├── .gitignore
├── LICENSE
├── M4L.RhythmVAE
└── M4L.RhythmVAE.maxproj
├── README.md
├── images
├── bg1.png
├── bg2.png
├── bg3.png
├── ui-background1.png
├── ui_memo.png
├── ui_screenshot_ise.png
├── vae_tex_210315_data.png
└── youtube_video.png
├── package-lock.json
├── package.json
├── release
├── M4L.RhythmVAE.amxd
└── models
│ ├── house_techno_breakbeat_jungle_96.model
│ ├── model.json
│ └── weights.bin
│ ├── model_2020128_15444.model
│ ├── model.json
│ └── weights.bin
│ ├── model_2020128_155954.model
│ ├── model.json
│ └── weights.bin
│ └── old_models
│ ├── README.md
│ └── model_electronic_dance_music.model
│ ├── model.json
│ └── weights.bin
├── rhythmvae.js
├── rhythmvae.maxpat
├── src
├── constants.js
├── data.js
├── utils.js
└── vae.js
└── subpatches
├── count_for_me.maxpat
├── list_dup.maxpat
├── makenote_for_me.maxpat
├── setup_1_16.maxpat
└── shuffle_metro.maxpat
/.gitignore:
--------------------------------------------------------------------------------
1 | # Logs
2 | logs
3 | *.log
4 | npm-debug.log*
5 | yarn-debug.log*
6 | yarn-error.log*
7 |
8 | # Runtime data
9 | pids
10 | *.pid
11 | *.seed
12 | *.pid.lock
13 |
14 | # Directory for instrumented libs generated by jscoverage/JSCover
15 | lib-cov
16 |
17 | # Coverage directory used by tools like istanbul
18 | coverage
19 |
20 | # nyc test coverage
21 | .nyc_output
22 |
23 | # Grunt intermediate storage (http://gruntjs.com/creating-plugins#storing-task-files)
24 | .grunt
25 |
26 | # Bower dependency directory (https://bower.io/)
27 | bower_components
28 |
29 | # node-waf configuration
30 | .lock-wscript
31 |
32 | # Compiled binary addons (https://nodejs.org/api/addons.html)
33 | build/Release
34 |
35 | # Dependency directories
36 | node_modules/
37 | jspm_packages/
38 |
39 | # TypeScript v1 declaration files
40 | typings/
41 |
42 | # Optional npm cache directory
43 | .npm
44 |
45 | # Optional eslint cache
46 | .eslintcache
47 |
48 | # Optional REPL history
49 | .node_repl_history
50 |
51 | # Output of 'npm pack'
52 | *.tgz
53 |
54 | # Yarn Integrity file
55 | .yarn-integrity
56 |
57 | # dotenv environment variables file
58 | .env
59 |
60 | # next.js build output
61 | .next
62 | .DS_Store
63 | test_data/**
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/M4L.RhythmVAE/M4L.RhythmVAE.maxproj:
--------------------------------------------------------------------------------
1 | {
2 | "name" : "M4L.RhythmVAE",
3 | "version" : 1,
4 | "creationdate" : 3672837233,
5 | "modificationdate" : 3752437369,
6 | "viewrect" : [ 25.0, 104.0, 300.0, 500.0 ],
7 | "autoorganize" : 1,
8 | "hideprojectwindow" : 0,
9 | "showdependencies" : 1,
10 | "autolocalize" : 0,
11 | "contents" : {
12 | "patchers" : {
13 | "rhythmvae.maxpat" : {
14 | "kind" : "patcher",
15 | "local" : 1,
16 | "toplevel" : 1,
17 | "singleton" : {
18 | "bootpath" : "~/Documents/GitHub/RhythmVAE_M4L",
19 | "projectrelativepath" : ".."
20 | }
21 |
22 | }
23 |
24 | }
25 | ,
26 | "media" : {
27 | "vae_tex_210315_data.png" : {
28 | "kind" : "imagefile",
29 | "local" : 1
30 | }
31 |
32 | }
33 | ,
34 | "code" : {
35 |
36 | }
37 |
38 | }
39 | ,
40 | "layout" : {
41 |
42 | }
43 | ,
44 | "searchpath" : {
45 | "0" : {
46 | "bootpath" : "~/Documents/GitHub/RhythmVAE_M4L/node_modules",
47 | "projectrelativepath" : "../node_modules",
48 | "label" : "node_modules",
49 | "recursive" : 1,
50 | "enabled" : 1,
51 | "includeincollective" : 1
52 | }
53 | ,
54 | "1" : {
55 | "bootpath" : "~/Documents/GitHub/RhythmVAE_M4L/src",
56 | "projectrelativepath" : "../src",
57 | "label" : "src",
58 | "recursive" : 1,
59 | "enabled" : 1,
60 | "includeincollective" : 1
61 | }
62 | ,
63 | "2" : {
64 | "bootpath" : "~/Documents/GitHub/RhythmVAE_M4L/subpatches",
65 | "projectrelativepath" : "../subpatches",
66 | "label" : "subpatch",
67 | "recursive" : 1,
68 | "enabled" : 1,
69 | "includeincollective" : 1
70 | }
71 | ,
72 | "3" : {
73 | "bootpath" : "~/Documents/GitHub/RhythmVAE_M4L/images",
74 | "projectrelativepath" : "../images",
75 | "label" : "",
76 | "recursive" : 1,
77 | "enabled" : 1,
78 | "includeincollective" : 1
79 | }
80 |
81 | }
82 | ,
83 | "detailsvisible" : 1,
84 | "amxdtype" : 1835887981,
85 | "readonly" : 0,
86 | "devpathtype" : 0,
87 | "devpath" : ".",
88 | "sortmode" : 0,
89 | "viewmode" : 1,
90 | "includepackages" : 0
91 | }
92 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # M4L.RhythmVAE
2 | Max for Live(M4L) Rhythm generator using Variational Autoencoder(VAE)
3 |
4 |
5 |
6 |
7 | ## Help me!!
8 |
9 | I need your feedback! It takes a few minutes and it's anonymous.
10 | https://forms.gle/1HBhDV9k5pCKnPNE8
11 |
12 |
13 | ## How it works
14 |
15 | [](https://www.youtube.com/watch?v=rH7mEumq9wQ "M4L.RhythmVAE - VAE Rhythm Generator for Max for Live/Ableton Live")
16 |
17 | If you want to quickly test the device, please use the one in `/release` directory.
18 |
19 | 
20 |
21 | If you want to know the detail of the plugin, please refer to my [arxiv paper](https://arxiv.org/abs/2004.01525):
22 |
23 | ```
24 | Towards democratizing music production with AI-Design of Variational Autoencoder-based Rhythm Generator as a DAW plugin
25 | Nao Tokui
26 | ```
27 |
28 |
29 | ## Requirement
30 | - On Mac: **Ableton Live Suite for Mac 10.1.2** or later
31 | - On Windows: Ableton Live Suite for Windows 10.1.2 **and Standalone Max 8.1.2 or later**
32 | On Windows, you need to set the path of external standalone Max installation on the preference panel of Ableton Live. The device is not compatible with the internal Max runtime.
33 |
34 | ## Installation
35 |
36 | If you want to edit Max patches and export the device by yourself:
37 |
38 | - Open `M4L.RhythmVAE/M4L.RhythmVAE.maxproj`, then open `rhythmvae.maxpat` from the project.
39 | - When you open `rhythmvae.maxpat` for the first time, you need to press `script npm install` to install Node.js packages.
40 | - Every time you export the device, you have to set `Max for Live Device Type` to `MIDI` on Project Inspector (Apparently this is a bug of Max/MSP.)
41 |
42 | ## Pretrained model
43 | - You don't have enough training MIDI data? Don't worry! You can find a pretrained model trained with thausands of electronic dance music rhythm patterns in `/release/models`.
44 |
45 | ## Known problems
46 | - Incompatible with folders with names containing special characters such as `[]?*!|@`
47 | - Changes you make on the sequence grid view are not reflected the rhythm sequence. It is just a display!
48 |
49 |
50 | ## TO DO
51 | - better documentation
52 | - better UI design!!
53 | - add a feature to add random noise to `z`
54 |
55 |
56 | ## Updates
57 | - 2020.3 added | new plugin design by Naoki Ise
58 | - 2019.12.27 fxied| onset/velocity/offset training data used be shuffled independently. it makes no sense!
59 | - 2019.11.10 added| Time shift parameter / MIDI Mapping
60 | - 2019.10.19 fixed| beat sync issue
61 | - 2019.10.18 added| note on the requirement
62 | - 2019.9.14 added| functionality to save/load trained model
63 | - 2019.5.21 added| a pretrained model
64 | - 2019.3.11 added| Windows version!
65 |
66 | ## Music Examples 🎵
67 | Here is a track I made with rhythm patterns generated by this plugin:
68 | [https://soundcloud.com/naotokui/missions-demo](https://soundcloud.com/naotokui/missions-demo)
69 |
70 |
71 | ## MIDI Mapping
72 |
73 | This devices considers the following 9 drum types:
74 |
75 | | Drum Types |
76 | |:-----:|
77 | | Kick |
78 | | Snare |
79 | |Hi-hat closed |
80 | |Hi-hat open |
81 | |Tom low|
82 | |Tom mid|
83 | |Tom high|
84 | |Clap|
85 | |Rim|
86 |
87 | MIDI notes in a MIDI file will be classified into the 9 Drum Types based on [General MIDI (GM) Mapping](https://www.midi.org/specifications-old/item/gm-level-1-sound-set). We have two MIDI Mapping modes and you can select one of these mappings on the device:
88 |
89 | *Strict*
90 |
91 | | MIDI Note Number | Drum Type | GM Type |
92 | |:-----:|:-----:|:-----:|
93 | | 36 | Kick | Acoustic Bass Drum
94 | | 35 | Kick | Bass Drum
95 | | 38 | Snare | Acoustic Snare
96 | | 40 | Snare | Electric Snare
97 | | 42 | Hi-hat closed | Closed Hihat
98 | | 44 | Hi-hat open | Pedal Hihat
99 | | 46 | Hi-hat open | Open Hihat
100 | | 41 | Tom low | Low floor Tom
101 | | 45 | Tom low | Low Tom
102 | | 47 | Tom mid | Low-mid Tom
103 | | 48 | Tom mid | High-mid Tom
104 | | 43 | Tom high | High Floor Tom
105 | | 50 | Tom high | High Tom
106 | | 39 | Clap | hand clap
107 | | 51 | Rim | Ride Symbal 1
108 | | 52 | Rim | Chinese Symbal
109 | | 53 | Rim | Ride Bell
110 | | 59 | Rim | Ride Symbal 2
111 |
112 |
113 | *Greedy*
114 |
115 | | MIDI Note Number | Drum Type |
116 | |:-----:|:-----:|
117 | | 36| Kick |
118 | | 35| Kick |
119 | | 38| Snare |
120 | | 27| Snare |
121 | | 28| Snare |
122 | | 31| Snare |
123 | | 32| Snare |
124 | | 33| Snare |
125 | | 34 | Snare |
126 | | 37| Snare |
127 | | 39| Snare |
128 | | 40| Snare |
129 | | 56| Snare |
130 | | 65| Snare |
131 | | 66| Snare |
132 | | 75| Snare |
133 | | 85| Snare |
134 | | 42| Hi-hat closed |
135 | | 44| Hi-hat closed |
136 | | 54| Hi-hat closed |
137 | | 68| Hi-hat closed |
138 | | 69| Hi-hat closed |
139 | | 70| Hi-hat closed |
140 | | 71| Hi-hat closed |
141 | | 73| Hi-hat closed |
142 | | 78| Hi-hat closed |
143 | | 80| Hi-hat closed |
144 | | 46| Hi-hat open |
145 | | 67| Hi-hat open |
146 | | 72| Hi-hat open |
147 | | 74| Hi-hat open |
148 | | 79| Hi-hat open |
149 | | 81| Hi-hat open |
150 | | 45| Tom low |
151 | | 29| Tom low |
152 | | 41| Tom low |
153 | | 61| Tom low |
154 | | 64| Tom low |
155 | | 84| Tom low |
156 | | 48| Tom mid |
157 | | 47| Tom mid |
158 | | 60| Tom mid |
159 | | 63| Tom mid |
160 | | 77| Tom mid |
161 | | 86| Tom mid |
162 | | 87| Tom mid |
163 | | 50| Tom high |
164 | | 30| Tom high |
165 | | 43| Tom high |
166 | | 62| Tom high |
167 | | 76| Tom high |
168 | | 83| Tom high |
169 | | 49|Clap |
170 | | 55|Clap |
171 | | 57|Clap |
172 | | 58|Clap |
173 | | 51| Rim |
174 | | 52| Rim |
175 | | 53| Rim |
176 | | 59| Rim |
177 | | 82| Rim |
178 |
179 | (If you find these mappings are unnatual, please let me know. I'm not a drummer!)
180 |
181 | ## Design
182 | Title logo, Background Texture: [Naoki Ise](http://naokiise.com/)
--------------------------------------------------------------------------------
/images/bg1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/bg1.png
--------------------------------------------------------------------------------
/images/bg2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/bg2.png
--------------------------------------------------------------------------------
/images/bg3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/bg3.png
--------------------------------------------------------------------------------
/images/ui-background1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/ui-background1.png
--------------------------------------------------------------------------------
/images/ui_memo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/ui_memo.png
--------------------------------------------------------------------------------
/images/ui_screenshot_ise.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/ui_screenshot_ise.png
--------------------------------------------------------------------------------
/images/vae_tex_210315_data.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/vae_tex_210315_data.png
--------------------------------------------------------------------------------
/images/youtube_video.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/images/youtube_video.png
--------------------------------------------------------------------------------
/package-lock.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "RhythmVAE",
3 | "version": "1.0.0",
4 | "lockfileVersion": 1,
5 | "requires": true,
6 | "dependencies": {
7 | "@tensorflow/tfjs": {
8 | "version": "1.7.4",
9 | "resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-1.7.4.tgz",
10 | "integrity": "sha512-XWGwRQ/ECEoQacd74JY/dmbLdnMpwtq3H8tls45dQ+GJ553Advir1FDo/aQt0Yr6fTimQDeiOIG4Mcb5KduP/w==",
11 | "requires": {
12 | "@tensorflow/tfjs-converter": "1.7.4",
13 | "@tensorflow/tfjs-core": "1.7.4",
14 | "@tensorflow/tfjs-data": "1.7.4",
15 | "@tensorflow/tfjs-layers": "1.7.4"
16 | }
17 | },
18 | "@tensorflow/tfjs-converter": {
19 | "version": "1.7.4",
20 | "resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-1.7.4.tgz",
21 | "integrity": "sha512-B/Ux9I3osI0CXoESGR0Xe5C6BsEfC04+g2xn5zVaW9KEuVEnGEgnuBQxgijRFzkqTwoyLv4ptAmjyIghVARX0Q=="
22 | },
23 | "@tensorflow/tfjs-core": {
24 | "version": "1.7.4",
25 | "resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-1.7.4.tgz",
26 | "integrity": "sha512-3G4VKJ6nPs7iCt6gs3bjRj8chihKrYWenf63R0pm7D9MhlrVoX/tpN4LYVMGgBL7jHPxMLKdOkoAZJrn/J88HQ==",
27 | "requires": {
28 | "@types/offscreencanvas": "~2019.3.0",
29 | "@types/seedrandom": "2.4.27",
30 | "@types/webgl-ext": "0.0.30",
31 | "@types/webgl2": "0.0.4",
32 | "node-fetch": "~2.1.2",
33 | "seedrandom": "2.4.3"
34 | }
35 | },
36 | "@tensorflow/tfjs-data": {
37 | "version": "1.7.4",
38 | "resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-1.7.4.tgz",
39 | "integrity": "sha512-WFYG9wWjNDi62x6o3O20Q0XJxToCw2J4/fBEXiK/Gr0hIqVhl2oLQ1OjTWq7O08NUxM6BRzuG+ra3gWYdQUzOw==",
40 | "requires": {
41 | "@types/node-fetch": "^2.1.2",
42 | "node-fetch": "~2.1.2"
43 | }
44 | },
45 | "@tensorflow/tfjs-layers": {
46 | "version": "1.7.4",
47 | "resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-1.7.4.tgz",
48 | "integrity": "sha512-5/K8Z8RBfXsucL6EaSeb3/8jB/I8oPaaXkxwKVsBPQ+u6lB6LEtSKzeiFc57nDr5OMtVaUZV+pKDNEzP0RUQlg=="
49 | },
50 | "@tensorflow/tfjs-node": {
51 | "version": "1.7.4",
52 | "resolved": "https://registry.npmjs.org/@tensorflow/tfjs-node/-/tfjs-node-1.7.4.tgz",
53 | "integrity": "sha512-xcK2NMJI2eOrvDBMrT5RjJSXZPK7B/SFvoSTS+ycpoiPAooeFsDuOcj4YzsgYlSBRyVl9qKHaNn3rWhrTWwG+Q==",
54 | "requires": {
55 | "@tensorflow/tfjs": "1.7.4",
56 | "@tensorflow/tfjs-core": "1.7.4",
57 | "adm-zip": "^0.4.11",
58 | "google-protobuf": "^3.9.2",
59 | "https-proxy-agent": "^2.2.1",
60 | "node-pre-gyp": "0.14.0",
61 | "progress": "^2.0.0",
62 | "rimraf": "^2.6.2",
63 | "tar": "^4.4.6"
64 | }
65 | },
66 | "@tonejs/midi": {
67 | "version": "2.0.25",
68 | "resolved": "https://registry.npmjs.org/@tonejs/midi/-/midi-2.0.25.tgz",
69 | "integrity": "sha512-zT8pZy/upJCGqXHSCO1+U39wgWIaizDg+sv7nVReJehMcT86Peh+zo5kQ42Guwgc/gnv47n7fJhoTRGsJVaqJQ==",
70 | "requires": {
71 | "array-flatten": "^2.1.2",
72 | "midi-file": "^1.1.2"
73 | }
74 | },
75 | "@types/node": {
76 | "version": "14.10.1",
77 | "resolved": "https://registry.npmjs.org/@types/node/-/node-14.10.1.tgz",
78 | "integrity": "sha512-aYNbO+FZ/3KGeQCEkNhHFRIzBOUgc7QvcVNKXbfnhDkSfwUv91JsQQa10rDgKSTSLkXZ1UIyPe4FJJNVgw1xWQ=="
79 | },
80 | "@types/node-fetch": {
81 | "version": "2.5.7",
82 | "resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.5.7.tgz",
83 | "integrity": "sha512-o2WVNf5UhWRkxlf6eq+jMZDu7kjgpgJfl4xVNlvryc95O/6F2ld8ztKX+qu+Rjyet93WAWm5LjeX9H5FGkODvw==",
84 | "requires": {
85 | "@types/node": "*",
86 | "form-data": "^3.0.0"
87 | }
88 | },
89 | "@types/offscreencanvas": {
90 | "version": "2019.3.0",
91 | "resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.3.0.tgz",
92 | "integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q=="
93 | },
94 | "@types/seedrandom": {
95 | "version": "2.4.27",
96 | "resolved": "https://registry.npmjs.org/@types/seedrandom/-/seedrandom-2.4.27.tgz",
97 | "integrity": "sha1-nbVjk33YaRX2kJK8QyWdL0hXjkE="
98 | },
99 | "@types/webgl-ext": {
100 | "version": "0.0.30",
101 | "resolved": "https://registry.npmjs.org/@types/webgl-ext/-/webgl-ext-0.0.30.tgz",
102 | "integrity": "sha512-LKVgNmBxN0BbljJrVUwkxwRYqzsAEPcZOe6S2T6ZaBDIrFp0qu4FNlpc5sM1tGbXUYFgdVQIoeLk1Y1UoblyEg=="
103 | },
104 | "@types/webgl2": {
105 | "version": "0.0.4",
106 | "resolved": "https://registry.npmjs.org/@types/webgl2/-/webgl2-0.0.4.tgz",
107 | "integrity": "sha512-PACt1xdErJbMUOUweSrbVM7gSIYm1vTncW2hF6Os/EeWi6TXYAYMPp+8v6rzHmypE5gHrxaxZNXgMkJVIdZpHw=="
108 | },
109 | "abbrev": {
110 | "version": "1.1.1",
111 | "resolved": "https://registry.npmjs.org/abbrev/-/abbrev-1.1.1.tgz",
112 | "integrity": "sha512-nne9/IiQ/hzIhY6pdDnbBtz7DjPTKrY00P/zvPSm5pOFkl6xuGrGnXn/VtTNNfNtAfZ9/1RtehkszU9qcTii0Q=="
113 | },
114 | "adm-zip": {
115 | "version": "0.4.16",
116 | "resolved": "https://registry.npmjs.org/adm-zip/-/adm-zip-0.4.16.tgz",
117 | "integrity": "sha512-TFi4HBKSGfIKsK5YCkKaaFG2m4PEDyViZmEwof3MTIgzimHLto6muaHVpbrljdIvIrFZzEq/p4nafOeLcYegrg=="
118 | },
119 | "agent-base": {
120 | "version": "4.3.0",
121 | "resolved": "https://registry.npmjs.org/agent-base/-/agent-base-4.3.0.tgz",
122 | "integrity": "sha512-salcGninV0nPrwpGNn4VTXBb1SOuXQBiqbrNXoeizJsHrsL6ERFM2Ne3JUSBWRE6aeNJI2ROP/WEEIDUiDe3cg==",
123 | "requires": {
124 | "es6-promisify": "^5.0.0"
125 | }
126 | },
127 | "ansi-regex": {
128 | "version": "2.1.1",
129 | "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-2.1.1.tgz",
130 | "integrity": "sha1-w7M6te42DYbg5ijwRorn7yfWVN8="
131 | },
132 | "aproba": {
133 | "version": "1.2.0",
134 | "resolved": "https://registry.npmjs.org/aproba/-/aproba-1.2.0.tgz",
135 | "integrity": "sha512-Y9J6ZjXtoYh8RnXVCMOU/ttDmk1aBjunq9vO0ta5x85WDQiQfUF9sIPBITdbiiIVcBo03Hi3jMxigBtsddlXRw=="
136 | },
137 | "are-we-there-yet": {
138 | "version": "1.1.5",
139 | "resolved": "https://registry.npmjs.org/are-we-there-yet/-/are-we-there-yet-1.1.5.tgz",
140 | "integrity": "sha512-5hYdAkZlcG8tOLujVDTgCT+uPX0VnpAH28gWsLfzpXYm7wP6mp5Q/gYyR7YQ0cKVJcXJnl3j2kpBan13PtQf6w==",
141 | "requires": {
142 | "delegates": "^1.0.0",
143 | "readable-stream": "^2.0.6"
144 | }
145 | },
146 | "array-flatten": {
147 | "version": "2.1.2",
148 | "resolved": "https://registry.npmjs.org/array-flatten/-/array-flatten-2.1.2.tgz",
149 | "integrity": "sha512-hNfzcOV8W4NdualtqBFPyVO+54DSJuZGY9qT4pRroB6S9e3iiido2ISIC5h9R2sPJ8H3FHCIiEnsv1lPXO3KtQ=="
150 | },
151 | "asynckit": {
152 | "version": "0.4.0",
153 | "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
154 | "integrity": "sha1-x57Zf380y48robyXkLzDZkdLS3k="
155 | },
156 | "balanced-match": {
157 | "version": "1.0.0",
158 | "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.0.tgz",
159 | "integrity": "sha1-ibTRmasr7kneFk6gK4nORi1xt2c="
160 | },
161 | "brace-expansion": {
162 | "version": "1.1.11",
163 | "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
164 | "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==",
165 | "requires": {
166 | "balanced-match": "^1.0.0",
167 | "concat-map": "0.0.1"
168 | }
169 | },
170 | "chownr": {
171 | "version": "1.1.4",
172 | "resolved": "https://registry.npmjs.org/chownr/-/chownr-1.1.4.tgz",
173 | "integrity": "sha512-jJ0bqzaylmJtVnNgzTeSOs8DPavpbYgEr/b0YL8/2GO3xJEhInFmhKMUnEJQjZumK7KXGFhUy89PrsJWlakBVg=="
174 | },
175 | "code-point-at": {
176 | "version": "1.1.0",
177 | "resolved": "https://registry.npmjs.org/code-point-at/-/code-point-at-1.1.0.tgz",
178 | "integrity": "sha1-DQcLTQQ6W+ozovGkDi7bPZpMz3c="
179 | },
180 | "combined-stream": {
181 | "version": "1.0.8",
182 | "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
183 | "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
184 | "requires": {
185 | "delayed-stream": "~1.0.0"
186 | }
187 | },
188 | "concat-map": {
189 | "version": "0.0.1",
190 | "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz",
191 | "integrity": "sha1-2Klr13/Wjfd5OnMDajug1UBdR3s="
192 | },
193 | "console-control-strings": {
194 | "version": "1.1.0",
195 | "resolved": "https://registry.npmjs.org/console-control-strings/-/console-control-strings-1.1.0.tgz",
196 | "integrity": "sha1-PXz0Rk22RG6mRL9LOVB/mFEAjo4="
197 | },
198 | "core-util-is": {
199 | "version": "1.0.2",
200 | "resolved": "https://registry.npmjs.org/core-util-is/-/core-util-is-1.0.2.tgz",
201 | "integrity": "sha1-tf1UIgqivFq1eqtxQMlAdUUDwac="
202 | },
203 | "cross-fetch": {
204 | "version": "3.1.5",
205 | "resolved": "https://registry.npmjs.org/cross-fetch/-/cross-fetch-3.1.5.tgz",
206 | "integrity": "sha512-lvb1SBsI0Z7GDwmuid+mU3kWVBwTVUbe7S0H52yaaAdQOXq2YktTCZdlAcNKFzE6QtRz0snpw9bNiPeOIkkQvw==",
207 | "requires": {
208 | "node-fetch": "2.6.7"
209 | },
210 | "dependencies": {
211 | "node-fetch": {
212 | "version": "2.6.7",
213 | "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.7.tgz",
214 | "integrity": "sha512-ZjMPFEfVx5j+y2yF35Kzx5sF7kDzxuDj6ziH4FFbOp87zKDZNx8yExJIb05OGF4Nlt9IHFIMBkRl41VdvcNdbQ==",
215 | "requires": {
216 | "whatwg-url": "^5.0.0"
217 | }
218 | }
219 | }
220 | },
221 | "debug": {
222 | "version": "3.2.6",
223 | "resolved": "https://registry.npmjs.org/debug/-/debug-3.2.6.tgz",
224 | "integrity": "sha512-mel+jf7nrtEl5Pn1Qx46zARXKDpBbvzezse7p7LqINmdoIk8PYP5SySaxEmYv6TZ0JyEKA1hsCId6DIhgITtWQ==",
225 | "requires": {
226 | "ms": "^2.1.1"
227 | }
228 | },
229 | "deep-extend": {
230 | "version": "0.6.0",
231 | "resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
232 | "integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA=="
233 | },
234 | "delayed-stream": {
235 | "version": "1.0.0",
236 | "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
237 | "integrity": "sha1-3zrhmayt+31ECqrgsp4icrJOxhk="
238 | },
239 | "delegates": {
240 | "version": "1.0.0",
241 | "resolved": "https://registry.npmjs.org/delegates/-/delegates-1.0.0.tgz",
242 | "integrity": "sha1-hMbhWbgZBP3KWaDvRM2HDTElD5o="
243 | },
244 | "detect-libc": {
245 | "version": "1.0.3",
246 | "resolved": "https://registry.npmjs.org/detect-libc/-/detect-libc-1.0.3.tgz",
247 | "integrity": "sha1-+hN8S9aY7fVc1c0CrFWfkaTEups="
248 | },
249 | "es6-promise": {
250 | "version": "4.2.8",
251 | "resolved": "https://registry.npmjs.org/es6-promise/-/es6-promise-4.2.8.tgz",
252 | "integrity": "sha512-HJDGx5daxeIvxdBxvG2cb9g4tEvwIk3i8+nhX0yGrYmZUzbkdg8QbDevheDB8gd0//uPj4c1EQua8Q+MViT0/w=="
253 | },
254 | "es6-promisify": {
255 | "version": "5.0.0",
256 | "resolved": "https://registry.npmjs.org/es6-promisify/-/es6-promisify-5.0.0.tgz",
257 | "integrity": "sha1-UQnWLz5W6pZ8S2NQWu8IKRyKUgM=",
258 | "requires": {
259 | "es6-promise": "^4.0.3"
260 | }
261 | },
262 | "form-data": {
263 | "version": "3.0.0",
264 | "resolved": "https://registry.npmjs.org/form-data/-/form-data-3.0.0.tgz",
265 | "integrity": "sha512-CKMFDglpbMi6PyN+brwB9Q/GOw0eAnsrEZDgcsH5Krhz5Od/haKHAX0NmQfha2zPPz0JpWzA7GJHGSnvCRLWsg==",
266 | "requires": {
267 | "asynckit": "^0.4.0",
268 | "combined-stream": "^1.0.8",
269 | "mime-types": "^2.1.12"
270 | }
271 | },
272 | "fs-minipass": {
273 | "version": "1.2.7",
274 | "resolved": "https://registry.npmjs.org/fs-minipass/-/fs-minipass-1.2.7.tgz",
275 | "integrity": "sha512-GWSSJGFy4e9GUeCcbIkED+bgAoFyj7XF1mV8rma3QW4NIqX9Kyx79N/PF61H5udOV3aY1IaMLs6pGbH71nlCTA==",
276 | "requires": {
277 | "minipass": "^2.6.0"
278 | }
279 | },
280 | "fs.realpath": {
281 | "version": "1.0.0",
282 | "resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz",
283 | "integrity": "sha1-FQStJSMVjKpA20onh8sBQRmU6k8="
284 | },
285 | "gauge": {
286 | "version": "2.7.4",
287 | "resolved": "https://registry.npmjs.org/gauge/-/gauge-2.7.4.tgz",
288 | "integrity": "sha1-LANAXHU4w51+s3sxcCLjJfsBi/c=",
289 | "requires": {
290 | "aproba": "^1.0.3",
291 | "console-control-strings": "^1.0.0",
292 | "has-unicode": "^2.0.0",
