├── VERSION
├── src
└── README.md
├── assets
└── pearl_penrose.jpg
├── nuggets
├── looper_nuggets.md
└── LN1.md
├── CITEME.md
├── CONTRIBUTORS.md
├── CHANGELOG
├── contribution_guide.md
├── README.md
└── looper.md
/VERSION:
--------------------------------------------------------------------------------
1 | 0.3.1
--------------------------------------------------------------------------------
/src/README.md:
--------------------------------------------------------------------------------
1 | src
2 |
--------------------------------------------------------------------------------
/assets/pearl_penrose.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/msuzen/looper/HEAD/assets/pearl_penrose.jpg
--------------------------------------------------------------------------------
/nuggets/looper_nuggets.md:
--------------------------------------------------------------------------------
1 | # Looper Nugget
2 |
3 | * [LN1](LN1.md): weighted-Directed Acyclic Graph (wDAG)
4 |
5 | ## Citing Nuggets
6 |
7 | [Cite-me](../CITEME.md)
8 |
--------------------------------------------------------------------------------
/CITEME.md:
--------------------------------------------------------------------------------
1 | ```
2 | @misc{suezen2018a,
3 | author = {Mehmet S{\"u}zen et. al.},
4 | title = {A resource list for causality in statistics, data science and physics},
5 | year = {2018-2023},
6 | publisher = {GitHub},
7 | journal = {GitHub repository},
8 | howpublished = {\url{https://github.com/msuzen/looper}},
9 | }
10 | ```
11 |
--------------------------------------------------------------------------------
/CONTRIBUTORS.md:
--------------------------------------------------------------------------------
1 |
2 | * Mehmet Suzen (Alumni Frankfurt) : Principal Author & Editor
3 |
4 | # Contributors
5 |
6 | * Uri Shalit (Technion).
7 | * Rodney Beard (Glasgow).
8 | * Nino Malekovic (The Hague/Basel).
9 | * Cho Dong-Hwan github:dhjo70.
10 | * Jeff Willingham (Denver).
11 | * Professor Colin Cameron (UC Davis).
12 | * James T. Metz (Chicago).
13 |
--------------------------------------------------------------------------------
/CHANGELOG:
--------------------------------------------------------------------------------
1 | 0.3.1
2 | * New Sections:
3 | * Thesis: Causal Representation learning and point process.
4 | * Review: Imbens's review.
5 | * Conference update: LLMs are causal parrots.
6 | * ML papers: Causal bandits, causal threatment outcome prediction.
7 |
8 | 0.3.0
9 | * New books: Chernozhukov et. al. (2024), Hurwitz-Thompson (2023).
10 | * Logo: Penrose meets Pearl.
11 | * Nobel Memorial Prize 2021, Laureates names.
12 | * Datasets Hunninton-Klein R package.
13 | * Software section clean-up: Sub-sections.
14 | * Additional conference links.
15 | * Simpson's paradox section updates.
16 | * MOOC; mixsessions.io Course material.
--------------------------------------------------------------------------------
/nuggets/LN1.md:
--------------------------------------------------------------------------------
1 | # LN 1: weighted Directed Acyclic Graph (wDAG)
2 |
3 | Definition (wDAG): A weighted Directed Acyclic Graph (wDAG) $\mathscr{G_{c}}$ is defined as set of ordered triplets of weights and connected random variables, such that, $k$th triplet $(w_{k}, x_{i}, x_{j})$ where by $w_{k} \in \mathbb{R}$ is the weight, an effect size, between two variates that $x_{i}$ effects $x_{j}$. There are constraints :
4 |
5 | (i) No cyclic effects can be defined, necessarily $x_{i}$ can not be equal to $ x_{j}$.
6 |
7 | (ii) If there is a definition, $(w_{k}, x_{i}, x_{j})$ the reverse can't be defined, i.e., so that $(w_{k}, x_{j}, x_{i})$ does not exist.
8 |
9 | (iii) No two causal effects sizes can't be exactly equal, $w_{k}$ can not be equal to $w_{l}$, from the same causal variable, meaning no simultaneous events caused by the same random variable. This prevents ambiguity of ordering and random tie-breaks are unnatural.
10 |
11 | ## Further reading and notes
12 |
13 | * Pearl, Glymour and Jewell.
14 | Causal Inference in Statistics: A Primer (2016).
15 | [amzn](https://www.amzn.com/dp/1119186846).
16 | [Ch4-pdf](http://web.cs.ucla.edu/~kaoru/primer-ch4.pdf).
17 | [tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
18 |
19 | * Constraint (iii) may not be applied, then ties should be break randomly, in the case of ordered events.
20 |
21 | [Cite-me](../CITEME.md)
22 |
--------------------------------------------------------------------------------
/contribution_guide.md:
--------------------------------------------------------------------------------
1 | # How to contribute to looper
2 |
3 | The looper is aim at providing a resource list, code snippets or small scale software solutions
4 | for causal analysis in different areas. You can contribute to looper by sending a pull request
5 | and you would automatically accept that your contributions might be accepted and absorb into
6 | looper repository under our open licencse, CC-BY 4.0.
7 |
8 | ## Adding a resource link
9 |
10 | * Find an appropriate section in the file `looper.md`.
11 | * There is no standard formatting except placing the title
12 | and information on the resource location and a link.
13 | * For readibility, use a convention of placing two spaces to have line breaks.
14 | See [How to insert a line breakin markdown](https://stackoverflow.com/questions/26626256/how-to-insert-a-line-break-br-in-markdown)
15 | * The sections of books and papers are in reverse-chronological order.
16 | * For software links, try to procide as much information as possible.
17 |
18 | ## Adding software solution or code
19 |
20 | * Use `src` directory and place your solution under this with a unique name.
21 | * Place an internal link to your directory in software section `looper.md`.
22 |
23 | ## Pull request
24 |
25 | * You would need to branch/fork from master and add your contributions.
26 | * Add your name and possibily affiliation in `CONTRIBUTORS` file if you are not there yet.
27 |
28 | ## Contribute via issue
29 |
30 | You can also contribute via creating an issue if using github is too time consuming for you.
31 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # looper : A resource list for causality in statistics, data science and physics
2 |
3 | [](https://doi.org/10.5281/zenodo.17247981)
4 |
5 |
6 |
7 | Penrose meets Pearl, (c) 2021
8 |
9 |
10 |
11 | Our honour to be mentioned by Judea Pearl on [twitter](https://x.com/yudapearl/status/1388556564550717442).
12 |
13 | ```
14 |
15 | Aspiration to learn everything from data alone has
16 | kept the ML community away from science.
17 |
18 | Judea Pearl
19 |
20 | ```
21 |
22 | A resource list, code snippets or small scale software solutions for causal analysis in different areas. The name is inspired from the movie [looper](https://en.wikipedia.org/wiki/Looper_(film)), which has a premise of time-like loops, probably the most complex causal subject from physics point of view.
23 |
24 | The main entry is a markdown file as follows, any looper specific internal examples are lined there too :
25 |
26 | * [A resource list for causality in statistics, data science and physics](looper.md)
27 | Other fields of course such as econometrics, epidemiology and many more.
28 |
29 | ## Looper Nuggets
30 |
31 | Looper Nuggets mimick a glossary of terms and concepts in causal inference, though they are entry to
32 | understanding concepts in pedagogical manner. See the list of
33 | them [here](nuggets/looper_nuggets.md).
34 |
35 | ## License
36 |
37 | This repository and all contributions are licensed under
38 | [](https://creativecommons.org/licenses/by/4.0/)
39 |
40 | ## Citing the repo
41 |
42 | Please attribute this work as follows (bibtex) and check for the newest version,
43 |
44 | ```
45 | @manual{suzen18a,
46 | title = {A resource list for causality in statistics, data science and physics},
47 | author = {Mehmet, Süzen},
48 | year = {2025},
49 | version = {v0.3.1},
50 | doi = {10.5281/zenodo.17247981},
51 | url = {https://doi.org/10.5281/zenodo.17247981},
52 | }
53 | ```
54 |
55 | If you are embedding specific release, use the version link, for example for `https://github.com/msuzen/looper/tree/v0.1.2`
56 | in `howpublished` tag.
57 |
58 | ## Contributions
59 |
60 | Please send a pull request or create an issue for suggestions or codes. See [Basic how to contribute guide](contribution_guide.md)
61 |
62 |
--------------------------------------------------------------------------------
/looper.md:
--------------------------------------------------------------------------------
1 | # [A resource list for causality in statistics, data science and physics](https://github.com/msuzen/looper)
2 |
3 | ##### Table of Contents
4 | [Editor's Selection](#editors-selection).
