pZmNAXD3auAC4J/ANOBZd58aXmIIcLCZzQAODrdFRNJWUE2QdVivav4Cpvdb3PR+M8jdRwGjEpTPB3rGbI8BxiQ4bglwYCZjpPB+BxRvZinezMlJrOZerz6lIiIiItJAaoIUERERybKiSsDMbJiZfW5mn5rZKDPbJNcxZVK606kUsmRTwRQrM3vEzBaa2ZRcx5JpZtbJzN40s2nh7/HFuY4pHxTS73yh/gzNrJmZfWxmo3MdS13MbBMz+3v4f9s0M9s71zGlYmaXhL8LU8zsKTNrleuYYiX6G5urqcWKKgEDxgI7ufsuwBfAVTmOJ9PqnE6lkNUxFUyxegw4NNdBZEk1cJm77wDsBZzfBH6+KRXg73yh/gwvJniwohDcCbzm7r8BdiWP4zazrYCLgAp33wloRvD0cD55jHX/xuZkarGiSsDc/fXwySWA9wnG7SlaaU6nUshSTQVTlNz9LeC7XMeRDe6+wN0nhuvLCP5j2Sr1WUWvoH7nC/FnaGZbA4cDD+U6lrqY2UbAfsDDAO6+yt2X5jaqOjUHWptZc6CUtWPn5YUkf2NzMrVYUSVgcc4EXs11ENIgqaaCkSJiZmXAbsAHuY0k5wr2d76AfoZ3AFcCkVwHkoZfA4uAR8Mm04fMrE2ug0rG3b8GbgXmAAuAH9z99dxGlZacTC1WcAmYmY0L25bjX71ijhlIUDVembtIG0c677eINXgqGMl/ZtYWeB7o5+4/5jqeHCvI3/lC+Rma2RHAQnefkOtY0tQc2B243913A34iS81j6yPsO9UL2AbYEmhjZifnNqr8VXDjgNU1vYiZnQYcARzoRTDGRiNMp1LIUk0FI0XAzFoQ/Mdd6e4v5DqePFBwv/MF9jPcBzjKzHoCrYCNzOxv7p6vScI8YJ67R2sV/04eJ2DAQcBX7r4IwMxeAH4H/C2nUdUtranFGlvB1YClYmaHAv2Bo9x9Ra7jkQZLNRWMFDgzM4K+LdPc/bZcx5MnCup3vtB+hu5+lbtv7e5lBJ/tG3mcfOHu3wBzzaxrWHQg8FkOQ6rLHGAvMysNfzcOJI8fGoiRk6nFiioBA+4BNgTGmtkkMxue64AyKdl0KsWijqlgipKZPQX8H9DVzOaZ2Vm5jimD9gFOAQ4I/71OCmsmmqwC/J3XzzDzLgQqzexToDtwU47jSSqsqfs7MBGYTJBj5NWI+En+xuZkajGNhC8iIiKSZcVWAyYiIiKS95SAiYiIiGSZEjARERGRLFMCJiIiIpJlSsBEREREskwJWJExs/Yxj4N/Y2Zfh+tLzSyr48eYWffYR9LN7CgzW69BBM1stpltmqB8YzN73My+DF+VmZjJPtV7MbPrzezyxr6niIgULyVgRcbdl7h7d3fvDgwHbg/Xu5OBuc/CCVeT6Q6sSVrc/SV3b+zxVR4GZrn7tu6+LTCTYLb7xpaN9yIiIk2EErCmpZmZPWhmU83sdTNrDWBm25rZa2Y2wczeNrPfhOVdzGy8mX0aLjuH5Y+Z2W1m9iZwi5m1MbNHzOzDcMLYXuEo3jcAx4c1cMeb2elmdk94jc3NbJSZfRK+fheW/yOMY6qZ9Un1ZsxsO2APYFBM8Q3ArmbW1cz+aGajY46/x8xOD9evDeOdYmYjwlGbMbN/mdktZvYfM/vCzH5f13uJiynZZ3lceK9PzOyt+v/oRESkmCgBa1rKgXvdfUdgKfBfYfkI4EJ33wO4HLgvLL8HeNzddyGY2PyumGttDxzk7pcBAwmm9PgtsD8wDGgBXAs8E9bIPRMXy13Av919V4LJZqOjfZ8ZxlEBXGRm7VO8n27AJHeviRaE6x8DO9TxWdzj7r91952A1gTzh0Y1d/ceQD/gOndfVcd7iZXss7wW+FP4fo+qIzYRESlyBTcZtzTIV+4+KVyfAJSZWVuCyVKfCyuBADYIl3sDx4brTwBDY671XEzicwjBBLfRflCtgM51xHIAcCqsSZp+CMsvMrNjwvVOBEnjkiTXMCDRVA6WoCze/mZ2JVAKtCNIAF8O90UnFJ4AlKVxreCmqT/Ld4HHzOzZmOuLiEgTpQSsaVkZs15DUPNTAiwN+4nVJTbZ+Slm3YD/cvfpsQeb2Z71Cc7M/ggcBOzt7ivM7F8EyVwyU4HdzKzE3SPhNUqAXQjmIutM7VreVuExrQhqpircfa6ZXR93n+jnVEP9/o0k/SzdvW/4eRwOTDKz7u6eLLEUEZEipybIJs7dfwS+MrPjACywa7j7PeCEcL038E6Sy/wTuDCmH9VuYfkygsnRExkPnBse38zMNgI2Br4Pk6/fAHvVEftMgubGa2KKrwHGu/scoAroZmYbmNnGwIHhMdFka3FYa/Xfqe6hHFIHAAAA90lEQVSTxnuJxpP0szSzbd39A3e/FlhMULsnIiJNlBIwgSC5OsvMPiGoVeoVll8EnGFmnwKnABcnOX8QQZ+vT81sCms7xb9JkABNMrPj4865mKAZcDJBU9+OwGtA8/B+g4D304j9TKDczGaa2SKCpK0vgLvPBZ4FPiXow/ZxWL4UeBCYDPwD+DCN+6R6L7GSfZbDzGxy+Pm8BXySxj1FRKRImXuiLjQihcfMugJjCDrBj8l1PCIiIskoARMRERHJMjVBioiIiGSZEjARERGRLFMCJiIiIpJlSsBEREREskwJmIiIiEiWKQETERERyTIlYCIiIiJZ9v9GQA3DUwLNaAAAAABJRU5ErkJggg==\n", 147 | "text/plain": [ 148 | "
" 149 | ] 150 | }, 151 | "metadata": { 152 | "needs_background": "light" 153 | }, 154 | "output_type": "display_data" 155 | } 156 | ], 157 | "source": [ 158 | "sar.plot_diagnostics(figsize=(10, 8));" 159 | ] 160 | }, 161 | { 162 | "cell_type": "markdown", 163 | "metadata": {}, 164 | "source": [ 165 | "# Plot Results" 166 | ] 167 | }, 168 | { 169 | "cell_type": "code", 170 | "execution_count": 165, 171 | "metadata": {}, 172 | "outputs": [], 173 | "source": [ 174 | "def predict_df(prediction_df):\n", 175 | " \n", 176 | " #load in original dataframe without scaling applied\n", 177 | " original_df = pd.read_csv('../data/train.csv')\n", 178 | " original_df.date = original_df.date.apply(lambda x: str(x)[:-3])\n", 179 | " original_df = original_df.groupby('date')['sales'].sum().reset_index()\n", 180 | " original_df.date = pd.to_datetime(original_df.date)\n", 181 | " \n", 182 | " #create dataframe that shows the predicted sales\n", 183 | " result_list = []\n", 184 | " sales_dates = list(original_df[-13:].date)\n", 185 | " act_sales = list(original_df[-13:].sales)\n", 186 | " \n", 187 | " for index in range(0,len(prediction_df)):\n", 188 | " result_dict = {}\n", 189 | " result_dict['pred_value'] = int(prediction_df[index] + act_sales[index])\n", 190 | " result_dict['date'] = sales_dates[index+1]\n", 191 | " result_list.append(result_dict)\n", 192 | " \n", 193 | " df_result = pd.DataFrame(result_list)\n", 194 | " \n", 195 | " return df_result, original_df" 196 | ] 197 | }, 198 | { 199 | "cell_type": "code", 200 | "execution_count": 173, 201 | "metadata": {}, 202 | "outputs": [], 203 | "source": [ 204 | "def plot_results(results, original_df, model_name):\n", 205 | "\n", 206 | " fig, ax = plt.subplots(figsize=(15,5))\n", 207 | " sns.lineplot(original_df.date, original_df.sales, data=original_df, ax=ax, \n", 208 | " label='Original', color='mediumblue')\n", 209 | " sns.lineplot(results.date, results.pred_value, data=results, ax=ax, \n", 210 | " label='Predicted', color='Red')\n", 211 | " \n", 212 | " ax.set(xlabel = \"Date\",\n", 213 | " ylabel = \"Sales\",\n", 214 | " title = f\"{model_name} Sales Forecasting Prediction\")\n", 215 | " \n", 216 | " ax.legend()\n", 217 | " \n", 218 | " sns.despine()\n", 219 | " \n", 220 | "\n", 221 | " plt.savefig(f'../model_output/{model_name}_forecast.png')" 222 | ] 223 | }, 224 | { 225 | "cell_type": "code", 226 | "execution_count": 174, 227 | "metadata": {}, 228 | "outputs": [ 229 | { 230 | "data": { 231 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5UAAAFNCAYAAACQWku4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3iUVfbA8e9JD+kJofcivUjvEZEuIE3EQlHBhsIqrrg/V1zdogsWUHGXRQVEQaqUFelVUHrvTTqEFNLLJPf3x7xxQ0ggCUkm5XyeJw/JnXvve95JSObMbWKMQSmllFJKKaWUyg0nRweglFJKKaWUUqro0qRSKaWUUkoppVSuaVKplFJKKaWUUirXNKlUSimllFJKKZVrmlQqpZRSSimllMo1TSqVUkoppZRSSuWaJpVKKaVyRUSeEJHVjo7jbkTknIg85Og4Cqui8n3MSESqiYgRERfr65UiMjwX/VQRkRgRcc77KJVSqmTQpFIppVSuGGO+NcZ0K4hriUgHEdkmIjdFJFxEfhaRlgVx7SziOSci8VYykvZRwVHxZFfGRAzy9/uY4Xm6JiJfi4h3flzLGNPTGDMrmzH9/iaDMea8McbbGJOSH3EppVRJoEmlUkqpHEuflBTAtXyBFcCnQCBQEfgLkFhQMWShj5WMpH1czknjgnwOHayPMcYbaAa0BN7KWEHs9DWJUkoVUfoLXCmlFAAiMkFETotItIgcEZH+6R4bYY0Ofiwi4cA7VtnWdHWMiLwoIietPt4TkZoisl1EokRkvoi4WXUDRGSFiISKSIT1eaUsQrsPwBgz1xiTYoyJN8asNsYcsPqqKSLrRSRMRG6IyLci4p/FPTqlu88wK6ZA6zEPEZljlUeKyE4RKZuL57GviBy2+tgoIvXSPXZORN4QkQNArIi4iEgFEVlkPRdnReSVdPWdReRP6b4vu0WksvXYFBG5YD23u0WkY7p2rURkl/XYNRH5yHpos/VvpDV62DaL7+Pz1vcxQkQ+FxFJF8+H1vN8VkTGZBz5zIox5hKwEmho9bVRRP4mIj8DcUANEfETkS9F5IqIXBKRv4o1LdW69mTr2meA3hme940i8my6r0eJyNF0P8/NROQboAqw3Lr/P8rt02griMgysY+InxKRUen6fMf6mZlt9XtYRFrc7d6VUqq406RSKaVUmtNAR8AP+0jgHBEpn+7x1sAZoAzwtyz66AE0B9oAfwSmA08AlbEnE0Otek7A10BV7C/y44HPsujzBJAiIrNEpKeIBGR4XIB/ABWAeta13smir1eAR4AQq34E8Ln12HDr3isDQcDzVlzZJiL3AXOBcUAw8CP2BMYtXbWh2BMifyAVWA7sxz4C2wUYJyLdrbqvWvV7Ab7A09gTMICdQFPso7ffAQtExMN6bAowxRjjC9QE5lvlnax//a3R1e1Z3MrD2EcVmwCPAmnxjAJ6Wtdthv25zBYrGe4F7E1X/BQwGvABfgNmATagFnA/0A1ISxRHWXHdD7QABt3hWoOx/wwMw/689QXCjDFPAef53yjzPzNpPhe4iP3nYxDwdxHpku7xvsA87N+/ZWT9c6uUUiWGJpVKKaUAMMYsMMZcNsakGmO+B04CrdJVuWyM+dQYYzPGZJVsfWCMiTLGHAYOAauNMWeMMTexj1Ldb10rzBizyBgTZ4yJxp6khmQRVxTQATDAf4BQaySprPX4KWPMGmNMojEmFPgoq76A54D/M8ZcNMYkYk88BlmjVMnYk8la1ojobuvaWfnBGo2MFJEfrLIhwH+teJKByYAn0C5du6nGmAvWc9gSCDbGvGuMSTLGnLHu8TGr7rPAW8aY48ZuvzEmzLrvOdbzaDPGfAi4A3WsdslALREpbYyJMcb8