293 | "object-assign": "^4.1.0",
294 | "signal-exit": "^3.0.0",
295 | "string-width": "^1.0.1",
296 | "strip-ansi": "^3.0.1",
297 | "wide-align": "^1.1.0"
298 | }
299 | },
300 | "glob": {
301 | "version": "7.1.6",
302 | "resolved": "https://registry.npmjs.org/glob/-/glob-7.1.6.tgz",
303 | "integrity": "sha512-LwaxwyZ72Lk7vZINtNNrywX0ZuLyStrdDtabefZKAY5ZGJhVtgdznluResxNmPitE0SAO+O26sWTHeKSI2wMBA==",
304 | "requires": {
305 | "fs.realpath": "^1.0.0",
306 | "inflight": "^1.0.4",
307 | "inherits": "2",
308 | "minimatch": "^3.0.4",
309 | "once": "^1.3.0",
310 | "path-is-absolute": "^1.0.0"
311 | }
312 | },
313 | "globalyzer": {
314 | "version": "0.1.4",
315 | "resolved": "https://registry.npmjs.org/globalyzer/-/globalyzer-0.1.4.tgz",
316 | "integrity": "sha512-LeguVWaxgHN0MNbWC6YljNMzHkrCny9fzjmEUdnF1kQ7wATFD1RHFRqA1qxaX2tgxGENlcxjOflopBwj3YZiXA=="
317 | },
318 | "globrex": {
319 | "version": "0.1.2",
320 | "resolved": "https://registry.npmjs.org/globrex/-/globrex-0.1.2.tgz",
321 | "integrity": "sha512-uHJgbwAMwNFf5mLst7IWLNg14x1CkeqglJb/K3doi4dw6q2IvAAmM/Y81kevy83wP+Sst+nutFTYOGg3d1lsxg=="
322 | },
323 | "google-protobuf": {
324 | "version": "3.13.0",
325 | "resolved": "https://registry.npmjs.org/google-protobuf/-/google-protobuf-3.13.0.tgz",
326 | "integrity": "sha512-ZIf3qfLFayVrPvAjeKKxO5FRF1/NwRxt6Dko+fWEMuHwHbZx8/fcaAao9b0wCM6kr8qeg2te8XTpyuvKuD9aKw=="
327 | },
328 | "has-unicode": {
329 | "version": "2.0.1",
330 | "resolved": "https://registry.npmjs.org/has-unicode/-/has-unicode-2.0.1.tgz",
331 | "integrity": "sha1-4Ob+aijPUROIVeCG0Wkedx3iqLk="
332 | },
333 | "https-proxy-agent": {
334 | "version": "2.2.4",
335 | "resolved": "https://registry.npmjs.org/https-proxy-agent/-/https-proxy-agent-2.2.4.tgz",
336 | "integrity": "sha512-OmvfoQ53WLjtA9HeYP9RNrWMJzzAz1JGaSFr1nijg0PVR1JaD/xbJq1mdEIIlxGpXp9eSe/O2LgU9DJmTPd0Eg==",
337 | "requires": {
338 | "agent-base": "^4.3.0",
339 | "debug": "^3.1.0"
340 | }
341 | },
342 | "iconv-lite": {
343 | "version": "0.4.24",
344 | "resolved": "https://registry.npmjs.org/iconv-lite/-/iconv-lite-0.4.24.tgz",
345 | "integrity": "sha512-v3MXnZAcvnywkTUEZomIActle7RXXeedOR31wwl7VlyoXO4Qi9arvSenNQWne1TcRwhCL1HwLI21bEqdpj8/rA==",
346 | "requires": {
347 | "safer-buffer": ">= 2.1.2 < 3"
348 | }
349 | },
350 | "ignore-walk": {
351 | "version": "3.0.3",
352 | "resolved": "https://registry.npmjs.org/ignore-walk/-/ignore-walk-3.0.3.tgz",
353 | "integrity": "sha512-m7o6xuOaT1aqheYHKf8W6J5pYH85ZI9w077erOzLje3JsB1gkafkAhHHY19dqjulgIZHFm32Cp5uNZgcQqdJKw==",
354 | "requires": {
355 | "minimatch": "^3.0.4"
356 | }
357 | },
358 | "inflight": {
359 | "version": "1.0.6",
360 | "resolved": "https://registry.npmjs.org/inflight/-/inflight-1.0.6.tgz",
361 | "integrity": "sha1-Sb1jMdfQLQwJvJEKEHW6gWW1bfk=",
362 | "requires": {
363 | "once": "^1.3.0",
364 | "wrappy": "1"
365 | }
366 | },
367 | "inherits": {
368 | "version": "2.0.4",
369 | "resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz",
370 | "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ=="
371 | },
372 | "ini": {
373 | "version": "1.3.7",
374 | "resolved": "https://registry.npmjs.org/ini/-/ini-1.3.7.tgz",
375 | "integrity": "sha512-iKpRpXP+CrP2jyrxvg1kMUpXDyRUFDWurxbnVT1vQPx+Wz9uCYsMIqYuSBLV+PAaZG/d7kRLKRFc9oDMsH+mFQ=="
376 | },
377 | "is-fullwidth-code-point": {
378 | "version": "1.0.0",
379 | "resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-1.0.0.tgz",
380 | "integrity": "sha1-754xOG8DGn8NZDr4L95QxFfvAMs=",
381 | "requires": {
382 | "number-is-nan": "^1.0.0"
383 | }
384 | },
385 | "isarray": {
386 | "version": "1.0.0",
387 | "resolved": "https://registry.npmjs.org/isarray/-/isarray-1.0.0.tgz",
388 | "integrity": "sha1-u5NdSFgsuhaMBoNJV6VKPgcSTxE="
389 | },
390 | "midi-file": {
391 | "version": "1.1.2",
392 | "resolved": "https://registry.npmjs.org/midi-file/-/midi-file-1.1.2.tgz",
393 | "integrity": "sha512-VQNzirfADDFXTymgPJv2VfLylCq14spRNFhpA6u7dLqPMbw1BqGf5u9B0k7z++8X1RMs57pyn+G4kzhyIatlyw=="
394 | },
395 | "mime-db": {
396 | "version": "1.44.0",
397 | "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.44.0.tgz",
398 | "integrity": "sha512-/NOTfLrsPBVeH7YtFPgsVWveuL+4SjjYxaQ1xtM1KMFj7HdxlBlxeyNLzhyJVx7r4rZGJAZ/6lkKCitSc/Nmpg=="
399 | },
400 | "mime-types": {
401 | "version": "2.1.27",
402 | "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.27.tgz",
403 | "integrity": "sha512-JIhqnCasI9yD+SsmkquHBxTSEuZdQX5BuQnS2Vc7puQQQ+8yiP5AY5uWhpdv4YL4VM5c6iliiYWPgJ/nJQLp7w==",
404 | "requires": {
405 | "mime-db": "1.44.0"
406 | }
407 | },
408 | "minimatch": {
409 | "version": "3.0.4",
410 | "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.0.4.tgz",
411 | "integrity": "sha512-yJHVQEhyqPLUTgt9B83PXu6W3rx4MvvHvSUvToogpwoGDOUQ+yDrR0HRot+yOCdCO7u4hX3pWft6kWBBcqh0UA==",
412 | "requires": {
413 | "brace-expansion": "^1.1.7"
414 | }
415 | },
416 | "minimist": {
417 | "version": "1.2.6",
418 | "resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.6.tgz",
419 | "integrity": "sha512-Jsjnk4bw3YJqYzbdyBiNsPWHPfO++UGG749Cxs6peCu5Xg4nrena6OVxOYxrQTqww0Jmwt+Ref8rggumkTLz9Q=="
420 | },
421 | "minipass": {
422 | "version": "2.9.0",
423 | "resolved": "https://registry.npmjs.org/minipass/-/minipass-2.9.0.tgz",
424 | "integrity": "sha512-wxfUjg9WebH+CUDX/CdbRlh5SmfZiy/hpkxaRI16Y9W56Pa75sWgd/rvFilSgrauD9NyFymP/+JFV3KwzIsJeg==",
425 | "requires": {
426 | "safe-buffer": "^5.1.2",
427 | "yallist": "^3.0.0"
428 | }
429 | },
430 | "minizlib": {
431 | "version": "1.3.3",
432 | "resolved": "https://registry.npmjs.org/minizlib/-/minizlib-1.3.3.tgz",
433 | "integrity": "sha512-6ZYMOEnmVsdCeTJVE0W9ZD+pVnE8h9Hma/iOwwRDsdQoePpoX56/8B6z3P9VNwppJuBKNRuFDRNRqRWexT9G9Q==",
434 | "requires": {
435 | "minipass": "^2.9.0"
436 | }
437 | },
438 | "mkdirp": {
439 | "version": "0.5.5",
440 | "resolved": "https://registry.npmjs.org/mkdirp/-/mkdirp-0.5.5.tgz",
441 | "integrity": "sha512-NKmAlESf6jMGym1++R0Ra7wvhV+wFW63FaSOFPwRahvea0gMUcGUhVeAg/0BC0wiv9ih5NYPB1Wn1UEI1/L+xQ==",
442 | "requires": {
443 | "minimist": "^1.2.5"
444 | }
445 | },
446 | "ms": {
447 | "version": "2.1.2",
448 | "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.2.tgz",
449 | "integrity": "sha512-sGkPx+VjMtmA6MX27oA4FBFELFCZZ4S4XqeGOXCv68tT+jb3vk/RyaKWP0PTKyWtmLSM0b+adUTEvbs1PEaH2w=="
450 | },
451 | "needle": {
452 | "version": "2.5.2",
453 | "resolved": "https://registry.npmjs.org/needle/-/needle-2.5.2.tgz",
454 | "integrity": "sha512-LbRIwS9BfkPvNwNHlsA41Q29kL2L/6VaOJ0qisM5lLWsTV3nP15abO5ITL6L81zqFhzjRKDAYjpcBcwM0AVvLQ==",
455 | "requires": {
456 | "debug": "^3.2.6",
457 | "iconv-lite": "^0.4.4",
458 | "sax": "^1.2.4"
459 | }
460 | },
461 | "node-fetch": {
462 | "version": "2.1.2",
463 | "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.1.2.tgz",
464 | "integrity": "sha1-q4hOjn5X44qUR1POxwb3iNF2i7U="
465 | },
466 | "node-pre-gyp": {
467 | "version": "0.14.0",
468 | "resolved": "https://registry.npmjs.org/node-pre-gyp/-/node-pre-gyp-0.14.0.tgz",
469 | "integrity": "sha512-+CvDC7ZttU/sSt9rFjix/P05iS43qHCOOGzcr3Ry99bXG7VX953+vFyEuph/tfqoYu8dttBkE86JSKBO2OzcxA==",
470 | "requires": {
471 | "detect-libc": "^1.0.2",
472 | "mkdirp": "^0.5.1",
473 | "needle": "^2.2.1",
474 | "nopt": "^4.0.1",
475 | "npm-packlist": "^1.1.6",
476 | "npmlog": "^4.0.2",
477 | "rc": "^1.2.7",
478 | "rimraf": "^2.6.1",
479 | "semver": "^5.3.0",
480 | "tar": "^4.4.2"
481 | }
482 | },
483 | "nopt": {
484 | "version": "4.0.3",
485 | "resolved": "https://registry.npmjs.org/nopt/-/nopt-4.0.3.tgz",
486 | "integrity": "sha512-CvaGwVMztSMJLOeXPrez7fyfObdZqNUK1cPAEzLHrTybIua9pMdmmPR5YwtfNftIOMv3DPUhFaxsZMNTQO20Kg==",
487 | "requires": {
488 | "abbrev": "1",
489 | "osenv": "^0.1.4"
490 | }
491 | },
492 | "npm-bundled": {
493 | "version": "1.1.1",
494 | "resolved": "https://registry.npmjs.org/npm-bundled/-/npm-bundled-1.1.1.tgz",
495 | "integrity": "sha512-gqkfgGePhTpAEgUsGEgcq1rqPXA+tv/aVBlgEzfXwA1yiUJF7xtEt3CtVwOjNYQOVknDk0F20w58Fnm3EtG0fA==",
496 | "requires": {
497 | "npm-normalize-package-bin": "^1.0.1"
498 | }
499 | },
500 | "npm-normalize-package-bin": {
501 | "version": "1.0.1",
502 | "resolved": "https://registry.npmjs.org/npm-normalize-package-bin/-/npm-normalize-package-bin-1.0.1.tgz",
503 | "integrity": "sha512-EPfafl6JL5/rU+ot6P3gRSCpPDW5VmIzX959Ob1+ySFUuuYHWHekXpwdUZcKP5C+DS4GEtdJluwBjnsNDl+fSA=="
504 | },
505 | "npm-packlist": {
506 | "version": "1.4.8",
507 | "resolved": "https://registry.npmjs.org/npm-packlist/-/npm-packlist-1.4.8.tgz",
508 | "integrity": "sha512-5+AZgwru5IevF5ZdnFglB5wNlHG1AOOuw28WhUq8/8emhBmLv6jX5by4WJCh7lW0uSYZYS6DXqIsyZVIXRZU9A==",
509 | "requires": {
510 | "ignore-walk": "^3.0.1",
511 | "npm-bundled": "^1.0.1",
512 | "npm-normalize-package-bin": "^1.0.1"
513 | }
514 | },
515 | "npmlog": {
516 | "version": "4.1.2",
517 | "resolved": "https://registry.npmjs.org/npmlog/-/npmlog-4.1.2.tgz",
518 | "integrity": "sha512-2uUqazuKlTaSI/dC8AzicUck7+IrEaOnN/e0jd3Xtt1KcGpwx30v50mL7oPyr/h9bL3E4aZccVwpwP+5W9Vjkg==",
519 | "requires": {
520 | "are-we-there-yet": "~1.1.2",
521 | "console-control-strings": "~1.1.0",
522 | "gauge": "~2.7.3",
523 | "set-blocking": "~2.0.0"
524 | }
525 | },
526 | "number-is-nan": {
527 | "version": "1.0.1",
528 | "resolved": "https://registry.npmjs.org/number-is-nan/-/number-is-nan-1.0.1.tgz",
529 | "integrity": "sha1-CXtgK1NCKlIsGvuHkDGDNpQaAR0="
530 | },
531 | "object-assign": {
532 | "version": "4.1.1",
533 | "resolved": "https://registry.npmjs.org/object-assign/-/object-assign-4.1.1.tgz",
534 | "integrity": "sha1-IQmtx5ZYh8/AXLvUQsrIv7s2CGM="
535 | },
536 | "once": {
537 | "version": "1.4.0",
538 | "resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz",
539 | "integrity": "sha1-WDsap3WWHUsROsF9nFC6753Xa9E=",
540 | "requires": {
541 | "wrappy": "1"
542 | }
543 | },
544 | "os-homedir": {
545 | "version": "1.0.2",
546 | "resolved": "https://registry.npmjs.org/os-homedir/-/os-homedir-1.0.2.tgz",
547 | "integrity": "sha1-/7xJiDNuDoM94MFox+8VISGqf7M="
548 | },
549 | "os-tmpdir": {
550 | "version": "1.0.2",
551 | "resolved": "https://registry.npmjs.org/os-tmpdir/-/os-tmpdir-1.0.2.tgz",
552 | "integrity": "sha1-u+Z0BseaqFxc/sdm/lc0VV36EnQ="
553 | },
554 | "osenv": {
555 | "version": "0.1.5",
556 | "resolved": "https://registry.npmjs.org/osenv/-/osenv-0.1.5.tgz",
557 | "integrity": "sha512-0CWcCECdMVc2Rw3U5w9ZjqX6ga6ubk1xDVKxtBQPK7wis/0F2r9T6k4ydGYhecl7YUBxBVxhL5oisPsNxAPe2g==",
558 | "requires": {
559 | "os-homedir": "^1.0.0",
560 | "os-tmpdir": "^1.0.0"
561 | }
562 | },
563 | "path-is-absolute": {
564 | "version": "1.0.1",
565 | "resolved": "https://registry.npmjs.org/path-is-absolute/-/path-is-absolute-1.0.1.tgz",
566 | "integrity": "sha1-F0uSaHNVNP+8es5r9TpanhtcX18="
567 | },
568 | "process-nextick-args": {
569 | "version": "2.0.1",
570 | "resolved": "https://registry.npmjs.org/process-nextick-args/-/process-nextick-args-2.0.1.tgz",
571 | "integrity": "sha512-3ouUOpQhtgrbOa17J7+uxOTpITYWaGP7/AhoR3+A+/1e9skrzelGi/dXzEYyvbxubEF6Wn2ypscTKiKJFFn1ag=="
572 | },
573 | "progress": {
574 | "version": "2.0.3",
575 | "resolved": "https://registry.npmjs.org/progress/-/progress-2.0.3.tgz",
576 | "integrity": "sha512-7PiHtLll5LdnKIMw100I+8xJXR5gW2QwWYkT6iJva0bXitZKa/XMrSbdmg3r2Xnaidz9Qumd0VPaMrZlF9V9sA=="
577 | },
578 | "rc": {
579 | "version": "1.2.8",
580 | "resolved": "https://registry.npmjs.org/rc/-/rc-1.2.8.tgz",
581 | "integrity": "sha512-y3bGgqKj3QBdxLbLkomlohkvsA8gdAiUQlSBJnBhfn+BPxg4bc62d8TcBW15wavDfgexCgccckhcZvywyQYPOw==",
582 | "requires": {
583 | "deep-extend": "^0.6.0",
584 | "ini": "~1.3.0",
585 | "minimist": "^1.2.0",
586 | "strip-json-comments": "~2.0.1"
587 | }
588 | },
589 | "readable-stream": {
590 | "version": "2.3.7",
591 | "resolved": "https://registry.npmjs.org/readable-stream/-/readable-stream-2.3.7.tgz",
592 | "integrity": "sha512-Ebho8K4jIbHAxnuxi7o42OrZgF/ZTNcsZj6nRKyUmkhLFq8CHItp/fy6hQZuZmP/n3yZ9VBUbp4zz/mX8hmYPw==",
593 | "requires": {
594 | "core-util-is": "~1.0.0",
595 | "inherits": "~2.0.3",
596 | "isarray": "~1.0.0",
597 | "process-nextick-args": "~2.0.0",
598 | "safe-buffer": "~5.1.1",
599 | "string_decoder": "~1.1.1",
600 | "util-deprecate": "~1.0.1"
601 | }
602 | },
603 | "rimraf": {
604 | "version": "2.7.1",
605 | "resolved": "https://registry.npmjs.org/rimraf/-/rimraf-2.7.1.tgz",
606 | "integrity": "sha512-uWjbaKIK3T1OSVptzX7Nl6PvQ3qAGtKEtVRjRuazjfL3Bx5eI409VZSqgND+4UNnmzLVdPj9FqFJNPqBZFve4w==",
607 | "requires": {
608 | "glob": "^7.1.3"
609 | }
610 | },
611 | "safe-buffer": {
612 | "version": "5.1.2",
613 | "resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.1.2.tgz",
614 | "integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g=="
615 | },
616 | "safer-buffer": {
617 | "version": "2.1.2",
618 | "resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz",
619 | "integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg=="
620 | },
621 | "sax": {
622 | "version": "1.2.4",
623 | "resolved": "https://registry.npmjs.org/sax/-/sax-1.2.4.tgz",
624 | "integrity": "sha512-NqVDv9TpANUjFm0N8uM5GxL36UgKi9/atZw+x7YFnQ8ckwFGKrl4xX4yWtrey3UJm5nP1kUbnYgLopqWNSRhWw=="
625 | },
626 | "seedrandom": {
627 | "version": "2.4.3",
628 | "resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-2.4.3.tgz",
629 | "integrity": "sha1-JDhQTa0zkXMUv/GKxNeU8W1qrsw="
630 | },
631 | "semver": {
632 | "version": "5.7.1",
633 | "resolved": "https://registry.npmjs.org/semver/-/semver-5.7.1.tgz",
634 | "integrity": "sha512-sauaDf/PZdVgrLTNYHRtpXa1iRiKcaebiKQ1BJdpQlWH2lCvexQdX55snPFyK7QzpudqbCI0qXFfOasHdyNDGQ=="
635 | },
636 | "set-blocking": {
637 | "version": "2.0.0",
638 | "resolved": "https://registry.npmjs.org/set-blocking/-/set-blocking-2.0.0.tgz",
639 | "integrity": "sha1-BF+XgtARrppoA93TgrJDkrPYkPc="
640 | },
641 | "signal-exit": {
642 | "version": "3.0.3",
643 | "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.3.tgz",
644 | "integrity": "sha512-VUJ49FC8U1OxwZLxIbTTrDvLnf/6TDgxZcK8wxR8zs13xpx7xbG60ndBlhNrFi2EMuFRoeDoJO7wthSLq42EjA=="
645 | },
646 | "string-width": {
647 | "version": "1.0.2",
648 | "resolved": "https://registry.npmjs.org/string-width/-/string-width-1.0.2.tgz",
649 | "integrity": "sha1-EYvfW4zcUaKn5w0hHgfisLmxB9M=",
650 | "requires": {
651 | "code-point-at": "^1.0.0",
652 | "is-fullwidth-code-point": "^1.0.0",
653 | "strip-ansi": "^3.0.0"
654 | }
655 | },
656 | "string_decoder": {
657 | "version": "1.1.1",
658 | "resolved": "https://registry.npmjs.org/string_decoder/-/string_decoder-1.1.1.tgz",
659 | "integrity": "sha512-n/ShnvDi6FHbbVfviro+WojiFzv+s8MPMHBczVePfUpDJLwoLT0ht1l4YwBCbi8pJAveEEdnkHyPyTP/mzRfwg==",
660 | "requires": {
661 | "safe-buffer": "~5.1.0"
662 | }
663 | },
664 | "strip-ansi": {
665 | "version": "3.0.1",
666 | "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-3.0.1.tgz",
667 | "integrity": "sha1-ajhfuIU9lS1f8F0Oiq+UJ43GPc8=",
668 | "requires": {
669 | "ansi-regex": "^2.0.0"
670 | }
671 | },
672 | "strip-json-comments": {
673 | "version": "2.0.1",
674 | "resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-2.0.1.tgz",
675 | "integrity": "sha1-PFMZQukIwml8DsNEhYwobHygpgo="
676 | },
677 | "tar": {
678 | "version": "4.4.19",
679 | "resolved": "https://registry.npmjs.org/tar/-/tar-4.4.19.tgz",
680 | "integrity": "sha512-a20gEsvHnWe0ygBY8JbxoM4w3SJdhc7ZAuxkLqh+nvNQN2IOt0B5lLgM490X5Hl8FF0dl0tOf2ewFYAlIFgzVA==",
681 | "requires": {
682 | "chownr": "^1.1.4",
683 | "fs-minipass": "^1.2.7",
684 | "minipass": "^2.9.0",
685 | "minizlib": "^1.3.3",
686 | "mkdirp": "^0.5.5",
687 | "safe-buffer": "^5.2.1",
688 | "yallist": "^3.1.1"
689 | },
690 | "dependencies": {
691 | "safe-buffer": {
692 | "version": "5.2.1",
693 | "resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.2.1.tgz",
694 | "integrity": "sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ=="
695 | }
696 | }
697 | },
698 | "tiny-glob": {
699 | "version": "0.2.6",
700 | "resolved": "https://registry.npmjs.org/tiny-glob/-/tiny-glob-0.2.6.tgz",
701 | "integrity": "sha512-A7ewMqPu1B5PWwC3m7KVgAu96Ch5LA0w4SnEN/LbDREj/gAD0nPWboRbn8YoP9ISZXqeNAlMvKSKoEuhcfK3Pw==",
702 | "requires": {
703 | "globalyzer": "^0.1.0",
704 | "globrex": "^0.1.1"
705 | }
706 | },
707 | "tr46": {
708 | "version": "0.0.3",
709 | "resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
710 | "integrity": "sha1-gYT9NH2snNwYWZLzpmIuFLnZq2o="
711 | },
712 | "util-deprecate": {
713 | "version": "1.0.2",
714 | "resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
715 | "integrity": "sha1-RQ1Nyfpw3nMnYvvS1KKJgUGaDM8="
716 | },
717 | "webidl-conversions": {
718 | "version": "3.0.1",
719 | "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
720 | "integrity": "sha1-JFNCdeKnvGvnvIZhHMFq4KVlSHE="
721 | },
722 | "whatwg-url": {
723 | "version": "5.0.0",
724 | "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
725 | "integrity": "sha1-lmRU6HZUYuN2RNNib2dCzotwll0=",
726 | "requires": {
727 | "tr46": "~0.0.3",
728 | "webidl-conversions": "^3.0.0"
729 | }
730 | },
731 | "wide-align": {
732 | "version": "1.1.3",
733 | "resolved": "https://registry.npmjs.org/wide-align/-/wide-align-1.1.3.tgz",
734 | "integrity": "sha512-QGkOQc8XL6Bt5PwnsExKBPuMKBxnGxWWW3fU55Xt4feHozMUhdUMaBCk290qpm/wG5u/RSKzwdAC4i51YigihA==",
735 | "requires": {
736 | "string-width": "^1.0.2 || 2"
737 | }
738 | },
739 | "wrappy": {
740 | "version": "1.0.2",
741 | "resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz",
742 | "integrity": "sha1-tSQ9jz7BqjXxNkYFvA0QNuMKtp8="
743 | },
744 | "yallist": {
745 | "version": "3.1.1",
746 | "resolved": "https://registry.npmjs.org/yallist/-/yallist-3.1.1.tgz",
747 | "integrity": "sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g=="
748 | }
749 | }
750 | }
751 |
--------------------------------------------------------------------------------
/package.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "RhythmVAE",
3 | "version": "1.0.0",
4 | "main": "rhythmvae.js",
5 | "scripts": {
6 | "test": "echo \"Error: no test specified\" && exit 1"
7 | },
8 | "keywords": [],
9 | "author": "",
10 | "license": "ISC",
11 | "dependencies": {
12 | "@tensorflow/tfjs-node": "^1.7.4",
13 | "@tonejs/midi": "^2.0.25",
14 | "cross-fetch": "^3.1.5",
15 | "glob": "^7.1.6",
16 | "tiny-glob": "^0.2.6"
17 | },
18 | "description": "Max for Live(M4L) Rhythm generator using Variational Autoencoder(VAE)",
19 | "devDependencies": {},
20 | "repository": {
21 | "type": "git",
22 | "url": "git+https://github.com/naotokui/RhythmVAE_M4L.git"
23 | },
24 | "bugs": {
25 | "url": "https://github.com/naotokui/RhythmVAE_M4L/issues"
26 | },
27 | "homepage": "https://github.com/naotokui/RhythmVAE_M4L#readme"
28 | }
29 |
--------------------------------------------------------------------------------
/release/M4L.RhythmVAE.amxd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/release/M4L.RhythmVAE.amxd
--------------------------------------------------------------------------------
/release/models/house_techno_breakbeat_jungle_96.model/model.json:
--------------------------------------------------------------------------------
1 | {"modelTopology":{"class_name":"Model","config":{"name":"decoder","layers":[{"name":"input4","class_name":"InputLayer","config":{"batch_input_shape":[null,2],"dtype":"float32","sparse":false,"name":"input4"},"inbound_nodes":[]},{"name":"dense_Dense7","class_name":"Dense","config":{"units":1024,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense7","trainable":true},"inbound_nodes":[[["input4",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization5","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization5","trainable":true},"inbound_nodes":[[["dense_Dense7",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU5","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU5","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization5",0,0,{}]]]},{"name":"dense_Dense8","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense8","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU5",0,0,{}]]]},{"name":"dense_Dense10","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense10","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU5",0,0,{}]]]},{"name":"dense_Dense12","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense12","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU5",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization6","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization6","trainable":true},"inbound_nodes":[[["dense_Dense8",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization7","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization7","trainable":true},"inbound_nodes":[[["dense_Dense10",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization8","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization8","trainable":true},"inbound_nodes":[[["dense_Dense12",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU6","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU6","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization6",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU7","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU7","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization7",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU8","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU8","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization8",0,0,{}]]]},{"name":"dense_Dense9","class_name":"Dense","config":{"units":864,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense9","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU6",0,0,{}]]]},{"name":"dense_Dense11","class_name":"Dense","config":{"units":864,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense11","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU7",0,0,{}]]]},{"name":"dense_Dense13","class_name":"Dense","config":{"units":864,"activation":"tanh","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense13","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU8",0,0,{}]]]}],"input_layers":[["input4",0,0]],"output_layers":[["dense_Dense9",0,0],["dense_Dense11",0,0],["dense_Dense13",0,0]]},"keras_version":"tfjs-layers 1.7.4","backend":"tensor_flow.js"},"weightsManifest":[{"paths":["weights.bin"],"weights":[{"name":"dense_Dense7/kernel","shape":[2,1024],"dtype":"float32"},{"name":"dense_Dense7/bias","shape":[1024],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/gamma","shape":[1024],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/beta","shape":[1024],"dtype":"float32"},{"name":"dense_Dense8/kernel","shape":[1024,512],"dtype":"float32"},{"name":"dense_Dense8/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense10/kernel","shape":[1024,512],"dtype":"float32"},{"name":"dense_Dense10/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense12/kernel","shape":[1024,512],"dtype":"float32"},{"name":"dense_Dense12/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense9/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense9/bias","shape":[864],"dtype":"float32"},{"name":"dense_Dense11/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense11/bias","shape":[864],"dtype":"float32"},{"name":"dense_Dense13/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense13/bias","shape":[864],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/moving_mean","shape":[1024],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/moving_variance","shape":[1024],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/moving_variance","shape":[512],"dtype":"float32"}]}],"format":"layers-model","generatedBy":"TensorFlow.js tfjs-layers v1.7.4","convertedBy":null}