5 | [Books](#books)
6 | [Papers general](#papers-general)
7 | [Causal Discovery](#causal-discovery)
8 | [Simpson's Paradox](#simpsons-paradox)
9 | [Machine Learning](#machine-learning)
10 | [Fairness](#fairness)
11 | [Physics](#physics)
12 | [Thesis](#thesis)
13 | [Reviews](#review)
14 | [Software](#software)
15 | [Datasets](#datasets)
16 | [MOOCs](#moocs)
17 | [Blog Posts](#blog-posts)
18 | [Quotes](#quotes)
19 | [Video Lectures](#video-lectures).
20 | [Academics](#academics).
21 | [Communities](#communities-conferences)
22 |
23 | ## Editors Selection
24 | Repeating from other sections, Highly important
25 | Order from beginner to advanced.
26 |
27 | * Judea Pearl and Mackenzie.
28 | The Book of Why: The New Science of Cause and Effect (2018).
29 | [amzn](https://www.amzn.com/dp/046509760X) | [Pearl's additional links](http://bayes.cs.ucla.edu/WHY/)
30 |
31 | * The Seven Tools of Causal Inference, with Reflections on Machine Learning.
32 | Judea Pearl.
33 | Communications of the ACM, March 2019, Vol. 62 No. 3, Pages 54-60.
34 | [url](https://cacm.acm.org/magazines/2019/3/234929-the-seven-tools-of-causal-inference-with-reflections-on-machine-learning/fulltext)
35 | [pdf-reprint](https://ftp.cs.ucla.edu/pub/stat_ser/r481-reprint.pdf).
36 | [interview](https://www.youtube.com/watch?v=CsMV5o3hotY).
37 |
38 | * Causal Inference: History, Perspectives, Adventures, and Unification (An Interview with Judea Pearl).
39 | Observational Studies, 8, 2, (2022), p1-14.
40 | [url](https://muse.jhu.edu/article/867087) | [pdf](https://muse.jhu.edu/pub/56/article/867087/pdf).
41 |
42 | * Pearl, Glymour and Jewell.
43 | Causal Inference in Statistics: A Primer (2016).
44 | [amzn](https://www.amzn.com/dp/1119186846).
45 | [Ch4-pdf](http://web.cs.ucla.edu/~kaoru/primer-ch4.pdf).
46 | [tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
47 | Self-study by Bruno Goncalves [github](https://github.com/DataForScience/Causality)
48 | Full-text is available on [UCLA Bayes](https://bayes.cs.ucla.edu/PRIMER/).
49 |
50 | * Nobel Memorial Economics Prize 2021 on causal discovery, scientific summary.
51 | Answering Causal Questions Using Observational Data. (2021)
52 | (David Card, Joshua Angrist, and Guido Imbens)
53 | [pdf](https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf).
54 |
55 | * Causality, determinism, and physics.
56 | Julio Geo-Banacloche.
57 | American Journal of Physics 90, 809 (2022); [doi](https://doi.org/10.1119/5.0087017).
58 |
59 | * Causal diagrams for empirical research.
60 | Judea Pearl (1995).
61 | [jstor](https://www.jstor.org/stable/2337329) | [pdf-UCLA](http://bayes.cs.ucla.edu/R218-B.pdf).
62 | `Reasoning on Graphs: d-seperation, back/front-door`
63 |
64 | * Paul W. Holland.
65 | Statistics and Causal Inference.
66 | Journal of the American Statistical Association.
67 | Dec., 1986, Vol. 81, No. 396 (Dec., 1986), pp. 945-960 [jstor](https://www.jstor.org/stable/2289064)
68 | `Paper that coins the term: Fundamental Problem of Causal Inference`
69 | `It means there is no way to observe causality on the single entity simultaneously.`
70 |
71 | * Probabilistic and Causal Inference: The Works of Judea Pearl. (2022)
72 | Editors: Hector Geffner,Rina Dechter,Joseph Y. Halpern.
73 | ACM Books [doi](https://dl.acm.org/doi/book/10.1145/3501714).
74 | `An excellent technical reviews of Pearlian approach to causal inference`
75 |
76 | * Causal Artificial Intelligence
77 | A Roadmap for Building Causally Intelligent Systems
78 | Elias Bareinboim (2025)
79 | [causalai-book website](https://causalai-book.net/)
80 |
81 | * Space-time as a causal set.
82 | Luca Bombelli, Joohan Lee, David Meyer, and Rafael D. Sorkin.
83 | Phys. Rev. Lett. 59, 521 (1987).
84 | [url](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.59.521)
85 |
86 | ## Books
87 |
88 | Reverse chronological order, both technical and popular.
89 |
90 |
91 | * Causal Artificial Intelligence
92 | A Roadmap for Building Causally Intelligent Systems
93 | Elias Bareinboim (2025)
94 | [causalai-book website](https://causalai-book.net/)
95 |
96 | * Applied Causal Inference Powered by ML and AI
97 | V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, V. Syrgkanis (2024)
98 | [offfical-web](https://causalml-book.org) | [pdf](https://causalml-book.org/assets/chapters/CausalML_book.pdf)
99 |
100 | * A Mathematical Introduction to Causality
101 | Lecture Notes (2023)
102 | Patrick Forré and Joris M. Mooij
103 | [UvA's-pdf](https://staff.fnwi.uva.nl/j.m.mooij/articles/causality_lecture_notes_2023.pdf)
104 |
105 | * A First Course in Causal Inference.
106 | Peng Ding.
107 | [arXiv](https://arxiv.org/abs/2305.18793) (2023)
108 |
109 | * Applied Causal Inference
110 | Uday Kamath, Kenneth Graham, Mitchell Naylor (2023)
111 | [online-version](https://appliedcausalinference.github.io) | [lean-pub](https://leanpub.com/appliedcausalinference)
112 |
113 | * Causal Artificial Intelligence: The Next Step in Effective Business AI
114 | Judith Hurwitz, John Thompson (2023)
115 | [amz](https://amzn.com/dp/1394184131)
116 |
117 | * Causal Inference & Discovery in Python. (2023)
118 | From Machine Learning & Pearlian Perspective.
119 | Aleksander Molak.
120 | [causalpython](https://causalpython.io). | [amz](https://amzn.com/dp/1804612987)
121 |
122 | * Causal Inference for Data Science.
123 | Aleix Ruiz de Villa (2023)
124 | [manning](https://www.manning.com/books/causal-inference-for-data-science).
125 |
126 | * Causal Analysis.
127 | Impact Evaluation and Causal Machine Learning with Applications in R.
128 | Martin Huber (2023).
129 | MIT Press [url](https://mitpress.mit.edu/9780262545914/causal-analysis/) | R package [causalweight](https://cran.r-project.org/web/packages/causalweight/index.html) | [R examples](https://www.unifr.ch/appecon/en/assets/public/uploads/causal%20analysis%20-%20R%20examples.txt) | [academic page](https://www.unifr.ch/appecon/en/research/text-book-causal-analysis.html)
130 |
131 | * Causal Inference in Python.
132 | Matheus Facure.
133 | [Oreilly](https://www.oreilly.com/library/view/causal-inference-in/9781098140243/) (2023).
134 |
135 | * Causal Inference for The Brave and True. (2022).
136 | Matheus Facure.
137 | [e-book](https://matheusfacure.github.io/python-causality-handbook/landing-page.html) | [github](https://github.com/matheusfacure/python-causality-handbook)
138 |
139 | * Probabilistic and Causal Inference: The Works of Judea Pearl. (2022)
140 | Editors: Hector Geffner,Rina Dechter,Joseph Y. Halpern.
141 | ACM Books [doi](https://dl.acm.org/doi/book/10.1145/3501714).
142 |
143 | * Microeconometrics using Stata: Volume 2: Nonlinear Models and Causal Inference Methods. (2022).
144 | Cameron, A. C., and P. K. Trivedi.
145 | Stata Press [url](https://www.routledge.com/Microeconometrics-Using-Stata-Second-Edition-Volume-II-Nonlinear-Models/Cameron-Trivedi/p/book/9781597183628)
146 |
147 | * Nick Huntington-Klein.
148 | The Effect: An Introduction to Research Design and Causality (2021).
149 | [bookdown](https://theeffectbook.net/index.html) | [amzn](https://amzn.com/dp/1032125780).
150 | [code-supplement](https://github.com/NickCH-K/causalbook) | [datasets-R](https://cran.r-project.org/web/packages/causaldata/index.html).
151 |
152 | * Causal Machine Learning.
153 | Robert Ness (2022-).
154 | [in-progress](https://www.manning.com/books/causal-machine-learning) | [lecture notes](https://bookdown.org/robertness/causalml/docs/)
155 |
156 | * Causal Inference, The Mixtape.
