├── .idea ├── .name ├── encodings.xml ├── modules.xml ├── SentencePairMatch_MachineLearning.iml ├── misc.xml └── workspace.xml ├── README.md ├── .gitignore ├── ParaPhrase_svm.py ├── ParaPhrase_lr.py ├── ParaPhrase_randomforest.py └── ParaPhrase_gbdt.py /.idea/.name: -------------------------------------------------------------------------------- 1 | SentencePairMatch_MachineLearning -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # SentencePairMatch_MachineLearning 2 | 用机器学习算法实现了一种有监督的句子对匹配方法,使用的机器学习分类算法有:逻辑回归(LR)、SVM、GBDT和随机森林(RandomForest),使用的工具是Sklearn,版本是0.17.1 3 | -------------------------------------------------------------------------------- /.idea/encodings.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | -------------------------------------------------------------------------------- /.idea/modules.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | -------------------------------------------------------------------------------- /.idea/SentencePairMatch_MachineLearning.iml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 12 | -------------------------------------------------------------------------------- /.idea/misc.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | env/ 12 | build/ 13 | develop-eggs/ 14 | dist/ 15 | downloads/ 16 | eggs/ 17 | .eggs/ 18 | lib/ 19 | lib64/ 20 | parts/ 21 | sdist/ 22 | var/ 23 | wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | 49 | # Translations 50 | *.mo 51 | *.pot 52 | 53 | # Django stuff: 54 | *.log 55 | local_settings.py 56 | 57 | # Flask stuff: 58 | instance/ 59 | .webassets-cache 60 | 61 | # Scrapy stuff: 62 | .scrapy 63 | 64 | # Sphinx documentation 65 | docs/_build/ 66 | 67 | # PyBuilder 68 | target/ 69 | 70 | # Jupyter Notebook 71 | .ipynb_checkpoints 72 | 73 | # pyenv 74 | .python-version 75 | 76 | # celery beat schedule file 77 | celerybeat-schedule 78 | 79 | # SageMath parsed files 80 | *.sage.py 81 | 82 | # dotenv 83 | .env 84 | 85 | # virtualenv 86 | .venv 87 | venv/ 88 | ENV/ 89 | 90 | # Spyder project settings 91 | .spyderproject 92 | .spyproject 93 | 94 | # Rope project settings 95 | .ropeproject 96 | 97 | # mkdocs documentation 98 | /site 99 | 100 | # mypy 101 | .mypy_cache/ 102 | -------------------------------------------------------------------------------- /ParaPhrase_svm.py: -------------------------------------------------------------------------------- 1 | # coding:utf-8 2 | import numpy as np 3 | import csv 4 | import datetime 5 | from sklearn.svm import SVC 6 | import os 7 | import pandas as pd 8 | from sklearn import metrics 9 | cwd = os.getcwd() 10 | 11 | 12 | def load_data(datapath): 13 | data_train = pd.read_csv(datapath, sep='\t', encoding='utf-8') 14 | print data_train.shape 15 | 16 | qid1 = [] 17 | qid2 = [] 18 | labels = [] 19 | count = 0 20 | for idx in range(data_train.id.shape[0]): 21 | # for idx in range(400): 22 | # count += 1 23 | # if count == 21: break 24 | print idx 25 | q1 = data_train.qid1[idx] 26 | q2 = data_train.qid2[idx] 27 | 28 | qid1.append(q1) 29 | qid2.append(q2) 30 | labels.append(data_train.is_duplicate[idx]) 31 | 32 | return qid1, qid2, labels 33 | 34 | def load_doc2vec(word2vecpath): 35 | f = open(word2vecpath) 36 | embeddings_index = {} 37 | count = 0 38 | for line in f: 39 | # count += 1 40 | # if count == 10000: break 41 | values = line.split('\t') 42 | id = values[0] 43 | print id 44 | coefs = np.asarray(values[1].split(), dtype='float32') 45 | embeddings_index[int(id)+1] = coefs 46 | f.close() 47 | print('Total %s word vectors.' % len(embeddings_index)) 48 | 49 | return embeddings_index 50 | 51 | def sentence_represention(qid, embeddings_index): 52 | vectors = np.zeros((len(qid), 100)) 53 | for i in range(len(qid)): 54 | print i 55 | vectors[i] = embeddings_index.get(qid[i]) 56 | 57 | return vectors 58 | 59 | def main(): 60 | start = datetime.datetime.now() 61 | datapath = 'D:/dataset/quora/quora_duplicate_questions_Chinese_seg.tsv' 62 | doc2vecpath = "D:/dataset/quora/vector2/quora_duplicate_question_doc2vec_100.vector" 63 | qid1, qid2, labels = load_data(datapath) 64 | embeddings_index = load_doc2vec(word2vecpath=doc2vecpath) 65 | vectors1 = sentence_represention(qid1, embeddings_index) 66 | vectors2 = sentence_represention(qid2, embeddings_index) 67 | vectors = np.hstack((vectors1, vectors2)) 68 | labels = np.array(labels) 69 | VALIDATION_SPLIT = 10000 70 | VALIDATION_SPLIT0 = 1000 71 | indices = np.arange(vectors.shape[0]) 72 | np.random.shuffle(indices) 73 | vectors = vectors[indices] 74 | labels = labels[indices] 75 | train_vectors = vectors[:-VALIDATION_SPLIT] 76 | train_labels = labels[:-VALIDATION_SPLIT] 77 | test_vectors = vectors[-VALIDATION_SPLIT:] 78 | test_labels = labels[-VALIDATION_SPLIT:] 79 | # train_vectors = vectors[:VALIDATION_SPLIT0] 80 | # train_labels = labels[:VALIDATION_SPLIT0] 81 | # test_vectors = vectors[-VALIDATION_SPLIT0:] 82 | # test_labels = labels[-VALIDATION_SPLIT0:] 83 | 84 | svm = SVC() 85 | print '***********************training************************' 86 | svm.fit(train_vectors, train_labels) 87 | 88 | print '***********************predict*************************' 89 | prediction = svm.predict(test_vectors) 90 | accuracy = metrics.accuracy_score(test_labels, prediction) 91 | print accuracy 92 | 93 | end = datetime.datetime.now() 94 | print end-start 95 | 96 | 97 | if __name__ == '__main__': 98 | main() # the whole one model -------------------------------------------------------------------------------- /ParaPhrase_lr.py: -------------------------------------------------------------------------------- 1 | # coding:utf-8 2 | import numpy as np 3 | import csv 4 | import datetime 5 | from sklearn.linear_model import LogisticRegression 6 | import os 7 | import pandas as pd 8 | from sklearn import metrics 9 | cwd = os.getcwd() 10 | 11 | def load_data(datapath): 12 | data_train = pd.read_csv(datapath, sep='\t', encoding='utf-8') 13 | print data_train.shape 14 | 15 | qid1 = [] 16 | qid2 = [] 17 | labels = [] 18 | count = 0 19 | for idx in range(data_train.id.shape[0]): 20 | # for idx in range(400): 21 | # count += 1 22 | # if count == 21: break 23 | print idx 24 | q1 = data_train.qid1[idx] 25 | q2 = data_train.qid2[idx] 26 | 27 | qid1.append(q1) 28 | qid2.append(q2) 29 | labels.append(data_train.is_duplicate[idx]) 30 | 31 | return qid1, qid2, labels 32 | 33 | def load_doc2vec(word2vecpath): 34 | f = open(word2vecpath) 35 | embeddings_index = {} 36 | count = 0 37 | for line in f: 38 | # count += 1 39 | # if count == 10000: break 40 | values = line.split('\t') 41 | id = values[0] 42 | print id 43 | coefs = np.asarray(values[1].split(), dtype='float32') 44 | embeddings_index[int(id)+1] = coefs 45 | f.close() 46 | print('Total %s word vectors.' % len(embeddings_index)) 47 | 48 | return embeddings_index 49 | 50 | def sentence_represention(qid, embeddings_index): 51 | vectors = np.zeros((len(qid), 100)) 52 | for i in range(len(qid)): 53 | print i 54 | vectors[i] = embeddings_index.get(qid[i]) 55 | 56 | return vectors 57 | 58 | def main(): 59 | start = datetime.datetime.now() 60 | datapath = 'D:/dataset/quora/quora_duplicate_questions_Chinese_seg.tsv' 61 | doc2vecpath = "D:/dataset/quora/vector2/quora_duplicate_question_doc2vec_100.vector" 62 | qid1, qid2, labels = load_data(datapath) 63 | embeddings_index = load_doc2vec(word2vecpath=doc2vecpath) 64 | vectors1 = sentence_represention(qid1, embeddings_index) 65 | vectors2 = sentence_represention(qid2, embeddings_index) 66 | vectors = np.hstack((vectors1, vectors2)) 67 | labels = np.array(labels) 68 | VALIDATION_SPLIT = 10000 69 | VALIDATION_SPLIT0 = 1000 70 | indices = np.arange(vectors.shape[0]) 71 | np.random.shuffle(indices) 72 | vectors = vectors[indices] 73 | labels = labels[indices] 74 | train_vectors = vectors[:-VALIDATION_SPLIT] 75 | train_labels = labels[:-VALIDATION_SPLIT] 76 | test_vectors = vectors[-VALIDATION_SPLIT:] 77 | test_labels = labels[-VALIDATION_SPLIT:] 78 | # train_vectors = vectors[:VALIDATION_SPLIT0] 79 | # train_labels = labels[:VALIDATION_SPLIT0] 80 | # test_vectors = vectors[-VALIDATION_SPLIT0:] 81 | # test_labels = labels[-VALIDATION_SPLIT0:] 82 | 83 | lr = LogisticRegression() 84 | print '***********************training************************' 