--------------------------------------------------------------------------------
/release/models/house_techno_breakbeat_jungle_96.model/weights.bin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/release/models/house_techno_breakbeat_jungle_96.model/weights.bin
--------------------------------------------------------------------------------
/release/models/model_2020128_15444.model/model.json:
--------------------------------------------------------------------------------
1 | {"modelTopology":{"class_name":"Model","config":{"name":"decoder","layers":[{"name":"input4","class_name":"InputLayer","config":{"batch_input_shape":[null,2],"dtype":"float32","sparse":false,"name":"input4"},"inbound_nodes":[]},{"name":"dense_Dense7","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense7","trainable":true},"inbound_nodes":[[["input4",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization5","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization5","trainable":true},"inbound_nodes":[[["dense_Dense7",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU5","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU5","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization5",0,0,{}]]]},{"name":"dense_Dense8","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense8","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU5",0,0,{}]]]},{"name":"dense_Dense10","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense10","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU5",0,0,{}]]]},{"name":"dense_Dense12","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense12","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU5",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization6","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization6","trainable":true},"inbound_nodes":[[["dense_Dense8",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization7","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization7","trainable":true},"inbound_nodes":[[["dense_Dense10",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization8","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization8","trainable":true},"inbound_nodes":[[["dense_Dense12",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU6","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU6","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization6",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU7","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU7","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization7",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU8","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU8","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization8",0,0,{}]]]},{"name":"dense_Dense9","class_name":"Dense","config":{"units":864,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense9","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU6",0,0,{}]]]},{"name":"dense_Dense11","class_name":"Dense","config":{"units":864,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense11","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU7",0,0,{}]]]},{"name":"dense_Dense13","class_name":"Dense","config":{"units":864,"activation":"tanh","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense13","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU8",0,0,{}]]]}],"input_layers":[["input4",0,0]],"output_layers":[["dense_Dense9",0,0],["dense_Dense11",0,0],["dense_Dense13",0,0]]},"keras_version":"tfjs-layers 1.7.4","backend":"tensor_flow.js"},"weightsManifest":[{"paths":["weights.bin"],"weights":[{"name":"dense_Dense7/kernel","shape":[2,512],"dtype":"float32"},{"name":"dense_Dense7/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense8/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense8/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense10/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense10/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense12/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense12/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense9/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense9/bias","shape":[864],"dtype":"float32"},{"name":"dense_Dense11/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense11/bias","shape":[864],"dtype":"float32"},{"name":"dense_Dense13/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense13/bias","shape":[864],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization5/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization6/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization7/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization8/moving_variance","shape":[512],"dtype":"float32"}]}],"format":"layers-model","generatedBy":"TensorFlow.js tfjs-layers v1.7.4","convertedBy":null}
--------------------------------------------------------------------------------
/release/models/model_2020128_15444.model/weights.bin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/release/models/model_2020128_15444.model/weights.bin
--------------------------------------------------------------------------------
/release/models/model_2020128_155954.model/model.json:
--------------------------------------------------------------------------------
1 | {"modelTopology":{"class_name":"Model","config":{"name":"decoder","layers":[{"name":"input8","class_name":"InputLayer","config":{"batch_input_shape":[null,2],"dtype":"float32","sparse":false,"name":"input8"},"inbound_nodes":[]},{"name":"dense_Dense20","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense20","trainable":true},"inbound_nodes":[[["input8",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization13","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization13","trainable":true},"inbound_nodes":[[["dense_Dense20",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU13","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU13","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization13",0,0,{}]]]},{"name":"dense_Dense21","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense21","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU13",0,0,{}]]]},{"name":"dense_Dense23","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense23","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU13",0,0,{}]]]},{"name":"dense_Dense25","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense25","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU13",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization14","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization14","trainable":true},"inbound_nodes":[[["dense_Dense21",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization15","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization15","trainable":true},"inbound_nodes":[[["dense_Dense23",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization16","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization16","trainable":true},"inbound_nodes":[[["dense_Dense25",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU14","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU14","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization14",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU15","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU15","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization15",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU16","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU16","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization16",0,0,{}]]]},{"name":"dense_Dense22","class_name":"Dense","config":{"units":864,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense22","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU14",0,0,{}]]]},{"name":"dense_Dense24","class_name":"Dense","config":{"units":864,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense24","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU15",0,0,{}]]]},{"name":"dense_Dense26","class_name":"Dense","config":{"units":864,"activation":"tanh","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense26","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU16",0,0,{}]]]}],"input_layers":[["input8",0,0]],"output_layers":[["dense_Dense22",0,0],["dense_Dense24",0,0],["dense_Dense26",0,0]]},"keras_version":"tfjs-layers 1.7.4","backend":"tensor_flow.js"},"weightsManifest":[{"paths":["weights.bin"],"weights":[{"name":"dense_Dense20/kernel","shape":[2,512],"dtype":"float32"},{"name":"dense_Dense20/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization13/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization13/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense21/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense21/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense23/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense23/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense25/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense25/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization14/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization14/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization15/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization15/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization16/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization16/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense22/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense22/bias","shape":[864],"dtype":"float32"},{"name":"dense_Dense24/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense24/bias","shape":[864],"dtype":"float32"},{"name":"dense_Dense26/kernel","shape":[512,864],"dtype":"float32"},{"name":"dense_Dense26/bias","shape":[864],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization13/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization13/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization14/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization14/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization15/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization15/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization16/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization16/moving_variance","shape":[512],"dtype":"float32"}]}],"format":"layers-model","generatedBy":"TensorFlow.js tfjs-layers v1.7.4","convertedBy":null}
--------------------------------------------------------------------------------
/release/models/model_2020128_155954.model/weights.bin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/release/models/model_2020128_155954.model/weights.bin
--------------------------------------------------------------------------------
/release/models/old_models/README.md:
--------------------------------------------------------------------------------
1 | This folder contains models for old device with the 48x9 grid
2 |
--------------------------------------------------------------------------------
/release/models/old_models/model_electronic_dance_music.model/model.json:
--------------------------------------------------------------------------------
1 | {"modelTopology":{"class_name":"Model","config":{"name":"decoder","layers":[{"name":"input24","class_name":"InputLayer","config":{"batch_input_shape":[null,2],"dtype":"float32","sparse":false,"name":"input24"},"inbound_nodes":[]},{"name":"dense_Dense72","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense72","trainable":true},"inbound_nodes":[[["input24",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization45","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization45","trainable":true},"inbound_nodes":[[["dense_Dense72",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU45","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU45","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization45",0,0,{}]]]},{"name":"dense_Dense73","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense73","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU45",0,0,{}]]]},{"name":"dense_Dense75","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense75","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU45",0,0,{}]]]},{"name":"dense_Dense77","class_name":"Dense","config":{"units":512,"activation":"linear","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense77","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU45",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization46","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization46","trainable":true},"inbound_nodes":[[["dense_Dense73",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization47","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization47","trainable":true},"inbound_nodes":[[["dense_Dense75",0,0,{}]]]},{"name":"batch_normalization_BatchNormalization48","class_name":"BatchNormalization","config":{"axis":1,"momentum":0.99,"epsilon":0.001,"center":true,"scale":true,"beta_initializer":{"class_name":"Zeros","config":{}},"gamma_initializer":{"class_name":"Ones","config":{}},"moving_mean_initializer":{"class_name":"Zeros","config":{}},"moving_variance_initializer":{"class_name":"Ones","config":{}},"beta_regularizer":null,"gamma_regularizer":null,"beta_constraint":null,"gamma_constraint":null,"name":"batch_normalization_BatchNormalization48","trainable":true},"inbound_nodes":[[["dense_Dense77",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU46","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU46","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization46",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU47","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU47","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization47",0,0,{}]]]},{"name":"leaky_re_lu_LeakyReLU48","class_name":"LeakyReLU","config":{"alpha":0.3,"name":"leaky_re_lu_LeakyReLU48","trainable":true},"inbound_nodes":[[["batch_normalization_BatchNormalization48",0,0,{}]]]},{"name":"dense_Dense74","class_name":"Dense","config":{"units":288,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense74","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU46",0,0,{}]]]},{"name":"dense_Dense76","class_name":"Dense","config":{"units":288,"activation":"sigmoid","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense76","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU47",0,0,{}]]]},{"name":"dense_Dense78","class_name":"Dense","config":{"units":288,"activation":"tanh","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense78","trainable":true},"inbound_nodes":[[["leaky_re_lu_LeakyReLU48",0,0,{}]]]}],"input_layers":[["input24",0,0]],"output_layers":[["dense_Dense74",0,0],["dense_Dense76",0,0],["dense_Dense78",0,0]]},"keras_version":"tfjs-layers 1.5.2","backend":"tensor_flow.js"},"weightsManifest":[{"paths":["weights.bin"],"weights":[{"name":"dense_Dense72/kernel","shape":[2,512],"dtype":"float32"},{"name":"dense_Dense72/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization45/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization45/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense73/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense73/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense75/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense75/bias","shape":[512],"dtype":"float32"},{"name":"dense_Dense77/kernel","shape":[512,512],"dtype":"float32"},{"name":"dense_Dense77/bias","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization46/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization46/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization47/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization47/beta","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization48/gamma","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization48/beta","shape":[512],"dtype":"float32"},{"name":"dense_Dense74/kernel","shape":[512,288],"dtype":"float32"},{"name":"dense_Dense74/bias","shape":[288],"dtype":"float32"},{"name":"dense_Dense76/kernel","shape":[512,288],"dtype":"float32"},{"name":"dense_Dense76/bias","shape":[288],"dtype":"float32"},{"name":"dense_Dense78/kernel","shape":[512,288],"dtype":"float32"},{"name":"dense_Dense78/bias","shape":[288],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization45/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization45/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization46/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization46/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization47/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization47/moving_variance","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization48/moving_mean","shape":[512],"dtype":"float32"},{"name":"batch_normalization_BatchNormalization48/moving_variance","shape":[512],"dtype":"float32"}]}],"format":"layers-model","generatedBy":"TensorFlow.js tfjs-layers v1.5.2","convertedBy":null}
--------------------------------------------------------------------------------
/release/models/old_models/model_electronic_dance_music.model/weights.bin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/naotokui/RhythmVAE_M4L/571551efd4bd1e7ebdc9bcb8e238da6f83495aed/release/models/old_models/model_electronic_dance_music.model/weights.bin
--------------------------------------------------------------------------------
/rhythmvae.js:
--------------------------------------------------------------------------------
1 | const path = require('path');
2 | const Max = require('max-api');
3 | const fs = require('fs')
4 | const glob = require('glob');
5 | const tf = require('@tensorflow/tfjs-node');
6 | const { Midi } = require('@tonejs/midi'); // https://github.com/Tonejs/Midi
7 |
8 | // Constants
9 | const MIDI_DRUM_MAP = require('./src/constants.js').MIDI_DRUM_MAP;
10 | const MIDI_DRUM_MAP_STRICT = require('./src/constants.js').MIDI_DRUM_MAP_STRICT;
11 | const DRUM_CLASSES = require('./src/constants.js').DRUM_CLASSES;
12 | const NUM_DRUM_CLASSES = require('.//src/constants.js').NUM_DRUM_CLASSES;
13 | const LOOP_DURATION = require('.//src/constants.js').LOOP_DURATION;
14 | const MIN_ONSETS_THRESHOLD = require('./src/constants.js').MIN_ONSETS_THRESHOLD;
15 | const BEAT_RESOLUTION = require('./src/constants.js').BEAT_RESOLUTION;
16 |
17 | // VAE model and Utilities
18 | const utils = require('./src/utils.js');
19 | const vae = require('./src/vae.js');
20 |
21 | // This will be printed directly to the Max console
22 | Max.post(`Loaded the ${path.basename(__filename)} script`);
23 |
24 | // Global varibles
25 | var train_data_onsets = [];
26 | var train_data_velocities = [];
27 | var train_data_timeshifts = [];
28 | var isGenerating = false;
29 |
30 | function isValidMIDIFile(midiFile){
31 | if (midiFile.header.tempos.length > 1){
32 | utils.error("not compatible with midi files containing multiple tempo changes")
33 | return false;
34 | }
35 | return true;
36 | }
37 |
38 | function getTempo(midiFile){
39 | if (midiFile.header.tempos.length == 0) return 120.0 // no tempo info, then use 120.0
40 | return midiFile.header.tempos[0].bpm; // use the first tempo info and ignore tempo changes in MIDI file
41 | }
42 |
43 | // Get location of a note in pianoroll
44 | function getNoteIndexAndTimeshift(note, tempo){
45 | const unit = (60.0 / tempo) / BEAT_RESOLUTION; // the duration of 16th note
46 | const half_unit = unit * 0.5;
47 |
48 | const index = Math.max(0, Math.floor((note.time + half_unit) / unit)) // centering
49 | const timeshift = (note.time - unit * index)/half_unit; // normalized
50 |
51 | return [index, timeshift];
52 | }
53 |
54 | function getNumOfDrumOnsets(onsets){
55 | var count = 0;
56 | for (var i = 0; i < NUM_DRUM_CLASSES; i++){
57 | for (var j=0; j < LOOP_DURATION; j++){
58 | if (onsets[i][j] > 0) count += 1;
59 | }
60 | }
61 | return count;
62 | }
63 |
64 |
65 |
66 | // Convert midi into pianoroll matrix
67 | function processPianoroll(midiFile, midi_map){
68 | const tempo = getTempo(midiFile);
69 |
70 | // data array
71 | var onsets = [];
72 | var velocities = [];
73 | var timeshifts = [];
74 |
75 | midiFile.tracks.forEach(track => {
76 |
77 | //notes are an array
78 | const notes = track.notes
79 | notes.forEach(note => {
80 | if ((note.midi in midi_map)){
81 | let timing = getNoteIndexAndTimeshift(note, tempo);
82 | let index = timing[0];
83 | let timeshift = timing[1];
84 |
85 | // add new array
86 | while (Math.floor(index / LOOP_DURATION) >= onsets.length){
87 | onsets.push(utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION));
88 | velocities.push(utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION));
89 | timeshifts.push(utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION));
90 | }
91 |
92 | // store velocity
93 | let drum_id = midi_map[note.midi];
94 |
95 | let matrix = onsets[Math.floor(index / LOOP_DURATION)];
96 | matrix[drum_id][index % LOOP_DURATION] = 1; // 1 for onsets
97 |
98 | matrix = velocities[Math.floor(index / LOOP_DURATION)];
99 | matrix[drum_id][index % LOOP_DURATION] = note.velocity; // normalized 0 - 1
100 |
101 | // store timeshift
102 | matrix = timeshifts[Math.floor(index / LOOP_DURATION)];
103 | matrix[drum_id][index % LOOP_DURATION] = timeshift; // normalized -1 - 1
104 | }
105 | })
106 | })
107 |
108 | /* for debug - output pianoroll */
109 | // if (velocities.length > 0){
110 | // var index = utils.getRandomInt(velocities.length);
111 | // let x = velocities[index];
112 | // for (var i=0; i< NUM_DRUM_CLASSES; i++){
113 | // for (var j=0; j < LOOP_DURATION; j++){
114 | // Max.outlet("matrix_output", j, i, Math.ceil(x[i][j]));
115 | // }
116 | // }
117 | // }
118 |
119 | // 2D array to tf.tensor2d
120 | for (var i=0; i < onsets.length; i++){
121 | if (getNumOfDrumOnsets(onsets[i]) > MIN_ONSETS_THRESHOLD){
122 | train_data_onsets.push(tf.tensor2d(onsets[i], [NUM_DRUM_CLASSES, LOOP_DURATION]));
123 | train_data_velocities.push(tf.tensor2d(velocities[i], [NUM_DRUM_CLASSES, LOOP_DURATION]));
124 | train_data_timeshifts.push(tf.tensor2d(timeshifts[i], [NUM_DRUM_CLASSES, LOOP_DURATION]));
125 | }
126 | }
127 | }
128 |
129 | function processMidiFile(filename, mapping = 0){
130 | // // Read MIDI file into a buffer
131 | var input = fs.readFileSync(filename)
132 |
133 | var midiFile = new Midi(input);
134 | if (isValidMIDIFile(midiFile) == false){
135 | utils.error("Invalid MIDI file: " + filename);
136 | return false;
137 | }
138 |
139 | var tempo = getTempo(midiFile);
140 | // console.log("tempo:", tempo);
141 | // console.log("signature:", midiFile.header.timeSignatures);
142 |
143 | // select mapping
144 | if (mapping == 0) midi_map = MIDI_DRUM_MAP_STRICT;
145 | else midi_map = MIDI_DRUM_MAP;
146 |
147 | processPianoroll(midiFile, midi_map);
148 | // console.log("processed:", filename);
149 | return true;
150 | }
151 |
152 | // Add training data
153 | Max.addHandler("midi", (filename, mapping) => {
154 | var count = 0;
155 | // is directory?