157 | Scott Cunningham.
158 | Yale University Press [url](https://yalebooks.yale.edu/book/9780300251685/causal-inference/) | [online-version](https://mixtape.scunning.com) (2021)
159 |
160 | * Hernán & Robins.
161 | Causal Inference: What If (2020).
162 | CRC Press.
163 | [online](http://bit.ly/2mSeeXI) | [pdf](https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2021/01/ciwhatif_hernanrobins_31dec20.pdf).
164 | [python supplement](https://github.com/jrfiedler/causal_inference_python_code)
165 |
166 | * Brady Neal.
167 | Introduction to Causal Inference from a Machine Learning Perspective. (2020).
168 | [pdf](https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf)
169 |
170 | * Kohavi, Ron, Diane Tang, and Ya Xu.
171 | Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing.
172 | Cambridge University Press. [www](https://experimentguide.com/). (2020).
173 |
174 | * Experimental Design : Causal Inference
175 | Stefan Wager.
176 | Class notes [pdf](https://statweb.stanford.edu/~owen/courses/363/stats361.pdf).
177 | [url](https://statweb.stanford.edu/~owen/courses/363/).
178 |
179 | * Pearl and Mackenzie.
180 | The Book of Why: The New Science of Cause and Effect (2018).
181 | [amzn](https://www.amzn.com/dp/046509760X) | [Pearl's additional links](http://bayes.cs.ucla.edu/WHY/)
182 |
183 | * Rosenbaum.
184 | Observation and Experiment: An Introduction to Causal Inference (2017).
185 | [amzn](https://www.amzn.com/dp/067497557X/).
186 |
187 | * Jonas Peters, Dominik Janzing and Bernhard Schoelkopf.
188 | Elements of Causal Inference: Foundations and Learning Algorithms (2017).
189 | [mitpress](https://mitpress.mit.edu/books/elements-causal-inference) | [pdf](https://library.oapen.org/bitstream/handle/20.500.12657/26040/11283.pdf).
190 |
191 | * Pearl, Glymour and Jewell.
192 | Causal Inference in Statistics: A Primer (2016).
193 | [amzn](https://www.amzn.com/dp/1119186846).
194 | [Ch4-pdf](http://web.cs.ucla.edu/~kaoru/primer-ch4.pdf).
195 | [tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
196 | Self-study by Bruno Goncalves [github](https://github.com/DataForScience/Causality)
197 | Full-text is available on [UCLA Bayes](https://bayes.cs.ucla.edu/PRIMER/).
198 |
199 | * Mastering 'Metrics: The Path from Cause to Effect. (2015).
200 | Angrist, J.D. and J.-S.Pischke.
201 | Princeton University Press [url](https://press.princeton.edu/books/paperback/9780691152844/mastering-metrics)
202 |
203 | * Morgan & Winship.
204 | Counterfactuals and Causal Inference (2nd edition) (2015).
205 | [amzn](https://www.amzn.com/dp/1107694167)
206 |
207 | * Causal Inference for Statistics, Social, and Biomedical Sciences.
208 | An Introduction, Imbens & Rubin, (2015).
209 | [amzn](https://www.amzn.com/dp/0521885884).
210 |
211 | * Why ask Why? Forward Causal Inference and Reverse Causal Questions.
212 | Andrew Gelman & Guido Imbens
213 | [doi](http://doi.org/10.3386/w19614) (2013)
214 |
215 | * Inference and Intervention: Causal Models for Business Analysis.
216 | Michael D. Ryall and Aaron L. Bramson (2013).
217 | [amzn](https://www.amzn.com/dp/0415657598)
218 |
219 | * Angrist & Pischke.
220 | Mostly Harmless Econometrics (2009).
221 | [amzn](https://www.amzn.com/dp/0691120358/).
222 | [princeton](https://press.princeton.edu/titles/8769.html)
223 |
224 | * Probabilistic Graphical Models: Principles and Techniques.
225 | Daphne Koller and Nir Friedman. (2009).
226 | MIT Press.
227 | [amzn](https://www.amzn.com/dp/0262013193).
228 | [mit](https://mitpress.mit.edu/books/probabilistic-graphical-models)
229 |
230 | * Judea Perl.
231 | Causality: Models, Reasoning and Inference (2009) 2nd Edition.
232 | [amzn](https://www.amzn.com/dp/052189560X).
233 |
234 | * Fundamentals of statistical causality (2007).
235 | C. A. P. Dawid.
236 | [pre-print research gate](https://www.researchgate.net/publication/242495222_Fundamentals_of_statistical_causality).
237 |
238 | * Microeconometrics: Methods and Applications (2005).
239 | Cameron, A. C., and P. K. Trivedi.
240 | Cambridge: Cambridge University Press. [amz](https://www.amzn.com/dp/0521848059).
241 | Chapter-4: Instrumental Variables section [Author's-copy](http://cameron.econ.ucdavis.edu/e240a/ch04iv.pdf).
242 |
243 | * Rosenbaum.
244 | Observational Studies (Springer Series in Statistics) 2nd Edition (2002).
245 | [amzn](https://www.amzn.com/dp/0387989676)
246 |
247 | * Causation, Prediction, and Search.
248 | Peter Spirtes, Clark Glymour and Richard Scheines.
249 | 2nd Edition (2001).
250 | [mit press](https://mitpress.mit.edu/books/causation-prediction-and-search-second-edition) | [pdf-research-gate](https://www.researchgate.net/publication/242448131_Causation_Prediction_and_Search)
251 |
252 | * Structural Equations with Latent Variables.
253 | Kenneth A. Bollen (1989).
254 | [wiley](https://onlinelibrary.wiley.com/doi/book/10.1002/9781118619179).
255 | [amzn](https://www.amzn.com/dp/0471011711).
256 |
257 |
258 | ## Papers general
259 |
260 | * Causal inference for time series
261 | Jakob Runge et. al.
262 | Nature Reviews Earth & Environment volume 4, pages 487–505 (2023)
263 | [doi](https://doi.org/10.1038/s43017-023-00431-y)
264 |
265 | * A Measure-Theoretic Axiomatisation of Causality.
266 | Junhyung Park, Simon Buchholz, Bernhard Schölkopf, Krikamol Muandet.
267 | [arXiv](https://arxiv.org/abs/2305.17139) (2023).
268 |
269 | * Double Machine Learning and Automated Confounder Selection -- A Cautionary Tale.
270 | Paul Hünermund et. al. (2023)
271 | [arXiv](https://arxiv.org/abs/2108.11294) | [talk](https://faculti.net/double-machine-learning-and-automated-confounder-selection/) |
272 | [Journal of Causal Inference](https://doi.org/10.1515/jci-2022-0078)
273 |
274 | * Causal Inference and Data-Fusion in Econometrics.
275 | Paul Hünermund (Maastricht University), Elias Bareinboim (Columbia University).
276 | [arXiv:1912.09104](https://arxiv.org/abs/1912.09104). | [The Econometrics Journal, 2023](https://doi.org/10.1093/ectj/utad008)
277 |
278 | * Phenomenological Causality.
279 | Dominik Janzing, Sergio Hernan Garrido Mejia (2022).
280 | [arXiv](https://arxiv.org/abs/2211.09024)
281 |
282 | * Personalized Decision Making -- A Conceptual Introduction
283 | Scott Mueller, Judea Pearl.
284 | [arXiv:2208.09558](https://arxiv.org/abs/2208.09558). (2022).
285 |
286 | * Backtracking Counterfactuals.
287 | Julius von Kügelgen, Abdirisak Mohamed, Sander Beckers.
288 | [arXiv](https://arxiv.org/abs/2211.00472) (2022)
289 |
290 | * Causal Entropy Optimization.
291 | Nicola Branchini, Virginia Aglietti, Neil Dhir, Theodoros Damoulas.
292 | [arXiv](https://arxiv.org/abs/2208.10981). (2022).
293 |
294 | * From Statistical to Causal Learning.
295 | Bernhard Schölkopf, Julius von Kügelgen
296 | [arXiv](https://arxiv.org/abs/2204.00607) (2022)
297 |
298 | * Sensitivity Analysis of Individual Treatment Effects: A Robust Conformal Inference Approach.
299 | Ying Jin, Zhimei Ren, Emmanuel J. Candès. (2021).
300 | [arXiv](https://arxiv.org/abs/2111.12161). | [Rpackage](https://zhimeir.github.io/cfsensitivity/index.html)
301 |
302 | * A Survey on Causal Inference.
303 | Yao et. al.
304 | [doi](https://dl.acm.org/doi/10.1145/3444944). (2021).