cof7yMz7xphIY8x5YAP2JBLsCeYU6/mLAN7PRl8/iEgksBXYBPw93WMzjTGHjTE27MlxT2CcMSbWGHMd+Djdc/Eo8In13IVjfyMhK88C/zTG7LSet1PGmN/uFqiV+HYA3jDGJBhj9gEzsCe/abYaY3601mB+gz3xVkqpEq2krOdQSil1FyIyDPvIWDWryBsona7KhWx0cy3d5/GZfF3OulYp7AlDDyBt5NFHRJwz2zDFGHMUGGG1rQvMAT4BhopIGWAq9lFWH+xvmEZkEV9VYImIpKYrSwHKYk8QKgPzrOmzc7AnoMlZ9PWIMWZthrIK2Efc0uJOFZEL2Ech06R/HqsCFaykK40zsMX6vDL2EeTbiMhr2JOnCtgTbl/+9/16BngXOCYiZ4G/GGNWZHEfmbma7vM47D8LWNdKH392fiYye54ya18VcAWuWLNtwf69TKuT8dp3ShKzfN7uogIQbr3Rkf466ae4ZnxuPETExUqMlVKqRNKRSqWUUohIVewjZGOAIGOMP/aRRklXzeThJV/DPqrW2pqimTYtU7JuYgVhzDFgJtbaPOwjVgZobPX15B36uQD0NMb4p/vwMMZcMsYkG2P+Yoypj31k8WHs0ydz4jL25Mh+M/bsqDJwKf0tZIjnbIZ4fIwxvdI9XjPjRaz1k29gH70LsL5fN9Pu2xhz0hgzFPtU5Q+AhSLixb1/D68A6de+Vr7H/jI+F4lA6XTPha8xpkG6a6e/XpU79Jvp85bJNTO6DASKiE+G61zKor5SSik0qVRKKWWXlnCEAojISP6XtOUHH+wjl5Fi3yhnYlYVRaSuiLwm1kY+1hTFoUDalE4fIMbqqyLw+h2u+y/gb1YSjYgEi0g/6/POItLI2hgmCvsU0pweMzEf6C0iXUTEFXvynAhsy6L+DiBK7Jv3eFqb0TSU/x2XMgN4T0Rqi11jEQmy7tmG/fvlIiJvYx+pxLqXJ0Uk2BiTCqSNgqZY9VOBGjm8r/T3N1ZEKlqjuW/ksp/bGGOuAKuBD0XEV+ybKtUUkbSpzPOBV0SkkrWudsIdupsBjBeR5tbzVivte4599DzT+zfGXMD+vfqH2Dduaox91PfbPLhFpZQqtjSpVEophTHmCPAhsB37i+5GwM/5eMlPsK81vIE9OfzpDnWjsW8S9KuIxFr1D2FP2MC+qVAz7CN1/wUW36GvKdg3V1ktItFWX62tx8oBC7EnlEexr/+bk5ObMsYcxz5S+ql1b32wbwqTlEX9FKtOU+Cs1WYG9g2DwL4+dD72ZCsK+BL787YK+xrVE9inZyZw69TQHsBhEYmx7vkxa41gHPb1qz9ba0Hb5OT+sI9mrwYOYN9w50fsyW1enfE4DHADjmCfwrwQSNss6j/Y73s/sIc7fJ+NMQuw3+d32H9+fsC+ZhPsI9tvWfc/PpPmQ7FPAb8MLAEmGmPW3NNdKaVUMSfG5OVsJqWUUkqVFCLSE/iXMabqXSsrpZQqtnSkUimllFLZYk3R7SX28zUrYp+2vMTRcSmllHIsHalUSimlVLZYu/ZuAupiXxP7X2DsXY5eUUopVcxpUqmUUkoppZRSKtd0+qtSSimllFJKqVzTpFIppZRSSimlVK65ODqAoqBHjx7mp5/utNu9UkoppZRSShVrktUDOlKZDTdu3HB0CEoppZRSSilVKOVbUikiX4nIdRE5lK5skogcE5EDIrJERPzTPfamiJwSkeMi0j1deXMROWg9NlVExCp3F5HvrfJfRaRaujbDReSk9TE8XXl1q+5Jq61bft2/UkoppZRSSpUE+TlSORPokaFsDdDQGNMYOAG8CSAi9YHHgAZWm2ki4my1+QIYDdS2PtL6fAaIMMbUAj4GPrD6CsR+blZroBUwUUQCrDYfAB8bY2oDEVYfSimllFJKKaVyKd+SSmPMZiA8Q9lqY4zN+vIXoJL1eT9gnjEm0RhzFjgFtBKR8oCvMWa7sZ99Mht4JF2bWdbnC4Eu1ihmd2CNMSbcGBOBPZHtYT32oFUXq21aX0oppZRSSimlcsGRG/U8DXxvfV4Re5KZ5qJVlmx9nrE8rc0FAGOMTURuAkHpyzO0CQIi0yW16ftSSimllFJKFVHJyclcvHiRhIQER4dS5Hl4eFCpUiVcXV2z3cYhSaWI/B9gA75NK8qkmrlDeW7a3KmvzGIcjX3aLVWqVMmqmlJKKaWUUsrBLl68iI+PD9WqVcPagkXlgjGGsLAwLl68SPXq1bPdrsB3f7U2znkYeMKa0gr2UcPK6apVAi5b5ZUyKb+ljYi4AH7Yp9tm1dcNwN+qm7Gv2xhjphtjWhhjWgQHB+f0NpVSSimllFIFJCEhgaCgIE0o75GIEBQUlOMR3wJNKkWkB/AG0NcYE5fuoWXAY9aOrtWxb8izwxhzBYgWkTbWmshhwNJ0bdJ2dh0ErLeS1FVANxEJsDbo6Qassh7bYNXFapvWl1JKKaWUUqoI04Qyb+TmeczPI0XmAtuBOiJyUUSeAT4DfIA1IrJPRP4FYIw5DMwHjgA/AS8ZY1Ksrl4AZmDfvOc0sNIq/xIIEpFTwKvABKuvcOA9YKf18a5VBvaE9lWrTZDVh1JKKaWUUkrds4sXL9KvXz9q165NzZo1GTt2LElJSbfVu3z5MoMGDcqkh1v16tWLyMjIXMXyzjvvMHny5Fy1zSn53wxUlZUWLVqYXbt2OToMpZRSSimlVCaOHj1KvXr1HBqDMYbWrVvzwgsvMHLkSFJSUhg9ejSBgYFMmjTp93o2mw0Xl/zf2uadd97B29ub8ePH57htFs9nlkOYBb6mUimllFJKKaVuc/AgnDvn6Chybf369Xh4eDBy5EgAnJ2d+fjjj/nqq6+YNm0agwcPpk+fPnTr1o1z587RsGFDAOLi4nj00Udp3LgxQ4YMoXXr1qQNaFWrVo0bN25w7tw56tWrx6hRo2jQoAHdunUjPj4egP/85z+0bNmSJk2aMHDgQOLi4jIPMB9pUqmUUkoppZRyrNRU6N4dXnzR0ZHk2uHDh2nevPktZb6+vlSpUgWbzcb27duZNWsW69evv6XOtGnTCAgI4MCBA/z5z39m9+7dmfZ/8uRJXnrpJQ4fPoy/vz+LFi0CYMCAAezcuZP9+/dTr149vvyy4Ff4OfKcSqWUUkoppZSCHTvgyhWIi7MnmE65H/saN+4C+/bF52Fw0LSpJ598UvmOdYwxmW5yk1betWtXAgMDb3t869atjB07FoCGDRvSuHHjTPuvXr06TZs2BaB58+acs0Z1Dx06xFtvvUVkZCQxMTF07949J7eWJ3SkUimllFJKKeVYS61DGW7ehKNHHRtLLjVo0ICM+7BERUVx4cIFnJ2d8fLyyrRddve4cXd3//1zZ2dnbDYbACNGjOCzzz7j4MGDTJw4McfHgeQFHalUSimllFJKOdbSpVzzqkLZ2POwbRs0aJDrru42ophfunTpwoQJE5g9ezbDhg0jJSWF1157jREjRlCqVKks23Xo0IH58+fTuXNnjhw5wsGDB3N03ejoaMqXL09ycjLffvstFStWvNdbyTEdqVRKKaWUUko5zsmTcPQof48dTJhTAGbbNkdHlCsiwpIlS1iwYAG1a9fmvvvuw8PDg7///e93bPfiiy8SGhpK48aN+eCDD2jcuDF+fn7Zvu57771H69at6dq1K3Xr1r3X28gVPVIkG/RIEaWUUkoppfLJhx/C+PFUZQWf8k+617iG++ljOeqiMBwpklspKSkkJyfj4eHB6dOn6dKlCydOnMDNzc1hMeX0SBGd/qqUUkoppZRynKVLOeZRB5cKVdl+phF9z2yG8HDIZFOb4iguLo7OnTuTnJyMMYYvvvjCoQllbmhSqZRSSimllHKMGzcwP//M/NSnee21smx+rzlcBX75BXr1cnR0BcLHx+e2DX6KGl1TqZRSSimllHKMFSuQ1FRWOD3A4MH+lO7RBhvOpG792dGRqRzQpFIppZRSSinlEGbpUi47lyWoayuCg10J6VWO/dQmerUmlUWJJpVKKaWUUkqpghcfT+pPq1mS0onHn7Cvn+zc2YftNMHj4C6wzmFUhZ8mlUoppZRSSqmCt3YtzglxrHR9gEce8QegdGkXrlRrjntSLBw65OAAVXZpUqmUUkoppZQqcKlLfiBKvPHp+yA+Ps6/l/t07whAwsaiNQXW2dmZpk2b0rBhQwYPHkxcXFyu+9q4cSMPP/wwAMuWLeP999/Psm5kZCTTpk3L8TXeeecdJk+enOsY09OkUimllFJKKVWwUlNJXrKcH007hjxZ7paHWgysxxWCCFu22UHB5Y6npyf79u3j0KFDuLm58a9//euWx40xpKam5rjfvn37MmHChCwfz21SmZc0qVRKKaWUUllasCCCp5465+gwVHHz66+4R4ayxrMzPXv63vJQ+w4+/OrUGPc9vzoouHvXsWNHTp06xblz56hXrx4vvvgizZo148KFC6xevZq2bdvSrFkzBg8eTExMDAA//fQTdevWpUOHDixevPj3vmbOnMmYMWMAuHbtGv3796dJkyY0adKEbdu2MWHCBE6fPk3Tpk15/fXXAZg0aRItW7akcePGTJw48fe+/va3v1GnTh0eeughjh8/nmf3q0mlUkoppZTK0uTJ15gzJ5zz55McHYoqRpIX/UAyLngO6IW7+60piaenE9dqtKL0zd/g+nUHRZh7NpuNlStX0qhRIwCOHz/OsGHD2Lt3L15eXvz1r39l7dq17NmzhxYtWvDRRx+RkJDAqFGjWL58OVu2bOHq1auZ9v3KK68QEhLC/v372bNnDw0aNOD999+nZs2a7Nu3j0mTJrF69WpOnjzJjh072LdvH7t372bz5s3s3r2befPmsXfvXhYvXszOnTvz7J5d8qwnpZRSSilVrFy4kMSOHfZ1YZs2RfPUU0EOjkgVF/HzlrCDZvQfWS3Tx0t1aQenIOLHLQSMGJizzseNg3377jnGWzRtCp98cscq8fHxNG3aFLCPVD7zzDNcvnyZqlWr0qZNGwB++eUXjhw5Qvv27QFISkqibdu2HDt2jOrVq1O7dm0AnnzySaZPn37bNdavX8/s2bMB+xpOPz8/IiIibqmzevVqVq9ezf333w9ATEwMJ0+eJDo6mv79+1OqVCnAPq02r2hSqZRSSimlMrVkSSQAHh7Cpk0xmlSqvHHiBL6XTrLB5w3efcAn0yr1n2pP0r9duLx4c86TSgdJW1OZkZeX1++fG2Po2rUrc+fOvaXOvn37EJE8icMYw5tvvslzzz13S/knn3ySZ9fISJNKpZRSSimVqUWLImnY0IMaNdzZtCnG0eGoYiJ+3hI8AbdB/XB2zjzJadomkL3O9fDZ8UvOL3CXEUVHatOmDS+99BKnTp2iVq1axMXFcfHiRerWrcvZs2c5ffo0NWvWvC3pTNOlSxe++OILxo0bR0pKCrGxsfj4+BAdHf17ne7du/PnP/+ZJ554Am9vby5duoSrqyudOnVixIgRTJgwAZvNxvLly29LPHNL11QqpZRSSqnbXLuWzJYtMQwY4E9IiDenTiVy+bKuq1T3LuqbJeylDj2fb5xlHWdn4Wr1FlS5fgCTVHx+7oKDg5k5cyZDhw6lcePGtGnThmPHjuHh4cH06dPp3bs3HTp0oGrVqpm2nzJlChs2bKBRo0Y0b96cw4cPExQURPv27WnYsCGvv/463bp14/HHH6dt27Y0atSIQYMGER0dTbNmzRgyZAhNmzZl4MCBdOzYMc/uS4wxedZZcdWiRQuza9cuR4ehlFJKKVVgpk+/wXPPnWf//rokJ0OLFsf47rtqDB0a6OjQVFF2/TqpZcvxWcDzvBz2+R2nY64Z/SVd//Ms5xZspdqg9nfs9ujRo9SrVy+voy2xsng+s/xm6UilUkoppZS6zeLFkdSs6U6jRp40beqJj4+TToFV9+zmd8twwuAy8JG7ru+rPewBAC58v6kAIlP3QpNKpZRSSil1i4gIG+vWRTFwoD8igrOz0KGDN5s2Rd+9sVJ3cOOrRfxGOTr/ocNd61brUJPLzmVh+/YCiEzdC00qlVJKKaXULVasuInNBgMG+P9eFhLizbFjiVy7luzAyFSRFhdHxcMb2Rb0IPXql8pWk0tVW1Dl8m5sNl2yV5jlW1IpIl+JyHUROZSubLCIHBaRVBFpkaH+myJySkSOi0j3dOXNReSg9dhUscbJRcRdRL63yn8VkWrp2gwXkZPWx/B05dWtuiettm75df9KKaWUUkXVokWRVKrkSsuW/3vhHxJiP/phyxadAqty5+qclXikJuDUv1+227h0aEdVc4X9K0/fta7uFZM3cvM85udI5UygR4ayQ8AAYHP6QhGpDzwGNLDaTBMRZ+vhL4DRQG3rI63PZ4AIY0wt4GPgA6uvQGAi0BpoBUwUkQCrzQfAx8aY2kCE1YdSSimllLLExKSwalUU/fv74+T0vzVvzZuXwstL11Wq3Lv674XcxIu2b/TKdpvqTzwAwNnvNt6xnoeHB2FhYZpY3iNjDGFhYXh4eOSoXb6dU2mM2Zx+9NAqOwpktii3HzDPGJMInBWRU0ArETkH+BpjtlvtZgOPACutNu9Y7RcCn1mjmN2BNcaYcKvNGqCHiMwDHgQet9rMstp/kSc3rJRSSilVDKxcGUVCgmHgQP9byl1dhXbtvHRdpcoVY7NRef9qdpYO4aFa3tlu5/9ACxLEnZSt24Bns6xXqVIlLl68SGhoaB5EW7J5eHhQqVKlHLXJt6QyhyoC6U82vWiVJVufZyxPa3MBwBhjE5GbQFD68gxtgoBIY4wtk76UUkoppRT2XV+Dg13o0OH2F/4hId689dYVwsJsBAUVlpeRqig4/e0maqWEY/pmf+orAG5uXKnQmCqXdhMbm4KXl3Om1VxdXalevXoeRKpyo7Bs1JPZfsLmDuW5aXOnvm4PSGS0iOwSkV36jodSSimlSoKEhFRWrLjJI4/44ex8+0snXVepcuvStIUk4UKz/xuY47bSri3NzFG2rgvLh8hUXigsSeVFoHK6rysBl63ySpmU39JGRFwAPyD8Dn3dAPytuhn7uo0xZroxpoUxpkVwcHAub0sppZRSquhYuzaamJjUW3Z9Ta9ly1J4eIiuq1Q5kppqqLTnJw4FtSaoRlCO25cf0Al3kjk+V48WKawKS1K5DHjM2tG1OvYNeXYYY64A0SLSxlovOQxYmq5N2s6ug4D1xr4ydxXQTUQCrA16ugGrrMc2WHWx2qb1pZRSSilV4i1aFIGfnzMPPuiT6ePu7k60bavrKlXO7Pt+LzVt57D17pur9u4PtAcgadO2vAxL5aH8PFJkLrAdqCMiF0XkGRHpLyIXgbbAf0VkFYAx5jAwHzgC/AS8ZIxJsbp6AZgBnAJOY9+kB+BLIMja1OdVYILVVzjwHrDT+ng3bdMe4A3gVatNkNWHUkoppVSJl5xsWLr0Jn36+OHmlvVLxJAQH/btiycy0pZlHaXS++3ThQDUn/Bo7jooV47IgCpUu7Jbz0ktpES33b27Fi1amF27djk6DKWUUkqpfLN2bRRdu55iyZIaPPJI5tNfATZujKZz55MsX16Thx/2K8AIVVGUnGzYW6oZpX2SqRF+6O4NshDWYwgJqzawac5RHn8i51NoVZ7IbI8aoPBMf1VKKaWUUg60aFEkpUo50a2b7x3rtW7thZub6BRYlS1bFp6ihW0/iT1yN/U1TUDvjlQklD1Lj+dRZCovaVKplFJKKVXCpaQYliyJpFcvX0qVuvPLQ09PJ1q1KqWb9ahsOfvpYpww1Bw36O6V78CpfTsA4tdvRWdaFj6aVCqllFJKlXDbt8dy7Zoty11fMwoJ8WHPnjiio1PuXlmVWPHxqZTf8SM3vCvi1vL+e+uscWOS3UpxX9heTp5MzJsAVZ7RpFIppZRSqoRbvDgSNzehd+/srZEMCfEmJQV+/llHK1XWVi68TOeUX4nv+jBIlsvxssfFBdv9LWjHAdau1anXhY0mlUoppZRSJZgxhsWLI+na1QdfX+dstWnXzgsXF9i8WZNKlbUTn6/Ak0QqPH9vU1/TeHRuR1NOsOmn63nSn8o7mlQqpZRSSpVge/bE89tvSQwcGJDtNl5ezrRo4aXrKlWWIiNtlN/5I3Hufjh3DsmTPqVdO1yxEbV+BzabrqssTDSpVEoppZQqwRYtisDZGfr2zdnxICEh3uzcGUdcXGo+RaaKsu+/u0Gv1C3EP9AdXF3zptO2bQFoHLuX3bvj8qZPlSc0qVRKKaWUKqGMMSxaFMkDD/gQFOSSo7YhId4kJxu2b9fRSnWr3bvjWPjaSoKJJHDkgLzruHRpUmrUpi0HWLs2Ku/6VfdMk0qllFJKqRLqyJEETpxIzPaur+m1b++NkxM6BVbd4uzZRPr3OsKfmYFxc0N69szT/p07tqOTy0HWrtGksjDRpFIppZRSqoRavDgSEejfP+dJpa+vM82a6XmV6n/Cw2307XGUf0eMp1PCNuTTT8HXN28v0rYtgbZwrvx8nNhYPdKmsNCkUimllFKqhFq0KJK2bb0oXz53a946dfLm119jSUjQdZUlXUJCKgP7HOVvJ/9Az+RNMG0ajB6d9xey1lW2sB1gyxZ9Q6Ow0KRSKaWUUqoEOn06kf374xk4MOejlGlCQrxJTDT8+mtsHkamiprUVMPIJ0/yyrZX6Gs2wmefwQsv5M/FGjTA+PjQ0UnPqyxMNKlUSimllCqBFi+OBHI39TVNx47eiOi6ypLujVfPMWjRi/RnI0ydCi+9lH8Xc3ZGWrfmwVKHNKksRDSpVEoppZQqgRYvjqRZM0+qV3fPdR8BAS40buypSWUJ9tnHl2g1ZRQDWY/5+GN4+eX8v2jbttSMPc6p/WFcu5ac/9dTd6VJpVJKKaVUCXPxYhK//BKbq11fMwoJ8Wb79hiSknRdZUmzZEEowa+OZDDrSJ38ITJuXMFcuF07nEwqrTjE+vU6WlkYaFKplFJKFUFnzyZy9Gi8o8NQRdQPP9invg4cGHDPfYWEeBMfb9i5Uw+jL0m2bY4k+bGnGMIakv8xCafXXi24i7duDcCDHjoFtrDQpFIppZQqggYNOkPPnqcxxjg6FFUELVoUSb16HtSt63HPfXXq5APousqS5MTRWC53fZxHU1cR8/Y/cJ0wvmADCAiA+vXp6X+YNWui9PdgIaBJpVJKKVXEHDgQx5498fz2W5KODqkcCw1NZvPmmHva9TW90qVdaNDAg82bNaksCQfmilsAACAASURBVK5fSeBwq8cYlLSSsPHv4f2XCY4JpG1bGkTv58KFJE6dSnRMDOp3mlQqpZRSRcysWeG4ugqursKCBRGODkcVMUuX3iQ1lTxZT5kmJMSbn3+OwWbTEaPiLDYqiV2NhtA/ZgUXXphI0KS3HBdM27Z4xEZwH7+xZo1OgXU0TSqVUkqpIiQ52TBnTjh9+vjx0EM+LFwYqVO/VI4sXhxJ9epuNG3qmWd9hoT4EBOTyp49OnJeXNkSbfzSYCi9wpZx9In/o/K0dxwbULt2APQNsk+BVY6lSaVSSilVhKxaFcX16zaGDw9k0CB/zp1LYvdufSGvsicy0sbatdEMGOCPiORZv506eQO6rrK4Mikp7Gj6OF0uLmZHr9epN+evjg4J6tQBf38eKXuUlSujCA3Vo0UcSZNKpZRSqgiZOTOM4GAXevb045FH/HFxgYULIx0dlioCIiJs9Ot3huRkw2OP3fuur+mVK+fKffe5s2mTTkMsjnb1eJV2xxawtt04Wv33n44Ox87JCdq0oXnSfhITDTNmhDk6ohJNk0qllFKqiAgLs7Fs2U2eeCIQV1chMNCFLl18WbAgQqfAqjv67bdE2rc/wfbtsXz7bTVatPDK82uEhHizZUsMKSn6s1icxFwMo/7a6Wwo/zAPbv7Q0eHcql07PE4fpW8IfPFFqK7pdSBNKpVSSqkiYt68CJKTDSNGBP5eNmiQP2fOJLF3r55ZqTK3Z08cbdoc5/LlZFavrsXjjwfevVEuhIT4EBWVyv79+rNYnOx+eRpeJBD0jwk4ORey1KFtWzCGPz5wjgsXklm2TGdtOEoh+8lQSimlVFZmzgyjSRNPmjQp9XvZI4/44+wMCxfqLrDqditX3qRTpxO4ugo//3wfDzzgk2/XCglJW1epU2CLC1tSClVWzOCgz/00Ht7e0eHcrlUrcHKibep+qlRx49NPQx0dUYmVb0mliHwlItdF5FC6skARWSMiJ61/A9I99qaInBKR4yLSPV15cxE5aD02VaxV5SLiLiLfW+W/iki1dG2GW9c4KSLD05VXt+qetNq65df9K6WUUnnp8OF4du2KY8SIoFvKS5d2oXNnHxYs0F1g1a1mzLhBnz6nqV3bnV9+qUODBnm322tmKlVyo0YNN92spxjZ+tZCqtvOkzj6JUeHkjlfX2jYEKetW3jxxdJs3BjDoUM6Uu4I+TlSORPokaFsArDOGFMbWGd9jYjUBx4DGlhtpomIs9XmC2A0UNv6SOvzGSDCGFML+Bj4wOorEJgItAZaARPTJa8fAB9b14+w+lBKKaUKvVmzwnBxgccfv32DlcGDAzh1KpEDB/TFlAJjDG+/fZlRo87z0EO+bN58HxUqFMz76CEhPmzZEkNqqr7BUdQZY3D912dcdwmm2V+fdHQ4WRs4EDZs4PkGx/DwED77TEcrHSHfkkpjzGYgPENxP2CW9fks4JF05fOMMYnGmLPAKaCViJQHfI0x24397dfZGdqk9bUQ6GKNYnYH1hhjwo0xEcAaoIf12INW3YzXV0oppQotm80wZ04EvXr5UaaM622P9+/vh5MTLFig64lKuqSkVEaM+I333rvK008HsXx5TXx8nO/eMI+EhHgTHp6io0XFwPbZ+2gfvZULPUfi5OHu6HCyNn48VK6M31vjeOIxP775JpzISJujoypxCnpNZVljzBUA698yVnlF4EK6ehetsorW5xnLb2ljjLEBN4GgO/QVBERadTP2pZRSShVaa9ZEceVK8m1TX9MEB7vywAM+ugtsCXfzZgq9e59m9uxw/vKX8syYUQVX17w7izI7/reuUqfAFnXX3p5CEi40mDrW0aHcWalSMHky7N/P2xX+S1xcKl9/rceLFLTCslFPZr/xzB3Kc9PmTn3dHpDIaBHZJSK7QkN1GF0ppZTjzJwZRlCQM717+2ZZZ/Bgf06cSOTQoYQCjEwVFhcvJtGx43E2boxm5syqvP12eaxtKApUtWruVKmi6yqLukO/XOfB8ws50aQPHtUqODqcuxs8GEJCqPLvv9CjtY3PP7+hU7ALWEEnldesKa1Y/163yi8CldPVqwRctsorZVJ+SxsRcQH8sE+3zaqvG4C/VTdjX7cxxkw3xrQwxrQIDg7O4W0qpZRSeSMiwsbSpTd5/PFA3Nyy/rPdv7+/NQVWd4EtaQ4csB8Zcu5cEj/+WIvhwzMf0S4oISHebN4co6PmRdjusf/Gj1iq/PNVR4eSPSIwZQpERDDFfwanTyfy009Rjo6qRCnopHIZkLYb63Bgabryx6wdXatj35BnhzVFNlpE2lhrIodlaJPW1yBgvbXuchXQTUQCrA16ugGrrMc2WHUzXl8ppZQqlL7/PoLERJPl1Nc0Zcu60qmTNwsX6rrKkmTduig6djyBMbBly3107Zr1aHZB6dTJm9BQG8eO6ah5UXThfCItd3zN+TKN8e1aCI8RyUqTJvD889Re+xWdS5/V40UKWH4eKTIX2A7UEZGLIvIM8D7QVUROAl2trzHGHAbmA0eAn4CXjDEpVlcvADOwb95zGlhplX8JBInIKeBVrJ1kjTHhwHvATuvjXasM4A3gVatNkNWHUkrlmeXLI2nW7CjR0Sl3r6xUNsyaFU7Dhh7cf//dj4MYPDiAo0cTOHxYN0kpCTZsiKZHj1NUqeLGL7/UueX8UkfSdZVF239fW0J9zlLqjy/bRwCLknffRXx9+dL7Y3766SYnT+obGwVFdGrC3bVo0cLs2rXL0WEopQo5YwxNmx7jwIF4vvqqKiNHOnYKmir6jh1LoF69I0yeXJHXXit71/pXryZTocJBJk4sz8SJ5QsgQuVIXbqc5MSJBA4dqo+fX8Ht8Ho3xhgqVjxESIg3c+dWd3Q4Kgdu3kxhS+mH6OR8AN/IS+Dh4eiQcm7aNHjpJYY4T6L8mCF88knlu7dR2ZXluwyFZaMepZQq8tasiebAgXhcXOwbqyh1r2bNCsPZGZ54IjBb9cuVc6VjR29dV1kCHDoUz/r10YwZE1yoEkoAESEkxJtNm3RdZVEz9x976GnbTNwTzxTNhBJg9Gho3JjPPD5h7leXiInRmUMFQZNKpZTKI5MnX6N8eVf+7//KsXlzDGfOJDo6JFWEpaQYvvkmnB49fClX7vazKbMyaJA/hw8ncPSoToEtzqZOvY6Hh/Dss6UdHUqmHnrIhytXktm+PdbRoahsSkpKJfWzaSBCuXdednQ4uefiAlOnEhx7ieeiZ/LNN+F3b6PumSaVSimVB/bti2PNmmjGjg3mmWdKIwKzZ+topcq9deuiuXQpOcc7eQ4c6I8IumFPMRYWZmPOnHCefDKQoCCXuzdwgCFDAggIcGby5GuODkVl0/dfX+Kx2MWEtu8NlYv4lNGQEMyjj/Inmcmij/briHkB0KRSKaXywIcfXsfb24nnnitN5cpudOniw6xZ4XpOlsq1WbPCCAhwpk8fvxy1q1DBjfbtvXQKbDH25Zc3iI83vPJKGUeHkiVvb2defDGYH364yYkTullKYWeM4eS7MwkkirLv/cHR4eQJmTQJF1cnRp/6gA0bdNOo/KZJpVJK3aMLF5KYNy+cUaNK4+9vHzUYMSKIc+eS2LJF/5CpnLt5M4XFiyMZOjQAD4+c/6keNCiAgwcTOH5cX8wXNzab4fPPb9C5szeNGt19R2BHevnlYNzchI8+un73ysqhVv54kwGX5xBRqT4SEuLocPJGlSqYN97gUdayYeIyR0dT7GlSqZRS9+iTT65jDIwdG/x7Wf/+/vj4OOmGPSpXFiyIICHB5PoQ+4ED/QFYuFBHK4ubpUsjOX8+qVCPUqYpW9aVYcMCmTkzjOvXkx0djrqDn976kaacwOdPrxS9Y0TuwPXNPxLhW4nBW9/ht9O6vjc/aVKplFL3IDLSxvTpNxgyJICqVd1/Ly9VyolHHw1gwYJI3XlO5djMmWHUq+dBy5a5O3ewUiU32rb10nWVxdDUqaFUq+aW42nRjvLaa2VJSjJ89pkeRF9Y7doVS4d9X5Pg6YfL8KccHU7e8vTE9s8Pacwp9r7wiaOjKdY0qVRKqXswffoNYmJSGT/+9jMER4wIIjY2lcWL9YW9yr6TJxP4+edYhg8PRO5hxGDwYH/27Yvn1CmdAltc7NsXx+bNMYwZE4yzc9EYTapTx4O+ff34/PNQ4uJSHR2OysSMv+xnABuQZ56GUrl7I6swCx49mAPBbQlZ+0/iL+qbG/lFk0qllMqlpKRUpkwJpUsXH+6///Y/xO3be1GzprtOgVU5Mnt2OE5O8OST2TubMisDBwYAsGCBvqlRXEydGkqpUk48/XTupkU7yvjxZQkPT+Hrr/V3YWFz5kwilVZ8hROpuP9hjKPDyR8iJLz/MT4mlnPD3nB0NMWWJpVKKZVLc+dGcPlyMuPHZ762SUQYPjyQDRtiOHdOz6xUd5eaapg9O5xu3XypWNHtnvqqUsWN1q1L6brKYiI0NJnvvgtn+PBAAgIK5zEiWWnf3os2bbz46KNrpKTojtiFyaeTLzCKJSR27QU1ajg6nHzTcmQr5gUO5b4NszD79jk6nGJJk0qllMoFYwyTJ1+jYUMPunf3zbLesGH20SY9fFllx8aNMZw/n8Tw4fc2Splm8OAA9uyJ58wZfVOjqPvPf8JITDSMGRN898qFjIjw+utlOHMmSZcDFCJhYTaiv5xHWcLxfH2so8PJVyJC0p/eJgIfokaOAT23Ms9pUqmUUrmwalUUhw4lMH582Tuue6ta1Z0HH/Rh5swwPXxZ3dXMmWH4+TnTr59/nvSnu8AWD8nJhmnTQuna1Yf69Qv3MSJZ6dfPn1q13Jk06Zr+Liwkpk0LZXTSPBKr3Qddujg6nHz36HM1eM/zZfz2/Qzz5zs6nGJHk0qllMqFyZOvU6GCK0OHBty17vDhgZw5k8TWrbqducpadHQKixZFMmRIAJ6eefPnuVo1d1q2LKXrKou4xYsjuHQpuUgcI5IVZ2fhtdfKsHNnnJ7fWwjEx6ey9aP1tOIw7q+9DE7FPyXw9nbGedSz7KUOKa++DrH6NzkvFf+fIKWUymN79sSxbl00Y8cG4+Z291+jAwf64+3txKxZukmFytrChZHExaUyYkTeTH1NM2iQP7t2xem63iJs6tRQatZ0p1evrKfaFwXDhwdRurQLkyZdc3QoJd7s2WE8GfkdtlI+MHy4o8MpMC++XJZXeB3nyxfggw8cHU6xokmlUkrl0IcfXsPHx4nnnsve2iYvL2cGDw5g/vwIYmP1zEqVuZkzw6hd2502bbzytN/Bg+2j6XpmZdG0a1cs27bF8vLLwTg5FY1jRLLi6enEmDHBrFgRxZEj8Y4Op8RKSTHM/OAIj8kanJ8eDj4+jg6pwNSq5YFvrxAWe/TCvP8+rF/v6JCKDU0qlVIqB377LZHvv49g1KjS+Pk5Z7vd8OGBREensmSJvrBXt9u7137+4IgRQfd0NmVmqld3p3nzUixYoOsqi6KpU0Px9nZixIiidYxIVl56KRhPT+HDD687OpQS67//vclDZ+fhapKRMcX0GJE7GDMmmKcT/khUmRowYAAcPuzokIoFTSqVUioHpkwJRQTGjcvZ2qaOHb2pXt2NWbN0F1gF4eE2Fi2K4Pnnz1Or1mGaNTuGp6fw1FN5O/U1zaBB/uzYEcdvv+kU2KLk6tVk5s2LYOTIoBy9iVWYlS7twsiRQcyZE86VK8mODqdE+n7OdV50WkRq125Qp46jwylw3bv7ElyrNMNKf47x9IReveDKFUeHVeRpUqmUUtkUGWnjP/+5wZAhAVSunLMzBJ2chOHDg1i3LpoLF5LyKUJVWCUkpLJuXRRvvnmJli2PUbr0AQYNOst334VTv74HU6ZU4uDB+jn+ucquQYPsu8AuWqQj5UXJ9Ok3SE4umseI3Mmrr5bFZjNMnaqjlQUtPj4Vli2jfGooTq+87OhwHMLJSfjTn8qxbH8AU7t9DWFh8PDDEKMbSN0L0W2d765FixZm165djg5DKeVgH3xwlQkTLrN3b12aNi2V4/ZnzyZSo8Zh/va3CvzpT+XyIUJVWKSmGvbti2ft2ijWrIlm69YYEhIMLi7Qpo0XXbv68tBDPrRs6YWra8Gsk7v//qN4ejqxbVvJG5koipKSUqla9RD331+KH3+s5ehw8tzgwWdYuzaa8+cb4uNTPEZhi4LFiyOIG/gEj/rtwC3sGjiXzOfeGMNLL13giy9usPKV4/T47Eno0QOWLgUXlzy7zs6dscTHp9KpU7FZt5rlHywdqVRKqWxITExlypRQHnrIJ1cJJdjXtoWEeOuZlcXc0qWRlClzgObNj/HGG5e5ejWZ558PZsWKmoSHN2HLljq8/XZ52rXzLrCEEuwb9mzfHqsj5UXEggWRXL1qY+zYonuMyJ2MH1+WyMgUvvxSd8UuSAvn3aCXbMOlT+8Sm1ACiAhTp1amWzcf+kyrw7FXPoIff4SXX4Y8+vu8cuVNOnY8wTPPnM+T/go7TSqVUiobvvsugitXknn99bL31M+IEUGcPJnI9u16PlZx9ec/XyYw0IU5c6px+XIjDh6sz8cfV6J3bz+HjsjoFNiiZerU69Sp407XrsVmhOMWrVt70bGjNx9/fJ3kZH2TrSDEx6cSunwrgeYmTn0fdnQ4DufiIsyfX4P77vOg7cwHCBv1GvzrXzBp0j33vWxZJI88cgabzXDmTCIJCal5EHHhpkmlUkrdhTGGyZOv0bix5z2/wBs40J9SpZx0w55iav/+OA4eTGDcuDI88UQg5cu7Ojqk3913nweNG3vqLrBFwC+/xLJjRxwvv1ymyB8jcievv16G8+eT9GeygKxceZMuCZtIdXaBbt0cHU6h4OfnzIoVNXF1FdqsG05i/yHwxhswb16u+1y0KIKBA8/QpIknn31WmdRUOHEiIQ+jLpw0qVRKqbtYuTKKI0cSGD++zD0f9+Dj48ygQf7Mmxdu3zBBFSuzZ4fj6ioMGRLg6FAy9dhjAWzbFsvJk8X/BU5RNnXqdXx9nRg+PH92Ay4sevf2o25ddyZNuqZLAgrAggWR9HPeCiEh4Ofn6HAKjerV3fnhhxpcuGSjd+hbpLbvCMOHw5YtOe5r3rxwhgw5S6tWXqyd48Mjez/mGZZw9Gjx/52rSaVSSt3F5MnXqFjRNc8SheHDg4iKSuWHH3QaYnFisxm++y6c3r19CQrKu40e8tKIEUE4O8OMGbqOrbC6fNk+cvfMM6Xx9i7ea96cnITx48uyb18869dHOzqcYi0+PpUDS49QL+U0Tn106mtG7dp589VXVVm3NYmXK0/FVK8O/frB8ePZ7mP27DCeeOIcQ++/xoZa/8S3UQ3KTf8H7/IvTSqVUqqk2707jg0bYhg3rgxubnnzK/OBB7ypUkXPrCxu1q6N4upVW76dNZkXypd3pW9fP77+OoykJB0pL4y++OIGKSkUu2NEsvLkk4GUK+fCpEl6vEh++umnKDrHb7Z/8bAmlZl5/PFAJk4sx7R5qfyrzyxwdYWePeHatbu2/XJGKDOG/8CWwNf5Zlcv3OZ/B888Ay+/TAVucGFf8T8H0yFJpYiMFZFDInJYRMZZZYEiskZETlr/BqSr/6aInBKR4yLSPV15cxE5aD02Vax5aSLiLiLfW+W/iki1dG2GW9c4KSLDC+6ulVJF0eTJ1/DxcWLUqNJ51qf9zMpA1qyJ4tIl3YmzuPjmm3ACApzp3btwTysbPbo0oaE2li696ehQVAYJCan8+9836NPHjxo13B0dToFwd3filVfKsGpVFAcOxDk6nGJr/vwIBrhuxdSpA7WK3xE1eWXixPIMHRrAi5NdWfeH7+DqVejbF+Ky+NlMSWHVqK9oOKozm3mWtmY/TJwI58/DtGnQuzcAqQcPF+BdOEaBJ5Ui0hAYBbQCmgAPi0htYAKwzhhTG1hnfY2I1AceAxoAPYBpIpI2H+QLYDRQ2/roYZU/A0QYY2oBHwMfWH0FAhOB1tb1J6ZPXpVSKo3NZvjww2ssWBDBc8+Vxs8vb6ehDRsWSGqqPRFRRV90dApLlkQyZEgA7u6FexJQ166+VKnixvTpNxwdisrg++8jCA218corJWOUMs3zz5fGy8uJyZN1tDI/xMensn7ZFTqm7EJ0lPKORISvvqpK27ZePPyXQE6++zXs3AmPPw4pKf+rGBcHn39OZNmadJ/xDJVLRZM85TPk/Hl45x0Itv4PN2wIgM/5o6SkFO91w474y1cP+MUYE2eMsQGbgP5AP2CWVWcW8Ij1eT9gnjEm0RhzFjgFtBKR8oCvMWa7sa/unp2hTVpfC4Eu1ihmd2CNMSbcGBMBrOF/iahSSgH2nRdbtDjG+PGX6NHDlz/9qVyeX6NWLQ86dPBi1iw9s7I4WLQokvh4U6invqZxdhaefTaItWujOX060dHhKIsxhilTrtOggQcPPlg8jxHJSkCAC88+G8TcueF6jmo++OmnKNrGbcc1NUmnvmaDh4cTP/xQg3LlXOn0YT3C3/kIli6FP/wBrl+3j0RWqQJjxnAszId/tvqM0jdO4frKS1AqwznWFSqQWMqPurZTnD1bvH/fOiKpPAR0EpEgESkF9AIqA2WNMVcArH/TTvutCFxI1/6iVVbR+jxj+S1trMT1JhB0h76UUorISBsvvHCedu2Oc+OGjUWLqrN8eU0CAvJn05URI4I4diyRHTt0yldR98034dSs6U7btl6ODiVbnn46CCcnmDFDRysLi92749i7N54xY4LveZfpougPfyiDMfadb1XeWrAggkHuWzF+ftC+vaPDKRLKlHFlxYqaxMWl0nlRd5LGjINPP4VKleDddzke3JwOzOCTR5fyh60v4uaZxfFRIiTWrk9DThf7zXoKPKk0xhzFPh11DfATsB+w3aFJZr9ZzR3Kc9vm1ouKjBaRXSKyKzQ09A7hKaWKOmMMc+eGU7fuEaZPv8ErrwRz9Gh9BgwIyNcXd4MHB+DpKcycqTtxFmUXLiSxYUM0Tz0VWGSSgYoV3Xj4YfuGPXrwfOHw3XcRhfo4mvxWtao7jz4awL//fYNr15IdHU6xER+fyoplEfRx2or06GHffEZlS4MGnixYUIPDh+MZeOYFUseMwYwYwdQXNlH32D+o/mQX5nxbHVfXO//ed2/WyJ5UHokvoMgdwyELP4wxXxpjmhljOgHhwEngmjWlFevftLeqLmIfyUxTCbhslVfKpPyWNiLiAvhZ18mqr8xinG6MaWGMaREcXLLWNihVkpw6lUD37qd4/PFzVK7sxs6ddfnkk8r4+OT/Vv6+vs4MGODPvHkRJCToTpxF1bffhmMMRWLqa3qjR5fm2jUby5fr0TaOlpJi+P77CHr29M23mRFFwZtvlsNmM3TocEKnZueRVauiqBN7GL/4Gzr1NRe6dfPl008rs+LHGF5zeYM/BU1k7BfejBwZxMyZVXFxufsbie7NGxNIFFf2nC+AiB3HUbu/lrH+rQIMAOYCy4C03ViHA0utz5cBj1k7ulbHviHPDmuKbLSItLHWSw7L0Catr0HAemvd5Sqgm4gEWBv0dLPKlFIlTGJiKu+9d4WGDY/yyy+xfPppJX75pQ7NmpW6e+M8NGJEEJGRKSxbpjtxFkXGGGbPDqd9e68it1tnjx6+VKrkyvTpOlLuaFu2xHD5cjJDh5bMUco0jRp5sm5dbSIibLRte5ydO2Pz5ToLFkTw/PPnS8Qo/fz5ETzquRXj5GQ/HkPl2AsvBDN2bDCffHKd99+/xnPPlWbGjCo4O2dzZoq1WU/K/kP5GKXjOWqLukUicgRYDrxkbZrzPtBVRE4CXa2vMcYcBuYDR7BPl33JGJO2/dILwAzsm/ecBlZa5V8CQSJyCngVaydZY0w48B6w0/p41ypTSpUgGzdG06TJUd5++wr9+vlx7Fh9xowpk/0/EHmoc2cfKlVy1SmwRdSePfEcPZrAsGFBjg4lx+wb9pRm9eqoYr+BRGE3d24EXl5O9OlTuI+jKQht23qzbVsdvL2deOCBk/z3v3n3hltMTApPP/0bjz56ln//+wZHjxbv6Yjx8aksX36TR0ttQ9q1g6Ci93uqsPjww0qMGhXE//1fOb74ojJOTjl4vdCgAQDe544U6435HDX9taMxpr4xpokxZp1VFmaM6WKMqW39G56u/t+MMTWNMXWMMSvTle8yxjS0HhtjjUZijEkwxgw2xtQyxrQyxpxJ1+Yrq7yWMebrgrxvpZRjhYYmM2LEOTp3PklSkmHlypp8/30NKlRwc1hMzs7CsGGBrFoVxeXLuuthUTN7dhhubsLgwf6ODiVXnn46CBH48kt9U8NRkpJSWbgwgn79/PDyyv9p90XBffd5sG1bHerV86Bfv9N8+eW9byi1a1cszZodY+bMMJ580j5V/ciR4r1xyqpVUfjGXKVq2CGd+nqPnJ2F6dOr8te/Vsj52vnSpYn1LUOtxFNcvXqnbWSKtsJ9mJZSSuWR48cTqFv3CN9+G86bb5bl0KH69OhROEYFRowI0jMri6DkZMPcuRH07etXZNfBVa7sRq9evnz1lW7Y4yhr1kQTHp7C0KFFa01ufitXzpWNG2vTtasvzz57nnfeuZyrUZ7UVMOkSddo1+4E8fGpbNhQmxkzquDkVPyTygULIhhcapv9C00qHSqhVvHfAVaTSqVUiTBlynViY1PZu7cef/97RUqVKjy//mrX9qBjR2+++krPrCxKVq2KIjTUVuQ26Mlo9OjSXLmSnKfTDFX2zZ0bTkCAM926layzKbPD29uZZctqMnJkEH/5y1VGjcrZOsjLl5Po1u0Uf/zjJfr08WP//nqEhPjg7u5ErVruxTqpTEiwT30dUXo7VKsG9es7OqQSzb1ZIxpwmqOHi+8RYoXnVZVSSuWT2NgU5swJZ/DgABo29HR0OJl6+ukgTpxI5Oef82djCpX3vvkmjNKlXejRw9fRodyTnj39qFDBlenT5GfRiwAAIABJREFU9czKghYXl8oPP9xk0CB/3Nz+n707j4+quv8//jozk2Sy7wlL2JdAJqCQsLnhCioFrbt+S6miWPe61n771dpaf23VutYNxAVrEZBaLQWUUlurBM3Cvibsa/aFZLLOnN8fM4GIEUJIcufefJ6PRx5Jbubee6KXyf3cc877yC1Za4KCFHPn9uWxx3owd24pV1yxg+pqz0n3+/vfKxg5cgtZWTXMmdOXDz8cQFzcsREFaWlOSxeVn35aReMRNyMKV/l6KU2y3JFVhY8bSTh1FH2Tb3RTOo28gwkhLG/hwgqOHPEya1aC0U35XtdeG0NEhK1D5g6JzldR0cTHH1dyww2xpi8GHA7FzJnxLF9exZ49EtjTlZYsqaSmxitDX09CKcVvftOLN97oy6efVnHBBfnfu5Zlba2Xu+/ex7RpO+nTJ5jc3GHcemvCd+bBpaU5yc+vo6HBmss5LVxYztSINdjr3TL0NQCoESMAayfAmvsvoRBCtMHs2SUMGxbCOeeEG92U7xUebueGG2L9BfDJn8ILY334YQX19dr0Q1+bzZzpS4WUwJ6uNX9+GT17BnHeeRFGN8UUZs1K4OOPB7FpUy1nnbWN/Pxv9zRu3FjL2LFbeeWVYh58MInVq1MZNszZ6rHS0kJpaoKCAus9SGke+npHymoID4eJE41ukvAPPw7fvdnghnQeKSqFEJa2fr2b1atrmDXru0+qA83MmQm43V4WLCg3uiniJN57r4zU1BDGjOnadU07S79+IVx6aRRz55bS1CTzertCRUUTS5dWcf31sYYsZ2RWP/hBNJ9/PpSqKi9nnbWdr7+uQWvNK68Uk5m5leLiJpYvH8yzz6YQEvL9t7lpab5i04pDYD/9tIojRzyML/03XHIJOFsvrEUXioykIrYP/Y5sp7LSmg+OpagUQljanDm+JR/MsI7guHFhDB/u5K23pLcokO3eXc8XX1QzfXpcwD+oOBWzZiVw8GAjS5dKYE9X+OijShoaNDfeGGt0U0xn3LhwVq0aSnS0nQsu2M5FF+Vz9937uOiiSNavH87kySef55ya6kQpaxaVixaVc07UTkKL98vQ1wBSNziNERRYNgFWikohhGW53V7ee6+Ma66JIT4+8Jd8UMo3ty0rq8byi3Kb2Z//7Fv6pXmtO6uYMiWanj2DmDNH5vV2hfnzyxg0yDq93V1tyBAnq1YNxeUK5auvanjxxRSWLBlEUlJQm/YPC7PRv3+w5YrKujovn3xSyf1Dsn0bpkwxtkHiqOBRIxjGbrZtqDK6KZ1CikohhGUtWlROZaUnoAN6jjd9ehwOB9JbGaC01sybV8bEiRH06xdidHM6VFCQ4pZb4lm6tIp9+xqMbo6lFRY2snLlEW64IdZSvd1dLSkpiK++Gsrevence2/SKf+39CXAWusB3mefVXHkiJcL3P+BMWOgRw+jmyT8os8+gyA8lGRZc16lFJWiW6iu9nD33fsk2bCbmT27hKFDQ0wVgpGUFMTUqdHMm1cmi9EHoG++cZOfX8+Pf2ytXspmM2fGo7U81OhsixaV4/UiQ187QHCwjeTktvVOHi8tzcm2bfWWmke8cGE5Q2IqidmaLUNfA4z9DF8CbJNFE2ClqBTdwuOPH+KVV4p56qnDRjdFdJFNm2pZtcocAT3Hu+WWBIqKmmQx+gA0b14pTqfimmusWQwMGBDCpElRvPlmCR6PdW60A81f/lLOiBFOXK7AXDe3u0hLC6WhQbNzpzUeODcPfX1kxBqU1lJUBprUVDzKTviuLUa3pFOcclGplLIppcy90rPoVtascfPii0VERNh4770ySkubjG6S6AJz5pQQFKRM2aN06aVR9OwZJL1FAaahwcsHH5Rz5ZUxREXZjW5Op5k1K579+xtZvtya836Mtnt3PVlZNbI2ZQCwWgJs89DXKfwXevWCUaOMbpJoyemkLH4AKeXbqKuz3vqobSoqlVJ/UUpFKaXCgc3ANqXUw53bNCFOn8ej+elP95KQ4GDZssHU1WkJoegGamu9zJtXxlVXxZCY2L5hUUZyOBQzZsSxdGklhw61vsC36HpLl1ZRVuaxzNqU32fq1BiSkx3Mni3vlZ3hgw98SwbdcIM1e7vNZPhwaxWVixZVkBTjpce6f/kCekw2Sqc7qB2UhosdbN9ujWuupbb2VKZprauAK4GlQF9geqe1SogO8sYbJXzzjZvnnkvhnHMiuOiiSF55pVjmqlnc4sXllJebK6DneLfcEo/H4xtuKQLDe++VkZTkYNIkaw/WCQpS3HxzPEuWVHLggAT2dLT588sZPz6cAQOsFfRkRpGRdvr0CbJEWE99vZdPPqngofH5qKoqGfoaoIJHjWAQ+9m+tszopnS4thaVQUqpIHxF5cda60ZA7spFQDt0qJFf/OIAF18cyU03+Z4I33tvIvv3N/LRRxUGt050ptmzSxk8OITzzzdPQM/xhgxxcu65Ebz1Vilay9ut0crKmliypJKbborD4bD+0/9bb03A65XAno62eXMt69fXSkBPAElLC7VET+Vnn1VRVeXlWud/ISQELrrI6CaJVsSedyY2NKVfWi+sp61F5RvAbiAc+EIp1Q+QyRYioD3wwH7q6zWvvtrnaFDLlCnRDBwYzIsvFhncOtFZtmyp5b//rea22+Kx2cx98z9zZjzbt9fz1Vc1Rjel21u4sJyGBm3KObrtMWhQCBdfHMmbb5ZKYE8Hmj+/HJsNrrtOispAkZbmZMuWOtNf5wsXVhAbY6Pfhs/gwgshPNzoJolWhGSMBKBp3QaDW9Lx2lRUaq1f0lr31lpfrn32ABd0ctuEaLfPPqvigw/K+d//7cGQIc6j2+12xT33JLFqVQ05OXKjbkVz5pQSFKT4yU/ijW7KabvmmhgiImzMnStz24z23ntluFxOzjyz+6R1zpqVwN69DXz2mTxD7ghaa+bPL+eCCyLp0cN8c72tKi3NSV2dZs8e8w71bh76+tMLy1A7dsjQ10A2aBANtmDCd1ovAbatQT3JSqm5Sqll/u/TgBmd2jIh2qm21ssdd+xl6NAQfv7z5O/8/Oab44mIsPHii8UGtE50pro6L/PmlXLlldEkJZn/pi083M4NN8SycGEFR454jG5Ot1VQUMeqVTVMnx5nuuVpTscVV0STmCiBPR0lJ8fNjh31MvQ1wFghAbZ56Ov0uFW+DVJUBi67naKEofQs3Wb63vHjtXX46zvAp0Av//fbgZ91RoOEOF1PPXWYnTsbeP31voSEfPcSj462c/PN8SxYUC7Jmhbz0UcVlJaaO6DneDNnJuB2e1mwoNzopnRbf/5zGUrB//xP9xj62iw42MbNN8fz979XcvBg1/TiWHn+8Pz55QQFKa66KsbopogWjiXAmjesZ9GiCmJi7KTmr4SRI6FvX6ObJE6gblAaaXoHu3ZZY33UZm0tKhO01gsBL4DWugmQx+Yi4GzZUsvTTxcyfXocF1wQ+b2vu+eeRJqaNG+8Ib2VVjJ7dgkDBgRz4YXf///ebMaNC2P4cKcEphhEa81775Vx4YWRpKQEG92cLnfrrb4U4rff7tzrr7S0iSlTChg9emunnscoHo9mwYJyLr88ithYh9HNES3Exjro2TPItD2V9fVePv64ghsvU9i+/K/0UppA0Kh0+lBIfnah0U3pUG0tKmuUUvH4E1+VUuOByk5rlRDtoLXmjjv2ERFh49lne5/wtUOGOLn88ihee62E+nrrLUDbHW3fXse//13NbbclmD6gpyWlFDNnxpOVVcOWLeZ9km5WX35Zw86dDd0moOd4Q4Y4ufDCSObMKaWioqlTzpGX5yYzcytLl1axdm0tRUXWG0Hy3/9Wc/Bgowx9DVBpaU7TFpUrVhyhqsrLbX1zweORotIE4ieeCUDZf9cZ3JKO1dai8gHgE2CQUuorYB5wT6e1Soh2ePfdMv7zn2r+8IfebZpPd999SRQVNcmwQouYM6cEh8M3Z9Zqpk+Pw+GQ5R2M8PrrxURF2bj66u47ZPGRR5LZv7+BESO28K9/HenQY7/7bilnn72NpibN//t/vhk2mzaZ8+b+RObPLyc83MbUqd33OgpkzUWlGYdfL19eRUSEjZH7VkJCAowda3STxElEjD8DgKa11lpWpK3pr3nAROAs4HbApbVe35kNE+JUlJQ08dBD+zn77HBmzmxbUXHxxZGkpTl58cUiU/4hEcfU13t5550ypk2LsWSqYlJSEFOnRjNvXhmNjXKtdpWiokYWLargJz+JJzzcbnRzDDN5chRZWamEhdm46KJ8HnxwP3V1pzfCo6HBy5137uUnP9nDWWdFkJc37Ghi88aN1uqRb2jw8uGH5VxxRTRhYW19li+6Ulqak5oaL/v2ma+XfMOGWs4cEYx9+TK4/HKwd9/3KtPo04caezhhOzcb3ZIOdcJ3N6XUVc0fwDQgFRgKTPVvEyIg/PznB6is9PDaa33bPPRRKcW99yaSl1cr6wCa3N/+VkFJSZOlAnqOd8stCRQVNfGPf8jMg67y1lulNDZq7rgj0eimGG7MmHDWrBnOnXcm8NxzRYwZs5V169ztOtaBAw1MnJjPa6+V8PDDSXz66WASE4Po0cNBXJzdcj2VK1YcoazMw403ds8h1GZwLAHWXA80tNZs2FDL1MQtUFYmQ1/NQikKE1LpUbLNUp0aJ3tkNvUEH3LlioDw3/9W89ZbpTzwQDIjRpzaGnLTp8cTG2vnxReLOql1oivMmVNKv37BXHKJdQJ6jnfppVH07BkkQ2C7iMejef31Ei64IIJhw5wn36EbCAuz8corfVm6dBAlJU2MHbuNZ54pPKVY/C++OMLo0VvZuLGWRYsG8PTTKTgcvgeBSilcrlDL9VTOn19GbKydSZOs+/5kdmlpvnsHs82rPHSokfJyDxfV/gccDpg0yegmiTaqHZTGcE8+hy20CsEJi0qt9c0n+LilvSdVSt2vlNqklNqolJqvlHIqpeKUUiuUUvn+z7EtXv8LpVSBUmqbUmpyi+0ZSqkN/p+9pPwLiCmlQpRSC/zbv1ZK9W+xzwz/OfKVUrLWpsk1NHi5/fa99OsXzOOP9zjl/cPCbNx2WwIffVTB3r3mXfi4OysoqGPlyiPcdlu8pQJ6judwKGbMiGPp0kpZCqcLLFtWxZ49Ddx5p/RSHu+yy6LZsCGNH/wgmkceOcCFF+azZ8+Jo/G11rzwQhEXXphPTIydr79O5Zprvhtak57uZNMmc85ta43b7eVvf6vkmmtiCA6Woa+BKiHBQWKiw3RF5caNvvYOy/8nnHceREcb3CLRVo4zR5BAJQWr9hndlA7T5nc4pdQUpdQjSqnHmz/ac0KlVG/gXiBTa50O2IEbgEeBlVrrIcBK//copdL8P3cBlwKvKqWaB4y/BswChvg/LvVvnwmUa60HA88Df/AfKw74FTAOGAv8qmXxKszn2WeL2LKljlde6dPuOU933eW7aXzlFVlexIzefLMUu92aAT3Hu+UW3/IO8+ZJb2Vne/XVYnr2DOKKKyRYpTUJCQ4+/HAA77zTjzVr3IwcuYV580pbLQZrajzcdNNu7r9/P9OmRZOdPexoz9DxXK5QKio8HDxojQcnS5ZUUlPjlaGvJpCW5mTLFnMVlRs21NKfA4Tv3gJTpxrdHHEK4ib6wnrKvlhrcEs6TpuKSqXU68D1+BJfFXAt0O80zusAQpVSDiAMOAhcAbzr//m7wJX+r68APtBa12utdwEFwFilVE8gSmudpX1/xeYdt0/zsT4ELvL3Yk4GVmity7TW5cAKjhWiwmR27qznyScPcfXVMUyZ0v6nc337BvPDH8YwZ04JNTWy/KqZNDR4efvtUqZOjaZXL+uvIThkiJNzz43grbdav3kXHWPnznqWL69i1qx4goKs2/t9upRSzJgRz/r1wznjjDBmzNjDddftorT02NIj+fl1jB+/jYULy/nd73qxePFAoqK+/wFgerpvqLFV5lXOn19Gz55BnHdehNFNESdhxgTYjRtruTFyle8bmU9pKgn+ZUUa12wwuCUdp609lWdprX+Mr/fv18AEoE97Tqi1PgA8C+wFDgGVWuvPgGSt9SH/aw4BSf5degMt+4b3+7f19n99/PZv7aO1bsK3pmb8CY4lTEZrzV137cPhULzwQsppH++++5IoL/fw5z+XdUDrRFf55JNKioqauO026wb0HG/mzHi2b6/vsnCpZcsqcbk2c+BA9xke/sYbJdhsdKvr6nT07x/C558P4Q9/6MXHH1cyYsQWli+vZMmSSsaM2cahQ40sXz6YRx/tgX+WyvdyuXw9mFaYV1lR0cTSpVVcf30sdrs8nAh0aWlOKio8HD7cOeuxdoaNG+u4JGw99O0Lgwcb3RxxClRyMmWOOEJ3WCcBtq1FZfO7u1sp1QtoAga054T+4aZX+PfvBYQrpX50ol1a2aZPsL29+xzfzllKqRylVE5xsQyLDDSLFlWwfHkVv/1tL1JSTr+H6uyzwxk9OpSXXio21VPK7m727BL69Ali8uQoo5vSZa65JobISBtz55Z0+rm++qqaq6/eyebNdXz5ZXWnny8Q1NV5mTu3hCuuiKF3b+v3fncUu13xyCM9+OabVOLi7Fx22Q6mTt3BoEHB5OYO45JL2vZvNCHBQXKywxI9lX/9awUNDZobb5RZNmZwLKzHHA80PB7Npk21pNdvhsxMo5sj2uFwQirJJduMbkaHaWtRuUQpFQM8DeQCu4AP2nnOi4FdWutirXUj8Fd8618W+oe04v/cHMe5n2/3iqbgGy673//18du/tY9/iG00UHaCY32H1nq21jpTa52ZmChBDYFk5coqbr99L6NHhx6dD3m6lFLcd18SmzfX8c9/duzi3qJz7NpVz4oVR7j11oRu1QsQHm7nhhtiWbiwgiNHOm+49vr1bn7wgx2kpARjs1lnOOLJLFpUTmmphzvvlF7K9jjzzDBycobx6KPJ3HdfIl9+mUq/fiGndAyrJMDOn1/OoEEhjBkTZnRTRBscW1bEHO91u3bVE1RbRWLFbhg92ujmiHZwD0wjtbGAynJrzCE/2TqVY5RSPbTWT2qtK4AIYAOwCF8ATnvsBcYrpcL88xwvArYAnwDNaawzgI/9X38C3OBPdB2AL5DnG/8Q2SNKqfH+4/z4uH2aj3UN8C//vMtPgUlKqVh/j+kk/zZhEq+/XszkyQX07h3E4sUDj0bRd4Trr48lOdkhy4uYxJtv+oYo3nKL9QN6jnfLLQm43V4WLCjvlOPv3FnP5MkFhIfbWLFiMIMGhXSbovLVV0tITQ3hwgtl+Yf2cjpt/O53vXnhhT6Ehp564ml6um9um9dr3lEjhYWN/OtfR7jhhtiTDvkVgSE52UFsrN00ReWGDXWMwt/LlZFhbGNEuwSdmU4kbnb+O9/opnSIk73bvwE0ACilzgN+799WCcxuzwm11l/jC8/Jw1eg2vzH+j1wiVIqH7jE/z1a603AQmAzsBy4S2vd/Hj+DuBNfOE9O4Bl/u1zgXilVAHwAP4kWa11GfAkkO3/+I1/mwhwTU2ae+/dxx137GPy5ChWrUqlf/9Te/p9MiEhNn760wT+8Y8q8vPN8Uelu2po8PLWW6VMmRLdIcOfzWbcuDDS0pydsmbl4cONXHJJPg0Nms8+G0y/fiG4XE42bTJ/z9HJrFnjZvXqGu64I1EKAQO5XKFUV3tNvczTypVH8HrhqqskPdgslFJHw3rMYOPGWjLY4vtGeipNKe48XwJsyb+tkQB7sqLS3qLouh6YrbVerLV+DGj3jGCt9a+01sO01ula6+n+ZNdSrfVFWush/s9lLV7/lNZ6kNY6VWu9rMX2HP8xBmmt7/b3RqK1rtNaX6u1Hqy1Hqu13tlin7f82wdrrd9u7+8guk5lpYcf/GAHL79czP33J/HJJ4NOmB54On7600SCghQvvyzzaAPZX/5SzuHDTR02/NlslFLccks8WVk1ZGV13FzHioomJk8uoLCwiaVLBx+dY+RyhVJQUE99vbfDzhWIXnutmNBQ33qgwjhWSIDNznbjdCpGjmx96RQRmMxWVE4M3wYpKZCUdPIdRMDpefEoABrXWiMB9qRFpX9OIviGqf6rxc8crbxeiA61Y0c9EyZsY+XKKmbP7stzz6V06vy5Hj2CuP76WN5+u5TKSlleJBBprXn22UJGjgxl0qTuO0Rxxox4evRwcMEF+Tz/fOFpDxV0u71MnbqDLVvq+OijgYwbF370Zy6XE48Htm8/8QL3ZlZR0cT775dz001xxMTInzcjNc9tM/O8ypycGkaNCuvQKRqi86WlhVJS0kRxceDPcduwoY7RapsMfTUxR3wMh4J6WCYB9mRF5XzgP0qpj/ElwP4XQCk1GN8QWCE6zRdfHGHcuK0UFjayYsWQLov3v+++RKqrfesfisCzfHkVmzbV8dBDSd16iGJCgoN164YzaVIUDzxwgEmTCti/v33DBRsbNdddt5Ovvqrh/ff7fyep0+Vq7jky703+ycybV4bb7eXOO7tn73cgiYlxkJISZNqeyqYmTV5erQT0mJBZwnrq670c3FZKr+pdUlSa3KH4VJKLrZEAe8KiUmv9FPAg8A5wTvPwUv9+93Ru00R39tZbJVx8cQGJiQ6+/jqV88/vuh6pzMxwzjornJdfLsLjMW9QhFU980whvXv7epS7u6SkID7+eCCzZ/clK6uGESO2sHDhqYX3eL2am2/ezT/+UcVrr/Xh2mu/+981NdWJ3W7u4YgnorXm1VeLGTcujNGjpRAIBGZOgN26tQ632ytFpQmZpajctq2Okd5t2NBSVJqce0Aagxp2Uldt3jnkzU4ay6a1Xq21/khrXdNi23atdV7nNk10Rx6P5uGH9zNz5l7OPz+CrKxUBg92dnk77rsviZ07G1i6VDrkA0lurpvPP6/mZz9LIjj41FMlrUgpxW23JbB27TCGDg3h+ut3MX367jYN39Za87Of7ef998t56qle3H576710ISE2Bg8OsWxP5eefV7NtW730UgaQ9HQnW7bUmfLBXna2G/A9oBTm0rt3EJGRtoAvKjdsqGM0W33fSEiPqTlGjSCERvas3GR0U06b3JWJgHHkiIcrr9zBs88WcdddiSxdOtiwuU0//GEMKSlBvPiiBPYEkmeeKSQqysasWbKG4PGGDHHy5Zep/OpXPZg/v4yRI7fwxRcnXnP1t789fDQA6xe/SD7ha12uUMv2VL72WjFxcXauu056vwOFyxVKXZ1m507zzePNzq4hMtLG0KEdm1AuOp9ZEmA3bqxljNqC7tULevQwujniNBxLgF1ncEtOnxSVIiDs2VPP2WdvY9myKv70pz786U99DA04CApS3HVXIitXHjHtECyr2bWrnkWLyrn99oROS/81u6AgxRNP9OLLL1MJClKcf34+v/jFARoavpva+uqrxTz++CFmzIjj2Wd7n3R+qsvlpKCgnro6ayXAHjzYwEcfVXDLLfE4nfInMVAcm8cb2Df3rcnJcZOREYbN1n3nfJtZWloomzcH9t/9DRtqGR+8FSVDX02vzyVn4MFG4xrzJ8DKX1BhuFWrqhk7dht79zaybNnggFkm4rbbEggNVTz9dKHRTRHA888XYbcr7rtPotNPZvz4cNauHcbMmfH8/veFjB+/7Vs3SR98UMbdd+9j2rRo3nyzX5tufl0uJ16vby6PlcyZU4rH41tOSAQOsybANjR4WbdOQnrMLC3NyeHDTZSVNRndlO+1Y30ZA+p3ydBXCwiNC2dPUF+cFkiAlaJSGKqoqJFJkwqIirKzenXqd1InjRQf7+DOOxN5//0ytm+31o202ZSWNjF3bik33RRL797BRjfHFCIi7MyZ04+//W0g+/Y1kpGxlZdfLmLZskqmT9/NuedG8MEHA9o8IsDl8q23Z8aeo+/T2KiZPbuESy+NYtAgGaoYSCIi7PTvH2y66239+loaGjRjxsh8SrNqfqCxZUtgXntVVR7i9m2UkB4LORQ/1BIJsFJUCkO9/HIxbreXJUsGMWxY1wfynMwjjyTjdNp48snDRjelW3vtNd918tBDJ573J77riiti2LBhOBdeGMm99+7n8st3kJ4eyiefDCI0tO1/AoYODcHhsNayIp98UsHBg43ccYfM0Q1E6elO0/VU5uQ0h/RIT6VZBXoC7KZNtWSwxfeNFJWW4B6QRt/6PXhqzPV+dzwpKoVhqqs9vPJKMVdeGU1qauAVlOBbsuGuuxL4y1/KLDfszyzq6ry8/HIxl10WRXp6qNHNMaUePYJYsmQQr77ahylToli+fDDR0ac2LzU42MaQIU7T9RydyKuvltC3bzBTpkQb3RTRCpcrlG3b6mlsNE8CbHa2m/h4Xy+rMKe+fYMJCwvcBNiNG33Jr00JydCzp9HNER3AfkY6drwcWLne6KacFikqhWHmzi2lvNzDI48EdnLZQw/5eit/85tDRjelW5o3r4yioiYeflh6KU+HUoo77khkyZLBJCcHtesYLpd1isqtW+v417+OcPvtCdjtEqgSiNLTnTQ2avLzzXPN5eS4ycwMP2nwlQhcNpti+HBnwIb1+JJft2IfkwFynVnCsQTYtQa35PRIUSkM0dioee65Is47L4Lx4wN77klSUhB3353I/PnlbN1qnpsbK/B6NX/8YyEZGWGcf36E0c3p9lwuJzt21FNba/4E2NdfLyYoSDFzZrzRTRHfw2zzeN1uL5s2SUiPFQTysiLb15YxTO9EZcrQV6vof7GLeoJoWLPR6KacFikqhSEWLixn794GHnnEHL1PDz+cTFiY9FZ2tb//vZLt2+t5+OEkefIfAFyuULTG9A9Xamo8vPNOGddcE9PuXlvR+YYNc2KzmScBds0aNx4PUlRawPDhTvbvb6SqymN0U75r/QbseCX51UJiEkMpcAzAWWDuBFgpKkWX01rz9NOFuFxOLrsscNJeTyQhwcE99yTywQftJ6DOAAAgAElEQVTlATskxoqeeaaQ/v2DufpqWZQ+EBxbO9Dc/wbmzy+nstLDHXfIMiKBLDTUxqBBIabpqZSQHusI1ATYwsJGBlb4e7MkpMdSDsUPJbloq9HNOC1SVIou9+mnVaxfX8vDDyebanHoBx9MJjxckmC7SlZWNV99VcMDDyS1edkL0bmGDHESFKRMc5PfGq01r75aTHq6k3POCeyh98JcCbDZ2TX06hVEr14S0mN2gZoAu3GjL/m1ISYBUlKMbo7oQDX90+jZcBBdWWl0U9pNikrR5Z5+upCUlCBuvNFcvU/NvZULFpSbvqfGDJ55ppDYWDs33yxz3gJFUJBi6FDz9By15ptv3KxZU8uddybKkGoTcLlCKSiop64u8Ofx+kJ6pJfSCgYMCCEkRAXcyKTm5Fc9SkJ6rMZ+RjoApf/dYHBL2k+KStGlsrNr+Pzzau6/P4ngYPNdfs29lTK3snNt317H3/5WyZ13JhIRcWpLX4jO5UuADawbrVPx6qvFRETY+NGP4oxuimiD9HQnHg8Bv6RTZaWHbdvqZT6lRTgcitTUwAvr2bKmHBc7CZkgQ1+tJvZcXwJs8efmTYA13129MLWnny4kOtrObbeZc7Hx+HgH996byKJFFaYZkmVGzz1XRHCw4p57ZM5boHG5Qtm1qwG3O/B7jo5XUtLEggXlTJ8eR2SkPKwwA7MkwObm+uZTjhkjQ6qtIhATYBty1hFEk8yntKAB5w+lmlAa8qSnUoiTKiioY/HiCu68M8HUN3QPPphMRIT0VnaWoqJG3nmnlB//OE6SOQOQy+VE68ALsGiLRYvKqa/X/PSn5nyo1R0NHRqCwxH4CbA5OTUAZGRIT6VVpKU52b27gZqawEiA9Xo1kQXrfN9IUWk5PXuHsNU2iJCCTUY3pd2kqBRd5o9/9PU+3XtvktFNOS1xcQ7uuy+JRYsq2LAhsG90zOhPfyqmoUHz4IPmWG6muznWc2S+az87201iooMRI0KNbopoo+BgG0OHOgO+pzI7282AAcEkJDiMboroIM1hPVu31hvcEp89expIr99MXXgs9O1rdHNEB1NKcTBuKElF24xuSrtJUSm6RGFhI2+/XcqMGfH06GH+3qf7708iKsrGr38tvZUdqabGwyuvFDNtWjSpqU6jmyNaMXhwCMHB5kyAzctzM3p0mAT0mIwZEmBzctwyn9JijiXABsa115z8Wpc2SkJ6LKq6fxpxDSVQXGx0U9pFikrRJY71Ppm7l7JZc2/l4sUVrF/vNro5lvH226WUlXl4+GHppQxUvgCLENP1VNbXe9m0qZZRo6SX0mya5/EGyjDE4xUXN7J7dwOZmTKf0koGD3bicATOsiKb11SSzg5Cz8k0uimikzQnwFavXmdwS9pHikrR6aqrfb1PP/xhDEOHWqf36f77k4iOtvPrX8u6lR3B49E891wREyaEc/bZEUY3R5yAyxVqup7KjRvraGqC0aOlN8ls0tMDex5vTk5zSI9cW1biW0IpcMJ6qlatI5gmQiZIUWlVMef4E2D/bc4EWCkqRad7881Syss9PPKItXqfYmMd/Oxnifz1rxWsXSu9lafrr3+tYNeuBumlNAGXyxdgUV0dmD1HrcnL8/0blaLSfAI9ATYnx41Scm1ZUSAlwAZvzPN9ISE9ljXwrH6UEk1DrjkTYKWoFJ2qsVHz3HOFnHdeBOPGWW9o0M9+5uutlCTY06O15plnChkyJIRp06KNbo44ieab/EDtOWpNXp6b6Gg7AwcGG90UcYoGDfItRB+o8yqzs92kpoYQFWXeVHPRurQ0Jzt31lNba+wSSo2Nmp6HNlIbEg0DBhjaFtF5Bgx0skkNIiR/s9FNaZcuLyqVUqlKqbUtPqqUUj9TSsUppVYopfL9n2Nb7PMLpVSBUmqbUmpyi+0ZSqkN/p+9pPzpC0qpEKXUAv/2r5VS/VvsM8N/jnyl1Iyu/N27owULyti3r5Gf/9yavU8xMQ7uvz+Jjz6qlN7K0/DFF9VkZ7t58MEk7HYJIAh0LpdvGHug9hy1Zs0aN2eeGSohPSbkcCiGDQvMBFitNdnZNbI+pUWlpTnxemH7dmOvve3b6xjl3ULloJES0mNhDofiQGwqiUVbQWujm3PKuryo1Fpv01qfqbU+E8gA3MBHwKPASq31EGCl/3uUUmnADYALuBR4VSnV/DjwNWAWMMT/cal/+0ygXGs9GHge+IP/WHHAr4BxwFjgVy2LV9GxtNY8/XQh6elOLrssyujmdJqf/SyJmBg7TzwhvZXt9cwzhSQmOvjxj+ONbopog+aeI7OE9TQ1adatq5XhiSYWqAmwBw82cvhwE5mZcm1ZUVqab1SG0UNgN6+tZCT52MbK0Ferq+6fRnhTNezfb3RTTpnRw18vAnZorfcAVwDv+re/C1zp//oK4AOtdb3WehdQAIxVSvUEorTWWVprDcw7bp/mY30IXOTvxZwMrNBal2mty4EVHCtERQdbvryKDRvqePjhZEv3DkRH23nggSQ+/rjy6Lwt0XZ79zbwj39UcffdiYSGGv2WJNrCbg/cnqPWbN1aR12dZvRoSX41K5crlH37GqmqCqx5vNnZEtJjZUOHhmCzGV9UFn2+nhAaib1orKHtEJ3PNtKXANuQt97glpw6o+/gbgDm+79O1lofAvB/bl57ojewr8U++/3bevu/Pn77t/bRWjcBlUD8CY4lOsHTTxeSkhLEDTdYvzP43nt9vZWybuWpW726BoApU2QupZmkpZmnqJSQHvNLT28ech1YvZU5OW7sdjjjDLm2rCgkxMbgwSGGF5U6NxeAoPFjDG2H6HwxZ48EoPQ/5kuANayoVEoFA9OARSd7aSvb9Am2t3ef49s3SymVo5TKKTbpIqRG+uabGv7972oeeCCJ4GCjn110vuhoOw8+mMQnn1SSmyu9laciN9dNUJA6etMozMHlcrJ3bwNHjgRWz1Fr1qypJTRUkZoq15hZBWoCbHZ2DenpoYSFWf/vXHflS4A19mFGzM51uIMiYOBAQ9shOt/gMT34O+eyz22+aWNGvgteBuRprQv93xf6h7Ti/1zk374f6NNivxTgoH97Sivbv7WPUsoBRANlJzjWd2itZ2utM7XWmYmJie36BbuzZ54pJCbGzq23JhjdlC5z771JxMXZeeKJVi+pDldb60WbcCL38XJz3YwY4SQkRG7KzKT5Jt/oJ/htkZfn5owzwiQEysT69w8mLMwWUPMqtdbk5Lhl6KvFpaU5yc+vp6HBmATYmhoPQ6o2UtR7JNjk76TVDR3q5Ar1Akt7XG10U06ZkVfnjRwb+grwCdCcxjoD+LjF9hv8ia4D8AXyfOMfIntEKTXeP1/yx8ft03ysa4B/+eddfgpMUkrF+gN6Jvm3iQ6Un1/H4sUV3HlnApGR3SdiPSrKzoMPJrNkSRU5OTWdeq4lSyqJj1/Ha6+VdOp5OpvWmrw8NxkZclNmNscSYAPnJr81Xq9mzRq3zKc0OZtNBdyQ6127Gigr80hIj8WlpYXi8UB+fr0h59+y/ghnkE/jyNGGnF90rdBQG7/9bS8mTow0uimnzJCiUikVBlwC/LXF5t8Dlyil8v0/+z2A1noTsBDYDCwH7tJaN4+3ugN4E194zw5gmX/7XCBeKVUAPIA/SVZrXQY8CWT7P37j3yY60B//WERwsOKee5JO/mKLueeeROLj7dx002527eqcP0Dvv1/GlVfuoLZWs2JFVaeco6vs2tVAeblHikoTGjgwBKdTBdRNfmt27KjnyBGvzKe0gEBLgM3O9j08lOVErC0tzfcAzahRGfs+W4eTBiInSvJrd/G//9uDCy4wX1HpMOKkWms3vuCclttK8aXBtvb6p4CnWtmeA6S3sr0OuPZ7jvUW8Napt1q0RWFhI++8U8qMGfH06BFkdHO6XGSknY8/HsTUqTuYMGEbS5cO7tCb2VdfLebuu/cxcWIEERE208/fbG6/FJXmY5YE2DVrfEXIqFFyjZmdyxXKO++UUVraRHy8Ibcv35KT4yY4WOaDW11qqhOljCsq61blAJB46XhDzi9EW8ngbNGhXnqpiIYGzUMPdb9eymZnnx3BV18NJSTExsSJ2/nss9PvTdRa89RTh7jrrn1MnRrNsmWDOf/8SPbta6SoqLEDWm2M5pCeESNkaKIZuVzOgB/+mpfnu8aah+sK8wq0BNjsbDdnnhnaLcLourOwMBsDBgQbFtYTumUtNbYw7MOGGnJ+IdpK3glFh9m7t4Hnny/iuutiGTKke9/ADR8eSlbWUAYODGHKlALmzStt97G01jz88AH+7/8O8aMfxfHhhwNxOm1H5/GYubcyN9dNerqE9JiVyxXK/v2NVFYGbgJsXp5cY1YRSAmwHo8mN9ctQ1+7CV8CrDHXXe/DG9if6JKQHhHw5AoVHeaBB3zLhj79tCz9CdCrVzBffDGU886LZMaMPfz+94dPOa3V49Hcdtte/vjHIu6+O5F33+1HUJAvwbJ5OF9OjjmLSq19N2Uy9NW8mnv/jI7b/z7NQVAyn9IaUlKCiIoKjATY7dvrqK72SkhPN5GWFsq2bfU0NXVt4nrJ4TpcjVupHjqqS88rRHtIUSk6xIoVVSxeXMEvf9mDvn2DjW5OwIiOtrNs2SBuvDGWX/ziIPfcsx+Pp21/lOrrvVx//S7mzi3lscd68NJLKdhsx5ZEiIqyk5oaYtqeyt27JaTH7AKp56g1+/c3UlrqkfmUFqGUwuUKDYjrLTvb974ry4l0D2lpThobNTt2dG0C7M5l6wmjnuAJmV16XiHaQ4pKcdoaGrzcc88+Bg0K4cEHk41uTsAJDrbx5z/35+GHk3jllWKuvXYntbUnXu+qpsbDtGk7WLy4guee681vftML38o535aREWbankoJ6TG/AQOCCQ0N3ATYvDzfNSbLiVhHcwKs0Wv05uS4CQ+3MWxY957q0V0YlQBb+a9vAEi+bGyXnleI9pCiUpy2F18sZtu2el56KQWnUy6p1thsiqefTuGFF1L4298queSSfMrKmlp9bXl5E5MmFfDPfx5h7ty+3H//9xfqmZlhHDjQyOHD5gvryc1143AgIT0mZrMphg8P3LCevDw3NhuMHCnXmFW4XKGUlnooKmr9/bOrZGf7hlXb7d992Cesp/nhQVcP9bevzaOaUBLPcXXpeYVoD6kAxGk5cKCBX//6EFOnRnP55dFGNyfg3XdfEh98MIDsbDfnnLOdPXu+PZTm8OFGzj8/n5wcN4sWDeCWWxJOeLzmXj4zDoH1hfSEyoMIkwuU4YitWbOmltRUJ+HhdqObIjpIcwKskfMqGxs1a9e6ZehrNxIZaadv3+Au76mM37OenVHDUQ7jl9AR4mTkbk6clocfPkBTk+aFF1KMboppXHddLJ99NpiDBxuZMGE769b5CsLdu+s599ztFBTUs2TJIK66Kvakxxo1KgylzFdUSkiPdbhcTg4ebKSiwtieo9b4Qnqkl9JKAmEe76ZNtdTVaQnp6WZGjnSyYsURDhxo6JLz6aYmBh3ZTGm/M7rkfEKcLikqRbv9+99HmD+/nJ//PJmBA0OMbo6pTJwYyZdfDsVuh3PP3c6bb5ZwzjnbKSlp4p//HMwll0S16TiRkeYM69mzp4GyMgnpsYJAuMlvTWFhIwcONEryq8UkJzuIj7cb2lMpIT3d0+9+15vaWi/Tpu2gpqaNyyhpDY3tm55y+ItNRFCLHiXJr8IcpKgU7dLYqLnnnn307x/Mo4/2MLo5ppSeHsqqVan07RvMbbftxePRfPHFUCZMiDil45gxrEdCeqyjeVmRQCsq16xpDumRa8xKAiEBNju7hpgYO4MGycPU7iQ9PZQPPhjAmjW1zJixB6+3DWFRL78M558P+/ef8vkKl/lCemIuGnfK+wphBCkqRbu8+moxGzfW8fzzKYSGymXUXn36BPPll0N57LEefPllartCazIzwzl4sJFDh8wT1tMc0iMBKubXr18wYWG2gAvrWbPG154zz5RrzGqMToDNyXGTmRnWaiK3sLYpU6J59tneLF5cweOPHzr5Dj17wvr1MGoUrFhxSudqXJ2DmxAGXDayna0VomtJNSBO2eHDjTz++EEuvTSKK66QcJ7TFRPj4De/6dXup95mDOvJzXXjcklIjxXYbIq0NGfA9VTm5bkZODCYmBgJuLAalyuUqiovBw50/YO0ujovGzbUytDXbuz++5O49dZ4nnrqMO+/X3biF197LeTkQHIyTJ4Mv/41eNo2dDZy+1q2BKcSmyjL1ghzkDs6ccoeffQAtbWaF19MkSe1AWDUqFBThfVISI/1uFyBt6yIL6RHrjErMjIBdt26WpqakJCebkwpxSuv9GHixAhmztxDVlb1iXdITYWvv4Yf/QieeAIuvxyKi0+8j9dLSskmDvSQXkphHlJUilOyalU1775bxkMPJTF0qDw9CwQREXaGDXOSk1NjdFPaZO/eBkpLJaTHSlyuUA4fbvretVe7WkVFEzt3NkhRaVFGhkNlZ/veZ8eMCe/yc4vAERxsY/HigfTpE8yVV+78zvJg3xEeDu++C7Nnw3/+4xsOu2rV9768aWs+Ed4a6tLO7OCWC9F5pKgUbebxaO66ax8pKUH88pcSzhNIMjPDyM0NrJ6i7yMhPdYTaGE9a9f6/i2MGiXzKa0oPt5Bjx4OQ3oqs7PdJCc7SEkJ6vJzi8ASH+/g738fRH29ZurUHRw5cpJhrUrBbbf5isngYJg4EV54wZcQe5zCZasBCD07szOaLkSnkKJStNkbb5Swdm0tzz2XIouJB5iMjDAOHWrk4MGuWT/rdOTmurHbJaTHSo4VlYHxYCMvz/fgYtQoeXBhVUYlwEpIj2hp2DAnixYNYPPmOm66aRceTxvCo0aPhrw8mDIF7r/fN++yqupbL6n+Tw51BNP7EumpFOYhRaVok+LiRn75y4NceGEk11wTY3RzxHGa5/eYYV5lbm4tLleopAZbSN++wURE2AKmpzIvz03v3kEkJ0tvklWlp/vCodq0rEMHOXLEw5YtdTL0VXzLJZdE8dJLfViypIpHHz3Qtp1iYuCjj+Dpp+Fvf4PMTF9KrF/whjzWMYThIyM7qdVCdDy5qxNt8stfHqS62sPLL0s4TyA688xQbDYCfr1KCemxJqWaE2ADpaeyVuZTWpzLFYrb7WXPnq4bnbFmjRutJaRHfNeddyZy112JPPtsEXPnlrRtJ6Xg4Yfh88+huhrGjYO33watSTqwgZ3RLnn4KkxFrlZxUtnZNbz5Zin33ZdEWpoMWQxE4eF2hg93BnxP5b59jZSUNElRaUFGL0jfrKbGw7ZtdTKf0uKMSIDNzva9v8pyIqI1L7yQwqRJkfz0p3v5z3+OtH3Hc8+FNWtgwgS45Ra48krCG49QMUiGvgpzkaJSnJDX6wvn6dEjiMcf72l0c8QJZGSEkZPjNmxB8LaQkB7rcrmcFBU1UVJibALs+vW1eL1IT6XFNT/g7MoHGdnZbvr2DSYpSYZVi+9yOBQLFgxg8OAQrrpqJzt2nCQRtqXkZFixAn75S/jkEwBUZkYntVSIziFFpTiht94qJTvbzTPP9CYqSsJ5AllGRhiFhU0cPNj1C4K3VXNIzxlnSC+S1QRKWE9enu/8UlRaW3S0nT59grq0p7I5pEeI7xMT40uEBfjBDwqoqDiFh2x2O/z2txS89Fee439IvHBUJ7VSiM7hMLoBInCVlTXx6KMHOPfcCG66Kdbo5oiTaBnW07t3sMGtaV1urpu0NKfME7GglmsHTpxoXLhEXp6bhARZ8qE76Moh12VlTezYUc+tt8Z3yfmEeQ0e7GTx4oFcckk+11+/i3/8YzAOx7EsCo9HU1TUxIEDDRw40Oj/OPZ1QcEQdvMAW86QkB5hLlJUiu/1+OOHKC/38Kc/STiPGZx5ZtjRsJ5p0wIvobc5pGfKlCijmyI6QUpKEFFRNsN7KtescTNqVKi8Z3UD6elOPv/8CB6Pxm7v3P/fzUP3padStMX550fy+ut9ufXWvVx2WQFRUfajheOhQ414jlvS0m6Hnj2D6N07iNGjw/jJT+JJTQ0xpvFCtJMUlaJVHo/m3XdLmT49jpEj5Y+oGYSF2UhLC9ywnv37GykulpAeq/IlwBob1lNf72XjxjoeeCDJsDaIruNyhVJfr9mxo56hQ52dcg6vV5OVVcNLLxUBUlSKtps5M4F9+xp45ZUSkpIc9O4dxPDhTnr3DqZXL18B6fsIJinJ0ekPRoTobFJUilZt2lRLdbWXiy+W4RdmkpERxrJlVWitA66nRkJ6rM/lcvLJJ5WGnX/TpjoaG7XMp+wmWibAdmRR2dSk+eKLahYvLuejjyo5dKiR4GDFffclEhMjt02i7Z54ohdPPNHL6GYI0SUMmdiklIpRSn2olNqqlNqilJqglIpTSq1QSuX7P8e2eP0vlFIFSqltSqnJLbZnKKU2+H/2kvLfRSulQpRSC/zbv1ZK9W+xzwz/OfKVUjO68vc2k6ysGgAmTIgwuCXiVGRmhvnnagReWE9urhubDc44Q274rcrlclJc3ERxsTHX35o1vgcXo0dLEFR3MHy4r5BcvbqGujrvaR2rocHLsmWV3HrrHnr23MBFF+Xz9tulTJgQzvvv96e4eCQvvNCnI5othBCWZNQjtxeB5Vrra5RSwUAY8L/ASq3175VSjwKPAj9XSqUBNwAuoBfwT6XUUK21B3gNmAWsBpYClwLLgJlAudZ6sFLqBuAPwPVKqTjgV0AmoIFcpdQnWuvyrvvVzWH16hoSEhwMHBiYgS+idc29gDk5blJSAuv/XXNIT1iYhPRYVcuwnvPP7/qgnLw8N5GRNgYOlLlI3UF4uJ3U1BCeeaaIZ58tonfvIAYODGHgwGD/52NfJyU5vjN6o7bWy6efVrF4cQV//3sllZUeIiNtTJ0azdVXxzB5chTh4ZJ6LoQQbdHlRaVSKgo4D/gJgNa6AWhQSl0BnO9/2bvAv4GfA1cAH2it64FdSqkCYKxSajcQpbXO8h93HnAlvqLyCuAJ/7E+BP7k78WcDKzQWpf591mBrxCd32m/sEllZdUwYUJ4wA2hFCd2xhlh2O2+Au7KKwMnrKc5pOeyyySkx8qOLStSx/nnd/3Q+by8WkaNCsNmk/et7mLZssF89VU1O3c2sHNnPTt3NrBixREOHCj71uvCwmzfKjYPHGhg6dIqamq8xMXZueqqGK6+OoaLL44kJEQefAkhxKkyoqdyIFAMvK2UOgPIBe4DkrXWhwC01oeUUs1JC73x9UQ22+/f1uj/+vjtzfvs8x+rSSlVCcS33N7KPsKvrKyJbdvqmTFDotPNpjmsJycnsMJ6DhxopKhIQnqsrlevIKKj7YYkwHo8mnXr3Nx+e2KXn1sYZ8CAEAYM+G7PdG2tlz17mgvN+hZFZz0rVx4hIsLG9OlxXH11DBMnRhIUJA8ihBDidBhRVDqA0cA9WuuvlVIv4hvq+n1ae6fXJ9je3n2+fVKlZuEbWkvfvn1P0Dzr+fpr33zK8ePDDW6JaI/MzHCWLKkMqLAeCenpHpRSuFxOQxJgt22ro7ZWy3xKAUBoqI1hw5wMG/bdAB+tfX/2A+X9UQghrMCIMR77gf1a66/933+Ir8gsVEr1BPB/Lmrx+paz41OAg/7tKa1s/9Y+SikHEA2UneBY36G1nq21ztRaZyYmdq8n36tX12CzwZgxUgCYUUZGGMXFTezbFzhhPc0hPWeeKdeU1fmKytqjN+5dJS/P9+Bi1Ci5xsSJKaWkoBRCiA7W5UWl1vowsE8plerfdBGwGfgEaE5jnQF87P/6E+AGf6LrAGAI8I1/qOwRpdR4/3zJHx+3T/OxrgH+pX13OJ8Ck5RSsf502Un+baKFrKwaRowIJSJCAgrMqHkdtUBarzI3183w4RLS0x24XKGUlnooKmrq0vPm5dXidKpWe6aEEEII0bmMSn+9B3jfn/y6E7gZX4G7UCk1E9gLXAugtd6klFqIr/BsAu7yJ78C3AG8A4TiC+hZ5t8+F3jPH+pThi89Fq11mVLqSSDb/7rfNIf2CB+vV/P11zXcdFOc0U0R7TRyZOjRsJ4f/tD4sJ7mkJ7JkyWkpztoGdaTnNx1CbB5eW7OOCMUh0N6oIQQQoiuZkhRqbVei29Zj+Nd9D2vfwp4qpXtOUB6K9vr8BelrfzsLeCtU2lvd7JlSx1VVV6ZT2lioaE2XK7QgAnrOXiwkcJCCenpLo4tK1LLhRd2TQKs16tZs8bN//yPPAwTQgghjCBj0cS3ZGX5QnomTJCi0swyM8PIzXV3+by21khIT/fSo4eD2Fh7l4b17NrVQFWVV+ZTCiGEEAaRolJ8y+rVNcTF2RkyRBYPN7OMjDBKSprYu7fB6Ka0COmRVM7u4FgCbNctK9Ic0jN6tBSVQgghhBGkqBTfkpVVw/jx4ZKMZ3KBFNaTm+tm2DAn4eES/NRdjBoVxurVNfzhD4dpaur83vK8PDcOB6SnS0iPEEIIYQQpKsVRFRVNbN5cJ0NfLWDkyFAcDgJiXmVurluGvnYzjz/ek2nTYnj00YOcdda2Tu+1XLOmFpcrlJAQ+ZMmhBBCGEH+AoujvvnGV4BISI/5OZ020tNDDe+pPHiwgcOHJaSnu0lIcPDhhwNYsGAAu3Y1MHr0Vp566hCNjR3fa6m1Ji/PLUNfhRBCCANJUSmOWr26BqVg7FgpKq0gIyOMnBxjw3okpKf7Ukpx3XWxbN48nCuvjOb//u8Q48ZtZf36jn3QceBAI8XFTYweLXN2hRBCCKNIUSmOysqqweVyEhUlc9+sIDMzjLIyD3v2GBfWk5vrRikJ6enOEhODWLBgIIsXD+DAgUYyMrbyxBMHaWjwdsjx16yRkB4hhBDCaFJUCsC3ztvq1TUyn9JCmnsHjZxX2RzSExEhDyq6u6uuimXz5jSuuy6WX//6MGPGbDua2no68hGdSmEAAA+DSURBVPJqUco3j1gIIYQQxpCiUgCwfXs9FRUeJkyIMLopooOMHBlKUJAydF5lbm6tDH0VR8XHO3j//QF8/PFAioubGDt2K//3fwepr29/r2VenpvU1BB5cCGEEEIYSIpKAfiGvgKMHy8FgFWEhNhIT3ca1lN56FAjhw41SlEpvmPatBg2bRrOj34Ux1NPHSYjYyvZ2TXtOpaE9AghhBDGcxjdABEYVq+uISbGTmqqrPNmJZmZYXz4YQVa6y5fe1RCesSJxMY6eOed/lx3XSyzZu1l/Pht3HZbAgMGBON02nA6FU6njZAQ9a3vW35dV+dl//5GKSqFEEIIg0lRKQDIyqpm3LhwbLauLTxE58rICGPOnFJ2725gwICQLj13c0jPqFEy1018v8svj2bTpjQeemg/c+aU4G3HSFh5cCGEEEIYS4pKwZEjHjZurOPqq2ONboroYC3DeowoKmWum2iL6Gg7c+b04403+lJfr6mr81JX1/z52Nff/ZkmJERx3nkyF1wIIYQwkhSVgm++qUFrGD9ekl+tZsSIY2E9117btQ8NcnPdXHCB3OyLtrPZFKGhitBQme4vhBBCmIn85RZHQ3rGjZMhZFYTEmJjxIiuD+s5fLiRgwclpEcIIYQQojuQolKwenUNw4c7iYmRjmsryswMJzfXjda6y84pIT1CCCGEEN2HFJXdnNaa1atrmDBBhr5aVUZGGBUVHnbubOiycx4L6ZGiUgghhBDC6qSo7OYKCuopLfVIUWlhmZm+wq6597Ar5Oa6GTo0hMhICekRQgghhLA6Ge/YzTXPp5SQHutKT3cSHKzIyanhuus6LqxHa43b7aW4uOnoR0mJ7/OqVTVMmhTZYecSQgghhBCBS4rKbm716hqiomykpTmNboroJMHBNkaODCU3t/aU9y0tbWLevFL27m2kuLiRkhIPxcWNR4vIurrW52kGByumTYs+3aYLIYQQQggTkKKym8vKqmHs2HBsNmV0U0QnysgI44MPytFao9TJ/1+Xljbx3HOFvPRSMdXVXiIibCQkOEhMdNCjRxDp6aEkJjqOfjT/rPnr6Gh7m84jhBBCCCHMT4rKbqymxsP69bX88pc9jG6K6GSZmWG88UYJO3bUM3jw9/dKl5U18dxzRbz0UhHV1V6uuy6Wxx7rgcsV2oWtFUIIIYQQZiJFZTeWne3G65X5lN1B89IeOTnuVovK44vJa6+N4bHHepKeLsWkEEIIIYQ4MUl/7cYkpKf7cLmchISo7yTAlpU18dhjB+nffyNPPXWYSy+NYv364SxYMFAKSiGEEEII0SbSU9mNrV5dQ2pqCHFxchlY3bGwHl9RWV7exPPPF/Hii0VUVR3rmRwxQgpJIYQQQghxagzpqVRK7VZKbVBKrVVK5fi3xSmlViil8v2fY1u8/hdKqQKl1Dal1OQW2zP8xylQSr2k/MkgSqkQpdQC//avlVL9W+wzw3+OfKXUjK77rQOL1pqsrBrppexGMjLCyM118/jjvp7JJ588zKRJvp7JhQsHSkEphBBCCCHaxcjhrxdorc/UWmf6v38UWKm1HgKs9H+PUioNuAFwAZcCryqlmldUfw2YBQzxf1zq3z4TKNdaDwaeB/7gP1Yc8CtgHDAW+FXL4rU72bWrgeLiJiZMkKKyu8jMDKOqysuTTx7mkkt8xeSiRVJMCiGEEEKI0xNI4x6vAM73f/0u8G/g5/7tH2it64FdSqkCYKxSajcQpbXOAlBKzQOuBJb593nCf6wPgT/5ezEnAyu01mX+fVbgK0Tnd/LvFnBkPmX3c+21seze3cC118YwcmSY0c0RQgghhBAWYVRRqYHPlFIaeENrPRtI1lofAtBaH1JKJflf2xtY3WLf/f5tjf6vj9/evM8+/7GalFKVQHzL7a3s062sXl1DeLhNwli6kagoO08+2cvoZgghhBBCCIsxqqg8W2t90F84rlBKbT3Ba1tbQV2fYHt79/n2SZWahW9oLX379j1B88wpK6uGsWPDsNtlgXohhBBCCCFE+xkyp1JrfdD/uQj4CN/8xkKlVE8A/+ci/8v3A31a7J4CHPRvT2ll+7f2UUo5gGig7ATHaq2Ns7XWmVrrzMTExPb9ogHK7faybp1b5lMKIYQQQgghTluXF5VKqXClVGTz18AkYCP8//buNsaOsozD+HXb3WJfkFKBhqJLUdtIgbLUImAwqRqrISQQpAYEBDUxEjAo8sGXEBMh0Q9KxKAiCRFChFhEQiWRRimowKKUUqi8CEHKEgRaQON2odBtbz/MtFlKC/X02TPn7F6/5GTPmTNnck/2znP2vzPzDMuBbbOxng3cUj9fDpxWz+h6CNWEPH+rT5Udiohj6+slP7/DZ7Zt61RgZWYmsAJYEhH71hP0LKmXTSj33/8KIyNw3HHTmy5FkiRJUpdr4vTXWcDN9d0/eoDrM/O2iLgPWBYRXwIGgaUAmflwRCwDHgFGgPMyc0u9rXOBa4ApVBP0/L5efjVwXT2pz8tUs8eSmS9HxCXAffV639s2ac9EMjCwEYBjjnGyFkmSJEl7JqoDeHorixYtylWrVjVdRjGnnPIka9du4oknDmu6FEmSJEndYZeTsTR5n0o1IDMZGBj2ViKSJEmSijBUTjCDg6/z/PMjTtIjSZIkqQhD5QQzMDAM4JFKSZIkSUUYKieYe+8dZsqUYMGCKU2XIkmSJGkcMFROMAMDwxx99DR6enZ5na0kSZIk7TZD5QSyadNWHnjgVa+nlCRJklSMoXICWb36FTZvTkOlJEmSpGIMlROIk/RIkiRJKq2n6QJUVmayYcMIg4Ov14/N25/fc88whxwymVmzepsuU5IkSdI4YajsUitXDrFu3WtvCo6Dg6/z2mv5hnWnTn0HfX29HHHEOznzzJkNVSxJkiRpPDJUdqlzzlnHM89sJgJmz+6lr28yCxdO5aST9qGvb/IbHjNnTiLC2V4lSZIklWeo7FLLl7+fGTMmcdBBk+ntNTBKkiRJaoahskv1909tugRJkiRJcvZXSZIkSVLrDJWSJEmSpJYZKiVJkiRJLTNUSpIkSZJaZqiUJEmSJLXMUClJkiRJapmhUpIkSZLUMkOlJEmSJKllhkpJkiRJUssMlZIkSZKklkVmNl1Dx4uIDcDTTdexE/sBLzZdhCYEe03tYJ+pXew1tYu9pnZpR6+9mJmf3tkbhsouFhGrMnNR03Vo/LPX1A72mdrFXlO72Gtql6Z7zdNfJUmSJEktM1RKkiRJklpmqOxuVzVdgCYMe03tYJ+pXew1tYu9pnZptNe8plKSJEmS1DKPVEqSJEmSWmao7CAR8d6IuCMiHo2IhyPignr5zIj4Q0Q8Uf/ct17+7nr9jRFxxQ7bui0iHqy3c2VETGpin9SZSvbaqG0uj4i/t3M/1NkKj2l3RsQ/ImJN/TigiX1SZyrca5Mj4qqIeDwiHouIzzSxT+pMpXotIvYeNZ6tiYgXI+LHTe2XOk/hce30iFgbEQ/VGWG/0vUaKjvLCPCNzDwUOBY4LyLmA98Ebs/MucDt9WuATcDFwEU72dZnM/NI4HBgf2DpWBevrlKy14iIU4CNY161uk3RPgPOyMz++rF+jGtXdynZa98B1mfmPGA+8KexLl5dpUivZebQqPGsn+p+6L9t106oKxTptYjoAS4HPpaZC4CHgPNLF2uo7CCZ+Vxmrq6fDwGPAgcBJwHX1qtdC5xcrzOcmXdRNdGO2/pv/bQHmAx48ay2K9lrETEduBC4tA2lq4uU7DPprRTutS8C36/X25qZ3rhe243FuBYRc4EDgL+MYenqMgV7LerHtIgI4F3Av0rXa6jsUBExBzgK+CswKzOfg6rBqAae3dnGCmA9MAT8ZkwKVdcr0GuXAD8CXhmjEjUOlBjTgF/Wp4ldXH8xSm+yJ70WETPqp5dExOqIuDEiZo1huepihcY1gNOBX6ezZ2oX9qTXMnMzcC6wlipMzgeuLl2jobID1Ud+bgK+NuqI4/8tMz8FHAjsBXy8UHkaR/a01yKiH/hAZt5cvDiNG4XGtDMy8wjgo/XjrFL1afwo0Gs9wHuAuzNzITAA/LBgiRonSv2tVjsNuGHPq9J4VOBvtV6qUHkUMJvq9NdvFS0SQ2XHqX/xNwG/ysxt59a/EBEH1u8fSHX0cbdk5iZgOdWhcmm7Qr12HPChiFgH3AXMi4g7x6ZidaNSY1pmPlv/HAKuBz48NhWrWxXqtZeozrrY9o+yG4GFY1CuuljJv9Ui4kigJzPvH5Ni1dUK9Vo/QGY+WR8NXwZ8pHSthsoOUp/OdTXwaGZeNuqt5cDZ9fOzgVveZjvTRzVbD3AC8Fj5itWtSvVaZv48M2dn5hzgeODxzFxcvmJ1o4JjWs+2merqL9gTAWca1nYFx7QEfgcsrhd9AnikaLHqaqV6bZTT8SildqJgrz0LzI+I/evXn6S6PrOo8PTtzhERx1NdpL0W2Fov/jbV+dPLgD5gEFiamS/Xn1lHdcHtZOA/wBKq/7TeSnXa6yRgJfD1zBxp176os5Xqtcx8ZNQ25wC3ZubhbdkJdbyCY9rTwJ+BXqox7Y/AhZm5pV37os5WckyLiIOB64AZwAbgC5k52L69UScr/f0ZEf8ETshM//mvNyg8rn0FuADYTPWdek5mvlS0XkOlJEmSJKlVnv4qSZIkSWqZoVKSJEmS1DJDpSRJkiSpZYZKSZIkSVLLDJWSJEmSpJYZKiVJakBEbImINRHxcEQ8GBEXRsRbfi9HxJyI+Fy7apQkaXcYKiVJasarmdmfmYdR3Yz6BOC7b/OZOYChUpLUUbxPpSRJDYiIjZk5fdTr9wH3AfsBBwPXAdPqt8/PzHsi4l7gUOAp4FrgJ8APgMXAXsBPM/MXbdsJSZIwVEqS1IgdQ2W97N/AB4EhYGtmboqIucANmbkoIhYDF2XmifX6XwYOyMxLI2Iv4G5gaWY+1dadkSRNaD1NFyBJkraL+mcvcEVE9ANbgHm7WH8JsCAiTq1f7wPMpTqSKUlSWxgqJUnqAPXpr1uA9VTXVr4AHEk1/8GmXX0M+GpmrmhLkZIk7YQT9UiS1LCI2B+4Ergiq+tS9gGey8ytwFnApHrVIWDvUR9dAZwbEb31duZFxDQkSWojj1RKktSMKRGxhupU1xGqiXkuq9/7GXBTRCwF7gCG6+UPASMR8SBwDXA51YywqyMigA3Aye3aAUmSwIl6JEmSJEl7wNNfJUmSJEktM1RKkiRJklpmqJQkSZIktcxQKUmSJElqmaFSkiRJktQyQ6UkSZIkqWWGSkmSJElSywyVkiRJkqSW/Q+uBZ395UkAbAAAAABJRU5ErkJggg==\n", 232 | "text/plain": [ 233 | "
" 234 | ] 235 | }, 236 | "metadata": { 237 | "needs_background": "light" 238 | }, 239 | "output_type": "display_data" 240 | } 241 | ], 242 | "source": [ 243 | "prediction_df, original_df = predict_df(predictions)\n", 244 | "plot_results(prediction_df, original_df, 'arima')" 245 | ] 246 | }, 247 | { 248 | "cell_type": "markdown", 249 | "metadata": {}, 250 | "source": [ 251 | "We can also get dynamic predictions. One-step-ahead prediction uses the true values of the endogenous values at each step to predict the next in-sample value. Dynamic predictions use one-step-ahead prediction up to some point in the dataset (specified by the dynamic argument); after that, the previous predicted endogenous values are used in place of the true endogenous values for each new predicted element." 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": null, 257 | "metadata": {}, 258 | "outputs": [], 259 | "source": [] 260 | } 261 | ], 262 | "metadata": { 263 | "kernelspec": { 264 | "display_name": "Python [conda env:metis] *", 265 | "language": "python", 266 | "name": "conda-env-metis-py" 267 | }, 268 | "language_info": { 269 | "codemirror_mode": { 270 | "name": "ipython", 271 | "version": 3 272 | }, 273 | "file_extension": ".py", 274 | "mimetype": "text/x-python", 275 | "name": "python", 276 | "nbconvert_exporter": "python", 277 | "pygments_lexer": "ipython3", 278 | "version": "3.7.4" 279 | }, 280 | "toc": { 281 | "base_numbering": 1, 282 | "nav_menu": {}, 283 | "number_sections": true, 284 | "sideBar": true, 285 | "skip_h1_title": false, 286 | "title_cell": "Table of Contents", 287 | "title_sidebar": "Contents", 288 | "toc_cell": false, 289 | "toc_position": {}, 290 | "toc_section_display": true, 291 | "toc_window_display": true 292 | } 293 | }, 294 | "nbformat": 4, 295 | "nbformat_minor": 2 296 | } 297 | --------------------------------------------------------------------------------