156 | if (fs.existsSync(filename) && fs.lstatSync(filename).isDirectory()){
157 | // iterate over *.mid or *.midi files
158 | glob(filename + '**/*.@(mid|midi)', {}, (err, files)=>{
159 | utils.post("# of files in dir: " + files.length);
160 | if (err) utils.error(err);
161 | else {
162 | for (var idx in files){
163 | try {
164 | if (processMidiFile(files[idx], mapping)) count += 1;
165 | } catch(error) {
166 | console.error("failed to process " + files[idx] + " - " + error);
167 | }
168 | }
169 | utils.post("# of midi files added: " + count);
170 | reportNumberOfBars();
171 | }
172 | })
173 | } else {
174 | if (processMidiFile(filename, mapping)) count += 1;
175 | Max.post("# of midi files added: " + count);
176 | reportNumberOfBars();
177 | }
178 | });
179 |
180 | // Start training!
181 | Max.addHandler("train", ()=>{
182 | if (vae.isTraining()){
183 | utils.error_status("Failed to start training. There is already an ongoing training process.");
184 | return;
185 | }
186 |
187 | if (train_data_onsets.length == 0){
188 | utils.error_status("No training data provided.");
189 | return;
190 | }
191 |
192 | // Start training
193 | utils.log_status("Start training...");
194 | console.log("# of bars in training data:", train_data_onsets.length * 2);
195 | reportNumberOfBars();
196 | vae.loadAndTrain(train_data_onsets, train_data_velocities, train_data_timeshifts);
197 | });
198 |
199 | // Generate a rhythm pattern
200 | Max.addHandler("generate", (z1, z2, threshold, noise_range = 0.0)=>{
201 | try {
202 | generatePattern(z1, z2, threshold, noise_range);
203 | } catch(error) {
204 | utils.error_status(error);
205 | }
206 | });
207 |
208 | async function generatePattern(z1, z2, threshold, noise_range){
209 | if (vae.isReadyToGenerate()){
210 | if (isGenerating) return;
211 |
212 | isGenerating = true;
213 | let [onsets, velocities, timeshifts] = vae.generatePattern(z1, z2, noise_range);
214 | Max.outlet("matrix_clear", 1); // clear all
215 | for (var i=0; i< NUM_DRUM_CLASSES; i++){
216 | var sequence = []; // for velocity
217 | var sequenceTS = []; // for timeshift
218 | // output for matrix view
219 | for (var j=0; j < LOOP_DURATION; j++){
220 | // if (pattern[i * LOOP_DURATION + j] > 0.2) x = 1;
221 | if (onsets[i][j] > threshold){
222 | Max.outlet("matrix_output", j + 1, i + 1, 1); // index for live.grid starts from 1
223 |
224 | // for live.step
225 | sequence.push(Math.floor(velocities[i][j]*127. + 1)); // 0-1 -> 1-127
226 | sequenceTS.push(Math.floor(utils.scale(timeshifts[i][j], -1., 1, 0, 127))); // -1 - 1 -> 0 - 127
227 | } else {
228 | sequence.push(0);
229 | sequenceTS.push(64);
230 | }
231 | }
232 |
233 | // output for live.step object
234 | Max.outlet("seq_output", i+1, sequence.join(" "));
235 | Max.outlet("timeshift_output", i+1, sequenceTS.join(" "));
236 | }
237 | Max.outlet("generated", 1);
238 | utils.log_status("");
239 | isGenerating = false;
240 | } else {
241 | if (vae.isTraining()){
242 | utils.error_status("Still training...");
243 | } else {
244 | utils.error_status("Model is not trained yet");
245 | }
246 | }
247 | }
248 |
249 |
250 |
251 | // Start encoding... reset input matrix
252 | var input_onset;
253 | var input_velocity;
254 | var input_timeshift;
255 | Max.addHandler("encode_start", (is_test) => {
256 | Max.post("encode_start");
257 | input_onset = utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION);
258 | input_velocity = utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION);
259 | input_timeshift = utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION);
260 |
261 | if (is_test){
262 | for (var i=0; i < LOOP_DURATION; i=i+4){
263 | input_onset[0][i] = 1;
264 | input_velocity[0][i] = 0.8;
265 | }
266 |
267 | }
268 | });
269 |
270 | Max.addHandler("encode_add", (pitch, time, duration, velocity, muted, mapping) => {
271 |
272 | // select mapping
273 | if (mapping == 0) midi_map = MIDI_DRUM_MAP_STRICT;
274 | else midi_map = MIDI_DRUM_MAP;
275 |
276 | // add note
277 | if (!muted){
278 | var unit = 0.25; // 1.0 = quarter note grid size = 16th note
279 | const half_unit = unit * 0.5;
280 | const index = Math.max(0, Math.floor((time + half_unit) / unit)) // centering
281 | const timeshift = (time - unit * index)/half_unit; // normalized
282 | Max.post("index", index, timeshift, pitch);
283 | // Ignore notes after the first 2 bars
284 | if (index < LOOP_DURATION && pitch in midi_map){
285 | let drum_id = midi_map[pitch];
286 | Max.post("pitch", pitch, drum_id);
287 | input_onset[drum_id][index] = 1;
288 | input_velocity[drum_id][index] = velocity/127.;
289 | input_timeshift[drum_id][index] = timeshift;
290 | }
291 | }
292 | });
293 |
294 | Max.addHandler("encode_done", () => {
295 | utils.post(input_onset);
296 | utils.post(input_velocity);
297 | utils.post(input_timeshift);
298 |
299 | // Encoding!
300 | var inputOn = tf.tensor2d(input_onset, [NUM_DRUM_CLASSES, LOOP_DURATION])
301 | var inputVel = tf.tensor2d(input_velocity, [NUM_DRUM_CLASSES, LOOP_DURATION])
302 | var inputTS = tf.tensor2d(input_timeshift, [NUM_DRUM_CLASSES, LOOP_DURATION])
303 | let zs = vae.encodePattern(inputOn, inputVel, inputTS);
304 |
305 | // output encoded z vector
306 | utils.post(zs)
307 | Max.outlet("zs", zs[0], zs[1]);
308 | });
309 |
310 | // Clear training data
311 | Max.addHandler("clear_train", ()=>{
312 | train_data_onsets = []; // clear
313 | train_data_velocities = [];
314 | train_data_timeshift = [];
315 |
316 | reportNumberOfBars();
317 | });
318 |
319 | Max.addHandler("stop", ()=>{
320 | vae.stopTraining();
321 | });
322 |
323 | Max.addHandler("savemodel", (path)=>{
324 | // check if already trained or not
325 | if (vae.isReadyToGenerate()){
326 | filepath = "file://" + path;
327 | vae.saveModel(filepath);
328 | utils.log_status("Model saved.");
329 | } else {
330 | utils.error_status("Train a model first!");
331 | }
332 | });
333 |
334 | Max.addHandler("loadmodel", (path)=>{
335 | filepath = "file://" + path;
336 | vae.loadModel(filepath);
337 | utils.log_status("Model loaded!");
338 | });
339 |
340 | Max.addHandler("clearmodel", ()=>{
341 | vae.clearModel();
342 | utils.log_status("Model reset");
343 | });
344 |
345 | Max.addHandler("epochs", (e)=>{
346 | vae.setEpochs(e);
347 | utils.post("number of epochs: " + e);
348 | });
349 |
350 | function reportNumberOfBars(){
351 | Max.outlet("train_bars", train_data_onsets.length * 2); // number of bars for training
352 | }
353 |
354 | // Generate a rhythm pattern
355 | Max.addHandler("bend", (noise_range = 0.0)=>{
356 | try {
357 | vae.bendModel(noise_range);
358 | } catch(error) {
359 | console.log(error);
360 | utils.error_status("model bending failed");
361 | }
362 | });
363 |
364 | Max.outlet("loaded");
--------------------------------------------------------------------------------
/src/constants.js:
--------------------------------------------------------------------------------
1 |
2 |
3 | const DRUM_CLASSES = [
4 | 'Kick',
5 | 'Snare',
6 | 'Hi-hat closed',
7 | 'Hi-hat open',
8 | 'Tom low',
9 | 'Tom mid',
10 | 'Tom high',
11 | 'Clap',
12 | 'Rim'
13 | ]
14 |
15 | const MIDI_DRUM_MAP = {
16 | 36: 0,
17 | 35: 0,
18 | 38: 1,
19 | 27: 1,
20 | 28: 1,
21 | 31: 1,
22 | 32: 1,
23 | 33: 1,
24 | 34: 1,
25 | 37: 1,
26 | 39: 1,
27 | 40: 1,
28 | 56: 1,
29 | 65: 1,
30 | 66: 1,
31 | 75: 1,
32 | 85: 1,
33 | 42: 2,
34 | 44: 2,
35 | 54: 2,
36 | 68: 2,
37 | 69: 2,
38 | 70: 2,
39 | 71: 2,
40 | 73: 2,
41 | 78: 2,
42 | 80: 2,
43 | 46: 3,
44 | 67: 3,
45 | 72: 3,
46 | 74: 3,
47 | 79: 3,
48 | 81: 3,
49 | 45: 4,
50 | 29: 4,
51 | 41: 4,
52 | 61: 4,
53 | 64: 4,
54 | 84: 4,
55 | 48: 5,
56 | 47: 5,
57 | 60: 5,
58 | 63: 5,
59 | 77: 5,
60 | 86: 5,
61 | 87: 5,
62 | 50: 6,
63 | 30: 6,
64 | 43: 6,
65 | 62: 6,
66 | 76: 6,
67 | 83: 6,
68 | 49: 7,
69 | 55: 7,
70 | 57: 7,
71 | 58: 7,
72 | 51: 8,
73 | 52: 8,
74 | 53: 8,
75 | 59: 8,
76 | 82: 8
77 | }
78 |
79 | const MIDI_DRUM_MAP_STRICT = {
80 | 36: 0, // Acoustic Bass Drum
81 | 35: 0, // Bass drum
82 | 38: 1, // Acoustic Snare
83 | 40: 1, // Electric Snare
84 | 42: 2, // closed hihat
85 | 44: 3, // pedal hihat
86 | 46: 3, // open hihat
87 | 41: 4, // low floor tom
88 | 45: 4, // low tom
89 | 47: 5, // low-mid tom
90 | 48: 5, // high-mid tom
91 | 43: 6, // high floor tom
92 | 50: 6, // high tom
93 | 39: 7, // hand clap
94 | 51: 8, // Ride Symbal 1
95 | 52: 8, // Chinese Symbal
96 | 53: 8, // Ride Bell
97 | 59: 8, // Ride Symbal 2
98 | }
99 |
100 |
101 | const NUM_DRUM_CLASSES = DRUM_CLASSES.length;
102 | const BEAT_RESOLUTION = 12;
103 | const LOOP_DURATION = BEAT_RESOLUTION * 4 * 2; // 2bars x 16th note
104 |
105 | const MIN_ONSETS_THRESHOLD = 5; // ignore loops with onsets less than this num
106 |
107 | const ORIGINAL_DIM = NUM_DRUM_CLASSES * LOOP_DURATION;
108 |
109 | exports.MIDI_DRUM_MAP = MIDI_DRUM_MAP;
110 | exports.MIDI_DRUM_MAP_STRICT = MIDI_DRUM_MAP_STRICT;
111 | exports.DRUM_CLASSES = DRUM_CLASSES;
112 |
113 | exports.NUM_DRUM_CLASSES = NUM_DRUM_CLASSES;
114 | exports.BEAT_RESOLUTION = BEAT_RESOLUTION;
115 | exports.LOOP_DURATION = LOOP_DURATION;
116 | exports.ORIGINAL_DIM = ORIGINAL_DIM;
117 | exports.MIN_ONSETS_THRESHOLD = MIN_ONSETS_THRESHOLD;
118 |
--------------------------------------------------------------------------------
/src/data.js:
--------------------------------------------------------------------------------
1 |
2 | const tf = require('@tensorflow/tfjs-node');
3 | const utils = require('./utils.js')
4 |
5 | const IMAGE_SIZE = 784;
6 | const NUM_CLASSES = 10;
7 |
8 | const TRAIN_TEST_RATIO = 5 / 6;
9 |
10 | const ORIGINAL_DIM = require('./constants.js').ORIGINAL_DIM;
11 |
12 | class DataHandler {
13 | constructor(shuffled_data, trainIndices, testIndices) {
14 | this.dataset = shuffled_data;
15 |
16 | this.shuffledTrainIndex = 0;
17 | this.shuffledTestIndex = 0;
18 |
19 | this.NUM_DATASET_ELEMENTS = this.dataset.length;
20 | this.NUM_TRAIN_ELEMENTS = Math.floor(TRAIN_TEST_RATIO * this.NUM_DATASET_ELEMENTS);
21 | this.NUM_TEST_ELEMENTS = this.NUM_DATASET_ELEMENTS - this.NUM_TRAIN_ELEMENTS;
22 |
23 | // Slice the the training data into train and test sets.
24 | this.trainData = this.dataset.slice(0, this.NUM_TRAIN_ELEMENTS);
25 | this.testData = this.dataset.slice(this.NUM_TRAIN_ELEMENTS);
26 |
27 | // Shuffled indices for both training and test data
28 | this.trainIndices = trainIndices;
29 | this.testIndices = testIndices;
30 | }
31 |
32 | getDataSize(){
33 | return this.dataset.length;
34 | }
35 |
36 | nextTrainBatch(batchSize) {
37 | return this.nextBatch(batchSize, this.trainData, () => {
38 | this.shuffledTrainIndex = (this.shuffledTrainIndex + 1) % this.trainIndices.length;
39 | return this.trainIndices[this.shuffledTrainIndex];
40 | });
41 | }
42 |
43 | nextTestBatch(batchSize) {
44 | return this.nextBatch(batchSize, this.testData, () => {
45 | this.shuffledTestIndex = (this.shuffledTestIndex + 1) % this.testIndices.length;
46 | return this.testIndices[this.shuffledTestIndex];
47 | });
48 | }
49 |
50 | // Create batch from an array of tf.tensor2d
51 | nextBatch(batchSize, data, index) {
52 | const batchArray = [];
53 | for (let i = 0; i < batchSize; i++) {
54 | const idx = index();
55 | batchArray.push(data[idx].reshape([1, ORIGINAL_DIM]));
56 | }
57 | const axis = 0;
58 | const xs = tf.concat(batchArray, axis);
59 | return {xs};
60 | }
61 | }
62 |
63 | exports.DataHandler = DataHandler;
64 | exports.TRAIN_TEST_RATIO = TRAIN_TEST_RATIO;
--------------------------------------------------------------------------------
/src/utils.js:
--------------------------------------------------------------------------------
1 |
2 | const Max = require('max-api');
3 |
4 | // prefixes for max messages
5 | const PREFIX_STATUS = "status";
6 | const PREFIX_LOG = "log";
7 |
8 | const ERROR_FLAG = 1;
9 | const MESSAGE_FLAG = 0;
10 |
11 |
12 | function create2DArray(row, col){
13 | var x = new Array(row);
14 | for (var i = 0; i < x.length; i++) {
15 | x[i] = new Array(col);
16 | for (var j =0; j < x[i].length; j++){
17 | x[i][j] = 0.0;
18 | }
19 | }
20 | return x;
21 | }
22 |
23 | function getRandomInt(max) {
24 | return Math.floor(Math.random() * Math.floor(max));
25 | }
26 |
27 | function scale(value, minIn, maxIn, minOut, maxOut){
28 | value = Math.min(Math.max(value, minIn), maxIn);
29 | value = (value - minIn)/(maxIn - minIn) * (maxOut - minOut) + minOut;
30 | return value;
31 | }
32 |
33 | function shuffle(a) {
34 | var j, x, i;
35 | for (i = a.length - 1; i > 0; i--) {
36 | j = Math.floor(Math.random() * (i + 1));
37 | x = a[i];
38 | a[i] = a[j];
39 | a[j] = x;
40 | }
41 | return a;
42 | }
43 |
44 | function shuffle_with_indices(a, indices){
45 | console.assert(a.length == indices.length);
46 | let b = [];
47 | for (var i = 0; i < indices.length; i++){
48 | b.push(a[indices[i]]);
49 | }
50 | return b;
51 | }
52 |
53 |
54 | function does_post(message, is_error){
55 | if (is_error) Max.post(message, Max.POST_LEVELS.ERROR);
56 | else Max.post(message);
57 | }
58 |
59 | function post(message){
60 | does_post(message, false);
61 | }
62 |
63 | function error(message){
64 | does_post(message, true);
65 | }
66 |
67 | function does_log_status(message, is_error){
68 | Max.outlet(PREFIX_STATUS, message, is_error)
69 | post(message, is_error);
70 | }
71 |
72 | function log_status(message){
73 | does_log_status(message, 0)
74 | }
75 |
76 | function error_status(message){
77 | does_log_status(message, 1);
78 | }
79 |
80 |
81 | exports.create2DArray = create2DArray;
82 | exports.getRandomInt = getRandomInt;
83 | exports.scale = scale;
84 | exports.shuffle = shuffle;
85 | exports.shuffle_with_indices = shuffle_with_indices;
86 | exports.post = post;
87 | exports.error = error;
88 | exports.log_status = log_status;
89 | exports.error_status = error_status;
--------------------------------------------------------------------------------
/src/vae.js:
--------------------------------------------------------------------------------
1 | // VAE in tensorflow.js
2 | // based on https://github.com/songer1993/tfjs-vae
3 |
4 | const Max = require('max-api');
5 | const tf = require('@tensorflow/tfjs-node');
6 |
7 | const utils = require('./utils.js')
8 | const data = require('./data.js')
9 |
10 | // Constants
11 | const NUM_DRUM_CLASSES = require('./constants.js').NUM_DRUM_CLASSES;
12 | const LOOP_DURATION = require('./constants.js').LOOP_DURATION;
13 |
14 | const ORIGINAL_DIM = require('./constants.js').ORIGINAL_DIM;
15 | const INTERMEDIATE_DIM = 512;
16 | const LATENT_DIM = 2;
17 |
18 | const BATCH_SIZE = 64;
19 | const TEST_BATCH_SIZE = 128;
20 | const TS_LOSS_COEF = 5.0; // coef for timeshift loss
21 | const VEL_LOSS_COEF = 2.5; // coef for velocity loss
22 |
23 |
24 | let dataHandlerOnset;
25 | let dataHandlerVelocity;
26 | let dataHandlerTimeshift;
27 | let model = null;
28 | let numEpochs = 150; // default # of epochs
29 |
30 | async function loadAndTrain(train_data_onset, train_data_velocity, train_data_timeshift) {
31 | console.assert(train_data_onset.length == train_data_velocity.length && train_data_velocity.length == train_data_timeshift.length);
32 |
33 | // shuffle in sync
34 | const total_num = train_data_onset.length;
35 | shuffled_indices = tf.util.createShuffledIndices(total_num);
36 | train_data_onset = utils.shuffle_with_indices(train_data_onset,shuffled_indices);
37 | train_data_velocity = utils.shuffle_with_indices(train_data_velocity,shuffled_indices);
38 | train_data_timeshift = utils.shuffle_with_indices(train_data_timeshift,shuffled_indices);
39 |
40 | // synced indices
41 | const num_trains = Math.floor(data.TRAIN_TEST_RATIO * total_num);
42 | const num_tests = total_num - num_trains;
43 | const train_indices = tf.util.createShuffledIndices(num_trains);
44 | const test_indices = tf.util.createShuffledIndices(num_tests);
45 |
46 | // create data handlers
47 | dataHandlerOnset = new data.DataHandler(train_data_onset, train_indices, test_indices); // data utility fo onset
48 | dataHandlerVelocity = new data.DataHandler(train_data_velocity, train_indices, test_indices); // data utility for velocity
49 | dataHandlerTimeshift = new data.DataHandler(train_data_timeshift, train_indices, test_indices); // data utility for duration
50 |
51 | // start training!