305 |
306 | * Potential Outcome and Directed Acyclic Graph Approaches to Causality:
307 | Relevance for Empirical Practice in Economics.
308 | Guido W. Imbens.
309 | Journal of Economic Literature (December 2020).
310 | [journal](https://www.aeaweb.org/articles?id=10.1257/jel.20191597) | [arXiv](https://arxiv.org/abs/1907.07271) | [Pearl's response](http://causality.cs.ucla.edu/blog/index.php/category/imbens/)
311 |
312 | * Synthetic Difference in Differences, 2019.
313 | Dmitry Arkhangelsky, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan Wager.
314 | [arxiv:1812.09970](https://arxiv.org/abs/1812.09970)
315 |
316 | * Why Propensity Scores Should Not Be Used for Matching
317 | King et. al.
318 | Political Analysis, 27, 4, Pp. 435-454. (2019)
319 | [url](https://tinyurl.com/y5b5yjxo)
320 |
321 | * Detecting and quantifying causal associations in large nonlinear time series datasets.
322 | Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman and Dino Sejdinovic.
323 | Science Advances 27 Nov 2019 Vol. 5, no. 11, eaau4996.
324 | [doi](http://dx.doi.org10.1126/sciadv.aau4996)
325 |
326 | * The Seven Tools of Causal Inference, with Reflections on Machine Learning.
327 | Judea Pearl.
328 | Communications of the ACM, March 2019, Vol. 62 No. 3, Pages 54-60.
329 | [url](https://cacm.acm.org/magazines/2019/3/234929-the-seven-tools-of-causal-inference-with-reflections-on-machine-learning/fulltext)
330 | [pdf-reprint](https://ftp.cs.ucla.edu/pub/stat_ser/r481-reprint.pdf).
331 | [interview](https://www.youtube.com/watch?v=CsMV5o3hotY).
332 |
333 | * A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms.
334 | Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle,
335 | Olexa Bilaniuk, Anirudh Goyal, Christopher Pal.
336 | [arXiv:1901.10912](https://arxiv.org/abs/1901.10912)
337 |
338 | * Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution.
339 | Judea Pearl.
340 | [arXiv:1801.04016](https://arxiv.org/abs/1801.04016)
341 |
342 | * Automated versus do-it-yourself methods for causal inference:
343 | Lessons learned from a data analysis competition.
344 | Vincent Dorie†, Jennifer Hill, Uri Shalit, Marc Scott, and Dan Cervone.
345 | [arXiv:1707.02641](https://arxiv.org/pdf/1707.02641.pdf)
346 |
347 | * Double/Debiased Machine Learning for Treatment and Causal Parameters.
348 | Victor Chernozhukov et. al. (2017).
349 | [arXiv](https://arxiv.org/abs/1608.00060). | [EC-journal](https://academic.oup.com/ectj/article/21/1/C1/5056401?login=true)
350 |
351 | * Quantum-Like Bayesian Networks for Modeling Decision Making.
352 | Catarina Moreira and Andreas Wichert.
353 | Front. Psychol., 26 January 2016.
354 | [doi](https://doi.org/10.3389/fpsyg.2016.00011)
355 |
356 | * Causal inference and the data-fusion problem
357 | Elias Bareinboim and Judea Pearl
358 | PNAS, 113 (27) 7345-7352 (2016)
359 | [doi](https://doi.org/10.1073/pnas.1510507113)
360 |
361 | * The Sure-Thing Principle.
362 | Judea Pearl (2016).
363 | [pdf](https://ftp.cs.ucla.edu/pub/stat_ser/r466.pdf)
364 |
365 | * Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL.
366 | Inferring causal impact using Bayesian structural time-series models.
367 | Annals of Applied Statistics, (2015), Vol. 9, No. 1, 247-274.
368 | [url](http://research.google.com/pubs/pub41854.html)
369 |
370 | * Linear Models: A Useful “Microscope” for Causal Analysis.
371 | Journal of Causal Inference 2013; 1(1): 155–170.
372 | Judea Pearl.
373 | [doi](https://doi.org/10.1515/jci-2013-0003) [pdf](http://ftp.cs.ucla.edu/pub/stat_ser/r409-corrected-reprint.pdf)
374 |
375 | * Introduction to Judea Pearl's Do-Calculus.
376 | Robert R. Tucci. (2013)
377 | [arXiv:1305.5506](https://arxiv.org/abs/1305.5506)
378 |
379 | * The Do-Calculus Revisited.
380 | Judea Pearl.
381 | Keynote AI Uncertainy Conference (2012).
382 | [pdf](https://ftp.cs.ucla.edu/pub/stat_ser/r402.pdf)
383 |
384 | * Detecting causality in complex ecosystems.
385 | George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch.
386 | Science Oct 26;338(6106):496-500 (2012).
387 | [doi](https://doi.org/10.1126/science.1227079).
388 | `convergent cross-mapping`
389 |
390 | * Introduction to Causal Inference.
391 | Peter Spirtes.
392 | (2010)
393 | [jmlr](http://www.jmlr.org/papers/v11/spirtes10a.html).
394 |
395 | * Transfer entropy—a model-free measure of effective connectivity for the neurosciences.
396 | Vicente et. al.
397 | J Comput Neurosci (2011) 30:45–67.
398 | [pdf](https://link.springer.com/content/pdf/10.1007/s10827-010-0262-3.pdf).
399 |
400 | * Causal inference in statistics: An overview.
401 | Judea Pearl. (2009).
402 | [doi](http://dx.doi.org/10.1214/09-SS057).
403 |
404 | * The Neyman— Rubin Model of Causal Inference and Estimation Via Matching Methods.
405 | Jasjeet Sekhon.
406 | The Oxford Handbook of Political Methodology.
407 | [doi](10.1093/oxfordhb/9780199286546.003.0011) | [pdf-preprint](http://sekhon.berkeley.edu/papers/SekhonOxfordHandbook.pdf)
408 |
409 | * Econometric Causality.
410 | James J. Heckman.
411 | International Statistical Review (2008), 76, 1, 1–27.
412 | [doi](http://dx.doi.org/10.1111/j.1751-5823.2007.00024.x).
413 |
414 | * Causal Inference Using Potential Outcomes: Design, Modeling, Decisions.
415 | Donald B. Rubin.
416 | Journal of the American Statistical Association.
417 | Vol. 100, No. 469 (Mar., 2005), pp. 322-331.
418 | [jstor](https://www.jstor.org/stable/27590541).
419 | [pdf-tandfonline](https://www.tandfonline.com/doi/pdf/10.1198/016214504000001880?casa_token=uQtd_czuZDEAAAAA:uh_ziMbrAJflEo1a5JbkhZauwazlpmdJKkbo0zRHRBlzBWx7CnS4GZAttMPyOVqow70mUycX0lmwgg)
420 |
421 | * The Economic Costs of Conflict: A Case Study of the Basque Country
422 | Alberto Abadie, Javier Gardeazabal
423 | American Economic Review, Vol. 93, No.1, pp 113-132 (2003) |
424 | [doi](https://dx.doi.org/10.1257/000282803321455188) | [baylor-pdf](https://business.baylor.edu/scott_cunningham/teaching/abadie-and-gardeazabal-2003.pdf)
425 |
426 | * Time Series Analysis, Cointegration, and applications.
427 | Nobel Lecture of Clive Granger.
428 | (2003)
429 | [pdf](https://www.nobelprize.org/uploads/2018/06/granger-lecture.pdf)
430 |
431 | * Causal Complexity and the Study of Politics.
432 | Bear Braumoeller.
433 | Political Analysis 198(11):209-233 (2003).
434 | [doi](http://dx/doi.org/10.1093/pan/mpg012).
435 | [researchgate-url](https://www.researchgate.net/publication/228774938_Causal_Complexity_and_the_Study_of_Politics).
436 |
437 | * Identification of Causal Effects Using Instrumental Variables
438 | Joshua D. Angrist, Guido W. Imbens and Donald B. Rubin
439 | Journal of the American Statistical Association (JASA)
440 | Vol. 91, No. 434 (Jun., 1996) [jstor](https://www.jstor.org/stable/2291629) | [pdf-McGill](https://www.math.mcgill.ca/dstephens/AngristIV1996-JASA-Combined.pdf)
441 | `potential outcomes`
442 |
443 | * Causal diagrams for empirical research.
444 | Judea Pearl (1995).
445 | [jstor](https://www.jstor.org/stable/2337329) | [pdf-UCLA](http://bayes.cs.ucla.edu/R218-B.pdf).
446 | `Reasoning on Graphs: d-seperation, back/front-door`
447 |
448 | * Identification and Estimation of Local Average Treatment Effects.
