├── .gitignore
├── .project
├── .pydevproject
├── LICENSE
├── README.md
├── benchmark
├── GTX980_CUDA
│ ├── sk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ ├── u_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ └── process_total_timings.csv
│ └── usk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ └── process_total_timings.csv
├── GTX980_OPENCL
│ ├── sk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ ├── u_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ └── process_total_timings.csv
│ └── usk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ └── process_total_timings.csv
├── Old Benchmarks
│ ├── E5-2697v3_OPENCL
│ │ ├── sk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ ├── process_total_timings.csv
│ │ │ ├── train_backward_layers_timings.csv
│ │ │ ├── train_forward_layers_timings.csv
│ │ │ ├── train_memory_usage.csv
│ │ │ └── train_total_timings.csv
│ │ ├── u_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ ├── process_total_timings.csv
│ │ │ ├── train_backward_layers_timings.csv
│ │ │ ├── train_forward_layers_timings.csv
│ │ │ ├── train_memory_usage.csv
│ │ │ └── train_total_timings.csv
│ │ └── usk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ ├── process_total_timings.csv
│ │ │ ├── train_backward_layers_timings.csv
│ │ │ ├── train_forward_layers_timings.csv
│ │ │ ├── train_memory_usage.csv
│ │ │ └── train_total_timings.csv
│ ├── GTX980_CUDA
│ │ ├── sk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ ├── process_total_timings.csv
│ │ │ ├── train_backward_layers_timings.csv
│ │ │ ├── train_forward_layers_timings.csv
│ │ │ ├── train_memory_usage.csv
│ │ │ └── train_total_timings.csv
│ │ ├── u_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ └── process_total_timings.csv
│ │ └── usk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ └── process_total_timings.csv
│ ├── GTX980_OPENCL
│ │ ├── sk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ └── process_total_timings.csv
│ │ ├── u_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ └── process_total_timings.csv
│ │ └── usk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ └── process_total_timings.csv
│ ├── W9100_OPENCL
│ │ ├── sk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ └── process_total_timings.csv
│ │ ├── u_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ ├── process_total_timings.csv
│ │ │ ├── train_backward_layers_timings.csv
│ │ │ ├── train_forward_layers_timings.csv
│ │ │ ├── train_memory_usage.csv
│ │ │ └── train_total_timings.csv
│ │ └── usk_benchmark
│ │ │ ├── process_forward_layers_timings.csv
│ │ │ ├── process_memory_usage.csv
│ │ │ ├── process_total_timings.csv
│ │ │ ├── train_backward_layers_timings.csv
│ │ │ ├── train_forward_layers_timings.csv
│ │ │ ├── train_memory_usage.csv
│ │ │ └── train_total_timings.csv
│ └── i7-4790K_OPENCL
│ │ ├── sk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ └── process_total_timings.csv
│ │ ├── u_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ │ └── usk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
├── W9100_OPENCL
│ ├── sk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ ├── u_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ ├── usk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ └── usk_benchmark_512
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
├── benchmark_sk.sh
├── benchmark_u.sh
├── benchmark_u_small.sh
├── benchmark_usk.sh
├── clBLAS-BENCH
│ ├── bench.sh
│ ├── bench.txt
│ └── bench.txt.old
├── i7-4790K_OPENCL
│ ├── sk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ ├── u_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ ├── process_total_timings.csv
│ │ ├── train_backward_layers_timings.csv
│ │ ├── train_forward_layers_timings.csv
│ │ ├── train_memory_usage.csv
│ │ └── train_total_timings.csv
│ └── usk_benchmark
│ │ ├── process_forward_layers_timings.csv
│ │ ├── process_memory_usage.csv
│ │ └── process_total_timings.csv
├── train_process_sk_2.prototxt
├── train_process_u_2.prototxt
├── train_process_u_2small.prototxt
├── train_process_usk_2.prototxt
└── u_benchmark
│ ├── process_forward_layers_timings.csv
│ ├── process_memory_usage.csv
│ ├── process_total_timings.csv
│ ├── train_backward_layers_timings.csv
│ ├── train_forward_layers_timings.csv
│ ├── train_memory_usage.csv
│ └── train_total_timings.csv
├── dataset_01
├── .gitignore
├── process.sh
├── train.sh
├── train
│ ├── labels
│ │ ├── labels00000000.png
│ │ ├── labels00000001.png
│ │ ├── labels00000003.png
│ │ ├── labels00000004.png
│ │ ├── labels00000005.png
│ │ ├── labels00000006.png
│ │ ├── labels00000008.png
│ │ ├── labels00000009.png
│ │ ├── labels00000010.png
│ │ ├── labels00000011.png
│ │ ├── labels00000013.png
│ │ ├── labels00000014.png
│ │ ├── labels00000015.png
│ │ ├── labels00000016.png
│ │ ├── labels00000018.png
│ │ └── labels00000019.png
│ └── raw
│ │ ├── 00.tif
│ │ ├── 01.tif
│ │ ├── 03.tif
│ │ ├── 04.tif
│ │ ├── 05.tif
│ │ ├── 06.tif
│ │ ├── 08.tif
│ │ ├── 09.tif
│ │ ├── 10.tif
│ │ ├── 11.tif
│ │ ├── 13.tif
│ │ ├── 14.tif
│ │ ├── 15.tif
│ │ ├── 16.tif
│ │ ├── 18.tif
│ │ └── 19.tif
├── train2.sh
├── train_debug.sh
├── train_process_sk_2.prototxt
├── train_process_sk_9.prototxt
├── train_process_u_2.prototxt
├── train_process_u_9.prototxt
├── train_process_upsample.prototxt
├── train_process_usk_2.prototxt
├── train_process_usk_9.prototxt
├── validate_raw
│ └── validate_raw.tif
└── validate_target
│ ├── labels00000002.png
│ ├── labels00000002_cons.png
│ ├── labels00000007.png
│ ├── labels00000007_cons.png
│ ├── labels00000012.png
│ ├── labels00000012_cons.png
│ ├── labels00000017.png
│ ├── labels00000017_cons.png
│ └── validate_target.tif
├── dataset_02
├── .gitignore
├── process.sh
├── train.sh
├── train
│ ├── labels
│ │ └── train-labels00.tif
│ └── raw
│ │ └── train-volume00.tif
├── train2.sh
├── train_process_sk_2.prototxt
├── train_process_u_2.prototxt
└── train_process_usk_2.prototxt
├── dataset_06
├── .gitignore
├── config.py
├── config.pyc
├── fibsem_medulla_7col
│ └── README.md
├── greentea_brew_tool.py
├── malis
│ ├── .gitignore
│ ├── README.md
│ ├── __init__.py
│ ├── __init__.pyc
│ ├── make.sh
│ ├── malis.pyx
│ ├── malis_cpp.cpp
│ ├── malis_cpp.h
│ ├── setup.py
│ ├── test_malis.py
│ └── test_malis_nhood.ipynb
├── net
│ ├── anisonet_euclid.prototxt
│ ├── anisonet_malis.prototxt
│ ├── anisonet_test.prototxt
│ ├── net_test.prototxt
│ └── solver.prototxt
├── netconf.py
├── netconf.pyc
├── network_generator.py
├── volume_slicer.py
└── volume_slicer.pyc
├── dataset_08
├── .gitignore
├── config.py
├── config.pyc
├── device_query.sh
├── net
│ ├── net_test.prototxt
│ ├── net_train.prototxt
│ ├── net_train_malis.prototxt
│ └── solver.prototxt
├── netconf.py
├── netconf.pyc
├── network_generator.py
├── process.sh
├── train.sh
└── train_process.prototxt
├── evaluation
└── fiji_script_isbi.bsh
├── malis_setup
├── draw_net.sh
└── neuraltissue_net.prototxt
├── net_old
├── neuraltissue_process.prototxt
├── neuraltissue_solver.prototxt
├── neuraltissue_test.prototxt
└── neuraltissue_train.prototxt
├── net_sk_2out
├── draw_net.sh
├── neuraltissue_net.prototxt
├── neuraltissue_net_malis.prototxt
├── neuraltissue_net_softmax.prototxt
└── neuraltissue_solver.prototxt
├── net_sk_9out
├── neuraltissue_net.prototxt
└── neuraltissue_solver.prototxt
├── net_u_2out
├── draw_net.sh
├── neuraltissue_net.prototxt
├── neuraltissue_net_malis.prototxt
├── neuraltissue_net_softmax.prototxt
└── neuraltissue_solver.prototxt
├── net_u_9out
├── neuraltissue_net.prototxt
└── neuraltissue_solver.prototxt
├── net_u_small
├── net_test.prototxt
├── net_train.prototxt
├── neuraltissue_net.prototxt
├── neuraltissue_solver.prototxt
└── script.py
├── net_upsample
└── neuraltissue_net.prototxt
├── net_usk_2out
├── draw_net.sh
├── neuraltissue_net.prototxt
├── neuraltissue_net_malis.prototxt
├── neuraltissue_net_softmax.prototxt
└── neuraltissue_solver.prototxt
├── net_usk_3out
├── neuraltissue_net.prototxt
└── neuraltissue_solver.prototxt
├── net_usk_9out
├── neuraltissue_net.prototxt
└── neuraltissue_solver.prototxt
├── pygt_01
├── loss.mat
├── net_test.prototxt
├── net_train.prototxt
└── script.py
├── pygt_example
├── .gitignore
├── big_testnet.ipynb
├── draw_net.sh
├── netgen_example.ipynb
├── nopadding_example.ipynb
└── reswnet.ipynb
├── pygt_fibsem
├── .gitignore
├── net_test.prototxt
├── net_train_euclid.prototxt
├── net_train_malis.prototxt
├── process.py
└── script.py
├── pygt_isbi2012
├── mknet.py
├── net_test.prototxt
├── net_train_euclid.prototxt
├── net_train_malis.prototxt
├── process.py
└── train.py
├── pygt_snemi_aniso
├── mknet.py
├── net_test.prototxt
├── net_train_euclid.prototxt
├── net_train_malis.prototxt
└── train.py
└── pygt_uvisual
├── .gitignore
├── mknet.py
├── net_test.prototxt
├── net_train_euclid.prototxt
├── net_train_malis.prototxt
├── process.py
├── test_out.h5
├── testnet.aux
├── testnet.bcf
├── testnet.log
├── testnet.run.xml
├── testnet.synctex.gz
├── testnet.tex
├── train.py
└── trainnet.tex
/.gitignore:
--------------------------------------------------------------------------------
1 | *.ipynb_checkpoints*
2 | *.caffemodel
3 | *.solverstate
4 | dataset_03
5 | dataset_04
6 | dataset_05
7 | dataset_07
8 | *.fuse*
9 | *.pdf
10 | *.ps
11 |
--------------------------------------------------------------------------------
/.project:
--------------------------------------------------------------------------------
1 |
2 |
3 | project_data
4 |
5 |
6 |
7 |
8 |
9 | org.python.pydev.PyDevBuilder
10 |
11 |
12 |
13 |
14 |
15 | org.python.pydev.pythonNature
16 |
17 |
18 |
--------------------------------------------------------------------------------
/.pydevproject:
--------------------------------------------------------------------------------
1 |
2 |
3 | Default
4 | python 2.7
5 |
6 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright (c) 2015, Fabian Tschopp
2 | All rights reserved.
3 |
4 | Redistribution and use in source and binary forms, with or without
5 | modification, are permitted provided that the following conditions are met:
6 |
7 | * Redistributions of source code must retain the above copyright notice, this
8 | list of conditions and the following disclaimer.
9 |
10 | * Redistributions in binary form must reproduce the above copyright notice,
11 | this list of conditions and the following disclaimer in the documentation
12 | and/or other materials provided with the distribution.
13 |
14 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
18 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
21 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 |
25 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Citation
2 | Please cite
3 | http://arxiv.org/abs/1509.03371
4 | when using this repository for research.
5 |
6 | # Dataset licences
7 |
8 | ### When using dataset_01, please cite the following source:
9 | ```
10 | @online{DS1ssTEM,
11 | title = {Segmented anisotropic ssTEM dataset of neural tissue},
12 | author = {Gerhard, Stephan and Funke, Jan and Martel, Julien and Cardona, Albert and Fetter, Richard},
13 | year = 2013,
14 | url = {http://dx.doi.org/10.6084/m9.figshare.856713},
15 | doi = {10.6084/m9.figshare.856713},
16 | urldate = {2015-08-20}
17 | }
18 |
19 | ```
20 |
21 | ### When using dataset_02, please cite the following source:
22 | ```
23 | @online{ISBI2012,
24 | title = {ISBI 2012 Challenge},
25 | url = {http://brainiac2.mit.edu/isbi_challenge/},
26 | urldate = {2015-08-20}
27 | }
28 |
29 | ```
30 | and
31 | ```
32 | @article{Cardona2010,
33 | doi = {10.1371/journal.pbio.1000502},
34 | url = {http://dx.doi.org/10.1371/journal.pbio.1000502},
35 | year = {2010},
36 | month = {oct},
37 | publisher = {Public Library of Science ({PLoS})},
38 | volume = {8},
39 | number = {10},
40 | pages = {e1000502},
41 | author = {Albert Cardona and Stephan Saalfeld and Stephan Preibisch and Benjamin Schmid and Anchi Cheng and Jim Pulokas and Pavel Tomancak and Volker Hartenstein},
42 | editor = {Kristen M. Harris},
43 | title = {An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy},
44 | journal = {{PLoS} Biology}
45 | }
46 | ```
47 | and
48 | ```
49 | @online{TrackEM,
50 | title = {TrackEM},
51 | url = {https://www.ini.uzh.ch/~acardona/trakem2.html},
52 | year = {2012},
53 | urldate = {2015-08-20}
54 | }
55 | ```
56 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.014043;0
2 | 1;silence;0.0018146;0
3 | 2;conv1;1.0959422;699388656
4 | 3;relu1;0.2368284;0
5 | 4;pool1;0.3240114;0
6 | 5;conv2;5.4014258;14062669312
7 | 6;relu2;0.318238;0
8 | 7;pool2;0.71559;0
9 | 8;conv3;18.321964;18401596416
10 | 9;relu3;0.4395918;0
11 | 10;pool3;1.0135224;0
12 | 11;ip1;154.3489266;644228317184
13 | 12;relu4;0.8643864;0
14 | 13;ip2;5.990901;17171480576
15 | 14;relu5;0.4132996;0
16 | 15;ip3;0.9644582;33521664
17 | 16;prob;0.047309;0
18 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2892571592
2 | data;629292
3 | label;4
4 | conv1;9547968
5 | pool1;9462528
6 | conv2;23447552
7 | pool2;23011328
8 | conv3;31961088
9 | pool3;30720000
10 | ip1;67108864
11 | ip2;33554432
12 | ip3;131072
13 | prob;131072
14 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;191.714908
2 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.000877;0
2 | 1;data;0.0009696;0
3 | 2;silence;0.001661;0
4 | 3;conv1;1.819903;0
5 | 4;relu1;0.2726896;0
6 | 5;pool1;0.6076484;0
7 | 6;conv2;17.9877856;0
8 | 7;relu2;0.4169074;0
9 | 8;pool2;1.3063268;0
10 | 9;conv3;18.9981138;0
11 | 10;relu3;0.6648252;0
12 | 11;pool3;1.907103;0
13 | 12;ip1;371.5397424;0
14 | 13;relu4;1.3922454;0
15 | 14;ip2;13.5833212;0
16 | 15;relu5;0.625952;0
17 | 16;ip3;2.4598556;0
18 | 17;loss;0.0460906;0
19 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0187622;0
2 | 1;data;0.003997;0
3 | 2;silence;0.0019424;0
4 | 3;conv1;1.1397308;699388656
5 | 4;relu1;0.1666118;0
6 | 5;pool1;0.2980992;0
7 | 6;conv2;5.4553708;14062669312
8 | 7;relu2;0.303442;0
9 | 8;pool2;0.694105;0
10 | 9;conv3;17.3049408;18401596416
11 | 10;relu3;0.407844;0
12 | 11;pool3;0.944289;0
13 | 12;ip1;153.562362;644228317184
14 | 13;relu4;0.8710318;0
15 | 14;ip2;5.872702;17171480576
16 | 15;relu5;0.4279062;0
17 | 16;ip3;0.969711;33521664
18 | 17;loss;0.3509824;0
19 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3204621764
2 | label;65536
3 | labeli;4
4 | data;629292
5 | datai;4
6 | conv1;9547968
7 | pool1;9462528
8 | conv2;23447552
9 | pool2;23011328
10 | conv3;31961088
11 | pool3;30720000
12 | ip1;67108864
13 | ip2;33554432
14 | ip3;131072
15 | (automatic);4
16 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/sk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;189.6121536
2 | Backward;434.9790178
3 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0201474;0
2 | 1;silence;0.0018914;0
3 | 2;conv1;3.1065658;1102060800
4 | 3;relu1;1.0075428;0
5 | 4;conv2;11.7317112;23765774336
6 | 5;relu2;1.0244426;0
7 | 6;conv2_relu2_0_split;0.0041298;0
8 | 7;pool1;0.8950078;0
9 | 8;conv3;4.7744606;11716111872
10 | 9;relu3;0.525515;0
11 | 10;conv4;8.5238032;23111065600
12 | 11;relu4;0.5106686;0
13 | 12;conv4_relu4_0_split;0.0070484;0
14 | 13;pool2;0.4979998;0
15 | 14;conv5;3.8086208;11227732992
16 | 15;relu5;0.2423108;0
17 | 16;conv6;6.4169956;21814034432
18 | 17;relu6;0.301866;0
19 | 18;conv6_relu6_0_split;0.0033552;0
20 | 19;pool3;0.2101008;0
21 | 20;conv7;2.8681432;10274863104
22 | 21;relu7;0.1139792;0
23 | 22;conv8;4.7578372;19325255680
24 | 23;relu8;0.1661732;0
25 | 24;conv8_relu8_0_split;0.0037938;0
26 | 25;pool4;0.0895564;0
27 | 26;conv9;2.3970408;8492544000
28 | 27;relu9;0.0752706;0
29 | 28;conv10;3.8179296;14796701696
30 | 29;relu10;0.0696692;0
31 | 30;upconv1;4.6572626;0
32 | 31;conv11;0.9122462;3286728704
33 | 32;mergecrop1;0.4061404;0
34 | 33;conv12;8.9003274;27517335552
35 | 34;relu11;0.1295904;0
36 | 35;conv13;3.6501898;12757688320
37 | 36;relu12;0.07381;0
38 | 37;upconv2;3.1007358;0
39 | 38;conv14;0.863489;2832580608
40 | 39;mergecrop2;0.6454796;0
41 | 40;conv15;7.4727116;24543452160
42 | 41;relu13;0.1346504;0
43 | 42;conv16;3.4077856;11793920000
44 | 43;relu14;0.128637;0
45 | 44;upconv3;3.1867074;0
46 | 45;conv17;0.9284416;2616320000
47 | 46;mergecrop3;1.2322908;0
48 | 47;conv18;8.0772324;23118441984
49 | 48;relu15;0.2757638;0
50 | 49;conv19;4.1183232;11324422144
51 | 50;relu16;0.2417348;0
52 | 51;upconv4;4.7143024;0
53 | 52;conv20;1.365009;2507796480
54 | 53;mergecrop4;2.2628018;0
55 | 54;conv21;10.7722956;22418323200
56 | 55;relu17;0.472244;0
57 | 56;conv22;5.5281674;11089673216
58 | 57;relu18;0.493121;0
59 | 58;ip1;0.3460302;38238176
60 | 59;prob;0.1049962;0
61 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1793039512
2 | data;3926208
3 | datai;4
4 | conv1;83174400
5 | conv2;82591744
6 | conv2_relu2_0_split_0;82591744
7 | conv2_relu2_0_split_1;82591744
8 | pool1;20647936
9 | conv3;40716288
10 | conv4;40140800
11 | conv4_relu4_0_split_0;40140800
12 | conv4_relu4_0_split_1;40140800
13 | pool2;10035200
14 | conv5;19501056
15 | conv6;18939904
16 | conv6_relu6_0_split_0;18939904
17 | conv6_relu6_0_split_1;18939904
18 | pool3;4734976
19 | conv7;8921088
20 | conv8;8388608
21 | conv8_relu8_0_split_0;8388608
22 | conv8_relu8_0_split_1;8388608
23 | pool4;2097152
24 | conv9;3686400
25 | conv10;3211264
26 | upconv1;12845056
27 | conv11;6422528
28 | mergecrop1;12845056
29 | conv12;5971968
30 | conv13;5537792
31 | upconv2;22151168
32 | conv14;11075584
33 | mergecrop2;22151168
34 | conv15;10653696
35 | conv16;10240000
36 | upconv3;40960000
37 | conv17;20480000
38 | mergecrop3;40960000
39 | conv18;20072448
40 | conv19;19668992
41 | upconv4;78675968
42 | conv20;39337984
43 | mergecrop4;78675968
44 | conv21;38937600
45 | conv22;38539264
46 | ip1;1204352
47 | prob;1204352
48 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;142.274348
2 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.014555;0
2 | 1;silence;0.0013558;0
3 | 2;conv1;1.9568992;638903552
4 | 3;relu1;1.1153764;0
5 | 4;conv2;7.0789774;13747470336
6 | 5;relu2;0.6093588;0
7 | 6;conv2_relu2_0_split;0.0031992;0
8 | 7;pool1;0.4779596;0
9 | 8;conv3;9.0965702;26253855616
10 | 9;relu3;0.3188322;0
11 | 10;pool2;0.7617608;0
12 | 11;conv4;7.5546304;21813442560
13 | 12;relu4;0.351455;0
14 | 13;pool3;0.6009214;0
15 | 14;conv5;6.417378;18922176000
16 | 15;relu5;0.228116;0
17 | 16;pool4;0.5110046;0
18 | 17;ip1;35.4771948;141758822400
19 | 18;relu6;0.4278384;0
20 | 19;ip2;1.3201184;4425907200
21 | 20;relu7;0.2133016;0
22 | 21;upconv1;4.6721504;0
23 | 22;conv6;1.512341;4421580800
24 | 23;mergecrop1;1.529794;0
25 | 24;conv7;10.4137052;29437263360
26 | 25;relu8;0.4181806;0
27 | 26;conv8;4.5365524;9659482112
28 | 27;relu9;0.2285804;0
29 | 28;ip3;0.2084614;16646144
30 | 29;prob;0.064374;0
31 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1145971772
2 | data;2281152
3 | datai;4
4 | conv1;48219136
5 | conv2;47775744
6 | conv2_relu2_0_split_0;47775744
7 | conv2_relu2_0_split_1;47775744
8 | pool1;11943936
9 | conv3;22794752
10 | pool2;22579200
11 | conv4;21307392
12 | pool3;20891648
13 | conv5;18483200
14 | pool4;17713152
15 | ip1;34611200
16 | ip2;17305600
17 | upconv1;69222400
18 | conv6;34611200
19 | mergecrop1;51916800
20 | conv7;34080768
21 | conv8;16777216
22 | ip3;524288
23 | prob;524288
24 |
--------------------------------------------------------------------------------
/benchmark/GTX980_CUDA/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;99.5959904
2 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0143252;0
2 | 1;silence;0.0026662;0
3 | 2;conv1;1.7259672;699388656
4 | 3;relu1;0.1370306;0
5 | 4;pool1;0.3360722;0
6 | 5;conv2;11.2391658;14062669312
7 | 6;relu2;0.3190846;0
8 | 7;pool2;0.7757316;0
9 | 8;conv3;18.0968498;18401596416
10 | 9;relu3;0.450221;0
11 | 10;pool3;1.051857;0
12 | 11;ip1;514.4112442;644228317184
13 | 12;relu4;0.9857154;0
14 | 13;ip2;15.6233562;17171480576
15 | 14;relu5;0.4618694;0
16 | 15;ip3;0.964134;33521664
17 | 16;prob;0.074961;0
18 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2892571592
2 | data;629292
3 | label;4
4 | conv1;9547968
5 | pool1;9462528
6 | conv2;23447552
7 | pool2;23011328
8 | conv3;31961088
9 | pool3;30720000
10 | ip1;67108864
11 | ip2;33554432
12 | ip3;131072
13 | prob;131072
14 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;575.669384
2 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0010642;0
2 | 1;data;0.0010558;0
3 | 2;silence;0.001359;0
4 | 3;conv1;4.1609056;0
5 | 4;relu1;0.2090056;0
6 | 5;pool1;0.5922258;0
7 | 6;conv2;33.3982292;0
8 | 7;relu2;0.4649138;0
9 | 8;pool2;1.380455;0
10 | 9;conv3;56.4363548;0
11 | 10;relu3;0.7740224;0
12 | 11;pool3;1.9889836;0
13 | 12;ip1;1708.289885;0
14 | 13;relu4;1.3190932;0
15 | 14;ip2;51.176079;0
16 | 15;relu5;0.6347298;0
17 | 16;ip3;2.7247558;0
18 | 17;loss;0.1924842;0
19 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0147486;0
2 | 1;data;0.005773;0
3 | 2;silence;0.0024298;0
4 | 3;conv1;1.7548638;699388656
5 | 4;relu1;0.1631776;0
6 | 5;pool1;0.3609746;0
7 | 6;conv2;11.474481;14062669312
8 | 7;relu2;0.3140282;0
9 | 8;pool2;0.7902454;0
10 | 9;conv3;18.5113284;18401596416
11 | 10;relu3;0.448919;0
12 | 11;pool3;1.045839;0
13 | 12;ip1;517.236149;644228317184
14 | 13;relu4;1.0337504;0
15 | 14;ip2;15.7873238;17171480576
16 | 15;relu5;0.4720762;0
17 | 16;ip3;0.9371168;33521664
18 | 17;loss;0.7269272;0
19 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3204621764
2 | label;65536
3 | labeli;4
4 | data;629292
5 | datai;4
6 | conv1;9547968
7 | pool1;9462528
8 | conv2;23447552
9 | pool2;23011328
10 | conv3;31961088
11 | pool3;30720000
12 | ip1;67108864
13 | ip2;33554432
14 | ip3;131072
15 | (automatic);4
16 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/sk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;565.7039322
2 | Backward;1864.502751
3 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0187342;0
2 | 1;silence;0.0019274;0
3 | 2;conv1;3.6299318;1102060800
4 | 3;relu1;1.0869384;0
5 | 4;conv2;26.3692056;23765774336
6 | 5;relu2;1.1215754;0
7 | 6;conv2_relu2_0_split;0.0062658;0
8 | 7;pool1;0.8576278;0
9 | 8;conv3;9.7327258;11716111872
10 | 9;relu3;0.5292008;0
11 | 10;conv4;21.8746116;23111065600
12 | 11;relu4;0.5611102;0
13 | 12;conv4_relu4_0_split;0.0042962;0
14 | 13;pool2;0.4425734;0
15 | 14;conv5;8.1746674;11227732992
16 | 15;relu5;0.2973982;0
17 | 16;conv6;19.146688;21814034432
18 | 17;relu6;0.270644;0
19 | 18;conv6_relu6_0_split;0.0033782;0
20 | 19;pool3;0.2208972;0
21 | 20;conv7;6.894211;10274863104
22 | 21;relu7;0.1427362;0
23 | 22;conv8;16.823695;19325255680
24 | 23;relu8;0.1227904;0
25 | 24;conv8_relu8_0_split;0.003319;0
26 | 25;pool4;0.098882;0
27 | 26;conv9;5.5924726;8492544000
28 | 27;relu9;0.0790044;0
29 | 28;conv10;12.8098188;14796701696
30 | 29;relu10;0.0897474;0
31 | 30;upconv1;56.0273676;0
32 | 31;conv11;2.6819994;3286728704
33 | 32;mergecrop1;0.3769342;0
34 | 33;conv12;18.4179932;27517335552
35 | 34;relu11;0.0932134;0
36 | 35;conv13;11.5935164;12757688320
37 | 36;relu12;0.108353;0
38 | 37;upconv2;28.5042182;0
39 | 38;conv14;2.5558186;2832580608
40 | 39;mergecrop2;0.5757984;0
41 | 40;conv15;18.1934352;24543452160
42 | 41;relu13;0.1733488;0