52 | if (!model) initModel(); // initializing model class
53 | startTraining(); // start the actual training process with the given training data
54 | }
55 |
56 | function initModel(){
57 | model = new ConditionalVAE({
58 | modelConfig:{
59 | originalDim: ORIGINAL_DIM,
60 | intermediateDim: INTERMEDIATE_DIM,
61 | latentDim: LATENT_DIM
62 | },
63 | trainConfig:{
64 | batchSize: BATCH_SIZE,
65 | testBatchSize: TEST_BATCH_SIZE,
66 | optimizer: tf.train.adam()
67 | }
68 | });
69 | }
70 |
71 | async function startTraining(){
72 | await model.train();
73 | }
74 |
75 | function stopTraining(){
76 | model.shouldStopTraining = true;
77 | utils.log_status("Stopping training...");
78 | }
79 |
80 | function isTraining(){
81 | if (model && model.isTraining) return true;
82 | }
83 |
84 | function isReadyToGenerate(){
85 | return (model && model.isTrained);
86 | }
87 |
88 | function setEpochs(e){
89 | numEpochs = e;
90 | Max.outlet("epoch", 0, numEpochs);
91 | }
92 |
93 | function generatePattern(z1, z2, noise_range=0.0){
94 | var zs;
95 | if (z1 === 'undefined' || z2 === 'undefined'){
96 | zs = tf.randomNormal([1, 2]);
97 | } else {
98 | zs = tf.tensor2d([[z1, z2]]);
99 | }
100 |
101 | // noise
102 | if (noise_range > 0.0){
103 | var noise = tf.randomNormal([1, 2]);
104 | zs = zs.add(noise.mul(tf.scalar(noise_range)));
105 | }
106 | return model.generate(zs);
107 | }
108 |
109 | function encodePattern(inputOn, inputVel, inputTS){
110 | return model.encode(inputOn, inputVel, inputTS);
111 | }
112 |
113 | async function saveModel(filepath){
114 | model.saveModel(filepath);
115 | }
116 |
117 | async function loadModel(filepath){
118 | if (!model) initModel();
119 | model.loadModel(filepath);
120 | }
121 |
122 | function clearModel(){
123 | model = null;
124 | }
125 |
126 | function bendModel(noise_range){
127 | model.bendModel(noise_range)
128 | }
129 |
130 | // Sampling Z
131 | class sampleLayer extends tf.layers.Layer {
132 | constructor(args) {
133 | super({});
134 | }
135 |
136 | computeOutputShape(inputShape) {
137 | return inputShape[0];
138 | }
139 |
140 | call(inputs, kwargs) {
141 | return tf.tidy(() => {
142 | const [zMean, zLogVar] = inputs;
143 | const batch = zMean.shape[0];
144 | const dim = zMean.shape[1];
145 | const epsilon = tf.randomNormal([batch, dim]);
146 | const half = tf.scalar(0.5);
147 | const temp = zLogVar.mul(half).exp().mul(epsilon);
148 | const sample = zMean.add(temp);
149 | return sample;
150 | });
151 | }
152 |
153 | getClassName() {
154 | return 'sampleLayer';
155 | }
156 | }
157 |
158 |
159 | class ConditionalVAE {
160 | constructor(config) {
161 | this.modelConfig = config.modelConfig;
162 | this.trainConfig = config.trainConfig;
163 | [this.encoder, this.decoder, this.apply] = this.build();
164 | this.isTrained = false;
165 | }
166 |
167 | build(modelConfig) {
168 | if (modelConfig != undefined){
169 | this.modelConfig = modelConfig;
170 | }
171 | const config = this.modelConfig;
172 |
173 | const originalDim = config.originalDim;
174 | const intermediateDim = config.intermediateDim;
175 | const latentDim = config.latentDim;
176 |
177 | // VAE model = encoder + decoder
178 | // build encoder model
179 |
180 | // Onset input
181 | const encoderInputsOn = tf.input({shape: [originalDim]});
182 | const x1LinearOn = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(encoderInputsOn);
183 | const x1NormalisedOn = tf.layers.batchNormalization({axis: 1}).apply(x1LinearOn);
184 | const x1On = tf.layers.leakyReLU().apply(x1NormalisedOn);
185 |
186 | // Velocity input
187 | const encoderInputsVel = tf.input({shape: [originalDim]});
188 | const x1LinearVel = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(encoderInputsVel);
189 | const x1NormalisedVel = tf.layers.batchNormalization({axis: 1}).apply(x1LinearVel);
190 | const x1Vel = tf.layers.leakyReLU().apply(x1NormalisedVel);
191 |
192 | // Timeshift input
193 | const encoderInputsTS= tf.input({shape: [originalDim]});
194 | const x1LinearTS = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(encoderInputsTS);
195 | const x1NormalisedTS = tf.layers.batchNormalization({axis: 1}).apply(x1LinearTS);
196 | const x1TS = tf.layers.leakyReLU().apply(x1NormalisedTS);
197 |
198 | // Merged
199 | const concatLayer = tf.layers.concatenate();
200 | const x1Merged = concatLayer.apply([x1On, x1Vel, x1TS]);
201 | const x2Linear = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(x1Merged);
202 | const x2Normalised = tf.layers.batchNormalization({axis: 1}).apply(x2Linear);
203 | const x2 = tf.layers.leakyReLU().apply(x2Normalised);
204 |
205 | const zMean = tf.layers.dense({units: latentDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(x2);
206 | const zLogVar = tf.layers.dense({units: latentDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(x2);
207 | const z = new sampleLayer().apply([zMean, zLogVar]);
208 |
209 | const encoderInputs = [encoderInputsOn, encoderInputsVel, encoderInputsTS];
210 | const encoderOutputs = [zMean, zLogVar, z];
211 |
212 | const encoder = tf.model({inputs: encoderInputs, outputs: encoderOutputs, name: "encoder"})
213 |
214 | // build decoder model
215 | const decoderInputs = tf.input({shape: [latentDim]});
216 | const x3Linear = tf.layers.dense({units: intermediateDim * 2.0, useBias: true, kernelInitializer: 'glorotNormal'}).apply(decoderInputs);
217 | const x3Normalised = tf.layers.batchNormalization({axis: 1}).apply(x3Linear);
218 | const x3 = tf.layers.leakyReLU().apply(x3Normalised);
219 |
220 | // Decoder for onsets
221 | const x4LinearOn = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(x3);
222 | const x4NormalisedOn = tf.layers.batchNormalization({axis: 1}).apply(x4LinearOn);
223 | const x4On = tf.layers.leakyReLU().apply(x4NormalisedOn);
224 | const decoderOutputsOn = tf.layers.dense({units: originalDim, activation: 'sigmoid'}).apply(x4On);
225 |
226 | // Decoder for velocity
227 | const x4LinearVel = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(x3);
228 | const x4NormalisedVel = tf.layers.batchNormalization({axis: 1}).apply(x4LinearVel);
229 | const x4Vel = tf.layers.leakyReLU().apply(x4NormalisedVel);
230 | const decoderOutputsVel = tf.layers.dense({units: originalDim, activation: 'sigmoid'}).apply(x4Vel);
231 |
232 | // Decoder for timeshift
233 | const x4LinearTS = tf.layers.dense({units: intermediateDim, useBias: true, kernelInitializer: 'glorotNormal'}).apply(x3);
234 | const x4NormalisedTS = tf.layers.batchNormalization({axis: 1}).apply(x4LinearTS);
235 | const x4TS = tf.layers.leakyReLU().apply(x4NormalisedTS);
236 | const decoderOutputsTS = tf.layers.dense({units: originalDim, activation: 'tanh'}).apply(x4TS);
237 | const decoderOutputs = [decoderOutputsOn, decoderOutputsVel, decoderOutputsTS];
238 |
239 | // Decoder model
240 | const decoder = tf.model({inputs: decoderInputs, outputs: decoderOutputs, name: "decoder"})
241 |
242 | // build VAE model
243 | const vae = (inputs) => {
244 | return tf.tidy(() => {
245 | const [zMean, zLogVar, z] = this.encoder.apply(inputs);
246 | const outputs = this.decoder.apply(z);
247 | return [zMean, zLogVar, outputs];
248 | });
249 | }
250 |
251 | return [encoder, decoder, vae];
252 | }
253 |
254 | reconstructionLoss(yTrue, yPred) {
255 | return tf.tidy(() => {
256 | let reconstruction_loss;
257 | reconstruction_loss = tf.metrics.binaryCrossentropy(yTrue, yPred);
258 | reconstruction_loss = reconstruction_loss.mul(tf.scalar(yPred.shape[1]));
259 | return reconstruction_loss;
260 | });
261 | }
262 |
263 | mseLoss(yTrue, yPred) {
264 | return tf.tidy(() => {
265 | let mse_loss = tf.metrics.meanSquaredError(yTrue, yPred);
266 | mse_loss = mse_loss.mul(tf.scalar(yPred.shape[1]));
267 | return mse_loss;
268 | });
269 | }
270 |
271 | klLoss(z_mean, z_log_var) {
272 | return tf.tidy(() => {
273 | let kl_loss;
274 | kl_loss = tf.scalar(1).add(z_log_var).sub(z_mean.square()).sub(z_log_var.exp());
275 | kl_loss = tf.sum(kl_loss, -1);
276 | kl_loss = kl_loss.mul(tf.scalar(-0.5));
277 | return kl_loss;
278 | });
279 | }
280 |
281 | vaeLoss(yTrue, yPred) {
282 | return tf.tidy(() => {
283 | const [yTrueOn, yTrueVel, yTrueTS] = yTrue;
284 | const [z_mean, z_log_var, y] = yPred;
285 | const [yOn, yVel, yTS] = y;
286 |
287 | const onset_loss = this.reconstructionLoss(yTrueOn, yOn);
288 | let velocity_loss = this.mseLoss(yTrueVel, yVel);
289 | velocity_loss = velocity_loss.mul(VEL_LOSS_COEF);
290 | let timeshift_loss = this.mseLoss(yTrueTS, yTS);
291 | timeshift_loss = timeshift_loss.mul(TS_LOSS_COEF);
292 |
293 | const kl_loss = this.klLoss(z_mean, z_log_var);
294 | // console.log("onset_loss", tf.mean(onset_loss).dataSync());
295 | // console.log("velocity_loss", tf.mean(velocity_loss).dataSync());
296 | // console.log("timeshift_loss", tf.mean(timeshift_loss).dataSync());
297 | // console.log("kl_loss", tf.mean(kl_loss).dataSync());
298 | const total_loss = tf.mean(onset_loss.add(velocity_loss).add(timeshift_loss).add(kl_loss)); // averaged in the batch
299 | return total_loss;
300 | });
301 | }
302 |
303 | async train(data, trainConfig) {
304 | this.isTrained = false;
305 | this.isTraining = true;
306 | this.shouldStopTraining = false;
307 | if (trainConfig != undefined){
308 | this.trainConfig = trainConfig;
309 | }
310 | const config = this.trainConfig;
311 |
312 | const batchSize = config.batchSize;
313 | const numBatch = Math.floor(dataHandlerOnset.getDataSize() / batchSize);
314 | const epochs = numEpochs;
315 | const testBatchSize = config.testBatchSize;
316 | const optimizer = config.optimizer;
317 | const logMessage = console.log;
318 |
319 | const originalDim = this.modelConfig.originalDim;
320 |
321 | Max.outlet("training", 1);
322 | for (let i = 0; i < epochs; i++) {
323 | if (this.shouldStopTraining) break;
324 |
325 | let batchInputOn,batchInputVel,batchInputTS;
326 | let testBatchInputOn,testBatchInputVel,testBatchInputTS;
327 | let trainLoss; // for a training batch
328 | let epochLoss, valLoss;
329 |
330 | logMessage(`[Epoch ${i + 1}]\n`);
331 | Max.outlet("epoch", i + 1, epochs);
332 | epochLoss = 0;
333 |
334 | // Training
335 | for (let j = 0; j < numBatch; j++) {
336 | batchInputOn = dataHandlerOnset.nextTrainBatch(batchSize).xs.reshape([batchSize, originalDim]);
337 | batchInputVel = dataHandlerVelocity.nextTrainBatch(batchSize).xs.reshape([batchSize, originalDim]);
338 | batchInputTS = dataHandlerTimeshift.nextTrainBatch(batchSize).xs.reshape([batchSize, originalDim]);
339 | trainLoss = await optimizer.minimize(() => this.vaeLoss([batchInputOn, batchInputVel, batchInputTS],
340 | this.apply([batchInputOn, batchInputVel, batchInputTS])), true);
341 | trainLoss = Number(trainLoss.dataSync());
342 | epochLoss = epochLoss + trainLoss;
343 |
344 | await tf.nextFrame();
345 | }
346 | epochLoss = epochLoss / numBatch; // average
347 | logMessage(`\t[Average] Training Loss: ${epochLoss.toFixed(3)}. Epoch ${i} / ${epochs} \n`);
348 | Max.outlet("loss", epochLoss);
349 |
350 | // Validation
351 | testBatchInputOn = dataHandlerOnset.nextTestBatch(testBatchSize).xs.reshape([testBatchSize, originalDim]);
352 | testBatchInputVel = dataHandlerVelocity.nextTestBatch(testBatchSize).xs.reshape([testBatchSize, originalDim]);
353 | testBatchInputTS = dataHandlerTimeshift.nextTestBatch(testBatchSize).xs.reshape([testBatchSize, originalDim]);
354 | valLoss = this.vaeLoss([testBatchInputOn, testBatchInputVel, testBatchInputTS],
355 | this.apply([testBatchInputOn, testBatchInputVel, testBatchInputTS]));
356 | valLoss = Number(valLoss.dataSync());
357 |
358 | logMessage(`\tVal Loss: ${valLoss.toFixed(3)}. Epoch ${i} / ${epochs}\n`);
359 | Max.outlet("val_loss", valLoss);
360 |
361 | await tf.nextFrame();
362 | }
363 | this.isTrained = true;
364 | this.isTraining = false;
365 | Max.outlet("training", 0);
366 | utils.log_status("Training finished!");
367 | }
368 |
369 | generate(zs){
370 | let [outputsOn, outputsVel, outputsTS] = this.decoder.apply(zs);
371 |
372 | outputsOn = outputsOn.reshape([NUM_DRUM_CLASSES, LOOP_DURATION]);
373 | outputsVel = outputsVel.reshape([NUM_DRUM_CLASSES, LOOP_DURATION]);
374 | outputsTS = outputsTS.reshape([NUM_DRUM_CLASSES, LOOP_DURATION]); // timshift output
375 |
376 | return [outputsOn.arraySync(), outputsVel.arraySync(), outputsTS.arraySync()];
377 | }
378 |
379 | bendModel(noise_range){
380 | let weights = [];
381 | for (let i = 0; i < this.decoder.getWeights().length; i++) {
382 | let w = this.decoder.getWeights()[i];
383 | let shape = w.shape;
384 | console.log(shape);
385 | let noise = tf.randomNormal(w.shape, 0.0, noise_range);
386 | let neww = tf.add(w, noise);
387 | weights.push(neww);
388 | }
389 | this.decoder.setWeights(weights);
390 | }
391 |
392 | async saveModel(path){
393 | const saved = await this.decoder.save(path);
394 | utils.post(saved);
395 | }
396 |
397 | async loadModel(path){
398 | this.decoder = await tf.loadLayersModel(path);
399 | this.isTrained = true;
400 | }
401 |
402 | encode(inputOn, inputVel, inputTS){
403 | if (!this.encoder) {
404 | utils.error_status("Model is not trained yet");
405 | return;
406 | }
407 |
408 | // reshaping...
409 | inputOn = inputOn.reshape([1, ORIGINAL_DIM]);
410 | inputVel = inputVel.reshape([1, ORIGINAL_DIM]);
411 | inputTS = inputTS.reshape([1, ORIGINAL_DIM]);
412 |
413 | let [zMean, zLogVar, zs] = this.encoder.apply([inputOn, inputVel, inputTS]);
414 | this.generate(zs); // generate rhythm pattern with the encoded z
415 | zs = zs.arraySync();
416 | return zs[0];
417 | }
418 |
419 | }
420 |
421 | function range(start, edge, step) {
422 | // If only one number was passed in make it the edge and 0 the start.
423 | if (arguments.length == 1) {
424 | edge = start;
425 | start = 0;
426 | }
427 |
428 | // Validate the edge and step numbers.
429 | edge = edge || 0;
430 | step = step || 1;
431 |
432 | // Create the array of numbers, stopping befor the edge.