449 | Joshua D. Angrist & Guido W. Imbens.
450 | [nber](https://www.nber.org/papers/t0118) (1995).
451 | Econometrica, 6, 2,467-476. (1994) [jstor](https://www.jstor.org/stable/2951620) | [pdf-Baylor](https://business.baylor.edu/scott_cunningham/teaching/imbens--angrist---late-1994.pdf)
452 |
453 | * Paul W. Holland.
454 | Statistics and Causal Inference.
455 | Journal of the American Statistical Association.
456 | Dec., 1986, Vol. 81, No. 396 (Dec., 1986), pp. 945-960 [jstor](https://www.jstor.org/stable/2289064). | [pdf-from-David-Bleie](https://www.cs.columbia.edu/~blei/fogm/2020F/readings/Holland1986.pdf)
457 |
458 | * Rubin, D. B. (1974)
459 | Estimating causal effects of treatments in randomized and nonrandomized studies.
460 | Journal of Educational Psychology, 66(5), 688-701.
461 | [doi](http://dx.doi.org/10.1037/h0037350)
462 |
463 | * Haavelmo, T. (1943).
464 | The statistical implications of a system of simultaneous equations.
465 | Econometrica, 11, 1–12.
466 | [jstor](http://links.jstor.org/sici?sici=0012-9682%28194301%2911%3A1%3C1%3ATSIOAS%3E2.0.CO%3B2-N)
467 |
468 | Judea Pearls comment on Haavelmo.
469 | Econometric Theory , Volume 31 , Issue 1: Haavelmo Memorial Issue: Part One , February 2015 , pp. 152 - 179
470 | [doi](https://doi.org/10.1017/S0266466614000231).
471 |
472 | * Wright, S. (1921)
473 | Correlation and causation.
474 | J. Agricultural Research. 20: 557–585.
475 |
476 | * Wright, S. (1934).
477 | The method of path coefficients.
478 | Annals of Mathematical Statistics. 5 (3): 161–215.
479 | [doi](http://www.doi.org/10.1214/aoms/1177732676)
480 |
481 | ## Causal Discovery
482 |
483 | * Causation versus Prediction: Comparing Causal Discovery and
484 | Inference with Artificial Neural Networks in Travel Mode Choice Modeling
485 | Rishabh Singh Chauhan, Uttara Sutradhar, Anton Rozhkov, Sybil Derrible
486 | [arXiv](https://arxiv.org/abs/2307.15262) (2023)
487 | `Comparison of PC and Double ML on transportation preference`
488 |
489 | * An Introduction to Causal Discovery
490 | Martin Huber, A bonus chapter (2023)
491 | [pdf-academic-page](https://www.unifr.ch/appecon/en/assets/public/uploads/introcausaldiscovery2.pdf)
492 |
493 | * Causal Discovery and Prediction: Methods and Algorithms
494 | Gilles Blondel (Thesis) (2023)
495 | [arXiv](https://arxiv.org/abs/2309.09416)
496 |
497 | * On the Interventional Kullback-Leibler Divergence.
498 | Jonas Wildberger, Siyuan Guo, Arnab Bhattacharyya, Bernhard Schölkopf.
499 | [arXiv](https://arxiv.org/abs/2302.05380) (2023).
500 |
501 | * Causal Structure Learning: a Combinatorial Perspective.
502 | Chandler Squires, Caroline Uhler. (2022).
503 | [arXiv](https://arxiv.org/abs/2206.01152).
504 |
505 | * Deep End-to-end Causal Inference.
506 | Tomas Geffner, Javier Antoran, Adam Foster, Wenbo Gong,
507 | Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla,
508 | Nick Pawlowski, Miltiadis Allamanis, Cheng Zhang.
509 | [arXiv](https://arxiv.org/abs/2202.02195) (2022).
510 | [github-deci](https://github.com/microsoft/project-azua/tree/main/azua/models/deci)
511 |
512 | * Learning to Induce Causal Structure.
513 | Nan Rosemary Ke, Silvia Chiappa, Jane Wang, Jorg Bornschein, Theophane Weber,
514 | Anirudh Goyal, Matthew Botvinic, Michael Mozer, Danilo Jimenez Rezende.
515 | [arXiv](https://arxiv.org/abs/2204.04875) (2022).
516 |
517 | * Discovering Causal Structure with Reproducing-Kernel Hilbert Space ε-Machines.
518 | Nicolas Brodu, James P. Crutchfield.
519 | [arXiv](https://arxiv.org/abs/2011.14821) (2021).
520 |
521 | * Nobel Memorial Economics Prize 2021 on causal discovery, scientific summary.
522 | Answering Causal Questions Using Observational Data. (2021)
523 | (David Card, Joshua Angrist, and Guido Imbens)
524 | [pdf](https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf).
525 |
526 | * Causal network reconstruction from time series: From theoretical assumptions to practical estimation.
527 | J. Runge.
528 | Chaos 28, 075310 (2018).
529 | [DOI](https://doi.org/10.1063/1.5025050).
530 |
531 | * Learning Representations for Counterfactual Inference.
532 | Fredrik D. Johansson, Uri Shalit, David Sontag.
533 | ICML 2016, [arXiv](https://arxiv.org/abs/1605.03661).
534 |
535 | * Causal Discovery via Reproducing Kernel Hilbert Space Embeddings
536 | Zhitang Chen, Kun Zhang, Laiwan Chan, Bernhard Schölkopf
537 | Neural Computation 26, 1484–1517 (2014).
538 | [doi](http://dx.doi.org/10.1162/NECO_a_00599)
539 |
540 | * Cosma Shalizi's notebook [causal discovery algorithms](http://bactra.org/notebooks/causal-discovery-algorithms.html).
541 |
542 | ## Simpsons Paradox
543 |
544 | * Learning to Discover Various Simpson's Paradoxes
545 | Jingwei Wang, Jianshan He, Weidi Xu, Ruopeng Li, Wei Chu
546 | KDD '23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
547 | August 2023, Pages 5092–5103 [doi](https://doi.org/10.1145/3580305.3599859) | [git-repository](https://github.com/ant-research/Learning-to-Discover-Various-Simpson-Paradoxes)
548 |
549 | * A toolbox to demystify probabilistic and statistical paradoxes.
550 | Kelter R, Schnurr A and Spies S (2023)
551 | Front. Educ. 8:1212419. [doi](https://doi.org/10.3389/feduc.2023.1212419) | [author-pdf](https://dspace.ub.uni-siegen.de/bitstream/ubsi/2578/3/A_toolbox_to_demystify_probabilistic_and_statistical_paradoxes.pdf)
552 |
553 | * Pearl, J. (2014). Comment: understanding Simpson’s paradox. Am. Stat. 68, 8–13. doi: 10.1080/00031305.2014.876829
554 |
555 | * Simpson's Paradox: An Anatomy
556 | Judea Pearl (1999).
557 | [UCLA Technical-Report](http://bayes.cs.ucla.edu/R264.pdf)
558 |
559 | * On Simpson's Paradox and the Sure-Thing Principle.
560 | Colin R. Blyth.
561 | Journal of the American Statistical Association.
562 | Vol. 67, No. 338 (Jun., 1972), pp. 364-366. [doi](https://doi.org/10.2307/2284382)
563 |
564 | * The interpretation of interaction in contingency tables.
565 | Simpson, E. H. (1951).
566 | J. Royal Stat. Soc. 13, 238–241. [doi](https://dx.doi.org/10.1111/J.2517-6161.1951.TB00088.X)
567 |
568 | ## Machine Learning
569 | Including games, reinforcement or deep learning.
570 |
571 | * Comprehensive Causal Machine Learning
572 | Michael Lechner, Jana Mareckova
573 | [arxiv](https://arxiv.org/abs/2405.10198)| (2024)
574 |
575 | * Language Models as Causal Effect Generators
576 | Lucius E.J. Bynum, Kyunghyun Cho
577 | [arXiv](https://arxiv.org/abs/2411.08019) (2024)
578 |
579 | * Invariant Causal Knowledge Distillation in Neural Networks
580 | Nikolaos Giakoumoglou, Tania Stathaki
581 | [arXiv](https://arxiv.org/abs/2407.11802v2) (2024)
582 |
583 | * Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing
584 | Shiqi Fang, Zexun Chen, Jake Ansell
585 | [arXiv](https://arxiv.org/abs/2408.02558) (2024)
586 |
587 | * Causally Abstracted Multi-armed Bandits
588 | Fabio Massimo Zennaro et. al.
589 | [arXiv](https://arxiv.org/abs/2404.17493) (2024)
590 |
591 | * Causal machine learning for predicting treatment outcomes
592 | Stefan Feuerriegel et. al.