85 | lr.fit(train_vectors, train_labels) 86 | 87 | print '***********************predict*************************' 88 | prediction = lr.predict(test_vectors) 89 | accuracy = metrics.accuracy_score(test_labels, prediction) 90 | print accuracy 91 | end = datetime.datetime.now() 92 | print end-start 93 | 94 | 95 | if __name__ == '__main__': 96 | main() # the whole one model -------------------------------------------------------------------------------- /ParaPhrase_randomforest.py: -------------------------------------------------------------------------------- 1 | # coding:utf-8 2 | import numpy as np 3 | import csv 4 | import datetime 5 | from sklearn.ensemble import RandomForestClassifier 6 | import os 7 | import pandas as pd 8 | from sklearn import metrics, feature_extraction 9 | from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer 10 | cwd = os.getcwd() 11 | 12 | 13 | def load_data(datapath): 14 | data_train = pd.read_csv(datapath, sep='\t', encoding='utf-8') 15 | print data_train.shape 16 | 17 | qid1 = [] 18 | qid2 = [] 19 | question1 = [] 20 | question2 = [] 21 | labels = [] 22 | count = 0 23 | for idx in range(data_train.id.shape[0]): 24 | # for idx in range(400): 25 | # count += 1 26 | # if count == 21: break 27 | print idx 28 | q1 = data_train.qid1[idx] 29 | q2 = data_train.qid2[idx] 30 | 31 | qid1.append(q1) 32 | qid2.append(q2) 33 | question1.append(data_train.question1[idx]) 34 | question2.append(data_train.question2[idx]) 35 | labels.append(data_train.is_duplicate[idx]) 36 | 37 | return qid1, qid2, question1, question2, labels 38 | 39 | def load_doc2vec(word2vecpath): 40 | f = open(word2vecpath) 41 | embeddings_index = {} 42 | count = 0 43 | for line in f: 44 | # count += 1 45 | # if count == 10000: break 46 | values = line.split('\t') 47 | id = values[0] 48 | print id 49 | coefs = np.asarray(values[1].split(), dtype='float32') 50 | embeddings_index[int(id)+1] = coefs 51 | f.close() 52 | print('Total %s word vectors.' % len(embeddings_index)) 53 | 54 | return embeddings_index 55 | 56 | def sentence_represention(qid, embeddings_index): 57 | vectors = np.zeros((len(qid), 100)) 58 | for i in range(len(qid)): 59 | print i 60 | vectors[i] = embeddings_index.get(qid[i]) 61 | 62 | return vectors 63 | 64 | def main(): 65 | start = datetime.datetime.now() 66 | datapath = 'D:/dataset/quora/quora_duplicate_questions_Chinese_seg.tsv' 67 | doc2vecpath = "D:/dataset/quora/vector2/quora_duplicate_question_doc2vec_100.vector" 68 | qid1, qid2, question1, question2, labels = load_data(datapath) 69 | 70 | embeddings_index = load_doc2vec(word2vecpath=doc2vecpath) 71 | vectors1 = sentence_represention(qid1, embeddings_index) 72 | vectors2 = sentence_represention(qid2, embeddings_index) 73 | vectors = np.hstack((vectors1, vectors2)) 74 | labels = np.array(labels) 75 | VALIDATION_SPLIT = 10000 76 | VALIDATION_SPLIT0 = 1000 77 | indices = np.arange(vectors.shape[0]) 78 | np.random.shuffle(indices) 79 | vectors = vectors[indices] 80 | labels = labels[indices] 81 | train_vectors = vectors[:-VALIDATION_SPLIT] 82 | train_labels = labels[:-VALIDATION_SPLIT] 83 | test_vectors = vectors[-VALIDATION_SPLIT:] 84 | test_labels = labels[-VALIDATION_SPLIT:] 85 | # train_vectors = vectors[:VALIDATION_SPLIT0] 86 | # train_labels = labels[:VALIDATION_SPLIT0] 87 | # test_vectors = vectors[-VALIDATION_SPLIT0:] 88 | # test_labels = labels[-VALIDATION_SPLIT0:] 89 | 90 | randomforest = RandomForestClassifier() 91 | print '***********************training************************' 92 | randomforest.fit(train_vectors, train_labels) 93 | 94 | print '***********************predict*************************' 95 | prediction = randomforest.predict(test_vectors) 96 | accuracy = metrics.accuracy_score(test_labels, prediction) 97 | print accuracy 98 | 99 | end = datetime.datetime.now() 100 | print end-start 101 | 102 | 103 | if __name__ == '__main__': 104 | main() # the whole one model -------------------------------------------------------------------------------- /ParaPhrase_gbdt.py: -------------------------------------------------------------------------------- 