433 | for (var ret = []; (edge - start) * step > 0; start += step) {
434 | ret.push(start);
435 | }
436 | return ret;
437 | }
438 |
439 | exports.loadAndTrain = loadAndTrain;
440 | exports.saveModel = saveModel;
441 | exports.loadModel = loadModel;
442 | exports.clearModel = clearModel;
443 | exports.generatePattern = generatePattern;
444 | exports.encodePattern = encodePattern;
445 | exports.stopTraining = stopTraining;
446 | exports.isReadyToGenerate = isReadyToGenerate;
447 | exports.isTraining = isTraining;
448 | exports.setEpochs = setEpochs;
449 | exports.bendModel = bendModel;
450 |
451 |
--------------------------------------------------------------------------------
/subpatches/count_for_me.maxpat:
--------------------------------------------------------------------------------
1 | {
2 | "patcher" : {
3 | "fileversion" : 1,
4 | "appversion" : {
5 | "major" : 8,
6 | "minor" : 1,
7 | "revision" : 8,
8 | "architecture" : "x64",
9 | "modernui" : 1
10 | }
11 | ,
12 | "classnamespace" : "box",
13 | "rect" : [ 386.0, 566.0, 504.0, 367.0 ],
14 | "bglocked" : 0,
15 | "openinpresentation" : 0,
16 | "default_fontsize" : 12.0,
17 | "default_fontface" : 0,
18 | "default_fontname" : "Arial",
19 | "gridonopen" : 1,
20 | "gridsize" : [ 15.0, 15.0 ],
21 | "gridsnaponopen" : 1,
22 | "objectsnaponopen" : 1,
23 | "statusbarvisible" : 2,
24 | "toolbarvisible" : 1,
25 | "lefttoolbarpinned" : 0,
26 | "toptoolbarpinned" : 0,
27 | "righttoolbarpinned" : 0,
28 | "bottomtoolbarpinned" : 0,
29 | "toolbars_unpinned_last_save" : 0,
30 | "tallnewobj" : 0,
31 | "boxanimatetime" : 200,
32 | "enablehscroll" : 1,
33 | "enablevscroll" : 1,
34 | "devicewidth" : 0.0,
35 | "description" : "",
36 | "digest" : "",
37 | "tags" : "",
38 | "style" : "",
39 | "subpatcher_template" : "no_top",
40 | "assistshowspatchername" : 0,
41 | "boxes" : [ {
42 | "box" : {
43 | "id" : "obj-18",
44 | "maxclass" : "message",
45 | "numinlets" : 2,
46 | "numoutlets" : 1,
47 | "outlettype" : [ "" ],
48 | "patching_rect" : [ 113.0, 195.0, 29.5, 22.0 ],
49 | "text" : "0"
50 | }
51 |
52 | }
53 | , {
54 | "box" : {
55 | "id" : "obj-12",
56 | "maxclass" : "button",
57 | "numinlets" : 1,
58 | "numoutlets" : 1,
59 | "outlettype" : [ "bang" ],
60 | "parameter_enable" : 0,
61 | "patching_rect" : [ 113.0, 166.0, 24.0, 24.0 ]
62 | }
63 |
64 | }
65 | , {
66 | "box" : {
67 | "id" : "obj-6",
68 | "maxclass" : "number",
69 | "numinlets" : 1,
70 | "numoutlets" : 2,
71 | "outlettype" : [ "", "bang" ],
72 | "parameter_enable" : 0,
73 | "patching_rect" : [ 96.0, 277.0, 50.0, 22.0 ]
74 | }
75 |
76 | }
77 | , {
78 | "box" : {
79 | "id" : "obj-16",
80 | "linecount" : 2,
81 | "maxclass" : "comment",
82 | "numinlets" : 1,
83 | "numoutlets" : 0,
84 | "patching_rect" : [ 59.0, 64.0, 45.0, 33.0 ],
85 | "text" : "metro\ninput"
86 | }
87 |
88 | }
89 | , {
90 | "box" : {
91 | "id" : "obj-14",
92 | "linecount" : 2,
93 | "maxclass" : "comment",
94 | "numinlets" : 1,
95 | "numoutlets" : 0,
96 | "patching_rect" : [ 265.0, 64.0, 62.0, 33.0 ],
97 | "text" : "restart the count"
98 | }
99 |
100 | }
101 | , {
102 | "box" : {
103 | "id" : "obj-9",
104 | "maxclass" : "newobj",
105 | "numinlets" : 1,
106 | "numoutlets" : 2,
107 | "outlettype" : [ "", "" ],
108 | "patching_rect" : [ 277.0, 192.0, 91.0, 22.0 ],
109 | "text" : "patcherargs 16"
110 | }
111 |
112 | }
113 | , {
114 | "box" : {
115 | "id" : "obj-7",
116 | "maxclass" : "newobj",
117 | "numinlets" : 5,
118 | "numoutlets" : 4,
119 | "outlettype" : [ "int", "", "", "int" ],
120 | "patching_rect" : [ 59.0, 232.0, 91.0, 22.0 ],
121 | "text" : "counter 0 1 16"
122 | }
123 |
124 | }
125 | , {
126 | "box" : {
127 | "comment" : "",
128 | "id" : "obj-5",
129 | "index" : 1,
130 | "maxclass" : "outlet",
131 | "numinlets" : 1,
132 | "numoutlets" : 0,
133 | "patching_rect" : [ 59.0, 301.0, 30.0, 30.0 ]
134 | }
135 |
136 | }
137 | , {
138 | "box" : {
139 | "comment" : "",
140 | "id" : "obj-3",
141 | "index" : 2,
142 | "maxclass" : "inlet",
143 | "numinlets" : 0,
144 | "numoutlets" : 1,
145 | "outlettype" : [ "bang" ],
146 | "patching_rect" : [ 291.0, 109.0, 30.0, 30.0 ]
147 | }
148 |
149 | }
150 | , {
151 | "box" : {
152 | "comment" : "",
153 | "id" : "obj-1",
154 | "index" : 1,
155 | "maxclass" : "inlet",
156 | "numinlets" : 0,
157 | "numoutlets" : 1,
158 | "outlettype" : [ "" ],
159 | "patching_rect" : [ 59.0, 109.0, 30.0, 30.0 ]
160 | }
161 |
162 | }
163 | ],
164 | "lines" : [ {
165 | "patchline" : {
166 | "destination" : [ "obj-7", 0 ],
167 | "source" : [ "obj-1", 0 ]
168 | }
169 |
170 | }
171 | , {
172 | "patchline" : {
173 | "destination" : [ "obj-18", 0 ],
174 | "source" : [ "obj-12", 0 ]
175 | }
176 |
177 | }
178 | , {
179 | "patchline" : {
180 | "destination" : [ "obj-7", 3 ],
181 | "source" : [ "obj-18", 0 ]
182 | }
183 |
184 | }
185 | , {
186 | "patchline" : {
187 | "destination" : [ "obj-12", 0 ],
188 | "midpoints" : [ 300.5, 152.0, 122.5, 152.0 ],
189 | "source" : [ "obj-3", 0 ]
190 | }
191 |
192 | }
193 | , {
194 | "patchline" : {
195 | "destination" : [ "obj-5", 0 ],
196 | "order" : 1,
197 | "source" : [ "obj-7", 0 ]
198 | }
199 |
200 | }
201 | , {
202 | "patchline" : {
203 | "destination" : [ "obj-6", 0 ],
204 | "order" : 0,
205 | "source" : [ "obj-7", 0 ]
206 | }
207 |
208 | }
209 | , {
210 | "patchline" : {
211 | "destination" : [ "obj-7", 4 ],
212 | "midpoints" : [ 286.5, 218.5, 140.5, 218.5 ],
213 | "source" : [ "obj-9", 0 ]
214 | }
215 |
216 | }
217 | ],
218 | "bgcolor" : [ 1.0, 1.0, 1.0, 1.0 ]
219 | }
220 |
221 | }
222 |
--------------------------------------------------------------------------------
/subpatches/list_dup.maxpat:
--------------------------------------------------------------------------------
1 | {
2 | "patcher" : {
3 | "fileversion" : 1,
4 | "appversion" : {
5 | "major" : 8,
6 | "minor" : 1,
7 | "revision" : 8,
8 | "architecture" : "x64",
9 | "modernui" : 1
10 | }
11 | ,
12 | "classnamespace" : "box",
13 | "rect" : [ 145.0, 330.0, 940.0, 656.0 ],
14 | "bglocked" : 0,
15 | "openinpresentation" : 0,
16 | "default_fontsize" : 12.0,
17 | "default_fontface" : 0,
18 | "default_fontname" : "Arial",
19 | "gridonopen" : 1,
20 | "gridsize" : [ 15.0, 15.0 ],
21 | "gridsnaponopen" : 1,
22 | "objectsnaponopen" : 1,
23 | "statusbarvisible" : 2,
24 | "toolbarvisible" : 1,
25 | "lefttoolbarpinned" : 0,
26 | "toptoolbarpinned" : 0,
27 | "righttoolbarpinned" : 0,
28 | "bottomtoolbarpinned" : 0,
29 | "toolbars_unpinned_last_save" : 0,
30 | "tallnewobj" : 0,
31 | "boxanimatetime" : 200,
32 | "enablehscroll" : 1,
33 | "enablevscroll" : 1,
34 | "devicewidth" : 0.0,
35 | "description" : "",
36 | "digest" : "",
37 | "tags" : "",
38 | "style" : "",
39 | "subpatcher_template" : "",
40 | "assistshowspatchername" : 0,
41 | "boxes" : [ {
42 | "box" : {
43 | "id" : "obj-11",
44 | "maxclass" : "newobj",
45 | "numinlets" : 1,
46 | "numoutlets" : 1,
47 | "outlettype" : [ "" ],
48 | "patching_rect" : [ 723.0, 154.0, 158.0, 22.0 ],
49 | "text" : "loadmess 0 0 0 0 0 0 0 0 0"
50 | }
51 |
52 | }
53 | , {
54 | "box" : {
55 | "id" : "obj-14",
56 | "linecount" : 3,
57 | "maxclass" : "comment",
58 | "numinlets" : 1,
59 | "numoutlets" : 0,
60 | "patching_rect" : [ 759.0, 286.0, 71.0, 47.0 ],
61 | "text" : "filter with \"track freeze\""
62 | }
63 |
64 | }
65 | , {
66 | "box" : {
67 | "id" : "obj-10",
68 | "maxclass" : "newobj",
69 | "numinlets" : 2,
70 | "numoutlets" : 1,
71 | "outlettype" : [ "" ],
72 | "patching_rect" : [ 445.0, 406.0, 52.0, 22.0 ],
73 | "text" : "gate 1 1"
74 | }
75 |
76 | }
77 | , {
78 | "box" : {
79 | "comment" : "",
80 | "id" : "obj-9",
81 | "index" : 3,
82 | "maxclass" : "inlet",
83 | "numinlets" : 0,
84 | "numoutlets" : 1,
85 | "outlettype" : [ "" ],
86 | "patching_rect" : [ 691.0, 148.0, 30.0, 30.0 ]
87 | }
88 |
89 | }
90 | , {
91 | "box" : {
92 | "id" : "obj-12",
93 | "maxclass" : "newobj",
94 | "numinlets" : 2,
95 | "numoutlets" : 1,
96 | "outlettype" : [ "int" ],
97 | "patching_rect" : [ 691.0, 344.0, 29.5, 22.0 ],
98 | "text" : "- 1"
99 | }
100 |
101 | }
102 | , {
103 | "box" : {
104 | "id" : "obj-2",
105 | "maxclass" : "newobj",
106 | "numinlets" : 1,
107 | "numoutlets" : 2,
108 | "outlettype" : [ "bang", "int" ],
109 | "patching_rect" : [ 718.0, 267.0, 29.5, 22.0 ],
110 | "text" : "t b i"
111 | }
112 |
113 | }
114 | , {
115 | "box" : {
116 | "id" : "obj-3",
117 | "maxclass" : "newobj",
118 | "numinlets" : 2,
119 | "numoutlets" : 2,
120 | "outlettype" : [ "", "" ],
121 | "patching_rect" : [ 691.0, 309.0, 56.5, 22.0 ],
122 | "text" : "zl.nth"
123 | }
124 |
125 | }
126 | , {
127 | "box" : {
128 | "id" : "obj-7",
129 | "maxclass" : "newobj",
130 | "numinlets" : 2,
131 | "numoutlets" : 1,
132 | "outlettype" : [ "" ],
133 | "patching_rect" : [ 385.0, 406.0, 52.0, 22.0 ],
134 | "text" : "gate 1 1"
135 | }
136 |
137 | }
138 | , {
139 | "box" : {
140 | "id" : "obj-8",
141 | "maxclass" : "newobj",
142 | "numinlets" : 2,
143 | "numoutlets" : 2,
144 | "outlettype" : [ "", "" ],
145 | "patching_rect" : [ 718.0, 235.0, 47.0, 22.0 ],
146 | "text" : "zl.nth 2"
147 | }
148 |
149 | }
150 | , {
151 | "box" : {
152 | "comment" : "",
153 | "id" : "obj-6",
154 | "index" : 2,
155 | "maxclass" : "inlet",
156 | "numinlets" : 0,
157 | "numoutlets" : 1,
158 | "outlettype" : [ "" ],
159 | "patching_rect" : [ 555.0, 154.0, 30.0, 30.0 ]
160 | }
161 |
162 | }
163 | , {
164 | "box" : {
165 | "comment" : "",
166 | "id" : "obj-5",
167 | "index" : 2,
168 | "maxclass" : "outlet",
169 | "numinlets" : 1,
170 | "numoutlets" : 0,
171 | "patching_rect" : [ 445.0, 439.0, 30.0, 30.0 ]
172 | }
173 |
174 | }
175 | , {
176 | "box" : {
177 | "comment" : "",
178 | "id" : "obj-4",
179 | "index" : 1,
180 | "maxclass" : "outlet",
181 | "numinlets" : 1,
182 | "numoutlets" : 0,
183 | "patching_rect" : [ 385.0, 439.0, 30.0, 30.0 ]
184 | }
185 |
186 | }
187 | , {
188 | "box" : {
189 | "comment" : "",
190 | "id" : "obj-1",
191 | "index" : 1,
192 | "maxclass" : "inlet",
193 | "numinlets" : 0,
194 | "numoutlets" : 1,
195 | "outlettype" : [ "" ],
196 | "patching_rect" : [ 378.0, 154.0, 30.0, 30.0 ]
197 | }
198 |
199 | }
200 | , {
201 | "box" : {
202 | "id" : "obj-25",
203 | "maxclass" : "newobj",
204 | "numinlets" : 2,
205 | "numoutlets" : 2,
206 | "outlettype" : [ "", "" ],
207 | "patching_rect" : [ 425.0, 304.0, 39.0, 22.0 ],
208 | "text" : "zl.join"
209 | }
210 |
211 | }
212 | , {
213 | "box" : {
214 | "id" : "obj-26",
215 | "maxclass" : "newobj",
216 | "numinlets" : 2,
217 | "numoutlets" : 2,
218 | "outlettype" : [ "", "" ],
219 | "patching_rect" : [ 378.0, 304.0, 39.0, 22.0 ],
220 | "text" : "zl.join"
221 | }
222 |
223 | }
224 | , {
225 | "box" : {
226 | "id" : "obj-27",
227 | "maxclass" : "newobj",
228 | "numinlets" : 2,
229 | "numoutlets" : 2,
230 | "outlettype" : [ "", "" ],
231 | "patching_rect" : [ 414.0, 262.0, 61.0, 22.0 ],
232 | "text" : "zl.slice #2"
233 | }
234 |
235 | }
236 | , {
237 | "box" : {
238 | "id" : "obj-28",
239 | "maxclass" : "newobj",
240 | "numinlets" : 2,
241 | "numoutlets" : 2,
242 | "outlettype" : [ "", "" ],
243 | "patching_rect" : [ 378.0, 231.0, 61.0, 22.0 ],
244 | "text" : "zl.slice #1"
245 | }
246 |
247 | }
248 | ],
249 | "lines" : [ {
250 | "patchline" : {
251 | "destination" : [ "obj-28", 0 ],
252 | "source" : [ "obj-1", 0 ]
253 | }
254 |
255 | }
256 | , {
257 | "patchline" : {
258 | "destination" : [ "obj-5", 0 ],
259 | "source" : [ "obj-10", 0 ]
260 | }
261 |
262 | }
263 | , {
264 | "patchline" : {
265 | "destination" : [ "obj-3", 0 ],
266 | "midpoints" : [ 732.5, 192.0, 700.5, 192.0 ],
267 | "source" : [ "obj-11", 0 ]
268 | }
269 |
270 | }
271 | , {
272 | "patchline" : {
273 | "destination" : [ "obj-10", 0 ],
274 | "midpoints" : [ 700.5, 381.0, 454.5, 381.0 ],
275 | "order" : 0,
276 | "source" : [ "obj-12", 0 ]
277 | }
278 |
279 | }
280 | , {
281 | "patchline" : {
282 | "destination" : [ "obj-7", 0 ],
283 | "midpoints" : [ 700.5, 381.0, 394.5, 381.0 ],
284 | "order" : 1,
285 | "source" : [ "obj-12", 0 ]
286 | }
287 |
288 | }
289 | , {
290 | "patchline" : {
291 | "destination" : [ "obj-3", 1 ],
292 | "source" : [ "obj-2", 1 ]
293 | }
294 |
295 | }
296 | , {
297 | "patchline" : {
298 | "destination" : [ "obj-3", 0 ],
299 | "source" : [ "obj-2", 0 ]
300 | }
301 |
302 | }
303 | , {
304 | "patchline" : {
305 | "destination" : [ "obj-10", 1 ],
306 | "source" : [ "obj-25", 0 ]
307 | }
308 |
309 | }
310 | , {
311 | "patchline" : {
312 | "destination" : [ "obj-7", 1 ],
313 | "source" : [ "obj-26", 0 ]
314 | }
315 |
316 | }
317 | , {
318 | "patchline" : {
319 | "destination" : [ "obj-25", 1 ],
320 | "source" : [ "obj-27", 1 ]
321 | }
322 |
323 | }
324 | , {
325 | "patchline" : {
326 | "destination" : [ "obj-26", 1 ],
327 | "source" : [ "obj-27", 0 ]
328 | }
329 |
330 | }
331 | , {
332 | "patchline" : {
333 | "destination" : [ "obj-25", 0 ],
334 | "order" : 0,
335 | "source" : [ "obj-28", 0 ]
336 | }
337 |
338 | }
339 | , {
340 | "patchline" : {
341 | "destination" : [ "obj-26", 0 ],
342 | "order" : 1,
343 | "source" : [ "obj-28", 0 ]
344 | }
345 |
346 | }
347 | , {
348 | "patchline" : {
349 | "destination" : [ "obj-27", 0 ],
350 | "source" : [ "obj-28", 1 ]
351 | }
352 |
353 | }
354 | , {
355 | "patchline" : {
356 | "destination" : [ "obj-12", 0 ],
357 | "source" : [ "obj-3", 0 ]
358 | }
359 |
360 | }
361 | , {
362 | "patchline" : {
363 | "destination" : [ "obj-10", 1 ],
364 | "midpoints" : [ 564.5, 392.5, 487.5, 392.5 ],
365 | "order" : 1,
366 | "source" : [ "obj-6", 0 ]
367 | }
368 |
369 | }
370 | , {
371 | "patchline" : {
372 | "destination" : [ "obj-7", 1 ],
373 | "midpoints" : [ 564.5, 391.5, 427.5, 391.5 ],
374 | "order" : 2,
375 | "source" : [ "obj-6", 0 ]
376 | }
377 |
378 | }
379 | , {
380 | "patchline" : {
381 | "destination" : [ "obj-8", 0 ],
382 | "midpoints" : [ 564.5, 221.0, 727.5, 221.0 ],
383 | "order" : 0,
384 | "source" : [ "obj-6", 0 ]
385 | }
386 |
387 | }
388 | , {
389 | "patchline" : {
390 | "destination" : [ "obj-4", 0 ],
391 | "source" : [ "obj-7", 0 ]
392 | }
393 |
394 | }
395 | , {
396 | "patchline" : {
397 | "destination" : [ "obj-2", 0 ],
398 | "source" : [ "obj-8", 0 ]
399 | }
400 |
401 | }
402 | , {
403 | "patchline" : {
404 | "destination" : [ "obj-3", 0 ],
405 | "source" : [ "obj-9", 0 ]
406 | }
407 |
408 | }
409 | ],
410 | "styles" : [ {
411 | "name" : "tap",
412 | "default" : {
413 | "fontname" : [ "Lato Light" ]
414 | }
415 | ,
416 | "parentstyle" : "",
417 | "multi" : 0
418 | }
419 | ]
420 | }
421 |
422 | }
423 |
--------------------------------------------------------------------------------
/subpatches/makenote_for_me.maxpat:
--------------------------------------------------------------------------------
1 | {
2 | "patcher" : {
3 | "fileversion" : 1,
4 | "appversion" : {
5 | "major" : 8,
6 | "minor" : 1,
7 | "revision" : 0,
8 | "architecture" : "x64",
9 | "modernui" : 1
10 | }
11 | ,
12 | "classnamespace" : "box",
13 | "rect" : [ 123.0, 366.0, 1408.0, 581.0 ],
14 | "bglocked" : 0,
15 | "openinpresentation" : 0,
16 | "default_fontsize" : 12.0,
17 | "default_fontface" : 0,
18 | "default_fontname" : "Arial",
19 | "gridonopen" : 1,
20 | "gridsize" : [ 15.0, 15.0 ],
21 | "gridsnaponopen" : 1,
22 | "objectsnaponopen" : 1,
23 | "statusbarvisible" : 2,
24 | "toolbarvisible" : 1,
25 | "lefttoolbarpinned" : 0,
26 | "toptoolbarpinned" : 0,
27 | "righttoolbarpinned" : 0,
28 | "bottomtoolbarpinned" : 0,
29 | "toolbars_unpinned_last_save" : 2,
30 | "tallnewobj" : 0,
31 | "boxanimatetime" : 200,
32 | "enablehscroll" : 1,
33 | "enablevscroll" : 1,
34 | "devicewidth" : 0.0,
35 | "description" : "",
36 | "digest" : "",
37 | "tags" : "",
38 | "style" : "",
39 | "subpatcher_template" : "no_top",
40 | "boxes" : [ {
41 | "box" : {
42 | "id" : "obj-7",
43 | "maxclass" : "newobj",
44 | "numinlets" : 1,
45 | "numoutlets" : 2,
46 | "outlettype" : [ "bang", "float" ],
47 | "patching_rect" : [ 686.0, 158.0, 29.5, 22.0 ],
48 | "text" : "t b f"
49 | }
50 |
51 | }
52 | , {
53 | "box" : {
54 | "format" : 6,
55 | "id" : "obj-23",
56 | "maxclass" : "flonum",
57 | "maximum" : 3.0,
58 | "minimum" : 0.0,
59 | "numinlets" : 1,
60 | "numoutlets" : 2,
61 | "outlettype" : [ "", "bang" ],
62 | "parameter_enable" : 0,
63 | "patching_rect" : [ 777.0, 95.0, 50.0, 22.0 ]
64 | }
65 |
66 | }
67 | , {
68 | "box" : {
69 | "comment" : "",
70 | "id" : "obj-21",
71 | "index" : 2,
72 | "maxclass" : "inlet",
73 | "numinlets" : 0,
74 | "numoutlets" : 1,
75 | "outlettype" : [ "" ],
76 | "patching_rect" : [ 777.0, 60.0, 30.0, 30.0 ]
77 | }
78 |
79 | }
80 | , {
81 | "box" : {
82 | "id" : "obj-20",
83 | "maxclass" : "newobj",
84 | "numinlets" : 2,
85 | "numoutlets" : 1,
86 | "outlettype" : [ "float" ],
87 | "patching_rect" : [ 537.0, 195.0, 178.5, 22.0 ],
88 | "text" : "* 1."
89 | }
90 |
91 | }
92 | , {
93 | "box" : {
94 | "id" : "obj-16",
95 | "maxclass" : "toggle",
96 | "numinlets" : 1,
97 | "numoutlets" : 1,
98 | "outlettype" : [ "int" ],
99 | "parameter_enable" : 0,
100 | "patching_rect" : [ 411.25, 280.0, 24.0, 24.0 ]
101 | }
102 |
103 | }
104 | , {
105 | "box" : {
106 | "id" : "obj-14",
107 | "maxclass" : "toggle",
108 | "numinlets" : 1,
109 | "numoutlets" : 1,
110 | "outlettype" : [ "int" ],
111 | "parameter_enable" : 0,
112 | "patching_rect" : [ 283.2833251953125, 296.0, 24.0, 24.0 ]
113 | }
114 |
115 | }
116 | , {
117 | "box" : {
118 | "id" : "obj-9",
119 | "maxclass" : "newobj",
120 | "numinlets" : 3,
121 | "numoutlets" : 3,
122 | "outlettype" : [ "", "", "" ],
123 | "patching_rect" : [ 918.0, 84.0, 127.0, 22.0 ],
124 | "text" : "route velocity timeshift"
125 | }
126 |
127 | }
128 | , {
129 | "box" : {
130 | "id" : "obj-5",
131 | "maxclass" : "newobj",
132 | "numinlets" : 1,
133 | "numoutlets" : 2,
134 | "outlettype" : [ "", "" ],
135 | "patching_rect" : [ 729.0, 28.0, 208.0, 22.0 ],
136 | "text" : "patcherargs @velocity 1 @timeshift 1"
137 | }
138 |
139 | }
140 | , {
141 | "box" : {
142 | "id" : "obj-51",
143 | "linecount" : 3,
144 | "maxclass" : "comment",
145 | "numinlets" : 1,
146 | "numoutlets" : 0,
147 | "patching_rect" : [ 340.25, 308.0, 151.0, 47.0 ],
148 | "text" : "When we don't use generated velocity values, use fixed value instead."
149 | }
150 |
151 | }
152 | , {
153 | "box" : {
154 | "id" : "obj-43",
155 | "maxclass" : "newobj",
156 | "numinlets" : 2,
157 | "numoutlets" : 2,
158 | "outlettype" : [ "", "" ],
159 | "patching_rect" : [ 260.73333740234375, 195.0, 123.0, 22.0 ],
160 | "text" : "routepass 0"
161 | }
162 |
163 | }
164 | , {
165 | "box" : {
166 | "id" : "obj-42",
167 | "maxclass" : "newobj",
168 | "numinlets" : 2,
169 | "numoutlets" : 1,
170 | "outlettype" : [ "int" ],
171 | "patching_rect" : [ 283.5333251953125, 333.0, 29.5, 22.0 ],
172 | "text" : "+ 1"
173 | }
174 |
175 | }
176 | , {
177 | "box" : {
178 | "id" : "obj-39",
179 | "maxclass" : "newobj",
180 | "numinlets" : 2,
181 | "numoutlets" : 1,
182 | "outlettype" : [ "" ],
183 | "patching_rect" : [ 411.20001220703125, 375.0, 68.0, 22.0 ],
184 | "text" : "gate 1 1"
185 | }
186 |
187 | }
188 | , {
189 | "box" : {
190 | "id" : "obj-38",
191 | "maxclass" : "newobj",
192 | "numinlets" : 1,
193 | "numoutlets" : 1,
194 | "outlettype" : [ "int" ],
195 | "patching_rect" : [ 323.133331298828125, 282.0, 29.0, 22.0 ],
196 | "text" : "t 80"
197 | }
198 |
199 | }
200 | , {
201 | "box" : {
202 | "id" : "obj-35",
203 | "maxclass" : "newobj",
204 | "numinlets" : 3,
205 | "numoutlets" : 1,
206 | "outlettype" : [ "" ],
207 | "patching_rect" : [ 283.5333251953125, 362.0, 100.20001220703125, 22.0 ],
208 | "text" : "switch 2 2"
209 | }
210 |
211 | }
212 | , {
213 | "box" : {
214 | "id" : "obj-24",
215 | "maxclass" : "newobj",
216 | "numinlets" : 2,
217 | "numoutlets" : 1,
218 | "outlettype" : [ "float" ],
219 | "patching_rect" : [ 460.20001220703125, 200.0, 39.0, 22.0 ],
220 | "text" : "/ 127."