593 | [url](https://www.nature.com/articles/s41591-024-02902-1) (2023)
594 |
595 | * Causal machine learning for single-cell genomics
596 | Alejandro Tejada-Lapuerta, Paul Bertin, Stefan Bauer, Hananeh Aliee, Yoshua Bengio, Fabian J. Theis
597 | [arXiv](https://arxiv.org/abs/2310.14935) (2023)
598 |
599 | * Estimating categorical counterfactuals via deep twin networks
600 | Athanasios Vlontzos, Bernhard Kainz & Ciarán M. Gilligan-Lee
601 | Nature Machine Intelligence volume 5, pages 159–168 (2023)
602 | [nature](https://www.nature.com/articles/s42256-023-00611-x) | [arXiv](https://arxiv.org/abs/2109.01904)
603 |
604 | * Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
605 | Emre Kıcıman, Robert Ness, Amit Sharma, Chenhao Tan
606 | [arXiv](https://arxiv.org/abs/2305.00050) (2023)
607 |
608 | * Causal Reinforcement Learning: A Survey
609 | Zhihong Deng, Jing Jiang, Guodong Long, Chengqi Zhang
610 | [arXiv](https://arxiv.org/abs/2307.01452) (2023)
611 |
612 | * Causal Component Analysis.
613 | Wendong Liang et. al.
614 | [arXiv](https://arxiv.org/abs/2305.17225) (2023).
615 |
616 | * Double Machine Learning and Automated Confounder Selection -- A Cautionary Tale.
617 | Paul Hünermund et. al. (2023)
618 | [arXiv](https://arxiv.org/abs/2108.11294) | [talk](https://faculti.net/double-machine-learning-and-automated-confounder-selection/) |
619 | [Journal of Causal Inference](https://doi.org/10.1515/jci-2022-0078)
620 |
621 | * Causal Deep Learning.
622 | Jeroen Berrevoets, Krzysztof Kacprzyk, Zhaozhi Qian, Mihaela van der Schaar. (2023)
623 | [arXiv](https://arxiv.org/abs/2303.02186).
624 |
625 | * A Survey on Causal Reinforcement Learning
626 | Yan Zeng et. al. [arXiv](https://arxiv.org/abs/2302.05209) (2023)
627 |
628 | * Reasoning about Causality in Games.
629 | Lewis Hammond, James Fox, Tom Everitt, Ryan Carey, Alessandro Abate, Michael Wooldridge. (2023).
630 | [arXiv](https://arxiv.org/abs/2301.02324).
631 |
632 | * Evaluating Uses of Deep Learning Methods for Causal Inference.
633 | Albert Whata; Charles Chimedza.
634 | [ieee](https://ieeexplore.ieee.org/abstract/document/9667520). (2022)
635 |
636 | * Causal Machine Learning: A Survey and Open Problems
637 | Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, Ricardo Silva
638 | [arXiv](https://arxiv.org/abs/2206.15475) (2022)
639 |
640 | * Causal Reinforcement Learning using Observational and Interventional Data.
641 | Maxime Gasse, Damien Grasset, Guillaume Gaudron, Pierre-Yves Oudeyer.
642 | [arXiv:2106.14421](https://arxiv.org/abs/2106.14421) (2021)
643 |
644 | * Causal Reinforcement Learning, ICML 2020 [url](https://crl.causalai.net)
645 |
646 | * Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation.
647 | Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Hernández-Lobato, Kun Zhang, Bernhard Schölkopf. (2020).
648 | [arXiv:2012.09092](https://arxiv.org/abs/2012.09092)
649 |
650 | * Machine Learning Methods That Economists Should Know About
651 | Susan Athey and Guido W. Imbens
652 | [Annual Reviews](https://www.annualreviews.org/content/journals/10.1146/annurev-economics-080217-053433;jsessionid=ln_r7UHAEX_IEsVFDhG1ZgtVXrsPhWv5ReUKrihr.ip-10-241-10-70) (2019)
653 |
654 | * Causality for Machine Learning.
655 | Bernhard Schölkopf.
656 | [arXiv:1911.10500](https://arxiv.org/abs/1911.10500)
657 |
658 | * Causal Inference and Uplift Modelling: A Review of the Literature.
659 | Pierre Gutierrez, Jean-Yves Gérardy ; Proceedings of The 3rd International
660 | Conference on Predictive Applications and APIs, PMLR 67:1-13, 2017.
661 | [url](http://proceedings.mlr.press/v67/gutierrez17a.html)
662 |
663 | ## Fairness
664 |
665 | * Survey on Causal-based Machine Learning Fairness Notions.
666 | Karima Makhlouf, Sami Zhioua, Catuscia Palamidessi.
667 | [arXiv](https://zhimeir.github.io/cfsensitivity/index.html) (2020).
668 |
669 | * Causal Modeling of Twitter Activity during COVID-19
670 | Gencoglu, Oguzhan, and Mathias Gruber. (2020).
671 | Computation 8, no. 4: 85. [doi](https://doi.org/10.3390/computation8040085).
672 |
673 | * Achieving Causal Fairness in Machine Learning.
674 | Wu, Yongkai. University of Arkansas, ProQuest Dissertations Publishing, 2020. 27960037.
675 | [url](https://search.proquest.com/openview/5b94283bd4da8edc1b14bff3db4c9e77/1?pq-origsite=gscholar&cbl=18750&diss=y)
676 |
677 | * Causal Bayesian Networks (2019).
678 | [blog-deepmind](https://deepmind.com/blog/article/Causal_Bayesian_Networks).
679 |
680 | * A Causal Bayesian Networks Viewpoint on Fairness.
681 | Silvia Chiappa, William S. Isaac (2019).
682 | [arXiv:1907.06430](https://arxiv.org/abs/1907.06430)
683 |
684 | * Zhang, J., & Bareinboim, E. (2018).
685 | Fairness in Decision-Making — The Causal Explanation Formula.
686 | Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).
687 | [doi](https://doi.org/10.1609/aaai.v32i1.11564).
688 |
689 | * Counterfactual Fairness.
690 | Kusner et. al.
691 | NeurIPs 2017 [pdf](https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf)
692 |
693 | * Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
694 | Sandra Wachter, Brent Mittelstadt, Chris Russell
695 | [arXiv](https://arxiv.org/abs/1711.00399) (2017).
696 |
697 | ## Physics
698 |
699 | * H-Theorem do-conjecture
700 | M. Suzen
701 | [arXiv:2310.01458](https://arxiv.org/abs/2310.01458). | [code](https://github.com/msuzen/research/tree/main/h-do-conjecture)
702 |
703 | * Causality, determinism, and physics.
704 | Julio Geo-Banacloche.
705 | American Journal of Physics 90, 809 (2022); [doi](https://doi.org/10.1119/5.0087017).
706 |
707 | * Arrow of Causality and Quantum Gravity.
708 | John F. Donoghue and Gabriel Menezes.
709 | Phys. Rev. Lett. 123, 171601
710 | [url](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.171601)
711 |
712 | * The causal set approach to quantum gravity.
713 | Sumati Surya
714 | Living Reviews in Relativity volume 22, Article number: 5 (2019).
715 | [url](https://link.springer.com/article/10.1007/s41114-019-0023-1).
716 |
717 | * Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference.
718 | Dominik Janzing et al 2016 New J. Phys. 18 093052.
719 | [url-open-access](https://iopscience.iop.org/article/10.1088/1367-2630/18/9/093052/meta).
720 |
721 | * Quantum causality.
722 | Brukner, Časlav.
723 | Nature Physics, Volume 10, Issue 4, pp. 259-263 (2014).
724 | [doi](https://ui.adsabs.harvard.edu/link_gateway/2014NatPh..10..259B/doi:10.1038/nphys2930) | [yale-pdf](https://inferenceproject.yale.edu/sites/default/files/brukner2014_q_causality.pdf)
725 |
726 | * Causal Entropic Forces.
727 | A. D. Wissner-Gross and C. E. Freer.
728 | Phys. Rev. Lett. 110, 168702. (2013).
729 | [url](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.168702).
730 |
731 | * Resource Letter CD-1: Causality and determinism in physics.
732 | R. Jones.
733 | Am. J. Phys. 64, 208–215 (1996). [doi](https://doi.org/10.1119/1.18208).
734 |
735 | * Space-time as a causal set.
736 | Luca Bombelli, Joohan Lee, David Meyer, and Rafael D. Sorkin.
737 | Phys. Rev. Lett. 59, 521 (1987).
738 | [url](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.59.521)
739 |
740 | * The class of continuous timelike curves determines the topology of spacetime.
741 | David B. Malament.
742 | Journal of Mathematical Physics 18, 1399 (1977).