43 | 42;conv16;10.6109398;11793920000
44 | 43;relu14;0.1419536;0
45 | 44;upconv3;15.3317548;0
46 | 45;conv17;2.6098348;2616320000
47 | 46;mergecrop3;1.0482962;0
48 | 47;conv18;18.019848;23118441984
49 | 48;relu15;0.2833876;0
50 | 49;conv19;11.3220628;11324422144
51 | 50;relu16;0.2591988;0
52 | 51;upconv4;9.6924594;0
53 | 52;conv20;2.848724;2507796480
54 | 53;mergecrop4;1.933022;0
55 | 54;conv21;20.446861;22418323200
56 | 55;relu17;0.5064346;0
57 | 56;conv22;12.763158;11089673216
58 | 57;relu18;0.53197;0
59 | 58;ip1;0.4512028;38238176
60 | 59;prob;0.128015;0
61 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1793039512
2 | data;3926208
3 | datai;4
4 | conv1;83174400
5 | conv2;82591744
6 | conv2_relu2_0_split_0;82591744
7 | conv2_relu2_0_split_1;82591744
8 | pool1;20647936
9 | conv3;40716288
10 | conv4;40140800
11 | conv4_relu4_0_split_0;40140800
12 | conv4_relu4_0_split_1;40140800
13 | pool2;10035200
14 | conv5;19501056
15 | conv6;18939904
16 | conv6_relu6_0_split_0;18939904
17 | conv6_relu6_0_split_1;18939904
18 | pool3;4734976
19 | conv7;8921088
20 | conv8;8388608
21 | conv8_relu8_0_split_0;8388608
22 | conv8_relu8_0_split_1;8388608
23 | pool4;2097152
24 | conv9;3686400
25 | conv10;3211264
26 | upconv1;12845056
27 | conv11;6422528
28 | mergecrop1;12845056
29 | conv12;5971968
30 | conv13;5537792
31 | upconv2;22151168
32 | conv14;11075584
33 | mergecrop2;22151168
34 | conv15;10653696
35 | conv16;10240000
36 | upconv3;40960000
37 | conv17;20480000
38 | mergecrop3;40960000
39 | conv18;20072448
40 | conv19;19668992
41 | upconv4;78675968
42 | conv20;39337984
43 | mergecrop4;78675968
44 | conv21;38937600
45 | conv22;38539264
46 | ip1;1204352
47 | prob;1204352
48 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;385.8560848
2 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.013036;0
2 | 1;silence;0.001986;0
3 | 2;conv1;2.788269;638903552
4 | 3;relu1;0.8252844;0
5 | 4;conv2;15.4850384;13747470336
6 | 5;relu2;0.650384;0
7 | 6;conv2_relu2_0_split;0.004021;0
8 | 7;pool1;0.4877516;0
9 | 8;conv3;28.2640398;26253855616
10 | 9;relu3;0.3278726;0
11 | 10;pool2;0.7759524;0
12 | 11;conv4;21.7133158;21813442560
13 | 12;relu4;0.3312742;0
14 | 13;pool3;0.7008708;0
15 | 14;conv5;14.9449984;18922176000
16 | 15;relu5;0.2526546;0
17 | 16;pool4;0.5994888;0
18 | 17;ip1;98.3455104;141758822400
19 | 18;relu6;0.4822476;0
20 | 19;ip2;3.4107204;4425907200
21 | 20;relu7;0.3354066;0
22 | 21;upconv1;16.4908672;0
23 | 22;conv6;4.502969;4421580800
24 | 23;mergecrop1;1.3090008;0
25 | 24;conv7;22.8922092;29437263360
26 | 25;relu8;0.4673992;0
27 | 26;conv8;10.2436214;9659482112
28 | 27;relu9;0.2223656;0
29 | 28;ip3;0.2090416;16646144
30 | 29;prob;0.0858128;0
31 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1145971772
2 | data;2281152
3 | datai;4
4 | conv1;48219136
5 | conv2;47775744
6 | conv2_relu2_0_split_0;47775744
7 | conv2_relu2_0_split_1;47775744
8 | pool1;11943936
9 | conv3;22794752
10 | pool2;22579200
11 | conv4;21307392
12 | pool3;20891648
13 | conv5;18483200
14 | pool4;17713152
15 | ip1;34611200
16 | ip2;17305600
17 | upconv1;69222400
18 | conv6;34611200
19 | mergecrop1;51916800
20 | conv7;34080768
21 | conv8;16777216
22 | ip3;524288
23 | prob;524288
24 |
--------------------------------------------------------------------------------
/benchmark/GTX980_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;245.0145208
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0405226
2 | 1;silence;0.0063974
3 | 2;conv1;47.0204064
4 | 3;relu1;5.0779144
5 | 4;pool1;17.1705162
6 | 5;conv2;176.9591032
7 | 6;relu2;14.042627
8 | 7;pool2;44.3998096
9 | 8;conv3;238.911284
10 | 9;relu3;17.4494256
11 | 10;pool3;59.0547566
12 | 11;ip1;4168.215566
13 | 12;relu4;47.6171252
14 | 13;ip2;187.0531798
15 | 14;relu5;24.0963336
16 | 15;ip3;77.5087656
17 | 16;prob;4.877636
18 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1635212260
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;5161.034542
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.006244
2 | 1;data;0.0173352
3 | 2;silence;0.0480516
4 | 3;conv1;27.407684
5 | 4;relu1;9.3572536
6 | 5;pool1;31.7626618
7 | 6;conv2;223.6084942
8 | 7;relu2;9.7248338
9 | 8;pool2;34.830752
10 | 9;conv3;259.413099
11 | 10;relu3;14.0322476
12 | 11;pool3;35.4135304
13 | 12;ip1;2187.657496
14 | 13;relu4;11.3234554
15 | 14;ip2;93.2401802
16 | 15;relu5;7.8386576
17 | 16;ip3;30.7950094
18 | 17;loss;1.0217236
19 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0351444
2 | 1;data;0.0188018
3 | 2;silence;0.0073194
4 | 3;conv1;19.201851
5 | 4;relu1;3.2664994
6 | 5;pool1;6.7968486
7 | 6;conv2;96.6467126
8 | 7;relu2;9.7047604
9 | 8;pool2;21.8509584
10 | 9;conv3;114.3279984
11 | 10;relu3;8.0902864
12 | 11;pool3;23.6304708
13 | 12;ip1;800.3068362
14 | 13;relu4;12.7776288
15 | 14;ip2;48.8153678
16 | 15;relu5;5.4744796
17 | 16;ip3;15.130366
18 | 17;loss;4.8494892
19 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;999151612
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/sk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;1264.53591
2 | Backward;2532.156276
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0198354
2 | 1;silence;0.003632
3 | 2;conv1;55.090086
4 | 3;relu1;41.0120502
5 | 4;conv2;1013.375996
6 | 5;relu2;41.3929282
7 | 6;conv2_relu2_0_split;0.0318762
8 | 7;pool1;51.4747408
9 | 8;conv3;206.1428936
10 | 9;relu3;23.7557262
11 | 10;conv4;442.6873478
12 | 11;relu4;24.5098422
13 | 12;conv4_relu4_0_split;0.0829166
14 | 13;pool2;34.2339488
15 | 14;conv5;119.1900464
16 | 15;relu5;11.457327
17 | 16;conv6;281.1877198
18 | 17;relu6;9.6852336
19 | 18;conv6_relu6_0_split;0.0223634
20 | 19;pool3;11.6210244
21 | 20;conv7;70.6778644
22 | 21;relu7;5.958447
23 | 22;conv8;145.9417566
24 | 23;relu8;4.2409396
25 | 24;conv8_relu8_0_split;0.0183822
26 | 25;pool4;7.111277
27 | 26;conv9;56.872058
28 | 27;relu9;2.3141562
29 | 28;conv10;96.5061614
30 | 29;relu10;2.3368562
31 | 30;upconv1;207.6817288
32 | 31;conv11;19.673262
33 | 32;mergecrop1;13.6522218
34 | 33;conv12;223.7458718
35 | 34;relu11;3.9363162
36 | 35;conv13;134.1608046
37 | 36;relu12;3.9666558
38 | 37;upconv2;141.2597508
39 | 38;conv14;27.783814
40 | 39;mergecrop2;31.2126118
41 | 40;conv15;312.4602684
42 | 41;relu13;8.95379
43 | 42;conv16;155.2613796
44 | 43;relu14;5.9838524
45 | 44;upconv3;130.4981226
46 | 45;conv17;24.607104
47 | 46;mergecrop3;57.296687
48 | 47;conv18;414.135743
49 | 48;relu15;13.025009
50 | 49;conv19;229.4715494
51 | 50;relu16;11.8842748
52 | 51;upconv4;164.088669
53 | 52;conv20;41.9184634
54 | 53;mergecrop4;111.9579278
55 | 54;conv21;714.7979378
56 | 55;relu17;19.549961
57 | 56;conv22;354.3634662
58 | 57;relu18;15.3219992
59 | 58;ip1;27.4159408
60 | 59;prob;16.2410806
61 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1801471796
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;6274.409446
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.010658
2 | 1;data;0.0512226
3 | 2;silence;0.0137026
4 | 3;conv1;86.4319616
5 | 4;relu1;57.2456308
6 | 5;conv2;1410.420551
7 | 6;relu2;76.032884
8 | 7;conv2_relu2_0_split;103.0249544
9 | 8;pool1;144.445817
10 | 9;conv3;430.3813386
11 | 10;relu3;30.6087382
12 | 11;conv4;772.0353558
13 | 12;relu4;32.632632
14 | 13;conv4_relu4_0_split;50.3196436
15 | 14;pool2;61.9868534
16 | 15;conv5;262.6665916
17 | 16;relu5;10.9531232
18 | 17;conv6;530.8880388
19 | 18;relu6;12.3195468
20 | 19;conv6_relu6_0_split;40.1771406
21 | 20;pool3;45.8929016
22 | 21;conv7;178.325765
23 | 22;relu7;6.9972068
24 | 23;conv8;333.2806924
25 | 24;relu8;18.8933454
26 | 25;conv8_relu8_0_split;17.1350212
27 | 26;pool4;32.671422
28 | 27;conv9;137.3401436
29 | 28;relu9;2.8333098
30 | 29;conv10;227.8165914
31 | 30;relu10;4.7558584
32 | 31;upconv1;200.0908172
33 | 32;conv11;36.8331184
34 | 33;mergecrop1;17.5279832
35 | 34;conv12;433.0395908
36 | 35;relu11;3.1266896
37 | 36;conv13;192.9265028
38 | 37;relu12;10.8964796
39 | 38;upconv2;131.869475
40 | 39;conv14;36.980428
41 | 40;mergecrop2;18.066299
42 | 41;conv15;455.7792268
43 | 42;relu13;4.8784866
44 | 43;conv16;218.8227134
45 | 44;relu14;10.9477738
46 | 45;upconv3;125.3655338
47 | 46;conv17;50.701712
48 | 47;mergecrop3;21.8793
49 | 48;conv18;774.5040862
50 | 49;relu15;12.9069906
51 | 50;conv19;388.760162
52 | 51;relu16;13.7737752
53 | 52;upconv4;146.8257822
54 | 53;conv20;77.952262
55 | 54;mergecrop4;54.6816494
56 | 55;conv21;1332.410706
57 | 56;relu17;38.0097954
58 | 57;conv22;614.4139046
59 | 58;relu18;40.2450944
60 | 59;ip1;19.4986164
61 | 60;loss;5.8554834
62 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.041263
2 | 1;data;0.0158122
3 | 2;silence;0.006677
4 | 3;conv1;49.1573852
5 | 4;relu1;51.0846154
6 | 5;conv2;859.2462698
7 | 6;relu2;61.6558684
8 | 7;conv2_relu2_0_split;0.111734
9 | 8;pool1;59.50288
10 | 9;conv3;216.2551428
11 | 10;relu3;30.3111696
12 | 11;conv4;484.4404536
13 | 12;relu4;31.4165364
14 | 13;conv4_relu4_0_split;0.0484288
15 | 14;pool2;28.7958146
16 | 15;conv5;120.3065616
17 | 16;relu5;13.4710082
18 | 17;conv6;242.4961242
19 | 18;relu6;15.1148608
20 | 19;conv6_relu6_0_split;0.119947
21 | 20;pool3;12.6655034
22 | 21;conv7;77.8326126
23 | 22;relu7;5.2534286
24 | 23;conv8;165.965359
25 | 24;relu8;5.1639906
26 | 25;conv8_relu8_0_split;0.063263
27 | 26;pool4;14.7202366
28 | 27;conv9;59.9360844
29 | 28;relu9;2.8721114
30 | 29;conv10;70.4706282
31 | 30;relu10;5.5082556
32 | 31;upconv1;186.0452722
33 | 32;conv11;19.8926912
34 | 33;mergecrop1;23.1774594
35 | 34;conv12;222.6629808
36 | 35;relu11;4.4860856
37 | 36;conv13;127.5499088
38 | 37;relu12;4.5859748
39 | 38;upconv2;153.0855106
40 | 39;conv14;22.1165958
41 | 40;mergecrop2;38.6550684
42 | 41;conv15;338.9844772
43 | 42;relu13;9.459336
44 | 43;conv16;175.3038108
45 | 44;relu14;6.575951
46 | 45;upconv3;157.69371
47 | 46;conv17;25.6478648
48 | 47;mergecrop3;71.255991
49 | 48;conv18;487.9113658
50 | 49;relu15;15.2723278
51 | 50;conv19;263.1543588
52 | 51;relu16;13.7430294
53 | 52;upconv4;169.978962
54 | 53;conv20;41.291798
55 | 54;mergecrop4;106.3960474
56 | 55;conv21;641.164679
57 | 56;relu17;24.93105
58 | 57;conv22;357.3861596
59 | 58;relu18;20.4734824
60 | 59;ip1;27.1241994
61 | 60;loss;24.0404162
62 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3115754464
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/u_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;6200.191189
2 | Backward;10730.3282
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.026722
2 | 1;silence;0.0040646
3 | 2;conv1;80.3438366
4 | 3;relu1;68.5769352
5 | 4;conv2;960.6551128
6 | 5;relu2;49.7611038
7 | 6;conv2_relu2_0_split;0.0382458
8 | 7;pool1;78.4455622
9 | 8;conv3;227.0954262
10 | 9;relu3;20.720295
11 | 10;conv4;564.652915
12 | 11;relu4;34.5401934
13 | 12;conv4_relu4_0_split;0.027923
14 | 13;pool2;38.5501236
15 | 14;conv5;307.7153198
16 | 15;relu5;8.1091694
17 | 16;pool3;25.3235492
18 | 17;conv6;133.5515302
19 | 18;relu6;9.4014342
20 | 19;pool4;19.9955002
21 | 20;conv7;145.5263772
22 | 21;relu7;13.368182
23 | 22;pool5;44.2476982
24 | 23;ip1;221.3577124
25 | 24;relu8;22.5745366
26 | 25;ip2;29.9557704
27 | 26;relu9;13.1264358
28 | 27;upconv1;227.505374
29 | 28;conv8;33.6822922
30 | 29;mergecrop1;90.1352616
31 | 30;conv9;608.5342514
32 | 31;relu10;16.0964672
33 | 32;conv10;367.5179906
34 | 33;relu11;19.440321
35 | 34;upconv2;265.5485826
36 | 35;conv11;46.0486022
37 | 36;mergecrop2;149.6982854
38 | 37;conv12;840.1673394
39 | 38;relu12;49.614964
40 | 39;conv13;640.1183464
41 | 40;relu13;42.649099
42 | 41;ip3;64.2265004
43 | 42;prob;29.0756722
44 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3856535060
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;6623.801909
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0054054
2 | 1;data;0.0044142
3 | 2;silence;0.0056992
4 | 3;conv1;158.4993818
5 | 4;relu1;103.0751298
6 | 5;conv2;1873.491912
7 | 6;relu2;75.8166538
8 | 7;conv2_relu2_0_split;110.0896594
9 | 8;pool1;202.7994436
10 | 9;conv3;583.428602
11 | 10;relu3;40.1394528
12 | 11;conv4;979.2941216
13 | 12;relu4;54.1054634
14 | 13;conv4_relu4_0_split;106.5275346
15 | 14;pool2;86.4919004
16 | 15;conv5;620.510135
17 | 16;relu5;11.7958396
18 | 17;pool3;74.7497702
19 | 18;conv6;284.1231104
20 | 19;relu6;6.4438208
21 | 20;pool4;54.6364058
22 | 21;conv7;332.7911222
23 | 22;relu7;19.8424472
24 | 23;pool5;72.6593604
25 | 24;ip1;598.1666352
26 | 25;relu8;32.340552
27 | 26;ip2;59.9850716
28 | 27;relu9;13.4173976
29 | 28;upconv1;165.0862984
30 | 29;conv8;78.1315778
31 | 30;mergecrop1;103.3357076
32 | 31;conv9;1265.967189
33 | 32;relu10;24.4232914
34 | 33;conv10;634.9428754
35 | 34;relu11;30.9922038
36 | 35;upconv2;230.0025022
37 | 36;conv11;156.0840678
38 | 37;mergecrop2;465.0996004
39 | 38;conv12;2103.526447
40 | 39;relu12;51.7798402
41 | 40;conv13;1033.734255
42 | 41;relu13;65.559875
43 | 42;ip3;58.2909766
44 | 43;loss;7.1196846
45 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.034628
2 | 1;data;0.0132282
3 | 2;silence;0.005266
4 | 3;conv1;71.8050074
5 | 4;relu1;67.7657314
6 | 5;conv2;1023.540374
7 | 6;relu2;69.3732522
8 | 7;conv2_relu2_0_split;0.0503286
9 | 8;pool1;86.531906
10 | 9;conv3;239.4939804
11 | 10;relu3;25.518366
12 | 11;conv4;516.9120138
13 | 12;relu4;27.8296604
14 | 13;conv4_relu4_0_split;0.0253668
15 | 14;pool2;43.3069702
16 | 15;conv5;275.2488314
17 | 16;relu5;10.5483852
18 | 17;pool3;24.5423482
19 | 18;conv6;133.0760446
20 | 19;relu6;9.80413
21 | 20;pool4;24.8255454
22 | 21;conv7;149.4610976
23 | 22;relu7;12.6427508
24 | 23;pool5;41.8787094
25 | 24;ip1;259.4693626
26 | 25;relu8;15.8684332
27 | 26;ip2;25.9545292
28 | 27;relu9;10.6594786
29 | 28;upconv1;255.0431336
30 | 29;conv8;36.6369454
31 | 30;mergecrop1;122.1754714
32 | 31;conv9;674.2189658
33 | 32;relu10;27.7444354
34 | 33;conv10;344.3291066
35 | 34;relu11;18.3370226
36 | 35;upconv2;225.357483
37 | 36;conv11;59.115188
38 | 37;mergecrop2;203.2147386
39 | 38;conv12;1041.086768
40 | 39;relu12;36.201827
41 | 40;conv13;644.1519768
42 | 41;relu13;31.6411922
43 | 42;ip3;59.4689534
44 | 43;loss;36.1787196
45 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;5534664192
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/E5-2697v3_OPENCL/usk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;6643.204238
2 | Backward;13490.2204
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0048065
2 | 1;silence;0.00112395
3 | 2;conv1;1.05733825
4 | 3;relu1;0.1198611
5 | 4;pool1;0.2970089
6 | 5;conv2;5.1457242
7 | 6;relu2;0.28440505
8 | 7;pool2;0.70590725
9 | 8;conv3;16.86159505
10 | 9;relu3;0.38431225
11 | 10;pool3;0.9382434
12 | 11;ip1;158.9354779
13 | 12;relu4;0.8045739
14 | 13;ip2;5.95972205
15 | 14;relu5;0.407611
16 | 15;ip3;0.9841417
17 | 16;prob;0.05645365
18 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1635212260
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;193.2351756
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.00080485
2 | 1;data;0.00081685
3 | 2;silence;0.0009576
4 | 3;conv1;0.91463575
5 | 4;relu1;0.08824025
6 | 5;pool1;0.28245015
7 | 6;conv2;7.47387405
8 | 7;relu2;0.2069305
9 | 8;pool2;0.6348041
10 | 9;conv3;6.60553235
11 | 10;relu3;0.26699105
12 | 11;pool3;0.80848305
13 | 12;ip1;77.663499
14 | 13;relu4;0.2992026
15 | 14;ip2;2.97334415
16 | 15;relu5;0.1532881
17 | 16;ip3;0.68998165
18 | 17;loss;0.0427047
19 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0044734
2 | 1;data;0.0015361
3 | 2;silence;0.00121455
4 | 3;conv1;0.5642506
5 | 4;relu1;0.0644302
6 | 5;pool1;0.15264065
7 | 6;conv2;2.5071563
8 | 7;relu2;0.14192065
9 | 8;pool2;0.33952445
10 | 9;conv3;7.73923715
11 | 10;relu3;0.18358155
12 | 11;pool3;0.4274263
13 | 12;ip1;39.33000855
14 | 13;relu4;0.20634705
15 | 14;ip2;1.46659905
16 | 15;relu5;0.1043175
17 | 16;ip3;0.2859803
18 | 17;loss;0.1219378
19 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;999151612
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/sk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;53.5501298
2 | Backward;99.7280947
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.00722975
2 | 1;silence;0.00106755
3 | 2;conv1;2.92452625
4 | 3;relu1;1.02378065
5 | 4;conv2;11.5030544
6 | 5;relu2;0.98012145
7 | 6;conv2_relu2_0_split;0.0014339
8 | 7;pool1;0.7371831
9 | 8;conv3;4.5110732
10 | 9;relu3;0.4882995
11 | 10;conv4;8.165651
12 | 11;relu4;0.48023745
13 | 12;conv4_relu4_0_split;0.0011669
14 | 13;pool2;0.36415075
15 | 14;conv5;3.52254895
16 | 15;relu5;0.23777115
17 | 16;conv6;6.3480313
18 | 17;relu6;0.2295019
19 | 18;conv6_relu6_0_split;0.00114605
20 | 19;pool3;0.17735735
21 | 20;conv7;2.883017
22 | 21;relu7;0.11304685
23 | 22;conv8;4.8231356
24 | 23;relu8;0.10425335
25 | 24;conv8_relu8_0_split;0.0010977
26 | 25;pool4;0.08511455
27 | 26;conv9;2.3377986
28 | 27;relu9;0.04933965
29 | 28;conv10;3.89789365
30 | 29;relu10;0.0432682
31 | 30;upconv1;4.4088567
32 | 31;conv11;0.9223566
33 | 32;mergecrop1;0.3733388
34 | 33;conv12;8.94031225
35 | 34;relu11;0.07990545
36 | 35;conv13;3.594437
37 | 36;relu12;0.07096585
38 | 37;upconv2;3.07012515
39 | 38;conv14;0.86699635
40 | 39;mergecrop2;0.65308465
41 | 40;conv15;7.24313925
42 | 41;relu13;0.1371413
43 | 42;conv16;3.44476735
44 | 43;relu14;0.1258016
45 | 44;upconv3;3.12528635
46 | 45;conv17;0.9004486
47 | 46;mergecrop3;1.16783255
48 | 47;conv18;8.0232101
49 | 48;relu15;0.2488479
50 | 49;conv19;4.12113415
51 | 50;relu16;0.2374819
52 | 51;upconv4;4.66606145
53 | 52;conv20;1.3076
54 | 53;mergecrop4;2.23760385
55 | 54;conv21;10.3641045
56 | 55;relu17;0.46589955
57 | 56;conv22;5.50046915
58 | 57;relu18;0.45995625
59 | 58;ip1;0.39595055
60 | 59;prob;0.36968585
61 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1801471796
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;139.226524
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0080531
2 | 1;silence;0.00151975
3 | 2;conv1;4.34875615
4 | 3;relu1;1.4627367
5 | 4;conv2;16.9454736
6 | 5;relu2;1.44443605
7 | 6;conv2_relu2_0_split;0.0015194
8 | 7;pool1;1.107246
9 | 8;conv3;6.58756165
10 | 9;relu3;0.7256629
11 | 10;conv4;12.0125901
12 | 11;relu4;0.71291195
13 | 12;conv4_relu4_0_split;0.00113605
14 | 13;pool2;0.5368212
15 | 14;conv5;7.5439757
16 | 15;relu5;0.17421265
17 | 16;pool3;0.40789405
18 | 17;conv6;2.7882711
19 | 18;relu6;0.1623925
20 | 19;pool4;0.3777447
21 | 20;conv7;4.12992085
22 | 21;relu7;0.2848013
23 | 22;pool5;0.6386053
24 | 23;ip1;10.5724605
25 | 24;relu8;0.4220721
26 | 25;ip2;1.34537615
27 | 26;relu9;0.2148235
28 | 27;upconv1;4.76677375
29 | 28;conv8;1.56142555
30 | 29;mergecrop1;2.0029583
31 | 30;conv9;13.6182914
32 | 31;relu10;0.4152998
33 | 32;conv10;7.01692575
34 | 33;relu11;0.4109815
35 | 34;upconv2;7.80584785
36 | 35;conv11;2.14304255
37 | 36;mergecrop2;3.87495985
38 | 37;conv12;17.87997645
39 | 38;relu12;0.80659195
40 | 39;conv13;9.2228774
41 | 40;relu13;0.8024036
42 | 41;ip3;0.65446735
43 | 42;prob;0.69670635
44 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2639119892
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_CUDA/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;150.0740029
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.006974
2 | 1;silence;0.0018588
3 | 2;conv1;1.58532795
4 | 3;relu1;0.12720155
5 | 4;pool1;0.31376995
6 | 5;conv2;11.8369024
7 | 6;relu2;0.3009139
8 | 7;pool2;0.7392743
9 | 8;conv3;15.989715
10 | 9;relu3;0.40724635
11 | 10;pool3;0.9777164
12 | 11;ip1;507.072725
13 | 12;relu4;0.8633914
14 | 13;ip2;15.13994745
15 | 14;relu5;0.4301443
16 | 15;ip3;1.143828
17 | 16;prob;0.0520418
18 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1635212260
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;557.7745539
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.00955865
2 | 1;silence;0.0015038
3 | 2;conv1;3.2846843
4 | 3;relu1;1.0860999
5 | 4;conv2;25.45977305
6 | 5;relu2;1.07262275
7 | 6;conv2_relu2_0_split;0.0015992
8 | 7;pool1;0.8317198
9 | 8;conv3;10.39354905
10 | 9;relu3;0.5227294
11 | 10;conv4;21.135221
12 | 11;relu4;0.51264815
13 | 12;conv4_relu4_0_split;0.00115525
14 | 13;pool2;0.4138343
15 | 14;conv5;9.1477145
16 | 15;relu5;0.24891525
17 | 16;conv6;18.9615431
18 | 17;relu6;0.24150645
19 | 18;conv6_relu6_0_split;0.0012145
20 | 19;pool3;0.2048774
21 | 20;conv7;7.5637928
22 | 21;relu7;0.1186947
23 | 22;conv8;16.2464662
24 | 23;relu8;0.1111898
25 | 24;conv8_relu8_0_split;0.00124295
26 | 25;pool4;0.0997064
27 | 26;conv9;6.93520585
28 | 27;relu9;0.0537901
29 | 28;conv10;11.5031496
30 | 29;relu10;0.0478999
31 | 30;upconv1;51.6951237
32 | 31;conv11;2.8457067
33 | 32;mergecrop1;0.32431895
34 | 33;conv12;19.80052775
35 | 34;relu11;0.08229545
36 | 35;conv13;11.17782255
37 | 36;relu12;0.0761492
38 | 37;upconv2;26.4208572
39 | 38;conv14;2.565181
40 | 39;mergecrop2;0.54392685
41 | 40;conv15;18.9858533
42 | 41;relu13;0.14221895
43 | 42;conv16;9.8546206
44 | 43;relu14;0.1347123
45 | 44;upconv3;14.24252075
46 | 45;conv17;2.53708945
47 | 46;mergecrop3;0.98059345
48 | 47;conv18;19.4120579
49 | 48;relu15;0.2552756
50 | 49;conv19;10.2046753
51 | 50;relu16;0.25277825
52 | 51;upconv4;9.14812025
53 | 52;conv20;2.7453997
54 | 53;mergecrop4;1.8519993
55 | 54;conv21;21.8344965
56 | 55;relu17;0.49937505
57 | 56;conv22;11.7564781
58 | 57;relu18;0.48987325
59 | 58;ip1;0.59549685
60 | 59;prob;0.38081535
61 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1801471796
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;377.9963313
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.01613795
2 | 1;silence;0.00155345
3 | 2;conv1;4.90511305
4 | 3;relu1;1.5980401
5 | 4;conv2;37.54494645
6 | 5;relu2;1.58235515
7 | 6;conv2_relu2_0_split;0.0016131
8 | 7;pool1;1.2058553
9 | 8;conv3;15.4718482
10 | 9;relu3;0.77666865
11 | 10;conv4;30.72244695
12 | 11;relu4;0.765241
13 | 12;conv4_relu4_0_split;0.00119435
14 | 13;pool2;0.60044905
15 | 14;conv5;18.42941805
16 | 15;relu5;0.1816358
17 | 16;pool3;0.45380895
18 | 17;conv6;9.29531815
19 | 18;relu6;0.17200145
20 | 19;pool4;0.420933
21 | 20;conv7;15.5957153
22 | 21;relu7;0.30174775
23 | 22;pool5;0.71868975
24 | 23;ip1;43.34003
25 | 24;relu8;0.4509504
26 | 25;ip2;5.46416445
27 | 26;relu9;0.2264364
28 | 27;upconv1;15.40277645
29 | 28;conv8;3.9882935
30 | 29;mergecrop1;1.6495284
31 | 30;conv9;34.9728959
32 | 31;relu10;0.44555605
33 | 32;conv10;16.8238284
34 | 33;relu11;0.43396165
35 | 34;upconv2;11.22470735
36 | 35;conv11;4.68733925
37 | 36;mergecrop2;3.18047465
38 | 37;conv12;38.3764037
39 | 38;relu12;0.87239575
40 | 39;conv13;20.6236679
41 | 40;relu13;0.871285
42 | 41;ip3;0.9307859
43 | 42;prob;0.7180643
44 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2639119892
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/GTX980_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;347.4728686
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.06572795
2 | 1;silence;0.00436855
3 | 2;conv1;1.48202745
4 | 3;relu1;0.2582971
5 | 4;pool1;0.56307915
6 | 5;conv2;10.49666245
7 | 6;relu2;0.39177495
8 | 7;pool2;1.2589347
9 | 8;conv3;9.19528075
10 | 9;relu3;0.47658685
11 | 10;pool3;1.69524235
12 | 11;ip1;261.3687671
13 | 12;relu4;0.9276382
14 | 13;ip2;10.7197828
15 | 14;relu5;0.4916141
16 | 15;ip3;1.55598675
17 | 16;prob;0.15787245