221 | }
222 |
223 | }
224 | , {
225 | "box" : {
226 | "id" : "obj-19",
227 | "maxclass" : "newobj",
228 | "numinlets" : 2,
229 | "numoutlets" : 1,
230 | "outlettype" : [ "float" ],
231 | "patching_rect" : [ 460.20001220703125, 229.0, 95.79998779296875, 22.0 ],
232 | "text" : "* 0."
233 | }
234 |
235 | }
236 | , {
237 | "box" : {
238 | "id" : "obj-18",
239 | "maxclass" : "newobj",
240 | "numinlets" : 4,
241 | "numoutlets" : 3,
242 | "outlettype" : [ "", "", "" ],
243 | "patching_rect" : [ 213.0, 403.0, 162.20001220703125, 22.0 ],
244 | "text" : "pipe 0 0 0 0"
245 | }
246 |
247 | }
248 | , {
249 | "box" : {
250 | "id" : "obj-17",
251 | "maxclass" : "comment",
252 | "numinlets" : 1,
253 | "numoutlets" : 0,
254 | "patching_rect" : [ 593.0, 144.0, 24.0, 20.0 ],
255 | "text" : "ms"
256 | }
257 |
258 | }
259 | , {
260 | "box" : {
261 | "id" : "obj-13",
262 | "maxclass" : "comment",
263 | "numinlets" : 1,
264 | "numoutlets" : 0,
265 | "patching_rect" : [ 575.0, 79.0, 164.0, 20.0 ],
266 | "text" : "resolution of generated beats"
267 | }
268 |
269 | }
270 | , {
271 | "box" : {
272 | "id" : "obj-11",
273 | "maxclass" : "newobj",
274 | "numinlets" : 1,
275 | "numoutlets" : 1,
276 | "outlettype" : [ "bang" ],
277 | "patching_rect" : [ 537.0, 51.0, 58.0, 22.0 ],
278 | "text" : "loadbang"
279 | }
280 |
281 | }
282 | , {
283 | "box" : {
284 | "format" : 6,
285 | "id" : "obj-10",
286 | "maxclass" : "flonum",
287 | "numinlets" : 1,
288 | "numoutlets" : 2,
289 | "outlettype" : [ "", "bang" ],
290 | "parameter_enable" : 0,
291 | "patching_rect" : [ 537.0, 143.0, 50.0, 22.0 ]
292 | }
293 |
294 | }
295 | , {
296 | "box" : {
297 | "id" : "obj-6",
298 | "maxclass" : "message",
299 | "numinlets" : 2,
300 | "numoutlets" : 1,
301 | "outlettype" : [ "" ],
302 | "patching_rect" : [ 537.0, 79.0, 29.5, 22.0 ],
303 | "text" : "32n"
304 | }
305 |
306 | }
307 | , {
308 | "box" : {
309 | "id" : "obj-2",
310 | "maxclass" : "newobj",
311 | "numinlets" : 1,
312 | "numoutlets" : 1,
313 | "outlettype" : [ "" ],
314 | "patching_rect" : [ 537.0, 110.0, 162.0, 22.0 ],
315 | "text" : "translate bars.beats.units ms"
316 | }
317 |
318 | }
319 | , {
320 | "box" : {
321 | "id" : "obj-44",
322 | "maxclass" : "newobj",
323 | "numinlets" : 3,
324 | "numoutlets" : 2,
325 | "outlettype" : [ "float", "float" ],
326 | "patching_rect" : [ 213.0, 441.66668701171875, 162.20001220703125, 22.0 ],
327 | "text" : "makenote"
328 | }
329 |
330 | }
331 | , {
332 | "box" : {
333 | "id" : "obj-29",
334 | "maxclass" : "newobj",
335 | "numinlets" : 1,
336 | "numoutlets" : 6,
337 | "outlettype" : [ "", "", "", "", "", "" ],
338 | "patching_rect" : [ 213.0, 145.0, 257.66668701171875, 22.0 ],
339 | "text" : "unjoin 5"
340 | }
341 |
342 | }
343 | , {
344 | "box" : {
345 | "comment" : "",
346 | "id" : "obj-4",
347 | "index" : 2,
348 | "maxclass" : "outlet",
349 | "numinlets" : 1,
350 | "numoutlets" : 0,
351 | "patching_rect" : [ 356.20001220703125, 479.0, 30.0, 30.0 ]
352 | }
353 |
354 | }
355 | , {
356 | "box" : {
357 | "comment" : "",
358 | "id" : "obj-3",
359 | "index" : 1,
360 | "maxclass" : "outlet",
361 | "numinlets" : 1,
362 | "numoutlets" : 0,
363 | "patching_rect" : [ 213.0, 475.0, 30.0, 30.0 ]
364 | }
365 |
366 | }
367 | , {
368 | "box" : {
369 | "comment" : "",
370 | "id" : "obj-1",
371 | "index" : 1,
372 | "maxclass" : "inlet",
373 | "numinlets" : 0,
374 | "numoutlets" : 1,
375 | "outlettype" : [ "" ],
376 | "patching_rect" : [ 213.0, 91.0, 30.0, 30.0 ]
377 | }
378 |
379 | }
380 | ],
381 | "lines" : [ {
382 | "patchline" : {
383 | "destination" : [ "obj-29", 0 ],
384 | "source" : [ "obj-1", 0 ]
385 | }
386 |
387 | }
388 | , {
389 | "patchline" : {
390 | "destination" : [ "obj-20", 0 ],
391 | "source" : [ "obj-10", 0 ]
392 | }
393 |
394 | }
395 | , {
396 | "patchline" : {
397 | "destination" : [ "obj-6", 0 ],
398 | "source" : [ "obj-11", 0 ]
399 | }
400 |
401 | }
402 | , {
403 | "patchline" : {
404 | "destination" : [ "obj-42", 0 ],
405 | "source" : [ "obj-14", 0 ]
406 | }
407 |
408 | }
409 | , {
410 | "patchline" : {
411 | "destination" : [ "obj-39", 0 ],
412 | "source" : [ "obj-16", 0 ]
413 | }
414 |
415 | }
416 | , {
417 | "patchline" : {
418 | "destination" : [ "obj-44", 2 ],
419 | "source" : [ "obj-18", 2 ]
420 | }
421 |
422 | }
423 | , {
424 | "patchline" : {
425 | "destination" : [ "obj-44", 1 ],
426 | "source" : [ "obj-18", 1 ]
427 | }
428 |
429 | }
430 | , {
431 | "patchline" : {
432 | "destination" : [ "obj-44", 0 ],
433 | "source" : [ "obj-18", 0 ]
434 | }
435 |
436 | }
437 | , {
438 | "patchline" : {
439 | "destination" : [ "obj-39", 1 ],
440 | "source" : [ "obj-19", 0 ]
441 | }
442 |
443 | }
444 | , {
445 | "patchline" : {
446 | "destination" : [ "obj-10", 0 ],
447 | "source" : [ "obj-2", 0 ]
448 | }
449 |
450 | }
451 | , {
452 | "patchline" : {
453 | "destination" : [ "obj-19", 1 ],
454 | "source" : [ "obj-20", 0 ]
455 | }
456 |
457 | }
458 | , {
459 | "patchline" : {
460 | "destination" : [ "obj-23", 0 ],
461 | "source" : [ "obj-21", 0 ]
462 | }
463 |
464 | }
465 | , {
466 | "patchline" : {
467 | "destination" : [ "obj-7", 0 ],
468 | "midpoints" : [ 786.5, 149.0, 743.5, 149.0, 743.5, 150.0, 695.5, 150.0 ],
469 | "source" : [ "obj-23", 0 ]
470 | }
471 |
472 | }
473 | , {
474 | "patchline" : {
475 | "destination" : [ "obj-19", 0 ],
476 | "source" : [ "obj-24", 0 ]
477 | }
478 |
479 | }
480 | , {
481 | "patchline" : {
482 | "destination" : [ "obj-18", 2 ],
483 | "source" : [ "obj-29", 2 ]
484 | }
485 |
486 | }
487 | , {
488 | "patchline" : {
489 | "destination" : [ "obj-18", 0 ],
490 | "source" : [ "obj-29", 0 ]
491 | }
492 |
493 | }
494 | , {
495 | "patchline" : {
496 | "destination" : [ "obj-24", 0 ],
497 | "source" : [ "obj-29", 3 ]
498 | }
499 |
500 | }
501 | , {
502 | "patchline" : {
503 | "destination" : [ "obj-43", 0 ],
504 | "source" : [ "obj-29", 1 ]
505 | }
506 |
507 | }
508 | , {
509 | "patchline" : {
510 | "destination" : [ "obj-18", 1 ],
511 | "source" : [ "obj-35", 0 ]
512 | }
513 |
514 | }
515 | , {
516 | "patchline" : {
517 | "destination" : [ "obj-35", 1 ],
518 | "source" : [ "obj-38", 0 ]
519 | }
520 |
521 | }
522 | , {
523 | "patchline" : {
524 | "destination" : [ "obj-18", 3 ],
525 | "source" : [ "obj-39", 0 ]
526 | }
527 |
528 | }
529 | , {
530 | "patchline" : {
531 | "destination" : [ "obj-35", 0 ],
532 | "source" : [ "obj-42", 0 ]
533 | }
534 |
535 | }
536 | , {
537 | "patchline" : {
538 | "destination" : [ "obj-18", 1 ],
539 | "source" : [ "obj-43", 0 ]
540 | }
541 |
542 | }
543 | , {
544 | "patchline" : {
545 | "destination" : [ "obj-35", 2 ],
546 | "order" : 0,
547 | "source" : [ "obj-43", 1 ]
548 | }
549 |
550 | }
551 | , {
552 | "patchline" : {
553 | "destination" : [ "obj-38", 0 ],
554 | "order" : 1,
555 | "source" : [ "obj-43", 1 ]
556 | }
557 |
558 | }
559 | , {
560 | "patchline" : {
561 | "destination" : [ "obj-3", 0 ],
562 | "source" : [ "obj-44", 0 ]
563 | }
564 |
565 | }
566 | , {
567 | "patchline" : {
568 | "destination" : [ "obj-4", 0 ],
569 | "source" : [ "obj-44", 1 ]
570 | }
571 |
572 | }
573 | , {
574 | "patchline" : {
575 | "destination" : [ "obj-9", 0 ],
576 | "source" : [ "obj-5", 1 ]
577 | }
578 |
579 | }
580 | , {
581 | "patchline" : {
582 | "destination" : [ "obj-2", 0 ],
583 | "source" : [ "obj-6", 0 ]
584 | }
585 |
586 | }
587 | , {
588 | "patchline" : {
589 | "destination" : [ "obj-20", 1 ],
590 | "source" : [ "obj-7", 1 ]
591 | }
592 |
593 | }
594 | , {
595 | "patchline" : {
596 | "destination" : [ "obj-20", 0 ],
597 | "midpoints" : [ 695.5, 186.5, 546.5, 186.5 ],
598 | "source" : [ "obj-7", 0 ]
599 | }
600 |
601 | }
602 | , {
603 | "patchline" : {
604 | "destination" : [ "obj-14", 0 ],
605 | "midpoints" : [ 927.5, 273.5, 292.7833251953125, 273.5 ],
606 | "source" : [ "obj-9", 0 ]
607 | }
608 |
609 | }
610 | , {
611 | "patchline" : {
612 | "destination" : [ "obj-16", 0 ],
613 | "midpoints" : [ 981.5, 261.5, 420.75, 261.5 ],
614 | "source" : [ "obj-9", 1 ]
615 | }
616 |
617 | }
618 | ],
619 | "bgcolor" : [ 1.0, 1.0, 1.0, 1.0 ]
620 | }
621 |
622 | }
623 |
--------------------------------------------------------------------------------
/subpatches/setup_1_16.maxpat:
--------------------------------------------------------------------------------
1 | {
2 | "patcher" : {
3 | "fileversion" : 1,
4 | "appversion" : {
5 | "major" : 8,
6 | "minor" : 1,
7 | "revision" : 8,
8 | "architecture" : "x64",
9 | "modernui" : 1
10 | }
11 | ,
12 | "classnamespace" : "box",
13 | "rect" : [ 867.0, 335.0, 973.0, 427.0 ],
14 | "bglocked" : 0,
15 | "openinpresentation" : 0,
16 | "default_fontsize" : 12.0,
17 | "default_fontface" : 0,
18 | "default_fontname" : "Arial",
19 | "gridonopen" : 1,
20 | "gridsize" : [ 15.0, 15.0 ],
21 | "gridsnaponopen" : 1,
22 | "objectsnaponopen" : 1,
23 | "statusbarvisible" : 2,
24 | "toolbarvisible" : 1,
25 | "lefttoolbarpinned" : 0,
26 | "toptoolbarpinned" : 0,
27 | "righttoolbarpinned" : 0,
28 | "bottomtoolbarpinned" : 0,
29 | "toolbars_unpinned_last_save" : 0,
30 | "tallnewobj" : 0,
31 | "boxanimatetime" : 200,
32 | "enablehscroll" : 1,
33 | "enablevscroll" : 1,
34 | "devicewidth" : 0.0,
35 | "description" : "",
36 | "digest" : "",
37 | "tags" : "",
38 | "style" : "",
39 | "subpatcher_template" : "no_top",
40 | "assistshowspatchername" : 0,
41 | "boxes" : [ {
42 | "box" : {
43 | "id" : "obj-3",
44 | "maxclass" : "comment",
45 | "numinlets" : 1,
46 | "numoutlets" : 0,
47 | "patching_rect" : [ 270.0, 173.0, 141.0, 20.0 ],
48 | "text" : "basic sequencer settings"
49 | }
50 |
51 | }
52 | , {
53 | "box" : {
54 | "id" : "obj-14",
55 | "maxclass" : "newobj",
56 | "numinlets" : 1,
57 | "numoutlets" : 1,
58 | "outlettype" : [ "" ],
59 | "patcher" : {
60 | "fileversion" : 1,
61 | "appversion" : {
62 | "major" : 8,
63 | "minor" : 1,
64 | "revision" : 8,
65 | "architecture" : "x64",
66 | "modernui" : 1
67 | }
68 | ,
69 | "classnamespace" : "box",
70 | "rect" : [ 84.0, 129.0, 640.0, 480.0 ],
71 | "bglocked" : 0,
72 | "openinpresentation" : 0,
73 | "default_fontsize" : 12.0,
74 | "default_fontface" : 0,
75 | "default_fontname" : "Arial",
76 | "gridonopen" : 1,
77 | "gridsize" : [ 15.0, 15.0 ],
78 | "gridsnaponopen" : 1,
79 | "objectsnaponopen" : 1,
80 | "statusbarvisible" : 2,
81 | "toolbarvisible" : 1,
82 | "lefttoolbarpinned" : 0,
83 | "toptoolbarpinned" : 0,
84 | "righttoolbarpinned" : 0,
85 | "bottomtoolbarpinned" : 0,
86 | "toolbars_unpinned_last_save" : 0,
87 | "tallnewobj" : 0,
88 | "boxanimatetime" : 200,
89 | "enablehscroll" : 1,
90 | "enablevscroll" : 1,
91 | "devicewidth" : 0.0,
92 | "description" : "",
93 | "digest" : "",
94 | "tags" : "",
95 | "style" : "",
96 | "subpatcher_template" : "no_top",
97 | "assistshowspatchername" : 0,
98 | "boxes" : [ {
99 | "box" : {
100 | "id" : "obj-11",
101 | "maxclass" : "message",
102 | "numinlets" : 2,
103 | "numoutlets" : 1,
104 | "outlettype" : [ "" ],
105 | "patching_rect" : [ 238.0, 179.0, 191.0, 22.0 ],
106 | "text" : "target_seq $1, nstep 48, loop 1 48"
107 | }
108 |
109 | }
110 | , {
111 | "box" : {
112 | "id" : "obj-6",
113 | "maxclass" : "newobj",
114 | "numinlets" : 2,
115 | "numoutlets" : 1,
116 | "outlettype" : [ "int" ],
117 | "patching_rect" : [ 50.0, 127.0, 29.5, 22.0 ],
118 | "text" : "- 1"
119 | }
120 |
121 | }
122 | , {
123 | "box" : {
124 | "id" : "obj-2",
125 | "maxclass" : "newobj",
126 | "numinlets" : 2,
127 | "numoutlets" : 3,
128 | "outlettype" : [ "bang", "bang", "int" ],
129 | "patching_rect" : [ 50.0, 100.0, 40.0, 22.0 ],
130 | "text" : "uzi 9"
131 | }
132 |
133 | }
134 | , {
135 | "box" : {
136 | "id" : "obj-76",
137 | "maxclass" : "message",
138 | "numinlets" : 2,
139 | "numoutlets" : 1,
140 | "outlettype" : [ "" ],
141 | "patching_rect" : [ 66.0, 211.0, 113.0, 22.0 ],
142 | "text" : "fold_pitch $1, fold 1"
143 | }
144 |
145 | }
146 | , {
147 | "box" : {
148 | "id" : "obj-66",
149 | "maxclass" : "newobj",
150 | "numinlets" : 1,
151 | "numoutlets" : 3,
152 | "outlettype" : [ "", "", "" ],
153 | "patching_rect" : [ 50.0, 181.0, 51.0, 22.0 ],
154 | "text" : "unjoin 2"
155 | }
156 |
157 | }
158 | , {
159 | "box" : {
160 | "coll_data" : {
161 | "count" : 9,
162 | "data" : [ {
163 | "key" : 0,
164 | "value" : [ "bass_drum", 36 ]
165 | }
166 | , {
167 | "key" : 1,
168 | "value" : [ "snare_drum", 38 ]
169 | }
170 | , {
171 | "key" : 2,
172 | "value" : [ "closed_hihat", 42 ]
173 | }
174 | , {
175 | "key" : 3,
176 | "value" : [ "open_hihat", 46 ]
177 | }
178 | , {
179 | "key" : 4,
180 | "value" : [ "low_tom", 41 ]
181 | }
182 | , {
183 | "key" : 5,
184 | "value" : [ "mid_tom", 45 ]
185 | }
186 | , {
187 | "key" : 6,
188 | "value" : [ "high_tom", 48 ]
189 | }
190 | , {
191 | "key" : 7,
192 | "value" : [ "hand_clap", 39 ]
193 | }
194 | , {
195 | "key" : 8,
196 | "value" : [ "rim_shot", 37 ]
197 | }
198 | ]
199 | }
200 | ,
201 | "id" : "obj-60",
202 | "maxclass" : "newobj",
203 | "numinlets" : 1,
204 | "numoutlets" : 4,
205 | "outlettype" : [ "", "", "", "" ],
206 | "patching_rect" : [ 50.0, 154.0, 137.0, 22.0 ],
207 | "saved_object_attributes" : {
208 | "embed" : 1,
209 | "precision" : 6
210 | }
211 | ,
212 | "text" : "coll seq_id_to_midi_vae"
213 | }
214 |
215 | }
216 | , {
217 | "box" : {
218 | "comment" : "",
219 | "id" : "obj-12",
220 | "index" : 1,
221 | "maxclass" : "inlet",
222 | "numinlets" : 0,
223 | "numoutlets" : 1,
224 | "outlettype" : [ "bang" ],
225 | "patching_rect" : [ 50.0, 40.0, 30.0, 30.0 ]
226 | }
227 |
228 | }
229 | , {
230 | "box" : {
231 | "comment" : "",
232 | "id" : "obj-13",
233 | "index" : 1,
234 | "maxclass" : "outlet",
235 | "numinlets" : 1,
236 | "numoutlets" : 0,
237 | "patching_rect" : [ 66.0, 294.0, 30.0, 30.0 ]
238 | }
239 |
240 | }
241 | ],
242 | "lines" : [ {
243 | "patchline" : {
244 | "destination" : [ "obj-13", 0 ],
245 | "source" : [ "obj-11", 0 ]
246 | }
247 |
248 | }
249 | , {
250 | "patchline" : {
251 | "destination" : [ "obj-2", 0 ],
252 | "source" : [ "obj-12", 0 ]
253 | }
254 |
255 | }
256 | , {
257 | "patchline" : {
258 | "destination" : [ "obj-11", 0 ],
259 | "order" : 0,
260 | "source" : [ "obj-2", 0 ]
261 | }
262 |
263 | }
264 | , {
265 | "patchline" : {
266 | "destination" : [ "obj-6", 0 ],
267 | "order" : 1,
268 | "source" : [ "obj-2", 0 ]
269 | }
270 |
271 | }
272 | , {
273 | "patchline" : {
274 | "destination" : [ "obj-60", 0 ],
275 | "source" : [ "obj-6", 0 ]
276 | }
277 |
278 | }
279 | , {
280 | "patchline" : {
281 | "destination" : [ "obj-66", 0 ],
282 | "source" : [ "obj-60", 0 ]
283 | }
284 |
285 | }
286 | , {
287 | "patchline" : {
288 | "destination" : [ "obj-76", 0 ],
289 | "source" : [ "obj-66", 1 ]
290 | }
291 |
292 | }
293 | , {
294 | "patchline" : {
295 | "destination" : [ "obj-13", 0 ],
296 | "source" : [ "obj-76", 0 ]
297 | }
298 |
299 | }
300 | ]
301 | }
302 | ,
303 | "patching_rect" : [ 115.0, 235.0, 90.0, 22.0 ],
304 | "saved_object_attributes" : {
305 | "description" : "",
306 | "digest" : "",
307 | "globalpatchername" : "",
308 | "tags" : ""
309 | }
310 | ,
311 | "text" : "p"
312 | }
313 |
314 | }
315 | , {
316 | "box" : {
317 | "id" : "obj-8",
318 | "maxclass" : "button",
319 | "numinlets" : 1,
320 | "numoutlets" : 1,
321 | "outlettype" : [ "bang" ],
322 | "parameter_enable" : 0,
323 | "patching_rect" : [ 115.0, 200.0, 24.0, 24.0 ]
324 | }
325 |
326 | }
327 | , {
328 | "box" : {
329 | "comment" : "",
330 | "id" : "obj-4",
331 | "index" : 1,
332 | "maxclass" : "outlet",
333 | "numinlets" : 1,
334 | "numoutlets" : 0,
335 | "patching_rect" : [ 115.0, 364.0, 30.0, 30.0 ]
336 | }
337 |
338 | }
339 | , {
340 | "box" : {
341 | "id" : "obj-25",
342 | "linecount" : 2,
343 | "maxclass" : "message",
344 | "numinlets" : 2,
345 | "numoutlets" : 1,
346 | "outlettype" : [ "" ],
347 | "patching_rect" : [ 238.0, 200.0, 634.0, 35.0 ],
348 | "text" : "nseq 9, nstep 48, mode 0, loopruler 0, usestepcolor2 1, pitch_active 1, velocity_active 1, duration_active 1, loop 1 48, display_seq 1, target_seq 1"
349 | }
350 |
351 | }
352 | , {
353 | "box" : {
354 | "comment" : "",
355 | "id" : "obj-1",
356 | "index" : 1,
357 | "maxclass" : "inlet",
358 | "numinlets" : 0,
359 | "numoutlets" : 1,
360 | "outlettype" : [ "bang" ],
361 | "patching_rect" : [ 115.0, 84.0, 30.0, 30.0 ]
362 | }
363 |
364 | }
365 | ],
366 | "lines" : [ {
367 | "patchline" : {
368 | "destination" : [ "obj-25", 0 ],
369 | "order" : 0,
370 | "source" : [ "obj-1", 0 ]
371 | }
372 |
373 | }
374 | , {
375 | "patchline" : {