743 | [doi](https://doi.org/10.1063/1.523436).
744 |
745 |
746 | ## Thesis
747 |
748 | PhD thesis on causality.
749 |
750 | * Causality in Point Processes
751 | McGovern, Ian
752 | PhD Thesis, Los Angeles, [url](https://escholarship.org/content/qt5x56b2fk/qt5x56b2fk.pdf) (2024)
753 |
754 | * Identifiable Causal Representation Learning
755 | Unsupervised, Multi-View, and Multi-Environment
756 | Julius von Kügelgen
757 | PhD Thesis, Cambridge [doi](https://doi.org/10.17863/CAM.106852) (2023)
758 |
759 | * Explainable Reinforcement Learning Through a Causal Lens.
760 | Prashan Madumal.
761 | PhD thesis, Melbourne [pdf](https://rest.neptune-prod.its.unimelb.edu.au/server/api/core/bitstreams/0730665b-be59-5e97-9eb8-33223bf6464c/content) | [aaai](https://ojs.aaai.org//index.php/AAAI/article/view/5631). (2021).
762 |
763 | ## Review
764 |
765 | * Causal Inference in the Social Sciences
766 | Guido W. Imbens
767 | [url](https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-033121-114601) (2024)
768 |
769 | ## Software.
770 |
771 | ### Causal Discovery
772 |
773 | * Causal-learn: Causal Discovery in Python
774 | Spirtes & CMU & Team
775 | [arXiv](https://arxiv.org/abs/2307.16405) | [repo](https://github.com/py-why/causal-learn)
776 |
777 | * Tigramite – Causal inference and causal discovery for time series datasets.
778 | [github](https://github.com/jakobrunge/tigramite)
779 |
780 | * The Causal Discovery Toolbox (CDT)
781 | A package for causal inference in graphs and in the pairwise settings.
782 | [github](https://github.com/FenTechSolutions/CausalDiscoveryToolbox). | [arXiv](https://arxiv.org/abs/1903.02278)
783 |
784 | * LinGAM Discovery of non-gaussian linear causal models [github](https://github.com/cdt15/lingam) | [software paper](https://jmlr.org/papers/v24/21-0321.html) | [original paper](https://www.jmlr.org/papers/v7/shimizu06a.html)
785 |
786 | * PyPhi: A toolbox for integrated information theory.
787 | [pypi](https://pypi.org/project/pyphi/).
788 | [arXiv1712.09644](https://arxiv.org/abs/1712.09644)
789 |
790 | * Causal-tune [github](https://github.com/py-why/causaltune).
791 |
792 | * Huawei's gCastle is a causal structure learning toolchain [github-repo](https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle)
793 |
794 | ### Microsoft Research : PyWhy
795 |
796 | * PyWhy organisation [github](https://github.com/py-why/).
797 | [DoWhy evolves to independent PyWhy model to help causal inference grow](https://www.microsoft.com/en-us/research/blog/dowhy-evolves-to-independent-pywhy-model-to-help-causal-inference-grow/?OCID=msr_blog_PyWhy_TW) | [aws-blog](https://www.amazon.science/blog/aws-contributes-novel-causal-machine-learning-algorithms-to-dowhy)
798 |
799 | * DoWhy is a Python library for causal inference.
800 | [github](https://github.com/microsoft/dowhy) | [Paper-arXiv](https://arxiv.org/abs/2011.04216).
801 |
802 | * EconML.
803 | EconML is a Python package for estimating heterogeneous treatment
804 | effects from observational data via machine learning.
805 | [github](https://github.com/microsoft/EconML)
806 |
807 | * Azua/DECI.
808 | [github](https://github.com/microsoft/project-azua)
809 | [github-DECI-module](https://github.com/microsoft/project-azua/tree/main/azua/models/deci) `Deep End-to-end Causal Inference`
810 |
811 | * ShowWhy.
812 | UI on top of DoWhy, EconML [github](https://github.com/microsoft/showwhy)
813 |
814 | * Causica : DECI: End to End Causal Inference
815 | [github](https://github.com/microsoft/causica)
816 |
817 | * Causal-learn: Causal Discovery in Python
818 | Spirtes & CMU & Team
819 | [arXiv](https://arxiv.org/abs/2307.16405) | [repo](https://github.com/py-why/causal-learn)
820 |
821 | * llm experimental [pywhy-llm](https://github.com/py-why/pywhy-llm)
822 |
823 | ### Causal Impact and Observational
824 |
825 | * DoubleML in Python/R package [github](https://github.com/DoubleML/doubleml-for-py). | [JSS-article](https://www.jstatsoft.org/article/view/v108i03)
826 |
827 | * CausalML: A Python Package for Uplift Modeling and Causal Inference with ML.
828 | [github](https://github.com/uber/causalml) | [software X paper](https://doi.org/10.1016/j.softx.2022.101294)
829 |
830 | * An R package for causal inference using Bayesian structural time-series models
831 | [CausalImpact](https://google.github.io/CausalImpact/CausalImpact.html).
832 | [CRAN](https://cran.r-project.org/package=CausalImpact).
833 | [github-python-port](https://github.com/jamalsenouci/causalimpact).
834 | [paper](https://research.google/pubs/pub41854/).
835 | [causalimpact-tf](https://github.com/WillianFuks/tfcausalimpact) Re-write with tensorflow probability
836 |
837 | * upliftml : Uplift modelling, Booking.com
838 | [github](https://github.com/bookingcom/upliftml)
839 |
840 | * [Identifying Causal Effects with the R Package causaleffect](https://cran.r-project.org/web/packages/causaleffect/vignettes/causaleffect.pdf)
841 |
842 | * IBM's causalib Python package [github](https://github.com/IBM/causallib)
843 |
844 | * (synthdid: Synthetic Difference in Differences Estimation)[https://synth-inference.github.io/synthdid/index.html].
845 | R-package
846 |
847 | ### Causal Graphs and Bayesian Networks
848 |
849 | * DAGitty — draw and analyze causal diagrams [url](https://www.dagitty.net)
850 |
851 | * CausalQueries: Make, Update, and Query Binary Causal Models
852 | [CRAN](https://cran.rstudio.com/web/packages/CausalQueries/index.html) | [book: Causal Models: Guide to CausalQueries](https://macartan.github.io/causalmodels/)
853 |
854 | * pgmpy is a pure python implementation for Bayesian Networks [www](https://pgmpy.org) | [Paper-ArXiv](https://arxiv.org/abs/2304.08639) |
855 |
856 | * causaleffect: Deriving Expressions of Joint Interventional Distributions and Transport Formulas in Causal Models.
857 | [CRAN](https://cran.r-project.org/web/packages/causaleffect/index.html).
858 | * GRAPHL [repo](https://github.com/max-little/GRAPL) | [joss](https://joss.theoj.org/papers/10.21105/joss.04534.pdf)
859 |
860 | * dagR: Directed Acyclic Graph with R.
861 | [CRAN](https://cran.r-project.org/web/packages/dagR/index.html)[doi](http://dx.doi.org/10.1097/EDE.0b013e3181e09112)
862 |
863 | * PyCID: Causal Influence Diagrams library [github](https://github.com/causalincentives/pycid)
864 | Relevant to PyCID : A python library for 2 player games [nashpy](https://github.com/drvinceknight/nashpy)
865 |
866 | * [CausalPy](https://github.com/pymc-labs/CausalPy) : Bayesian -regression discontinuity |
867 | [pymc-lab](https://www.pymc-labs.io)
868 |
869 | * [CausalNex](https://github.com/quantumblacklabs/causalnex) A toolkit for causal reasoning with Bayesian Networks
870 | from Quantumblack.
871 |
872 | * Tetrad Project: Graphical Causal Models
873 | [url](http://www.phil.cmu.edu/tetrad/)
874 |
875 | ### Views
876 |
877 | * R Universe: [CRAN Task View Causal Inference](https://cran.r-project.org/web/views/CausalInference.html)
878 |
879 | ## Datasets
880 |
881 | * R causaldata
882 | Nick Huntington-Klein, Malcolm Barrett
883 | Example dataset from some of the Causality textbooks
884 | [github](https://github.com/NickCH-K/causaldata) | [cran](https://cran.r-project.org/web/packages/causaldata/index.html)
885 |
886 | * Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks.
887 | Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf;
888 | 17(32):1−102, (2016). [jmlr-paper](https://jmlr.org/papers/v17/14-518.html).
889 | Database with cause-effect pairs [url](https://webdav.tuebingen.mpg.de/cause-effect/).
890 |
891 | ## MOOCs
892 |
893 | * Mixtape sessions [url](https://www.mixtapesessions.io)
894 | Free Course Material
895 |
896 | * A Crash Course in Causality: Inferring Causal Effects from Observational Data.