18 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1635212260
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;301.0691711
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0201097
2 | 1;silence;0.00619475
3 | 2;conv1;11.883502
4 | 3;relu1;1.3273735
5 | 4;conv2;28.73307785
6 | 5;relu2;1.119078
7 | 6;conv2_relu2_0_split;0.00491215
8 | 7;pool1;1.5388402
9 | 8;conv3;11.6333884
10 | 9;relu3;0.5118755
11 | 10;conv4;18.6725172
12 | 11;relu4;0.50147125
13 | 12;conv4_relu4_0_split;0.00438375
14 | 13;pool2;0.675312
15 | 14;conv5;7.9506434
16 | 15;relu5;0.26409705
17 | 16;conv6;14.180703
18 | 17;relu6;0.25455495
19 | 18;conv6_relu6_0_split;0.00564495
20 | 19;pool3;0.32355715
21 | 20;conv7;8.60981555
22 | 21;relu7;0.14543255
23 | 22;conv8;15.2585897
24 | 23;relu8;0.14985015
25 | 24;conv8_relu8_0_split;0.00808505
26 | 25;pool4;0.1720678
27 | 26;conv9;6.53874805
28 | 27;relu9;0.0962066
29 | 28;conv10;11.0678053
30 | 29;relu10;0.08994195
31 | 30;upconv1;15.0772938
32 | 31;conv11;2.8987925
33 | 32;mergecrop1;0.7113469
34 | 33;conv12;26.3816717
35 | 34;relu11;0.1471818
36 | 35;conv13;12.37683395
37 | 36;relu12;0.11754655
38 | 37;upconv2;8.7728592
39 | 38;conv14;2.69918305
40 | 39;mergecrop2;1.09742955
41 | 40;conv15;17.5822143
42 | 41;relu13;0.1633176
43 | 42;conv16;8.69196375
44 | 43;relu14;0.1562593
45 | 44;upconv3;6.94481235
46 | 45;conv17;2.48984455
47 | 46;mergecrop3;2.25167435
48 | 47;conv18;18.7959853
49 | 48;relu15;0.26578555
50 | 49;conv19;9.44985105
51 | 50;relu16;0.2583922
52 | 51;upconv4;9.6929859
53 | 52;conv20;2.40385315
54 | 53;mergecrop4;4.1987096
55 | 54;conv21;20.4765099
56 | 55;relu17;0.4744221
57 | 56;conv22;10.50956265
58 | 57;relu18;0.4657705
59 | 58;ip1;1.11723
60 | 59;prob;0.54379175
61 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3115754464
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;333.3243316
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0112388
2 | 1;data;0.02455285
3 | 2;silence;0.02610325
4 | 3;conv1;22.90231645
5 | 4;relu1;1.260725
6 | 5;conv2;100.5647391
7 | 6;relu2;1.415693
8 | 7;conv2_relu2_0_split;1.33981385
9 | 8;pool1;5.47384695
10 | 9;conv3;33.2500064
11 | 10;relu3;0.6716867
12 | 11;conv4;38.4404541
13 | 12;relu4;0.7482094
14 | 13;conv4_relu4_0_split;0.6832467
15 | 14;pool2;2.63698495
16 | 15;conv5;19.49004765
17 | 16;relu5;0.3251737
18 | 17;conv6;21.7810867
19 | 18;relu6;0.40417525
20 | 19;conv6_relu6_0_split;0.3352051
21 | 20;pool3;1.2897005
22 | 21;conv7;14.17582705
23 | 22;relu7;0.16499545
24 | 23;conv8;21.93889155
25 | 24;relu8;0.2314259
26 | 25;conv8_relu8_0_split;0.16969535
27 | 26;pool4;0.59654295
28 | 27;conv9;11.670853
29 | 28;relu9;0.11606135
30 | 29;conv10;11.4172953
31 | 30;relu10;0.3078381
32 | 31;upconv1;16.0486073
33 | 32;conv11;3.72494655
34 | 33;mergecrop1;0.45276505
35 | 34;conv12;35.5666003
36 | 35;relu11;0.1517992
37 | 36;conv13;11.6264932
38 | 37;relu12;0.1828511
39 | 38;upconv2;8.5762882
40 | 39;conv14;4.58772965
41 | 40;mergecrop2;0.72157565
42 | 41;conv15;41.18420265
43 | 42;relu13;0.20215445
44 | 43;conv16;12.08773795
45 | 44;relu14;0.2306936
46 | 45;upconv3;5.8218835
47 | 46;conv17;10.9189093
48 | 47;mergecrop3;1.3285062
49 | 48;conv18;62.7123988
50 | 49;relu15;0.3512383
51 | 50;conv19;18.8257936
52 | 51;relu16;0.35032985
53 | 52;upconv4;6.06655275
54 | 53;conv20;35.2669816
55 | 54;mergecrop4;2.38453985
56 | 55;conv21;82.6659123
57 | 56;relu17;0.58634395
58 | 57;conv22;47.2391582
59 | 58;relu18;0.59413405
60 | 59;ip1;38.35533555
61 | 60;loss;0.3250066
62 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.05358175
2 | 1;data;0.0106764
3 | 2;silence;0.0062862
4 | 3;conv1;8.72105805
5 | 4;relu1;1.06838025
6 | 5;conv2;23.07337975
7 | 6;relu2;0.99218315
8 | 7;conv2_relu2_0_split;0.00231
9 | 8;pool1;1.30013475
10 | 9;conv3;10.09307355
11 | 10;relu3;0.49529725
12 | 11;conv4;17.069587
13 | 12;relu4;0.48062025
14 | 13;conv4_relu4_0_split;0.0044531
15 | 14;pool2;0.6306014
16 | 15;conv5;7.3282419
17 | 16;relu5;0.25926255
18 | 17;conv6;13.44869465
19 | 18;relu6;0.2546587
20 | 19;conv6_relu6_0_split;0.00442695
21 | 20;pool3;0.31381015
22 | 21;conv7;8.32209915
23 | 22;relu7;0.14536715
24 | 23;conv8;14.6917364
25 | 24;relu8;0.14136365
26 | 25;conv8_relu8_0_split;0.0042627
27 | 26;pool4;0.16154275
28 | 27;conv9;6.37048165
29 | 28;relu9;0.0886896
30 | 29;conv10;10.81720975
31 | 30;relu10;0.08405875
32 | 31;upconv1;14.9136653
33 | 32;conv11;2.76031885
34 | 33;mergecrop1;0.702784
35 | 34;conv12;26.1724679
36 | 35;relu11;0.12050855
37 | 36;conv13;12.23019055
38 | 37;relu12;0.1115402
39 | 38;upconv2;8.76163065
40 | 39;conv14;2.673114
41 | 40;mergecrop2;1.0999859
42 | 41;conv15;17.59355245
43 | 42;relu13;0.16732325
44 | 43;conv16;8.7310414
45 | 44;relu14;0.15539025
46 | 45;upconv3;6.9241866
47 | 46;conv17;2.52943365
48 | 47;mergecrop3;2.2199056
49 | 48;conv18;18.6912792
50 | 49;relu15;0.2590771
51 | 50;conv19;9.45790255
52 | 51;relu16;0.25249745
53 | 52;upconv4;9.92657805
54 | 53;conv20;2.4151179
55 | 54;mergecrop4;4.20427
56 | 55;conv21;20.4425451
57 | 56;relu17;0.4583843
58 | 57;conv22;10.5132404
59 | 58;relu18;0.4651783
60 | 59;ip1;1.15346165
61 | 60;loss;1.79207825
62 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3115754464
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/u_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;333.4063835
2 | Backward;756.5482909
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0272025
2 | 1;silence;0.0057302
3 | 2;conv1;18.1100799
4 | 3;relu1;2.10136265
5 | 4;conv2;43.28109185
6 | 5;relu2;1.55628205
7 | 6;conv2_relu2_0_split;0.0039665
8 | 7;pool1;2.02739385
9 | 8;conv3;15.39897875
10 | 9;relu3;0.76607075
11 | 10;conv4;26.26327995
12 | 11;relu4;0.7490438
13 | 12;conv4_relu4_0_split;0.00192105
14 | 13;pool2;0.97334865
15 | 14;conv5;19.000271
16 | 15;relu5;0.2902707
17 | 16;pool3;0.88451745
18 | 17;conv6;7.71049425
19 | 18;relu6;0.3061433
20 | 19;pool4;0.7766258
21 | 20;conv7;8.7051939
22 | 21;relu7;0.40265745
23 | 22;pool5;1.2807642
24 | 23;ip1;20.431142
25 | 24;relu8;0.5316599
26 | 25;ip2;3.9424277
27 | 26;relu9;0.25521325
28 | 27;upconv1;11.04719065
29 | 28;conv8;3.8784755
30 | 29;mergecrop1;3.8362237
31 | 30;conv9;28.14585245
32 | 31;relu10;0.42549475
33 | 32;conv10;14.98380395
34 | 33;relu11;0.41201255
35 | 34;upconv2;15.87372115
36 | 35;conv11;3.75866935
37 | 36;mergecrop2;7.34925065
38 | 37;conv12;34.5177475
39 | 38;relu12;0.80856805
40 | 39;conv13;21.69396605
41 | 40;relu13;0.8017454
42 | 41;ip3;1.9296221
43 | 42;prob;0.8962242
44 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;5534664192
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;335.7636523
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.020408
2 | 1;data;0.01954575
3 | 2;silence;0.01963255
4 | 3;conv1;33.99727525
5 | 4;relu1;1.9566463
6 | 5;conv2;147.7112473
7 | 6;relu2;1.9913576
8 | 7;conv2_relu2_0_split;1.9245861
9 | 8;pool1;8.0201947
10 | 9;conv3;49.9068698
11 | 10;relu3;0.93754255
12 | 11;conv4;56.26183905
13 | 12;relu4;1.08578375
14 | 13;conv4_relu4_0_split;1.03257075
15 | 14;pool2;3.9624403
16 | 15;conv5;57.55761535
17 | 16;relu5;0.3929708
18 | 17;pool3;1.2978679
19 | 18;conv6;59.6935311
20 | 19;relu6;0.37172355
21 | 20;pool4;1.21353995
22 | 21;conv7;95.7863797
23 | 22;relu7;0.51458385
24 | 23;pool5;1.9972711
25 | 24;ip1;276.1555573
26 | 25;relu8;0.5530381
27 | 26;ip2;33.49497165
28 | 27;relu9;0.31762845
29 | 28;upconv1;8.50593035
30 | 29;conv8;8.99847595
31 | 30;mergecrop1;2.13467515
32 | 31;conv9;69.3876522
33 | 32;relu10;0.55337425
34 | 33;conv10;67.26927205
35 | 34;relu11;0.59865495
36 | 35;upconv2;8.8253163
37 | 36;conv11;60.5732627
38 | 37;mergecrop2;4.06868735
39 | 38;conv12;166.0587509
40 | 39;relu12;1.04202455
41 | 40;conv13;187.7094839
42 | 41;relu13;1.0242664
43 | 42;ip3;105.5896153
44 | 43;loss;0.45912265
45 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.02691855
2 | 1;data;0.0064373
3 | 2;silence;0.0030707
4 | 3;conv1;9.4694306
5 | 4;relu1;1.4191031
6 | 5;conv2;30.8471864
7 | 6;relu2;1.3981326
8 | 7;conv2_relu2_0_split;0.0036762
9 | 8;pool1;1.81421205
10 | 9;conv3;13.7496226
11 | 10;relu3;0.71205175
12 | 11;conv4;24.04618065
13 | 12;relu4;0.70497685
14 | 13;conv4_relu4_0_split;0.0021893
15 | 14;pool2;0.91543835
16 | 15;conv5;17.7445332
17 | 16;relu5;0.26786085
18 | 17;pool3;0.82905415
19 | 18;conv6;6.9440028
20 | 19;relu6;0.25664335
21 | 20;pool4;0.7235969
22 | 21;conv7;8.26808965
23 | 22;relu7;0.3723767
24 | 23;pool5;1.2396697
25 | 24;ip1;20.07890895
26 | 25;relu8;0.5030688
27 | 26;ip2;3.7313069
28 | 27;relu9;0.25017845
29 | 28;upconv1;10.97177575
30 | 29;conv8;3.7186867
31 | 30;mergecrop1;3.63074595
32 | 31;conv9;27.82885055
33 | 32;relu10;0.42961805
34 | 33;conv10;15.10763885
35 | 34;relu11;0.41886765
36 | 35;upconv2;15.21214715
37 | 36;conv11;3.8272214
38 | 37;mergecrop2;7.3590532
39 | 38;conv12;34.658337
40 | 39;relu12;0.81991195
41 | 40;conv13;21.64652125
42 | 41;relu13;0.79315655
43 | 42;ip3;2.0510735
44 | 43;loss;2.1361925
45 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;5534664192
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/W9100_OPENCL/usk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;311.3539249
2 | Backward;1527.677162
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0197348
2 | 1;silence;0.00346835
3 | 2;conv1;17.17629705
4 | 3;relu1;2.46946575
5 | 4;pool1;11.4977649
6 | 5;conv2;169.58097
7 | 6;relu2;4.56001075
8 | 7;pool2;35.22098255
9 | 8;conv3;169.8956321
10 | 9;relu3;5.82583305
11 | 10;pool3;47.7060709
12 | 11;ip1;3293.669467
13 | 12;relu4;13.55731985
14 | 13;ip2;144.3375851
15 | 14;relu5;5.7715019
16 | 15;ip3;64.47167365
17 | 16;prob;1.44359015
18 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1672340488
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4011.37351
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0338416
2 | 1;silence;0.00376035
3 | 2;conv1;32.7535029
4 | 3;relu1;16.8183625
5 | 4;conv2;379.189203
6 | 5;relu2;14.0988721
7 | 6;conv2_relu2_0_split;0.00462115
8 | 7;pool1;40.56637945
9 | 8;conv3;108.2638719
10 | 9;relu3;6.2689461
11 | 10;conv4;252.4103339
12 | 11;relu4;6.2730168
13 | 12;conv4_relu4_0_split;0.0044319
14 | 13;pool2;14.2365974
15 | 14;conv5;84.2406006
16 | 15;relu5;2.7629116
17 | 16;conv6;149.3387747
18 | 17;relu6;3.7119462
19 | 18;conv6_relu6_0_split;0.0046957
20 | 19;pool3;5.9908442
21 | 20;conv7;41.16762615
22 | 21;relu7;1.21592
23 | 22;conv8;75.99790625
24 | 23;relu8;1.0760921
25 | 24;conv8_relu8_0_split;0.0047069
26 | 25;pool4;2.6488115
27 | 26;conv9;27.3658537
28 | 27;relu9;0.47050755
29 | 28;conv10;47.82995155
30 | 29;relu10;0.44853275
31 | 30;upconv1;35.4007902
32 | 31;conv11;10.49899
33 | 32;mergecrop1;21.4715123
34 | 33;conv12;110.9514104
35 | 34;relu11;0.6900561
36 | 35;conv13;45.68890595
37 | 36;relu12;0.614163
38 | 37;upconv2;61.1725004
39 | 38;conv14;11.9972047
40 | 39;mergecrop2;33.9450027
41 | 40;conv15;169.6663094
42 | 41;relu13;2.2528716
43 | 42;conv16;67.7111154
44 | 43;relu14;1.34378515
45 | 44;upconv3;92.25706355
46 | 45;conv17;17.0241159
47 | 46;mergecrop3;70.4215134
48 | 47;conv18;197.1291656
49 | 48;relu15;2.4057206
50 | 49;conv19;114.0431513
51 | 50;relu16;2.67084145
52 | 51;upconv4;151.9350133
53 | 52;conv20;19.70240335
54 | 53;mergecrop4;106.1428454
55 | 54;conv21;290.9787784
56 | 55;relu17;5.42952625
57 | 56;conv22;186.1338579
58 | 57;relu18;6.42344985
59 | 58;ip1;23.7616906
60 | 59;prob;10.0949773
61 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3382929120
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;3175.975714
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.00181
2 | 1;data;0.001937
3 | 2;silence;0.0025248
4 | 3;conv1;70.32382755
5 | 4;relu1;13.68366265
6 | 5;conv2;680.7019759
7 | 6;relu2;13.3568728
8 | 7;conv2_relu2_0_split;17.3328649
9 | 8;pool1;132.6014684
10 | 9;conv3;228.5064239
11 | 10;relu3;6.4993343
12 | 11;conv4;411.8394184
13 | 12;relu4;6.37748825
14 | 13;conv4_relu4_0_split;8.5544971
15 | 14;pool2;80.8775803
16 | 15;conv5;130.1341153
17 | 16;relu5;6.00338535
18 | 17;conv6;287.1975124
19 | 18;relu6;5.7407019
20 | 19;conv6_relu6_0_split;8.6310786
21 | 20;pool3;50.26811215
22 | 21;conv7;79.79828075
23 | 22;relu7;2.38705955
24 | 23;conv8;164.3758726
25 | 24;relu8;2.86325875
26 | 25;conv8_relu8_0_split;3.11216685
27 | 26;pool4;18.4401272
28 | 27;conv9;58.42318965
29 | 28;relu9;0.8140326
30 | 29;conv10;105.5322685
31 | 30;relu10;0.6693809
32 | 31;upconv1;12.3612821
33 | 32;conv11;18.4842396
34 | 33;mergecrop1;20.62559535
35 | 34;conv12;227.7925385
36 | 35;relu11;1.56990655
37 | 36;conv13;101.4390026
38 | 37;relu12;1.3316387
39 | 38;upconv2;15.96770715
40 | 39;conv14;21.5701661
41 | 40;mergecrop2;21.92681435
42 | 41;conv15;304.3874991
43 | 42;relu13;3.30507105
44 | 43;conv16;111.6437974
45 | 44;relu14;2.0779874
46 | 45;upconv3;26.713927
47 | 46;conv17;25.79460575
48 | 47;mergecrop3;33.31448065
49 | 48;conv18;418.7071885
50 | 49;relu15;5.947056
51 | 50;conv19;192.4410715
52 | 51;relu16;4.121161
53 | 52;upconv4;53.54485185
54 | 53;conv20;35.64144925
55 | 54;mergecrop4;62.48256245
56 | 55;conv21;691.512851
57 | 56;relu17;6.63157035
58 | 57;conv22;342.3569081
59 | 58;relu18;8.7011129
60 | 59;ip1;18.82843765
61 | 60;loss;1.0856804
62 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.026047
2 | 1;data;0.01465495
3 | 2;silence;0.003158
4 | 3;conv1;31.69898335
5 | 4;relu1;15.12982195
6 | 5;conv2;370.9914316
7 | 6;relu2;12.23004535
8 | 7;conv2_relu2_0_split;0.0044201
9 | 8;pool1;39.23394075
10 | 9;conv3;111.768493
11 | 10;relu3;5.46465335
12 | 11;conv4;261.7424803
13 | 12;relu4;7.2862877
14 | 13;conv4_relu4_0_split;0.00458585
15 | 14;pool2;15.7565823
16 | 15;conv5;83.635342
17 | 16;relu5;2.98370205
18 | 17;conv6;153.1930845
19 | 18;relu6;2.8637002
20 | 19;conv6_relu6_0_split;0.0045853
21 | 20;pool3;5.99291275
22 | 21;conv7;40.66043955
23 | 22;relu7;1.2249406
24 | 23;conv8;75.5369781
25 | 24;relu8;1.2255869
26 | 25;conv8_relu8_0_split;0.0044904
27 | 26;pool4;2.6753501
28 | 27;conv9;26.95606675
29 | 28;relu9;0.45483925
30 | 29;conv10;47.6312261
31 | 30;relu10;0.409097
32 | 31;upconv1;34.0826062
33 | 32;conv11;10.5685003
34 | 33;mergecrop1;21.69868405
35 | 34;conv12;111.3848496
36 | 35;relu11;0.75254985
37 | 36;conv13;45.826124
38 | 37;relu12;0.67891595
39 | 38;upconv2;60.4666953
40 | 39;conv14;11.72366045
41 | 40;mergecrop2;35.6398726
42 | 41;conv15;170.4436307
43 | 42;relu13;1.61695825
44 | 43;conv16;74.6783187
45 | 44;relu14;1.60882105
46 | 45;upconv3;96.7709341
47 | 46;conv17;16.89981545
48 | 47;mergecrop3;72.1473052
49 | 48;conv18;198.1538339
50 | 49;relu15;3.09899485
51 | 50;conv19;121.2900111
52 | 51;relu16;3.1666374
53 | 52;upconv4;155.1157924
54 | 53;conv20;19.9017498
55 | 54;mergecrop4;108.0388524
56 | 55;conv21;288.5121104
57 | 56;relu17;6.68511515
58 | 57;conv22;189.0321202
59 | 58;relu18;7.4455355
60 | 59;ip1;23.4751303
61 | 60;loss;12.4395392
62 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3382929120
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/u_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;3114.806026
2 | Backward;5159.989795
3 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.03487595
2 | 1;silence;0.00258945
3 | 2;conv1;48.61557245
4 | 3;relu1;32.7683139
5 | 4;conv2;648.0737625
6 | 5;relu2;26.12951175
7 | 6;conv2_relu2_0_split;0.0048252
8 | 7;pool1;55.1249391
9 | 8;conv3;153.5165482
10 | 9;relu3;10.656434
11 | 10;conv4;445.6779435
12 | 11;relu4;11.2459155
13 | 12;conv4_relu4_0_split;0.00491355
14 | 13;pool2;25.6329756
15 | 14;conv5;309.868844
16 | 15;relu5;2.56239655
17 | 16;pool3;20.9861795
18 | 17;conv6;100.2345962
19 | 18;relu6;1.87675845
20 | 19;pool4;15.3478669
21 | 20;conv7;119.2839036
22 | 21;relu7;3.4888729
23 | 22;pool5;28.252164
24 | 23;ip1;292.9182336
25 | 24;relu8;5.5181595
26 | 25;ip2;22.0443045
27 | 26;relu9;2.53075355
28 | 27;upconv1;141.599991
29 | 28;conv8;30.7605272
30 | 29;mergecrop1;95.82139615
31 | 30;conv9;405.6259046
32 | 31;relu10;3.94220585
33 | 32;conv10;248.3519226
34 | 33;relu11;3.8560956
35 | 34;upconv2;243.6505126
36 | 35;conv11;33.69031395
37 | 36;mergecrop2;162.277315
38 | 37;conv12;562.0382905
39 | 38;relu12;7.6691643
40 | 39;conv13;368.8477691
41 | 40;relu13;7.86040095
42 | 41;ip3;51.81376555
43 | 42;prob;14.7336286
44 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;5935565888
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4777.985872
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.00169915
2 | 1;data;0.00181785
3 | 2;silence;0.0023077
4 | 3;conv1;94.4982404
5 | 4;relu1;18.8624798
6 | 5;conv2;983.9052533
7 | 6;relu2;18.44694085
8 | 7;conv2_relu2_0_split;25.33598785
9 | 8;pool1;182.5268024
10 | 9;conv3;303.9893829
11 | 10;relu3;9.24266605
12 | 11;conv4;552.6715328
13 | 12;relu4;9.33223435
14 | 13;conv4_relu4_0_split;12.4099483
15 | 14;pool2;92.14017435
16 | 15;conv5;396.6936096
17 | 16;relu5;5.238711
18 | 17;pool3;26.93803495
19 | 18;conv6;122.4664839
20 | 19;relu6;5.3527607
21 | 20;pool4;25.4457205
22 | 21;conv7;157.5139276
23 | 22;relu7;3.81550255
24 | 23;pool5;26.82163455
25 | 24;ip1;348.743834
26 | 25;relu8;6.1089668
27 | 26;ip2;34.102442
28 | 27;relu9;3.0212909
29 | 28;upconv1;41.8773824
30 | 29;conv8;37.09202275
31 | 30;mergecrop1;55.7828302
32 | 31;conv9;643.9691761
33 | 32;relu10;5.48193835
34 | 33;conv10;354.1448383
35 | 34;relu11;5.55881085
36 | 35;upconv2;89.40449245
37 | 36;conv11;58.9613099
38 | 37;mergecrop2;108.0360175
39 | 38;conv12;1067.031948
40 | 39;relu12;10.6972071
41 | 40;conv13;683.758199
42 | 41;relu13;18.75664045
43 | 42;ip3;63.34360975
44 | 43;loss;5.76162865
45 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.03273945
2 | 1;data;0.0149574
3 | 2;silence;0.00335555
4 | 3;conv1;46.3682839
5 | 4;relu1;22.7003124
6 | 5;conv2;620.4459344
7 | 6;relu2;17.76886695
8 | 7;conv2_relu2_0_split;0.0044437
9 | 8;pool1;55.3475941
10 | 9;conv3;153.3155804
11 | 10;relu3;9.0759405
12 | 11;conv4;454.8608916
13 | 12;relu4;10.4069222
14 | 13;conv4_relu4_0_split;0.0043849
15 | 14;pool2;24.1447043
16 | 15;conv5;295.2389859
17 | 16;relu5;2.16665275
18 | 17;pool3;18.30254715
19 | 18;conv6;98.8176324
20 | 19;relu6;1.8880078
21 | 20;pool4;15.003768
22 | 21;conv7;120.6540203
23 | 22;relu7;3.35403295
24 | 23;pool5;29.8667171
25 | 24;ip1;298.2176655
26 | 25;relu8;5.7047535
27 | 26;ip2;22.1843636
28 | 27;relu9;3.27292625
29 | 28;upconv1;143.3331173
30 | 29;conv8;30.93230555
31 | 30;mergecrop1;96.59466075
32 | 31;conv9;405.1801721
33 | 32;relu10;4.8776539
34 | 33;conv10;251.9498786
35 | 34;relu11;4.66449775
36 | 35;upconv2;245.0451406
37 | 36;conv11;33.55757975
38 | 37;mergecrop2;162.296883
39 | 38;conv12;560.1788383
40 | 39;relu12;7.84960605
41 | 40;conv13;351.0315252
42 | 41;relu13;7.82098775
43 | 42;ip3;53.7303076
44 | 43;loss;17.14559895
45 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;5935565888
2 |
--------------------------------------------------------------------------------
/benchmark/Old Benchmarks/i7-4790K_OPENCL/usk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4670.432751
2 | Backward;6781.203366
3 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.267114;0
2 | 1;silence;0.0169602;0
3 | 2;conv1;3.4850208;699388656
4 | 3;relu1;0.3369606;0
5 | 4;pool1;1.0029002;0
6 | 5;conv2;14.6427792;14062669312
7 | 6;relu2;0.4921696;0
8 | 7;pool2;1.557408;0
9 | 8;conv3;9.6329106;18401596416
10 | 9;relu3;0.5251826;0
11 | 10;pool3;1.961418;0
12 | 11;ip1;230.5576062;644228317184
13 | 12;relu4;0.9651192;0
14 | 13;ip2;10.0167458;17171480576
15 | 14;relu5;0.562539;0
16 | 15;ip3;1.5682372;33521664
17 | 16;prob;0.1528868;0
18 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2892571592
2 | data;629292
3 | label;4
4 | conv1;9547968
5 | pool1;9462528
6 | conv2;23447552
7 | pool2;23011328
8 | conv3;31961088
9 | pool3;30720000
10 | ip1;67108864
11 | ip2;33554432
12 | ip3;131072
13 | prob;131072
14 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;275.3027542
2 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0597106;0
2 | 1;data;0.064706;0
3 | 2;silence;0.068661;0
4 | 3;conv1;18.407904;0
5 | 4;relu1;0.336475;0
6 | 5;pool1;0.9681864;0
7 | 6;conv2;36.5485722;0
8 | 7;relu2;0.545752;0
9 | 8;pool2;2.1492892;0
10 | 9;conv3;23.6169218;0
11 | 10;relu3;0.7426274;0
12 | 11;pool3;3.1105394;0
13 | 12;ip1;511.0854038;0
14 | 13;relu4;1.1232222;0
15 | 14;ip2;36.9590878;0
16 | 15;relu5;0.5654822;0
17 | 16;ip3;11.9356038;0
18 | 17;loss;0.1615142;0
19 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.31516;0
2 | 1;data;0.009948;0
3 | 2;silence;0.0045286;0
4 | 3;conv1;3.3664376;699388656
5 | 4;relu1;0.3310712;0
6 | 5;pool1;0.99215;0
7 | 6;conv2;13.6490884;14062669312
8 | 7;relu2;0.4264744;0
9 | 8;pool2;1.5393352;0
10 | 9;conv3;9.5149946;18401596416
11 | 10;relu3;0.5326766;0
12 | 11;pool3;1.910301;0
13 | 12;ip1;229.7776796;644228317184
14 | 13;relu4;0.974902;0
15 | 14;ip2;9.9059656;17171480576
16 | 15;relu5;0.5180868;0
17 | 16;ip3;1.615396;33521664
18 | 17;loss;0.729353;0
19 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3204621764
2 | label;65536
3 | labeli;4
4 | data;629292
5 | datai;4
6 | conv1;9547968
7 | pool1;9462528
8 | conv2;23447552
9 | pool2;23011328
10 | conv3;31961088
11 | pool3;30720000
12 | ip1;67108864
13 | ip2;33554432
14 | ip3;131072
15 | (automatic);4
16 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/sk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;276.4525018
2 | Backward;650.2205298
3 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0384086;0
2 | 1;silence;0.0211522;0
3 | 2;conv1;7.2544112;1102060800
4 | 3;relu1;0.9899186;0
5 | 4;conv2;21.6811124;23765774336
6 | 5;relu2;1.0370588;0
7 | 6;conv2_relu2_0_split;0.0316092;0
8 | 7;pool1;1.315202;0
9 | 8;conv3;10.0028218;11716111872
10 | 9;relu3;0.512285;0
11 | 10;conv4;16.4709;23111065600
12 | 11;relu4;0.532091;0
13 | 12;conv4_relu4_0_split;0.0217948;0
14 | 13;pool2;0.6792902;0
15 | 14;conv5;7.5692236;11227732992
16 | 15;relu5;0.2856308;0
17 | 16;conv6;12.9858948;21814034432
18 | 17;relu6;0.2620402;0
19 | 18;conv6_relu6_0_split;0.0113666;0
20 | 19;pool3;0.3233584;0
21 | 20;conv7;8.0643454;10274863104
22 | 21;relu7;0.189861;0
23 | 22;conv8;14.2658316;19325255680
24 | 23;relu8;0.1650048;0
25 | 24;conv8_relu8_0_split;0.0117044;0
26 | 25;pool4;0.1797362;0
27 | 26;conv9;6.9132262;8492544000
28 | 27;relu9;0.1324578;0
29 | 28;conv10;11.4678026;14796701696
30 | 29;relu10;0.126174;0
31 | 30;upconv1;16.2120674;0
32 | 31;conv11;3.6529848;3286728704
33 | 32;mergecrop1;0.769704;0
34 | 33;conv12;25.8365688;27517335552
35 | 34;relu11;0.1550806;0
36 | 35;conv13;12.098201;12757688320
37 | 36;relu12;0.1611028;0
38 | 37;upconv2;9.44749;0
39 | 38;conv14;3.0775862;2832580608
40 | 39;mergecrop2;1.136031;0
41 | 40;conv15;17.0083568;24543452160
42 | 41;relu13;0.187518;0
43 | 42;conv16;8.389239;11793920000
44 | 43;relu14;0.178848;0
45 | 44;upconv3;7.325522;0
46 | 45;conv17;2.7302628;2616320000
47 | 46;mergecrop3;2.2043876;0
48 | 47;conv18;18.1398904;23118441984
49 | 48;relu15;0.2931772;0
50 | 49;conv19;9.224855;11324422144
51 | 50;relu16;0.2911886;0
52 | 51;upconv4;9.781852;0
53 | 52;conv20;2.8940774;2507796480
54 | 53;mergecrop4;4.0675874;0
55 | 54;conv21;20.7526626;22418323200