1 | # coding:utf-8 2 | import numpy as np 3 | import csv 4 | import datetime 5 | from sklearn.ensemble import GradientBoostingClassifier 6 | import os 7 | import pandas as pd 8 | from sklearn import metrics 9 | cwd = os.getcwd() 10 | 11 | def load_data(datapath): 12 | data_train = pd.read_csv(datapath, sep='\t', encoding='utf-8') 13 | print data_train.shape 14 | 15 | qid1 = [] 16 | qid2 = [] 17 | labels = [] 18 | count = 0 19 | for idx in range(data_train.id.shape[0]): 20 | # for idx in range(400): 21 | # count += 1 22 | # if count == 21: break 23 | print idx 24 | q1 = data_train.qid1[idx] 25 | q2 = data_train.qid2[idx] 26 | 27 | qid1.append(q1) 28 | qid2.append(q2) 29 | labels.append(data_train.is_duplicate[idx]) 30 | 31 | return qid1, qid2, labels 32 | 33 | def load_doc2vec(word2vecpath): 34 | f = open(word2vecpath) 35 | embeddings_index = {} 36 | count = 0 37 | for line in f: 38 | # count += 1 39 | # if count == 10000: break 40 | values = line.split('\t') 41 | id = values[0] 42 | print id 43 | coefs = np.asarray(values[1].split(), dtype='float32') 44 | embeddings_index[int(id)+1] = coefs 45 | f.close() 46 | print('Total %s word vectors.' % len(embeddings_index)) 47 | 48 | return embeddings_index 49 | 50 | def sentence_represention(qid, embeddings_index): 51 | vectors = np.zeros((len(qid), 100)) 52 | for i in range(len(qid)): 53 | print i 54 | vectors[i] = embeddings_index.get(qid[i]) 55 | 56 | return vectors 57 | 58 | def main(): 59 | start = datetime.datetime.now() 60 | datapath = 'D:/dataset/quora/quora_duplicate_questions_Chinese_seg.tsv' 61 | doc2vecpath = "D:/dataset/quora/vector2/quora_duplicate_question_doc2vec_100.vector" 62 | qid1, qid2, labels = load_data(datapath) 63 | embeddings_index = load_doc2vec(word2vecpath=doc2vecpath) 64 | vectors1 = sentence_represention(qid1, embeddings_index) 65 | vectors2 = sentence_represention(qid2, embeddings_index) 66 | vectors = np.hstack((vectors1, vectors2)) 67 | labels = np.array(labels) 68 | VALIDATION_SPLIT = 10000 69 | VALIDATION_SPLIT0 = 1000 70 | indices = np.arange(vectors.shape[0]) 71 | np.random.shuffle(indices) 72 | vectors = vectors[indices] 73 | labels = labels[indices] 74 | train_vectors = vectors[:-VALIDATION_SPLIT] 75 | train_labels = labels[:-VALIDATION_SPLIT] 76 | test_vectors = vectors[-VALIDATION_SPLIT:] 77 | test_labels = labels[-VALIDATION_SPLIT:] 78 | # train_vectors = vectors[:VALIDATION_SPLIT0] 79 | # train_labels = labels[:VALIDATION_SPLIT0] 80 | # test_vectors = vectors[-VALIDATION_SPLIT0:] 81 | # test_labels = labels[-VALIDATION_SPLIT0:] 82 | 83 | gbdt = GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance', 84 | max_depth=3, max_features=None, max_leaf_nodes=None, 85 | min_samples_leaf=1, min_samples_split=2, 86 | min_weight_fraction_leaf=0.0, n_estimators=100, 87 | random_state=None, subsample=1.0, verbose=0, 88 | warm_start=False) 89 | print '***********************training************************' 90 | gbdt.fit(train_vectors, train_labels) 91 | 92 | print '***********************predict*************************' 93 | prediction = gbdt.predict(test_vectors) 94 | accuracy = metrics.accuracy_score(test_labels, prediction) 95 | acc = gbdt.score(test_vectors, test_labels) 96 | print accuracy 97 | print acc 98 | 99 | end = datetime.datetime.now() 100 | print end-start 101 | 102 | 103 | if __name__ == '__main__': 104 | main() # the whole one model -------------------------------------------------------------------------------- /.idea/workspace.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 14 | 15 | 16 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | true 40 | 41 | 42 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 79 | 80 | 81 | 82 | 85 | 86 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 127 | 128 | 129 | 130 | 131 | 144 | 145 | 158 | 159 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 205 | 206 | 225 | 226 | 247 | 248 | 270 | 271 | 295 | 296 | 297 | 298 | 299 | 300 | 1496481127907 301 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | --------------------------------------------------------------------------------