897 | [url](https://www.coursera.org/learn/crash-course-in-causality)
898 |
899 | * Measuring Causal Effects in the Social Sciences.
900 | [url](https://www.coursera.org/learn/causal-effects)
901 |
902 | * Probabilistic Graphical Models Specialization.
903 | Daphne Koller.
904 | [url](https://www.coursera.org/specializations/probabilistic-graphical-models)
905 |
906 | ## Blog Posts
907 |
908 | * Resolving disputes between J. Pearl and D. Rubin on causal inference.
909 | Gelman (2009) [url](https://statmodeling.stat.columbia.edu/2009/07/05/disputes_about/).
910 | Follow ups [1](https://statmodeling.stat.columbia.edu/2009/07/07/more_on_pearls/)
911 | [2](https://statmodeling.stat.columbia.edu/2009/07/09/more_on_pearlru/)
912 | [3](https://statmodeling.stat.columbia.edu/2009/07/07/philip_dawids_t/)
913 |
914 | * 05/2022 Statisticians vs. Causal Inference [url](https://statmodeling.stat.columbia.edu/2022/05/14/causal-is-what-we-say-when-we-dont-know-what-were-doing/#comment-2053584) | Pearl's response [url](http://causality.cs.ucla.edu/blog/index.php/2022/05/17/what-statisticians-mean-by-causal-inference-is-gelmans-blog-representative/)
915 |
916 | * Judea Pearl on Potential Outcomes.
917 | [url](http://causality.cs.ucla.edu/blog/index.php/2012/12/03/judea-pearl-on-potential-outcomes/)
918 |
919 | * Judea Pearl, model vs. model-free :
920 | "...no “causal interpretation” is needed for parameters that are intrinsically causal..."
921 | [url](http://causality.cs.ucla.edu/blog/index.php/2017/02/22/winter-2017-greeting-from-ucla-causality-blog/).
922 |
923 | * Eight basic rules for causal inference
924 | By Peder M. Isager (2024)
925 | Tutorial [url](https://pedermisager.org/blog/seven_basic_rules_for_causal_inference/)
926 |
927 | ## Quotes
928 |
929 | Including interviews.
930 |
931 | * Causal Inference: History, Perspectives, Adventures, and Unification (An Interview with Judea Pearl).
932 | Observational Studies, 8, 2, 2022, p1-14.
933 | [url](https://muse.jhu.edu/article/867087) | [pdf](https://muse.jhu.edu/pub/56/article/867087/pdf).
934 |
935 | * Interview with Don Rubin.
936 | Observational Studies (2022).
937 | [url](https://muse.jhu.edu/article/867089).
938 |
939 | * A Conversation with A. Philip Dawid (2023)
940 | [arXiv](https://arxiv.org/abs/2312.00632)
941 |
942 |
943 | `Prediction and Causation`
944 |
945 | * " Actually correlation lets you make predictions
946 | in many cases, assuming you're making prediction
947 | about the world as reflected in your data.
948 | For example, correlations between photos and
949 | their labels allows you usually to make predictions
950 | about new photos.
951 |
952 | The problem gets difficult if you want to predict the
953 | effects of actions taken in a different manner from
954 | that which exists in your data. For example, if you
955 | want to consider different treatment strategies for
956 | cancer using data from past cancer patients, only
957 | correlations will usually not suffice as you're
958 | trying to predict counterfactual that might not exist in your data."
959 | Uri Shalit, Technion (Forum Communication 01/2018)
960 |
961 | `Rubin vs. Pearl`
962 |
963 | * " Rubin and Pearl are kind of "academic enemies".
964 | Though neither completely dismisses the other,
965 | they both make snide remarks about the other's work.
966 | Pearl shows in his book exactly how Neyman-Rubin
967 | potential outcomes can be derived from causal graphs.
968 | As far as I know Rubin never really makes an
969 | attempt to address Pearl's ideas directly.
970 | However, Rubin, being a statistician, made
971 | significant contributions to the practice of real-world
972 | causal inference, which go beyond Pearl's interests.
973 | Jamie Robins also made seminal contributions to this subject.
974 | You can read some of the debate on Andrew Gelman's blog
975 | [here](http://andrewgelman.com/2009/07/05/disputes_about/)
976 | Pearl writes in the comment section and in that blog
977 | post there are links to follow up posts. "
978 | Uri Shalit, Technion (Forum Communication 01/2018)
979 |
980 | `On the Pearl's Philosopy`
981 |
982 | * "..while Pearl's work is foundational, and its importance
983 | cannot be overstated, his published work is often
984 | insufficient in addressing the real-world problems of
985 | many data scientists. The reason is that Pearl is mostly
986 | concerned with the problem of identification, i.e. which data
987 | generating processes allow us to infer causation from observed data.
988 | He is less concerned with the statistical problem of actually
989 | inferring these purported causal relationships from data.
990 | This is especially true if the data is high-dimensional
991 | or noisy (Pearl usually considers a few binary or Gaussian variables)."
992 | Uri Shalit, Technion (Forum Communication 01/2018)
993 |
994 | ## Video Lectures
995 | including discussions
996 |
997 | * 2022 Causal Data Science.
998 | Elias Bareinboim (@ 1st Workshop on Interactive Causal Learning) [youtube](https://www.youtube.com/watch?v=6lWB_JmWY8g).
999 | * 2022 The Arrow of Time in Causal Networks
1000 | Sean Carroll, Simons Intitute Talk [youtube](https://www.youtube.com/watch?v=6slug9rjaIQ)
1001 | * Judea Pearl: Causal Reasoning, Counterfactuals, and the Path to AGI | Lex Fridman Podcast #56.
1002 | Dec 11, 2019 [yt](https://www.youtube.com/watch?v=pEBI0vF45ic).
1003 | * 2016 The Mathematics of Causal Inference: with Reflections on Machine Learning.
1004 | Judea Pearl, Microsoft Research. [youtube](https://www.youtube.com/watch?v=bcRl7sXR1hE).
1005 | * 2015 Toward Causal Machine Learning.
1006 | Bernhard Schölkopf, [youtube](https://www.youtube.com/watch?v=ooeRlw3U2zU)
1007 | * 2012 Causal Inference Conference Featuring Judea Pearl [youtube](https://www.youtube.com/watch?v=j4JOR-PQuqQ&t=185s).
1008 | Judea Pearl's "The Mathematics of Causal Inference: Use it or Lose It"
1009 |
1010 | ## Contemporary Academics
1011 |
1012 | * [Judea Pearl](http://bayes.cs.ucla.edu/jp_home.html).
1013 | * [Clark Glymour](https://www.cmu.edu/dietrich/philosophy/people/emeritus/glymour.html).
1014 | * [Peter Spirtes](https://www.cmu.edu/dietrich/philosophy/people/faculty/spirtes.html)
1015 | * [Richard Scheines](https://www.cmu.edu/dietrich/philosophy/people/faculty/scheines.html)
1016 | * [Elias Bareinboim](https://causalai.net).
1017 | * [Donald B. Rubin](https://statistics.fas.harvard.edu/people/donald-b-rubin).
1018 | * [Joshua Angrist](https://economics.mit.edu/faculty/angrist).
1019 | * [Guido W. Imbens](https://www.gsb.stanford.edu/faculty-research/faculty/guido-w-imbens).
1020 | * [Andrew Gelman](http://www.stat.columbia.edu/~gelman/).
1021 | * [David Card](https://davidcard.berkeley.edu).
1022 | * [Bernhard Schölkopf](https://is.mpg.de/~bs).
1023 | * [Joris M. Mooij](https://staff.fnwi.uva.nl/j.m.mooij/).
1024 | * [Dominik Janzing](https://janzing.github.io).
1025 | * [Uri Shalit](https://dds.technion.ac.il/academicstaff/uri-shalit/).
1026 |
1027 | # Communities Conferences
1028 |
1029 | * Causal RL [RLC Workshop 2025](https://sites.google.com/uci.edu/crlw2025/)
1030 | * [Causal Science](https://www.causalscience.org)
1031 | * Are Large Language Models Simply Causal Parrots?
1032 | Annual AAAI Conference on Artificial Intelligence 2024 [url](https://llmcp.cause-lab.net/schedule-llmcp)
1033 | * Counterfactual reasoning: From minds to machines to practical applications.
1034 | ICML Workshop [url](https://sites.google.com/view/counterfactuals-icml/home) (2023)
1035 | * Neurips 2023: Causal Representation Learning (CRL) [url](https://neurips.cc/virtual/2023/workshop/66497)
1036 |
1037 |
--------------------------------------------------------------------------------