56 | 55;relu17;0.5069742;0
57 | 56;conv22;10.8709292;11089673216
58 | 57;relu18;0.488177;0
59 | 58;ip1;0.9263292;38238176
60 | 59;prob;0.1962042;0
61 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1793039512
2 | data;3926208
3 | datai;4
4 | conv1;83174400
5 | conv2;82591744
6 | conv2_relu2_0_split_0;82591744
7 | conv2_relu2_0_split_1;82591744
8 | pool1;20647936
9 | conv3;40716288
10 | conv4;40140800
11 | conv4_relu4_0_split_0;40140800
12 | conv4_relu4_0_split_1;40140800
13 | pool2;10035200
14 | conv5;19501056
15 | conv6;18939904
16 | conv6_relu6_0_split_0;18939904
17 | conv6_relu6_0_split_1;18939904
18 | pool3;4734976
19 | conv7;8921088
20 | conv8;8388608
21 | conv8_relu8_0_split_0;8388608
22 | conv8_relu8_0_split_1;8388608
23 | pool4;2097152
24 | conv9;3686400
25 | conv10;3211264
26 | upconv1;12845056
27 | conv11;6422528
28 | mergecrop1;12845056
29 | conv12;5971968
30 | conv13;5537792
31 | upconv2;22151168
32 | conv14;11075584
33 | mergecrop2;22151168
34 | conv15;10653696
35 | conv16;10240000
36 | upconv3;40960000
37 | conv17;20480000
38 | mergecrop3;40960000
39 | conv18;20072448
40 | conv19;19668992
41 | upconv4;78675968
42 | conv20;39337984
43 | mergecrop4;78675968
44 | conv21;38937600
45 | conv22;38539264
46 | ip1;1204352
47 | prob;1204352
48 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;311.1919932
2 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.003739;0
2 | 1;data;0.0039258;0
3 | 2;silence;0.006739;0
4 | 3;conv1;22.7903924;0
5 | 4;relu1;1.282299;0
6 | 5;conv2;92.4920406;0
7 | 6;relu2;1.4300242;0
8 | 7;conv2_relu2_0_split;1.3799772;0
9 | 8;pool1;5.530885;0
10 | 9;conv3;33.1254904;0
11 | 10;relu3;0.6586884;0
12 | 11;conv4;36.3971962;0
13 | 12;relu4;0.7372244;0
14 | 13;conv4_relu4_0_split;0.702916;0
15 | 14;pool2;2.712687;0
16 | 15;conv5;20.123048;0
17 | 16;relu5;0.3644274;0
18 | 17;conv6;19.7487388;0
19 | 18;relu6;0.3707866;0
20 | 19;conv6_relu6_0_split;0.3134476;0
21 | 20;pool3;1.2977584;0
22 | 21;conv7;13.6065934;0
23 | 22;relu7;0.1779002;0
24 | 23;conv8;20.5961;0
25 | 24;relu8;0.1829554;0
26 | 25;conv8_relu8_0_split;0.163696;0
27 | 26;pool4;0.6213156;0
28 | 27;conv9;11.1597182;0
29 | 28;relu9;0.147524;0
30 | 29;conv10;10.2178382;0
31 | 30;relu10;0.1734522;0
32 | 31;upconv1;17.1727114;0
33 | 32;conv11;3.5229796;0
34 | 33;mergecrop1;0.6684512;0
35 | 34;conv12;33.7325672;0
36 | 35;relu11;0.1623016;0
37 | 36;conv13;10.5613716;0
38 | 37;relu12;0.2142108;0
39 | 38;upconv2;9.2769812;0
40 | 39;conv14;4.3359708;0
41 | 40;mergecrop2;1.1593732;0
42 | 41;conv15;42.3912136;0
43 | 42;relu13;0.2308758;0
44 | 43;conv16;10.9977612;0
45 | 44;relu14;0.259242;0
46 | 45;upconv3;6.3393952;0
47 | 46;conv17;10.0888704;0
48 | 47;mergecrop3;1.9856034;0
49 | 48;conv18;66.7833362;0
50 | 49;relu15;0.3717014;0
51 | 50;conv19;17.5924308;0
52 | 51;relu16;0.4273248;0
53 | 52;upconv4;6.8450436;0
54 | 53;conv20;32.3812722;0
55 | 54;mergecrop4;3.6278156;0
56 | 55;conv21;86.340569;0
57 | 56;relu17;0.6978062;0
58 | 57;conv22;43.7455824;0
59 | 58;relu18;0.6457996;0
60 | 59;ip1;36.7875752;0
61 | 60;loss;0.5952816;0
62 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.1164118;0
2 | 1;data;0.0086184;0
3 | 2;silence;0.0035884;0
4 | 3;conv1;11.0395416;1102060800
5 | 4;relu1;1.4056194;0
6 | 5;conv2;26.3168936;23765774336
7 | 6;relu2;1.1574734;0
8 | 7;conv2_relu2_0_split;0.063485;0
9 | 8;pool1;1.4243122;0
10 | 9;conv3;10.311091;11716111872
11 | 10;relu3;0.5993506;0
12 | 11;conv4;16.4911678;23111065600
13 | 12;relu4;0.523825;0
14 | 13;conv4_relu4_0_split;0.017851;0
15 | 14;pool2;0.6486854;0
16 | 15;conv5;6.9475458;11227732992
17 | 16;relu5;0.265699;0
18 | 17;conv6;12.7320132;21814034432
19 | 18;relu6;0.3144884;0
20 | 19;conv6_relu6_0_split;0.0372782;0
21 | 20;pool3;0.3426722;0
22 | 21;conv7;7.8604838;10274863104
23 | 22;relu7;0.1630536;0
24 | 23;conv8;13.9521812;19325255680
25 | 24;relu8;0.1634642;0
26 | 25;conv8_relu8_0_split;0.0122554;0
27 | 26;pool4;0.1717706;0
28 | 27;conv9;6.7290878;8492544000
29 | 28;relu9;0.1088368;0
30 | 29;conv10;11.354158;14796701696
31 | 30;relu10;0.1023858;0
32 | 31;upconv1;16.100311;0
33 | 32;conv11;3.3501648;3286728704
34 | 33;mergecrop1;0.7160038;0
35 | 34;conv12;25.875685;27517335552
36 | 35;relu11;0.160474;0
37 | 36;conv13;11.9677378;12757688320
38 | 37;relu12;0.1524584;0
39 | 38;upconv2;9.3753654;0
40 | 39;conv14;2.8116018;2832580608
41 | 40;mergecrop2;1.170809;0
42 | 41;conv15;16.859956;24543452160
43 | 42;relu13;0.1910946;0
44 | 43;conv16;8.432135;11793920000
45 | 44;relu14;0.1996394;0
46 | 45;upconv3;7.3742686;0
47 | 46;conv17;2.6933364;2616320000
48 | 47;mergecrop3;2.1792764;0
49 | 48;conv18;17.7995038;23118441984
50 | 49;relu15;0.3177418;0
51 | 50;conv19;9.1808268;11324422144
52 | 51;relu16;0.2993054;0
53 | 52;upconv4;10.308265;0
54 | 53;conv20;2.7332296;2507796480
55 | 54;mergecrop4;4.6643916;0
56 | 55;conv21;20.5199534;22418323200
57 | 56;relu17;0.4766196;0
58 | 57;conv22;10.5977968;11089673216
59 | 58;relu18;0.4634516;0
60 | 59;ip1;0.9123474;38238176
61 | 60;loss;1.0046452;0
62 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3098889896
2 | label;602176
3 | labeli;4
4 | data;3926208
5 | datai;4
6 | conv1;83174400
7 | conv2;82591744
8 | conv2_relu2_0_split_0;82591744
9 | conv2_relu2_0_split_1;82591744
10 | pool1;20647936
11 | conv3;40716288
12 | conv4;40140800
13 | conv4_relu4_0_split_0;40140800
14 | conv4_relu4_0_split_1;40140800
15 | pool2;10035200
16 | conv5;19501056
17 | conv6;18939904
18 | conv6_relu6_0_split_0;18939904
19 | conv6_relu6_0_split_1;18939904
20 | pool3;4734976
21 | conv7;8921088
22 | conv8;8388608
23 | conv8_relu8_0_split_0;8388608
24 | conv8_relu8_0_split_1;8388608
25 | pool4;2097152
26 | conv9;3686400
27 | conv10;3211264
28 | upconv1;12845056
29 | conv11;6422528
30 | mergecrop1;12845056
31 | conv12;5971968
32 | conv13;5537792
33 | upconv2;22151168
34 | conv14;11075584
35 | mergecrop2;22151168
36 | conv15;10653696
37 | conv16;10240000
38 | upconv3;40960000
39 | conv17;20480000
40 | mergecrop3;40960000
41 | conv18;20072448
42 | conv19;19668992
43 | upconv4;78675968
44 | conv20;39337984
45 | mergecrop4;78675968
46 | conv21;38937600
47 | conv22;38539264
48 | ip1;1204352
49 | (automatic);4
50 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/u_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;319.3320198
2 | Backward;746.6637294
3 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.02421;0
2 | 1;silence;0.0046744;0
3 | 2;conv1;4.866212;638903552
4 | 3;relu1;0.6315538;0
5 | 4;conv2;12.1766318;13747470336
6 | 5;relu2;0.5883846;0
7 | 6;conv2_relu2_0_split;0.0102962;0
8 | 7;pool1;0.7501166;0
9 | 8;conv3;18.5130444;26253855616
10 | 9;relu3;0.3806416;0
11 | 10;pool2;1.3158998;0
12 | 11;conv4;15.4242522;21813442560
13 | 12;relu4;0.3886042;0
14 | 13;pool3;1.2142736;0
15 | 14;conv5;14.4862138;18922176000
16 | 15;relu5;0.3857272;0
17 | 16;pool4;1.0849694;0
18 | 17;ip1;58.8956638;141758822400
19 | 18;relu6;0.5437024;0
20 | 19;ip2;3.5903138;4425907200
21 | 20;relu7;0.2550674;0
22 | 21;upconv1;11.0575026;0
23 | 22;conv6;3.5811492;4421580800
24 | 23;mergecrop1;3.2649672;0
25 | 24;conv7;20.5726518;29437263360
26 | 25;relu8;0.4243262;0
27 | 26;conv8;9.9952966;9659482112
28 | 27;relu9;0.2309326;0
29 | 28;ip3;0.5980138;16646144
30 | 29;prob;0.13386;0
31 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1699750972
2 | data;2281152
3 | datai;4
4 | conv1;48219136
5 | conv2;47775744
6 | conv2_relu2_0_split_0;47775744
7 | conv2_relu2_0_split_1;47775744
8 | pool1;11943936
9 | conv3;22794752
10 | pool2;22579200
11 | conv4;21307392
12 | pool3;20891648
13 | conv5;18483200
14 | pool4;17713152
15 | ip1;34611200
16 | ip2;17305600
17 | upconv1;69222400
18 | conv6;34611200
19 | mergecrop1;51916800
20 | conv7;34080768
21 | conv8;16777216
22 | ip3;524288
23 | prob;524288
24 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;184.6787066
2 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.009055;0
2 | 1;data;0.0225334;0
3 | 2;silence;0.0196054;0
4 | 3;conv1;13.8204502;0
5 | 4;relu1;0.8234976;0
6 | 5;conv2;54.1101926;0
7 | 6;relu2;0.900711;0
8 | 7;conv2_relu2_0_split;0.8464584;0
9 | 8;pool1;3.307561;0
10 | 9;conv3;189.2290574;0
11 | 10;relu3;0.4696566;0
12 | 11;pool2;2.0700584;0
13 | 12;conv4;33.3275978;0
14 | 13;relu4;0.4578572;0
15 | 14;pool3;1.9540708;0
16 | 15;conv5;55.3389328;0
17 | 16;relu5;0.429952;0
18 | 17;pool4;1.6791424;0
19 | 18;ip1;473.054469;0
20 | 19;relu6;0.5511518;0
21 | 20;ip2;8.698279;0
22 | 21;relu7;0.3181208;0
23 | 22;upconv1;7.9862598;0
24 | 23;conv6;15.9697512;0
25 | 24;mergecrop1;2.4973894;0
26 | 25;conv7;103.877423;0
27 | 26;relu8;0.589231;0
28 | 27;conv8;49.7956402;0
29 | 28;relu9;0.3686352;0
30 | 29;ip3;18.387722;0
31 | 30;loss;0.387076;0
32 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0210318;0
2 | 1;data;0.007176;0
3 | 2;silence;0.0028636;0
4 | 3;conv1;5.3016472;638903552
5 | 4;relu1;0.679872;0
6 | 5;conv2;12.3801446;13747470336
7 | 6;relu2;0.6189914;0
8 | 7;conv2_relu2_0_split;0.0109976;0
9 | 8;pool1;0.7870858;0
10 | 9;conv3;18.5637834;26253855616
11 | 10;relu3;0.3842648;0
12 | 11;pool2;1.297485;0
13 | 12;conv4;15.3843472;21813442560
14 | 13;relu4;0.3601628;0
15 | 14;pool3;1.2250246;0
16 | 15;conv5;14.4909344;18922176000
17 | 16;relu5;0.353725;0
18 | 17;pool4;1.062192;0
19 | 18;ip1;58.888826;141758822400
20 | 19;relu6;0.5205064;0
21 | 20;ip2;3.4008608;4425907200
22 | 21;relu7;0.2703278;0
23 | 22;upconv1;10.5978498;0
24 | 23;conv6;3.459726;4421580800
25 | 24;mergecrop1;3.0804746;0
26 | 25;conv7;20.7551948;29437263360
27 | 26;relu8;0.4450632;0
28 | 27;conv8;10.1331528;9659482112
29 | 28;relu9;0.255616;0
30 | 29;ip3;0.7966742;16646144
31 | 30;loss;0.7015518;0
32 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2311182092
2 | label;262144
3 | labeli;4
4 | data;2281152
5 | datai;4
6 | conv1;48219136
7 | conv2;47775744
8 | conv2_relu2_0_split_0;47775744
9 | conv2_relu2_0_split_1;47775744
10 | pool1;11943936
11 | conv3;22794752
12 | pool2;22579200
13 | conv4;21307392
14 | pool3;20891648
15 | conv5;18483200
16 | pool4;17713152
17 | ip1;34611200
18 | ip2;17305600
19 | upconv1;69222400
20 | conv6;34611200
21 | mergecrop1;51916800
22 | conv7;34080768
23 | conv8;16777216
24 | ip3;524288
25 | (automatic);4
26 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;185.583737
2 | Backward;1048.855723
3 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.04917;0
2 | 1;silence;0.0207078;0
3 | 2;conv1;12.0855516;1614931200
4 | 3;relu1;1.7676192;0
5 | 4;conv2;34.8133522;34868412416
6 | 5;relu2;1.4742244;0
7 | 6;conv2_relu2_0_split;0.0339204;0
8 | 7;pool1;1.9107806;0
9 | 8;conv3;41.7153594;67768454016
10 | 9;relu3;0.8861996;0
11 | 10;pool2;3.2547032;0
12 | 11;conv4;36.2176486;57775011840
13 | 12;relu4;0.8619388;0
14 | 13;pool3;3.0945682;0
15 | 14;conv5;34.2234438;53005155840
16 | 15;relu5;0.8061624;0
17 | 16;pool4;2.8793208;0
18 | 17;ip1;234.9312972;558345222144
19 | 18;relu6;1.7617316;0
20 | 19;ip2;8.9878584;17432312832
21 | 20;relu7;0.9185526;0
22 | 21;upconv1;30.9896536;0
23 | 22;conv6;11.1260828;17415272448
24 | 23;mergecrop1;11.2061804;0
25 | 24;conv7;73.6487964;116838039040
26 | 25;relu8;1.7160592;0
27 | 26;conv8;41.8129304;38637928448
28 | 27;relu9;0.8734104;0
29 | 28;ip3;2.726206;66584576
30 | 29;prob;0.2934764;0
31 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;6225709116
2 | data;5746368
3 | datai;4
4 | conv1;121881600
5 | conv2;121176064
6 | conv2_relu2_0_split_0;121176064
7 | conv2_relu2_0_split_1;121176064
8 | pool1;30294016
9 | conv3;58839552
10 | pool2;58492928
11 | conv4;56434688
12 | pool3;55756800
13 | conv5;51775488
14 | pool4;50481152
15 | ip1;136323072
16 | ip2;68161536
17 | upconv1;272646144
18 | conv6;136323072
19 | mergecrop1;204484608
20 | conv7;135268352
21 | conv8;67108864
22 | ip3;2097152
23 | prob;2097152
24 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;595.9614998
2 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0554826;0
2 | 1;data;0.0567094;0
3 | 2;silence;0.074131;0
4 | 3;conv1;34.0451052;0
5 | 4;relu1;1.8940132;0
6 | 5;conv2;135.288941;0
7 | 6;relu2;2.0505562;0
8 | 7;conv2_relu2_0_split;2.0056512;0
9 | 8;pool1;8.1398132;0
10 | 9;conv3;488.543611;0
11 | 10;relu3;1.1051124;0
12 | 11;pool2;5.0387972;0
13 | 12;conv4;94.8176062;0
14 | 13;relu4;1.0652066;0
15 | 14;pool3;4.8958614;0
16 | 15;conv5;177.4987414;0
17 | 16;relu5;1.0093002;0
18 | 17;pool4;4.631934;0
19 | 18;ip1;2752.894852;0
20 | 19;relu6;2.0450826;0
21 | 20;ip2;47.830296;0
22 | 21;relu7;1.1806924;0
23 | 22;upconv1;18.9867796;0
24 | 23;conv6;59.7599066;0
25 | 24;mergecrop1;9.4122604;0
26 | 25;conv7;437.1023758;0
27 | 26;relu8;2.04888;0
28 | 27;conv8;233.8411938;0
29 | 28;relu9;1.1549644;0
30 | 29;ip3;98.5092862;0
31 | 30;loss;0.6675912;0
32 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.023046;0
2 | 1;data;0.0081492;0
3 | 2;silence;0.0027256;0
4 | 3;conv1;9.264682;1614931200
5 | 4;relu1;1.4491014;0
6 | 5;conv2;31.0880892;34868412416
7 | 6;relu2;1.4713426;0
8 | 7;conv2_relu2_0_split;0.0319252;0
9 | 8;pool1;1.8498008;0
10 | 9;conv3;41.6876142;67768454016
11 | 10;relu3;0.8495948;0
12 | 11;pool2;3.215349;0
13 | 12;conv4;36.2822714;57775011840
14 | 13;relu4;0.8261364;0
15 | 14;pool3;3.0824942;0
16 | 15;conv5;34.6468132;53005155840
17 | 16;relu5;0.7442834;0
18 | 17;pool4;2.8088508;0
19 | 18;ip1;227.1143374;558345222144
20 | 19;relu6;1.6821952;0
21 | 20;ip2;8.5901944;17432312832
22 | 21;relu7;0.872874;0
23 | 22;upconv1;30.9192762;0
24 | 23;conv6;11.0372804;17415272448
25 | 24;mergecrop1;9.7548626;0
26 | 25;conv7;72.9995972;116838039040
27 | 26;relu8;1.6517988;0
28 | 27;conv8;41.0164854;38637928448
29 | 28;relu9;0.8668784;0
30 | 29;ip3;2.1371512;66584576
31 | 30;loss;1.429576;0
32 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;8126552844
2 | label;1048576
3 | labeli;4
4 | data;5746368
5 | datai;4
6 | conv1;121881600
7 | conv2;121176064
8 | conv2_relu2_0_split_0;121176064
9 | conv2_relu2_0_split_1;121176064
10 | pool1;30294016
11 | conv3;58839552
12 | pool2;58492928
13 | conv4;56434688
14 | pool3;55756800
15 | conv5;51775488
16 | pool4;50481152
17 | ip1;136323072
18 | ip2;68161536
19 | upconv1;272646144
20 | conv6;136323072
21 | mergecrop1;204484608
22 | conv7;135268352
23 | conv8;67108864
24 | ip3;2097152
25 | (automatic);4
26 |
--------------------------------------------------------------------------------
/benchmark/W9100_OPENCL/usk_benchmark_512/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;588.0471572
2 | Backward;4626.000461
3 |
--------------------------------------------------------------------------------
/benchmark/benchmark_sk.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 2 --benchmark 0 --proto 'train_process_sk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/benchmark/benchmark_u.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 0 --benchmark 0 --proto 'train_process_u_2.prototxt'
2 |
--------------------------------------------------------------------------------
/benchmark/benchmark_u_small.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 0 --benchmark 0 --proto 'train_process_u_2small.prototxt'
2 |
--------------------------------------------------------------------------------
/benchmark/benchmark_usk.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 3 --benchmark 0 --proto 'train_process_usk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/benchmark/clBLAS-BENCH/bench.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | for ((i=6; i<13; i+=1)); do
3 | let mnk=(2**$i)
4 | echo "BLAS-client -o1 --transposeB 1 -m $mnk -n $mnk -k $mnk" >> bench.txt
5 | clBLAS-client -o1 --transposeB 1 -m $mnk -n $mnk -k $mnk >> bench.txt
6 | done
7 |
8 | for ((i=1; i<13; i+=1)); do
9 | let mnk=(512*$i)
10 | echo "BLAS-client -o1 --transposeB 1 -m $mnk -n $mnk -k $mnk" >> bench.txt
11 | clBLAS-client -o1 --transposeB 1 -m $mnk -n $mnk -k $mnk >> bench.txt
12 | done
13 |
14 |
--------------------------------------------------------------------------------
/benchmark/clBLAS-BENCH/bench.txt.old:
--------------------------------------------------------------------------------
1 | BLAS-client -o1 --transposeB 1 -m 64 -n 64 -k 64
2 | BLAS kernel execution time < ns >: 30425
3 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 17.2321
4 | BLAS-client -o1 --transposeB 1 -m 128 -n 128 -k 128
5 | BLAS kernel execution time < ns >: 36363.2
6 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 115.345
7 | BLAS-client -o1 --transposeB 1 -m 256 -n 256 -k 256
8 | BLAS kernel execution time < ns >: 54394.7
9 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 616.869
10 | BLAS-client -o1 --transposeB 1 -m 512 -n 512 -k 512
11 | BLAS kernel execution time < ns >: 207337
12 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 1294.68
13 | BLAS-client -o1 --transposeB 1 -m 1024 -n 1024 -k 1024
14 | BLAS kernel execution time < ns >: 723310
15 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2968.97
16 | BLAS-client -o1 --transposeB 1 -m 2048 -n 2048 -k 2048
17 | BLAS kernel execution time < ns >: 5.6569e+06
18 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 3036.98
19 | BLAS-client -o1 --transposeB 1 -m 4096 -n 4096 -k 4096
20 | BLAS kernel execution time < ns >: 6.99098e+07
21 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 1965.95
22 | BLAS-client -o1 --transposeB 1 -m 512 -n 512 -k 512
23 | BLAS kernel execution time < ns >: 266880
24 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 1005.83
25 | BLAS-client -o1 --transposeB 1 -m 1024 -n 1024 -k 1024
26 | BLAS kernel execution time < ns >: 719337
27 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2985.37
28 | BLAS-client -o1 --transposeB 1 -m 1536 -n 1536 -k 1536
29 | BLAS kernel execution time < ns >: 2.08752e+06
30 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 3471.94
31 | BLAS-client -o1 --transposeB 1 -m 2048 -n 2048 -k 2048
32 | BLAS kernel execution time < ns >: 5.7503e+06
33 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2987.65
34 | BLAS-client -o1 --transposeB 1 -m 2560 -n 2560 -k 2560
35 | BLAS kernel execution time < ns >: 1.12787e+07
36 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2975.02
37 | BLAS-client -o1 --transposeB 1 -m 3072 -n 3072 -k 3072
38 | BLAS kernel execution time < ns >: 1.72154e+07
39 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 3368.03
40 | BLAS-client -o1 --transposeB 1 -m 3584 -n 3584 -k 3584
41 | BLAS kernel execution time < ns >: 3.10087e+07
42 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2969.28
43 | BLAS-client -o1 --transposeB 1 -m 4096 -n 4096 -k 4096
44 | BLAS kernel execution time < ns >: 6.52492e+07
45 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2106.37
46 | BLAS-client -o1 --transposeB 1 -m 4608 -n 4608 -k 4608
47 | BLAS kernel execution time < ns >: 6.04398e+07
48 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 3237.76
49 | BLAS-client -o1 --transposeB 1 -m 5120 -n 5120 -k 5120
50 | BLAS kernel execution time < ns >: 1.10235e+08
51 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2435.12
52 | BLAS-client -o1 --transposeB 1 -m 5632 -n 5632 -k 5632
53 | BLAS kernel execution time < ns >: 1.24523e+08
54 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 2869.24
55 | BLAS-client -o1 --transposeB 1 -m 6144 -n 6144 -k 6144
56 | BLAS kernel execution time < ns >: 2.41213e+08
57 | BLAS kernel execution Gflops < 2.0*M*N*K/time >: 1923.02
58 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0184396;0
2 | 1;silence;0.0036626;0
3 | 2;conv1;22.190742;699388656
4 | 3;relu1;2.6799646;0
5 | 4;pool1;14.6533894;0
6 | 5;conv2;213.1595886;14062669312
7 | 6;relu2;4.9413424;0
8 | 7;pool2;40.0590094;0
9 | 8;conv3;198.1541316;18401596416
10 | 9;relu3;5.8513244;0
11 | 10;pool3;57.0788916;0
12 | 11;ip1;3612.29921;644228317184
13 | 12;relu4;13.5888408;0
14 | 13;ip2;150.0283782;17171480576
15 | 14;relu5;5.9017318;0
16 | 15;ip3;56.2488972;33521664
17 | 16;prob;0.4782932;0
18 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;2892571592
2 | data;629292
3 | label;4
4 | conv1;9547968
5 | pool1;9462528
6 | conv2;23447552
7 | pool2;23011328
8 | conv3;31961088
9 | pool3;30720000
10 | ip1;67108864
11 | ip2;33554432
12 | ip3;131072
13 | prob;131072
14 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4675.582105
2 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0029102;0
2 | 1;data;0.003008;0
3 | 2;silence;0.0040756;0
4 | 3;conv1;29.460228;0
5 | 4;relu1;2.199109;0
6 | 5;pool1;14.1824136;0
7 | 6;conv2;334.5710306;0
8 | 7;relu2;5.581726;0
9 | 8;pool2;30.0692674;0
10 | 9;conv3;328.6651608;0
11 | 10;relu3;7.5785388;0
12 | 11;pool3;36.6120784;0
13 | 12;ip1;6340.919085;0
14 | 13;relu4;18.1010066;0
15 | 14;ip2;296.9252264;0
16 | 15;relu5;8.1503498;0
17 | 16;ip3;114.5133774;0
18 | 17;loss;0.3753408;0
19 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0284308;0
2 | 1;data;0.0069818;0
3 | 2;silence;0.0037074;0
4 | 3;conv1;18.3331938;699388656
5 | 4;relu1;2.5207114;0
6 | 5;pool1;14.0784632;0
7 | 6;conv2;204.5347088;14062669312
8 | 7;relu2;4.713152;0
9 | 8;pool2;39.007587;0
10 | 9;conv3;198.499838;18401596416
11 | 10;relu3;5.4154078;0
12 | 11;pool3;49.6407652;0
13 | 12;ip1;3562.445007;644228317184
14 | 13;relu4;11.6346604;0
15 | 14;ip2;150.9750644;17171480576
16 | 15;relu5;5.546087;0
17 | 16;ip3;54.8629552;33521664
18 | 17;loss;1.11714;0
19 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3204621764
2 | label;65536
3 | labeli;4
4 | data;629292
5 | datai;4
6 | conv1;9547968
7 | pool1;9462528
8 | conv2;23447552
9 | pool2;23011328
10 | conv3;31961088
11 | pool3;30720000
12 | ip1;67108864
13 | ip2;33554432
14 | ip3;131072
15 | (automatic);4
16 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/sk_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4483.265315
2 | Backward;7956.081515
3 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0274634;0
2 | 1;silence;0.0033362;0
3 | 2;conv1;39.107561;1102060800
4 | 3;relu1;22.5740144;0
5 | 4;conv2;611.0325036;23765774336
6 | 5;relu2;16.6983694;0
7 | 6;conv2_relu2_0_split;0.0124272;0
8 | 7;pool1;48.1928618;0
9 | 8;conv3;119.5044252;11716111872
10 | 9;relu3;5.9813702;0
11 | 10;conv4;338.209847;23111065600
12 | 11;relu4;7.198351;0
13 | 12;conv4_relu4_0_split;0.0116692;0
14 | 13;pool2;11.8258134;0
15 | 14;conv5;93.3263156;11227732992
16 | 15;relu5;2.5349958;0
17 | 16;conv6;172.756974;21814034432
18 | 17;relu6;3.2135516;0
19 | 18;conv6_relu6_0_split;0.0128082;0
20 | 19;pool3;7.1107608;0
21 | 20;conv7;49.8762422;10274863104
22 | 21;relu7;1.3154076;0
23 | 22;conv8;88.6973652;19325255680
24 | 23;relu8;1.1421462;0
25 | 24;conv8_relu8_0_split;0.011487;0
26 | 25;pool4;3.1834572;0
27 | 26;conv9;30.6472956;8492544000
28 | 27;relu9;0.5287776;0
29 | 28;conv10;53.2272548;14796701696
30 | 29;relu10;0.4309022;0
31 | 30;upconv1;94.0610546;0
32 | 31;conv11;16.6592562;3286728704
33 | 32;mergecrop1;34.5936008;0
34 | 33;conv12;132.7075866;27517335552
35 | 34;relu11;0.893465;0
36 | 35;conv13;57.6091958;12757688320
37 | 36;relu12;0.851825;0
38 | 37;upconv2;99.516944;0
39 | 38;conv14;19.38658;2832580608
40 | 39;mergecrop2;49.8755802;0
41 | 40;conv15;210.8316242;24543452160