376 | "destination" : [ "obj-8", 0 ],
377 | "order" : 1,
378 | "source" : [ "obj-1", 0 ]
379 | }
380 |
381 | }
382 | , {
383 | "patchline" : {
384 | "destination" : [ "obj-4", 0 ],
385 | "source" : [ "obj-14", 0 ]
386 | }
387 |
388 | }
389 | , {
390 | "patchline" : {
391 | "destination" : [ "obj-4", 0 ],
392 | "source" : [ "obj-25", 0 ]
393 | }
394 |
395 | }
396 | , {
397 | "patchline" : {
398 | "destination" : [ "obj-14", 0 ],
399 | "source" : [ "obj-8", 0 ]
400 | }
401 |
402 | }
403 | ],
404 | "styles" : [ {
405 | "name" : "tap",
406 | "default" : {
407 | "fontname" : [ "Lato Light" ]
408 | }
409 | ,
410 | "parentstyle" : "",
411 | "multi" : 0
412 | }
413 | ],
414 | "bgcolor" : [ 1.0, 1.0, 1.0, 1.0 ]
415 | }
416 |
417 | }
418 |
--------------------------------------------------------------------------------
/subpatches/shuffle_metro.maxpat:
--------------------------------------------------------------------------------
1 | {
2 | "patcher" : {
3 | "fileversion" : 1,
4 | "appversion" : {
5 | "major" : 8,
6 | "minor" : 1,
7 | "revision" : 8,
8 | "architecture" : "x64",
9 | "modernui" : 1
10 | }
11 | ,
12 | "classnamespace" : "box",
13 | "rect" : [ 534.0, 269.0, 885.0, 771.0 ],
14 | "bglocked" : 0,
15 | "openinpresentation" : 0,
16 | "default_fontsize" : 12.0,
17 | "default_fontface" : 0,
18 | "default_fontname" : "Arial",
19 | "gridonopen" : 1,
20 | "gridsize" : [ 15.0, 15.0 ],
21 | "gridsnaponopen" : 1,
22 | "objectsnaponopen" : 1,
23 | "statusbarvisible" : 2,
24 | "toolbarvisible" : 1,
25 | "lefttoolbarpinned" : 0,
26 | "toptoolbarpinned" : 0,
27 | "righttoolbarpinned" : 0,
28 | "bottomtoolbarpinned" : 0,
29 | "toolbars_unpinned_last_save" : 2,
30 | "tallnewobj" : 0,
31 | "boxanimatetime" : 200,
32 | "enablehscroll" : 1,
33 | "enablevscroll" : 1,
34 | "devicewidth" : 0.0,
35 | "description" : "",
36 | "digest" : "",
37 | "tags" : "",
38 | "style" : "",
39 | "subpatcher_template" : "no_top",
40 | "assistshowspatchername" : 0,
41 | "boxes" : [ {
42 | "box" : {
43 | "id" : "obj-59",
44 | "maxclass" : "newobj",
45 | "numinlets" : 2,
46 | "numoutlets" : 1,
47 | "outlettype" : [ "int" ],
48 | "patching_rect" : [ 195.0, 303.0, 29.5, 22.0 ],
49 | "text" : "+"
50 | }
51 |
52 | }
53 | , {
54 | "box" : {
55 | "id" : "obj-58",
56 | "maxclass" : "number",
57 | "numinlets" : 1,
58 | "numoutlets" : 2,
59 | "outlettype" : [ "", "bang" ],
60 | "parameter_enable" : 0,
61 | "patching_rect" : [ 117.0, 380.0, 50.0, 22.0 ]
62 | }
63 |
64 | }
65 | , {
66 | "box" : {
67 | "id" : "obj-56",
68 | "maxclass" : "newobj",
69 | "numinlets" : 2,
70 | "numoutlets" : 1,
71 | "outlettype" : [ "int" ],
72 | "patching_rect" : [ 117.0, 337.0, 29.5, 22.0 ],
73 | "text" : "+"
74 | }
75 |
76 | }
77 | , {
78 | "box" : {
79 | "id" : "obj-41",
80 | "maxclass" : "newobj",
81 | "numinlets" : 1,
82 | "numoutlets" : 2,
83 | "outlettype" : [ "int", "int" ],
84 | "patching_rect" : [ 293.0, 278.0, 29.5, 22.0 ],
85 | "text" : "t i i"
86 | }
87 |
88 | }
89 | , {
90 | "box" : {
91 | "id" : "obj-32",
92 | "maxclass" : "newobj",
93 | "numinlets" : 2,
94 | "numoutlets" : 1,
95 | "outlettype" : [ "int" ],
96 | "patching_rect" : [ 304.25, 316.0, 29.5, 22.0 ],
97 | "text" : "% 2"
98 | }
99 |
100 | }
101 | , {
102 | "box" : {
103 | "id" : "obj-42",
104 | "maxclass" : "newobj",
105 | "numinlets" : 2,
106 | "numoutlets" : 1,
107 | "outlettype" : [ "int" ],
108 | "patching_rect" : [ 117.0, 617.0, 36.0, 22.0 ],
109 | "text" : "% 96"
110 | }
111 |
112 | }
113 | , {
114 | "box" : {
115 | "id" : "obj-40",
116 | "maxclass" : "newobj",
117 | "numinlets" : 2,
118 | "numoutlets" : 1,
119 | "outlettype" : [ "int" ],
120 | "patching_rect" : [ 117.0, 645.0, 29.5, 22.0 ],
121 | "text" : "+ 1"
122 | }
123 |
124 | }
125 | , {
126 | "box" : {
127 | "id" : "obj-36",
128 | "maxclass" : "newobj",
129 | "numinlets" : 1,
130 | "numoutlets" : 3,
131 | "outlettype" : [ "", "int", "int" ],
132 | "patching_rect" : [ 117.0, 671.0, 48.0, 22.0 ],
133 | "text" : "change"
134 | }
135 |
136 | }
137 | , {
138 | "box" : {
139 | "id" : "obj-65",
140 | "maxclass" : "newobj",
141 | "numinlets" : 2,
142 | "numoutlets" : 1,
143 | "outlettype" : [ "int" ],
144 | "patching_rect" : [ 117.0, 291.0, 30.0, 22.0 ],
145 | "text" : "* 48"
146 | }
147 |
148 | }
149 | , {
150 | "box" : {
151 | "id" : "obj-64",
152 | "maxclass" : "newobj",
153 | "numinlets" : 2,
154 | "numoutlets" : 1,
155 | "outlettype" : [ "int" ],
156 | "patching_rect" : [ 117.0, 228.0, 29.5, 22.0 ],
157 | "text" : "- 1"
158 | }
159 |
160 | }
161 | , {
162 | "box" : {
163 | "id" : "obj-51",
164 | "maxclass" : "newobj",
165 | "numinlets" : 2,
166 | "numoutlets" : 1,
167 | "outlettype" : [ "int" ],
168 | "patching_rect" : [ 195.0, 228.0, 29.5, 22.0 ],
169 | "text" : "- 1"
170 | }
171 |
172 | }
173 | , {
174 | "box" : {
175 | "id" : "obj-43",
176 | "maxclass" : "newobj",
177 | "numinlets" : 2,
178 | "numoutlets" : 1,
179 | "outlettype" : [ "int" ],
180 | "patching_rect" : [ 195.0, 256.0, 30.0, 22.0 ],
181 | "text" : "* 12"
182 | }
183 |
184 | }
185 | , {
186 | "box" : {
187 | "id" : "obj-29",
188 | "maxclass" : "newobj",
189 | "numinlets" : 2,
190 | "numoutlets" : 1,
191 | "outlettype" : [ "int" ],
192 | "patching_rect" : [ 117.0, 258.0, 29.5, 22.0 ],
193 | "text" : "% 2"
194 | }
195 |
196 | }
197 | , {
198 | "box" : {
199 | "id" : "obj-33",
200 | "maxclass" : "number",
201 | "numinlets" : 1,
202 | "numoutlets" : 2,
203 | "outlettype" : [ "", "bang" ],
204 | "parameter_enable" : 0,
205 | "patching_rect" : [ 580.5, 323.0, 50.0, 22.0 ]
206 | }
207 |
208 | }
209 | , {
210 | "box" : {
211 | "id" : "obj-31",
212 | "maxclass" : "newobj",
213 | "numinlets" : 2,
214 | "numoutlets" : 1,
215 | "outlettype" : [ "float" ],
216 | "patching_rect" : [ 580.5, 265.0, 101.5, 22.0 ],
217 | "text" : "/ 3."
218 | }
219 |
220 | }
221 | , {
222 | "box" : {
223 | "id" : "obj-13",
224 | "maxclass" : "newobj",
225 | "numinlets" : 2,
226 | "numoutlets" : 1,
227 | "outlettype" : [ "int" ],
228 | "patching_rect" : [ 117.0, 581.0, 29.5, 22.0 ],
229 | "text" : "* 1"
230 | }
231 |
232 | }
233 | , {
234 | "box" : {
235 | "comment" : "",
236 | "id" : "obj-2",
237 | "index" : 3,
238 | "maxclass" : "inlet",
239 | "numinlets" : 0,
240 | "numoutlets" : 1,
241 | "outlettype" : [ "" ],
242 | "patching_rect" : [ 763.0, 48.0, 30.0, 30.0 ]
243 | }
244 |
245 | }
246 | , {
247 | "box" : {
248 | "id" : "obj-24",
249 | "maxclass" : "number",
250 | "numinlets" : 1,
251 | "numoutlets" : 2,
252 | "outlettype" : [ "", "bang" ],
253 | "parameter_enable" : 0,
254 | "patching_rect" : [ 313.25, 181.0, 50.0, 22.0 ]
255 | }
256 |
257 | }
258 | , {
259 | "box" : {
260 | "id" : "obj-12",
261 | "maxclass" : "newobj",
262 | "numinlets" : 2,
263 | "numoutlets" : 1,
264 | "outlettype" : [ "int" ],
265 | "patching_rect" : [ 313.25, 153.0, 29.5, 22.0 ],
266 | "text" : "/ 12"
267 | }
268 |
269 | }
270 | , {
271 | "box" : {
272 | "id" : "obj-16",
273 | "maxclass" : "newobj",
274 | "numinlets" : 2,
275 | "numoutlets" : 1,
276 | "outlettype" : [ "int" ],
277 | "patching_rect" : [ 293.0, 223.0, 38.75, 22.0 ],
278 | "text" : "/ 120"
279 | }
280 |
281 | }
282 | , {
283 | "box" : {
284 | "id" : "obj-14",
285 | "maxclass" : "newobj",
286 | "numinlets" : 2,
287 | "numoutlets" : 1,
288 | "outlettype" : [ "bang" ],
289 | "patching_rect" : [ 221.0, 79.0, 63.0, 22.0 ],
290 | "text" : "metro 48n"
291 | }
292 |
293 | }
294 | , {
295 | "box" : {
296 | "comment" : "",
297 | "id" : "obj-8",
298 | "index" : 1,
299 | "maxclass" : "outlet",
300 | "numinlets" : 1,
301 | "numoutlets" : 0,
302 | "patching_rect" : [ 117.0, 703.0, 30.0, 30.0 ]
303 | }
304 |
305 | }
306 | , {
307 | "box" : {
308 | "id" : "obj-95",
309 | "maxclass" : "newobj",
310 | "numinlets" : 2,
311 | "numoutlets" : 9,
312 | "outlettype" : [ "int", "int", "float", "float", "float", "", "int", "float", "" ],
313 | "patching_rect" : [ 221.0, 107.452991366386414, 177.0, 22.0 ],
314 | "text" : "transport"
315 | }
316 |
317 | }
318 | , {
319 | "box" : {
320 | "id" : "obj-6",
321 | "maxclass" : "newobj",
322 | "numinlets" : 1,
323 | "numoutlets" : 1,
324 | "outlettype" : [ "" ],
325 | "patching_rect" : [ 580.5, 199.0, 83.0, 22.0 ],
326 | "text" : "loadmess 16n"
327 | }
328 |
329 | }
330 | , {
331 | "box" : {
332 | "comment" : "",
333 | "id" : "obj-10",
334 | "index" : 1,
335 | "maxclass" : "inlet",
336 | "numinlets" : 0,
337 | "numoutlets" : 1,
338 | "outlettype" : [ "" ],
339 | "patching_rect" : [ 221.0, -25.0, 30.0, 30.0 ]
340 | }
341 |
342 | }
343 | , {
344 | "box" : {
345 | "id" : "obj-9",
346 | "maxclass" : "toggle",
347 | "numinlets" : 1,
348 | "numoutlets" : 1,
349 | "outlettype" : [ "int" ],
350 | "parameter_enable" : 0,
351 | "patching_rect" : [ 221.0, 16.0, 24.0, 24.0 ]
352 | }
353 |
354 | }
355 | , {
356 | "box" : {
357 | "id" : "obj-7",
358 | "maxclass" : "message",
359 | "numinlets" : 2,
360 | "numoutlets" : 1,
361 | "outlettype" : [ "" ],
362 | "patching_rect" : [ 221.0, 48.0, 57.0, 22.0 ],
363 | "text" : "active $1"
364 | }
365 |
366 | }
367 | , {
368 | "box" : {
369 | "id" : "obj-3",
370 | "maxclass" : "newobj",
371 | "numinlets" : 1,
372 | "numoutlets" : 2,
373 | "outlettype" : [ "", "" ],
374 | "patching_rect" : [ 515.5, 113.0, 101.0, 22.0 ],
375 | "text" : "patcherargs 0.25"
376 | }
377 |
378 | }
379 | , {
380 | "box" : {
381 | "id" : "obj-39",
382 | "maxclass" : "newobj",
383 | "numinlets" : 2,
384 | "numoutlets" : 1,
385 | "outlettype" : [ "float" ],
386 | "patching_rect" : [ 352.0, 459.0, 29.5, 22.0 ],
387 | "text" : "* 1."
388 | }
389 |
390 | }
391 | , {
392 | "box" : {
393 | "comment" : "",
394 | "id" : "obj-35",
395 | "index" : 2,
396 | "maxclass" : "inlet",
397 | "numinlets" : 0,
398 | "numoutlets" : 1,
399 | "outlettype" : [ "" ],
400 | "patching_rect" : [ 490.0, 40.0, 30.0, 30.0 ]
401 | }
402 |
403 | }
404 | , {
405 | "box" : {
406 | "id" : "obj-34",
407 | "maxclass" : "newobj",
408 | "numinlets" : 2,
409 | "numoutlets" : 1,
410 | "outlettype" : [ "" ],
411 | "patching_rect" : [ 152.0, 533.0, 78.0, 22.0 ],
412 | "text" : "pipe"
413 | }
414 |
415 | }
416 | , {
417 | "box" : {
418 | "id" : "obj-22",
419 | "maxclass" : "newobj",
420 | "numinlets" : 1,
421 | "numoutlets" : 1,
422 | "outlettype" : [ "" ],
423 | "patching_rect" : [ 580.5, 233.0, 135.0, 22.0 ],
424 | "text" : "translate notevalues ms"
425 | }
426 |
427 | }
428 | , {
429 | "box" : {
430 | "id" : "obj-19",
431 | "maxclass" : "newobj",
432 | "numinlets" : 2,
433 | "numoutlets" : 1,
434 | "outlettype" : [ "int" ],
435 | "patching_rect" : [ 304.25, 396.0, 29.5, 22.0 ],
436 | "text" : "+ 1"
437 | }
438 |
439 | }
440 | , {
441 | "box" : {
442 | "id" : "obj-17",
443 | "maxclass" : "newobj",
444 | "numinlets" : 2,
445 | "numoutlets" : 2,
446 | "outlettype" : [ "", "" ],
447 | "patching_rect" : [ 117.0, 448.0, 54.0, 22.0 ],
448 | "text" : "gate 2 1"
449 | }
450 |
451 | }
452 | ],
453 | "lines" : [ {
454 | "patchline" : {
455 | "destination" : [ "obj-9", 0 ],
456 | "source" : [ "obj-10", 0 ]
457 | }
458 |
459 | }
460 | , {
461 | "patchline" : {
462 | "destination" : [ "obj-24", 0 ],
463 | "source" : [ "obj-12", 0 ]
464 | }
465 |
466 | }
467 | , {
468 | "patchline" : {
469 | "destination" : [ "obj-42", 0 ],
470 | "source" : [ "obj-13", 0 ]
471 | }
472 |
473 | }
474 | , {
475 | "patchline" : {
476 | "destination" : [ "obj-95", 0 ],
477 | "source" : [ "obj-14", 0 ]
478 | }
479 |
480 | }
481 | , {
482 | "patchline" : {
483 | "destination" : [ "obj-41", 0 ],
484 | "source" : [ "obj-16", 0 ]
485 | }
486 |
487 | }
488 | , {
489 | "patchline" : {
490 | "destination" : [ "obj-13", 0 ],
491 | "source" : [ "obj-17", 0 ]
492 | }
493 |
494 | }
495 | , {
496 | "patchline" : {
497 | "destination" : [ "obj-34", 0 ],
498 | "source" : [ "obj-17", 1 ]
499 | }
500 |
501 | }
502 | , {
503 | "patchline" : {
504 | "destination" : [ "obj-17", 0 ],
505 | "midpoints" : [ 313.75, 443.5, 126.5, 443.5 ],
506 | "source" : [ "obj-19", 0 ]
507 | }
508 |
509 | }
510 | , {
511 | "patchline" : {
512 | "destination" : [ "obj-13", 1 ],
513 | "midpoints" : [ 772.5, 574.0, 137.0, 574.0 ],
514 | "source" : [ "obj-2", 0 ]
515 | }
516 |
517 | }
518 | , {
519 | "patchline" : {
520 | "destination" : [ "obj-31", 0 ],
521 | "source" : [ "obj-22", 0 ]
522 | }
523 |
524 | }
525 | , {
526 | "patchline" : {
527 | "destination" : [ "obj-16", 1 ],
528 | "source" : [ "obj-24", 0 ]
529 | }
530 |
531 | }
532 | , {
533 | "patchline" : {
534 | "destination" : [ "obj-65", 0 ],
535 | "source" : [ "obj-29", 0 ]
536 | }
537 |
538 | }
539 | , {
540 | "patchline" : {
541 | "destination" : [ "obj-39", 0 ],
542 | "midpoints" : [ 525.0, 305.5, 361.5, 305.5 ],
543 | "source" : [ "obj-3", 0 ]
544 | }
545 |
546 | }
547 | , {
548 | "patchline" : {
549 | "destination" : [ "obj-33", 0 ],
550 | "source" : [ "obj-31", 0 ]
551 | }
552 |
553 | }
554 | , {
555 | "patchline" : {
556 | "destination" : [ "obj-19", 0 ],
557 | "source" : [ "obj-32", 0 ]
558 | }
559 |
560 | }
561 | , {
562 | "patchline" : {
563 | "destination" : [ "obj-39", 1 ],
564 | "source" : [ "obj-33", 0 ]
565 | }
566 |
567 | }
568 | , {
569 | "patchline" : {
570 | "destination" : [ "obj-13", 0 ],
571 | "midpoints" : [ 161.5, 567.5, 126.5, 567.5 ],
572 | "source" : [ "obj-34", 0 ]
573 | }
574 |
575 | }
576 | , {
577 | "patchline" : {
578 | "destination" : [ "obj-39", 0 ],
579 | "midpoints" : [ 499.5, 307.5, 361.5, 307.5 ],
580 | "source" : [ "obj-35", 0 ]
581 | }
582 |
583 | }
584 | , {
585 | "patchline" : {
586 | "destination" : [ "obj-8", 0 ],
587 | "source" : [ "obj-36", 0 ]
588 | }
589 |
590 | }
591 | , {
592 | "patchline" : {
593 | "destination" : [ "obj-34", 1 ],
594 | "midpoints" : [ 361.5, 506.5, 220.5, 506.5 ],
595 | "source" : [ "obj-39", 0 ]
596 | }
597 |
598 | }
599 | , {
600 | "patchline" : {
601 | "destination" : [ "obj-36", 0 ],
602 | "source" : [ "obj-40", 0 ]
603 | }
604 |
605 | }
606 | , {
607 | "patchline" : {
608 | "destination" : [ "obj-32", 0 ],
609 | "midpoints" : [ 313.0, 303.0, 313.75, 303.0 ],
610 | "source" : [ "obj-41", 1 ]
611 | }
612 |
613 | }
614 | , {
615 | "patchline" : {
616 | "destination" : [ "obj-59", 1 ],
617 | "source" : [ "obj-41", 0 ]
618 | }
619 |
620 | }
621 | , {
622 | "patchline" : {
623 | "destination" : [ "obj-40", 0 ],
624 | "source" : [ "obj-42", 0 ]
625 | }
626 |
627 | }
628 | , {
629 | "patchline" : {
630 | "destination" : [ "obj-59", 0 ],
631 | "source" : [ "obj-43", 0 ]
632 | }
633 |
634 | }
635 | , {
636 | "patchline" : {
637 | "destination" : [ "obj-43", 0 ],
638 | "source" : [ "obj-51", 0 ]
639 | }
640 |
641 | }
642 | , {
643 | "patchline" : {
644 | "destination" : [ "obj-58", 0 ],
645 | "source" : [ "obj-56", 0 ]
646 | }
647 |
648 | }
649 | , {
650 | "patchline" : {
651 | "destination" : [ "obj-17", 1 ],
652 | "midpoints" : [ 126.5, 424.5, 161.5, 424.5 ],
653 | "source" : [ "obj-58", 0 ]
654 | }
655 |
656 | }
657 | , {
658 | "patchline" : {
659 | "destination" : [ "obj-56", 1 ],
660 | "source" : [ "obj-59", 0 ]
661 | }
662 |
663 | }
664 | , {
665 | "patchline" : {
666 | "destination" : [ "obj-22", 0 ],
667 | "source" : [ "obj-6", 0 ]
668 | }
669 |
670 | }
671 | , {
672 | "patchline" : {
673 | "destination" : [ "obj-29", 0 ],
674 | "source" : [ "obj-64", 0 ]
675 | }
676 |
677 | }
678 | , {
679 | "patchline" : {
680 | "destination" : [ "obj-56", 0 ],
681 | "source" : [ "obj-65", 0 ]
682 | }
683 |
684 | }
685 | , {
686 | "patchline" : {
687 | "destination" : [ "obj-14", 0 ],
688 | "source" : [ "obj-7", 0 ]
689 | }
690 |
691 | }
692 | , {
693 | "patchline" : {
694 | "destination" : [ "obj-7", 0 ],
695 | "source" : [ "obj-9", 0 ]
696 | }
697 |
698 | }
699 | , {
700 | "patchline" : {
701 | "destination" : [ "obj-12", 0 ],
702 | "source" : [ "obj-95", 3 ]
703 | }
704 |
705 | }
706 | , {
707 | "patchline" : {
708 | "destination" : [ "obj-16", 0 ],
709 | "source" : [ "obj-95", 2 ]
710 | }
711 |
712 | }
713 | , {
714 | "patchline" : {
715 | "destination" : [ "obj-51", 0 ],
716 | "source" : [ "obj-95", 1 ]
717 | }
718 |
719 | }
720 | , {
721 | "patchline" : {
722 | "destination" : [ "obj-64", 0 ],
723 | "source" : [ "obj-95", 0 ]
724 | }
725 |
726 | }
727 | ],
728 | "styles" : [ {
729 | "name" : "tap",
730 | "default" : {
731 | "fontname" : [ "Lato Light" ]
732 | }
733 | ,
734 | "parentstyle" : "",
735 | "multi" : 0
736 | }
737 | ],
738 | "bgcolor" : [ 1.0, 1.0, 1.0, 1.0 ]
739 | }
740 |
741 | }
742 |
--------------------------------------------------------------------------------