42 | 41;relu13;1.7811438;0
43 | 42;conv16;89.0637614;11793920000
44 | 43;relu14;1.45692;0
45 | 44;upconv3;120.6291338;0
46 | 45;conv17;22.0084344;2616320000
47 | 46;mergecrop3;74.041791;0
48 | 47;conv18;271.451327;23118441984
49 | 48;relu15;3.2541624;0
50 | 49;conv19;160.4096518;11324422144
51 | 50;relu16;3.2567222;0
52 | 51;upconv4;171.6589058;0
53 | 52;conv20;27.4826982;2507796480
54 | 53;mergecrop4;110.5378062;0
55 | 54;conv21;419.5214016;22418323200
56 | 55;relu17;7.6071614;0
57 | 56;conv22;267.7547664;11089673216
58 | 57;relu18;6.170966;0
59 | 58;ip1;21.0980888;38238176
60 | 59;prob;3.9202252;0
61 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1793039512
2 | data;3926208
3 | datai;4
4 | conv1;83174400
5 | conv2;82591744
6 | conv2_relu2_0_split_0;82591744
7 | conv2_relu2_0_split_1;82591744
8 | pool1;20647936
9 | conv3;40716288
10 | conv4;40140800
11 | conv4_relu4_0_split_0;40140800
12 | conv4_relu4_0_split_1;40140800
13 | pool2;10035200
14 | conv5;19501056
15 | conv6;18939904
16 | conv6_relu6_0_split_0;18939904
17 | conv6_relu6_0_split_1;18939904
18 | pool3;4734976
19 | conv7;8921088
20 | conv8;8388608
21 | conv8_relu8_0_split_0;8388608
22 | conv8_relu8_0_split_1;8388608
23 | pool4;2097152
24 | conv9;3686400
25 | conv10;3211264
26 | upconv1;12845056
27 | conv11;6422528
28 | mergecrop1;12845056
29 | conv12;5971968
30 | conv13;5537792
31 | upconv2;22151168
32 | conv14;11075584
33 | mergecrop2;22151168
34 | conv15;10653696
35 | conv16;10240000
36 | upconv3;40960000
37 | conv17;20480000
38 | mergecrop3;40960000
39 | conv18;20072448
40 | conv19;19668992
41 | upconv4;78675968
42 | conv20;39337984
43 | mergecrop4;78675968
44 | conv21;38937600
45 | conv22;38539264
46 | ip1;1204352
47 | prob;1204352
48 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4604.896615
2 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.004054;0
2 | 1;data;0.0024578;0
3 | 2;silence;0.0043998;0
4 | 3;conv1;84.6204514;0
5 | 4;relu1;38.5630076;0
6 | 5;conv2;1195.344379;0
7 | 6;relu2;33.3240644;0
8 | 7;conv2_relu2_0_split;38.8607792;0
9 | 8;pool1;158.6526464;0
10 | 9;conv3;340.489479;0
11 | 10;relu3;11.0213116;0
12 | 11;conv4;624.7077012;0
13 | 12;relu4;13.5890722;0
14 | 13;conv4_relu4_0_split;19.637882;0
15 | 14;pool2;84.725778;0
16 | 15;conv5;204.9364416;0
17 | 16;relu5;7.4160284;0
18 | 17;conv6;389.9348502;0
19 | 18;relu6;7.2235968;0
20 | 19;conv6_relu6_0_split;11.132718;0
21 | 20;pool3;55.7367018;0
22 | 21;conv7;122.9356484;0
23 | 22;relu7;5.1871906;0
24 | 23;conv8;234.3254132;0
25 | 24;relu8;3.178703;0
26 | 25;conv8_relu8_0_split;6.319313;0
27 | 26;pool4;28.0772692;0
28 | 27;conv9;80.3139864;0
29 | 28;relu9;1.1405114;0
30 | 29;conv10;157.1086766;0
31 | 30;relu10;0.6114416;0
32 | 31;upconv1;78.8917476;0
33 | 32;conv11;29.9117746;0
34 | 33;mergecrop1;19.1957514;0
35 | 34;conv12;346.4667494;0
36 | 35;relu11;2.44084;0
37 | 36;conv13;157.1371;0
38 | 37;relu12;1.6447922;0
39 | 38;upconv2;58.868087;0
40 | 39;conv14;32.729889;0
41 | 40;mergecrop2;28.1414034;0
42 | 41;conv15;382.8025028;0
43 | 42;relu13;3.4846414;0
44 | 43;conv16;181.7308804;0
45 | 44;relu14;2.9267902;0
46 | 45;upconv3;50.1304372;0
47 | 46;conv17;38.1024598;0
48 | 47;mergecrop3;46.0241078;0
49 | 48;conv18;609.7237076;0
50 | 49;relu15;5.5932814;0
51 | 50;conv19;285.036058;0
52 | 51;relu16;5.949447;0
53 | 52;upconv4;84.2867804;0
54 | 53;conv20;46.5766938;0
55 | 54;mergecrop4;91.4162548;0
56 | 55;conv21;1108.95154;0
57 | 56;relu17;12.2821238;0
58 | 57;conv22;580.9277184;0
59 | 58;relu18;21.2666082;0
60 | 59;ip1;29.0947108;0
61 | 60;loss;3.8388814;0
62 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0313716;0
2 | 1;data;0.0067282;0
3 | 2;silence;0.0042746;0
4 | 3;conv1;45.8495816;1102060800
5 | 4;relu1;32.5950046;0
6 | 5;conv2;721.7618956;23765774336
7 | 6;relu2;27.0231456;0
8 | 7;conv2_relu2_0_split;0.0120688;0
9 | 8;pool1;49.8881606;0
10 | 9;conv3;147.7298004;11716111872
11 | 10;relu3;10.561007;0
12 | 11;conv4;441.012431;23111065600
13 | 12;relu4;9.5151816;0
14 | 13;conv4_relu4_0_split;0.0112528;0
15 | 14;pool2;22.4601168;0
16 | 15;conv5;121.067904;11227732992
17 | 16;relu5;3.3821928;0
18 | 17;conv6;230.365779;21814034432
19 | 18;relu6;3.6215124;0
20 | 19;conv6_relu6_0_split;0.0163948;0
21 | 20;pool3;7.3676682;0
22 | 21;conv7;64.857858;10274863104
23 | 22;relu7;1.4240718;0
24 | 23;conv8;116.1438326;19325255680
25 | 24;relu8;1.1845462;0
26 | 25;conv8_relu8_0_split;0.0117484;0
27 | 26;pool4;3.5646118;0
28 | 27;conv9;54.2426358;8492544000
29 | 28;relu9;0.6559158;0
30 | 29;conv10;83.0037966;14796701696
31 | 30;relu10;0.4468794;0
32 | 31;upconv1;96.6003398;0
33 | 32;conv11;21.052009;3286728704
34 | 33;mergecrop1;32.4953074;0
35 | 34;conv12;167.562008;27517335552
36 | 35;relu11;2.066091;0
37 | 36;conv13;63.6825812;12757688320
38 | 37;relu12;0.7584768;0
39 | 38;upconv2;90.4547676;0
40 | 39;conv14;19.3913462;2832580608
41 | 40;mergecrop2;58.555659;0
42 | 41;conv15;254.0227314;24543452160
43 | 42;relu13;1.513095;0
44 | 43;conv16;101.9524098;11793920000
45 | 44;relu14;1.6835296;0
46 | 45;upconv3;133.1183258;0
47 | 46;conv17;24.5912018;2616320000
48 | 47;mergecrop3;78.340638;0
49 | 48;conv18;319.4565938;23118441984
50 | 49;relu15;3.7993186;0
51 | 50;conv19;182.8795482;11324422144
52 | 51;relu16;4.3304228;0
53 | 52;upconv4;213.4746864;0
54 | 53;conv20;28.6287736;2507796480
55 | 54;mergecrop4;126.2643332;0
56 | 55;conv21;557.3930256;22418323200
57 | 56;relu17;9.3335464;0
58 | 57;conv22;362.0934896;11089673216
59 | 58;relu18;9.1193492;0
60 | 59;ip1;23.1702116;38238176
61 | 60;loss;5.8316076;0
62 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;3098889896
2 | label;602176
3 | labeli;4
4 | data;3926208
5 | datai;4
6 | conv1;83174400
7 | conv2;82591744
8 | conv2_relu2_0_split_0;82591744
9 | conv2_relu2_0_split_1;82591744
10 | pool1;20647936
11 | conv3;40716288
12 | conv4;40140800
13 | conv4_relu4_0_split_0;40140800
14 | conv4_relu4_0_split_1;40140800
15 | pool2;10035200
16 | conv5;19501056
17 | conv6;18939904
18 | conv6_relu6_0_split_0;18939904
19 | conv6_relu6_0_split_1;18939904
20 | pool3;4734976
21 | conv7;8921088
22 | conv8;8388608
23 | conv8_relu8_0_split_0;8388608
24 | conv8_relu8_0_split_1;8388608
25 | pool4;2097152
26 | conv9;3686400
27 | conv10;3211264
28 | upconv1;12845056
29 | conv11;6422528
30 | mergecrop1;12845056
31 | conv12;5971968
32 | conv13;5537792
33 | upconv2;22151168
34 | conv14;11075584
35 | mergecrop2;22151168
36 | conv15;10653696
37 | conv16;10240000
38 | upconv3;40960000
39 | conv17;20480000
40 | mergecrop3;40960000
41 | conv18;20072448
42 | conv19;19668992
43 | upconv4;78675968
44 | conv20;39337984
45 | mergecrop4;78675968
46 | conv21;38937600
47 | conv22;38539264
48 | ip1;1204352
49 | (automatic);4
50 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/u_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;4424.887664
2 | Backward;6702.328755
3 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/usk_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0310962;0
2 | 1;silence;0.003935;0
3 | 2;conv1;22.9776466;638903552
4 | 3;relu1;10.691161;0
5 | 4;conv2;333.7864692;13747470336
6 | 5;relu2;9.0678912;0
7 | 6;conv2_relu2_0_split;0.0119234;0
8 | 7;pool1;21.5963518;0
9 | 8;conv3;437.042976;26253855616
10 | 9;relu3;4.081047;0
11 | 10;pool2;33.5919994;0
12 | 11;conv4;338.9476146;21813442560
13 | 12;relu4;3.3481248;0
14 | 13;pool3;29.3842186;0
15 | 14;conv5;282.9458806;18922176000
16 | 15;relu5;3.3069316;0
17 | 16;pool4;23.7714168;0
18 | 17;ip1;995.106066;141758822400
19 | 18;relu6;4.8087888;0
20 | 19;ip2;20.2963214;4425907200
21 | 20;relu7;2.430759;0
22 | 21;upconv1;155.6091418;0
23 | 22;conv6;27.4694206;4421580800
24 | 23;mergecrop1;80.9440986;0
25 | 24;conv7;333.0637032;29437263360
26 | 25;relu8;5.9509678;0
27 | 26;conv8;256.990782;9659482112
28 | 27;relu9;3.1498494;0
29 | 28;ip3;8.9535774;16646144
30 | 29;prob;1.3205736;0
31 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/usk_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1145971772
2 | data;2281152
3 | datai;4
4 | conv1;48219136
5 | conv2;47775744
6 | conv2_relu2_0_split_0;47775744
7 | conv2_relu2_0_split_1;47775744
8 | pool1;11943936
9 | conv3;22794752
10 | pool2;22579200
11 | conv4;21307392
12 | pool3;20891648
13 | conv5;18483200
14 | pool4;17713152
15 | ip1;34611200
16 | ip2;17305600
17 | upconv1;69222400
18 | conv6;34611200
19 | mergecrop1;51916800
20 | conv7;34080768
21 | conv8;16777216
22 | ip3;524288
23 | prob;524288
24 |
--------------------------------------------------------------------------------
/benchmark/i7-4790K_OPENCL/usk_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;3375.567904
2 |
--------------------------------------------------------------------------------
/benchmark/train_process_sk_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solver: "../net_sk_2out/neuraltissue_solver.prototxt"
3 | input {
4 | padding_size: 102
5 | patch_size: 128
6 | channels: 3
7 | labels: 2
8 | batch_size: 1
9 | raw_images: "train/raw"
10 | label_images: "train/labels"
11 | preprocessor {
12 | normalization: true
13 | rotation: true
14 | mirror: true
15 | clahe {
16 | clip: 4.0
17 | }
18 | crop {
19 | imagecrop: 1
20 | labelcrop: 0
21 | }
22 | blur {
23 | mean: 0.0
24 | std: 0.1
25 | ksize: 5
26 | }
27 | histeq {
28 | patch_prior: false
29 | masking: false
30 | }
31 | }
32 | }
33 | }
34 |
35 | process {
36 | process_net: "../net_sk_2out/neuraltissue_net.prototxt"
37 | input {
38 | padding_size: 102
39 | patch_size: 128
40 | channels: 3
41 | labels: 2
42 | batch_size: 1
43 | raw_images: "input"
44 | preprocessor {
45 | normalization: true
46 | clahe {
47 | clip: 4.0
48 | }
49 | crop {
50 | imagecrop: 1
51 | labelcrop: 0
52 | }
53 | }
54 | }
55 | filter_output {
56 | output_filters: false
57 | output: "sk_filters"
58 | }
59 | output {
60 | format: "tif"
61 | fp32_out: false
62 | output: "output"
63 | }
64 | }
65 |
66 | benchmark {
67 | train_index: 0
68 | process_index: 0
69 | output: "sk_benchmark"
70 | warmup_runs: 2
71 | bench_runs: 5
72 | }
73 |
--------------------------------------------------------------------------------
/benchmark/train_process_u_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solver: "../net_u_2out/neuraltissue_solver.prototxt"
3 | input {
4 | padding_size: 184
5 | patch_size: 388
6 | channels: 3
7 | labels: 2
8 | batch_size: 1
9 | raw_images: "train/raw"
10 | label_images: "train/labels"
11 | preprocessor {
12 | normalization: true
13 | rotation: true
14 | mirror: true
15 | clahe {
16 | clip: 4.0
17 | }
18 | crop {
19 | imagecrop: 0
20 | labelcrop: 0
21 | }
22 | blur {
23 | mean: 0.0
24 | std: 0.1
25 | ksize: 5
26 | }
27 | histeq {
28 | patch_prior: false
29 | masking: false
30 | }
31 | }
32 | }
33 | }
34 |
35 | process {
36 | process_net: "../net_u_2out/neuraltissue_net.prototxt"
37 | input {
38 | padding_size: 184
39 | patch_size: 388
40 | channels: 3
41 | labels: 2
42 | batch_size: 1
43 | raw_images: "input"
44 | preprocessor {
45 | normalization: true
46 | clahe {
47 | clip: 4.0
48 | }
49 | crop {
50 | imagecrop: 0
51 | labelcrop: 0
52 | }
53 | }
54 | }
55 | filter_output {
56 | output_filters: false
57 | output: "u_filters"
58 | }
59 | output {
60 | format: "tif"
61 | fp32_out: false
62 | output: "output"
63 | }
64 | }
65 |
66 | benchmark {
67 | train_index: 0
68 | process_index: 0
69 | output: "u_benchmark"
70 | warmup_runs: 2
71 | bench_runs: 5
72 | }
73 |
--------------------------------------------------------------------------------
/benchmark/train_process_u_2small.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solver: "../net_u_small/neuraltissue_solver.prototxt"
3 | input {
4 | padding_size: 184
5 | patch_size: 196
6 | channels: 3
7 | labels: 2
8 | batch_size: 1
9 | raw_images: "train/raw"
10 | label_images: "train/labels"
11 | preprocessor {
12 | normalization: true
13 | rotation: true
14 | mirror: true
15 | clahe {
16 | clip: 4.0
17 | }
18 | crop {
19 | imagecrop: 0
20 | labelcrop: 0
21 | }
22 | blur {
23 | mean: 0.0
24 | std: 0.1
25 | ksize: 5
26 | }
27 | histeq {
28 | patch_prior: false
29 | masking: false
30 | }
31 | }
32 | }
33 | }
34 |
35 | process {
36 | process_net: "../net_u_small/neuraltissue_net.prototxt"
37 | input {
38 | padding_size: 184
39 | patch_size: 196
40 | channels: 3
41 | labels: 2
42 | batch_size: 1
43 | raw_images: "input"
44 | preprocessor {
45 | normalization: true
46 | clahe {
47 | clip: 4.0
48 | }
49 | crop {
50 | imagecrop: 0
51 | labelcrop: 0
52 | }
53 | }
54 | }
55 | filter_output {
56 | output_filters: false
57 | output: "u_filters"
58 | }
59 | output {
60 | format: "tif"
61 | fp32_out: false
62 | output: "output"
63 | }
64 | }
65 |
66 | benchmark {
67 | train_index: 0
68 | process_index: 0
69 | output: "u_benchmark"
70 | warmup_runs: 2
71 | bench_runs: 5
72 | }
73 |
--------------------------------------------------------------------------------
/benchmark/train_process_usk_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solver: "../net_usk_2out/neuraltissue_solver.prototxt"
3 | input {
4 | padding_size: 180
5 | patch_size: 256
6 | channels: 3
7 | labels: 2
8 | batch_size: 1
9 | raw_images: "train/raw"
10 | label_images: "train/labels"
11 | preprocessor {
12 | normalization: true
13 | rotation: true
14 | mirror: true
15 | clahe {
16 | clip: 4.0
17 | }
18 | crop {
19 | imagecrop: 0
20 | labelcrop: 0
21 | }
22 | blur {
23 | mean: 0.0
24 | std: 0.1
25 | ksize: 5
26 | }
27 | histeq {
28 | patch_prior: false
29 | masking: false
30 | }
31 | }
32 | }
33 | }
34 |
35 | process {
36 | process_net: "../net_usk_2out/neuraltissue_net.prototxt"
37 | input {
38 | padding_size: 180
39 | patch_size: 256
40 | channels: 3
41 | labels: 2
42 | batch_size: 1
43 | raw_images: "input"
44 | preprocessor {
45 | normalization: true
46 | clahe {
47 | clip: 4.0
48 | }
49 | crop {
50 | imagecrop: 0
51 | labelcrop: 0
52 | }
53 | }
54 | }
55 | filter_output {
56 | output_filters: false
57 | output: "usk_filters"
58 | }
59 | output {
60 | format: "tif"
61 | fp32_out: false
62 | output: "output"
63 | }
64 | }
65 |
66 | benchmark {
67 | train_index: 0
68 | process_index: 0
69 | output: "usk_benchmark"
70 | warmup_runs: 2
71 | bench_runs: 5
72 | }
73 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/process_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;data;0.0090552;0
2 | 1;silence;0.0038782;0
3 | 2;Convolution1;10.0284528;484662528
4 | 3;ReLU1;3.0279008;0
5 | 4;Convolution2;72.2204378;10414321664
6 | 5;ReLU2;3.0005238;0
7 | 6;Convolution2_ReLU2_0_split;0.00723;0
8 | 7;Pooling1;8.1683908;0
9 | 8;Convolution3;26.3916874;5096959488
10 | 9;ReLU3;1.4908118;0
11 | 10;Convolution4;48.441133;9980207104
12 | 11;ReLU4;1.4579302;0
13 | 12;Convolution4_ReLU4_0_split;0.0040838;0
14 | 13;Pooling2;3.9168062;0
15 | 14;Convolution5;19.0256108;4775500800
16 | 15;ReLU5;0.7177118;0
17 | 16;Convolution6;34.8015366;9133211648
18 | 17;ReLU6;0.690141;0
19 | 18;Convolution6_ReLU6_0_split;0.0032752;0
20 | 19;Pooling3;1.8104738;0
21 | 20;Convolution7;14.2014374;4160894976
22 | 21;ReLU7;0.3332222;0
23 | 22;Convolution8;24.78495;7548928000
24 | 23;ReLU8;0.307989;0
25 | 24;Convolution8_ReLU8_0_split;0.0030884;0
26 | 25;Pooling4;0.7642218;0
27 | 26;Convolution9;10.964097;3057315840
28 | 27;ReLU9;0.1422286;0
29 | 28;Convolution10;14.6336422;4831576064
30 | 29;ReLU10;0.116546;0
31 | 30;Deconvolution1;10.9683482;0
32 | 31;Convolution11;3.326726;1073217536
33 | 32;MergeCrop1;8.0441928;0
34 | 33;Convolution12;29.2545192;8493004800
35 | 34;ReLU11;0.2022996;0
36 | 35;Convolution13;12.827152;3698974720
37 | 36;ReLU12;0.1607844;0
38 | 37;Deconvolution2;13.3849872;0
39 | 38;Convolution14;2.8390096;821280768
40 | 39;MergeCrop2;12.302372;0
41 | 40;Convolution15;26.003882;6878960640
42 | 41;ReLU13;0.2852658;0
43 | 42;Convolution16;12.4286394;3189075968
44 | 43;ReLU14;0.2586616;0
45 | 44;Deconvolution3;21.1402356;0
46 | 45;Convolution17;2.8520432;707452928
47 | 46;MergeCrop3;21.144977;0
48 | 47;Convolution18;29.163433;6135197184
49 | 48;ReLU15;0.4828196;0
50 | 49;Convolution19;14.4890398;2947840000
51 | 50;ReLU16;0.452281;0
52 | 51;Deconvolution4;37.9232498;0
53 | 52;Convolution20;3.392949;652800000
54 | 53;MergeCrop4;39.0993832;0
55 | 54;Convolution21;38.8368222;5778355968
56 | 55;ReLU17;0.8638632;0
57 | 56;Convolution22;19.7834288;2829876224
58 | 57;ReLU18;0.8479158;0
59 | 58;Convolution23;0.9066796;9757664
60 | 59;prob;0.591295;0
61 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/process_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;821678040
2 | data;1732800
3 | datai;4
4 | Convolution1;36578304
5 | Convolution2;36192256
6 | Convolution2_ReLU2_0_split_0;36192256
7 | Convolution2_ReLU2_0_split_1;36192256
8 | Pooling1;9048064
9 | Convolution3;17713152
10 | Convolution4;17334272
11 | Convolution4_ReLU4_0_split_0;17334272
12 | Convolution4_ReLU4_0_split_1;17334272
13 | Pooling2;4333568
14 | Convolution5;8294400
15 | Convolution6;7929856
16 | Convolution6_ReLU6_0_split_0;7929856
17 | Convolution6_ReLU6_0_split_1;7929856
18 | Pooling3;1982464
19 | Convolution7;3612672
20 | Convolution8;3276800
21 | Convolution8_ReLU8_0_split_0;3276800
22 | Convolution8_ReLU8_0_split_1;3276800
23 | Pooling4;819200
24 | Convolution9;1327104
25 | Convolution10;1048576
26 | Deconvolution1;4194304
27 | Convolution11;2097152
28 | MergeCrop1;4194304
29 | Convolution12;1843200
30 | Convolution13;1605632
31 | Deconvolution2;6422528
32 | Convolution14;3211264
33 | MergeCrop2;6422528
34 | Convolution15;2985984
35 | Convolution16;2768896
36 | Deconvolution3;11075584
37 | Convolution17;5537792
38 | MergeCrop3;11075584
39 | Convolution18;5326848
40 | Convolution19;5120000
41 | Deconvolution4;20480000
42 | Convolution20;10240000
43 | MergeCrop4;20480000
44 | Convolution21;10036224
45 | Convolution22;9834496
46 | Convolution23;307328
47 | prob;307328
48 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/process_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;664.611782
2 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/train_backward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0013398;0
2 | 1;data;0.0014006;0
3 | 2;silence;0.0110758;0
4 | 3;Convolution1;17.3956852;0
5 | 4;ReLU1;4.2096348;0
6 | 5;Convolution2;352.1860408;0
7 | 6;ReLU2;4.1510822;0
8 | 7;Convolution2_ReLU2_0_split;4.1702252;0
9 | 8;Pooling1;57.3902794;0
10 | 9;Convolution3;70.0714326;0
11 | 10;ReLU3;2.062638;0
12 | 11;Convolution4;127.9989346;0
13 | 12;ReLU4;1.999343;0
14 | 13;Convolution4_ReLU4_0_split;2.0125298;0
15 | 14;Pooling2;27.3925588;0
16 | 15;Convolution5;45.1965792;0
17 | 16;ReLU5;0.9873896;0
18 | 17;Convolution6;85.591535;0
19 | 18;ReLU6;0.9247388;0
20 | 19;Convolution6_ReLU6_0_split;0.9466976;0
21 | 20;Pooling3;12.5279514;0
22 | 21;Convolution7;33.0367912;0
23 | 22;ReLU7;0.4590788;0
24 | 23;Convolution8;58.78798;0
25 | 24;ReLU8;0.3952964;0
26 | 25;Convolution8_ReLU8_0_split;0.4054854;0
27 | 26;Pooling4;5.1896196;0
28 | 27;Convolution9;25.1609482;0
29 | 28;ReLU9;0.1943946;0
30 | 29;Convolution10;37.6213;0
31 | 30;ReLU10;0.1391888;0
32 | 31;Deconvolution1;5.899787;0
33 | 32;Convolution11;7.0467184;0
34 | 33;MergeCrop1;8.0574912;0
35 | 34;Convolution12;69.6469728;0
36 | 35;ReLU11;0.2519158;0
37 | 36;Convolution13;30.1689698;0
38 | 37;ReLU12;0.2084542;0
39 | 38;Deconvolution2;6.3535382;0
40 | 39;Convolution14;5.5931654;0
41 | 40;MergeCrop2;12.2803792;0
42 | 41;Convolution15;65.8994762;0
43 | 42;ReLU13;0.3825304;0
44 | 43;Convolution16;30.2814476;0
45 | 44;ReLU14;0.350609;0
46 | 45;Deconvolution3;8.6920224;0
47 | 46;Convolution17;5.4432254;0
48 | 47;MergeCrop3;21.1436172;0
49 | 48;Convolution18;77.936265;0
50 | 49;ReLU15;0.6520382;0
51 | 50;Convolution19;38.0886988;0
52 | 51;ReLU16;0.6248674;0
53 | 52;Deconvolution4;14.8732674;0
54 | 53;Convolution20;15.8853338;0
55 | 54;MergeCrop4;39.0823186;0
56 | 55;Convolution21;204.5975716;0
57 | 56;ReLU17;1.1903944;0
58 | 57;Convolution22;96.798616;0
59 | 58;ReLU18;1.1384794;0
60 | 59;Convolution23;3.552985;0
61 | 60;loss;0.2191624;0
62 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/train_forward_layers_timings.csv:
--------------------------------------------------------------------------------
1 | 0;label;0.0095292;0
2 | 1;data;0.004297;0
3 | 2;silence;0.0035458;0
4 | 3;Convolution1;9.9730544;484662528
5 | 4;ReLU1;3.0379696;0
6 | 5;Convolution2;73.2776998;10414321664
7 | 6;ReLU2;3.019372;0
8 | 7;Convolution2_ReLU2_0_split;0.0061674;0
9 | 8;Pooling1;8.452863;0
10 | 9;Convolution3;26.7859264;5096959488
11 | 10;ReLU3;1.5012362;0
12 | 11;Convolution4;48.9759896;9980207104
13 | 12;ReLU4;1.47032;0
14 | 13;Convolution4_ReLU4_0_split;0.0064428;0
15 | 14;Pooling2;4.05094;0
16 | 15;Convolution5;19.2021876;4775500800
17 | 16;ReLU5;0.7182666;0
18 | 17;Convolution6;35.0551616;9133211648
19 | 18;ReLU6;0.69333;0
20 | 19;Convolution6_ReLU6_0_split;0.0037372;0
21 | 20;Pooling3;1.8893386;0
22 | 21;Convolution7;14.2668174;4160894976
23 | 22;ReLU7;0.3332826;0
24 | 23;Convolution8;24.9113566;7548928000
25 | 24;ReLU8;0.3109468;0
26 | 25;Convolution8_ReLU8_0_split;0.0030892;0
27 | 26;Pooling4;0.7887164;0
28 | 27;Convolution9;10.9841556;3057315840
29 | 28;ReLU9;0.1410246;0
30 | 29;Convolution10;14.6544736;4831576064
31 | 30;ReLU10;0.1219994;0
32 | 31;Deconvolution1;11.2218042;0
33 | 32;Convolution11;3.3273826;1073217536
34 | 33;MergeCrop1;8.0809738;0
35 | 34;Convolution12;29.3616996;8493004800
36 | 35;ReLU11;0.2055422;0
37 | 36;Convolution13;12.898545;3698974720
38 | 37;ReLU12;0.1617906;0
39 | 38;Deconvolution2;13.5808638;0
40 | 39;Convolution14;2.8240308;821280768
41 | 40;MergeCrop2;12.3268574;0
42 | 41;Convolution15;26.2024316;6878960640
43 | 42;ReLU13;0.2895644;0
44 | 43;Convolution16;12.523662;3189075968
45 | 44;ReLU14;0.2578004;0
46 | 45;Deconvolution3;21.4106586;0
47 | 46;Convolution17;2.8537322;707452928
48 | 47;MergeCrop3;21.231703;0
49 | 48;Convolution18;29.5882344;6135197184
50 | 49;ReLU15;0.481042;0
51 | 50;Convolution19;14.6784484;2947840000
52 | 51;ReLU16;0.4564054;0
53 | 52;Deconvolution4;38.3680954;0
54 | 53;Convolution20;3.3971234;652800000
55 | 54;MergeCrop4;39.194834;0
56 | 55;Convolution21;39.5433814;5778355968
57 | 56;ReLU17;0.8682294;0
58 | 57;Convolution22;20.1121936;2829876224
59 | 58;ReLU18;0.862644;0
60 | 59;Convolution23;0.9148318;9757664
61 | 60;loss;0.8910252;0
62 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/train_memory_usage.csv:
--------------------------------------------------------------------------------
1 | Peak memory usage;1412440552
2 | label;153664
3 | labeli;4
4 | data;1732800
5 | datai;4
6 | Convolution1;36578304
7 | Convolution2;36192256
8 | Convolution2_ReLU2_0_split_0;36192256
9 | Convolution2_ReLU2_0_split_1;36192256
10 | Pooling1;9048064
11 | Convolution3;17713152
12 | Convolution4;17334272
13 | Convolution4_ReLU4_0_split_0;17334272
14 | Convolution4_ReLU4_0_split_1;17334272
15 | Pooling2;4333568
16 | Convolution5;8294400
17 | Convolution6;7929856
18 | Convolution6_ReLU6_0_split_0;7929856
19 | Convolution6_ReLU6_0_split_1;7929856
20 | Pooling3;1982464
21 | Convolution7;3612672
22 | Convolution8;3276800
23 | Convolution8_ReLU8_0_split_0;3276800
24 | Convolution8_ReLU8_0_split_1;3276800
25 | Pooling4;819200
26 | Convolution9;1327104
27 | Convolution10;1048576
28 | Deconvolution1;4194304
29 | Convolution11;2097152
30 | MergeCrop1;4194304
31 | Convolution12;1843200
32 | Convolution13;1605632
33 | Deconvolution2;6422528
34 | Convolution14;3211264
35 | MergeCrop2;6422528
36 | Convolution15;2985984
37 | Convolution16;2768896
38 | Deconvolution3;11075584
39 | Convolution17;5537792
40 | MergeCrop3;11075584
41 | Convolution18;5326848
42 | Convolution19;5120000
43 | Deconvolution4;20480000
44 | Convolution20;10240000
45 | MergeCrop4;20480000
46 | Convolution21;10036224
47 | Convolution22;9834496
48 | Convolution23;307328
49 | (automatic);4
50 |
--------------------------------------------------------------------------------
/benchmark/u_benchmark/train_total_timings.csv:
--------------------------------------------------------------------------------
1 | Forward;677.8058274
2 | Backward;1775.792586
3 |
--------------------------------------------------------------------------------
/dataset_01/.gitignore:
--------------------------------------------------------------------------------
1 | input
2 | output
3 | golden
4 | sk_filters
5 | usk_filters
6 | u_filters
7 | validate_output
8 | results
9 |
--------------------------------------------------------------------------------
/dataset_01/process.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 0 --graphic --process 0 --proto 'train_process_usk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_01/train.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 1 --train 0 --proto 'train_process_sk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000000.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000000.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000001.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000001.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000003.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000003.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000004.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000004.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000005.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000005.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000006.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000006.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000008.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000008.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000009.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000009.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000010.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000010.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000011.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000011.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000013.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000013.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000014.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000014.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000015.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000015.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000016.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000016.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000018.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000018.png
--------------------------------------------------------------------------------
/dataset_01/train/labels/labels00000019.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/labels/labels00000019.png
--------------------------------------------------------------------------------
/dataset_01/train/raw/00.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/00.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/01.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/01.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/03.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/03.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/04.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/04.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/05.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/05.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/06.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/06.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/08.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/08.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/09.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/09.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/10.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/10.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/11.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/11.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/13.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/13.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/14.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/14.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/15.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/15.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/16.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/16.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/18.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/18.tif
--------------------------------------------------------------------------------
/dataset_01/train/raw/19.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/train/raw/19.tif
--------------------------------------------------------------------------------
/dataset_01/train2.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 3 --train 0 --graphic --proto 'train_process_usk_9.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_01/train_debug.sh:
--------------------------------------------------------------------------------
1 | gdb --args ../../caffe_neural_tool/build/caffe_neural_tool_dbg --gpu 0 --train 0 --graphic --proto 'train_process_sk_9.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_01/train_process_sk_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | #solverstate: "neuraltissue_sk_2out_iter_4000.solverstate"
3 | solver: "../net_sk_2out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 102
6 | patch_size: 128
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | label_consolidate {
14 | # 0 -
15 | label: 0
16 | # 1 /
17 | label: 0
18 | # 2 |
19 | label: 0
20 | # 3 \
21 | label: 0
22 | # 4 +
23 | label: 0
24 | # 5 glia
25 | label: 0
26 | # 6 mito
27 | label: 1
28 | # 7 synapse
29 | label: 0
30 | # 8 interior
31 | label: 1
32 | }
33 | normalization: true
34 | rotation: true
35 | mirror: true
36 | clahe {
37 | clip: 4.0
38 | }
39 | crop {
40 | imagecrop: 1
41 | labelcrop: 0
42 | }
43 | blur {
44 | mean: 0.0
45 | std: 0.1
46 | ksize: 5
47 | }
48 | histeq {
49 | patch_prior: false
50 | masking: false
51 | }
52 | }
53 | }
54 | }
55 |
56 | process {
57 | process_net: "../net_sk_2out/neuraltissue_net.prototxt"
58 | caffemodel: "neuraltissue_sk_2out_iter_20000.caffemodel"
59 | input {
60 | padding_size: 102
61 | patch_size: 128
62 | channels: 3
63 | labels: 2
64 | batch_size: 1
65 | raw_images: "validate_raw"
66 | preprocessor {
67 | normalization: true
68 | clahe {
69 | clip: 4.0
70 | }
71 | crop {
72 | imagecrop: 1
73 | labelcrop: 0
74 | }
75 | }
76 | }
77 | filter_output {
78 | output_filters: false
79 | output: "sk_filters"
80 | }
81 | output {
82 | format: "tif"
83 | fp32_out: true
84 | output: "validate_output"
85 | }
86 | }
87 |
--------------------------------------------------------------------------------
/dataset_01/train_process_sk_9.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | #solverstate: "neuraltissue_sk_9out_iter_16000.solverstate"
3 | solver: "../net_sk_9out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 102
6 | patch_size: 64
7 | channels: 3
8 | labels: 9
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: false
15 | mirror: false
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 1
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: true
30 | masking: true
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_sk_9out/neuraltissue_net.prototxt"
38 | caffemodel: "neuraltissue_sk_9out_iter_16000.caffemodel"
39 | input {
40 | padding_size: 102
41 | patch_size: 128
42 | channels: 3
43 | labels: 9
44 | batch_size: 1
45 | raw_images: "input"
46 | preprocessor {
47 | normalization: true
48 | clahe {
49 | clip: 4.0
50 | }
51 | crop {
52 | imagecrop: 1
53 | labelcrop: 0
54 | }
55 | }
56 | }
57 | filter_output {
58 | output_filters: false
59 | output: "sk_filters"
60 | }
61 | output {
62 | format: "tif"
63 | fp32_out: false
64 | output: "output"
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/dataset_01/train_process_u_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | # solverstate: "neuraltissue_u_2out_iter_10000.solverstate"
3 | solver: "../net_u_2out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 184
6 | patch_size: 388
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | label_consolidate {
14 | # 0 -
15 | label: 0
16 | # 1 /
17 | label: 0
18 | # 2 |
19 | label: 0
20 | # 3 \
21 | label: 0
22 | # 4 +
23 | label: 0
24 | # 5 glia
25 | label: 0
26 | # 6 mito
27 | label: 1
28 | # 7 synapse
29 | label: 0
30 | # 8 interior
31 | label: 1
32 | }
33 | normalization: true
34 | rotation: true
35 | mirror: true
36 | clahe {
37 | clip: 4.0
38 | }
39 | crop {
40 | imagecrop: 0
41 | labelcrop: 0
42 | }
43 | blur {
44 | mean: 0.0
45 | std: 0.1
46 | ksize: 5
47 | }
48 | histeq {
49 | patch_prior: false
50 | masking: false
51 | }
52 | }
53 | }
54 | }
55 |
56 | process {
57 | process_net: "../net_u_2out/neuraltissue_net.prototxt"
58 | caffemodel: "neuraltissue_u_2out_iter_20000.caffemodel"
59 | input {
60 | padding_size: 184
61 | patch_size: 388
62 | channels: 3
63 | labels: 2
64 | batch_size: 1
65 | raw_images: "validate_raw"
66 | preprocessor {
67 | normalization: true
68 | clahe {
69 | clip: 4.0
70 | }
71 | crop {
72 | imagecrop: 0
73 | labelcrop: 0
74 | }
75 | }
76 | }
77 | filter_output {
78 | output_filters: false
79 | output: "u_filters"
80 | }
81 | output {
82 | format: "tif"
83 | fp32_out: true
84 | output: "validate_output"
85 | }
86 | }
87 |
--------------------------------------------------------------------------------
/dataset_01/train_process_u_9.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solverstate: "neuraltissue_u_9out_iter_26000.solverstate"
3 | solver: "../net_u_9out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 184
6 | patch_size: 388
7 | channels: 3
8 | labels: 9
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: false
15 | mirror: false
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 0
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: true
30 | masking: true
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_u_9out/neuraltissue_net.prototxt"
38 | caffemodel: "neuraltissue_u_9out_iter_26000.caffemodel"
39 | input {
40 | padding_size: 184
41 | patch_size: 388
42 | channels: 3
43 | labels: 9
44 | batch_size: 1
45 | raw_images: "input"
46 | preprocessor {
47 | normalization: true
48 | clahe {
49 | clip: 4.0
50 | }
51 | crop {
52 | imagecrop: 0
53 | labelcrop: 0
54 | }
55 | }
56 | }
57 | filter_output {
58 | output_filters: false
59 | output: "u_filters"
60 | }
61 | output {
62 | format: "tif"
63 | fp32_out: false
64 | output: "output"
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/dataset_01/train_process_upsample.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | # solverstate: "neuraltissue_upsample_iter_14000.solverstate"
3 | solver: "../net_upsample/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 0
6 | patch_size: 256
7 | channels: 3
8 | labels: 3
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: false
15 | mirror: false
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 0
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: false
30 | masking: false
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_upsample/neuraltissue_process.prototxt"
38 | # caffemodel: "neuraltissue_usk_9out_iter_2000.caffemodel"
39 | input {
40 | padding_size: 0
41 | patch_size: 256
42 | channels: 3
43 | labels: 3
44 | batch_size: 1
45 | raw_images: "input"
46 | }
47 | filter_output {
48 | output_filters: true
49 | output: "upsample_filters"
50 | }
51 | output {
52 | format: "tif"
53 | fp32_out: false
54 | output: "output"
55 | }
56 | }
57 |
--------------------------------------------------------------------------------
/dataset_01/train_process_usk_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solverstate: "neuraltissue_usk_2out_iter_20000.solverstate"
3 | solver: "../net_usk_2out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 180
6 | patch_size: 512
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | label_consolidate {
14 | # 0 -
15 | label: 0
16 | # 1 /
17 | label: 0
18 | # 2 |
19 | label: 0
20 | # 3 \
21 | label: 0
22 | # 4 +
23 | label: 0
24 | # 5 glia
25 | label: 0
26 | # 6 mito
27 | label: 1
28 | # 7 synapse
29 | label: 0
30 | # 8 interior
31 | label: 1
32 | }
33 | normalization: true
34 | rotation: true
35 | mirror: true
36 | clahe {
37 | clip: 4.0
38 | }
39 | crop {
40 | imagecrop: 0
41 | labelcrop: 0
42 | }
43 | blur {
44 | mean: 0.0
45 | std: 0.1
46 | ksize: 5
47 | }
48 | histeq {
49 | patch_prior: false
50 | masking: false
51 | }
52 | }
53 | }
54 | }
55 |
56 | process {
57 | process_net: "../net_usk_2out/neuraltissue_net.prototxt"
58 | caffemodel: "neuraltissue_usk_2out_iter_20000.caffemodel"
59 | input {
60 | padding_size: 180
61 | patch_size: 512
62 | channels: 3
63 | labels: 2
64 | batch_size: 1
65 | raw_images: "validate_raw"
66 | preprocessor {
67 | normalization: true
68 | clahe {
69 | clip: 4.0
70 | }
71 | crop {
72 | imagecrop: 0
73 | labelcrop: 0
74 | }
75 | }
76 | }
77 | filter_output {
78 | output_filters: false
79 | output: "usk_filters"
80 | }
81 | output {
82 | format: "tif"
83 | fp32_out: true
84 | output: "validate_output"
85 | }
86 | }
87 |
--------------------------------------------------------------------------------
/dataset_01/train_process_usk_9.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solverstate: "neuraltissue_usk_9out_iter_10000.solverstate"
3 | solver: "../net_usk_9out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 180
6 | patch_size: 512
7 | channels: 3
8 | labels: 9
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: false
15 | mirror: false
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 0
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: true
30 | masking: true
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_usk_9out/neuraltissue_net.prototxt"
38 | caffemodel: "neuraltissue_usk_9out_iter_10000.caffemodel"
39 | input {
40 | padding_size: 180
41 | patch_size: 512
42 | channels: 3
43 | labels: 9
44 | batch_size: 1
45 | raw_images: "input"
46 | preprocessor {
47 | normalization: true
48 | clahe {
49 | clip: 4.0
50 | }
51 | crop {
52 | imagecrop: 0
53 | labelcrop: 0
54 | }
55 | }
56 | }
57 | filter_output {
58 | output_filters: false
59 | output: "usk_filters"
60 | }
61 | output {
62 | format: "tif"
63 | fp32_out: false
64 | output: "output"
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/dataset_01/validate_raw/validate_raw.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_raw/validate_raw.tif
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000002.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000002.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000002_cons.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000002_cons.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000007.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000007.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000007_cons.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000007_cons.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000012.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000012.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000012_cons.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000012_cons.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000017.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000017.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/labels00000017_cons.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/labels00000017_cons.png
--------------------------------------------------------------------------------
/dataset_01/validate_target/validate_target.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_01/validate_target/validate_target.tif
--------------------------------------------------------------------------------
/dataset_02/.gitignore:
--------------------------------------------------------------------------------
1 | input
2 | output
3 | golden
4 | sk_filters
5 | usk_filters
6 | u_filters
7 | results
8 |
--------------------------------------------------------------------------------
/dataset_02/process.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 1 --process 0 --proto 'train_process_usk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_02/train.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 1 --train 0 --proto 'train_process_usk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_02/train/labels/train-labels00.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_02/train/labels/train-labels00.tif
--------------------------------------------------------------------------------
/dataset_02/train/raw/train-volume00.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_02/train/raw/train-volume00.tif
--------------------------------------------------------------------------------
/dataset_02/train2.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 2 --train 0 --proto 'train_process_sk_2.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_02/train_process_sk_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solverstate: "neuraltissue_sk_2out_iter_10000.solverstate"
3 | solver: "../net_sk_2out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 102
6 | patch_size: 128
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: true
15 | mirror: true
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 1
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: false
30 | masking: false
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_sk_2out/neuraltissue_net.prototxt"
38 | caffemodel: "neuraltissue_sk_2out_iter_10000.caffemodel"
39 | input {
40 | padding_size: 102
41 | patch_size: 128
42 | channels: 3
43 | labels: 2
44 | batch_size: 1
45 | raw_images: "input"
46 | preprocessor {
47 | normalization: true
48 | clahe {
49 | clip: 4.0
50 | }
51 | crop {
52 | imagecrop: 1
53 | labelcrop: 0
54 | }
55 | }
56 | }
57 | filter_output {
58 | output_filters: false
59 | output: "sk_filters"
60 | }
61 | output {
62 | format: "tif"
63 | fp32_out: true
64 | output: "output"
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/dataset_02/train_process_u_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | # solverstate: "neuraltissue_u_2out_iter_6000.solverstate"
3 | solver: "../net_u_2out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 184
6 | patch_size: 388
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: false
15 | mirror: false
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 0
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: false
30 | masking: false
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_u_2out/neuraltissue_net.prototxt"
38 | caffemodel: "neuraltissue_u_2out_iter_20000.caffemodel"
39 | input {
40 | padding_size: 184
41 | patch_size: 388
42 | channels: 3
43 | labels: 2
44 | batch_size: 1
45 | raw_images: "input"
46 | preprocessor {
47 | normalization: true
48 | clahe {
49 | clip: 4.0
50 | }
51 | crop {
52 | imagecrop: 0
53 | labelcrop: 0
54 | }
55 | }
56 | }
57 | filter_output {
58 | output_filters: true
59 | output: "u_filters"
60 | }
61 | output {
62 | format: "tif"
63 | fp32_out: true
64 | output: "output"
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/dataset_02/train_process_usk_2.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | # solverstate: "neuraltissue_usk_2out_iter_16000.solverstate"
3 | solver: "../net_usk_2out/neuraltissue_solver.prototxt"
4 | input {
5 | padding_size: 180
6 | patch_size: 512
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: true
15 | mirror: true
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 0
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: false
30 | masking: false
31 | }
32 | }
33 | }
34 | }
35 |
36 | process {
37 | process_net: "../net_usk_2out/neuraltissue_net.prototxt"
38 | caffemodel: "neuraltissue_usk_2out_iter_10000.caffemodel"
39 | input {
40 | padding_size: 180
41 | patch_size: 512
42 | channels: 3
43 | labels: 2
44 | batch_size: 1
45 | raw_images: "input"
46 | preprocessor {
47 | normalization: true
48 | clahe {
49 | clip: 4.0
50 | }
51 | crop {
52 | imagecrop: 0
53 | labelcrop: 0
54 | }
55 | }
56 | }
57 | filter_output {
58 | output_filters: false
59 | output: "usk_filters"
60 | }
61 | output {
62 | format: "tif"
63 | fp32_out: true
64 | output: "output"
65 | }
66 | }
67 |
--------------------------------------------------------------------------------
/dataset_06/.gitignore:
--------------------------------------------------------------------------------
1 | *.h5
2 | *.hdf5
3 |
--------------------------------------------------------------------------------
/dataset_06/config.py:
--------------------------------------------------------------------------------
1 | # Specify the path caffe here
2 | caffe_path = "../../caffe_gt"
3 | # Specify wether or not to compile caffe
4 | library_compile = True
5 |
6 | # Specify the device to use
7 | device_id = 2
8 |
9 | # Specify the solver file
10 | solver_proto = "net/solver.prototxt"
11 |
12 | # Specify values for testing
13 | test_net = "net/net_test.prototxt"
14 | trained_model = "net__iter_12000.caffemodel"
15 |
16 | output_folder = "processed"
17 |
18 | output_dims = [44, 44, 44]
19 | input_padding = [88, 88, 88]
20 |
21 | border_reflect = False
22 |
23 | # Select "train" or "process"
24 | mode = "train"
25 |
--------------------------------------------------------------------------------
/dataset_06/config.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_06/config.pyc
--------------------------------------------------------------------------------
/dataset_06/fibsem_medulla_7col/README.md:
--------------------------------------------------------------------------------
1 | # FlyEM train/test dataset (FIBSEM, fly medulla 7 column dataset)
2 | --Srini Turaga :: June 3rd, 2015
3 |
4 | Here’s a very large set of training data assembled by the FlyEM project team
5 | here at Janelia. This is extracted from a part of the fly visual system known
6 | as the “medulla”, which is basically the second stage of computation starting
7 | at the photo-receptors -> lamina -> medulla.
8 |
9 | There are two 250^3 volumes (which they refer to as training volumes):
10 |
11 | /nobackup/turaga/data/fibsem_medulla_7col/trvol-250-1-h5/
12 | /nobackup/turaga/data/fibsem_medulla_7col/trvol-250-2-h5/
13 |
14 | And there are two 520^3 volumes (which they refer to as test volumes):
15 |
16 | /nobackup/turaga/data/fibsem_medulla_7col/tstvol-520-1-h5
17 | /nobackup/turaga/data/fibsem_medulla_7col/tstvol-520-2-h5
18 |
19 | Each of these volumes contains several files, but the most important ones are:
20 |
21 | img_normalized.h5: which contains the grayscale EM images in hdf5 format
22 | groundtruth_seg.h5: which contains the ground truth segmentation
23 | groundtruth_aff.h5: which contains the ground truth affinity graph
24 |
25 |
26 | ### History
27 |
28 | This dataset was assembled by reformatting a combination of files in the
29 | directories below into a consistent file format / naming convention. They were
30 | originally assembled by Toufiq, and I think the '-dawmr' directories were
31 | populated by Gary Huang / Viren Jain.
32 |
33 | /groups/flyem/data/viren_toufiq_comparison/trvol-250-1
34 | /groups/flyem/data/viren_toufiq_comparison/trvol-250-1-dawmr
35 | /groups/flyem/data/viren_toufiq_comparison/trvol-250-2
36 | /groups/flyem/data/viren_toufiq_comparison/trvol-250-2-dawmr
37 | /groups/flyem/data/viren_toufiq_comparison/tstvol-520-1
38 | /groups/flyem/data/viren_toufiq_comparison/tstvol-520-1-dawmr
39 | /groups/flyem/data/viren_toufiq_comparison/tstvol-520-2
40 | /groups/flyem/data/viren_toufiq_comparison/tstvol-520-2-dawmr
41 |
42 |
43 |
--------------------------------------------------------------------------------
/dataset_06/malis/.gitignore:
--------------------------------------------------------------------------------
1 | build
2 | malis.cpp
3 | malis.so
4 |
--------------------------------------------------------------------------------
/dataset_06/malis/README.md:
--------------------------------------------------------------------------------
1 | # MALIS
2 | #### Structured loss function for supervised learning of segmentation and clustering
3 |
4 | Python and MATLAB wrapper for C++ functions for computing the MALIS loss
5 |
6 | The MALIS loss is described here:
7 |
8 | SC Turaga, KL Briggman, M Helmstaedter, W Denk, HS Seung (2009). *Maximin learning of image segmentation*. _Advances in Neural Information Processing Systems (NIPS) 2009_.
9 |
10 | http://papers.nips.cc/paper/3887-maximin-affinity-learning-of-image-segmentation
11 |
12 |
--------------------------------------------------------------------------------
/dataset_06/malis/__init__.py:
--------------------------------------------------------------------------------
1 | from malis import *
2 |
--------------------------------------------------------------------------------
/dataset_06/malis/__init__.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_06/malis/__init__.pyc
--------------------------------------------------------------------------------
/dataset_06/malis/make.sh:
--------------------------------------------------------------------------------
1 | python setup.py build_ext --inplace
2 |
--------------------------------------------------------------------------------
/dataset_06/malis/malis_cpp.h:
--------------------------------------------------------------------------------
1 | #ifndef MALIS_CPP_H
2 | #define MALIS_CPP_H
3 |
4 | void connected_components_cpp(const int nVert,
5 | const int nEdge, const int* node1, const int* node2, const int* edgeWeight,
6 | int* seg);
7 |
8 | void malis_loss_weights_cpp(const int nVert, const int* seg,
9 | const int nEdge, const int* node1, const int* node2, const float* edgeWeight,
10 | const int pos,
11 | int* nPairPerEdge);
12 |
13 | void marker_watershed_cpp(const int nVert, const int* marker,
14 | const int nEdge, const int* node1, const int* node2, const float* edgeWeight,
15 | int* seg);
16 | #endif
--------------------------------------------------------------------------------
/dataset_06/malis/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 | from distutils.extension import Extension
3 | from Cython.Distutils import build_ext
4 |
5 | ext_modules = [Extension("malis", ["malis.pyx", "malis_cpp.cpp"], language='c++',)]
6 |
7 | setup(cmdclass = {'build_ext': build_ext}, ext_modules = ext_modules)
--------------------------------------------------------------------------------
/dataset_06/malis/test_malis.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import malis as m
3 | import h5py
4 | np.set_printoptions(precision=4)
5 |
6 | print "Can we make the `nhood' for an isotropic 3d dataset"
7 | print "corresponding to a 6-connected neighborhood?"
8 | nhood = m.mknhood3d(1)
9 | print nhood
10 |
11 | print "Can we make the `nhood' for an anisotropic 3d dataset"
12 | print "corresponding to a 4-connected neighborhood in-plane"
13 | print "and 26-connected neighborhood in the previous z-plane?"
14 | nhood2 = m.mknhood3d_aniso(1,1.8)
15 | print nhood2
16 |
17 | segTrue = np.array([0, 1, 1, 1, 2, 2, 0, 5, 5, 5, 5],dtype=np.int32);
18 | node1 = np.arange(segTrue.shape[0]-1,dtype=np.int32)
19 | node2 = np.arange(1,segTrue.shape[0],dtype=np.int32)
20 | nVert = segTrue.shape[0]
21 | edgeWeight = np.array([0, 1, 2, 0, 2, 0, 0, 1, 2, 2.5],dtype=np.float32);
22 | edgeWeight = edgeWeight/edgeWeight.max()
23 | print segTrue
24 | print edgeWeight
25 |
26 | nPairPos = m.malis_loss_weights(segTrue, node1, node2, edgeWeight, 1)
27 | nPairNeg = m.malis_loss_weights(segTrue, node1, node2, edgeWeight, 0)
28 | print np.vstack((nPairPos,nPairNeg))
29 | # print nPairNeg
30 |
31 | idxkeep = (edgeWeight > 0).astype(np.int32)
32 | cc = m.connected_components(nVert,node1,node2,idxkeep)
33 | print cc
34 |
35 |
36 | # node1, node2 = m.nodelist_like((2,3,4),-np.eye(3))
37 | # print node1
38 | # print node2
39 |
40 | datadir = '/groups/turaga/turagalab/greentea/project_data/dataset_06/fibsem_medulla_7col/trvol-250-1-h5/'
41 | print "Reading test volume from " + datadir
42 | # hdf5_raw_file = datadir + 'img_normalized.h5'
43 | hdf5_gt_file = datadir + 'groundtruth_seg.h5'
44 | # hdf5_aff_file = datadir + 'groundtruth_aff.h5'
45 |
46 | #hdf5_raw_file = 'zebrafish_friedrich/raw.hdf5'
47 | #hdf5_gt_file = 'zebrafish_friedrich/labels_2.hdf5'
48 |
49 |
50 | # hdf5_raw = h5py.File(hdf5_raw_file, 'r')
51 | h5seg = h5py.File(hdf5_gt_file, 'r')
52 | # hdf5_aff = h5py.File(hdf5_aff_file, 'r')
53 |
54 | seg = np.asarray(h5seg['main']).astype(np.int32)
55 | aff = m.seg_to_affgraph(seg,nhood)
56 | cc,ccSizes = m.connected_components_affgraph(aff,nhood)
57 | aff2 = m.seg_to_affgraph(cc,nhood)
58 | cc2,ccSizes2 = m.connected_components_affgraph(aff2,nhood)
59 |
60 | print "Comparing 'seg' and 'cc':"
61 | frac_disagree = np.mean(seg.ravel()!=cc.ravel())
62 | ri,fscore,prec,rec = m.rand_index(seg,cc)
63 | V_rand,V_rand_split,V_rand_merge = m.compute_V_rand_N2(seg,cc)
64 | print "Connected components disagree at %f%% locations" % (frac_disagree*100)
65 | print "\tRand index: %f, fscore: %f, prec: %f, rec: %f" % (ri,fscore,prec,rec)
66 | print "\tV_rand: %f, V_rand_split: %f, V_rand_merge: %f" % (V_rand,V_rand_split,V_rand_merge)
67 |
68 | print "Comparing 'cc' and 'cc2':"
69 | frac_disagree = np.mean(cc.ravel()!=cc2.ravel())
70 | ri,fscore,prec,rec = m.rand_index(cc,cc2)
71 | V_rand,V_rand_split,V_rand_merge = m.compute_V_rand_N2(cc,cc2)
72 | print "Connected components disagree at %f%% locations" % (frac_disagree*100)
73 | print "\tRand index: %f, fscore: %f, prec: %f, rec: %f" % (ri,fscore,prec,rec)
74 | print "\tV_rand: %f, V_rand_split: %f, V_rand_merge: %f" % (V_rand,V_rand_split,V_rand_merge)
75 |
--------------------------------------------------------------------------------
/dataset_06/net/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "net/net_train.prototxt"
2 | base_lr: 0.00001
3 | momentum: 0.99
4 | weight_decay: 0.000005
5 | lr_policy: "inv"
6 | gamma: 0.0001
7 | power: 0.75
8 | max_iter: 100000
9 | snapshot: 2000
10 | snapshot_prefix: "net_"
11 | display: 50
12 |
--------------------------------------------------------------------------------
/dataset_06/netconf.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | # 10 GB total memory limit
4 | mem_global_limit = 10 * 1024 * 1024 * 1024
5 |
6 | # 4 GB single buffer memory limit
7 | mem_buf_limit = 4 * 1024 * 1024 * 1024
8 |
9 | # Desired number of output dimensions
10 | output_shape = [44, 44, 44]
11 |
12 | # Number of U-Net Pooling-Convolution downsampling/upsampling steps
13 | unet_depth = 3
14 | # Feature map increase rule (downsampling)
15 | def unet_fmap_inc_rule(fmaps):
16 | return int(math.ceil(fmaps * 3));
17 | # Feature map decrease rule (upsampling)
18 | def unet_fmap_dec_rule(fmaps):
19 | return int(math.ceil(fmaps / 3));
20 |
21 | # Skewed U-Net downsampling strategy
22 | unet_downsampling_strategy = [[1,2,2],[1,2,2],[1,2,2]]
23 |
24 |
25 | # Number of SK-Net Pooling-Convolution steps
26 | sknet_conv_depth = 0
27 | # Feature map increase rule
28 | def sknet_fmap_inc_rule(fmaps):
29 | return int(math.ceil(fmaps * 1.5));
30 | # Number of 1x1 (IP) Convolution steps
31 | sknet_ip_depth = 0
32 | # Feature map increase rule from SK-Convolution to IP
33 | def sknet_fmap_bridge_rule(fmaps):
34 | return int(math.ceil(fmaps * 4));
35 | # Feature map decrease rule within IP
36 | def sknet_fmap_dec_rule(fmaps):
37 | return int(math.ceil(fmaps / 2.5));
38 |
39 |
40 | # Loss function and mode
41 | #loss_function: "malis", "euclid", "softmax"
42 | loss_function = "malis"
43 |
--------------------------------------------------------------------------------
/dataset_06/netconf.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_06/netconf.pyc
--------------------------------------------------------------------------------
/dataset_06/volume_slicer.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_06/volume_slicer.pyc
--------------------------------------------------------------------------------
/dataset_08/.gitignore:
--------------------------------------------------------------------------------
1 | train
2 | validate_output
3 | validate_raw
4 |
--------------------------------------------------------------------------------
/dataset_08/config.py:
--------------------------------------------------------------------------------
1 | # Specify the path caffe here
2 | caffe_path = "../../caffe_gt"
3 | # Specify wether or not to compile caffe
4 | library_compile = True
5 |
6 | # Specify the device to use
7 | device_id = 2
8 |
9 | # Specify the solver file
10 | solver_proto = "net/solver.prototxt"
11 |
12 | # Specify values for testing
13 | test_net = "net/net_test.prototxt"
14 | trained_model = "net_iter_12000.caffemodel"
15 |
16 | output_folder = "processed"
17 |
18 | output_dims = [44, 44, 44]
19 | input_padding = [388, 388, 388]
20 |
21 | border_reflect = False
22 |
23 | # Select "train" or "process"
24 | mode = "train"
25 |
--------------------------------------------------------------------------------
/dataset_08/config.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_08/config.pyc
--------------------------------------------------------------------------------
/dataset_08/device_query.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --devices
2 |
--------------------------------------------------------------------------------
/dataset_08/net/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "net/net_train_malis.prototxt"
2 | base_lr: 0.0005
3 | momentum: 0.99
4 | weight_decay: 0.000005
5 | lr_policy: "inv"
6 | gamma: 0.0001
7 | power: 0.75
8 | max_iter: 100000
9 | snapshot: 2000
10 | snapshot_prefix: "net"
11 | display: 50
12 |
--------------------------------------------------------------------------------
/dataset_08/netconf.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | # 10 GB total memory limit
4 | mem_global_limit = 10 * 1024 * 1024 * 1024
5 |
6 | # 4 GB single buffer memory limit
7 | mem_buf_limit = 4 * 1024 * 1024 * 1024
8 |
9 | # Desired number of output dimensions
10 | output_shape = [44, 44]
11 |
12 | # Number of U-Net Pooling-Convolution downsampling/upsampling steps
13 | unet_depth = 4
14 | # Feature map increase rule (downsampling)
15 | def unet_fmap_inc_rule(fmaps):
16 | return int(math.ceil(fmaps * 2));
17 | # Feature map decrease rule (upsampling)
18 | def unet_fmap_dec_rule(fmaps):
19 | return int(math.ceil(fmaps / 2));
20 |
21 | # Skewed U-Net downsampling strategy
22 | unet_downsampling_strategy = [[2,2],[2,2],[2,2],[2,2]]
23 |
24 |
25 | # Number of SK-Net Pooling-Convolution steps
26 | sknet_conv_depth = 0
27 | # Feature map increase rule
28 | def sknet_fmap_inc_rule(fmaps):
29 | return int(math.ceil(fmaps * 1.5));
30 | # Number of 1x1 (IP) Convolution steps
31 | sknet_ip_depth = 0
32 | # Feature map increase rule from SK-Convolution to IP
33 | def sknet_fmap_bridge_rule(fmaps):
34 | return int(math.ceil(fmaps * 4));
35 | # Feature map decrease rule within IP
36 | def sknet_fmap_dec_rule(fmaps):
37 | return int(math.ceil(fmaps / 2.5));
38 |
39 |
40 | # Loss function and mode
41 | #loss_function: "malis", "euclid", "softmax"
42 | loss_function = "softmax"
43 |
--------------------------------------------------------------------------------
/dataset_08/netconf.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/dataset_08/netconf.pyc
--------------------------------------------------------------------------------
/dataset_08/process.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 3 --graphic --process 0 --proto 'train_process.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_08/train.sh:
--------------------------------------------------------------------------------
1 | ./../../caffe_neural_tool/build/caffe_neural_tool --gpu 3 --train 0 --proto 'train_process.prototxt'
2 |
--------------------------------------------------------------------------------
/dataset_08/train_process.prototxt:
--------------------------------------------------------------------------------
1 | train {
2 | solverstate: "net_iter_22000.solverstate"
3 | solver: "net/solver.prototxt"
4 | input {
5 | padding_size: 184
6 | patch_size: 388
7 | channels: 3
8 | labels: 2
9 | batch_size: 1
10 | raw_images: "train/raw"
11 | label_images: "train/labels"
12 | preprocessor {
13 | normalization: true
14 | rotation: true
15 | mirror: true
16 | clahe {
17 | clip: 4.0
18 | }
19 | crop {
20 | imagecrop: 0
21 | labelcrop: 0
22 | }
23 | blur {
24 | mean: 0.0
25 | std: 0.1
26 | ksize: 5
27 | }
28 | histeq {
29 | patch_prior: false
30 | masking: false
31 | }
32 | }
33 | }
34 | filter_output {
35 | output_filters: false
36 | output: "u_filters"
37 | }
38 | }
39 |
40 | process {
41 | process_net: "net/net_test.prototxt"
42 | caffemodel: "net_iter_22000.caffemodel"
43 | input {
44 | padding_size: 184
45 | patch_size: 388
46 | channels: 3
47 | labels: 2
48 | batch_size: 1
49 | raw_images: "validate_raw"
50 | preprocessor {
51 | normalization: true
52 | clahe {
53 | clip: 4.0
54 | }
55 | crop {
56 | imagecrop: 0
57 | labelcrop: 0
58 | }
59 | }
60 | }
61 | filter_output {
62 | output_filters: false
63 | output: "u_filters"
64 | }
65 | output {
66 | format: "tif"
67 | fp32_out: true
68 | output: "validate_output"
69 | }
70 | }
71 |
--------------------------------------------------------------------------------
/malis_setup/draw_net.sh:
--------------------------------------------------------------------------------
1 | BASEDIR=`pwd`
2 | (cd ../../caffe_gt/python/ && ./draw_net.py $BASEDIR/neuraltissue_net.prototxt $BASEDIR/neuraltissue_net.ps --rankdir 'TB' --margin '0, 0')
3 | ps2pdf -g5890x6820 neuraltissue_net.ps neuraltissue_net.pdf
4 |
5 |
--------------------------------------------------------------------------------
/malis_setup/neuraltissue_net.prototxt:
--------------------------------------------------------------------------------
1 | name: "Neuraltissue-train"
2 | layer {
3 | include: {phase: TRAIN}
4 | name: "label"
5 | type: "MemoryData"
6 | top: "label"
7 | top: "labeli"
8 | memory_data_param {
9 | batch_size: 1
10 | channels: 1
11 | height: 128
12 | width: 128
13 | }
14 | }
15 | layer {
16 | include: {phase: TRAIN}
17 | name: "data"
18 | type: "MemoryData"
19 | top: "data"
20 | top: "datai"
21 | memory_data_param {
22 | batch_size: 1
23 | channels: 3
24 | height: 229
25 | width: 229
26 | }
27 | }
28 | layer {
29 | include: {phase: TRAIN}
30 | name: "silence"
31 | type: "Silence"
32 | bottom: "labeli"
33 | bottom: "datai"
34 | }
35 |
36 | layer {
37 | name: "ip"
38 | type: "Convolution"
39 | bottom: "data"
40 | top: "ip"
41 | param {
42 | lr_mult: 1
43 | }
44 | param {
45 | lr_mult: 2
46 | }
47 | convolution_param {
48 | num_output: 2
49 | kernel_size: 1
50 | stride: 1
51 | dilation: 1
52 | weight_filler {
53 | type: "gaussian"
54 | std: 0.01
55 | }
56 | bias_filler {
57 | type: "constant"
58 | }
59 | }
60 | }
61 | layer {
62 | name: "prob"
63 | type: "Softmax"
64 | bottom: "ip"
65 | top: "prob"
66 | }
67 | layer {
68 | include: {phase: TRAIN}
69 | name: "split"
70 | type: "Split"
71 | bottom: "label"
72 | top: "label_a"
73 | top: "label_b"
74 | }
75 | layer {
76 | include: {phase: TRAIN}
77 | name: "affinity"
78 | type: "Affinity"
79 | bottom: "prob"
80 | bottom: "label_a"
81 | top: "prob_affinity"
82 | top: "label_affinity"
83 | affinity_param {
84 | offset: 1
85 | offset: 0
86 | }
87 | }
88 | layer {
89 | include: {phase: TRAIN}
90 | name: "components"
91 | type: "ConnectedComponent"
92 | bottom: "label_b"
93 | top: "component"
94 | }
95 | layer {
96 | include: {phase: TRAIN}
97 | name: "loss"
98 | type: "MalisLoss"
99 | bottom: "prob_affinity"
100 | bottom: "label_affinity"
101 | bottom: "component"
102 | loss_param {
103 | }
104 | }
105 |
--------------------------------------------------------------------------------
/net_old/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "neuraltissue_train.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | test_net: "neuraltissue_test.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | test_iter: 1000
12 | test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.01
17 | momentum: 0.9
18 | weight_decay: 0.0005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 500
33 | snapshot_prefix: "neuraltissue"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 | # Solver mode: 0 for CPU and 1 for GPU
39 | solver_mode: 1
40 | ########################################################################
41 |
--------------------------------------------------------------------------------
/net_sk_2out/draw_net.sh:
--------------------------------------------------------------------------------
1 | BASEDIR=`pwd`
2 | (cd ../../caffe_gt/python/ && ./draw_net.py $BASEDIR/neuraltissue_net.prototxt $BASEDIR/neuraltissue_net.ps --rankdir 'TB' --margin '0, 0' --page '5, 8' --pagesize '5, 8' --size '5, 999')
3 | ps2pdf -g3600x5760 neuraltissue_net.ps neuraltissue_net.pdf
4 |
5 |
--------------------------------------------------------------------------------
/net_sk_2out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_sk_2out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_sk_2out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.001
17 | momentum: 0.99
18 | weight_decay: 0.0005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_sk_2out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_sk_9out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_sk_9out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_sk_9out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.001
17 | momentum: 0.9
18 | weight_decay: 0.0005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_sk_9out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_u_2out/draw_net.sh:
--------------------------------------------------------------------------------
1 | BASEDIR=`pwd`
2 | (cd ../../caffe_gt/python/ && ./draw_net.py $BASEDIR/neuraltissue_net.prototxt $BASEDIR/neuraltissue_net.ps --rankdir 'LT' --margin '0, 0' --page '5, 8' --pagesize '5, 8' --size '5, 999')
3 | ps2pdf -g3600x5760 neuraltissue_net.ps neuraltissue_net.pdf
4 |
5 |
--------------------------------------------------------------------------------
/net_u_2out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_u_2out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_u_2out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.00005
17 | momentum: 0.99
18 | weight_decay: 0.000005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_u_2out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_u_9out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_u_9out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_u_9out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.0001
17 | momentum: 0.99
18 | weight_decay: 0.00005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_u_9out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_u_small/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_u_small/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_u_small/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.00005
17 | momentum: 0.99
18 | weight_decay: 0.000005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_u_2out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_u_small/script.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 |
6 | # Relative path to where PyGreentea resides
7 | pygt_path = '../../PyGreentea'
8 |
9 |
10 | import sys, os
11 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
12 |
13 | # Other python modules
14 | import math
15 |
16 | # Load PyGreentea
17 | import PyGreentea as pygt
18 |
19 | # Create the network we want
20 | class NetConf:
21 | # 10 GB total memory limit
22 | mem_global_limit = 10 * 1024 * 1024 * 1024
23 | # 4 GB single buffer memory limit
24 | mem_buf_limit = 4 * 1024 * 1024 * 1024
25 | # Desired input dimensions (will select closest possible)
26 | input_shape = [380,380]
27 | # Desired output dimensions (will select closest posisble)
28 | output_shape = [196, 196]
29 | # Number of U-Net Pooling-Convolution downsampling/upsampling steps
30 | unet_depth = 4
31 | # Number of feature maps in the start
32 | fmap_start = 64
33 | # Number of input feature maps
34 | fmap_input = 3
35 | # Number of ouput feature maps
36 | fmap_output = 2
37 | # Feature map increase rule (downsampling)
38 | def unet_fmap_inc_rule(self, fmaps):
39 | return int(math.ceil(fmaps * 2));
40 | # Feature map decrease rule (upsampling)
41 | def unet_fmap_dec_rule(self, fmaps):
42 | return int(math.ceil(fmaps / 2));
43 | # Skewed U-Net downsampling strategy
44 | unet_downsampling_strategy = [[2,2],[2,2],[2,2],[2,2]]
45 | # Number of SK-Net Pooling-Convolution steps
46 | sknet_conv_depth = 0
47 | # Feature map increase rule
48 | def sknet_fmap_inc_rule(self, fmaps):
49 | return int(math.ceil(fmaps * 1.5));
50 | # Number of 1x1 (IP) Convolution steps
51 | sknet_ip_depth = 0
52 | # Feature map increase rule from SK-Convolution to IP
53 | def sknet_fmap_bridge_rule(self, fmaps):
54 | return int(math.ceil(fmaps * 4));
55 | # Feature map decrease rule within IP
56 | def sknet_fmap_dec_rule(self, fmaps):
57 | return int(math.ceil(fmaps / 2.5));
58 | # Loss function and mode ("malis", "euclid", "softmax")
59 | loss_function = "softmax"
60 |
61 | netconf = NetConf()
62 |
63 | train_net_conf, test_net_conf = pygt.netgen.create_nets(netconf)
64 |
65 |
66 | with open('net_train.prototxt', 'w') as f:
67 | print(train_net_conf, file=f)
68 |
69 | with open('net_test.prototxt', 'w') as f:
70 | print(test_net_conf, file=f)
71 |
72 |
--------------------------------------------------------------------------------
/net_upsample/neuraltissue_net.prototxt:
--------------------------------------------------------------------------------
1 | name: "Neuraltissue-process"
2 | layer {
3 | name: "data"
4 | type: "MemoryData"
5 | top: "data"
6 | top: "label"
7 | memory_data_param {
8 | batch_size: 1
9 | channels: 3
10 | height: 256
11 | width: 256
12 | }
13 | }
14 | layer {
15 | name: "silence"
16 | type: "Silence"
17 | bottom: "label"
18 | }
19 | layer {
20 | name: "upconv"
21 | type: "Deconvolution"
22 | bottom: "data"
23 | top: "upconv"
24 | param {
25 | lr_mult: 0
26 | decay_mult: 0
27 | }
28 | convolution_param {
29 | num_output: 3
30 | group: 3
31 | kernel_size: 2
32 | stride: 2
33 | weight_filler {
34 | type: "constant"
35 | value: 1
36 | }
37 | bias_term: false
38 | }
39 | }
40 |
--------------------------------------------------------------------------------
/net_usk_2out/draw_net.sh:
--------------------------------------------------------------------------------
1 | BASEDIR=`pwd`
2 | (cd ../../caffe_gt/python/ && ./draw_net.py $BASEDIR/neuraltissue_net.prototxt $BASEDIR/neuraltissue_net.ps --rankdir 'LT' --margin '0, 0' --page '5, 8' --pagesize '5, 8' --size '5, 999')
3 | ps2pdf -g3600x5760 neuraltissue_net.ps neuraltissue_net.pdf
4 |
5 |
--------------------------------------------------------------------------------
/net_usk_2out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_usk_2out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_usk_2out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.001
17 | momentum: 0.99
18 | weight_decay: 0.0005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_usk_2out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_usk_3out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_usk_3out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_usk_3out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.0005
17 | momentum: 0.99
18 | weight_decay: 0.00005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_usk_3out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/net_usk_9out/neuraltissue_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The training protocol buffer definition
2 | train_net: "../net_usk_9out/neuraltissue_net.prototxt"
3 | ########################################################################
4 | # The testing protocol buffer definition
5 | # test_net: "../net_usk_9out/neuraltissue_net.prototxt"
6 | ########################################################################
7 | # Test_iter specifies how many forward passes the test should carry out.
8 | # it is the number of batches shown, then
9 | # examples shown = 'test_iter'*batch_size
10 | # Carry out testing every 'test_interval' training iterations.
11 | # test_iter: 1000
12 | # test_interval: 500
13 | ########################################################################
14 | # The base learning rate, momentum and the weight decay of the network.
15 | # base_lr: 0.05
16 | base_lr: 0.0005
17 | momentum: 0.99
18 | weight_decay: 0.00005
19 | ########################################################################
20 | # The learning rate policy
21 | lr_policy: "inv"
22 | gamma: 0.0001
23 | power: 0.75
24 | #lr_policy: "step"
25 | #gamma: 0.1
26 | #stepsize: 20000
27 | ########################################################################
28 | # The maximum number of iterations
29 | max_iter: 100000
30 | ########################################################################
31 | # Snapshot intermediate results
32 | snapshot: 2000
33 | snapshot_prefix: "neuraltissue_usk_9out"
34 | ########################################################################
35 | # Display every 'display' iterations
36 | display: 50
37 | ########################################################################
38 |
--------------------------------------------------------------------------------
/pygt_01/loss.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/pygt_01/loss.mat
--------------------------------------------------------------------------------
/pygt_example/.gitignore:
--------------------------------------------------------------------------------
1 | *.prototxt
2 |
--------------------------------------------------------------------------------
/pygt_example/draw_net.sh:
--------------------------------------------------------------------------------
1 | BASEDIR=`pwd`
2 | (cd ../../caffe_gt/python/ && ./draw_net.py $BASEDIR/net_train_malis.prototxt $BASEDIR/net.ps --rankdir 'TB' --margin '0, 0' --page '5, 8' --pagesize '5, 8' --size '5, 999')
3 | ps2pdf -g3600x5760 net.ps net.pdf
4 |
5 |
--------------------------------------------------------------------------------
/pygt_fibsem/.gitignore:
--------------------------------------------------------------------------------
1 | *.h5
2 |
--------------------------------------------------------------------------------
/pygt_fibsem/process.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 |
21 |
22 | test_net_file = 'net_test.prototxt'
23 | test_device = 3
24 |
25 | pygt.caffe.set_devices((test_device,))
26 |
27 | caffemodels = pygt.getCaffeModels('net');
28 |
29 | test_net = pygt.init_testnet(test_net_file, trained_model=caffemodels[-1][1], test_device=test_device)
30 |
31 | hdf5_raw_file = '../dataset_06/fibsem_medulla_7col/trvol-250-1-h5/img_normalized.h5'
32 | hdf5_raw = h5py.File(hdf5_raw_file, 'r')
33 | hdf5_raw_ds = pygt.normalize(np.asarray(hdf5_raw[hdf5_raw.keys()[0]]).astype(float32), -1, 1)
34 | test_dataset = {}
35 | test_dataset['data'] = hdf5_raw_ds
36 |
37 | pred_array = pygt.process(test_net, [test_dataset])
38 |
39 | outhdf5 = h5py.File('test_out.h5', 'w')
40 | outdset = outhdf5.create_dataset('main', np.shape(pred_array)[1:], np.float32, data=pred_array)
41 | outdset.attrs['label'] = np.string_('-1,0,0;0,-1,0;0,0,-1')
42 | outhdf5.close()
--------------------------------------------------------------------------------
/pygt_isbi2012/mknet.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 |
21 | netconf = pygt.netgen.NetConf()
22 |
23 | netconf.use_batchnorm = False
24 | netconf.dropout = 0.0
25 |
26 | netconf.fmap_start = 4
27 |
28 | #sk1 = pygt.netgen.SKNetConf()
29 | #sk1.sknet_conv = [[8],[6],[4]]
30 |
31 | #sk2 = pygt.netgen.SKNetConf()
32 | #sk2.sknet_padding = [44,44]
33 | #sk2.sknet_conv = [[6],[4],[2]]
34 |
35 | netconf.u_netconfs[0].unet_depth = 3
36 | netconf.u_netconfs[0].unet_fmap_inc_rule = lambda fmaps: int(math.ceil(float(fmaps) * 1))
37 | netconf.u_netconfs[0].unet_fmap_dec_rule = lambda fmaps: int(math.ceil(float(fmaps) / 1))
38 | # netconf.u_netconfs[0].sk_netconfs = [None,sk1,sk2]
39 | # netconf.u_netconfs = [netconf.u_netconfs[0],netconf.u_netconfs[0]]
40 |
41 |
42 | netconf.loss_function = "euclid"
43 | inshape,outshape,fmaps = pygt.netgen.compute_valid_io_shapes(netconf,pygt.netgen.caffe_pb2.TRAIN,[30,30],[200,200],constraints=[None,lambda x: x[0], lambda x: x[1]])
44 |
45 |
46 | # We choose the maximum that still gives us 20 fmaps:
47 | index = [n for n, i in enumerate(fmaps) if i>=4][-1]
48 | print("Index to use: %s" % index)
49 | # Some patching to allow our new parameters
50 | netconf.input_shape = inshape[index]
51 | netconf.output_shape = outshape[index]
52 | netconf.fmap_start = 4
53 |
54 | netconf.loss_function = "euclid"
55 | train_net_conf_euclid, test_net_conf = pygt.netgen.create_nets(netconf)
56 | netconf.loss_function = "malis"
57 | train_net_conf_malis, test_net_conf = pygt.netgen.create_nets(netconf)
58 |
59 | with open('net_train_euclid.prototxt', 'w') as f:
60 | print(train_net_conf_euclid, file=f)
61 | with open('net_train_malis.prototxt', 'w') as f:
62 | print(train_net_conf_malis, file=f)
63 | with open('net_test.prototxt', 'w') as f:
64 | print(test_net_conf, file=f)
65 |
66 |
--------------------------------------------------------------------------------
/pygt_isbi2012/process.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/pygt_isbi2012/process.py
--------------------------------------------------------------------------------
/pygt_isbi2012/train.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 | # Load the datasets
21 | hdf5_raw_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/img_normalized.h5'
22 | hdf5_gt_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/groundtruth_seg.h5'
23 | hdf5_aff_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/groundtruth_aff.h5'
24 |
25 | hdf5_raw = h5py.File(hdf5_raw_file, 'r')
26 | hdf5_gt = h5py.File(hdf5_gt_file, 'r')
27 | hdf5_aff = h5py.File(hdf5_aff_file, 'r')
28 |
29 | hdf5_raw_ds = pygt.normalize(np.asarray(hdf5_raw[hdf5_raw.keys()[0]]).astype(float32), -1, 1)
30 | hdf5_gt_ds = np.asarray(hdf5_gt[hdf5_gt.keys()[0]]).astype(float32)
31 | hdf5_aff_ds = np.asarray(hdf5_aff[hdf5_aff.keys()[0]]).astype(float32)
32 |
33 |
34 | dataset = {}
35 | dataset['data'] = hdf5_raw_ds[None, :]
36 | dataset['components'] = hdf5_gt_ds[None, :]
37 | dataset['label'] = hdf5_aff_ds[:]
38 | dataset['nhood'] = pygt.malis.mknhood2d()
39 |
40 | #test_dataset = {}
41 | #test_dataset['data'] = hdf5_raw_ds
42 | #test_dataset['label'] = hdf5_aff_ds
43 |
44 |
45 | # Set train options
46 | class TrainOptions:
47 | loss_function = "euclid"
48 | loss_output_file = "log/loss.log"
49 | test_output_file = "log/test.log"
50 | test_interval = 4000
51 | scale_error = True
52 | training_method = "affinity"
53 | recompute_affinity = True
54 | train_device = 0
55 | test_device = 0
56 | test_net=None #'net_test.prototxt'
57 |
58 |
59 | options = TrainOptions()
60 |
61 | # Set solver options
62 | solver_config = pygt.caffe.SolverParameter()
63 | solver_config.train_net = 'net_train_euclid.prototxt'
64 | solver_config.base_lr = 0.00001
65 | solver_config.momentum = 0.99
66 | solver_config.weight_decay = 0.000005
67 | solver_config.lr_policy = 'inv'
68 | solver_config.gamma = 0.0001
69 | solver_config.power = 0.75
70 | solver_config.max_iter = 8000
71 | solver_config.snapshot = 2000
72 | solver_config.snapshot_prefix = 'net'
73 | solver_config.type = 'Adam'
74 | solver_config.display = 1
75 |
76 | # Set devices
77 | # pygt.caffe.enumerate_devices(False)
78 | pygt.caffe.set_devices((options.train_device,))
79 |
80 |
81 | solverstates = pygt.getSolverStates(solver_config.snapshot_prefix);
82 |
83 | # First training method
84 | if (len(solverstates) == 0 or solverstates[-1][0] < solver_config.max_iter):
85 | solver, test_net = pygt.init_solver(solver_config, options)
86 | if (len(solverstates) > 0):
87 | solver.restore(solverstates[-1][1])
88 | pygt.train(solver, test_net, [dataset], [], options)
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
--------------------------------------------------------------------------------
/pygt_snemi_aniso/mknet.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 | # Create the network we want
21 | class NetConf:
22 | # 10 GB total memory limit
23 | mem_global_limit = 10 * 1024 * 1024 * 1024
24 | # 4 GB single buffer memory limit
25 | mem_buf_limit = 4 * 1024 * 1024 * 1024
26 | # Desired input dimensions (will select closest possible)
27 | input_shape = [44,132,132]
28 | # Desired output dimensions (will select closest posisble)
29 | output_shape = [16, 44, 44]
30 | # Number of U-Net Pooling-Convolution downsampling/upsampling steps
31 | unet_depth = 3
32 | # Number of feature maps in the start
33 | fmap_start = 16
34 | # Number of input feature maps
35 | fmap_input = 1
36 | # Number of ouput feature maps
37 | fmap_output = 11
38 | # Feature map increase rule (downsampling)
39 | def unet_fmap_inc_rule(self, fmaps):
40 | return int(math.ceil(fmaps * 3));
41 | # Feature map decrease rule (upsampling)
42 | def unet_fmap_dec_rule(self, fmaps):
43 | return int(math.ceil(fmaps / 3));
44 | # Skewed U-Net downsampling strategy
45 | unet_downsampling_strategy = [[1,2,2],[1,2,2],[1,2,2]]
46 | # Number of SK-Net Pooling-Convolution steps
47 | sknet_conv_depth = 0
48 | # Feature map increase rule
49 | def sknet_fmap_inc_rule(self, fmaps):
50 | return int(math.ceil(fmaps * 1.5));
51 | # Number of 1x1 (IP) Convolution steps
52 | sknet_ip_depth = 0
53 | # Feature map increase rule from SK-Convolution to IP
54 | def sknet_fmap_bridge_rule(self, fmaps):
55 | return int(math.ceil(fmaps * 4));
56 | # Feature map decrease rule within IP
57 | def sknet_fmap_dec_rule(self, fmaps):
58 | return int(math.ceil(fmaps / 2.5));
59 | # Loss function and mode ("malis", "euclid", "softmax")
60 | loss_function = "euclid"
61 |
62 |
63 | netconf = NetConf()
64 | netconf.loss_function = "euclid"
65 | train_net_conf_euclid, test_net_conf = pygt.netgen.create_nets(netconf)
66 | netconf.loss_function = "malis"
67 | train_net_conf_malis, test_net_conf = pygt.netgen.create_nets(netconf)
68 |
69 | with open('net_train_euclid.prototxt', 'w') as f:
70 | print(train_net_conf_euclid, file=f)
71 | with open('net_train_malis.prototxt', 'w') as f:
72 | print(train_net_conf_malis, file=f)
73 | with open('net_test.prototxt', 'w') as f:
74 | print(test_net_conf, file=f)
75 |
--------------------------------------------------------------------------------
/pygt_uvisual/.gitignore:
--------------------------------------------------------------------------------
1 | dump
2 |
--------------------------------------------------------------------------------
/pygt_uvisual/mknet.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 |
21 | netconf = pygt.netgen.NetConf()
22 |
23 | netconf.use_batchnorm = False
24 | netconf.dropout = 0.0
25 |
26 | netconf.fmap_start = 4
27 |
28 | #sk1 = pygt.netgen.SKNetConf()
29 | #sk1.sknet_conv = [[8],[6],[4]]
30 |
31 | #sk2 = pygt.netgen.SKNetConf()
32 | #sk2.sknet_padding = [44,44]
33 | #sk2.sknet_conv = [[6],[4],[2]]
34 |
35 | netconf.u_netconfs[0].unet_depth = 3
36 | netconf.u_netconfs[0].unet_fmap_inc_rule = lambda fmaps: int(math.ceil(float(fmaps) * 1))
37 | netconf.u_netconfs[0].unet_fmap_dec_rule = lambda fmaps: int(math.ceil(float(fmaps) / 1))
38 | # netconf.u_netconfs[0].sk_netconfs = [None,sk1,sk2]
39 | # netconf.u_netconfs = [netconf.u_netconfs[0],netconf.u_netconfs[0]]
40 |
41 |
42 | netconf.loss_function = "euclid"
43 | inshape,outshape,fmaps = pygt.netgen.compute_valid_io_shapes(netconf,pygt.netgen.caffe_pb2.TRAIN,[30,30],[200,200],constraints=[None,lambda x: x[0], lambda x: x[1]])
44 |
45 |
46 | # We choose the maximum that still gives us 20 fmaps:
47 | index = [n for n, i in enumerate(fmaps) if i>=4][-1]
48 | print("Index to use: %s" % index)
49 | # Some patching to allow our new parameters
50 | netconf.input_shape = inshape[index]
51 | netconf.output_shape = outshape[index]
52 | netconf.fmap_start = 4
53 |
54 | netconf.loss_function = "euclid"
55 | train_net_conf_euclid, test_net_conf, train_net_tikzgraph, test_net_tikzgraph = pygt.netgen.create_nets(netconf)
56 | netconf.loss_function = "malis"
57 | train_net_conf_malis, test_net_conf, train_net_tikzgraph, test_net_tikzgraph = pygt.netgen.create_nets(netconf)
58 |
59 | with open('net_train_euclid.prototxt', 'w') as f:
60 | print(train_net_conf_euclid, file=f)
61 | with open('net_train_malis.prototxt', 'w') as f:
62 | print(train_net_conf_malis, file=f)
63 | with open('net_test.prototxt', 'w') as f:
64 | print(test_net_conf, file=f)
65 |
66 | with open('trainnet.tex', 'w') as f:
67 | print(train_net_tikzgraph, file=f)
68 | with open('testnet.tex', 'w') as f:
69 | print(test_net_tikzgraph, file=f)
70 |
71 |
--------------------------------------------------------------------------------
/pygt_uvisual/process.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 |
21 |
22 | test_net_file = 'net_test.prototxt'
23 | test_device = 0
24 |
25 | pygt.caffe.set_devices((test_device,))
26 |
27 | caffemodels = pygt.getCaffeModels('net');
28 |
29 | test_net = pygt.init_testnet(test_net_file, trained_model=caffemodels[-1][1], test_device=test_device)
30 |
31 |
32 | # Load the datasets
33 | hdf5_raw_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/img_normalized.h5'
34 | hdf5_gt_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/groundtruth_seg.h5'
35 | hdf5_aff_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/groundtruth_aff.h5'
36 |
37 | hdf5_raw = h5py.File(hdf5_raw_file, 'r')
38 | hdf5_gt = h5py.File(hdf5_gt_file, 'r')
39 | hdf5_aff = h5py.File(hdf5_aff_file, 'r')
40 |
41 | hdf5_raw_ds = pygt.normalize(np.asarray(hdf5_raw[hdf5_raw.keys()[0]]).astype(float32), -1, 1)
42 | hdf5_gt_ds = np.asarray(hdf5_gt[hdf5_gt.keys()[0]]).astype(float32)
43 | hdf5_aff_ds = np.asarray(hdf5_aff[hdf5_aff.keys()[0]]).astype(float32)
44 |
45 | datasets = []
46 | for i in range(0,1):
47 | dataset = {}
48 | dataset['data'] = hdf5_raw_ds[None, i, :]
49 | datasets += [dataset]
50 |
51 |
52 | pred_array = pygt.process(test_net, datasets)
53 |
54 | pygt.dump_tikzgraph_maps(test_net, 'dump')
55 |
56 | outhdf5 = h5py.File('test_out.h5', 'w')
57 | outdset = outhdf5.create_dataset('main', np.shape(pred_array)[1:], np.float32, data=pred_array)
58 | outhdf5.close()
--------------------------------------------------------------------------------
/pygt_uvisual/test_out.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/pygt_uvisual/test_out.h5
--------------------------------------------------------------------------------
/pygt_uvisual/testnet.aux:
--------------------------------------------------------------------------------
1 | \relax
2 | \providecommand\hyper@newdestlabel[2]{}
3 | \providecommand\BKM@entry[2]{}
4 | \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
5 | \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
6 | \global\let\oldcontentsline\contentsline
7 | \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
8 | \global\let\oldnewlabel\newlabel
9 | \gdef\newlabel#1#2{\newlabelxx{#1}#2}
10 | \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
11 | \AtEndDocument{\ifx\hyper@anchor\@undefined
12 | \let\contentsline\oldcontentsline
13 | \let\newlabel\oldnewlabel
14 | \fi}
15 | \fi}
16 | \global\let\hyper@last\relax
17 | \gdef\HyperFirstAtBeginDocument#1{#1}
18 | \providecommand\HyField@AuxAddToFields[1]{}
19 | \providecommand\HyField@AuxAddToCoFields[2]{}
20 | \abx@aux@sortscheme{none}
21 | \providecommand \oddpage@label [2]{}
22 | \@writefile{toc}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
23 | \@writefile{lof}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
24 | \@writefile{lot}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
25 | \select@language{british}
26 | \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\select@language{british}}
27 | \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\select@language{british}}
28 | \@writefile{lot}{\defcounter {refsection}{0}\relax }\@writefile{lot}{\select@language{british}}
29 |
--------------------------------------------------------------------------------
/pygt_uvisual/testnet.run.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
23 |
28 |
33 |
36 |
39 |
42 | ]>
43 |
44 |
45 | latex
46 |
47 | testnet.bcf
48 |
49 |
50 | testnet.bbl
51 |
52 |
53 | blx-dm.def
54 | blx-compat.def
55 | biblatex.def
56 | blx-natbib.def
57 | numeric.bbx
58 | standard.bbx
59 | numeric.cbx
60 | biblatex.cfg
61 | british.lbx
62 | english.lbx
63 |
64 |
65 |
66 | biber
67 |
68 | biber
69 | testnet
70 |
71 |
72 | testnet.bcf
73 |
74 |
77 |
78 | testnet.bbl
79 |
80 |
81 | testnet.bcf
82 |
83 |
84 |
85 |
--------------------------------------------------------------------------------
/pygt_uvisual/testnet.synctex.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naibaf7/caffe_neural_models/9d372c4bc599029902185e19f89e5c39f842fff7/pygt_uvisual/testnet.synctex.gz
--------------------------------------------------------------------------------
/pygt_uvisual/train.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import h5py
3 | import numpy as np
4 | from numpy import float32, int32, uint8, dtype
5 | import sys
6 |
7 | # Relative path to where PyGreentea resides
8 | pygt_path = '../../PyGreentea'
9 |
10 |
11 | import sys, os
12 | sys.path.append(os.path.join(os.path.dirname(__file__), pygt_path))
13 |
14 | # Other python modules
15 | import math
16 |
17 | # Load PyGreentea
18 | import PyGreentea as pygt
19 |
20 | # Load the datasets
21 | hdf5_raw_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/img_normalized.h5'
22 | hdf5_gt_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/groundtruth_seg.h5'
23 | hdf5_aff_file = '../dataset_06/fibsem_medulla_7col/tstvol-520-1-h5/groundtruth_aff.h5'
24 |
25 | hdf5_raw = h5py.File(hdf5_raw_file, 'r')
26 | hdf5_gt = h5py.File(hdf5_gt_file, 'r')
27 | hdf5_aff = h5py.File(hdf5_aff_file, 'r')
28 |
29 | hdf5_raw_ds = pygt.normalize(np.asarray(hdf5_raw[hdf5_raw.keys()[0]]).astype(float32), -1, 1)
30 | hdf5_gt_ds = np.asarray(hdf5_gt[hdf5_gt.keys()[0]]).astype(float32)
31 | hdf5_aff_ds = np.asarray(hdf5_aff[hdf5_aff.keys()[0]]).astype(float32)
32 |
33 | datasets = []
34 | for i in range(0,hdf5_raw_ds.shape[1]):
35 | dataset = {}
36 | dataset['data'] = hdf5_raw_ds[None, i, :]
37 | dataset['components'] = hdf5_gt_ds[None, i, :]
38 | dataset['label'] = hdf5_aff_ds[0:3, i, :]
39 | dataset['nhood'] = pygt.malis.mknhood2d()
40 | datasets += [dataset]
41 |
42 | #test_dataset = {}
43 | #test_dataset['data'] = hdf5_raw_ds
44 | #test_dataset['label'] = hdf5_aff_ds
45 |
46 |
47 | # Set train options
48 | class TrainOptions:
49 | loss_function = "euclid"
50 | loss_output_file = "log/loss.log"
51 | test_output_file = "log/test.log"
52 | test_interval = 4000
53 | scale_error = True
54 | training_method = "affinity"
55 | recompute_affinity = True
56 | train_device = 0
57 | test_device = 0
58 | test_net=None #'net_test.prototxt'
59 |
60 |
61 | options = TrainOptions()
62 |
63 | # Set solver options
64 | solver_config = pygt.caffe.SolverParameter()
65 | solver_config.train_net = 'net_train_euclid.prototxt'
66 | solver_config.base_lr = 0.0001
67 | solver_config.momentum = 0.99
68 | solver_config.weight_decay = 0.000005
69 | solver_config.lr_policy = 'inv'
70 | solver_config.gamma = 0.0001
71 | solver_config.power = 0.75
72 | solver_config.max_iter = 8000
73 | solver_config.snapshot = 2000
74 | solver_config.snapshot_prefix = 'net'
75 | solver_config.type = 'Adam'
76 | solver_config.display = 1
77 |
78 | # Set devices
79 | # pygt.caffe.enumerate_devices(False)
80 | pygt.caffe.set_devices((options.train_device,))
81 |
82 |
83 | solverstates = pygt.getSolverStates(solver_config.snapshot_prefix);
84 |
85 | # First training method
86 | if (len(solverstates) == 0 or solverstates[-1][0] < solver_config.max_iter):
87 | solver, test_net = pygt.init_solver(solver_config, options)
88 | if (len(solverstates) > 0):
89 | solver.restore(solverstates[-1][1])
90 | pygt.train(solver, test_net, datasets, [], options)
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
--------------------------------------------------------------------------------